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Abstract. Conventional bit-based division property (CBDP) and bit-
based division property using three subsets (BDPT) introduced by Todo
et al. at FSE 2016 are the most effective techniques for finding integral
characteristics of symmetric ciphers. At ASIACRYPT 2019, Wang et al.
proposed the idea of modeling the propagation of BDPT, and recently
Liu et al. described a model set method that characterized the BDPT
propagation. However, the linear layers of the block ciphers which are an-
alyzed using the above two methods of BDPT propagation are restricted
to simple bit permutation. Thus the feasibility of the MILP method of
BDPT propagation to analyze ciphers with complex linear layers is not
settled. In this paper, we focus on constructing an automatic search al-
gorithm that can accurately characterize BDPT propagation for ciphers
with complex linear layers. We first introduce BDPT propagation rule
for the binary diffusion layer and model that propagation in MILP ef-
ficiently. The solutions to these inequalities are exact BDPT trails of
the binary diffusion layer. Next, we propose a new algorithm that mod-
els Key-Xor operation in BDPT based on MILP technique. Based on
these ideas, we construct an automatic search algorithm that accurately
characterizes the BDPT propagation and we prove the correctness of
our search algorithm. We demonstrate our model for the block ciphers
with non-binary diffusion layers by decomposing the non-binary linear
layer trivially by the COPY and XOR operations. Therefore, we apply
our method to search integral distinguishers based on BDPT of SIMON,
SIMON(102), PRINCE, MANTIS, PRIDE, and KLEIN block ciphers.
For PRINCE and MANTIS, we find (2 + 2) and (3 + 3) round integral
distinguishers respectively which are longest to date. We also improve
the previous best integral distinguishers of PRIDE and KLEIN. For SI-
MON, SIMON(102), the integral distinguishers found by our method are
consistent with the existing longest distinguishers.
Keywords. BDPT, Complex Linear Layer, Binary Matrix, MILP

1 Introduction

Division Property. At Eurocrypt 2015, Todo [Tod15] introduced Division
property which is a novel strategy to discover integral characteristics to search in-
tegral distinguishers of block cipher structures (Feistel structure and SPN struc-
ture). Later, Todo and Morii [TM16] introduced bit-based division property



(which is actually called Conventional Bit-based Division Property (CBDP)),
which could be treated as an exceptional instance of division property. Actu-
ally CBDP classify all vectors u in Fn

2 into two subsets such that the parity of⊕
x∈X xu is 0 or unknown (where xu is defined as xu :=

∏n
i=1 xi

ui). Moreover,
at CRYPTO 2016, Boura and Canteaut [BC16] presented a different perspective
on the division property, called ’parity set’.

The intricacy of using CBDP was generally equivalent to 2n for a n-bit
primitives. Henceforth, the gigantic intricacy limited the wide uses of CBDP.
To tackle the limitation of the tremendous complexity, Xiang et al. [XZBL16]
applied MILP-strategy to look through integral distinguisher dependent on
CBDP and they applied this modeling technique to six lightweight block
ciphers. By extending and improving this method, the integral attacks have
been applied to many ciphers and many better integral distinguisher has been
found [SWW16,SWW17,ZR19,HWW20,HLLT20,LDF20,HLLT21].

Three-subset Division Property. Although CBDP can find more precise
integral distinguishers than other methods, the accuracy is never perfect. To
find more accurate distinguishers, the bit-based division property using three
subsets (BDPT) was proposed in [TM16]. BDPT divides all vectors u in Fn

2 into
two subsets such that the parity of

⊕
x∈X xu is 0, 1 or unknown. Essentially,

the set unknown in CBDP is divided into 1-subset and unknown subset in
BDPT. As a result, BDPT can find more precise integral characteristics than
CBDP. For example, CBDP demonstrated the existence of SIMON32’s 14-round
integral distinguisher whereas BDPT discovered SIMON32’s 15-round integral
distinguisher [Tod15].

Despite of its successful combination of the MILP and the CBDP, the MILP
modeling technique does not work quite well with the BDPT. As in case of BDPT
we have to track the division property propagation of two sets (K (the unknown
subset) and L (the 1-subset)) as well as the influnce of the set L on the set
K should also be traced which makes the procedure of constructing automatic
search algorithm based on BDPT complicated.

First, Hu et al. [HW19] proposed variant three subset division property
(VTDP) and applied this method to improve some integral distinguishers al-
though it sacrifices quite some accuracy of BDPT. Therefore, Wang et al.
[WHG+19] proposed the idea of modeling the propagation for the BDPT and
recently Liu et al. [LWZ22] proposed a model set method to search integral dis-
tinguishers based on BDPT. Both of these methods have been applied to the
block ciphers having simple bit permutation as their linear layer.

1.1 Motivation

The idea of modeling BDPT propagation which is described in [WHG+19] is that
each node on the breadth-first search algorithm is regarded as the starting point
of division trails, and the MILP evaluates whether there is a feasible solution
from every node. According to their searching algorithm, we can run this algo-
rithm to any block cipher efficiently only if we can divide the round function into
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several appropriate parts. Therefore, it is very difficult to model BDPT propa-
gation uisng this technique for the ciphers with complex linear layers. Next, Liu
et al. [LWZ22] proposed model set method to search BDPT where the authors
constructed r different MILP models for r-round block ciphers which is a bit
complicated. Moreover, both these methods have been applied to the block ci-
phers having linear layers as simple bit permutation. Now, the following question
arises:

Is MILP method of BDPT propagation efficiently applicable for ciphers with
complex linear layers?

1.2 Our Contributions

To address this question, first we propose an idea to find BDPT propagation
through the binary (complex) linear layer accurately and then we construct an
automatic search algorithm for BDPT in this paper. The details of our technical
contributions are listed as follows:

Model the BDPT Propagation of Binary Linear Layer. We give an idea
to find exact BDPT propagation through the binary (complex) linear layer which
is a new method that helps us to construct MILP model of BDPT propagation
through the binary linear layer accurately. We actually find that the rows of the
primitive matrix corresponding to the binary mixcolumn matrix can be divided
into some cosets with the property that the rows in different cosets have no
common nonzero entries in the same column. Using this interesting property, we
can easily find accurate BDPT propagation and can give a description of such
propagation by smallest number of inequalities.

Construction of Automatic Search Algorithm for BDPT. To search for
BDPT, first we construct the MILP models for key-independent components of
the round function of block ciphers. When a Key-Xor operation is applied, new
vectors generated from the set L will be added to the set K. Therefore, how to
model Key-Xor operation accurately is a complex problem. To solve this prob-
lem, we construct a new efficient algorithm that models each Key-Xor operation
based on MILP technique. Finally, by selecting appropriate initial BDPT and
stopping rules we construct an automatic search algorithm that accurately char-
acterize BDPT propagation using only two MILP models which is much simpler
than the algorithm described in [LWZ22]. Moreover, we prove the correctness of
our search algorithm.

Applications. As for the application of our methodology, first time we apply
BDPT on block ciphers with complex linear layers. We apply our automatic
search model to search integral distinguishers of PRINCE [BCG+12], MAN-
TIS [BJK+16], KLEIN [GNL11], PRIDE [ADK+14], SIMON [BSS+15], and SI-
MON(102) [KLT15] . The results are shown in Table 1.
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At first, we apply our method on PRINCE and MANTIS which have binary
linear layer. We find 2 + 2 round integral distinguisher for PRINCE which is one
more round than the previous best integral distinguisher [EKKT18] and find
3 + 3 round integral distinguisher for MANTIS which is also one more round
than the previous best integral distinguisher [EKKT18] where we denote a are
the rounds before the middle layer, and b are the rounds after the middle layer
and a+ b as total number of rounds.

Table 1. Summarization of Integral Distinguishers

Cipher Data Round Number of
constant
bits

Time References

MANTIS
232 3+2 16 - [EKKT18]

263 3+3 64 2h8m Sect. 5.1

PRINCE
232 2+1 64 - [EKKT18]

263 2+2 64 21h45m Sect. 5.1

PRIDE64*
- 8 - - [XZZ21]

263 9 32 2h35m Sect. 5.2

KLEIN64
232 5 64 - [YWLZ11]

262 6 64 45m Sect. 5.2

* In [XZZ21], the authors have only mentioned that PRIDE64 has 8-round integral
distinguisher and no other information is available best known to us.

To complete our BDPT analysis on ciphers with complex linear layers, we
apply our method to KLEIN and PRIDE which have non-binary linear layers. As
there are no known results on them related to CBDP, then we first apply MILP
based CBDP on them and find 6-round and 9-round integral distinguishers for
KLEIN and PRIDE respectively which are one more rounds to previous best
integral distinguishers [YWLZ11,XZZ21]. Therefore, we apply our MILP based
BDPT method and the integral distinguishers we find are in accordance with the
integral distinguishers we find based on CBDP. Finally, we apply our method
to all variants of SIMON, and SIMON(102) block ciphers and the distinguishers
we find are in accordance with the previous longest distinguishers [LWZ22] but
we get these results in better time.
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1.3 Organization of the Paper

This paper is organized as follows: In Section 2, we briefly recall some background
knowledge about the bit-based division property. In Section 3, we studies how
to model basic operations used in the round function of a block cipher by the
MILP technique and introduce exact modelling of complex (binary) linear layer
in BDPT. Section 4 studies the initial and stopping rules, and search algorithm.
We show some applications of our model in Section 5. At last we conclude the
paper in Section 6.

