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Abstract. We revisit the problem of finding two consecutive B-smooth integers by giving
an optimised implementation of the Conrey-Holmstrom-McLaughlin “smooth neighbors”
algorithm. While this algorithm is not guaranteed to return the complete set of B-smooth
neighbors, in practice it returns a very close approximation to the complete set but does so
in a tiny fraction of the time of its exhaustive counterparts. We exploit this algorithm to find
record-sized solutions to the pure twin smooth problem, and subsequently to produce in-
stances of cryptographic parameters whose corresponding isogeny degrees are significantly
smoother than prior works. Our methods seem well-suited to finding parameters for the
SQISign signature scheme, especially for instantiations looking to minimise the cost of sig-
nature generation. We give a number of examples, among which are the first parameter sets
geared towards efficient SQISign instantiations at NIST’s security levels III and V.

Keywords: Post-quantum cryptography, isogeny-based cryptography, twin smooth inte-
gers, smooth neighbors, Pell equation, SQISign.

1 Introduction

In recent years the tantalising problem of finding two large, consecutive, smooth integers has
emerged in the context of instantiating efficient isogeny-based public key cryptosystems. Though
the problem was initially motivated in the context of key exchange [9], a wave of polynomial time
attacks [6,22,23] has completely broken the isogeny-based key exchange scheme SIDH [19], leaving
post-quantum signatures as the most compelling cryptographic application of isogenies at present.
In terms of practical potential, the leading isogeny-based signature scheme is SQISign [16]; it boasts
the smallest public keys and signatures of all post-quantum signature schemes (by far!), at the
price of a signing algorithm that is orders of magnitude slower than its post-quantum counterparts.
Finding secure parameters for SQISign is related to the twin smooth problem mentioned above7,
with a large contributing factor to the overall efficiency of the protocol being the smoothness bound,
B, of the rational torsion used in isogeny computations. This bound corresponds to the degree of
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7 SQISign is instantiated over large primes p such that p2 − 1 is divisible by a large, B-smooth factor.
If, for example, we find B-smooth twins r and r + 1 whose sum is a prime p = 2r + 1, then p2 − 1 is
immediately B-smooth.



the largest prime-degree isogeny computed in the protocol, for which the fastest algorithm runs
in Õ(

√
B) field operations [4]. Part of the reason for SQISign’s performance drawback is that the

problem of finding parameters with small B is difficult: the fastest implementation to date targets
security comparable to NIST Level I [27, §4.A] and has B = 3923 [17]. Additionally, methods for
finding efficient SQISign parameters have to date not been able to obtain suitable primes reaching
NIST Level III and V security. In view of NIST’s recent call for additional general purpose post-
quantum signature schemes that are not based on structured lattices [28], it is important to find
methods of generating efficient isogeny-based signature parameters beyond those that have been
proposed thus far at NIST Level I.

The CHM algorithm. In this work we introduce new ways of finding large twin smooth instances
based on the Conrey-Holmstrom-McLaughlin (CHM) “Smooth neighbors” algorithm [8]. For a
fixed smoothness bound B, the CHM algorithm starts with the set of integers S = {1, 2, . . . , B−1}
representing the smooth neighbors (1, 2), (2, 3), . . . , (B − 1, B), and recursively grows this set by
constructing new twin smooth integers from unordered pairs in S × S until a full pass over all
such pairs finds no new twins, at which point the algorithm terminates. Although the CHM
algorithm is not guaranteed to find the set of all B-smooth twins, for moderate values of B it
converges with the set S containing almost all such twins. The crucial advantage is that, unlike
the algorithm of Lehmer [20] that exhaustively solves 2π(B) Pell equations to guarantee the full set
of B-smooth twins, the CHM algorithm terminates much more rapidly. For example, in 2011 Luca
and Najman [21] used Lehmer’s approach with B = 100 to compute the full set of 13,374 twin
smooths in 15 days (on a quad-core 2.66 GHz processor) by solving 2π(B) = 225 Pell equations,

the solutions of which can have as many as 1010
6

decimal digits. The largest pair of 100-smooth
twins they found were the 58-bit integers

166055401586083680 = 25 · 33 · 5 · 113 · 23 · 43 · 59 · 67 · 83 · 89, and
166055401586083681 = 72 · 1710 · 412.

In 2012, Conrey, Holmstrom and McLaughlin ran their algorithm on a similar machine to find
13,333 (i.e. all but 41) of these twins in 20 minutes [8]. Subsequently, they set B = 200 and found
a list of 346,192 twin smooths in about 2 weeks, the largest of which were the 79-bit integers

589864439608716991201560 = 23 · 33 · 5 · 72 · 112 · 17 · 31 · 592 · 83 · 1392

· 173 · 181, and
589864439608716991201561 = 132 · 1132 · 1272 · 1372 · 1512 · 1992.

Exhausting the full set of 200-smooth twins would have required solving 2π(200) = 246 Pell equa-
tions, which is pushing the limit of what is currently computationally feasible. The largest run of
Lehmer’s algorithm reported in the literature used B = 113 [9, §5.3], which required solving 230

Pell equations and a significant parallelised computation that ran over several weeks. The largest
set of 113-smooth twins found during that computation were the 75-bit integers

19316158377073923834000 = 24 · 36 · 53 · 7 · 232 · 29 · 47 · 59 · 61 · 73 · 97 · 103,
19316158377073923834001 = 132 · 312 · 372 · 434 · 714.

Remark 1. The above examples illustrate some important phenomena that are worth pointing
out before we move forward. Observe that, in the first and third examples, the largest prime not
exceeding B is not found in the factors of the largest twins. The largest 89-smooth twins are the
same as the largest 97-smooth twins, and the largest 103-smooth twins are the same as the largest
113-smooth twins. In other words, increasing B to include more primes necessarily increases the
size of the set of B-smooth twins, but it does not mean we will find any new, larger twins. This
trend highlights part of the difficulty we face in trying to find optimally smooth parameters of
cryptographic size: increasing the smoothness bound B makes the size of the set of twins grow
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rapidly, but the growth of the largest twins we find is typically painstakingly slow. The set of
100-smooth twins has cardinality 13,374, with the largest pair being 58 bits; increasing B to 200
gives a set of cardinality (at least) 345,192, but the largest pair has only grown to be 79 bits. In
fact, most of this jump in the bitlength of the largest twins occurs when increasing B = 97 (58
bits) to include two more primes with B = 103 (76 bits). Including the 19 additional primes up to
199 only increases the bitlength of largest twins with B = 199 by 3 (79 bits), and this is indicative
of what we observe when B is increased even further.

Our contributions. We give an optimised implementation of CHM that allows us to run the
algorithm for much larger values of B in order to find larger sized twins. For example, the original
CHM paper reported that the full algorithm with B = 200 terminated in approximately 2 weeks;
our implementation did the same computation in around 943 seconds on a laptop. Increasing the
smoothness bound to B = 547, our implementation converged with a set of 82,026,426 pairs of
B-smooth twins, the largest of which are the 122-bit pair (r, r + 1) with

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283
· 499 · 509, and

r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232. (1)

Although it remains infeasible to increase B to the point where the twins found through CHM
are large enough to be used out-of-the-box in isogeny-based schemes (i.e. close to 2256), we are
able to combine the larger twins found through CHM with techniques from the literature in order
to find much smoother sets of SQISign parameters. In this case we are aided by the requirements
for SQISign, which permit us to relax the size of the smooth factor that divides p2−1. The current
state-of-the-art instantiation [17] uses primes p such that

ℓf · T | (p2 − 1),

where ℓ is a small prime (typically ℓ = 2), where f is as large as possible, and where T ≈ p5/4 is
both coprime to ℓ and B-smooth. For example, the original SQISign implementation [16] used a
256-bit prime p such that

p2 − 1 = 234 · T1879 ·R,

where T1879 is an odd 334-bit integer8 whose largest prime factor is B = 1879, and R is the rough
factor; a 144-bit integer containing no prime factors less than or equal to B. As another example,
De Feo, Leroux and Wesolowski [17, §5] instead use a 254-bit prime p with

p2 − 1 = 266 · T3923 ·R,

where T3923 is an odd 334-bit integer whose largest prime factor is B = 3923, and where all of R’s
prime factors again exceed B.

During the search mentioned above that found the record 547-smooth twins in (1), over 82
million other pairs of smaller sized twins were found. One such pair was the 63-bit twins (r− 1, r)
with r = 8077251317941145600. Taking p = 2r4 − 1 gives a 253-bit prime p such that

p2 − 1 = 249 · T479 ·R,

where T479 is an odd 328-bit integer that is 479-smooth. This represents a significant improvement
in smoothness over the T values obtained in [16] and [17]. Although the smoothness of T is not
the only factor governing the efficiency of the scheme, our analysis in Section 6 suggests that the
parameters found in this paper are interesting alternatives to those currently found in SQISign
implementations, giving instantiations with a significantly lower expected signing cost, but with
a modest increase in verification cost.

8 The initial SQISign requirements [16] had T ≈ p3/2, but T1879 corresponds to the new requirements.
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Just as we transformed a pair of 85-bit twins into a 255-bit prime by taking p = 2r3 − 1,
we combine the use of twins found with CHM and primes of the form p = 2rn − 1 with n ≥ 3
to obtain several SQISign-friendly primes that target higher security levels. For example, with
some 64-bit twins (r, r + 1) found through CHM, we give a 382-bit prime p = 2r6 − 1 such that
p2−1 = 280 ·T10243 ·R, where T is an odd 495-bit integer that is 10243-smooth; this prime would be
suitable for SQISign signatures geared towards NIST Level III security. As another example, with
some 85-bit twins (r, r+1), we give a 508-bit prime p = 2r6−1 such that p2−1 = 286 ·T150151 ·R,
where T is a 639-bit integer that is 150151-smooth; this prime would be suitable for SQISign
signatures targeting NIST Level V security.

Our implementation of the CHM algorithm is written in C/C++ and is found at

https://github.com/GiacomoBruno/TwinsmoothSearcher.

