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Abstract. In CRYPTO 2012, Zhandry developed generic semi-constant
oracle technique and proved security of an identity-based encryption
scheme, GPV-IBE, and full domain hash (FDH) signature scheme in
the quantum random oracle model (QROM). However, the reduction
provided by Zhandry incurred a quadratic reduction loss. In this work,
we provide a much tighter proof, with linear reduntion loss, for the FDH,
probabilistc FDH (PFDH), and GPV-IBE in the QROM. Our proof is
based on the measure-and-reprogram technique developed by Don, Fehr,
Majenz and Schaffner.

Keywords: Quantum random oracle · Full domain hash · Identity-
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1 Introduction

1.1 Background

The (Quantum) Random Oracle Model. As is often the case, security
proofs of practical cryptographic schemes are given in the random oracle model
(ROM) [3], where a hash function is idealized as a publicly accessible oracle that
evaluates a random function. However in 2011, Boneh et al. [5] pointed out that
the ROM is not sufficient when considering security against quantum adver-
saries, who may be able to evaluate the oracle in superposition. Considering this
fact, they proposed a new model named the quantum(-accessible) random oracle
model (QROM) and called for new techniques to obtain the QROM counterparts
of the existing security results in the ROM.
⋆ This work differs from the previous version in that (1) the MaR predicate addition-

ally includes verification that the final output m/id∗ is never queried to the sign-
ing/extraction oracle before; (2) the term qH + qS in the security bound is replaced
with qH .
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Identity-Based Encryption in QROM. The identity-based encryption
(IBE) was first envisioned by Shamir [19] and realized under various assumptions
[6,7], among which the most efficient post-quantum one is GPV-IBE proposed
by Gentry, Peikert and Vaikuntanathan[13]. Zhandry [20] first gave a security
proof for generic PSF-based IBE in the QROM with quadratic loss. Katsumata
et al. [15] provided a much tighter reduction from the security of GPV-IBE to
the LWE assumption while only applying to certain lattice-based PSFs.

(Probabilistic) Full Domain Hash in QROM. In 1993, Bellare and Rog-
away [3] formalized the well-known "hash-and-sign" paradigm for digital signa-
ture schemes, using the random oracle. Specifically, given a trapdoor permutation
f and a random hash function H with the same range as f , the signature of a
message m is defined as f−1(H(m)). This signature scheme was subsequently
called "Full Domain Hash" or FDH. To obtain a better security bound, Bellare
and Rogaway[4] designed a new scheme, the probabilistic scheme (PSS), and
then in 2002, Coron[10] described a variant of PSS, named as probabilistic full
domain hash (PFDH), for the sake of simplicity. Zhandry[20] gave a reduction
from the security of FDH to the onewayness of the underlying trapdoor permu-
tation with ϵ′ ≈ ϵ2/(qH + qS)

4 and T ′ ≈ T + (qH + qS)
2 · poly(λ), where qH

denotes the number of hash queries, qS denotes the number of signing queries, λ
denotes the security parameter, and poly denotes some fixed polynomial. If we
consider the tightness of the reduction, the proof provided by Zhandry is not
satisfactory. Indeed, Zhandry left it as an open problem to give a tighter reduc-
tion for the FDH, as well as the IBE. Moreover, NIST announced a new call
for additional digital signature schemes for the PQC Standardization Process,
especially schemes that are not based on structured lattices [18]. That means
FDH and its variants can be promising candidates and thus their post-quantum
security is worth reconsidered.

The Measure-and-Reprogram Technique. Don et al. [12] first introduced
the measure-and-reprogram technique to reprogram the QROM adaptively at
one input. More precisely, for any oracle quantum algorithm AH making q quan-
tum calls to a random oracle H and finally outputting a pair (x, z) so that some
predicate V (x,H(x), z) is satisfied, they showed the existence of a simulator S
that mimics the random oracle, and then reprograms H(x) to a given Θ so that z
output by AH now satisfies V (x,Θ, z), except with a multiplicative O(q2) loss in
probability (plus a negligible additive loss). Then the result is further improved
in [11] by Don et al, with a cleaner bound, i.e. a multiplicative (2q + 1)2 loss.

1.2 Our Contribution

We resolve the issues left by Zhandry [20] of improving the reduction to first-
order in the adversary’s advantage for the IBE scheme and Full Domain Hash
in the QROM.
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– We give a reduction from the IND-ID-CPA-security of generic PSF-based
IBE to the IND-CPA-security of the encryption scheme from which it is
constructed in the QROM, with a (2q+1)2 loss in advantage. We note that
this technique is general and can apply to the random oracle hierarchical
IBE schemes of Cash et al. [8] and Agrawal et al. [1].

– We also give a reduction from the UF-CMA-security of the FDH and PFDH
signature schemes to the one-way security of the trapdoor permutation in
the QROM, with a (2q + 1)2 loss in advantage. We also note that if the
trapdoor permutation has some sort of homomorphic property, the security
bound can be further tightened with O(q2H) being replaced by O(qS), which
is a significantly better result in practice since qS is usually much smaller
than qH .