2 Preliminaries

2.1 Notation

Let F2 denote the finite field {0, 1} and a = (a0, a1, . . . , an−1) ∈ Fn
2 be an

n-bit vector, where ai denotes the i-th bit of a. For n-bit vectors x and u,
define xu =

∏n−1
i=0 x

ui
i . Then, for any k ∈ Fn

2 and k′ ∈ Fn
2 , define k � k′ if

ki ≥ k′i holds for all i = 0, 1, . . . , n− 1, and define k � k′ if ki > k′i holds for all
i = 0, 1, . . . , n−1. For a subset I ⊆ {0, 1, ..., n−1}, uI denotes an n-dimensional
bit vector (u0, u1, . . . , un−1) satisfying ui = 1 if i ∈ I and ui = 0 otherwise. We
simply write K ← k when K = K ∪ {k} and K → k when K = K \ {k}. And
|K| denotes the number of elements in the set K. We denote [n] = {1, 2, . . . , n},
1 = 1n, and 0 = 0n. We denote i-th unit vector in Fn

2 as ei.

2.2 Bit-Based Division Property

Two kinds of bit-based division property (CBDP and BDPT) were introduced
by Todo and Morii at FSE 2016 [TM16]. Their definitions are as follows.

Definition 1. (CBDP [TM16]). Let X be a multiset whose elements take a
value of Fn

2 . Let K be a set whose elements take an n-dimensional bit vector.
When the multiset X has the division property D1n

K , it fulfils the following con-
ditions: ⊕

x∈X
xu =

{
unknown, if there is k ∈ K satisfying u � k,

0 otherwise.

Some propagation rules of CBDP are proven in [Tod15,TM16,XZBL16].

Definition 2. (BDPT [TM16]) Let X be a multi-set whose elements take a
value of Fn

2 . Let K and L be two sets whose elements take n-dimensional bit vec-
tors. When the multi-set X has the division property D1n

K,L, it fulfils the following
conditions:

⊕
x∈X

xu =


unknown, if there isk ∈ K satisfying u � k,

1, else if there is l ∈ L satisfying u = l,

0, otherwise.
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If there are k ∈ K and k
′
∈ K satisfying k � k

′
in the CBDP D1n

K , then k can be
removed from K because the vector k is redundant. This progress is denoted as
Reduce0(K). Moreover, if there are l ∈ L and k ∈ K, then the vector l is also
redundant if l � k. This progress is denoted as Reduce1(K,L). The redundant
vectors in K and L will not affect the parity of xu for any u.

The propagation rules of K in CBDP are the same with BDPT. So we only
introduce the propagation rules of BDPT which are needed in this paper. For
further details, please refer to [TM16,WHG+19].

BDPT Rule 1 (Xor with The Secret Key [TM16].) Let K be the input
multiset satisfying D1n

K,L. For the input x ∈ X, the output y ∈ Y is y =
(x0, . . . , xi ⊕ rk, xi+1, . . . , xn−1), where rk is the secret key. Then, the output
multiset Y has D1n

K′,L′ , where K′ and L′ are computed as
L′ ← l for l ∈ L,
K′ ← k for k ∈ K,
K′ ← (l1, l2, ..., li ∨ 1, ..., ln) for l ∈ L satisfying li = 0.

BDPT Rule 2 (S-box [WHG+19].) For an S-box : Fn
2 → Fn

2 , let x =
(x0, . . . , xn−1) and y = (y0, . . . , yn−1) denote the input and output variables.
And every yi, i ∈ {0, 1, . . . , n − 1} can be expressed as a boolean function of
(x0, x1, . . . , xn−1). If the input BDPT of S-box is D1n

K,L={l}, then the output

BDPT of S-box can be calculated by D1n

Reduce0(K),Reduce1(K, L),{
K = {u′ ∈ Fn

2 | for any u ∈ K, if yu′
contains any term xv satisfying v � u}

L = {u ∈ Fn
2 |yu contains the term xl}

Let D1n

K,L={l0,...,lr−1} and D1n

K′,L′ be the input and output BDPT of S-box, respec-

tively. We can get the output BDPT D1n

K′,L′i
from the corresponding input BDPT

D1n

K,L={li} where i = 0, 1, . . . , r − 1. Then,

L′ = {l | l appears odd times in sets L′0, . . . ,L′r−1}

2.3 The MILP Model for CBDP

At Asiacrypt 2016, Xiang et al. [XZBL16] applied MILP method to search inte-
gral distinguishers based in CBDP, which allowd them to analyze block ciphers
with large sizes. Firstly they introduced the concept of CBDP trail as follows:

Definition 3 (CBDP Trail [XZBL16]). Consider the propagation of the divi-

sion property {k} ≡ K0
f1→ K1

f2→ K2
f3→ .... Moreover, for any vector k∗i ∈ Ki(i ≥

1), there must exist an vector k∗i−1 ∈ Ki−1 such that k∗i−1 can propagate to k∗i by
CBDP propagation rules. Furthermore, for (k∗0,k

∗
1, ...,k

∗
r) ∈ K0 ×K1 × ...×Kr

, if k∗i−1 can propagate to k∗i for all i ∈ {1, 2, . . . , r}, we call (k∗0,k
∗
1, . . . ,k

∗
r) an

r-round CBDP trail.
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With the help of division trail, finding the CBDP is transformed into a prob-
lem of finding a division trail ended at a unit vector. For more details please
refer to [XZBL16].

3 The MILP Model for BDPT

Suppose Er is a r-round iterated block cipher whose round function fi for i ∈ [r]
consists of a non-linear layer, linear layer, and Key-Xor operation. Let f ik be
the Key-Xor operation, and f ie be the rest of the operations in the ith round
function fi i.e.

fi = f ik ◦ f ie
Let, the input multiset X to the block cipher Er has initial BDPT as

D1n

K0={k},L0={l}, and for any i ∈ [r], we denote the output BDPT as D1n

Ki,Li
.

Now, for the opration f ie, we denote the BDPT propagation as

f ie(Ki−1) = K∗i−1, f ie(Li−1) = L∗i−1

We can evaluate the BDPT propagation for K (unknown subset) and L (1
subset) independently as per the BDPT propagation rules for linear and non-
linear layers. Now, for the operation f ik, according to the BDPT Rule 1 some
new vectors which are produced from the vectors in L∗i−1 and those new vectors
along with the vectors in K∗i−1 are the vectors in the set Ki, and the set Li is
same as L∗i−1.

Now, we divide the operation f ik into two parts say f i1, f i2 such that f i1 is
the operation where new elements are produced from each elements in L∗i−1
according to BDPT Rule 1, and f i2 is the operation which includes the new
vectors and the vectors from K∗i−1 in Ki which is as follows:

(Ki,Li) = f ik(K∗i−1, L∗i−1) = (f i2(f i1(L∗i−1), K∗i−1), L∗i−1) (1)

Precisely, f i2 is the union operation i.e. Ki = f i1(L∗i−1) ∪ K∗i−1.
To model the propagation of BDPT for the operations f ie and f ik for all i ∈ [r],

we reintroduce a notion named BDPT trail. 1

Definition 4 (BDPT Trail). Let X be the input multiset to the block cipher
which has initial BDPT D1n

K0={k}, L0={l}, and denote the BDPT after r-round

propagation through f ie, f
i
k for all i ∈ [r] by D1n

Kr, Lr
, where r ≥ 1. Thus we have

the following chain of BDPT propagations:

{k}, K0 K∗0
f1e

{l} , L0 L∗0
f1e

f1k
K1

L1

f2e

f2e

K∗1

L∗1

Kr−1 K∗r−1
fre

Lr−1 L∗r−1
fre

frk
Kr

Lr

1 In [LWZ22], the authors have defined BDPT trail. We actually rewrite it accord-
ing to our notations.
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where K∗i−1 = f ie(Ki−1), L∗i−1 = f ie(Li−1), and (Ki, Li) = f ik(K∗i−1, L∗i−1) for all
1 ≤ i ≤ r. Moreover, for any vector tuple (ki, li), ki ∈ Ki, and li ∈ Li (i ∈ [r]),
there must exist (k∗i−1, l

∗
i−1), where k∗i−1 ∈ K∗i−1, and l∗i−1 ∈ L∗i−1 such that

k∗i−1 ∈ K∗i−1 propagate to (ki, li) by BDPT propagation rule of Key-Xor, and
there must exist (ki−1, li−1) ∈ Ki−1 × Li−1 such that ki−1 propagate to k∗i−1,
and li−1 propagate to l∗i−1 by BDPT propagation rules of linear and non-linear
layers. Furthermore, for (k0, l0), . . . , (kr, lr) ∈ K0 × L0 × . . . × Kr × Lr, if
(ki−1, li−1) can propagate to (ki, li) for all i ∈ {1, 2, . . . , r}, we call

(k0, l0)
f1
e , f

1
k→ (k1, l1)

f2
e , f

2
k→ . . .

fr
e , f

r
k→ (kr, lr)

an r-round BDPT trail.

Now, to model BDPT trail, we propose Proposition 1 according to Defini-
tion 4.