Remark 2. In a recent paper [15], it was shown that computing the constructive Deuring corre-
spondence, which is the heavy computation that SQISign needs to perform as part of its signature
generation algorithm, is feasible to compute without choosing a specific characteristic p before-
hand. However, the paper further confirms (comparing [15, Figure 3] with [15, Table 2]) that the
efficiency of this computation depends heavily on the factorisation of p2 − 1 (or more generally
pk − 1 for small k). In a setting that allows to freely choose a fixed characteristic p, for instance
in the SQISign setting, it is clear that one should choose p carefully for optimal performance.

Remark 3. Another recent work introduces SQISignHD [11], a variant of SQISign in higher di-
mensions. Although the signature generation could be significantly faster in SQISignHD, the veri-
fication algorithm requires computing 4-dimensional isogenies. Since the research of implementing
practical 4-dimensional isogenies has mainly only begun since the SIDH attacks, there is no im-
plementation of SQISignHD yet. While breakthroughs in this area of research could change the
picture of the field, it remains unclear whether the verification algorithm can be implemented effi-
ciently enough to consider SQISignHD for practical applications, or to reach similar performance
as SQISign verification.

Organisation. Section 2 reviews prior methods for generating large instances of twin smooths. In
Section 3, we recall the CHM algorithm and give a generalisation of it that may be of independent
interest. Section 4 details our implementation of the CHM algorithm and presents a number of
optimisations that allowed us to run it for much larger values of B. In Section 5, we discuss the
combination of CHM with primes of the form p = 2xn− 1 to give estimates on the probabilities of
finding SQISign parameters at various security levels. Section 6 presents our results, giving record-
sized twin smooth instances and dozens of SQISign-friendly primes that target NIST’s security
levels I, III, and V.

2 Preliminaries and Prior Methods

We start by fixing some definitions and terminology.

Definition 1. A positive integer n is called B-smooth for some real number B > 0 if all prime
divisors of n are at most B. An integer n generates a B-smooth value of a polynomial f(X) if f(n)
is B-smooth. In this case we call n a B-smooth value of f(X). We call two consecutive integers
B-smooth twins if their product is B-smooth. An integer n is called B-rough if all of its prime
factors exceed B.

We now review prior methods of searching for twin smooth integers by following the descriptions
of the three algorithms reviewed in [10, §2] and including the method introduced in [10] itself.
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Solving Pell equations. Fix B, let {2, 3, . . . , q} be the set of primes up to B with cardinality
π(B), and consider the B-smooth twins (r, r+1). Let x = 2r+1, so that x− 1 and x+1 are also
B-smooth, and let D be the squarefree part of their product (x− 1)(x+ 1), i.e. x2 − 1 = Dy2 for
some y ∈ Z. It follows that Dy2 is B-smooth, which means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. For each of the 2π(B) squarefree possibilities for D, Størmer [24]
reverses the above argument and proposes to solve the 2π(B) Pell equations

x2 −Dy2 = 1,

finding all of the solutions for which y is B-smooth, and in doing so finding the complete set of
B-smooth twins.

The largest pair of 2-smooth integers is (1, 2), the largest pair of 3-smooth integers is (8, 9),
and the largest pair of 5-smooth integers is (80, 81). Unfortunately, solving 2π(B) Pell equations
becomes infeasible before the size of the twins we find is large enough (i.e. exceeds 2200) for our
purposes. As we saw in Section 1, [9] reports that with B = 113 the largest twins (r, r + 1) found
upon solving all 230 Pell equations have r = 19316158377073923834000 ≈ 275.

The extended Euclidean algorithm. The most näıve way of searching for twin smooth integers
is to compute B-smooth numbers r until either r − 1 or r + 1 also turns out to be B-smooth. A
much better method [9,16] is to instead choose two coprime B-smooth numbers α and β that are
both of size roughly the square root of the target size of r and r+1. On input of α and β, Euclid’s
extended GCD algorithm outputs two integers (s, t) such that αs + βt = 1 with |s| < |β/2| and
|t| < |α/2|. We can then take {m,m+1} = {|αs|, |βt|}, and the probability of m and m+1 being
B-smooth is now the probability that s · t is B-smooth. The reason this performs much better
than the näıve method above is that s · t with s ≈ t is much more likely to be B-smooth than a
random integer of similar size.

Searching with r = xn − 1. A number of works [9,16,17] have found performant parameters
by searching for twins of the form (r, r+1) = (xn−1, xn), for relatively small n ∈ Z. For example,
suppose we are searching for b-bit twins (r, r+1) and we take n = 4 so that r = (x2+1)(x−1)(x+1).
Instead of searching for two b-bit numbers that are smooth, we are now searching for three smooth
(b/4)-bit numbers (i.e. x− 1, x, and x+1) and one smooth (b/2)-bit number, which increases the
probability of success (see [10]).

Searching with PTE solutions. The approach taken in [10] can be viewed as an extension of
the method above, where the important difference is that for n > 2 the polynomial xn − 1 does
not split in Z[x], and the presence of higher degree terms (like the irreducible quadratic x2 + 1
above) significantly hampers the probability that values of xn − 1 ∈ Z are smooth. Instead, the
algorithm in [10] takes (r, r + 1) = (f(x), g(x)), where f(x) and g(x) are both of degree n and
are comprised entirely of linear factors. This boosts the success probability again, but one of the
difficulties facing this method is that polynomials f(x) and g(x) that differ by a constant and are
completely split are difficult to construct for n ≥ 4. Fortunately, instances of these polynomials
existed in the literature prior to [10], since they can be trivially constructed using solutions to the
Prouhet-Tarry-Escott (PTE) problem (see [10]).

3 The CHM Algorithm

In this section, we first recall the Conrey, Holmstrom, and McLaughlin (CHM) algorithm [8], a
remarkably simple algorithm that generates twin smooth integers (or smooth neighbors as they are
called in [8]), i.e. smooth values of the polynomial X(X + 1). We then present a generalisation of
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this algorithm, which generates smooth values of any monic quadratic polynomial. The algorithm
generalises the CHM algorithm, as well as another algorithm in the literature by Conrey and
Holmstrom [7], which generates smooth values of the polynomial X2 + 1. In the end, we are
primarily interested in the CHM algorithm, but present the generalised algorithm here, as it may
be of independent interest.

3.1 Finding Smooth Twins with the CHM Algorithm

Conrey, Holmstrom, and McLaughlin [8] present the following algorithm for producing many B-
smooth values of X(X + 1). It starts with the initial set

S(0) = {1, 2, . . . , B − 1}

of all integers less than B, representing the B-smooth twins (1, 2), (2, 3), . . . , (B − 1, B). Next, it
iteratively passes through all pairs of distinct r, s ∈ S(0), r < s and computes

t

t′
=

r

r + 1
· s+ 1

s
,

writing t
t′ in lowest terms. If t′ = t + 1, then clearly t also represents a twin smooth pair. The

next set S(1) is formed as the union of S(0) and the set of all solutions t such that t′ = t+1. Now
the algorithm iterates through all pairs of distinct r, s ∈ S(1) to form S(2) and so on. We call the
process of obtaining S(d) from S(d−1) the d-th CHM iteration. Once S(d) = S(d−1), the algorithm
terminates.

Example: We illustrate the algorithm for B = 5, i.e. with the goal to generate 5-smooth twin
integers. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs (r, s) ∈ S(0) with r < s, we see that the only ones that yield a new twin
smooth pair (t, t+1) via Equation (2) with t not already in S(0) are (2, 3), (2, 4) and (3, 4), namely,

2

2 + 1
· 3 + 1

3
=

8

9
,

2

2 + 1
· 4 + 1

4
=

5

6
, and

3

3 + 1
· 4 + 1

4
=

15

16
.

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}.

The second and third CHM iterations give

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24} and S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}.

The fourth iteration does not produce any new numbers, i.e. we have S(4) = S(3), the algorithm
terminates here and returns S(3). This is indeed the full set of twin 5-smooth integers as shown
in [24], see also [20, Table 1A].

Remark 4. The CHM check that determines whether a pair (r, s) yields an integer solution t to
the equation

t

t+ 1
=

r

r + 1
· s+ 1

s
(2)

can be rephrased by solving this equation for t, which yields

t =
r(s+ 1)

s− r
. (3)

This shows that in order for (r, s) to yield a new pair, s− r must divide r(s+1) and in particular,
must be B-smooth as well.
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3.2 Generalising the CHM Algorithm

We now present a generalisation of the CHM algorithm, which finds smooth values of any monic
quadratic polynomial f(X) = X2 + aX + b ∈ Z[X] ⊆ Q[X]. The algorithm works with elements
in the Q-algebra A = Q[X]/⟨f(X)⟩. Let X̄ denote the residue class of X in A. The generalisation
closely follows the idea of the CHM algorithm and is based on the observation that for any r ∈ Q,
we have that

NA/Q(r − X̄) = f(r),

where NA/Q(α) denotes the algebraic norm of α ∈ A over Q. The algorithm now starts with an
initial set

S(0) = {r1 − X̄, . . . , rd − X̄},

where ri are smooth integer values of f(X) (Definition 1), which means that the element ri−X̄ has
smooth non-zero norm. Next, in the d-th iteration of the algorithm, given any two α, β ∈ S(d−1),
compute

α · β−1 ·NA/Q(β) = r − sX̄

for integers r, s (notice that β is invertible, since it has non-zero norm). Now, if s divides r, we
obtain an integer t = r

s . It follows that

f(t) = NA/Q

(r
s
− X̄

)
= NA/Q(r − sX̄)s−2

= NA/Q(α · β−1 ·NA/Q(β))s
−2

= NA/Q(α)NA/Q(β)s
−2.

Since both NA/Q(α) and NA/Q(β) are B-smooth and s is an integer, it follows that t is a B-smooth

value of f(X). The set S(d) is then formed as the union of S(d−1) and the set of all such integral
solutions. Finally, we terminate when S(d) = S(d−1).

3.3 Equivalence with Previous Algorithms

We now show that the CHM algorithm, as well as another algorithm by Conrey and Holmstrom
[7], are special cases of the generalised algorithm, for the polynomials f(x) = X2 + X, and
f(X) = X2 + 1 respectively.

