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Abstract. This article explores the connection between radical isogenies and modular curves.
Radical isogenies are formulas introduced by Castryck, Decru, and Vercauteren at Asiacrypt
2020, designed for the computation of chains of isogenies of �xed small degree N. An important
advantage of radical isogeny formulas over other formulas with a similar purpose, is that there is
no need to generate a point of order N that generates the kernel of the isogeny. Radical isogeny
formulas were originally developed using elliptic curves in Tate normal form, while Onuki and
Moriya have proposed radical isogenies formulas of degrees 3 and 4 on Montgomery curves.
Furthermore, they attempted to obtain a simpler form of radical isogenies using enhanced
elliptic and modular curves. In this article, we translate the original setup of radical isogenies
(using Tate normal form) to the language of modular curves. In addition, we solve an open
problem introduced by Onuki and Moriya regarding radical isogeny formulas on X0(N).
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1. Introduction

Isogeny-based cryptographic protocols are considered to be good candidates for post-quantum
cryptography as they are believed to be resistant to quantum computer attacks. The main
advantages of isogeny-based cryptography, in comparison to other post-quantum protocols,
are smaller key sizes and smaller ciphertext sizes. On the other hand, the main disadvan-
tage of isogeny-based protocols has been the high computational cost of encryption and de-
cryption. Computing isogenies of low degree in �nite �eld is needed in protocols such as
Charles, Goren and Lauter's hash function [CLG09], Couveignes, Rostovtsev, Stolbunov key
exchange protocol [Cou06, RS06] or Castryck, Lange, Martindale, Panny, and Renes key ex-
change CSIDH [CLM+18]. An isogeny can be computed from the coordinates of the points in
its kernel using Vélu's formulas [Vél71]. To enhance and accelerate isogeny computation, sev-
eral di�erent approaches or variants of Vélu's formulas have been considered. There are many
variants of Vélu's formulas on di�erent curve models such as Montgomery curves in [CH17], Ed-
wards curves [CVCCD+19,KYPH19] or Hessian curves [BDFM21]. There is also an algorithm
by Bernstein, De Feo, Leroux and Smith [BDFLS20] that reduces the cost of computation of
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isogeny of degree N from O(N) to Õ(
√
N) and application of that algorithm to Hu�'s and

general Hu�'s curves in [Wro21].
Radical isogenies are formulas designed for the computation of a chain of isogenies of the

same small degree between elliptic curves over �nite �eld, �rst introduced by Castryck, Decru
and Vercauteren in [CDV20]. They showed that using radical isogeny formulas in CSIDH-512
leads to more e�cient implementation and a speed-up of 19%, see [CDV20, Section 6]. Elliptic
curve E over the �eld k and a point P ∈ k(E) of order N ≥ 4 are, as a pair, isomorphic to the
unique curve-point pair (notation remains the same) of form

(1.1) E : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0),

where b, c ∈ k. Pair (1.1) is said to be in Tate normal form. Using Vélu's formulas one can
compute an isogeny φ : E −→ E ′ where E ′ = E/⟨P ⟩. Radical isogeny formulas are generating
points P ′ on E ′ for which the composition E −→ E ′ −→ E ′/⟨P ′⟩ is a cyclic isogeny of order N2.
Points P ′ (of order N) on E ′ can be de�ned as preimage of point P under the dual isogeny
φ̂ : E ′ −→ E. Central observation for radical isogeny formulas is that the points P ′ are de�ned
over �eld k(b, c, N

√
ρ), for some ρ ∈ k(b, c). Coordinates of P ′ are explicitly calculated using

formulas depending on b, c and N
√
ρ. Continuing from the curve E ′, this curve together with a

point P ′ will also be isomorphic to a curve in Tate's normal form, now speci�ed with coe�cients
b′ and c′. Formulas derived in [CDV20, Section 3] express coe�cients b′ and c′ as elements of
k(b, c, N

√
ρ). Radical isogeny formulas can be repeated on this new curve, i.e. described process

can be repeated iteratively, which results in a chain of isogenies of degree N .
Following [CSS13, Chapter III, Section 1.3] and [DS05, Section 1.5], enhanced elliptic curve

for congruence subgroup

Γ1(N) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 ∗
0 1 ) (mod N)

is de�ned as an ordered pair (E,P ), where E is an elliptic curve over some algebraically closed
�eld and P is a point of order N on that curve. Two enhanced elliptic curves for Γ1(N), (E,P )
and (E ′, P ′) will be equivalent (denoted by ∼) if there is an isomorphism E −→ E ′ that takes
P to P ′. The corresponding set of equivalence classes is

S1(N) = {enhanced elliptic curves for Γ1(N)}/∼.