Proposition 1. Let the input multiset X has initial BDPT D1n

{k}, {l} and D1n

Kr,Lr

denote the BDPT of the output multiset after r-round propagation. Then, the set
of first components of the last vectors of all r-round BDPT trails which starts
with the vector (k, l) is equal to the set Kr and the set of second components of
the last vectors of all r-round BDPT trails which starts with the vector (k, l) is
equal to the set Lr.

Proof of this Proposition 1 directly follows from Definition 4.

3.1 Some Observations on BDPT Propagation Rule for S-box

S-box is an important component of block ciphers. For a lot of block ciphers
it is the only non-linear part. Although any Boolean function can be evaluated
by using three rules (COPY, XOR, AND), the propagation requires much time
and memory complexity when Boolean function is complex. Inspired by the
algorithm of calculating CBDP trails of S-box [XZBL16], Wang et al. proposed
a generalized method to calculate BDPT division trails of S-box in [WHG+19]
and we have mentioned the rule in BDPT Rule 2.

Let, the input BDPT of S-box is D1n

K, L={l}, and according to the BDPT Rule
2, we have found the sets K, and L from K and L respectively as follows:{
K = {u′ ∈ Fn

2 | for any u ∈ K, if yu′
contains any term xv satisfying v � u}

L = {u ∈ Fn
2 |yu contains the term xl}

(2)
Now, according to the BDPT Rule 2, the output BDPT would be D1n

K′, L′
which is as follows:

K′ = Reduce0(K), L′ = Reduce1(K, L)

Therefore, it is obvious that, K′ ⊆ K, and L′ ⊆ L. Here, we come to two
observations as follows:

8



Observation 1 L′ does not contain 1 vector.

According to the BDPT propagation rule of S-box, as L′ = Reduce1(K, L),
and for any u ∈ K, 1 � u, then L′ does not contain 1 vector.

Observation 2 If L = {0}, then L′ = {0}.

Whenever, L = {0}, then
⊕

x∈X x0 = 1 which implies that the input multiset
X contains a constant term. Therefore, for all u � 0,

⊕
x∈X xu = unknown.

Hence, trivially
⊕

y∈Y y0 = 1 and L′ = {0} where Y is the output multiset.

Therefore, given an n-bit S-box and its input BDPT D1n

K={k}, L={l}, BDPT Rule

2 returns the output BDPT D1n

K′, L′ . Thus for any vector k′ ∈ K′, (k,k′) is a
valid division trail for K′ of the S-box. Similarly, this holds for L′ as well. We
know that, the vector l does not affect the propagation of vector k through the
S-box, we will obtain a complete list of the division trail for K′ by traversing
k ∈ Fn

2 [XZBL16].
Similarly, for a certain input vector l ∈ Fn

2 , we will obtain a certain set of
division trails for L using Eqn. 2 and then using Observation 1, and Observation 2
we will remove some invalid division trails from L and obtain a set of division
trail for L′. Therefore, if we try all the 2n possible input vector l, we will get a
complete list of division trails for L′.

In [WHG+19], the authors included some invalid BDPT trail for L′ set while
obtaining a complete list of division trails for L′. In [LWZ22], the authors have
removed those invalid BDPT trail from L′ by introducing another algorithm
which is actually equivalent to the algorithm of finding BDPT trail of S-box
in [WHG+19] and by traversing k ∈ Fn

2 . Now, our approach is similar to their
idea [LWZ22] in a much simplified manner using two observations from BDPT
Rule 2 which was introduced in [WHG+19].

In Supporting Material 7.1 we present the complete lists of all the division
trails for L of PRINCE S-box according to our method which is same if we
apply the method the authors described in [LWZ22]. Therefore, after getting the
BDPT trails for K and L of S-box, we construct the linear inequalities using the
method described in [XZBL16] whose feasible solutions are exactly those BDPT
trails which are shown in Supporting Material 7.2.

3.2 MILP Model of BDPT for Complex Linear Layer

In this section, we establish the idea to construct MILP model of BDPT for
complex linear layer represented by a matrix M = (mi,j)s×s ∈ Fs×s

2m . Given
the irreducible polynomial of the field Fm

2 where the multiplications operate,
the representation of the matrix over F2 is unique, which we call the primitive
matrix of M and is denoted by M ′ = (m′i,j)n×n where m′i,j ∈ F2 and n = m× s.
Therefore, if each mi,j in M which is a polynomial in the extension field F2m '
F[x]/(f), where f is the irreducible polynomial over F2 with degree m, is either
0 or 1 then M is called binary matrix and otherwise M is non-binary matrix.
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Therefore, block ciphers with complex linear layer can be partitioned into
two parts: (i) Block ciphers with binary linear layer and (ii) Block ciphers with
non-binary linear layer, depending on the binary or non-binary matrix as its
linear layer. Examples of block ciphers having binary linear layer are MIDORI,
SKINNY, CRAFT, PRINCE, MANTIS etc. and AES, LED, KLEIN, PRIDE
etc. have non-binary linear layer.

Now, an obvious way to model the BDPT propagation through any complex

linear layer i.e. u1
M→ v1 in K subset, and u2

M→ v2 in L subset is that one can
introduce some auxiliary binary variables and decompose it into the COPY and
XOR operations. Therefore, by follwing the BDPT propagation rule of COPY
and XOR, BDPT propagation through linear layer can be modelized. The ob-
vious advantage of this model is that using this technique we can model BDPT
propagation of any complex linear layer.

In [ZR19, HWW20], the authors have shown that using this technique one
may introduce many invalid division trails in K subset. Now, here we are going
to show that if we use this COPY-XOR technique to handle binary linear layer
then many invalid division trails may be added to the L subset as well.

An Example of Binary Matrices : The COPY-XOR Technique Cannot
Find Accurate BDPT. We give an example of the binary matrices that the
COPY-XOR technique cannot trace its BDPT accurately.

Example 1. Suppose the linear layer is a matrix

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ∈ F4×4
2

Assume that input and output of M are x = (x4, x3, x2, x1)T and y =
(y4, y3, y2, y1)T respectively, then we have y = Mx. we transform the repre-
sentation of this multiplication to a vectorial Boolean form as follows:


y4 = x1 + x2 + x3

y3 = x1 + x2 + x4

y2 = x1 + x3 + x4

y1 = x2 + x3 + x4

Now, in order to use COPY-XOR technique to find BDPT propagation of K and
L, we have to introduce some auxiliary variables. Table shows the division trail
for L subset of linear transformation M .

In Table 2, the bold vectors are actually invalid division trails for L of linear
transformation M which are produced following the COPY-XOR technique.
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Table 2. Division Trails for L of Linear Transformation M

Input l Output L

[0, 0, 0, 0] [0, 0, 0, 0]

[0, 0, 0, 1] [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 1, 0]

[0, 0, 1, 0] [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 1], [1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]

[0, 0, 1, 1]
[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 1, 1, 0]

[1, 1, 0, 0], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1]

[0, 1, 0, 0] [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1]

[0, 1, 0, 1]
[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 0, [1, 0, 0, 1], [1, 0, 1, 1], [1, 1, 0, 0], [1, 1, 1, 0]

[0, 1, 1, 1], [1, 1, 0, 1], [1, 0, 1, 0], [1, 1, 1, 1]

[0, 1, 1, 0]
[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 0, [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0], [1, 1, 0, 1]

[1, 0, 0, 1], [1, 1, 1, 0], [0, 1, 1, 1], [1, 1, 1, 1]

[0, 1, 1, 1] [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0], [0, 1, 1, 1], [1, 1, 1, 1]

[1, 0, 0, 0] [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1]

[1, 0, 0, 1]
[0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 1], [1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 1, 0]

[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]

[1, 0, 1, 0]
[0, 0, 1, 1], [0, 1, 1, 0], [0, 1, 1, 1][1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 0, 1]

[0, 1, 0, 1], [1, 0, 1, 1], [1, 1, 1, 0], [1, 1, 1, 1]

[1, 0, 1, 1]
[0, 1, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]

[1, 0, 1, 1], [1, 1, 1, 1]

[1, 1, 0, 0]
[0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0]

[0, 0, 1, 1], [1, 1, 1, 0], [1, 1, 0, 1], [1, 1, 1, 1]

[1, 1, 0, 1]
[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 0]

[1, 1, 0, 1], [1, 1, 1, 1]

[1, 1, 1, 0]
[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1]

[1, 1, 1, 0], [1, 1, 1, 1]

[1, 1, 1, 1] [1, 1, 1, 1]
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Exact BDPT Modelization for Ciphers having Binary Linear Layer.
Given a binary matrix M = (mi,j)s×s ∈ Fs×s

2m , and denote n = m × s, we can
derive an equivalent matrix working at a bit level which is called primitive matrix
M ′ = (m′i,j)n×n ∈ Fn×n

2 . Now, M ′ has n = ms number of rows which we denote
say R0, R1, . . . , Rn−1, and define a set of all rows R = {Ri | 0 ≤ i ≤ n − 1}.
Therefore, we can construct m disjoint sets R0, R1, . . . ,Rm−1 in the following
way:

Ri = {Rmj+i | 0 ≤ j ≤ s− 1} for all 0 ≤ i ≤ m− 1 (3)

Now, it is obvious that tm−1i=0 Ri = R, and Ri contains exactly a number s of
rows from M ′ where 0 ≤ i ≤ m−1. Here we come to an important property that
the rows in different sets have no common nonzero entries in the same column,
which is the key feature of a binary matrix. Exploiting this property of a binary
matrix, the binary linear layer can actually be seen as the application of m many
s-bit S-box with algebric degree 1 in parallel.