1.3 Technical Overview

Security Proofs in Classical ROM. We briefly recall the original security
proof of FDH in the classical ROM given by Bellare and Rogaway [3] and give
an insight into the role that a random oracle plays in the reduction algorithm.
In the security proof, the reduction algorithm guesses i ∈ [qH ] such that the
adversary’s i-th hash query is the m∗ of its final forgery (m∗, σ∗), where qH
denotes the number of hash queries made by the adversary. Then for all but the
i-th hash query, the reduction algorithm programs H(m) by picking a random
x ← Domf and returning fpk(x) and for the i-th query, it programs H(m∗) to
be the challenge y := fpk(x) to be inverted. Then, if the guess is correct and the
forgery is valid, from fpk(σ

∗) = H(m∗) = y, the reduction algorithm can simply
outputs σ∗ and hopefully inverts f−1

sk (y). The reduction loses a factor of 1/qH
and the security proof for PFDH and PSF-based IBE in the ROM can be done
similarly.

Security Proofs in QROM in [20]. Since a quantum adversary may eval-
uate a hash function on a superposition of inputs in a single query, the above
reduction in the ROM cannot simply carry over to the QROM. To overcome the
obstacle, Zhandry [20] developed generic semi-constant oracle technique. The
semi-constant distribution with a parameter 0 < λ < 1 is a distribution over
functions from X to Y such that a function chosen from this distribution gives
some fixed value y for uniformly random λ-fraction of all inputs, and behaves
as a truly random function for the rest. Zhandry argued that an oracle drawn
from the semi-constant distribution with parameter λ cannot be distinguished
from a truly random one by an adversary that makes qH queries with an advan-
tage greater than 8

3q
4
Hλ2. In the security proof, the reduction partitions the set

of identities/messages M into two sets: X and M/X , where X is a uniformly
random λ-fraction ofM. The basic idea is to plug the challenge c into this small
fraction of inputs to the oracle. Then the adversary behaves as though the oracle
is random. By appropriately setting λ, the reduction algorithm succeeds with
probability ϵ′ ≈ ϵ2/(qH + qS)

4, which is a quadratic loss.
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Our Security Proofs in QROM. Our reduction is based on the measure-
and-reprogram technique by Don, Fehr, Majenz and Schaffner [11,12]. For any
oracle quantum algorithm AH making q quantum calls to a random oracle H and
finally outputting a pair (x, z) so that some predicate V (x,H(x), z) is satisfied,
the theorem states that there exists a simulator S that mimics the random
oracle, and then reprograms H(x) to a given Θ so that z output by AH now
satisfies V (x,Θ, z), except with a multiplicative (2q2 + 1) loss in probability.
From any FDH forger A that tries to produce a forgery (m∗, σ∗), we obtain a
reduction algorithm S that extracts m∗ from A and uses a challenge y = fpk(x)
to reprogram the RO, so that σ∗ output by A will be a correct reply with respect
to y with a probability not much smaller than the probability that A succeeds
in forging. Concretely, the reduction loss is exactly a multiplicative (2q2 + 1).
We achieve the same result with respect to PFDH and generic PSF-based IBE
following similar discussion.

1.4 Related Work

Boneh et al. [5] introduced QROM and showed certain circumstances in which
security in the classical RO implies security in the QROM . Zhandry [20] devel-
oped generic semi-constant technique and proved the security of GPV-IBE and
FDH in the QROM. Katsumata et al. [15] provided much tighter security proofs
for the GPV-IBE in the QROM in the single-challenge setting and also a multi-
challenge tight variant of GPV-IBE that is secure both in the ROM and QROM.
However, their reduction relies on certain properties of lattice-based PSFs and
thus does not apply to generic PSF-based schemes. The measure-and-reprogram
technique was developed and improved by Don et al. [11,12] originally to prove
security of the Fiat Shamir transform in the QROM.

1.5 Comparison with Concurrent Results.

In concurrent and independent work [16], Kosuge and Xagawa showed a similar
result based on measure-and-reprogram technique. However, our work differs
from [16] in the following aspects. In [16], what they consider is the probabilistic
hash-an-sign with retry based on non-PSF TDFs, while we focus on the plain
FDH and PFDH as in [20]. We also show that if the trapdoor permutation has
some sort of homomorphic property, the security bound can be further tightened
with O(q2H) being replaced by O(qS), which is a significantly better result in
practice since qS is usually much smaller than qH . Besides, we also give QROM
proofs for IBE and HIBE.

2 Preliminaries

For strings a and b, we denote the concatenation of these strings by a||b. For a
positive integer n, we denote the set of integers ranging from 1 to n by [n] :=
{1, · · · , n}. For a function f , we use the notation Domf and Ranf to denote its
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domain and range. Pr[P : G] is the probability that the predicate holds true
when free variables in P are assigned according to the program in G. If S is a
finite set, we denote by x

$←S the operation of sampling a value uniformly at
random from the set S and assigning it to the variable x. For a quantum or
randomized classical algorith A, we denote y

$←A(x) to mean that A outputs y
on input x and denote y ∈ A(x) to mean that y is in the support of A(x).

2.1 Cryptographic Primitives

Definition 1. A preimage sampleable function (PSF) consists of four algo-
rithms F = (F.Gen,F.Sample, f, f−1) where F.Gen generates secret/public keys
(sk, pk), fpk is a function, F.Sample samples x from a distribution D such that
fpk(x) is uniform, and f−1

sk (y) samples from D conditioned on fpk(x) = y.