Similar set S0(N), using elliptic curve and cyclic group of order N , can be de�ned for con-
gruence subgroup Γ0(N). In Section 3 of this article, we will extend the notion of the radical
isogeny formulas to modular functions. We will show that the parameters b and c, from Tate's
normal form, can be used to de�ne functions on the set of enhanced elliptic curves for Γ1(N).
Furthermore, there is a function on the set of enhanced elliptic curves for Γ1(N

2) that acts as
an equivalent to N

√
ρ of the radical isogeny formulas.

In [OM22], Onuki and Moriya proposed radical isogeny formulas on Montgomery curves of
degrees 3 and 4. Montgomery curve over �eld k is an elliptic curve

E : y2 = x3 + Ax2 + x,

where A ∈ k and A2 ̸= 4. Coe�cient A determines a class of (E, (0, 0)) in S0(4), see [OM22,
Section 2.3] for details. Applying radical isogeny formulas on elements of set S1(N), i.e. on an
enhanced elliptic curve (E,P ), results in a curve-point pair that is also an element of S1(N).
When N = 3, 4, equality S0(N) = S1(N) holds and the existence of radical isogeny formulas on
S1(3), S1(4) implies a radical isogeny formula on S0(3), S0(4), i.e. there is a formula between
Montgomery coe�cients of curves, see [OM22, Section 3]. Methods used in [OM22] for cases
N = 3, 4 cannot be directly extended to case N ≥ 5 partly because S0(N) ̸= S1(N). The
following example illustrates the reason why radical isogeny formulas for S0(N) when N ≥ 5
are maybe not possible.
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Example 1.1 ([OM22, Section 4]). Let N = 5. Let k be a �eld with char(k) ∤ N and E,E ′

two elliptic curves over the �eld k given in Tate normal form:

E : y2 + (1− b)xy − by = x3 − bx,

E ′ : y2 + (1− b′)xy − b′y = x3 − b′x.

Points (0, 0) are of order 5 on these curves. Cyclic subgroup of E generated by point (0, 0) is

{OE, (0, 0), (b, b
2), (b, 0), (0, b)}.

Pairs (E, (0, 0)) and (E ′, (0, 0)) are equivalent if and only if b = b′, while pairs (E, ⟨(0, 0)⟩) and
(E ′, ⟨(0, 0)⟩) are equivalent if and only if b = b′ or b = − 1

b′
. From this we have b2−1

b
= b′2−1

b′
, thus

b2−1
b

is a parametrization of S0(5). From radical isogeny formula we know that b′ is a rational

expression in a �fth root of b, i.e. Q(b′) = Q( 5
√
b). Let β = b2−1

b
and β′ = b′2−1

b
. Field extension

Q(b)/Q(β) is of degree 2. Adjoining to �eld extension Q(b′)/Q(β) a primitive �fth root of unity
ζ5 ∈ C, we obtain a Galois extension Q(ζ5)(b

′)/Q(ζ5)(β) of degree 10.
Galois group of this extension Gal(Q(ζ5)(b

′)/Q(ζ5)(β)) is generated by automorphisms σ : b′ 7→
− 1
b′
and τ : b′ 7→ ζ5b

′. The �xed �eld of σ is Q(ζ5)(β
′), and of τ is Q(ζ5)(b). Because τ

−1στ ̸= σ,
the group ⟨σ⟩ is not a normal subgroup of Galois group Gal(Q(ζ5)(b

′)/Q(ζ5)(β)), thus extension
Q(ζ5)(β

′)/Q(ζ5)(β) cannot be a Galois extension.

If the parameter β′ from Example 1.1 could be expressed as a rational expression depending on
the parameter β, we would have a direct way to calculate b′ with simpler formulas (quadratic
equation) than the radical isogeny formulas. Because extension Q(ζ5)(β

′)/Q(ζ5)(β) is not a
Galois extension, this is not possible. Still, maybe it is possible to �nd a di�erent β′, i.e.
a di�erent parametrization of S0(5) which will make the �eld extension Q(ζ5)(β

′)/Q(ζ5)(β)
Galois. Finding such parametrization was left as an open problem in [OM22], and that open
problem is solved in this article. We will show, using the generalization of radical isogeny
formulas for the set of functions on enhanced elliptic curves for Γ0(N), in the Theorem 4.2,
that such Galois extension could not exists. A straightforward consequence will be the following
corollary.

Corollary 4.3. Let N ≥ 5. Radical isogeny formulas for S0(N) are not possible.

Paper organization

Section 2 provides necessary background including brief overview on elliptic curves, isogenies
of elliptic curves, de�nition of congruence subgroups, modular curves, semidirect product of
groups and radical isogenies. Section 3 translates radical isogenies to the language modular
curves. Section 4 extends the setting from Section 3 so that it includes modular curves on
X0(N) and provides the proof to the Theorem 4.2 that, as a consequence, has a corollary that
is a solution to the open problem described in Example 1.1.