Smooth values of X2 +X. To see that the CHM algorithm (see §3.1) is indeed a special case
of the generalised algorithm above, we show how the generalised algorithm works for f(X) =
X(X + 1) = X2 + X. Consider the algebra A = Q[X]/⟨X2 +X⟩. This embeds into the matrix
algebra M2×2(Q) via

ψ : r + sX̄ →
(
r 0
s r − s

)
.

Instead of working with elements in A, we will work with elements in ψ(A) ⊆M2×2(Q) since this
simplifies the argument. In this case, for α ∈ A, we have

NA/Q(α) = det(ψ(α)).

The set corresponding to the initial set in the CHM algorithm is

S(0) = {
(

1 0
−1 2

)
,
(

2 0
−1 3

)
, . . . ,

(
B−1 0
−1 B

)
}.
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All these elements clearly have B-smooth norm. The d-th CHM iteration proceeds as follows: For
all
(

r 0
−1 r+1

)
,
(

s 0
−1 s+1

)
in S(d−1), we try(

r 0
−1 r + 1

)(
s 0
−1 s+ 1

)−1

s(s+ 1) =

(
r 0
−1 r + 1

)((
s+ 1 0
1 s

)
1

s(s+ 1)

)
s(s+ 1)

=

(
r(s+ 1) 0
−(s− r) (r + 1)s

)
.

Finally, we transform this matrix into the right form, i.e. into a matrix corresponding to an element
of the form τ = t− X̄, which means that ψ(τ) has a −1 in the lower left corner. So, we divide by
s− r and end up with the matrix(

r(s+1)
s−r 0

−1 (r+1)s
s−r

)
=

(
r(s+1)
s−r 0

−1 r(s+1)
s−r + 1

)
.

Now if r(s+1)
s−r is an integer, we add this matrix to the next set S(d+1).

As we have seen in Remark 4, this integer indeed corresponds to the solution (3) of Equation (2)
and therefore, the generalised algorithm in the case f(X) = X2 +X is equivalent to the original
CHM algorithm.

Smooth values of X2+1. Conrey and Holmstrom later presented a method to generate smooth
values of X2 + 1 [7]. Similar to the CHM algorithm, it starts with an initial set S(0) of positive
smooth values of X2 + 1. Again, for d > 0 and given r, s ∈ S(d−1), r < s, they compute

rs− 1

s+ r
.

The next set S(d) is then again formed as the union of S(d−1) and the set of all such values that
are integers.

It is equally straightforward to verify that this algorithm is also a special case of the generalised
CHM algorithm described above in §3.2. We could again work with matrices inM2×2(Q), but here,
we are actually working in the number field K = Q[X]/⟨X2 + 1⟩, which is isomorphic to Q(i),
where i2 = −1. The product of the elements α = r − i and β = s− i is given as

αβ = (r − i)(s− i) = (rs− 1)− (r + s)i.

Conrey and Holmstrom’s method then simply tries all such products αβ. However, a possibly
better choice could be to use

αβ−1NK/Q(β) = αβ̄ = (r − i)(s+ i) = (rs+ 1)− (s− r)i

as described in our generalisation. This is due to the fact that the new denominator, s − r, is
smaller and hence

rs+ 1

s− r
is more likely to be an integer9 (assuming that the numerator follows a random, uniform distribu-
tion). As a result, we can expect the algorithm to converge faster.

Whichever option is chosen, one tries to divide by r+s resp. s−r, and if the result is an element
in Z[i], it is added to the next set S(d) of smooth values of X2+1. Conrey and Holmstrom’s method
is therefore another special case of the generalised algorithm.

Remark 5. We note that neither the generalised CHM algorithm, nor any of the previous special
cases give any guarantees to what proportion of B-smooth values of f(X) it finds. However, for the
previous special case algorithms, certain conjectural results have been stated, based on numerical
evidence, which suggests that the algorithm returns all but a small fraction of all smooth values of
the respective quadratic polynomials. We make no similar claims for the general case algorithm.
9 Another alternative is to include both positive and negative values in the inital set S(0). Observe that
in this case, it does not matter whether one uses (rs+1)/(s−r) or (rs−1)/(s+r), as (rs+1)/(s−r) =
−(s(−r) + 1)/(s+ (−r))).
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4 Searching for Large Twin Smooth Instances: CHM in Practice

Ideally, the CHM algorithm could be run as described in [8] with a large enough smoothness
bound B to find twin smooths of cryptographic sizes. However, experiments suggest that this is
not feasible in practice. We report on data obtained from an implementation of the pure CHM
algorithm in §4.1, present several optimisations in §4.2 and details on our optimised implementation
in §4.3.

4.1 Running CHM in Practice

In order to collect data and assess the feasibility of finding large enough twin smooths, we im-
plemented a somewhat optimised version of the pure CHM algorithm. In particular, this imple-
mentation is parallelised, and avoids multiple checks of the same pairs of twin smooths (r, s).
Furthermore, we iterate through smoothness bounds: We start with a small bound B1 and the

initial set S
(0)
1 = {1, . . . , B1−1}, and use the CHM algorithm to iteratively compute sets S

(i)
1 until

we reach some d1 such that S
(d1)
1 = S

(d1−1)
1 . In the next iteration, we increase the smoothness

bound to B2 > B1 and define the initial set S
(0)
2 = S

(d1)
1 ∪ {B1, . . . , B2 − 1}. Again we compute

CHM iterations until we find d2 such that S
(d2)
2 = S

(d2−1)
2 , where we avoid checking pairs (r, s)

that have been processed in earlier iterations. Ideally, we could repeat this procedure until we
reach a smoothness bound Bi for which the CHM algorithm produces large enough twin smooths
for cryptographic purposes. However, our data suggests that this is infeasible in practice due to
both runtime and memory limitations.

In particular, we ran this approach up to the smoothness bound B = 547, and extrapolating
the results gives us rough estimations of the largest possible pair and number of twin smooths per
smoothness bound.

After the B = 547 iteration, the set of twin smooths contains 82,026,426 pairs, whose bitlength
distribution roughly resembles a normal distribution centered around bitlength 58. The largest pair
has a bitlength of 122 bits. An evaluation of the obtained set is shown in Figure 1. Figure 1a shows
the distribution of bitsizes in the full set, while Figure 1b shows that of the subset of all 199-smooth
twins obtained in this run. Figure 1c shows the bitsize of the largest q-smooth twin pairs for each
prime q between 3 and 547. And Figures 1d and 1e show the number of q-smooth twins for each
such q.

Using the data of these experiments, we can attempt to estimate at which smoothness bound
B this approach can be expected to reach twin smooths of cryptographic sizes, and how much
memory is required to run iterations to reach this B. The data visualised in Figure 1cindicates
that the bound necessary for the largest twin smooth pair obtained by running CHM with this
bound to reach a bitlength of 256 lies in the thousands, possibly larger than 5,000. Similarly, the
data displayed in Figures 1d and 1eshows how quickly the number of B-smooth twins increases
with B. Given that the effort for CHM iterations grows quadratically with the set size, these
estimates indicate that it is not feasible to reach cryptographically sized smooth twins with the
original CHM algorithm.

4.2 Optimisations

One major issue with running the plain CHM algorithm for increasing smoothness bound is the

sheer size of data that needs to be dealt with. The sets S
(di)
i grow very rapidly and the quadratic

complexity of checking all possible pairs (r, s) leads to a large runtime. The natural question that
arises is whether CHM can be restricted to checking only a certain subset of such pairs without
losing any or too many of the new smooth neighbors. Furthermore, if the purpose of running
the CHM algorithm is not to enumerate all twin smooth pairs for a given smoothness bound but
instead, to produce a certain number of pairs of a given size or to obtain some of the largest pairs,
it might even be permissible to omit a fraction of pairs.
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(a) Distribution of bitsizes for the full set of 547-
twin smooth pairs.

(b) Distribution of bitsizes for the subset of 199-
twin smooth pairs.

(c) Bitsizes of the largest q-smooth twins for all primes q between 3 and 547.

(d) Number of q-smooth twins for all primes q be-
tween 3 and 233.

(e) Number of q-smooth twins for all primes q be-
tween 239 and 547.

Fig. 1: Evaluation of the set of 547-smooth twins obtained by running the original CHM algorithm
with smoothness bound B = 547. The bitsize of a pair (r, r+1) is ⌊log r⌋+1. Data for the number
of q-smooth twins for all primes q up to 547 has been split into two histograms of different scale.
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To find a sensible way to restrict to a smaller set, we next discuss which pairs (r, s), r < s
result in a given twin smooth pair (t, t+ 1) via

r

r + 1
· s+ 1

s
=

t

t+ 1
. (4)

This is discussed in [8, §3], but we elaborate on it in a slightly different way here. Let t > 0, let
u be any divisor of t and v any divisor of t + 1. Let h, x ∈ Z be given by t = uh and t + 1 = vx
(where u, v, h, x > 0). Therefore, v/u = h/x + 1/(ux). If u < v then h > x and if u > v then
h < x. We therefore fix u < v (otherwise switch the roles of u, v and h, x). Since u < v, the pair

(r, s) = (t− u

v
(t+ 1),

v

u
t− (t+ 1) =

v

u
r) (5)

satisfies Equation (4) and it follows that

r = u(h− x), r + 1 = x(v − u), s = v(h− x), s+ 1 = h(v − u). (6)

Therefore, s/r = v/u and (s + 1)/(r + 1) = h/x, u < v, h > x and 0 < r < s. This also means
that s = r + (v − u)(h− x), t = r + ux and that gcd(r(s+ 1), s(r + 1)) = s− r = (v − u)(h− x)
(note that gcd(uh, vx) = gcd(t, t+ 1) = 1).