Definition 2. A trapdoor permutation (TDP) is a triple of algorithms F =
(Gen, f, f−1) where Gen generates secret/public keys (sk, pk), fpk is a permu-
tation, and f−1

sk is its inverse.

We use the following security notion for trapdoor permutations. We say that
a trapdoor permutation F = (Gen, f, f−1) is hard to invert (one-way) if given pk
and y := fpk(x) for a uniform x, it is hard to compute x. More formally, it is (t, ϵ)-
hard to invert if for any adversaryA running in time t, Pr[A(pk, fpk(x)) = x] ≤ ϵ,
where the probability is taken over (sk, pk)← Gen, x← Domfpk , and the random
coin tosses of A.

Definition 3. An identity-based encryption (IBE) scheme is a 4-tuple of PPT
algorithms (IBESetup, IBEExtract, IBEEnc, IBEDec) where

– IBESetup(1n)→ (msk,mpk), outputs a master public key mpk and a master
secret key msk.

– IBEExtractmsk(id) → skid, generates a secret key skid for given msk and
identity id.

– IBEEncmpk(id,m)→ c, given the master public key mpk, an identity id, and
a message m, outputs a ciphertext c.

– IBEDecsk(c)→ m, given a secret key sk, and a ciphertext c, outputs a mes-
sage m.

We require the correctness of decryption that for all security parameters 1n,
all identities id, and all m in the specified message space,

Pr[IBEDecskid
(IBEEncmpk(id,m)) ̸= m] = negl(n),

where the probability is taken over the randomness used in (mpk,msk) ←
IBESetup(1n), skid ← IBEExtractmsk(id), and IBEEncmpk(id,m).

We use the indistinguishability under chosen plaintext attack (IND-ID-CPA)
[6] notion of security.
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Definition 4 (IND-ID-CPA). An adversary A is said to (t, qH , qE , ϵ)-break
the identity-based encryption scheme (IBESetup, IBEExtract, IBEEnc, IBEDec) if
A runs in time at most t, makes at most qH hash queries and at most qE ex-
tracting queries, and furthermore

Pr[b′ = b ∧ id∗ /∈ Q : b′ ← AIBEExtractHmsk(·),H(·),Chall(id∗,m0,m1)(mpk)] ≥ ϵ,

where Q is the set of extracting queries made by A and the challenge query
Chall(id∗,m0,m1) answers as follows: pick a random bit b

$←{0, 1} and return
IBEEncHmpk(id

∗,mb). The probability is taken over the random choice of the or-
acle H and all the randomness used in the probabilistic algorithms involved.
An identity-based encryption scheme is (t, qH , qE , ϵ)-secure if no adversary can
(t, qH , qE , ϵ)-break it.

Definition 5. A signature scheme consists of three probabilistic polynomial-time
algorithms (Gen, Sign,Vrfy) such that:

– Gen takes as input a security parameter 1n, and outputs a public key pk and
a private key sk.

– Sign takes as input a private key sk and a message m, and outputs a signature
σ. We write this as σ ← Signsk(m).

– Vrfy takes as input a public key pk, a message m, and a signature σ, and
outputs a bit b, with b = 1 meaning accept and b = 0 meaning reject. We
write this as b := Vrfypk(m,σ).

We make the standard correctness require: for all (sk, pk) generated by Gen
and all messages m ∈M we have Vrfypk(m, Signsk(m)) = 1. We use the existen-
tial unforgeablility under chosen message attack (UF-CMA) notion of security
[14].

Definition 6 (UF-CMA[14]). A forger F is said to (t, qH , qS , ϵ)-break the
signature scheme (Gen, Sign,Vrfy) if F runs in time at most t, makes at most
qH hash queries and at most qS signing queries, and furthermore

Pr[Vrfypk(m,σ) = 1∧m /∈ Q : (pk, sk)← Gen,H ← Ω, σ ← FSignHsk(·),H(·)(pk)] ≥ ϵ,

where Ω is the space from which the random oracle H is selected, and Q is the
set of signing queries made by F . A signature scheme is (t, qH , qS , ϵ)-secure if
no forger can (t, qH , qS , ϵ)-break it.

2.2 Quantum Computation

We give a brief introduction to quantum computation and refer to [17] for more
detailed information. A quantum system A is associated to finite-dimentional
complex Hilbert space HA with an inner product ⟨·|·⟩. A state of the system is
described by a vector |ϕ⟩ ∈ HA such that the Euclidean norm of |ϕ⟩ is 1. Any clas-
sical bit string x can be encoded into a quantum state as |x⟩. An arbitatry pure n-
qubit state can be expressed in the computational basis as |ϕ⟩ =

∑
x∈{0,1}n αx|x⟩,
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where αx are complex amplitudes satisfying
∑

x∈{0,1}n |αx|2 = 1. An evolution
of quantum state can be described by a unitary matrix U : |x⟩ → U |x⟩. Infor-
mation can be extracted from a quantum state by performing a measurement.
Take the measurement in the computational basis as an example. This mea-
suring of a qubit |ϕ⟩ =

∑
x∈{0,1}n αx|x⟩ results in x with probability αx. A

quantum algorithm is composed of quantum evolutions described by unitary
matrices and measurements. Following [2,20], we view a quantum oracle O as a
mapping |x⟩|y⟩ → |x⟩|y⊕O(x)⟩, and model adversary A with quantum access to
O by a sequence of unitaries U1, O, U2, · · · , O, Uq. We recall the following results
that we will be using. As shown by Zhandry[20], a quantum random oracle can
be simulated by a family of 2q-wise independent hash functions indistinguish-
ably with respect to any adversary that makes at most q quantum query to that
oracle. Specifically, he obtained the following result.