Therefore, if x = (x0, x1, . . . , xn−1), and y = (y0, y1, . . . , yn−1) are corre-
sponding input and output variables w.r.t the linear layer i.e. y = M ′ · x, then
we can write ANF of m many s-bit S-box with algebric degree 1 as follows:


S0(x0) = (R0

0 · x0, R
0
m · x0, . . . , R

0
(s−1)m · x0)

S1(x1) = (R1
1 · x1, R

1
m+1 · x1, . . . , R

1
(s−1)m+1 · x1)

...

Sm−1(xm−1) = (Rm−1
m−1 · xm−1, R

m−1
2m−1 · xm−1, . . . , R

m−1
sm−1 · xm−1)

where Ri
mj+i is a vector which belongs to the set Fs

2 such that

Ri
mj+i = (m′mj+i, i, m

′
mj+i,m+i, . . . ,m

′
mj+i, (s−1)m+i), and xi =

(xi, xm+i, . . . , x(s−1)m+i) ∈ Fs
2 where i = 0, 1, . . . ,m− 1, and j = 0, 1, . . . , s− 1.

An Example of Exact BDPT Modelization of Binary Matrix The Mix-
Columns matrix M of the block cipher MANTIS which is as follows:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ∈ F4×4
24

Therefore, for this example, s = 4, and m = 4, and the primitive matrix M ′

corresponding to the matrix M is a 16 × 16 matrix where each matrix element
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is either 0 or 1 i.e. the primitive matrix M ′ ∈ F16×16
2 is as follows: ignore

M ′ =



0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0



∈ F16×16
2

Now, we can easily conclude that applying the matrix M ′ to a vector x =
(x0, x1, . . . , x15) ∈ F16

2 is actually equivalent to performing the following 4-bit
S-box in parallel:

Si(xi, xi+4, xi+8, xi+12) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




xi
xi+4

xi+8

xi+12

 , i ∈ {0, 1, 2, 3}

Therefore, we can construct exact BDPT trail for K and L for the mixcolumn
operation and the linear inequalities whose feasible solutions are exactly those
BDPT trail.

Now, the exact BDPT modelization of S-box we have discussed in the previ-
ous section. Applying that approach we can get the exact BDPT trail through
the binary linear layer and then we can easily represent the BDPT trails of binary
linear layer as linear inequalities following the approach mentioned in [XZBL16].
Thus, we give a way to generate a set of inequalities that exactly model the
valid BDPT propagations through a binary linear layer. For the ciphers with
non-binary linear layer, we decompose its linear layer through the COPY and
XOR operation trivially and generate a set of linear inequalities that model the
propagations through the linear layer.

3.3 MILP Model of BDPT for Key-XOR

In this section, we explain how to construct MILP model of BDPT for the Key-
Xor operation. As per the notation discussed above Er is the r-round block cipher
where we denote fi is the ith round function and f ik is the ith round Key-Xor
operation. Moreover, we denote the initial and output BDPT for the Key-Xor

13



Table 3. Trails Corresponding to the Function f i1

(l0, l1, l2, l3) (l′0, l
′
1, l
′
2, l
′
3)

(0, 0, l2, l3) (0, 1, l2, l3), (1, 0, l2, l3), (1, 1, l2, l3)

(0, 1, l2, l3) (1, 1, l2, l3),

(1, 0, l2, l3) (1, 1, l2, l3),

(1, 1, l2, l3) X

operation as (K∗i−1, L∗i−1), and (Ki, Li) respectively. Therefore, as per BDPT
Rule 1, we decompose f ik into two operations say f i1 which actually produces
some new elements from each elements of L∗i−1 and f i2 which includes the new
vectors and the vectors from K∗i−1 in Ki which is described in Eqn 1. Hence,
we model the operations f i1, and f i2 which jointly present the MILP model for
Key-Xor operation.

Modeling f i
1. In many ciphers, round key is only XORed with a part of block.

Without loss of generality, we assume that the round key is XORed with the
left s (0 ≤ s ≤ n − 1) bits. Let, L∗i−1 ⊆ F4

2 and s = 2 i.e. round key is XORed
with the leftmost 2 bits. Therefore, according to the BDPT rule 1, f i1 function
creates l′ = (l′0, l

′
1, l
′
2, l
′
3) from l = (l0, l1, l2, l3) where for every vector l ∈ L∗i−1

satisfying li = 0, l′i = li∨1 where i ∈ {0, 1} and l′j = lj for all j = 2, 3. Therefore,

we write the propagation table (Table 3) corresponding to the function f i1 using
which we construct linear inequalities whose feasible solutions are exactly those
trails. Now, we are ready to give linear inequalities description of these trails
listed in Table 3 as follows:

l′j ≥ lj , for j = 0, 1

l′j = lj , for j = 2, 3

2
∑1

j=0 l
′
j −

∑1
j=0 lj ≥ 2∑3

j=0 l
′
j −

∑3
j=0 lj ≥ 1

(4)

where l′0, l
′
1, l
′
2, l
′
3, l0, l1, l2, l3 are binaries.

Apparently, all feasible solutions of the inequalities in Eqn 4 corresponding
to l, and l′ are exactly the trails of f i1 function described above in Table 3.
Similarly, for a n-bit block cipher where L∗i−1 ⊆ Fn

2 , and round key is XORed
with the leftmost s (0 ≤ s ≤ n − 1) bits, the linear inequalities we get which

describe the trails l
fi
1→ l′ as follows:

l′j ≥ lj , for j = 0, 1, ..., s− 1

l′j = lj , for j = s, s+ 1 . . . , n− 1

s
∑s−1

j=0 l
′
j − (s− 1)

∑s−1
j=0 lj ≥ s∑n−1

j=0 l
′
j −

∑n
j=1 lj ≥ 1

(5)
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where l′0, l
′
1, ..., l

′
n−1, l0, l1, ..., ln−1 are binaries.

Modeling f i
2. After applying f i1 on each element of the set L∗i−1, we get the

set say L′i−1 as follows:

L′i−1 = {l′ ∈ Fn
2 | f i1(l) = l′, ∀ l ∈ L∗i−1}

Now, from BDPT Rule 1 we know that:

f i2(K∗i−1, L′i−1) = K∗i−1 ∪ L′i−1 = Ki

Therefore, to model f i2, we define another function g : (F2
2 \ {(0, 0), (1, 1)}) ×

K∗i−1 × L′i−1 → Ki such that:

g(λ0, λ1,k
∗, l′) = (λ0 ∧ k∗0 , . . . , λ0 ∧ k∗n−1) ⊕ (λ1 ∧ l′0, . . . , λ1 ∧ l′n−1) (6)

where λ = (λ0, λ1) ∈ F2
2 \ {(0, 0), (1, 1)}, and k∗ = (k∗0 , . . . , k

∗
n−1), and l′ =

(l′0, . . . , l
′
n−1). Therefore, from the definition of g we can easily conclude that

Ki contain all the elements of L′i−1, and K∗i−1. Hence, modeling g is actually
equivalent to modeling f i2. Now, we are going to construct the linear inequalities
whose feasible solutions are exactly the g function trail. In order to do that first
we have to construct the linear inequalities which are sufficient to describe the

propagation (a, b)
∧→ c where a, b, c ∈ F2 which is as follows:

a− c ≥ 0

b− c ≥ 0

a+ b− c ≤ 1

(7)

where a, b, c are binaries. Therefore, using Eqn 6 and Eqn 7 we can easily conclude
that the following inequalities are sufficient to describe the propagation of g

function i.e. (λ0, λ1, k
∗, l′)

g→ k:

λ0 − pj ≥ 0, for j = 0, 1, ..., n− 1

k∗j − pj ≥ 0, for j = 0, 1, ..., n− 1

λ0 + k∗j − pj ≤ 1, for i = 0, 1, ..., n− 1

λ1 − qj ≥ 0, for i = 0, 1, ..., n− 1

l′j − qj ≥ 0, for i = 0, 1, ..., n− 1

λ1 + l′j − qj ≤ 1, for i = 0, 1, ..., n− 1

pj + qj − kj = 0, for j = 0, 1, ..., n− 1

λ0 + λ1 = 1

(8)

where p0, ..., pn−1, q0, ..., qn−1, l
′
0, ..., l

′
n−1, k0, ..., kn−1, k

∗
0 , ..., k

∗
n−1, λ0, λ1 are bi-

naries and p = (p0, p1, ..., pn−1), q = (q0, q1, ..., qn−1) are auxiliary variables.
Hence Eqn 8 and Eqn 5 describe the complete MILP model of the Key-XOR
operation w.r.t BDPT.
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3.4 MILP Model Construction of r-Round Function

For all the functions based on these above mentioned operations, we are finally
making a set of linear inequalities depicting one round BDPT propagation. In
order to construct an MILP model for r round BDPT propagation we have to
iterate this above mentioned procedure r times and finally we conclude upon
getting a system of linear inequalities L which we describe in Algorithm 1.