2. Preliminaries

This section will provide summary of necessary background. For more details on elliptic and
modular curves refer to [Sil09], [DS05] and [CSS13, Chapter III].

2.1. Elliptic curves. Let k be a �eld. Elliptic curve E over k is a smooth projective curve
over k of genus one with a speci�ed base point OE. Group of all the points on E de�ned over
k is denoted E(k). For integer N , multiplication by N map is denoted with [N ]. The kernel of
this map is the N torsion subgroup, E[N ] = {P ∈ E(k) : [N ]P = OE}. Point P on curve E is
of order N if NP = OE and mP ̸= OE for m < N . For a curve E as above and a point P of
order N ≥ 4, we have the following Lemma.
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Lemma 2.1. Let E be an elliptic curve over k and let P ∈ E(k) be a point of order N ≥ 4,
then the pair (E,P ) is isomorphic to a unique pair of the form

(2.1) E : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0)

with b, c ∈ k and

∆(b, c) = b3(c4 − 8bc2 − 3c3 + 16b2 − 20bc+ 3c2 + b− c) ̸= 0.

Curve E in (2.1) is said to be in Tate normal form. For proof see [Str19, Lemma 2.1].
If char(k) ∤ N we can de�ne Tate pairing, a bilinear map

tN : E(k)[N ]× E(k)/NE(k) −→ k∗/(k∗)N : (P1, P2) 7→ tN(P1, P2),

where E(k)[N ] are all the points in E[N ] de�ned over k.
Following [Sil09, Chapter II.3], divisor for a curve E is de�ned as formal sum

∑
P∈E nP (P ),

where nP ∈ Z and nP = 0 for all but �nitely many P ∈ E. Miller function fN,P1 is a function
on E with divisor N(P1)−N(OE). Support for a divisor is the set of points P ∈ E for which
nP ̸= 0. Let D be a k rational divisor on E that is linearly equivalent to (P2) − (OE) and
whose support is disjoint from {P1,OE}. Support of this divisor is disjoint from divisor of
Miller function fN,P1 , thus fN,P1(D) =

∏
P∈E fN,P1(P )

nP is well de�ned. Then, Tate pairing
can be calculated as tN(P1, P2) = fN,P1(D). Furthermore, if P1 ̸= P2 and the Miller function is
normalized, Tate pairing tN(P1, P2) is equal to fN,P1(P2).
When fN,P is a Miller function as above and P point of order N , there exists a function

gN,P ∈ k(E) such that

(2.2) fN,P ◦ [N ] = gNN,P .

Function gN,P can be used to de�ne Weil pairing, see [Sil09, Chapter III.8] for details.

2.2. Isogenies of elliptic curves. Let E and E ′ be elliptic curves over k. An isogeny φ : E −→
E ′ is a non-constant morphism satisfying φ(OE) = OE′ . Multiplication with N is an example
of an isogeny. Except for the zero isogeny, every other isogeny is a �nite map of curves so that
there is a usual injection of function �elds φ∗ : k(E ′) −→ k(E). The degree of φ, denoted by
deg(φ), is the degree of the �nite extension k(E)/φ∗(k(E ′)). Isogeny is separable (inseparable,
purely inseparable) if this �nite extension is separable (inseparable, purely inseparable). For
every isogeny φ there exists a dual isogeny φ̂ : E ′ −→ E such that φ̂◦φ = [deg(φ)]. The kernel of
isogeny is a �nite subgroup of E(k). The size of the kernel divides the degree of the isogeny and
they are the same when the isogeny is separable. Given a �nite subgroup C ⊂ E there exists
a unique separable isogeny having domain E, codomain E/⟨C⟩ and C as its kernel. Vélu's
formulas can be used to calculate this isogeny, see [CDV20, Theorem 1] for a complete list of
formulas.

2.3. Congruence subgroups, modular and enhanced elliptic curves. The group of 2×2
matrices with integer entries and determinant equal to 1 is

SL2(Z) = {( a bc d ) : a, b, c, d ∈ Z, ad− bc = 1}.

Principle congruence subgroup for N > 0 is

Γ(N) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 0
0 1 ) (mod N)}.

Reduction modulo N morphism Z −→ Z/NZ induces a homomorphism SL2(Z) −→ SL2(Z/NZ)
with kernel Γ(N), thus Γ(N) is normal subgroup in SL2(Z) of �nite index. This homomorphism
is a surjection, so there is a induced isomorphism

SL2(Z)/Γ(N)
∼−→ SL2(Z/NZ).
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Other standard congruence subgroups are

Γ1(N) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 ∗
0 1 ) (mod N)},

Γ0(N) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( ∗ ∗
0 ∗ ) (mod N)}.