Lemma 1 (Theorem 6.1 in [20]). Any quantum algorithm A making quantum
queries to random oracles can be efficiently simulated by a quantum algorithm
B, which has the same output distribution, but makes no queries. In detail, if
A makes at most q queries to a random oracle H : {0, 1}a → {0, 1}b, then
Time(B) ≈ Time(A) + q · T 2q-wise

a,b , where T 2q-wise
a,b denotes the time to evaluate a

2q-wise independent hash function from {0, 1}a to {0, 1}b.

Definition 7 (Reprogrammed Functions). For a given function H : X → Y
and for fixed x ∈ X and Θ ∈ Y, the reprogrammed function Hx→Θ : X → Y
coincides with H on X/{x} but maps x to Θ.

As shown by J. Don et al. [11], queries made by an arbitrary quantum oracle
algorithm A can be read out by defining a two-stage algorithm S with black-box
access to A, with the corresponding hash value being reprogrammed. In [11],
S works by running A with the following modifications. First, one of the q + 1
queries of A (also counting the final output) is selected uniformly at random
and measured, with the measurement result x being output by the first stage of
S. Then, this very query of A is answered either using the original H or using
the reprogrammed oracle Hx→Θ, with the choice being made at random, while
all the remaining queries of A are answered using Hx→Θ. Finally, S outputs
whatever A outputs. As a result, they obtain the following theorem.

Lemma 2 (Measure-and-reprogram, theorem 2 in [11]). Let X and Y
be finite non-empty sets. There exists a black-box two-stage quantum algorithm
S with the following property. Let A be an arbitrary oracle quantum algorithm
that makes q queries to a uniformly random H : X → Y and that outputs some
x ∈ X and a (possibly quantum) output z. Then, the two-stage algorithm SA
outputs some x ∈ X in the first stage and, upon a random Θ ∈ Y as input to
the second stage, a (possibly quantum) output z, so that for any x0 ∈ X and any
(possibly quantum) predicate V :
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Pr
Θ
[x = x0 ∧ V (x,Θ, z) : (x, z)← ⟨SA, Θ⟩]

≥ 1

(2q + 1)2
Pr
H
[x = x0 ∧ V (x,H(x), z) : (x, z)← AH ].

Furthermore, S runs in time polynomial in q, log|X |, and log|Y|.

3 Tighter Security Proof for GPV-IBE

Here we prove the security of IBE scheme from Gentry et al. [13]. Their scheme
is constructed from a dual cryptosystem (DualGen,DualEnc,DualDec) whose key
generation algorithm DualGen is associated with a PSF F = (F.Gen,F.Sample, f, f−1)
and works as follows: generate (msk,mpk)← F.Gen(1n), sample sk ← F.Sample(1n),
compute pk = fmpk(sk), and output (sk, (pk,mpk)). Then, using a random or-
acle H : ID → Ranf that maps the identities to the range of f , the GPV-IBE
scheme IBE = (IBESetup = F.Gen, IBEExtract, IBEEnc, IBEDec) is defined as fol-
lows.

– IBEExtractHmsk(id) := f−1
msk(H(id)),

– IBEEncHmpk(id,m) := DualEncH(id),mpk(m),
– IBEDecsk(c) := DualDecsk(c).

Theorem 1. Suppose that the dual cryptosystem is quantum IND-CPA-secure.
Then the GPV-IBE scheme defined as above is quantum IND-ID-secure when
we model H as a random oracle. Detailedly, for any quantum PPT adversary
A making at most qH random oracle queries to H and qE extraction queries
that breaks IBE with advantage ϵ, there exists a quantum PPT algorithm B that
breaks the dual cryptosystem with probability ϵ′ such that

ϵ ≤ (2qH + 1)2ϵ′.

Proof. Let A0 be a quantum adversary making qH hash queries, qE extracting
queries, that breaks IBE with advantage ϵ.

Let Game0 be the standard attack game for IBE: the challenger generates
(msk,mpk) from IBESetup, and sends mpk to the adversary. The adversary
can make (classical) extraction queries on identities idi, and (quantum) hash
queries to the random oracle H. A0 then produces an identity id∗, along with
two messages m0 and m1. The challenger chooses a random bit b, and responds
with IBEEncHmpk(id

∗,mb). A0 is allowed to make further extracting and hash
queries, except that we make sure A0 never queries IBEExtractHmsk(id

∗). Finally,
A0 outputs a bit b′ and we report A0 wins if b′ = b. By definition, this happens
with probability 1

2 + ϵ.
Let A be the following algorithm that makes quantum queries to another

oracle H ′ : ID → Domf , and simulates the interaction between A0 and the
challenger: generate (msk,mpk) from IBESetup, send mpk to A0, and run A0.
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When A0 makes an extraction query IBEExtractHmsk(id), A returns H ′(id). In
response to a random oracle query on id, A first forwards id to H ′, gets x,
and then returns fmpk(x). Similarly, answer the challenge query (id∗,m0,m1)
by choosing a random bit b and encrypting mb to the identity id∗. The output
of A is (id∗, c), where c = b⊕ b′ and b′ is the guess produced by A0. We can now
think of Game1 as follows: run A with a random oracle to obtain (id∗, c). Report
that the game is won if and only if c = 0. The number of queries to H ′ made
by A is qH for random queries, qE for queries through the extraction algorithm,
and 1 for the encryption of mb, for a total of qH + qE + 1 queries.