Algorithm 1 constructs a system of linear inequalities which charecterizes all
r-round BDPT trails i.e.

(k0 = k, l0 = l)
f1→ (k1, l1)

f2→ . . .
fr→ (kr, lr)

Therefore, we have to construct MILP model using L and appropriate initial and
stopping rules and the search algorithm in order to find integral distinguisher.

4 Automatic Search Algorithm for r-round Integral
Distinguisher

In this section, we first study the initial BDPT and stopping rule to use when
searching for integral distinguisher based on BDPT. From Algorithm 1 we got
the linear inequality system L with the input vector k and l. Now, we convert the
stopping rule into an objective function and combining L and objective function,
we construct the MILP modelMK,L. At last we propose an algorithm to search
integral distinguisher based on BDPT given the initial BDPT D1n

{k}, {l} for an
n-bit block cipher and prove the correctness of the algorithm.

4.1 Initial BDPT

In [TM16], Todo and Morii set the initial BDPT as (K = {1}, L = {7fffffff})
to search the BDPT of SIMON32, where the active bits of the vector l are set
as 1 and 0 for constant bits. Hence we do the same. Let the initial input BDPT
variables are k0 = (k00, k

0
1, ..., k

0
n−1), and l0 = (l00, l

0
1, ..., l

0
n−1) where n is the

block size. The constraints on k0i and l0i are

k0i = 1 for i = 0, 1, ..., n− 1

l0i =

{
1, if i− th bit is active

0, otherwise

4.2 Stopping Rule

Our automatic search model only focuses on the parity of one output bit.
Without loss of generality, we consider the q-th output bit. After r round,
the output set has BDPT D1n

Kr,Lr
. Therefore, according to the Proposition

1, we know that the set of the first components of the last vectors of all
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r-round BDPT trails which start from the vector (k, l) is equal to Kr.

Algorithm 1: Computing A Set of Constraints Characterizing BDPT
Propagation

Input: The initial input BDPT of an n-bit iterated cipher
D1n

K0={k},L0={l}
Lk(Ki−1, K∗i−1): a constraint set of linear inequalities whose
feasible solutions are all division trails from the set Ki−1 to set
K∗i−1, ∀ i ∈ [r].
Ll(Li−1, L∗i−1): a constraint set of linear inequalities whose
feasible solutions are all division trails from the set Li−1 to set
L∗i−1, ∀ i ∈ [r].
Newk(L∗i−1, L′i−1): a constraint set of linear inequalities whose
feasible solutions are all f i1 function trails, ∀ i ∈ [r].
Unionk(L′i−1, K∗i−1, Ki): a constraint set of linear inequalities
whose feasible solutions are all f i2 function trails, ∀ i ∈ [r].

Output: A constraint set of linear inequalities L describing r-round
BDPT propagation

begin
L = ∅, Ci = Ci, ∗ = ∅ where i = 1, 2, . . . , r
Allocate n-bit variables ki, li to denote vectors in the set Ki, Li

respectively where i = 0, 1, . . . , r
Allocate n-bit variables li, ∗, pi , and ki, ∗ to denote vectors in the
set L∗i , L′i, and K∗i respectively where i = 0, 1, . . . , r − 1
L ← (k0 = k)
L ← (l0 = l)
for (i = 1 ; i ≤ r ; i+ +) do
Ci ← Ll(Li−1, L∗i−1) ∪ Lk(Ki−1, K∗i−1)
Ci, ∗ ← Newk(L∗i−1, L′i−1)
Ci, ∗ ← Unionk(L′i−1, K∗i−1, Ki)

L ← (li−1, ∗ = li)
L ← (Ci ∪ Ci, ∗)

end
return L

end

Hence, to check whether there exist any unit vector in the Kr, the objective
function can be set as follows:

Obj : Minimize(kr0 + kr1 + . . . , krn−1) (9)

Similarly, according to the Proposition 1, the set of the second components of
the last vectors of all r-round BDPT trails which start from the vector (k, l) is
equal to Lr. Thus, we can set the objective function as :

Obj : Minimize(lr0 + lr1 + . . . , lrn−1) (10)
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Now, at first we construct the MILP model MK,L using the system of linear
inequalities L we get from Algorithm 1 and the objective function defined in
Eqn. 9. Moreover, we construct another MILP model ML as follows:

ML = ConstructModel(L∗,Min(lr0 + . . . , lrn−1))

where L∗ is the constraint set of linear inequalities whose feasible solutions are
all division trails from the set L0 to Lr.

Stopping Rule for the MILP Model MK,L. To check whether Kr contains
the unit vector eq is equivalent to check whether the MILP model MK,L has
feasible solution satisfying kr = eq. Therefore, we can set the stopping rule as:

krj =

{
1 if j = q

0 otherwise
(11)

If MK,L has such feasible solutions, then the q-th output bit is unknown.

Stopping Rule for the MILP Model ML. If Kr does not contain eq, then
to check whether Lr contains eq is equivalent to check whether the MILP model
ML has feasible solution satisfying lr = eq. Therefore, we can set the stopping
rule as :

lrj =

{
1 if j = q

0 otherwise
(12)

If both Kr and Lr do not contain eq, then q-th output bit is balanced.
Otherwise, we need to count the number of feasible solutions satisfying lr = eq
of the modelML. Therefore, the parity of q-th output bit is 0 or 1 if the number
of solutions are even or odd respectively as Kr does not contain eq.

4.3 Search Algorithm

We present the automatic search algorithm to find integral distinguisher based
on BDPT, which decides the parity of the q-th output bit with the given
initial BDPT D1n

K0={k},L0={l} for an n-bit block cipher. Firstly, we allocate
all round variables and auxiliary variables. Therefore, we construct a MILP
model MK,L that describes all r-round BDPT trails, and another MILP
model ML that describes all r-round division trails for L. Finally, using ap-
propriate initial and stopping rules, we can obtain the parity of q-th out-
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put bit based on BDPT. We illustrate the whole framework in Algorithm 2.

Algorithm 2: Deciding Parity of q-th Output Bit

Input: The r-round cipher Er, the initial input BDPT of an n-bit
iterated cipher D1n

K0={k},L0={l}, the number q, and Ll(Li−1, Li):
a constraint set of linear inequalities whose feasible solutions are
all division trails from the set Li−1 to set Li, ∀ i ∈ [r].

Output: The balanced information of the q-th output bit based on
BDPT

begin
Allocate all the variables denoting the input and output BDPT
Obj1 = Minimize(kr0 + kr1 + . . . , krn−1)
Obj2 = Minimize(lr0 + lr1 + . . . , lrn−1)
Call Algorithm 1 and get a constraint set L whose feasible solutions
are r-round BDPT trail
MK,L = ConstructModel(L, Obj1)
MK,L.AddConstraint(k

r = eq)
if the MILP model MK,L has solutions then

return unknown
end
else
ML = ConstructModel(

⋃r
i=1 Ll(Li−1,Li), Obj2)

ML.AddConstraint(l
0 = l)

if the MILP model ML has no feasible solution satisfying
lr = eq then

return 0
end
else
ML.AddConstraint(l

r = eq)
Count the number of solutions in ML
if Count is even then

return 0
end
else

return 1
end

end

end

end

4.4 Correctness of Search Algorithm

Let the initial input division property of an n-bit iterated cipher be
D1n

K0={k},L0={l}, and after r-round propagation, the output BDPT we denote
as DKr,Lr

. It is obvious that if eq ∈ Kr, then the parity of q-th bit is unknown
and if eq does not belongs to Kr as well as Lr, then the parity of q-th bit is 0.
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Therefore, to prove correctness of Algorithm 2 we have to prove that if the q-th
unit vector does not belong to Kr and belongs to Lr, then the parity of q-th
output bit is 0 or 1 provided the number of division trails from l to eq is even
or odd repectively. We first prove the following Lemma:

Lemma 1. Let X ⊆ Fn
2 has division property D1n

K0={k},L0={l} and after r-round

propagation, the output set Yr has division property D1n

Kr,Lr
. For any l′ ∈ Lr, if

the number of division trail in L from l to l′ is even, then there exist at least one
j in [r] s.t Lj contains at least one element u which is produced even number of
times from the elements in Lj−1.

Proof. Let X ⊆ Fn
2 has division property D1n

K0,L0={l} and after r round propaga-

tion, the output set has division property D1n

Kr,Lr
. We know that, every element

in Lj for j = 1, 2, ..., r, is produced from some elements in Lj−1 under the BDPT
propagation rules.

Let we assume that, in the set Lj for j = 0, 1, 2, ..., r, there are nj number
of elements and the number of elements in Lj−1 from which any element v ∈ Lj

is produced by the BDPT propagation rule, is called indegree of u. Moreover
we assume that for j = 1, 2, ..., r, Lj contains nj elements and we denote those

elements as vj
1,v

j
2, ...,v

j
nj

. For j = 0, L0 contains one element l i.e. n0 = 1 and

for j = r, nj = 1. Now we assume that, vj
i has indegree as xji for i = 1, 2, ..., nj

and j = 1, 2, ..., r. Moreover, we define that P(l,u) is the number of division
trails from the vector l to u.