Conversely, given (r, s) with r > 0 that satisfy Equation 4, define u = r/ gcd(r, s) and v =
s/ gcd(r, s), then s > r, u < v and u | t, v | (t + 1). Hence we have the correspondence between
the set of pairs (r, s) with r < s that yield a new twin pair (t, t+ 1) via Equation (4) and the set
of pairs of divisors of t and t+ 1 described in [8, §3] as follows:

{(r, s) | r < s and r(s+ 1)(t+ 1) = s(r + 1)t}
←→ {(u, v) | u < v and u | t, v | (t+ 1)}. (7)

However, this correspondence does not identify the pairs (r, s) corresponding to twin smooths, i.e.
given (u, v) there is no guarantee that any of r, r+ 1, s, s+ 1 are B-smooth. This is not discussed
in [8, §3]. The next lemma fills this gap by stating an explicit condition on the divisors u, v, h, x.

Lemma 1. Let t ∈ Z such that t(t + 1) is B-smooth. Let (u, v) be a pair of divisors such that
t = uh, t+ 1 = vx and let (r, s) be defined as in Equation (5).

Then r(r + 1)s(s+ 1) is B-smooth if and only if (v − u)(h− x) = s− r is B-smooth.

Proof. As divisors of t and t + 1, u and v as well as h and x are all B-smooth. The statement
follows from the Equations (6). ⊓⊔

Using similar sized pairs. We next consider the following condition to restrict the visited
pairs (r, s) in CHM as a mechanism to reduce the set size and runtime. Let k > 1 be a constant
parameter. We then only check pairs (r, s) if they satisfy

0 < r < s < kr. (8)

Assume that (r, s) results in a pair (t, t + 1) through satisfying Equation (4). As seen above,
s
r = v

u for u | t, v | (t + 1), so we can use (u, v) to determine which values k are useful. Since
v
u < k, it follows s = v

u t− (t+ 1) < (k− 1)t. If we are only interested in obtaining a new t from a
pair (r, s) such that s < t, we can take k ≤ 2, overall resulting in 1 < k ≤ 2.

This k seems to be a good quantity to study as we can relate it to the factors of v−u. Indeed,
v − u = u( vu − 1) = u( sr − 1) and we have s < kr.

Definition 2. Let (r, r + 1) and (s, s+ 1) be twin smooths with r < s and k ∈ R with 1 < k ≤ 2.
We call the pair (r, s) k-balanced if r < s < k · r.
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We want to find a k such that a k-balanced pair (u, v) subject to the above conditions will yield
a balanced r, s such that r, r + 1, s, s+ 1 are B-smooth, or equivalently that v − u and h− x are.

Running the CHM algorithm only with 2-balanced pairs (r, s) then guarantees that any t
produced by Equation 4 will be larger than the inputs r and s. Although we sacrifice completeness
of the set of twin B-smooths with this approach, we can significantly reduce the runtime.

We can even push this approach further. Recall that we require gcd(r(s+1), (r+1)s) = s−r in
order to generate a new pair of twin smooths (t, t+1). By Lemma 1, this can only hold if ∆ = s−r
is B-smooth. Hence, only checking pairs (r, s) for which ∆ is likely to be smooth increases the
probability for a successful CHM step. Heuristically, the smaller ∆ is, the better the chances for
∆ to be smooth. Furthermore, if ∆ contains small and only few prime factors, the probability for
the condition ∆ = gcd(r(s+1), (r+1)s) is relatively high. We can summarise this in the following
heuristic.

Heuristic 1 Let k1, k2 ∈ R with 1 < k1 < k2 ≤ 2, and (r1, s1) resp. (r2, s2) a k1- resp. k2-balanced
pair of twin smooths. Then the probability for (r1, s1) to generate new twin smooths via the CHM
equation is larger than that for (r2, s2).

In order to save additional runtime, we can thus pick k closer to 1, and only check the pairs
(r, s) that are most likely to generate new twin smooths. Therefore, we can still expect to find
a significant portion of all twin B-smooths for a given smoothness bound B. We expand on the
choice of k and different ways of implementing this approach in §4.3.

Thinning out between iterations. Another approach to reduce both runtime and memory
requirement is to thin out the set of twin smooths between iterations. In particular, once we

finished all CHM steps for a certain smoothness bound Bi, we can remove twins from the set S
(di)
i

based on their likeliness to produce new twin smooths before moving to the next iteration for
Bi+1.

One possible condition for removing twins is to look at their smoothness bounds. Let (r, r+1)
be B1-smooth, (s, s+ 1) be B2-smooth (but not B-smooth for any B < B2), and B1 ≪ B2. Since
(s, s+ 1) contains (multiple) prime factors larger than B1, they cannot be contained in (r, r + 1),
which makes the requirement gcd(r(s+1), (r+1)s) = s− r heuristically less likely to be satisfied.
However, in practice it turns out that the differences between the smoothness bounds we are
concerned with are not large enough for this heuristic to become effective.

In our experiments, it turned out to be more successful to keep track of how many new twin
smooths each r produces. We can then fix some boundm, and discard twins that produced less then
m twins after a certain number of iterations. Our experiments suggest that using this approach
with carefully chosen parameters yields a noticeable speedup, but fails completely at reducing the
memory requirements, as we still need to keep track of the twins we already found. Furthermore,
in practice the approach of only using k-balanced twins turned out to be superior, and hence we
focus on this optimisation in the following.

4.3 Implementation

We implemented the CHM algorithm with several of the aforementioned optimisations in C++,
exploiting the fact that it parallelises perfectly. Note that some of our approaches require the set
of twin smooths to be sorted with respect to their size. Hence, an ordered data structure is used
for storing the twins set. We used the following techniques and optimisations.

CHM step. For each pair (r, s) considered by the implementation, we have to check if Equa-
tion (4) holds. As mentioned in §4.2, this requires that gcd(r(s+ 1), (r + 1)s) = s− r is satisfied.
However, we can completely avoid the gcd calculation by observing that we require r · (s+ 1) ≡ 0
mod (s− r). Only if this is the case we perform a division to compute t, which represents the new
pair of twin smooths (t, t+ 1). Therefore, we only perform one modular reduction per considered
pair (r, s), followed by one division if the CHM step is successful. This is significantly cheaper than
a näıve implementation of Equation (4) or a gcd computation.
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Data structure. Initially the set of twins was organised in a standard C array, that each time
an iteration completed was reallocated to increase its size, and reordered.

To avoid the overall inefficiency of this method we moved to use the C++ standard library
std::set. This data structure is implemented with a Red Black tree, guarantees O(logN) insertion
and search, while keeping the elements always ordered.

We then moved to use B+Trees [5], that have the same guarantees for insertion, search, and
ordering, but are more efficient in the memory usage. Because the elements of a B+Tree are stored
close to each other in memory it becomes much faster to iterate through the set, an operation that
is necessary for creating the pairs used in each computation.

Implemented optimisations. As discussed in §4.2, we focus on the case of k-balanced pairs
(r, s), which satisfy r < s < k · r. Compared to the full CHM algorithm, this leads to a smaller
set of twin smooths, but allows for much faster running times. We implemented the k-balanced
approach in various different flavours.

Global-k. In the simplest version - the global-k approach - we initially pick some k with 1 < k ≤ 2,
and restrict the CHM algorithm to only check k-balanced pairs (r, s). The choice of k is a subtle
manner: Picking k too close to 1 may lead to too many missed twin smooths, such that we cannot
produce any meaningful results. On the other hand, picking k close to 2 may result in a relatively
small speedup, which does not allow for running CHM for large enough smoothness bounds B.
Unfortunately, there seems to be no theoretical handle on the optimal choice of k, which means
that it has to be determined experimentally. We note that when picking an aggressive bound factor
k ≈ 1, small numbers r in the set of twins S may not have any suitable s ∈ S they can be checked
with. Thus, we pick a different bound, e.g. k = 2, for numbers below a certain bound, e.g. for
r ≤ 220.

Iterative-k. Instead of iterating through smoothness bounds Bi as described in §4.1 and using the
global-k approach, we can switch the roles of B and k if we are interested in running CHM for
a fixed smoothness bound B. We define some initial value k0, a target value kmax, and a step size
kstep > 0. In the first iteration, we run CHM as in the global-k approach, using k0. The next
iteration then increases to k1 = k0 + kstep, and we add the condition to not check pairs (r, s) if
they were already checked in previous iterations. We repeat this iteration step several times until
we reach kmax. Compared to the global-k approach, this allows us to generate larger B-smooth
twins faster, since we restrict to the pairs (r, s) first that are most likely to generate new twins.
However, the additional checks if previous pairs have been processed in earlier iterations add a
significant runtime overhead. Thus, this method is more suitable for finding well-suited choices of
k, while actual CHM searches benefit from switching to the global-k approach.

Constant-range. In both the global-k and iterative-k approach, the checks if a pair (r, s) is
k-balanced, or has been processed in earlier iterations, consumes a significant part of the overall
runtime. Therefore, we can use constant ranges to completely avoid these checks. Since we always
keep the set of twins S sorted by size, the numbers s closest to r (with s > r) are its neighbors
in S. Thus, we can sacrifice the exactness of the k-balanced approaches above, and instead fix
a range R and for each r check (r, s) with the R successors s of r in S. As shown below, this
method significantly outperforms the global-k approach due to the elimination of all checks for
k-balance. This is true even when R is large enough to check more pairs than are considered in
the global-k approach for a given k.

Variable-range. Similar to the constant-range approach, we can adapt the range R depending on
the size of r. For instance, choosing r at the peak of the size distribution will lead to many possible
choices of s such that (r,s) are balanced. Hence, we can choose a larger range R whenever more
potential pairs exist, while decreasing R otherwise. In practice, the performance of this method
ranks between global-k and constant-range by creating roughly the same pairs that global-k
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Variant Parameter Runtime Speedup #twins #twins from largest 100

Full CHM - 4705s 1 2300724 100

k = 2.0 364s 13 2289000 86

global-k k = 1.5 226s 21 2282741 82

k = 1.05 27s 174 2206656 65

R = 10000 82s 57 2273197 93

constant-range R = 5000 35s 134 2247121 87

R = 1000 16s 294 2074530 75

Table 1: Performance results for different variants of our CHM implementation for smoothness
bound B = 300. Speedup factors refer to the full CHM variant.

creates without any of the overhead of the balance checks. If R is chosen large enough such that the
constant-range approach ends up generating more pairs than global-k, then variable-range

performs better. Realistically, the size of the range R increases by (very) roughly 3% for each
prime number smaller than the smoothness bound B, and slows down the algorithm drastically
at higher smoothness, similarly to the k-based approaches.