Thus, we can apply Lemma 2, with id∗, c, ID, Domf , H ′ playing the role
of what is referred to as x, z, X , Y, H, respectively, in the theorem statement,
to obtain the existence of an algorithm SA that produces id∗ in the first stage,
and upon receiving a random sk ∈ Domf produces c, such that for any id ∈ ID

Pr
sk
[id∗ = id ∧ V (id∗, sk, c) : (id∗, c)← ⟨SA, sk⟩]

≥ 1

(2q + 1)2
Pr
H
[id∗ = id ∧ V (id∗,H ′(id∗), c) : (id∗, c)← AH′

],

where V (id∗, sk, c) and V (id∗,H ′(id∗), c) both specify c = 0 and id∗ is never
queried to the extraction oracle before. Summed over all (m0, r0) ∈M×{0, 1}k0 ,
this in particular implies that

Pr
sk
[c = 0 ∧ id∗ /∈ Q : (id∗, c)← ⟨SA, sk⟩]

≥ 1

(2q + 1)2
Pr
H
[c = 0 ∧ id∗ /∈ Q : (id∗, c)← AH′

].

where Q is the list of extraction queries made by A0. Let Game2 be Game1 with
the following modifications. During the process, one unique RO query from A0 is
chosen uniformly at random, and measured to hopefully obtain the very id∗ that
A0 will produce in its final forgery. Subsequently, the RO is reprogrammed, so as
to answer H(id∗) with pk = fmpk(sk) for some sk ∈ Domf , either from this point
on or from the following query on, with the binary choice made at random. Since
the messages yielded by measuring on these H ′-queries cannot pass the MaR
predicate V , the reprogram operation on H ′-queries that are used for simulating
the extraction oracle can be removed. Thus, the A for instantiation of MaR
can be transformed into Game2 with A0, where the measure-and-reprogram is
performed only on the H-queries. Then, the inequality becomes

Pr
sk
[b′ = b ∧ id∗ /∈ Q : b′ ← ⟨A0, Game2⟩] ≥

ϵ

(2qH + 1)2
.

Now we are ready to define an algorithm B that breaks the IND-CPA-security
of the dual cryptosystem. Give B access to the random oracle H ′ : ID → Domf .
On input (pk,mpk), B works as follows.

– Send mpk to A0, simulate A0, and play the role of challenger to A0.
– Choose a uniformly random i

$←{1, . . . , qH + 1} and t
$←{0, 1}.
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– Construct the (quantum) oracle H such that H(id) = fmpk(H
′(id)). Answer

the first i− 1 random oracle queries that A0 makes by H. Measure the i-th
query, get id∗, and answer this query by H for t = 1 and by the repro-
grammed function Hid∗→pk for t = 0. The remaining queries are answered
using Hid∗→pk.

– When A0 asks for the secret key for id, return H ′(id).
– When A0 produces the challenge query (id∗,m0,m1), forward (m0,m1) to
B’s challenger and send the response to A0.

– When A0 outputs its guess b′, output b′.

Note that by reprogramming H(id∗) to pk, the challenge c = DualEncpk,mpk(mb)

is exactly IBEEncHmpk(id
∗,mb), so that the view of A0 when ran as a subroutine

by B is identical to the view of A0 in Game2 and B wins if and only if A0 wins
Game2. We get that the advantage of B is at least

ϵ

(2qH + 1)2
.

Note that by Lemma 1 the quantum random oracle H ′ can be efficiently
simulated by a family of 2q-wise independent hash functions.

This completes the proof.

Remark 1. In [20], Zhandry showed how to prove the security of the hierarchical
IBE (HIBE) of Agrawal et al. [1] and Cash et al. [8] by repeatedly applying the
arguments of the IBE result. We note that Theorem 1 can also be applied to the
random oracle HIBE schemes.

In an HIBE scheme, identities are structured as a directed tree in which every
node contains its parent as a prefix and can produce secret keys for its children.
Specifically, instead of an extraction algorithm skid ← Extractmsk(id), in an
HIBE scheme, identities are vectors and there is an algorithm named Derive,
which takes an identity ididid = (id1, · · · , idk) and a secret key skididid|l of a parent
ididid|l = (id1, · · · , idl) for some l < k, and outputs a secret key skididid for the identity
ididid. The adversary A is allowed to adaptively take control of an arbitrary number
of nodes in the tree and obtain the associated secret keys. Suppose d and ididid∗

denote the max hierarchy depth and the identity thatA produces in the challenge
query, respectively. In [20], Zhandry highly generalized the reduction of Agrawal
et al. [1] as:

Setup. B prepares a simulated attack environment for A.

– Select d uniformly random integers q∗1 , · · · , q∗d ∈ [qH ], and hopefully the q∗i -th
query to H will contain the hash of the level-i parent if ididid∗.