Now, we prove the above statement by contradiction. Therefore, we assume
that, for all j = 1, 2, ..., r, all the elements of the set Lj has indegree as an odd
number i.e. all the elements of the set Lj is produced odd number of times from
the elements in Lj−1. Now we want to prove the statement that the number of

division trails in L from l to vj
i for all i = 1, 2, ..., nj and j = 1, 2, ..., r are odd.

We prove this by induction.

Induction Base According to the BDPT propagation in L, as all the elements
in L1 is produced from l ∈ L0, then

x11 = x12 = ... = x1n1
= 1

Hence P(l, v1
i ) = 1 for all i = 1, 2, ..., n1. Hence the above statement is true for

j = 1 and i = 1, 2, ..., n1.
Now we prove this statement for j = 2. According to the BDPT propagation

in L, all the elements in L2 is produced from the elements in L1. Therefore for
all i = 1, 2, ..., n2 the number of division trails from l to v2

i is as follows:

P(l, v2
i ) =

∑
i1∈I2

i

P(l, v1
i1), ∀i ∈ [n2]

where Iji ⊆ {1, 2, ..., nj−1} and this set contains the lower indices of the elements

in Lj−1 from which vj
i ∈ Lj produced and the cardinality of Iji is xji for i =
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1, 2, ..., nj and j = 1, 2, ..., r. Now here, for j = 2 and for all i = 1, 2, ..., n2 the
cardinality of I2i is odd as the value of x2i is odd as per our assumption.

Moreover, P(l, v1
i1

) is odd for all i1 ∈ I2i ⊆ {1, 2, ..., n1} as we know
that P(l, v1

i ) = 1 for all i1 = 1, 2, ..., n1. Therefore P(l, v2
i ) is odd for all

i = 1, 2, ..., n2. Hence, the above statement is true for j = 2 and i = 1, 2, ..., n2.

Induction Hypothesis Suppose we assume that the above statement is true
for all j = 1, 2, ...m where m ≤ r − 1 and i = 1, 2, ..., nj i.e.

P(l, vj
i ) = odd, ∀ i ∈ [nj ] and ∀ j ∈ [m] (13)

Inductive Step Now, we want to prove the above statement for j = m+ 1 and
i = 1, 2, ..., nm+1. Therefore for all i = 1, 2, ..., nm+1 the number of division trails
from l to vm+1

i is

P(l, vm+1
i ) =

∑
i2∈Im+1

i

P(l, vm
i2 ) ∀ i ∈ [nm+1]

where Im+1
i ⊆ {1, 2, ..., nm} and this set contains the lower indices of the ele-

ments in Lm from which vm+1
i ∈ Lm+1 produced and the cardinality of Im+1

i is
xm+1
i for i = 1, 2, ..., nm+1. Now, for j = m+ 1 and for all i = 1, 2, ..., nm+1, the

cardinality of Im+1
i is odd as the value of xm+1

i is odd as per our assumption.
Moreover, P(l, vm

i2
) is odd for all i2 ∈ Im+1

i ⊆ {1, 2, ..., nm} as we know
that P(l, vm

i2
) is odd for all i2 = 1, 2, ..., nm is odd as per induction hypothesis.

Therefore P(l, vm+1
i ) is odd for all i = 1, 2, ..., nm. Hence, the above statement

is true for j = m+ 1 and i = 1, 2, ..., nm+1.
By induction we have proved that for all j = 1, 2, ..., r, all the elements of

the set Lj has indegree as an odd number i.e. all the elements of the set Lj

is produced odd number of times from the elements in Lj−1 then the number

of division trails in L from l to vj
i for all i = 1, 2, ..., nj and j = 1, 2, ..., r are

odd. Therefore, the number of division trails from l to vr
1 = p is odd which is a

contradiction as it is given that the number of division trail in L from l to l′ is
even. Therefore, our assumption is incorrect.

Hence, there always exist at least one j ∈ [r] s.t Lj contains at least one
element u which is produced even number of times from the elements in Lj−1
which completes our proof. ut

Therefore, using Lemma 1 we prove the final result as follows:

Proposition 2. Let X ⊆ Fn
2 has division property D1n

K0={k},L0={l} and after r-

round propagation, the output set Y has division property D1n

Kr,Lr
. If eq doesn’t

belongs to the set Kr, where q ∈ [n], then we have:

1. If the number of division trail from l to eq is even in L, then
⊕

y∈Y yq = 0.
2. If the number of division trail from l to eq is odd in L, then

⊕
y∈Y yq = 1.

Proof. Let S ⊆ (Fn
2 )r+1 be the set which contains all the division trail in L

from l to eq and |S| is even. Now, by using Lemma 1, we can easily conclude
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that there exist at least one j ∈ {2, 3, ..., r} s.t Lj contains an element u which
is produced even number of times from the elements in Lj−1. Without loss of
generality we choose smallest such j.

According to the BDPT propagation rule of XOR and S-box, we can see
that if an element u is produced even number of times in Lj from Lj−1, then
the following holds: ⊕

y∈Yj

yu = 0

where Yj is the multiset whose BDPT is D1n

Kj ,Lj
and that implies u shouldn’t

be in Lj . Hence, all the division trails from l to eq which contains the vector u
are actually redundant and those number of redundant division trails must be
even. Therefore, we can remove these redundant division trails from S and we
can call the new set as S1. It is trivial that either |S1| is even or |S1| = 0.

Case-I. If |S1| = 0, then it implies that all the division trails from l to eq
contains the element u. Therefore, as u shouldn’t be in Lj , so eq also shouldn’t
be in Lr and it is given that eq doesn’t belongs to Kr which means⊕

y∈Y
yeq =

⊕
y∈Y

yq = 0

. Case-II. If |S1| is even, then in a similar way we can find even number of

redundant division trails from l to eq in L and construct S2 from S1 where |S2|
is either even or 0 and so on.

As |S| is finite, then after finitely many p steps, we must get some Sp s.t
|Sp| = 0. Hence, eq shouldn’t be in Lr and it is given that eq doesn’t belongs to
Kr which means ⊕

y∈Y
yeq =

⊕
y∈Y

yq = 0

which completes the first part of the proof.

Now, it is given that the number of division trail in L from l to eq is odd.
Similarly we can construct a set S′ containing all such division trails. Therefore,
there may or may not exist j ∈ {2, 3, ..., r} s.t Lj contains an element u which
is produced even number of times from the elements in Lj−1.

Case-A If there doesn’t exist any such j, then by BDPT propagation rules, we
can easily conclude that no division trail from l to eq is redundant. Therfore, it
implies that eq belongs to Lr which means

⊕
y∈Y yq = 1.

Case-B If there exist some j s.t Lj contains an element u which is produced
even number of times from the elements in Lj−1, then similarly by the previous
argument we can easily conclude that all the division trails from l to eq which
contains u are actually redundant. Therefore, we can remove these redundant
division trails from S′ and we can call the new set as S′1. It is obvious that |S′1|
is odd.
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Now, continuing like this way, after finitely many steps we arrive at a sit-
uation where the number of remaining division trails from l to eq is odd and
no redundant division trails are left which implies eq belongs to Lr. Therefore,⊕

y∈Y yeq =
⊕

y∈Y yq = 1 which completes the second part of the proof. ut

5 Applications to Block Ciphers

In this section, we apply our automatic search algorithm for BDPT to SIMON,
SIMON(102), MANTIS, PRINCE, KLEIN, and PRIDE block ciphers. All the
experiments are conducted on the platform Intel Core i5-8250U CPU @ 1.60GHz,
8G RAM, 64bit Ubuntu 18.04.5 LTS. The optimizer we used to solve MILP
models is Gurobi 9.1.2 [Gur21]. For the integral distinguishers, ’?’ denotes the
bit whose balanced information is unknown, ’0’ denotes the bit whose sum is
zero, ’1’ denotes the bit whose sum is 1. The detailed integral distinguishers of
PRINCE, MANTIS, KLEIN and PRIDE are listed in Supporting Material 7.4.

5.1 Applications to PRINCE and MANTIS

In this section we present the application of our BDPT model to the cipher
PRINCE and MANTIS which have binary matrices to conduct their mixcolumn
operations in the round functions. Hence, we apply our method to model binary
linear layer in BDPT and construct the MILP model efficiently. Then, choosing
appropriate initial BDPT, we find improved integral distinguisher as follows:

Integral Attack on PRINCE. Block ciphers based on the reflection design
strategy, introduced by PRINCE [BCG+12], are a popular choice for low-latency
designs. PRINCE is the 64-bit block cipher which uses 128-bit key. The PRINCE
cipher is the substitution-permutation network composed of 12 rounds. The 64-
bit state can be organised as the 4× 4 array of nibbles and it has the structure
which is described in Fig.1 in Supporting Material 7.5. For a complete specifi-
cation and design rationale of the cipher, a reader is referred to [BCG+12].

We will denote the number of rounds of PRINCE as a + b where a are the
rounds before the middle layer, and b are the rounds after the middle layer. There
are several attacks (Integral attack, higher order differential attack, boomerang
attack) on PRINCE [RR16, ALL12, Mor17]. Now, in [EKKT18], the authors
applied CBDP on PRINCE and found 2+1 and 1+2 round integral distinguishers
which are best integral distinguisher till date.

For PRINCE, we find a 2 + 2 round integral distinguisher which is one more
round than the previous best results [EKKT18].