Remark 6. Similar to the variable-range approach, we experimented with a variant of the
global-k approach, which adjusts k according to the size of r to find suitable s for the CHM
step. However, the constant-range and variable-range approaches turned out to be superior
in terms of performance, and therefore we discarded this variable-k variant.

Performance comparison. In order to compare the implications of the optimisations in practice,
we ran different variants of the CHM implementation for the fixed smoothness bound B = 300.
All experiments ran on a machine configured with 4 x Xeon E7-4870v2 15C 2.3 GHz, 3072 GB of
RAM. The total amount of parallel threads available was 120. As described above, the global-k
and constant-range approach significantly outperform their respective variants, hence we focus
on different configurations of these two methods.

The results are summarised in Table 1. For both the global-k and the constant-range ap-
proach we measured the results for conservative and more aggressive instantiations, where smaller
values of k and R are considered more aggressive. It is evident that already for the conservative in-
stantiations, we gain significant performance speedup, while still finding almost the full set of twin
smooths, and most of the 100 largest 300-smooth twins. For the more aggressive instantiations,
we miss more twins, yet still find a significant amount of large twins.

As discussed above, the constant-range approach outperforms the global-k approach in
terms of runtime, due to the elimination of all checks for k-balance of twins. Interestingly, while
very aggressive instantiations of constant-range miss more twin smooths, they find a larger
share of the largest 100 twins than their global-k counterpart. Therefore, we conclude that for
larger smoothness bounds B, for which we cannot hope to complete the full CHM algorithm,
constant-range is the most promising approach for obtaining larger twin smooths within feasible
runtimes.

Remark 7. While all optimisations lose a small proportion of the largest twin smooths, they are
not necessarily lost permanently. In practice, when iterating to larger smoothness bounds Bi, we
often also find some Bj-smooth twins for bounds Bj < Bi. Thus, the size of the set of 300-smooth
twins usually increases in the optimised variants when moving to larger B.

Remark 8. In the following sections, we will require twin smooths of a certain (relatively small)
bitlength. This can easily be incorporated into all implemented variants by removing all twins
above this bound after each iteration. This means that we cut off the algorithm at this size, and
do not attempt to obtain larger twins, which significantly improves the runtime and memory
requirements.
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n pn(x)
2 − 1

2 4x2(x− 1)(x+ 1)

3 4x3(x− 1)(x2 + x+ 1)

4 4x4(x− 1)(x+ 1)(x2 + 1)

5 4x5(x− 1)(x4 + x3 + x2 + x+ 1)

6 4x6(x− 1)(x+ 1)(x2 − x+ 1)(x2 + x+ 1)

Table 2: Factorisation of pn(x)
2 − 1 for n = 2, 3, 4, 5, 6, where pn(x) = 2xn − 1

5 Fantastic p’s and where to find them: Cryptographic Primes of the
form p = 2rn − 1

This section focuses on finding primes suitable for isogeny-based cryptographic applications. As
discussed in the previous sections, the pure CHM method does not allow for us to directly compute
twins of at least 256 bits as required for this aim. However, some cryptographic applications, for
example the isogeny-based signature scheme SQISign, do not need twins (r, r + 1) that are fully
smooth. Indeed, the current incarnation of SQISign requires a prime p that satisfies 2fT | p2 − 1,
where f is as large as possible, and T ≈ p5/4 is smooth and odd [17]. This flexibility allows us to
move away from solely using CHM and, instead, to use CHM results as inputs to known methods
for finding such primes. At a high level, we will find fully smooth twins of a smaller bit-size via
CHM and boost them up using the polynomials pn(x) = 2xn − 1 (for carefully chosen n). Hence,
if r, r + 1 are fully smooth integers and n is not too large, we can guarantee a large proportion of
pn(r)

2 − 1 to be smooth.

Notation. For a variable x, we will denote 2xn − 1 by pn(x), and the evaluated polynomial pn(r)
by p, emphasising that it is an integer.

General method. In this section, we will give a more in-depth description of the approach to
obtaining cryptographic sized primes p, such that p2 − 1 has log T ′ bits of B-smoothness, where
T ′ = 2fT . We recall that for our SQISign application, we have log p ∈ {256, 384, 512} for NIST
Level I, III and V (respectively), T ≈ p5/4 and f as large as possible. In the current implementation
of SQISign, f ≈ ⌊log

(
p1/4

)
⌋ (i.e., T ′ ≈ p3/2), and therefore, we aim for this when finding primes.

Fix a smoothness bound B and let pn(x) = 2xn − 1. We have pn(x)
2 − 1 = 4xn(x− 1)f(x) for

some polynomial f(x), as shown in Table 2.
We observe that for n even, both x + 1 and x − 1 appear in the factorisation of pn(x)

2 − 1.
In this case, for twin smooths (r, r ± 1), evaluating pn(x) at r guarantees that we have a smooth
factor 4xn(x± 1) in p2 − 1. For n odd, we will only have that x− 1 appears in the factorisation,
and therefore only consider twins (r, r − 1) to guarantee we have B-smooth factor 4xn(x− 1).

The first step is to use our implementation of the CHM algorithm, described in Sections 3 and 4,
to obtain B-smooth twins (r, r± 1) of bitsize approximately (log p− 1)/n. We then obtain primes
of suitable sizes via computing p = pn(r) for all candidate r, as described above. By construction,
p2− 1 has guaranteed n+1

n (log(p)− 1)+ 2 bits of smoothness. We then require that the remaining
factors have at least

max

(
0,

3

2
log p−

(
n+ 1

n
(log p− 1) + 2

))
bits of B-smoothness. In Section 5.2, we will discuss the probability obtaining this smoothness
from the remaining factors.

5.1 Choosing n

For small n, we require CHM to find twin smooths of large bit size. For certain bit sizes, running
full CHM may be computationally out of reach, and therefore we use a variant that may not

15



find all twins. In this case, however, we have more guaranteed smoothness in p2 − 1 and so it
is more likely that the remaining factors will have the required smoothness. For large n, we can
obtain more twin smooths from CHM (in some cases, we can even exhaustively search for all twin
smooths), however we have less guaranteed smoothness in p2−1. Finding values of n that balance
these two factors will be the focus of this section.

n = 2. Let (r, r ± 1) be twin smooth integers and let p = 2r2 − 1. In this case, 2r2(r ± 1) | T ′,
meaning that log T ′ ≥ 3

2 log p, and we have all the required smoothness. Write T ′ = 2fT =

2r2(r ± 1) where T is odd. If f < ⌊log
(
p1/4

)
⌋, we have T > p5/4, and we do not have to rely on

a large power of 2 dividing r− 1. Otherwise, we turn to Section 5.2 to estimate the probability of
r ∓ 1 having enough small factors to make up for this difference.

Suppose we target primes with λ bits of classical security, i.e., we need a prime of order p ≈ 22λ.
For n = 2, this corresponds to finding twin smooths of size ≈ 2λ−

1
2 , and so is only suitable for

finding NIST Level I parameters due to the limitations of the CHM method (see Section 4). One
could instead use other techniques for finding large enough twins for n = 2, such as the PTE
sieve [10], at the cost of significantly larger smoothness bounds. Alternatively, we can move to
higher n, which comes at the cost of loosing guaranteed smoothness. Another challenge here is
that, given the relatively large size of the twins, it appears difficult to find enough twins for
obtaining primes with a large power of two.

n = 3. Let (r, r − 1) be twin smooth integers and let p = 2r3 − 1. Here, we can guarantee that
the smooth factor T ′ of p2 − 1 is at least of size ≈ p4/3. If f < ⌊log2

(
p1/12

)
⌋, we have T > p5/4.

Otherwise, we require that there are enough smooth factors in r2+r+1 to reach this requirement.

Here, for λ bits of classical security, we need to target twin smooth integers of size ≈ 2
2λ−1

3 .
In this case, the CHM method will (heuristically) allow us to reach both NIST Level I and III
parameters.

n = 4. Let (r, r ± 1) be twin smooth integers and p = 2r4 − 1. Here we can only guarantee a
factor of size ≈ p5/4 of p2 − 1 to be smooth. When accounting for the power of two, we must
hope for other smooth factors. As pn(x) − 1 splits into (relatively) small degree factors, namely
pn(x)− 1 = 2(x− 1)(x+1)(x2 +1), the probability of having enough B-smooth factors is greater
(than if there was, for example, a cubic factor).

In contrast to the previous cases, this setting should be suitable for targeting all necessary
security parameters. However, for the NIST Level I setting, the work by De Feo, Leroux and
Wesolowski [17][§5.2] showed that the best one could hope for here while maximising the power
of two gives SQISign parameters with a smoothness bound of ≈ 1800. While this is a better
smoothness bound than the NIST Level I prime with the best performance for SQISign, it does
not perform as well in practice. Indeed, most of the odd primes less than 1800 that appear in p2−1
are relatively large, making isogeny computation relatively slow. In the best performing prime,
however, a large power of 3 divides p2 − 1, and most of its other odd prime divisors are fairly
small. We note that the authors of [17] only searched for parameters that maximise the power of
two, and hence there could be some scope to find parameters that have slightly smaller powers of
two.

Other n. For larger n, the amount of guaranteed smoothness decreases, and thus the probability
that the remaining factors have the required smoothness is small. Indeed, we find that only n = 6
has the correct balance of requiring small twin smooths while still having a reasonable probability of
success. This is primarily due to the factorisation of p6(x)−1 = 2(x−1)(x+1)(x2−x+1)(x2+x+1),
having factors of degree at most 2, which improves the probability that we have enough smooth
factors. In contrast, n = 5 results in more guaranteed smoothness than n = 6, but requires the
quartic factor in p5(x)− 1 to provide the necessary smoothness, which is relatively unlikely.