These subgroups satisfy Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).
For an upper half plane H = {τ ∈ C : Im(τ) > 0} and matrix ( a bc d ) in SL2(Z), the action on

z ∈ H is de�ned as

( a bc d ) (z) =
az + b

cz + d
.

Using this fractional linear transformation, for a congruence subgroup Γ, modular curve can be
de�ned with

Y (Γ) = Γ/H = {Γτ : τ ∈ H}.
For Γ(N),Γ1(N),Γ0(N),

Y (N) = Γ(N)/H, Y1(N) = Γ1(N)/H and Y0(N) = Γ0(N)/H.
If the action is extended to H∗ = H ∪Q ∪ {∞}, following modular curves can be de�ned

X(Γ) = Γ/H∗, X(N) = Γ(N)/H∗, X1(N) = Γ1(N)/H∗ and X0(N) = Γ0(N)/H∗.

Let E be an elliptic curve over algebraically closed �eld whose characteristic does not divide
N. Enhanced elliptic curve for Γ0(N) is de�ned as ordered pair (E,C), where C is a cyclic
subgroup of order N . Two enhanced elliptic curves (E,C), (E ′, C ′) are equivalent if there exists
some isomorphism E

∼−→ E ′ that takes C to C ′. Set of equivalence classes is

S0(N) = {enhanced elliptic curves for Γ0(N)}/ ∼ .

An enhanced elliptic curve for Γ1(N) is a pair (E,P ), where P is a point of order N . Two
enhanced elliptic curves (E,P ), (E ′, P ′) are equivalent if there exists some isomorphism E

∼−→ E ′

that takes P to P ′. Set of equivalence classes is

S1(N) = {enhanced elliptic curves for Γ1(N)}/ ∼ .

Following [DS05, Chapter 1.3], complex elliptic curve Eτ can be de�ned as a quotient of the
complex plane by the lattice

Eτ := C/Λτ = {z + Λτ : z ∈ C},
where Λτ = Z⊕ τZ. Sets S0(N) and S1(N) are de�ned the same when the underlying �eld is C
and E is a complex elliptic curve. Points of Y1(N) are in bijection with isomorphism classes of
pairs (E,P ) ∈ S1(N). To construct a bijective map, to τ ∈ H, associate the pair (Eτ , 1

N
+Λτ ).

Any pair (E,P ) will be isomorphic to (Eτ ,
1
N
+ Λτ ) for some τ ∈ H and Eτ is isomorphic to

Eτ ′ if and only if τ ′ ∈ Γ1(N)τ. We have the following theorem.

Theorem 2.2. Let N be a positive integer. The moduli space for Γ1(N) is

S1(N) = {[Eτ ,
1

N
+ Λτ ] : τ ∈ H}.

Two points [Eτ ,
1
N
+ Λτ ] and [Eτ ′ ,

1
N
+ Λτ ′ ] are equal if and only if Γ1(N)τ = Γ1(N)τ ′. Thus

there is a bijection

ψ1 : S1(N)
∼−→ Y1(N), [C/Λτ ,

1

N
+ Λτ ] 7→ Γ1(N)τ.

Proof. See [DS05, Theorem 1.5.1.]. □

Similar statements to the one in the Theorem 2.2 are true for congruence subgroups Γ0(N) and
Γ(N).
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2.4. Semidirect product of groups. Following [Con], for two groups G1 and G2 and an ac-
tion φ̂ : G2 → Aut(G1) of G2 on G1 (by automorphisms), the corresponding semidirect product
G1 ⋊φ̂ G2 is de�ned as a set

G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2},

where the group law on G1 ⋊φ̂ G2 is

(g1, g2)(g
′
1, g

′
2) = (g1φ̂g2(g

′
1), g2g

′
2).

Element (eG1 , eG2) is the identity, and inverse for an element (g1, g2) is

(g1, g2)
−1 = (φ̂g−1

2
(g−1

1 ), g−1
2 ) = ((φ̂g−1

2
(g1))

−1, g−1
2 ).

Examples of subgroups are G1 × eG2 = {(g1, eG2) : g1 ∈ G1} which is a normal subgroup, and
eG1 ×G2 = {(eG1 , g2) : g2 ∈ G2}.