– Sample d random quantities R∗
1, · · · , R∗

d.
– Choose a random ω ∈ [d], a guess at the level that contains the targeted

identity ididid∗.
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Random oracle queries. A may query the random oracle H on any ididid
adaptively at any time. Let i = |ididid| be the depth of ididid. B answers the q-th query
as follows.

– Simulate a separate random oracle for identities at each level.
– If q = q∗i , return H(ididid)← R∗

i , and otherwise return a random value H(ididid)←
R.

Secret key queries. Secret key queries are answered in a certain way to
match with the RO queries. If A makes a query on ididid = (id1, · · · , idk) such that
H(ididid|i) = R∗

i for all i ≤ k, then the simulator aborts and fails.

Finally, B succeeds if A succeeds, ididid∗ is at level ω, and no abortion is trig-
gered. The reduction can be transplanted to the QROM version by repeatedly
applying the arguments of Theorem 1. We iterate over level i, and use R∗

i to
reprogram the separate random oracle for identities at that level. In iteration i,
we say the adversary wins if it won in the previous iteration, the level-i prefix of
the challenge identity ididid∗ is reprogrammed (i.e. H(ididid∗|i) = R∗

i ), and no signature
query is. Let ϵi denote the iteration i advantage, then using the same techniques
as in Theorem 1, we get

ϵi ≥
ϵi−1

(2qH + 1)2
.

In iteration 0, the adversary wins if it wins the standard game and we guess
correctly which level ididid∗ belongs to. Then, we have ϵ0 = ϵ/d, where ϵ is the ad-
versary’s advantage in the standard game and the total advantage after iteration
d is at least

ϵ/d

(2qH + 1)2d
=

ϵ

d

(
1

2qH + 1

)2d

.

Recall that the result l(ϵ/dl)2
d in [20] is doubly-exponential in the depth d,

whereas our result is singly exponential as in the classical proof. This is an even
more significant improvement than the one in original IBE.

4 Tighter Security Proof for (P)FDH

Definition 8 (FDH Signatures[3]). Let F = (F.Gen, f, f−1) be a trapdoor
permutation with f : X → Y, and H : M→ Y be a hash function. The FDH
signature scheme introduced by F and H is a triple (GenFDH = F.Gen, SignFDHH ,
VrfyFDHH), defined as follows.

– SignFDHH
sk(m) := f−1

sk (H(m)).

– VrfyFDHH
pk(m,σ) :=

{
accept if fpk(σ) = H(m)
reject otherwise.

Theorem 2. Suppose that the trapdoor permutation F is quantum one-way.
Then the signature scheme FDH is UF-CMA-secure in the quantum random
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oracle model. Detailedly, for any quantum PPT adversary A making at most qH
random oracle queries to H and qS signature queries that breaks FDH with ad-
vantage ϵ, there exists a quantum PPT algorithm B that inverts F with probability
ϵ′ such that

ϵ ≤ (2qH + 1)2ϵ′.

Proof. Suppose towards contradiction that there is a quantum adversary A0

making qH hash queries, qS signature queries, that breaks FDH with probability
ϵ.

Let Game0 be the standard attack game for FDH: the challenger gener-
ates (pk, sk) from GenFDH, and sends pk to the adversary. The adversary can
make (quantum) hash queries to the random oracle H, and (classical) signature
queries on messages mi, to which the challenger responds with SignFDHH

sk(mi).
A0 wins if it can produce a pair (m,σ) such that m ̸= mi for any i, and
VrfyFDHH

pk(m,σ) = accept. The success probability in Game0 is ϵ.
Let A be the following algorithm that makes quantum queries to another

random oracle H ′ : M→ X , and simulates the interaction between A0 and the
challenger: generate (pk, sk) from GenFDH, send pk to A0, and run A0. Further,
when A0 makes a signature query SignFDHH

sk(m), A returns H ′(m). In response
to a random oracle query on m, A first forwards m to H ′, gets x, and then
returns fpk(x). Finally, A outputs the forgery (m,σ) that A0 outputs, and the
total number of queries A makes to H ′ is q = qS + qH . We can now think of
Game1 as follows: run A with a random oracle to obtain (m,σ). Report that the
game is won if and only if VrfyFDHH

pk(m,σ) = accept and this happens with the
probability ϵ.

Thus, we can apply Lemma 2, with m, σ, M, X , H ′ playing the role of
what is referred to as x, z, X , Y, H, respectively, in the theorem statement, to
obtain the existence of an algorithm SA that produces m in the first stage, and
upon receiving a random x ∈ X produces σ, such that for any m0 ∈M

Pr
x
[m = m0 ∧ V (m,x, σ) : (m,σ)← ⟨SA, x⟩]

≥ 1

(2q + 1)2
Pr
H
[m = m0 ∧ V (m,H ′(m), σ) : (m,σ)← AH′

],

where V (m,x, σ) (or V (m,H ′(m), σ)) specifies x = σ (or H ′(m) = σ) and m
is never queried to the signing oracle before. Summed over all m0 ∈ M, this in
particular implies that

Pr
x
[σ = x ∧m /∈ Q : (m,σ)← ⟨SA, x⟩]