While one could use n = 6 to find NIST Level I parameters, this larger n shines in its ability
to give us both NIST Level III and V parameters.
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5.2 Probability of Sufficient Smoothness

In this section, we determine the probability of obtaining cryptographic primes with sufficient
smoothness using the methods outlined above. We follow Banks and Shparlinski [1] to determine
the probability of p2 − 1 being sufficiently smooth for some prime p. More precisely, given that
the factor r(r ± 1) | p2 − 1 is already fully smooth, we want to calculate the probability of p2 − 1
having log T ′-bits of B-smoothness.

First, we find the probability that the factor r(r±1) | p2−1 is fully smooth, i.e., the probability
of finding fully B-smooth twins (r, r ± 1). To do so, we use the following counting function:

Ψ(X,B) = #{N ≤ X : N is B-smooth}.
For a large range of X and B, it is known that

Ψ(X,B) ∼ ρ(u)X,
where u = (logX)/(logB) and ρ is the Dickman function [14,12]. The Dickman function is imple-
mented in most computational algebra packages, including SageMath, which allows us to evaluate
Ψ(X,B) for various X and B. In practice, we find B-smooth twins (r, r± 1) using our implemen-
tation of the CHM algorithm as described in 4.

Next, we calculate the probability of p2− 1 having log T ′-bits of B-smoothness. As p2− 1 may
only be partially smooth, we will use the following counting function

Θ(X,B,D) = #{N ≤ X : D < largest B-smooth divisor of N}.
The value Θ(X,B,D) will give the number of positive integers N ≤ X for which there exists
a divisor d | N with d > D and such that d is B-smooth. This function has been previously
studied in the literature, for example [26,25]. For X,B,D varying over a wide domain, Banks and
Shparlinski [1, Theorem 1] derive the first two terms of the asymptotic expansion of Θ(X,B,D).
By implementing this expansion, we are able to estimate the value of Θ at various X,B,D in the
correct range.

As discussed in the section above, we restrict to n = 2, 3, 4, 6. Recall that pn(x)
2 − 1 =

4xn(x−1)f(x), as given in Table 2 for each 2 ≤ n ≤ 6. Write f(x) = f1(x) · · · fk(x), where each fi is
irreducible of degree di = deg(fi) and d = deg(f). To calculate the probabilities, we require that the
probability of f(x) having at least log2D-bits of B-smoothness is the product of the probabilities

of each of its factors fi having at least log2Di-bits of B-smoothness where log2D =
∑k

i=1 log2Di.
We can view this as an extension of [10, Heuristic 1]. Note that the only constraint on how the
smoothness is distributed between the factors fi(x) is that the total bit size of B-smooth factors
must equal log2D. We could, for example, sum over all the possible distributions of smoothness
using the inclusion-exclusion principle. However, in distributions where one of the factors has a
very small amount of smoothness, we fall out of the ranges allowed as input into Θ determined
by [1, Theorem 1]. Therefore, for simplicity, we will assume that smoothness is distributed evenly
between the remaining factors (weighted by the degree), i.e., log2Di = (di log2D)/d. In reality,
this only gives us a lower bound for the probability, but this will suffice for our purposes. Obtaining
a more theoretical and accurate grasp on these probabilities is left as an avenue for future research.

In Table 3, we give an overview of the relevant probabilities for NIST Level I, III, and V
parameters, calculated as described above. We observe that as n gets larger, the probability of
finding B-smooth integers of the appropriate bitsize increases. In contrast, for bigger n we are
guaranteed less smoothness in p2−1. As a result, given B-smooth twins, the probability of finding
a SQISign prime p decreases as n increases. For each NIST level, we predict that the n that balance
these two contrasting probabilities have a higher chance of finding a p satisfying our requirements.
As discussed in the next section, this trend is reflected in practice.

6 Results and Comparisons

In this section we give the concrete results that were obtained from our experiments with the CHM
algorithm, and analyse the various twins in relation to SQISign in accordance with the relevant
bitsizes mentioned in Table 3.
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n log2(r)
Probability of B-smooth

(r, r ± 1)

Probability of p2 − 1

log T ′-bits B-smooth given

(r, r ± 1) twin smooth

Extra Smoothness

Needed

NIST-I

B = 29

log p = 256

log T ′ = 384

2 ≈ 127.5 2−58.5 1 0

3 ≈ 85.0 2−32.1 2−8.4 42

4 ≈ 63.8 2−20.5 ≈ 2−12.7 63.3

6 ≈ 42.5 2−10.4 ≈ 2−16.8 84.5

NIST-III

B = 214

log p = 384

log T ′ = 576

2 ≈ 191.5 2−55.7 1 0

3 ≈ 127.7 2−30.5 2−8.2 63.3

4 ≈ 95.8 2−19.4 ≈ 2−12.4 95.3

6 ≈ 63.8 2−9.7 ≈ 2−16.2 127.2

NIST-V

B = 217

log p = 512

log T ′ = 768

2 ≈ 255.5 2−63.7 1 0

3 ≈ 170.3 2−35.2 2−9.6 84.7

4 ≈ 127.8 2−22.6 ≈ 2−14.5 127.3

6 ≈ 85.2 2−11.5 ≈ 2−19.2 169.8

Table 3: Assuming that (r, r ± 1) are twin smooth integers and p has log p bits, calculates the
probability of having a B-smooth divisor T ′ | p2 − 1 of size ≈ p3/2. More details in text.

6.1 Record Twin Smooth Computations

We ran the optimised full CHM algorithm with B = 547 and found a total of 82,026,426 pairs
of B-smooth twins. Among these pairs, we found 2,649 additional 200-smooth twins that were
not found by the original authors of the algorithm [8]. This showcases the validity of Remark 5
that the algorithm does not guarantee us to find all B-smooth twins. Furthermore, there is no
guarantee that running CHM with B = 547 will produce all 200-smooth twins. As mentioned in
the introduction, the only way to see how far away we are from the exact number of 200-smooth
twins is to solve all 246 Pell equations.

For the application mentioned in the previous section, we only need twins of a certain bitsize.
Within this set of twins, 9,218,648 pairs (r, r + 1) fall in the range 260 < r < 264; 1,064,249 pairs
fall in the range 281 < r < 285; 31,994 pairs fall in the range 292 < r < 296; and, only 1 pair falls
in the range 2120 < r < 2128. This pair in the final interval is the largest pair found in this run,
with r = 4012031241848866526424165796047749375, and factorisations:

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283
· 499 · 509, and

r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

As we will see later, the number of 64-bit and 85-bit twins we found in this run is enough to
find attractive parameters for SQISign. The 96-bit twins will give us parameters with the required
smoothness, however we do not have enough pairs to hope to find a prime p where p2−1 is divisible
by a large power of two.

Table 3 shows that finding many twins of around 128 bits in size is likely to be fruitful in
the search for SQISign-friendly parameters, so we ran the algorithm for B = 1300 using the
constant-range optimisation with a range R = 5000, in order to specifically target twins (r, r+1)
with r > 2115. In this run we found 1,091 such pairs - the largest of these pairs is the following
145-bit twin (r, r + 1) with r = 36132012096025817587153962195378848686084640, where

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251 · 283 · 307
· 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.
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Among the 1,091 twins CHM found, 184 pairs fall in the range 2120 < r < 2128, which was sufficient
to find some SQISign-friendly parameters (though not at all NIST security levels).

In addition, we also ran CHM with B = 211 to obtain a large number of twin smooth integers
in the range 255 < r < 2100 (see Remark 8 in the setting where we want to find twins in such an
interval). This run was performed using the constant-range optimisation with a range R = 2500,
and produced 608,233,761 pairs of twins lying in this range. Compared with the B = 547 run, the
yield from this run gave ample twins with 292 < r < 296, which was sufficient to find SQISign
parameters with the desirable large power of two.

All of these searches were done using the machine specified in §4.3 - each search took between
1 and 2 days to run.

6.2 Concrete Parameters for SQISign

We now turn to giving a list of SQISign-friendly primes that target NIST Level I, III, and V.
Recall from Section 1 that this means that we need to find primes p with 2f ·T | p2− 1. We need
the exponent f to be as large as possible and the cofactor T ≈ p5/4 to be B-smooth, aiming to
keep the ratio

√
B/f as small as possible; this quantity is a rough cost metric for the performance

of the signing algorithm in SQISign [17, §5.1]. To complement this, the exponent f controls the
performance of the verification of SQISign; the larger this exponent is the faster the verification
is. We may run into circumstances where the signing cost metric is minimised, but the power of
two is not large enough or vice-versa. We aim to balance these as much as possible, thus finding
parameters that maximise the power of two while minimising the signing cost metric. We refer to
§6.3 for more details on the practicability of our parameters.

Though we need T ≈ p5/4, if this cofactor is too close to p5/4, then the underlying heuristics
within the generalised KLPT algorithm might fail and one cannot guarantee a successful signature
in SQISign [17, §3.2]. Thus, in practice we need T ≈ p5/4+ϵ for some small ϵ (e.g., 0.02 < ϵ < 0.1).

We find parameters for NIST Level I, III and V by searching for 256, 384 and 512-bit primes,
respectively. For those primes targeting the higher security levels, these are the first credible
SQISign-friendly primes. In what follows, we look at each security level and analyse the most
noteworthy primes found in our searches. When stating the factorisations of p±1 for the mentioned
primes, the underlined factors are the smooth factors of T , while factors in violet are the rough
factors which are not needed for SQISign. A full collection of our best SQISign-friendly primes
that were found using the CHM machinery is showcased in Table 4.

Remark 9. We note that in all of the forthcoming searches, the post-processing of the CHM twins
to find the SQISign-friendly parameters can be made reasonably efficient with straightforward
techniques. In particular, the runtime is negligible in comparison to running the CHM searches
mentioned in §6.1 and can be done using naive trial division.

NIST I parameters. We targeted 256-bit primes using n = 2, 3 and 4. Given that our CHM
runs produced a lot more twins of smaller bit-size compared to the 128-bit level, we expect to
find more primes using n = 3, 4, which was indeed the case. It is worth noting that some primes
found with n = 2 gave rise to p2 − 1 being divisible by a relatively large power of two. However,
in these cases, most of the primes dividing p2− 1 are relatively large and would therefore give rise
to slower isogeny computations during the SQISign protocol [17].