2.5. Radical isogenies. Following [CDV20], this section will provide a necessary background
for radical isogenies. Let k be a �eld, N > 0 such that char(k) ∤ N , E elliptic curve over the
�eld k and P ∈ E(k) point of order N . Using Lemma 2.1, curve-point pair (E,P ) is isomorphic
to unique pair of curve

y2 + (1− c)xy − by = x3 − bx2,

where b, c ∈ k, and a point (0, 0) of order N . There exists an isogeny φ : E −→ E/⟨P ⟩ with
kernel ⟨P ⟩. Let E ′ denote the model for E/⟨P ⟩ de�ned over k and P ′ point on E ′ of order N
such that φ̂(P ′) = P, where φ̂ is a dual isogeny of φ. Point P ′ satisfying this condition is called
P -distinguished. This point is not unique. From [CDV20, Theorem 5] for coordinates of the
point P ′ there exists a formula depending on b, c and N

√
ρ, where ρ is representative of Tate

pairing tN(P,−P ), i.e. point P ′ is de�ned over k(b, c, N
√
ρ). As P ′ is of order N on curve E ′,

there is a Tate normal form for this pair de�ned with the unique coe�cients b′, c′. The iterative
process of radical isogeny formulas can be repeated on pair (E ′, P ′). Additionally, formulas
for b′ and c′ can be expressed directly as elements of the �eld extension k(b, c, N

√
ρ). This �eld

extension is a simple radical extension. Field extension k ⊂ L is simple radical extension of
degree N ≥ 2 if there exists α such that L = k(α), αN ∈ k and xN − αN ∈ k[x] is irreducible.
Explicit radical isogeny formulas when N = 5, are written in the following example:

Example 2.3 ([CDV20, Section 4]). Let N = 5. Elliptic curve E has the form

y2 + (1− b)xy − by = x3 − bx2,

and, using Vélu's formulas, curve E ′ is equal to

y2 + (1− b)xy − by = x3 − bx2 − 5b(b2 + 2b− 1)x− b(b4 + 10b3 − 5b2 + 15b− 1).

With some details omitted, ρ = f5,P (−P ) = b, α = 5
√
ρ and point P ′ has coordinates

x′0 = 5α4 + (b− 3)α3 + (b+ 2)α2 + (2b− 1)α− 2b,

y′0 = 5α4 + (b− 3)α3 + (b2 − 10b+ 1)α2 + (13b− b2)α− b2 − 11b.

After translating point P ′ to (0, 0), isomorphic curve in Tate normal form will be

E ′ : y2 + (1− b′)xy − b′y = x3 − b′x2,

where

b′ = α
α4 + 3α3 + 4α2 + 2α + 1

α4 − 2α3 + 4α2 − 3α + 1

and the process can be repeated.
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The usual method of calculating isogenies requires a point of a speci�c order for every isogeny
in the chain of isogenies that is calculated. With radical isogeny formulas, having a point of
a speci�c order is only necessary for the �rst step, i.e. the one step that uses Vélu's formulas.
Calculating isogenies in consecutive steps of the process does not depend on knowledge of any
torsion point. The list of formulas for radicand ρ forN ≤ 13 can be found in [CDV20, Section 5].

3. Radical isogenies in the language of modular curves

Let E be an elliptic curve over the �eld k where char(k) ∤ N and P point of order N ≥ 4 on
that curve. From Lemma 2.1, pair (E,P ) is isomorphic to the unique pair of the form

E : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0), b, c ∈ k.

Let φ be an isogeny E −→ E/⟨P ⟩ with Ker(φ) = ⟨P ⟩. De�ne E ′ := E/⟨P ⟩. There is a point
P ′ ∈ E ′ of order N such that φ̂(P ′) = P . Point P ′ is not unique P−distinguished point such
that composition E −→ E ′ −→ E ′/⟨P ′⟩ is a cyclic N2 isogeny. Again, using Lemma 2.1, pair
(E ′, P ′) is isomorphic to unique pair of the form

E ′ : y2 + (1− c′)xy − b′y = x3 − b′x2, P ′ = (0, 0).

It follows from [CDV20, Section 3] that the point P ′, parameters b′, c′ are all de�ned over
k(b, c, N

√
ρ) for some ρ ∈ k(b, c). We will continue to work with enhanced elliptic curves for

di�erent congruence subgroups. For any elliptic curve Ẽ and point P̃ of order N ≥ 4, let

its unique Tate normal form be de�ned with parameters b̃ and c̃. Let b denote a mapping

(Ẽ, P̃ ) 7→ b̃, i.e. b is a function on the set of the enhanced elliptic curves for Γ1(N), that for a

curve (Ẽ, P̃ ) returns parameter b̃ from corresponding Tate normal form. This is a well-de�ned
function because Tate's normal form is unique. Similar, for parameter c̃, function c : (E,P ) 7→ c
is well de�ned. De�nition of modular functions on enhanced elliptic curves implies that b and c

are elements of k(X1(N)). For curves E and E ′ we have (E,P )
b7−→ b, (E,P )

c7−→ c, (E ′, P ′)
b7−→ b′

and (E ′, P ′)
c7−→ c′. We would like to connect parameters b, c with b′, c′ using modular curves

and maps on them. Following sequence of maps will be considered:

(3.1)
(E,P ) −→ (E ′, P ′)

b7−→ b′,

(E,P ) −→ (E ′, P ′)
c7−→ c′.