≥ 1

(2q + 1)2
Pr
H
[H ′(m) = σ ∧m /∈ Q : (m,σ)← AH′

],

where Q is the list of signing queries made by A0. Recall that, by definition,
H ′(m) = σ ∧ m /∈ Q is equivalent to VrfyFDHH

pk(m,σ) = accept. Let Game2

be Game1 with the following modifications. During the process, one unique RO
query from A0 is chosen uniformly at random, and measured to hopefully obtain
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the very m that A0 will produce in its final forgery. Subsequently, the RO is
reprogrammed, so as to answer H(m) with y = fpk(x) for some x ∈ X , either
from this point on or from the following query on, with the binary choice made
at random. Since the messages yielded by measuring on these H ′-queries cannot
pass the MaR predicate V , the reprogram operation on H ′-queries that are used
for simulating the signing oracle can be removed. Thus, the A for instantiation of
MaR can be transformed into Game2 with A0, where the measure-and-reprogram
is performed only on the H-queries. Then, the inequality becomes

Pr
x
[σ = x ∧m /∈ Q : (m,σ)← ⟨A0, Game2⟩] ≥

ϵ

(2qH + 1)2
.

Now we are ready to define an algorithm B that inverts f . Give B access to
the random oracle H ′ : M→ X . On input (pk, y), B works as follows.

– Send pk to A0, simulate A0, and play the role of challenger to A0.
– Choose a uniformly random i← {1, . . . , qH + 1} and b← {0, 1}.
– Construct the (quantum) oracle H such that H(m) = fpk(H

′(m)). Answer
the first i− 1 random oracle queries that A0 makes by H. Measure the i-th
query, get m, and answer this query by H for b = 1 and by the reprogrammed
function Hm→y for b = 0. The remaining queries are answered using Hm→y.

– When A0 makes a signature query on a message m, return H ′(m).
– When A0 returns a forgery (m,σ), output σ.

Note that the view of A0 when ran as a subroutine by B is identical to the
view of A0 in Game2. We get that the advantage of B is at least

ϵ

(2qH + 1)2
.

Note that by Lemma 1 the quantum random oracle H ′ can be efficiently
simulated by a family of 2q-wise independent hash functions.

This completes the proof.

Definition 9 (PFDH Signatures[10]). Let F = (F.Gen, f, f−1) be a trapdoor
permutation with f : X → Y. As FDH, the scheme uses a hash function H :
{0, 1}∗ → Y. The difference is that a random salt of k0 bit is concatenated
to the message before hashing it. Specifically, the probabilistic full domain hash
(PFDH) signature scheme (GenPFDH = F.Gen, SignPFDHH ,VrfyPFDHH) works
as follows.

– SignPFDHH
sk(m) := (f−1

sk (H(m||r)), r), for a uniformly random chosen r ←
{0, 1}k0 .

– VrfyPFDHH
pk(m,σ = (s, r)) :=

{
accept if fpk(s) = H(m||r)
reject otherwise.

Theorem 3. Suppose that the trapdoor permutation F is quantum one-way.
Then the signature scheme PFDH[k0] is UF-CMA-secure in the quantum ran-
dom oracle model. Detailedly, for any quantum PPT adversary A making at most
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qH random oracle queries to H and qS signature queries that breaks PFDH[k0]
with advantage ϵ, there exists a quantum PPT algorithm B that inverts F with
probability ϵ′ such that

ϵ ≤ (2qH + 1)2ϵ′.

Proof. Suppose towards contradiction that there is a quantum adversary A0

making qH hash queries, qS signature queries, that breaks PFDH with probabil-
ity ϵ.

Let Game0 be the standard attack game for PFDH: the challenger generates
(pk, sk) from GenPFDH, and sends pk to the adversary. The adversary can make
(quantum) hash queries to the random oracle H, and (classical) signature queries
on messages mi, to which the challenger responds with SignPFDHH

sk(mi). A0

wins if it can produce a pair (m,σ = (s, r)) such that m ̸= mi for any i, and
VrfyPFDHH

pk(m,σ) = accept. The success probability in Game0 is ϵ.
Let A be the following algorithm that makes quantum queries to another

random oracle H ′ : M× {0, 1}k0 → X , and simulates the interaction between
A0 and the challenger: generate (pk, sk) from GenPFDH, send pk to A0, and run
A0. Further, when A0 makes a signature query SignPFDHH

sk(m), A chooses a
random r ← {0, 1}k0 and returns (H ′(m||r), r). In response to a random oracle
query on (m, r), A first forwards (m, r) to H ′, gets x, and then returns fpk(x).
Finally, A outputs the forgery (m,σ = (s, r)) that A0 outputs, and the total
number of queries A makes to H ′ is q = qS + qH . We can now think of Game1

as follows: run A with a random oracle to obtain (m,σ). Report that the game
is won if and only if VrfyPFDHH

pk(m,σ) = accept and this happens with the
probability ϵ.