Through the experimentation with the 85-bit twins produced from CHM with B = 547, we
found the following 254-bit prime p = 2r3 − 1 with r = 20461449125500374748856320. All the
specific criteria that we need for a SQISign parameter set are met, while obtaining an attractively
small signing cost metric

√
B/f . For this prime, we have

p+ 1 = 246 · 53 · 133 · 313 · 733 · 833 · 1033 · 1073 · 1373 · 2393 · 2713 · 5233, and
p− 1 = 2 · 33 · 7 · 112 · 172 · 19 · 101 · 127 · 149 · 157 · 167 · 173 · 199 · 229 · 337

· 457 · 479 · 141067 · 3428098456843 · 4840475945318614791658621.
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While the associated cofactor T here exceeds p5/4, it does not exceed it by much. As we mentioned
earlier, it might therefore be prone to signing failures and hence might not currently be suitable for
SQISign. The next 255-bit prime of mention, p = 2r3 − 1 with r = 26606682403634464748953600,
is very similar to the previous prime, however the cofactor T exceeds p5/4 by a larger margin, so
would be less prone to these failures. In this case we have

p+ 1 = 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and
p− 1 = 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311 · 397 · 547

· 1015234718965008560203 · 3143438922304814418457.

We additionally ran experiments with the 64-bit twins produced from CHM with B = 547 and
found a 253-bit prime p = 2r4 − 1 with r = 8077251317941145600, where we have

p+ 1 = 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and
p− 1 = 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313 · 347 · 397

· 467 · 479 · 991 · 1667 · 19813 · 211229 · 107155419089
· 295288804621

Among all the primes that we found for NIST I security, this appears to be the best. It has
both a larger power of two compared to the primes mentioned above found with n = 3 and a
smaller smoothness bound, thus making the signing cost metric attractively small. Additionally,
the cofactor T is large enough to be practical for SQISign without any failures. We note once again
that this prime would have been out of scope for the authors of [17] to find since they constrained
their search to only find primes for which the power of two is larger than the one found here.

NIST III parameters. We targeted 384-bit primes using n = 3, 4 and 6. The challenge in all
three of these scenarios is finding enough twins whose product is divisible by a large power of two.
With the limited yield of 128-bit twins, finding such primes is not straightforward; the example
with n = 3 in Table 4 is the only such instance that we managed to find. The picture is somewhat
similar with the 96-bit twins: while we have more of them, the success probabilities in Table 3
suggest that we need a lot more twins with a large power of two in order to produce any SQISign-
friendly instances. One exceptional prime that was found in this search was the following 375-bit
prime, p = 2r4 − 1 with r = 12326212283367463507272925184. Here we have

p+ 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914 · 13194, and
p− 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283 · 353 · 419

· 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · 522673 · 3881351
· 4772069 · 13468517 · 689025829 · 30011417945673766253.

Of the NIST Level III primes listed in Table 4, the prime that shows the most promise is
the 382-bit prime p = 2r6 − 1 with r = 11896643388662145024. Not only is the power of two
particularly large but also the smoothness bound of the cofactor T is quite small, reflected in its
small signing cost metric (when compared to other p where p2 − 1 is divisible by a large power of
2). We have the factorisations

p+ 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and
p− 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349 · 449

· 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119 · 10243 · 381343
· 19115518067 · 740881808972441233 · 83232143791482135163921.
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NIST V parameters. We targeted 512-bit primes using n = 4 and 6. Once again, combining
our CHM runs with n = 6 proved to be the best option for finding SQISign parameters at this
level. None of the twins found at the 128-bit level combined with n = 4 to produce any SQISign
friendly primes. From the set of 85-bit twins found in the B = 547 CHM run, the 510-bit prime
p = 2r6 − 1 with r = 31929740427944870006521856 is particularly attractive. The power of two
here is the largest found from this run. Here we have

p+ 1 = 291 · 196 · 616 · 896 · 1016 · 1396 · 1796 · 2236 · 2396 · 2516 · 2816, and
p− 1 = 2 · 32 · 5 · 7 · 13 · 23 · 29 · 31 · 41 · 53 · 109 · 149 · 157 · 181 · 269 · 317 · 331

· 463 · 557 · 727 · 10639 · 31123 · 78583 · 399739 · 545371 · 550657 · 4291141
· 32208313 · 47148917 · 69050951 · 39618707467 · 220678058317
· 107810984992771213 · 1779937809321608257.

The 85-bit twins found in the CHM run with B = 211 were used to try and find NIST V
parameters. The largest power of two that was found in this run which is suitable for SQISign was
f = 109. The prime with smallest signing cost metric while having a relatively large power of two
is the following 508-bit prime, p = 2r6− 1 where r = 26697973900446483680608256. Here we have

p+ 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and
p− 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277 · 347 · 617

· 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139 · 143443 · 150151 · 3813769
· 358244059 · 992456937347 · 353240481781965369823897507
· 8601020069514574401371658891403021.

6.3 Performance Estimates

We would ideally implement our primes using the SQISign code provided in [17] to determine
how well these parameters perform in practice. However, the current implementation is specifically
tailored towards the particular primes that are being used, and is limited to NIST I parameter sizes.
Including our NIST I primes from Table 4 results in failures during key generation, which seem to
stem from using parameters with different powers of two. Thus, implementing and benchmarking
our parameters would require a major rework of the provided code, which is out of the scope of
this work.

NIST I. The state-of-the-art implementation of SQISign uses a 254-bit prime that was found
using the extended Euclidean algorithm (XGCD) [9,16] (see §2). With this method, it is possible
to, for example, force p ± 1 and p ∓ 1 to be divisible by a large power of 2 and 3 (respectively).
Indeed, with this approach, a smooth factor of size ≈ √p comes for free in both p± 1.

Concretely, the prime p3923 used in [17] has

p+ 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521 · 3923 · 62731
· 96362257 · 3924006112952623, and

p− 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599 · 607 · 619
· 743 · 827 · 941 · 2357 · 10069.

The primes from Table 4 provide various alternatives for NIST I parameters, and we can give
simplified estimates for their performance in comparison to p3923. As an example, we will consider
p479, the 253-bit prime from Table 4 having B = 479. With f = 49, it features a slightly smaller
power of two compared to p3923 with f = 65. This means that we would have to verify the signature
isogeny in 21 chunks of 249-isogenies, instead of 16 chunks of 265-isogenies for p3923. Given that

21



NIST security
level

p ⌈log2(p)⌉ f B
√
B/f logp(T )

p3923[17] 254 65 3923 0.96 1.32

n r

NIST I

2
1211460311716772790566574529001291776
2091023014142971802357816084152713216

241
243

49
49

1091
887

0.67
0.61

1.28
1.28

3

3474272816789867297357824
10227318375788227199589376
21611736033260878876800000
20461449125500374748856320
26606682403634464748953600

246
251
254
254
255

43
31
31
46
40

547
383
421
523
547

0.54
0.63
0.66
0.50
0.58

1.29
1.31
1.28
1.26
1.28

4

1466873880764125184
8077251317941145600

12105439990105079808[17]
13470906659953016832[17]

243
253
255
256

49
49
61
61

701
479
1877
1487

0.54
0.45
0.71
0.63

1.28
1.30
1.31
1.30

NIST III

3 1374002035005713149550405343373848576 362 37 1277 0.97 1.25

4

5139734876262390964070873088
12326212283367463507272925184
18080754980295452456023326720
27464400309146790228660255744

370
375
377
379

45
77
61
41

11789
55967
95569
13127

2.41
3.07
5.07
2.79

1.26
1.31
1.26
1.29

6
2628583629218279424
5417690118774595584
11896643388662145024

369
375
382

73
79
79

13219
58153
10243

1.58
3.05
1.28

1.27
1.27
1.30

12 5114946480[13] 389 49 31327 3.61 1.30

NIST V 6

9469787780580604464332800
12233468605740686007808000
26697973900446483680608256
31929740427944870006521856
41340248200900819056793600

499
502
508
510
512

109
73
85
91
67

703981
376963
150151
550657
224911

7.70
8.41
4.56
8.15
7.08

1.25
1.28
1.26
1.25
1.28

Table 4: A table of SQISign parameters p = pn(r) for twin-smooth integers (r, r ± 1) found using
CHM at each security level. The f is the power of two dividing (p2−1)/2 and B is the smoothness
bound of the odd cofactor T ≈ p5/4. It also includes existing primes in the literature including the
state-of-the-art.
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the computational bottleneck for this is the generation of the respective kernel points per chunk,
and ignoring the savings of computing 249-isogenies instead of 265-isogenies and the relatively
cheap recomputation of the challenge isogeny, this results in an estimated slowdown of roughly
21/16 ≈ 1.31. Thus, we expect a modest slowdown from a verification time of 6.7ms (see [17]) to
roughly 8.8ms on a modern CPU.

However, we expect a significant speedup for signing: The computational bottleneck during the
signature generation is the repeated computation of T -isogenies; one computes two T isogenies
per chunk of 2f -isogenies in the verification. Since the T -isogeny computation is dominated by its
largest prime factor B, and its cost can be estimated by

√
B, the ratio of the signing cost metrics√

B/f from Table 4 reflects the overall comparison. Given this metric, we expect a speedup factor
of roughly 0.45/0.96 ≈ 0.47. For the running time, this would mean an improvement from 424ms
(see [17]) to roughly 199ms on a modern CPU.

We can also consider a different cost-estimate, given by summing the cost
√
ℓi for the five

biggest (not necessarily distinct) prime factors ℓi | T , before dividing by f . The advantage of
considering more factors of T is that it constitutes a larger portion of the time it takes to compute
a T -isogeny, while the disadvantage is that the cost

√
ℓ becomes increasingly inaccurate for smaller

prime factors ℓ. In this metric, the speedup is smaller, but is still significant. Specifically, we expect
a speedup factor of roughly 2.19/3.04 ≈ 0.72, which would result in an improvement from 424ms
to roughly 305ms.