Since point P ′ is not unique, the map (E,P ) −→ (E ′, P ′) is not uniquely de�ned, so there is
none obvious connection on X1(N). For a point P of order N, let R be a point of order N2 such
that NR = P . Point R is not unique. Pair (E,R) is an enhanced elliptic curve for Γ1(N

2), and
starting from (E,R), we can go in two directions. The �rst one on E, knowing that there is a
point P = NR, and the second on E ′, using P and R, we can de�ne a point P ′ on E/⟨NR⟩ of
order N as

P ′ := R + ⟨NR⟩ = R + ⟨P ⟩.
From φ(R) = P ′ we have

φ̂(P ′) = φ̂(φ(R)) = [deg φ]R = NR = P,

so P ′ is P−distinguished. After the introduction of point R, the sequence of maps (3.1) can
be slightly modi�ed. For simplicity, we will continue to work with parameter b and associated
functions, as the approach for c is the same. Starting from the enhanced elliptic curve (E,R),
maps are

(E,R) −→ (E,NR) = (E,P )
b7−→ b,(3.2)

(E,R) −→ (E/⟨NR⟩, R + ⟨NR⟩) = (E/⟨P ⟩, R + ⟨P ⟩) = (E ′, P ′)
b7−→ b′.(3.3)
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From the maps in (3.3), similar to b, we can de�ne a function b′ : (E,R) 7→ b′, which is a
function on the set of enhanced elliptic curves for Γ1(N

2). Maps and functions are visualized
in Figure 1.

X1(N
2),Γ1(N

2) (E,R)

(E,NR) (E/⟨NR⟩, R + ⟨NR⟩)

X1(N),Γ1(N) (E,P ) (E ′, P ′)

b b′

N ·
φ

b b

Figure 1. Maps on enhanced elliptic curves

The connection between parameters b and b′ can now be extended to an enhanced elliptic
curve (E,R), i.e. to functions in X1(N

2). For every N, let π1,N and π2,N de�ne a pair of
pullback operators:

π∗
1,N : k(X1(N)) −→ k(X1(N

2)), π1,N((E,R)) = (E,NR),

π∗
2,N : k(X1(N)) −→ k(X1(N

2)), π2,N((E,R)) = (E/⟨NR⟩, R + ⟨NR⟩).

From

(π∗
1,Nb)(E,R) = b(π1,N(E,R)) = b(E,NR) = b(E,P )

and

(π∗
2,Nb)(E,R) = b(π2,N(E,R)) = b(E/⟨NR⟩, R + ⟨NR⟩) = b(E ′, P ′) = b′(E,R),

we can identify b and b′ with their respective pullbacks by π1,N and π2,N and de�ne

b := π∗
1,Nb and b′ := π∗

2,Nb

as functions on X1(N
2). Function b′ is an element of π∗

2,N(k(X1(N))), so if proved that there

exist some modular function g in k(X1(N
2)), de�ned using b and c, such that

(3.4) π∗
1,N(k(X1(N)))(g) = π∗

2,N(k(X1(N))),

b′ will also be an element of π∗
1,N(k(X1(N)))(g).

Let P be a point of order N as before, and fN,P normalized Miller function. With the value
of fN,P in point −P, we can de�ne a modular function f on enhanced elliptic curves for Γ1(N),

f : (E,P ) 7→ fN,P (−P ) ∈ k(X1(N)).

For a Miller function fN,P and point P, de�ned as above, from equation (2.2), there exists a

function gN,P ∈ k(E) such that fN,P ◦ [N ] = gNN,P . Using this equality, for enhanced elliptic

curve (E,R), where, as before, P = NR, we have a function on X1(N
2),

(E,R) 7→ fN,NR(−NR) = fN,NR(N(−R))
= gN,NR(−R)N = gN,P (−R)N .

Function g := (E,R) 7→ gN,P (−R) ∈ k(X1(N
2)) is a function with property

gN = f,
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so N−th root of f is a function on X1(N
2). To summarize, functions b, b′ and g are elements of

k(X1(N
2)), but due to the size of this �eld, proving (3.4) is still not possible, and it is necessary

to �nd a smaller quotient of X1(N
2) where b, b′, and g are well de�ned.