Integral attack on MANTIS. MANTIS is a tweakable block cipher published
at CRYPTO 2016 by Beierle et al. [BJK+16] and the cipher’s structure is similar
to PRINCE (Fig.1 in Supporting Material 7.5). This block cipher operate on a
64-bit message block and work with a 64-bit tweak and (64 + 64) bit key and
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has a SPN structure. For a more detailed description of the MANTIS family, we
refer to the design paper [BJK+16].

In the light of cryptanalysis, there are several attacks [EK18,CLCW19,Bey20]
on MANTIS. For MANTIS, we find a 3 + 3 round integral distinguisher based
on BDPT which is one more round than the previous best results [EKKT18].

5.2 Applications to KLEIN and PRIDE

To complete our BDPT analysis on ciphers with complex linear layers, we apply
our automatic search algorithm for BDPT to block ciphers KLEIN and PRIDE
which have non-binary linear layers. In order to handle non-binary linear layers
we trivially decompose the linear layers as COPY and XOR operations and con-
struct the MILP model accordingly. Then, choosing appropriate initial BDPT,
we find integral distinguisher as follows:

Integral Attack on KLEIN. KLEIN [GNL11] is a family of block ciphers,
with a fixed 64-bit block size and variable key length-64, 80 or 96-bits. The
structure of KLEIN is a typical Substitution Permutation Network (Fig.2). For
more details, please refer to [GNL11].

In the light of cryptanalysis, there are several attacks [YWLZ11, NWW15,
ASA15,AFL+12] on the block cipher KLEIN, mostly on KLEIN-64 (key length
64 bits). In [YWLZ11], the authors have presented a 5-round integral distin-
guisher using the higher-order integral and the higher-order differential proper-
ties which is best integral distinguisher known to us. First we apply MILP based
CBDP on KLEIN and find a 6-round integral distinguisher which is one more
round than the previous best results [YWLZ11]. Therefore, we apply the MILP
based BDPT on KLEIN and the integral distinguishers we find are in accordance
with the distinguishers we find based on CBDP.

Integral Attack on PRIDE. PRIDE (Fig.3) is a lightweight block cipher
designed by Albrecht et al. [ADK+14], appears in CRYPTO 2014. PRIDE is an
SPN structure block cipher with 64-bit block cipher and 128-bit key. For more
details, please refer to [ADK+14]. In the light of cryptanalysis, there are several
attacks on PRIDE [ZWWD14,YHS+15,Din15,DC17].

First we apply MILP based CBDP on PRIDE and find a 9-round integral
distinguisher which is one more round than the previous best results [XZZ21].
Therefore, we apply the MILP based BDPT on PRIDE and the integral dis-
tinguishers we find are in accordance with the distinguishers we find based on
CBDP.

5.3 Applications to SIMON, SIMON(102)

We apply our method to all variants of SIMON [BSS+15], and SIMON(102)
[KLT15] block ciphers and the distinguishers we find are in accordance with the
previous longest distinguishers [LWZ22] but we get these results in better time
which are shown in Table 5 in Supporting Material 7.3.
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6 Conclusion and Future Work

In this paper, we provide an idea to model BDPT propagation of ciphers with
binary (complex) linear layers and furthermore we construct an efficient auto-
matic search algorithm that accurately characterize BDPT propagation. Based
on these, more accurate BDPT for ciphers with binary (complex) linear layers
such as PRINCE, MANTIS can be obtained.

For ciphers with non-binary linear layers we trivially decompose the lin-
ear layer by COPY-XOR technique which may ignore some balanced property.
Therefore, how to model BDPT propagation for ciphers with non-binary linear
layers accurately and efficiently is an open problem. Moreover, we construct our
model using MILP solver whereas SAT/SMT are also very popular and efficient
solvers in this domain. How to implement our model using SAT/SMT solvers or
similar ones will be a future work.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the quality of the paper.
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BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

BSS+15. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK lightweight block
ciphers. In Proceedings of the 52nd Annual Design Automation Conference,
San Francisco, CA, USA, June 7-11, 2015, pages 175:1–175:6. ACM, 2015.

CLCW19. Shiyao Chen, Ru Liu, Tingting Cui, and Meiqin Wang. Automatic search
method for multiple differentials and its application on MANTIS. Sci.
China Inf. Sci., 62(3):32111:1–32111:15, 2019.

DC17. Yibin Dai and Shaozhen Chen. Cryptanalysis of full PRIDE block cipher.
Sci. China Inf. Sci., 60(5):052108:1–052108:12, 2017.

Din15. Itai Dinur. Cryptanalytic time-memory-data tradeoffs for fx-constructions
with applications to PRINCE and PRIDE. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, volume 9056 of Lecture Notes in Computer Science, pages 231–253.
Springer, 2015.

EK18. Maria Eichlseder and Daniel Kales. Clustering related-tweak charac-
teristics: Application to MANTIS-6. IACR Trans. Symmetric Cryptol.,
2018(2):111–132, 2018.

EKKT18. Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge
Tiessen. Finding integral distinguishers with ease. In Carlos Cid and
Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC
2018 - 25th International Conference, Calgary, AB, Canada, August 15-17,
2018, Revised Selected Papers, volume 11349 of Lecture Notes in Computer
Science, pages 115–138. Springer, 2018.

GNL11. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family
of lightweight block ciphers. In Ari Juels and Christof Paar, editors,
RFID. Security and Privacy - 7th International Workshop, RFIDSec 2011,
Amherst, USA, June 26-28, 2011, Revised Selected Papers, volume 7055 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2011.

Gur21. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.
HLLT20. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower

bounds on the degree of block ciphers. In Shiho Moriai and Huaxiong
Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7-11, 2020, Pro-
ceedings, Part I, volume 12491 of Lecture Notes in Computer Science, pages
537–566. Springer, 2020.

HLLT21. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Strong
and tight security guarantees against integral distinguishers. In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology - ASI-

26



ACRYPT 2021 - 27th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Singapore, December 6-
10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in Computer
Science, pages 362–391. Springer, 2021.

HW19. Kai Hu and Meiqin Wang. Automatic search for a variant of division prop-
erty using three subsets. In Mitsuru Matsui, editor, Topics in Cryptology -
CT-RSA 2019 - The Cryptographers’ Track at the RSA Conference 2019,
San Francisco, CA, USA, March 4-8, 2019, Proceedings, volume 11405 of
Lecture Notes in Computer Science, pages 412–432. Springer, 2019.

HWW20. Kai Hu, Qingju Wang, and Meiqin Wang. Finding bit-based division prop-
erty for ciphers with complex linear layer. IACR Cryptol. ePrint Arch.,
page 547, 2020.

KLT15. Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the
SIMON block cipher family. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 161–185.
Springer, 2015.

LDF20. Baptiste Lambin, Patrick Derbez, and Pierre-Alain Fouque. Linearly equiv-
alent s-boxes and the division property. Des. Codes Cryptogr., 88(10):2207–
2231, 2020.

LWZ22. Huawei Liu, Zilong Wang, and Liu Zhang. A model set method to search
integral distinguishers based on division property for block ciphers. Cryp-
tology ePrint Archive, Paper 2022/720, 2022. https://eprint.iacr.org/
2022/720.

Mor17. Pawel Morawiecki. Practical attacks on the round-reduced PRINCE. IET
Inf. Secur., 11(3):146–151, 2017.

NWW15. Ivica Nikolic, Lei Wang, and Shuang Wu. The parallel-cut meet-in-the-
middle attack. Cryptogr. Commun., 7(3):331–345, 2015.

RR16. Shahram Rasoolzadeh and H̊avard Raddum. Cryptanalysis of PRINCE
with minimal data. In David Pointcheval, Abderrahmane Nitaj, and Taj-
jeeddine Rachidi, editors, Progress in Cryptology - AFRICACRYPT 2016 -
8th International Conference on Cryptology in Africa, Fes, Morocco, April
13-15, 2016, Proceedings, volume 9646 of Lecture Notes in Computer Sci-
ence, pages 109–126. Springer, 2016.

SWW16. Ling Sun, Wei Wang, and Meiqin Wang. Milp-aided bit-based division
property for primitives with non-bit-permutation linear layers. IACR Cryp-
tol. ePrint Arch., page 811, 2016.

SWW17. Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based
division property for ARX ciphers and word-based division property. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 128–157. Springer, 2017.

TM16. Yosuke Todo and Masakatu Morii. Bit-based division property and ap-
plication to simon family. In Thomas Peyrin, editor, Fast Software En-
cryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture Notes
in Computer Science, pages 357–377. Springer, 2016.

27

https://eprint.iacr.org/2022/720
https://eprint.iacr.org/2022/720


Tod15. Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 287–314. Springer, 2015.

WHG+19. Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Milp-aided
method of searching division property using three subsets and applications.
In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology
- ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, Decem-
ber 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in
Computer Science, pages 398–427. Springer, 2019.

WHG+20. Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Exploring
secret keys in searching integral distinguishers based on division property.
IACR Trans. Symmetric Cryptol., 2020(3):288–304, 2020.