In a nutshell, even though we can only give rough estimates for running times, we expect our
NIST I parameters to achieve much better signing times due to the smaller smoothness bounds
B, at the cost of a very modest slowdown for verification due to slightly smaller values of f . In the
light of the relatively slow signing times in SQISign, this option seems worthwhile for applications
that require faster signing.

NIST III and V. As mentioned earlier, our work showcases the first credible primes for SQISign
at the NIST III and NIST V security level. A beneficial feature about most of the primes found
in Table 4 is that the majority of the smooth factors are relatively small (e.g. B < 210). In
comparison, we expect the XGCD method to scale worse for larger security levels, i.e., requiring
much larger smoothness bounds. This is similar to the analysis in [10], which shows that while the
XGCD approach has reasonable smoothness probabilities for NIST I parameters, other methods
become superior for larger sizes.

We note that there are other 384 and 512-bit primes in the literature for which p2−1 is smooth
[10,13]. None of the primes from [10] have a large enough power of two for a suitable SQISign
application. Some primes were found in the context of the isogeny-based public-key encryption
scheme Séta [13] that could be suitable for SQISign. As part of their parameter setup, they required
finding ≈ 384-bit primes10. Of the 7 primes that they found, the 389-bit prime, p = 2r12 − 1
with r = 5114946480 appears to be somewhat SQISign-friendly to achieve NIST III security (see
Table 4). However, in addition to its worse signing metric, representations of Fp-values require an
additional register in this case compared to our primes of bitlengths slightly below 384. Thus, we
can expect implementations of Fp-arithmetic to perform significantly worse for this prime.

Remark 10. The requirement we impose on p2 − 1 being divisible by 2f · T is to ensure that
it fits within the current implementation of SQISign. At present, the SQISign implementation
has a fine-grained optimisation of their ideal to isogeny algorithm to the setting with ℓ = 2.
In general, one could instead allow p2 − 1 to be divisible by L · T , for a smooth number L
with gcd(L, T ) = 1. This could open new avenues to find SQISign-friendly primes, but would
require a reconfiguration of the SQISign code. For example, using the prime found with r =
2091023014142971802357816084152713216 from Table 4, we could use L = 249 ·34 ·5 | p2−1 and
still have a large enough smooth factor T to exceed p5/4, thereby further minimising the expected
slowdown for verification.

10 That satisfy some mild conditions outside of just requiring p2 − 1 to be smooth
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Remark 11. The focus of this work has been on finding parameters for SQISign but there are other
isogeny-based cryptosystems that could benefit from such quadratic twist-style primes. While
traditional SIDH [19] is now broken, there have been proposed countermeasures [18,3,2] that aim
to thwart the attacks from [6,22,23]. Currently, these countermeasures use SIDH-style primes,
but could potentially benefit from quadratic twist-style primes like those explored in this work
for SQISign. However, these countermeasure require primes of larger sizes, so it is unclear if our
CHM-based approach scales to these sizes, especially when aiming to balance the size of the smooth
cofactors of p + 1 and p − 1. Nevertheless, our techniques might give a good starting point for
future research in this direction.

6.4 Other Techniques for Finding SQISign Parameters

As seen in §2, we can collect twin smooth integers via different methods, and use them as inputs
to pn(x) to search for primes. Though these alternative methods are expected to have greater
smoothness bound, they have certain advantages. Namely, we are able to force larger powers of 2
into p2 − 1 and search for twin smooths of large bitsizes (targeting NIST-III and -V).

Although we expect most primes in this section to perform worse when instantiated in SQISign
compared to the primes from §6.2, their concrete performance cannot be evaluated with the soft-
ware from [16,17] (see §6.3). In this section, we present the best primes found with each approach
in the hopes that future implementations of SQISign benefit from a larger pool of potential primes
to choose from. We give a list of these primes in Table 5

XGCD twin smooths. For generating smaller twins, the XGCD approach can be used to yield
relatively high smoothness probabilities. Although this increases the smoothness bound compared
to CHM, we can choose smooth factors of roughly n bits combined when searching for n-bit twin
smooths. This allows us to force larger powers of 2.

As an example, the 261-bit prime p = 2r4−1 with r = 34848218231355211776 was found using
this approach. Here we have

p+ 1 = 277 · 320 · 234 · 1514 · 1574 · 2334 · 21534, and
p− 1 = 2 · 52 · 17 · 41 · 61 · 71 · 97 · 1012 · 113 · 137 · 257 · 263 · 313 · 353 · 547 · 853

· 1549 · 2017 · 2081 · 2311 · 3019 · 24989 · 58601 · 5511340166779281313.

This prime is similar to the primes found in [17], giving a smaller smoothness bound and a larger
power of 2 compared to the state-of-the-art. However, it exceeds the size of 256 bits, and thus
we expect it to perform significantly worse due to the fact that representations of values in Fp

require an additional register in this case. Additionally, a large majority of the factors in p2 − 1
are relatively large, making isogeny computations rather slow. This is consistent with the primes
in [17].

PTE twin smooths. As the number of 128-bit twins that were found using CHM is relatively
small, in some cases we were not able to find suitable SQISign parameters. This mainly concerns
the setting using n = 4 and finding NIST-V parameters, for which data from the CHM run with
B < 1300 did not yield any NIST-V SQISign-friendly instances.

To find more large twins, we can use the PTE approach [10] (see §2) to find 214-smooth 128-bit
twins, sacrificing the smaller smoothness bounds that were used during our CHM runs. In total,
we found 3,648 such 128-bit twins that resulted in a prime of the form p = 2r4 − 1. Of these, two
primes show strong potential to be used in SQISign and are thus also given in Table 4.

Larger values of n. We could also consider finding primes of the form p = 2rn − 1 for larger
values of n, where the only restriction is that r is a smooth number. Compared to the previous
ideas this restriction decreases the amount of guaranteed smoothness, but if n is chosen carefully
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then we can obtain increased smoothness probabilities. The polynomial pn(x)
2−1 is highly related

to the cyclotomic polynomials Φd for d | n as

pn(x)
2 − 1 = 2xn(2xn − 2) = 4xn(xn − 1) = 4xn

∏
d|n

Φd.

Recall that Φd is an irreducible polynomial of degree φ(d), where φ denotes Euler’s totient function.
Therefore, the largest irreducible factor of pn(x)

2−1 is of degree φ(n). This in turn means that the
largest factor that p = 2rn − 1 can possibly have is around the size of rφ(n) ≈ pφ(n)/n. Therefore,
we would like to minimise the value φ(n)/n.

As we allow n to increase, this value can get arbitrarily low. Indeed, setting n = Pk, where Pk

denotes the k-th primorial, we find that

φ(Pk)

Pk
=

k∏
i=1

pi − 1

pi
=

k∏
i=1

(
1− 1

pi

)
,

and as k goes towards infinity, we see that

lim
k→∞

φ(Pk)

Pk
=

∞∏
i=1

(
1− 1

pi

)
=

1

ζ(1)
,

where ζ(s) denotes the Riemann-zeta function, which has a pole at s = 1.
However, we cannot allow n to become too large; we still need a sufficiently large range of inputs,

so that there exists a smooth r such that 2rn − 1 is prime. Therefore, consider a bound n < Bn

where Bn is chosen such that we can still have a large search space. Based on the multiplicative
property of the totient function, the fact that φ(q) = q − 1 when q is prime, and the fact that

φ(n)

n
=
φ(rad(n))

rad(n)
,

where rad(n) denotes the square-free part of n, the optimal choices of n are in the set

n ∈ {2e13e2 . . . pekk < Bn | Pk < Bn < Pk+1, ei ≥ 1},

where Pk again denotes the k-th primorial.
As an example, we look for NIST-V parameters p ∈ [2500, 2512]. If we want at least a range of

size 225 such that 2rn − 1 ∈ [2500, 2512], we see that we have to have n < Bn = 20. Therefore, our
set of optimal choices of n becomes

n ∈ {2 · 3, 22 · 3, 2 · 32} = {6, 12, 18}.

Using n = 6, the range of suitable r-values becomes large enough that we cannot search through
all of them. Thus, searches would require further restrictions on the suitable r-values, such as only
considering twin-smooths.

For n ∈ {12, 18}, we can exhaust the full search space, and obtain several promising candidates.
These are include in Table 4. Among all of these, the 510-bit prime p = 2r12 − 1 with r =
5594556480768 seems very suitable for NIST-V. It has a low cost factor and has a large power of
three, which could be beneficial for SQISign implementations. Here we have

p+ 1 = 297 · 360 · 23912 · 57112 · 65912, and
p− 1 = 2 · 52 · 7 · 132 · 17 · 19 · 43 · 83 · 103 · 109 · 1392 · 151 · 223 · 277 · 317 · 1249

· 1373 · 2311 · 3067 · 4133 · 28279 · 28447 · 40087 · 60089 · 69073 · 88469
· 2226517 · 5856073 · 6242671 · 14237127193 · 25752311173
· 63101553683977 · 38380249844433998662503841.
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NIST security
level

n r ⌈log2(p)⌉ f B
√
B/f logp(T )

NIST-I 4 34848218231355211776 261 77 2311 0.62 1.30

NIST-III 12 2446635904 376 85 9187 1.13 1.29

NIST-V
4

114216781548581709439512875801279791104
123794274387474298912742543819242587136

507
508

65
41

75941
15263

4.24
3.01

1.26
1.29

12 5594556480768 510 97 88469 3.07 1.29
18 335835120 511 73 24229 2.13 1.29

Table 5: A table of SQISign parameters p = pn(r) found using twin-smooth integers (r, r ± 1) at
each security level. The twins used here were not found using CHM. The other quantities are just
as in Table 4.

Remark 12. Unlike the CHM method and similar methods, we cannot generate more values to
input into this technique, as the amount is small enough to quickly exhaust the full search space.
This is in stark contrast to CHM, which could potentially - given more computing power - generate
more twin smooths of given sizes to give new suitable SQISign parameters. Hence, we conclude
that the CHM method with smaller values of n will ultimately give rise to new, better SQISign
parameters than the ones found with the higher values of n.
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