3.1. "Shrinking" the �eld of de�nition. To get a better sense of the behaviour of the
function b′, preimages of (E,P ) under the pullback operator π2,N , i.e. pairs (E,R) and (E,R′),
mapped by π2,N to the same point (E/⟨NR⟩, R + ⟨NR⟩) will be investigated. For equality

(E/⟨NR′⟩, R′ + ⟨NR′⟩) = (E/⟨NR⟩, R + ⟨NR⟩)
to be true we need to have ⟨NR′⟩ = ⟨NR⟩ and R′+⟨NR′⟩ = R+⟨NR⟩. Combined, R′+⟨NR⟩ =
R + ⟨NR⟩, so there exists some l ∈ N such that,

R′ = R + l ·NR and NR′ = N(R + lP )

thus altogether,

⟨N(R + lP )⟩ = ⟨NR⟩.
Considering that point R is of order N2, points (E,R), (E,R+1·NR), . . . , (E,R+(N−1)·NR)
are all mapped to the same �nal point. Comparing this to the de�nition of b′, it is clear that
b′ is a function on X1(N

2) that maps points of this type to the same �nal point.
Let tm be an operator on S1(N

2) de�ned as tm : (E,P ) 7→ (E,mP ). For m = N + 1, de�ne
t := tN+1. On enhanced elliptic curve (E,R) ∈ S1(N

2), this operator act as:

(E,R)
t7−→ (E, (N + 1)R)

t7−→ (E, (N + 1)2R)
t7−→ . . .

t7−→ (E, (N + 1)N−1R).

Order of operator t is equal to N, because we have tN(E,R) = (E, (N + 1)NR) = (E,R). The
de�nition of operator t mimics the mapping on points from the beginning of this section. From
the composition of t with π1,N on enhanced elliptic curve (E,R) we have

π1,N(t(E,R)) = π1,N(E, (N + 1)R)

= (E,N(N + 1)R) (since order of R is N2)

= (E,NR)

= π1,N(E,R),

and similar for π2,N ,

π2,N(t(E,R)) = π2,N(E, (N + 1)R)

= (E/⟨N(N + 1)R⟩, (N + 1)R + ⟨N(N + 1)R⟩)
= (E/⟨NR⟩, R + ⟨NR⟩) (since NR ∈ ⟨NR⟩)
= π2,N(E,R),

thus, every pullback by π2,N or by π1,N will be invariant for t. Modular function (E,R)
g7−→

gN,P (−R), with property gN = f, is also invariant for t. Referring again to [Sil09, Chapter III.8]
for more details, function gN,NR can be used to de�ne Weil pairing

eN(S, P ) =
gN,NR(X + S)

gN,NR(X)
,

where X ∈ E and S, P ∈ E[N ] with S = P allowed, and as before we have P = NR. To see
that function g is invariant for t, let (E,R) ∈ S1(N

2), then

t(E,R) = (E, (N + 1)R)
g7−→ gN,N(N+1)R(−(N + 1)R)

= gN,NR(−NR−R)

= gN,NR(−R− P )
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and together with the bilinearity and alternating property of Weil pairing,

gN,NR(−R− P ) = gN,NR(−R)eN(−P, P ) = gN,NR(−R)eN((N − 1)P, P )

= gN,NR(−R)eN(P, P )N−1 = gN,NR(−R) = gN,P (−R).

Group of automorphisms of X1(N
2) generated with t will be denoted with ⟨t⟩. Function on

X1(N
2), invariant for the operator t, can be viewed as a function on a quotient X1(N

2)/⟨t⟩.
From the discussion above, b′ is an example of a function on X1(N

2)/⟨t⟩. Quotient X1(N
2)/

⟨t⟩, i.e. quotient of modular curve with the operator is again a modular curve. To see this,
following [KM85] and [DR73] we can, for a �eld k de�ned at the begging of this section, assume
that k = C. Then, we have the following proposition, which explicitly calculates the congruence
subgroup de�ning this quotient, i.e. corresponding modular curve.

Proposition 3.1. Let t be an operator de�ned on the set of enhanced elliptic curves for
Γ1(N

2) with t(E,R) = (E, (N +1)R). Let ⟨t⟩ denote the subgroup of automorphism of X1(N
2)

generated with t. Quotient of the H∗ = H ∪Q ∪ {∞} and the congruence subgroup

Γ̃(N) :=
{
( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N2), a, d ≡ 1 (mod N)

}
,

i.e. Γ̃(N)/H∗, is a modular curve consisting of all the functions on X1(N
2) invariant for t.