WLV+14. Qingju Wang, Zhiqiang Liu, Kerem Varici, Yu Sasaki, Vincent Rijmen, and
Yosuke Todo. Cryptanalysis of reduced-round SIMON32 and SIMON48. In
Willi Meier and Debdeep Mukhopadhyay, editors, Progress in Cryptology
- INDOCRYPT 2014 - 15th International Conference on Cryptology in
India, New Delhi, India, December 14-17, 2014, Proceedings, volume 8885
of Lecture Notes in Computer Science, pages 143–160. Springer, 2014.

XZBL16. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division prop-
erty for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, volume 10031 of Lecture Notes in Computer Science, pages 648–678,
2016.

XZZ21. Zejun Xiang, Xiangyong Zeng, and Shasha Zhang. On the bit-based
division property of s-boxes. Science China Information Sciences,
65(4):149101, May 2021.

YHS+15. Qianqian Yang, Lei Hu, Siwei Sun, Kexin Qiao, Ling Song, Jinyong Shan,
and Xiaoshuang Ma. Improved differential analysis of block cipher PRIDE.
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7 Supporting Material

7.1 Division Trail for L of PRINCE S-box

Table 4 presents the division trails for L of PRINCE S-box.

Table 4. Division Trails for L of PRINCE S-box

Input l Output L

[0, 0, 0, 0] [0, 0, 0, 0]

[0, 0, 0, 1] [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0]

[0, 0, 1, 0] [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1]

[0, 0, 1, 1]
[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1]

[1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0]

[0, 1, 0, 0] [0, 0, 0, 1], [0, 0, 1, 1], [1, 0, 0, 1], [1, 0, 1, 1]

[0, 1, 0, 1] [0, 0, 1, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 1, 1, 0]

[0, 1, 1, 0] [0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [1, 0, 1, 1]

[0, 1, 1, 1]
[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 0, 0]

[1, 0, 0, 1], [1, 0, 1, 0], [1, 1, 0, 1], [1, 1, 1, 0]

[1, 0, 0, 0]
[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 0], [1, 0, 0, 1]

[1, 0, 1, 0], [1, 0, 1, 1]

[1, 0, 0, 1] [0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0]

[1, 0, 1, 0] [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1]

[1, 0, 1, 1] [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0]

[1, 1, 0, 0] [0, 0, 0, 1], [0, 0, 1, 1], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0]

[1, 1, 0, 1] [0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 1],

[1, 1, 1, 0]
[0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 1], [1, 0, 0, 1], [1, 0, 1, 0]

[1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]

[1, 1, 1, 1] [1, 1, 1, 1]

7.2 Linear Inequalities description BDPT of PRINCE S-box

The following inequalities are the inequalities used to describe the PRINCE S-
box whose feasible solutions are exactly the division trails for K of the PRINCE
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S-box where (x3, x2, x1, x0)→ (y3, y2, y1, y0) denotes a division trail.

x3 + x2 + x1 + 4x0 − 2y3 − 2y3 − 2y3 − 2y3 ≥ −1

3x3 − y3 − y2 − y1 − y0 ≥ −1

−2x3 − x2 − x1 − 2x0 + 5y3 + 5y2 + 4y1 + 4y0 ≥ 0

3x2 − y3 − y2 − y1 − y0 ≥ −1

−5x3 − 5x2 − 5x1 − 4x0 + y3 + 2y2 + 2y1 + y0 ≥ −13

−y3 − y2 − y1 + 2y0 ≥ −1

x1 − y3 − y0 ≥ −1

−x3 − x1 + y3 − y0 ≥ −2

−x2 − x0 + 2y3 + y2 + 2y1 + 2y0 ≥ 0

−x3 − x0 + y3 + y2 + y0 ≥ −1

−2x3 − 2x2 − 2x0 + y3 − y2 − y1 + 2y0 ≥ −5

(14)

The following inequalities are the inequalities used to describe the PRINCE
S-box whose feasible solutions are exactly the division trails for L of the PRINCE
S-box where (x3, x2, x1, x0)→ (y3, y2, y1, y0) denotes a division trail.

x3 + x2 + x1 + 3x0 − 2y3 − 4y2 − 2y1 − 2y0 ≥ −5

−2x3 − x2 − x1 − 2x0 + 5y3 + 5y2 + 4y1 + 4y0 ≥ 0

−2x3 + x2 + x1 − 6x0 − 6y3 + 4y2 − 2y1 − 3y0 ≥ −13

4x3 − x2 + 3x1 + 6x0 − y3 − 2y2 − 2y1 + 4y0 ≥ 0

−3x3 + x2 − 3x1 − x0 + 2y3 − y1 − 3y0 ≥ −8

2x3 + x2 + 2x1 − x0 + 2y2 − y0 ≥ 0

−2x3 − 2x2 + x1 + y3 − y2 − y1 + y0 ≥ −4

x3 + x2 + 2x0 + y3 − y2 − y0 ≥ 0

x3 + 5x2 + x1 − 3x0 + y3 + 5y2 − 2y1 + 4y0 ≥ 0

x3 − 2x2 + x1 + y3 + 2y1 + 2y0 ≥ 0

−x3 − 2x2 − 2x1 − x0 − y3 − y2 + y1 + y0 ≥ −6

x2 + x0 − y3 − y2 ≥ −1

−x3 − x1 + x0 + y3 + 2y2 + 2y1 + y0 ≥ 0

−x3 + x2 + y3 − y2 − y0 ≥ −2

−x3 − x2 + x1 + x0 − 2y2 − y1 − y0 ≥ −4

−x1 + x0 + y3 − y1 − y0 ≥ −2

x3 − x2 − x1 + x0 − y3 + y1 − y0 ≥ −3

x3 + x2 + x1 + 3x0 − 3y3 − 5y2 − 3y1 − 3y0 ≥ −8

(15)

7.3 Table in Section 5

We apply our automatic search algorithm on the block cipher SIMON, SI-
MON(102) and compare our runtime with the runtime of the algorithm dis-
cussed in [LWZ22] and [WHG+20] in Table 5. For SIMON, SIMON(102) family

30



of block ciphers, since the round keys are XORed into state after the round func-
tions, we can add one more round before the distinguishers using the technique
in [WLV+14] and these extended integral distinguishers cannot be found by our
method directly.

7.4 Integral Distinguishers Listed on Table 1

We apply our automatic search algorithm for BDPT to SIMON, SIMON(102),
MANTIS, PRINCE, KLEIN, and PRIDE block ciphers. All the experiments are
conducted on the platform Intel Core i5-8250U CPU @ 1.60GHz, 8G RAM, 64bit
Ubuntu 18.04.5 LTS. The optimizer we used to solve MILP models is Gurobi
9.1.2 [Gur21]. For the integral distinguishers, ’?’ denotes the bit whose balanced
information is unknown, ’0’ denotes the bit whose sum is zero, ’1’ denotes the
bit whose sum is 1. The lists are given below.

7.5 Figures in Section 5
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Fig. 1. Fig. Encryption Process of PRINCEcore
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Table 5. Summarization of Integral Distinguishers of SIMON, and SIMON(102)

Cipher Data Round Number of
constant bits

Time References

SIMON32
231 15 3 1.6m [LWZ22]

231 15 3 1.3m Sect. 5.7

SIMON48
247 16 24 8.4m [LWZ22]

247 16 24 6m Sect. 5.7

SIMON64
263 18 27 1hr8m [LWZ22]

263 18 27 25m Sect. 5.7

SIMON96
295 22 5 5hr55m [LWZ22]

295 22 5 1hr30m Sect. 5.7

SIMON128
2127 26 3 21hr7m [LWZ22]

2127 26 3 3hr50m Sect. 5.7

SIMON(102)32

231 20 3 - [LWZ22]

231 20 3 22m [WHG+20]

231 20 3 2m Sect. 5.7

SIMON(102)48

247 28 3 - [LWZ22]

247 28 3 1hr10m [WHG+20]

247 28 3 15m Sect. 5.7

SIMON(102)64

263 36 3 - [LWZ22]

263 36 3 3hr27m [WHG+20]

263 36 3 45m Sect. 5.7
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Table 6. Integral Distinguishers of KLEIN

Cipher Distinguisher Ref

6-KLEIN64

In: (ffff, ffff, fff3, ffff).

CBDP,
BDPT

Out:
(0000,0000,0000,0000,0000,0000,0000,0000,

0000,0000,0000,0000,0000,0000,0000,0000)

Table 7. Integral Distinguishers of PRIDE

Cipher Distinguisher Ref

9-PRIDE64

In: (7fff, ffff, ffff, ffff).

CBDP,
BDPT

Out:
(00??,00??,00??,00??,00??,00??,00??,00??,

00??,00??,00??,00??,00??,00??,00??,00??)

Table 8. Integral Distinguishers of MANTIS

Cipher Distinguisher Ref

(3+3)-
MANTIS64

In: (bfff, ffff, ffff, ffff).

BDPT
Out:

(0000,0000,0000,0000,0000,0000,0000,0000,

0000,0000,0000,0000,0000,0000,0000,0000)

Table 9. Integral Distinguishers of PRINCE

Cipher Distinguisher Ref

(2+2)-
PRINCE64

In: (ffff, ffff, ffff, fffe).

BDPT
Out:

(0000,0000,0000,0000,0000,0000,0000,0000,

0000,0000,0000,0000,0000,0000,0000,0000)
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Fig. 2. One-round structure of KLEIN64
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Fig. 3. One-round structure of PRIDE
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