Thus, we can apply Lemma 2, with (m, r), s, M×{0, 1}k0 , X , H ′ playing
the role of what is referred to as x, z, X , Y, H, respectively, in the theorem
statement, to obtain the existence of an algorithm SA that produces (m, r) in
the first stage, and upon receiving a random x ∈ X produces s, such that for
any (m0, r0) ∈M× {0, 1}k0

Pr
x
[(m, r) = (m0, r0) ∧ V ((m, r), x, s) : (m, r, s)← ⟨SA, x⟩]

≥ 1

(2q + 1)2
Pr
H
[(m, r) = (m0, r0) ∧ V ((m, r),H ′(m||r), s) : (m, r, s)← AH′

],

where V ((m, r), x, s) (or V ((m, r),H ′(m||r), s)) specifies x = s (or H ′(m||r) = s)
and m is never queried to the signing oracle before. Summed over all (m0, r0) ∈
M× {0, 1}k0 , this in particular implies that

Pr
x
[s = x ∧m /∈ Q : (m, r, s)← ⟨SA, x⟩]

≥ 1

(2q + 1)2
Pr
H
[H ′(m||r) = s ∧m /∈ Q : (m, r, s)← AH′

].

where Q is the list of signing queries made by A0. Recall that, by definition,
H ′(m||r) = s ∧m /∈ Q is equivalent to VrfyPFDHH

pk(m,σ = (s, r)) = accept. Let
Game2 be Game1 with the following modifications. During the process, one unique
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RO query from A0 is chosen uniformly at random, and measured to hopefully
obtain the very (m, r) that A0 will produce in its final forgery. Subsequently,
the RO is reprogrammed, so as to answer H(m||r) with y = fpk(x) for some
x ∈ X , either from this point on or from the following query on, with the
binary choice made at random. Since the messages yielded by measuring on
these H ′-queries cannot pass the MaR predicate V , the reprogram operation
on H ′-queries that are used for simulating the signing oracle can be removed.
Thus, the A for instantiation of MaR can be transformed into Game2 with A0,
where the measure-and-reprogram is performed only on the H-queries. Then,
the inequality becomes

Pr
x
[s = x ∧m /∈ Q : (m,σ = (r, s))← ⟨A0, Game2⟩] ≥

ϵ

(2qH + 1)2
.

Now we are ready to define an algorithm B that inverts f . Give B access to
the random oracle H ′ : M×{0, 1}k0 → X . On input (pk, y), B works as follows.

– Send pk to A0, simulate A0, and play the role of challenger to A0.
– Choose a uniformly random i← {1, . . . , qH + 1} and b← {0, 1}.
– Construct the (quantum) oracle H such that H(m||r) = fpk(H

′(m||r)). An-
swer the first i − 1 random oracle queries that A0 makes by H. Measure
the i-th query, get (m, r), and answer this query by H for b = 1 and by
the reprogrammed function H(m,r)→y for b = 0. The remaining queries are
answered using H(m,r)→y.

– When A0 makes a signature query on a message m, choose a random r ∈
{0, 1}k0 , and return (H ′(m||r), r).

– When A0 returns a forgery (m,σ = (s, r)), output s.

Note that the view of A0 when ran as a subroutine by B is identical to the
view of A0 in Game2. We get that the advantage of B is at least

ϵ

(2qH + 1)2
.

Note that by Lemma 1 the quantum random oracle H ′ can be efficiently
simulated by a family of 2q-wise independent hash functions.

This completes the proof.

Remark 2. We note that if the trapdoor permutation has some sort of homo-
morphic property, the security bound can be further tightened with O(q2H) being
replaced by O(qS), which is a significantly better result in practice since qS is
usually much smaller than qH . The basic idea is similar to Theorem 2 in [9].

We say that the trapdoor permutation F = (F.Gen, f, f−1) is homomorphic
with respect to two group operations + and ⊙ if for any pk from F.Gen, it holds
that fpk(a + b) = fpk(a) ⊙ fpk(b), ∀a, b. We give the following result regarding
FDH-TDP with homomorphic property.
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Theorem 4. Suppose that the trapdoor permutation F is quantum one-way and
homomorphic with respect to two group operations + and ⊙. Then the signa-
ture scheme FDH is UF-CMA-secure in the quantum random oracle model. De-
tailedly, for any quantum PPT adversary A making at most qH random oracle
queries to H and qS signature queries that breaks FDH with advantage ϵ, there
exists a quantum PPT algorithm B that inverts F with probability ϵ′ such that

ϵ ≤ 4qSϵ
′,

Proof. Suppose towards contradiction that there is a quantum adversary A mak-
ing qH hash queries, qS signature queries, that breaks FDH with probability ϵ.

Let p ∈ (0, 1) to be chosen later. The inverter B is given (pk, y) as input,
and has quantum access to two random oracles O1 : M → X and O2 : M →
{0, 1}, outputting 1 with probability p. These oracles can be efficiently simulated
according to Lemma 1. B works as follows.

– Send pk to A, simulate A, and play the role of challenger to A.
– Construct a quantum oracle H such that

H(m) :=

{
y ⊙ fpk(O1(m)) if O2(m) = 1
fpk(O1(m)) otherwise.

– When A makes a signature query on m, abort if O2(m) = 1, and otherwise
returns O1(m).

– When A produces a forgery (m,σ), output σ +O1(m)−1 if O2(m) = 1, and
otherwise abort.

Then, if A produces a valid forgery (m,σ) such that O2(m) = 1, we have
fpk(σ +O1(m)−1) = H(m)⊙ (y ⊙H(m))−1 = y, and thus B outputs the invert
of y for fpk. So with probability at least p(1− pqS), no abortion occurs and take
p = 1/(2qS), B wins with probability at least ϵ/(4qS).
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