Proof. Following [DS05, Section 1.5], sets of equivalence classes of enhanced elliptic curves can
be used to describe the quotients of the upper half plane by congruence subgroups. In other
words, for a function f on X1(N

2)/⟨t⟩, there is a corresponding meromorphic function f on
the upper half plane invariant for Γ1(N

2) and matrix t ∈ SL2(Z), which corresponds to the
operator t. To see this, �rst notice that from the Theorem 2.2, S1(N

2) is a moduli space of
isomorphism classes of complex elliptic curves and N2-torsion data, i.e.

S1(N
2) = {[Eτ ,

1

N2
+ Λτ ]},

where τ,Λτ and Eτ are as in Section 2. Describing what the operator t does in the sense of
congruence subgroup implies working with the pair (E,R) after applying the operator t, i.e.
with

t(Eτ ,
1

N2
+ Λτ ) = (Eτ ,

N + 1

N2
+ Λτ ).

We need to �nd τ ′ ∈ H, such that (Eτ ,
N+1
N2 + Λτ ) is isomorphic to (Eτ ′ ,

1
N2 + Λτ ′). Let τ

′ =
(1−N)τ−1
N2τ+1+N

and Λτ ′ = ⟨1, τ ′⟩. Elements 1 and τ are linear combination of 1 and τ ′. For 1 is obvious
and for τ we have:

(1 +N)(N2τ +N + 1) · (1−N)τ − 1

N2τ +N + 1
+ (N2τ +N + 1) · 1 = τ.

From this, Λτ ′ is isomorphic to Λτ . Now is easy to see that for the matrix

t =
(
1−N −1
N2 1+N

)
∈ Γ0(N

2) \ Γ1(N
2),

using the usual fractional linear transformation on H, we have t(τ) = τ ′. Desired congruence

subgroup Γ̃(N) is generated with Γ1(N
2) and matrix t, thus

Γ̃(N) =
{
( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N2), a, d ≡ 1 (mod N)

}
.

It is obvious from the construction of the congruence subgroup Γ̃(N) that the quotient Γ̃(N)/
H∗ is de�ning a modular curve consisting of all functions on X1(N

2) invariant for t. □

As a direct consequence of Proposition 3.1, X1(N
2)/⟨t⟩ is a well de�ned modular curve with

a function �eld equal to

k(X1(N
2)/⟨t⟩) = {f ∈ k(X1(N

2)) : f(t(E,R)) = f(E,R),∀(E,R) ∈ S1(N
2)}.
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Subgroup Γ1(N
2) is a normal subgroup of Γ̃(N). It is enough to see that t−1 ( a bc d ) t ∈ Γ1(N

2),
for every matrix ( a bc d ) ∈ Γ1(N

2) and t as in proof of the Proposition 3.1, which is true because(
1−N −1
N2 1+N

)
( a bc d )

(
1+N 1
−N2 1−N

)
=

=
(
a(1−N)(N+1)+c(1−N)+N2(b(N+1)+d) −a(N+1)+b(N+1)(N+1)+d(N+1)−c
c(1−N)2−aN2(1−N)+N2(d(1−N)−bN2) aN2+d(1−N)(N+1)−bN2(N+1)−c(1−N))

)
≡

(
1 2(N+1)+b(2N+1)
0 1

)
(mod N2)

For the index of Γ1(N
2) in Γ̃(N), we will use homomorphism πN : SL(Z) → SL(Z/NZ), induced

by reduction modulo N , where N ≥ 1. The principle congruence subgroup Γ(N) is the kernel
of this homomorphism and a normal subgroup in SL(Z) of �nite index. Any other congruence

subgroup Γ(N) ⊂ Γ̃ is of �nite index in SL(Z) and a preimage of πN , i.e. Γ̃ = π−1
N (Γ̂) where Γ̂

is some subgroup of SL(Z/NZ). Index [Γ̃ : Γ(N)] is equal to #Γ̂. In our case for #
̂̃
Γ(N), after

reducing elements of Γ̃(N) modulo N2, conditions on elements are c = 0, a, d ≡ 1 (mod N)
and a, b, c, d ∈ Z/N2Z. There are no conditions on element b, but a and d have to satisfy a
condition for determinant ad ≡ 1 (mod N2). If we write a = 1 + kN and d = 1 + lN, where
k, l ∈ {0, 1, . . . , N − 1}, then

(1 + kN)(1 + lN) = 1 +N(k + l) + klN2 ≡ 1 (mod N2),

from which k+ l ≡ 0 (mod N), so l depends completely on k meaning d depends completely on

a. Altogether, #
̂̃
Γ(N) = N3. Index [Γ̃(N) : Γ(N2)] is equal to [Γ̃(N) : Γ1(N

2)][Γ1(N
2) : Γ(N2)],

thus

[Γ̃(N) : Γ1(N
2)] =

#
̂̃
Γ(N)

[Γ1(N2) : Γ(N2)]
=

#
̂̃
Γ(N)

N2
=
N3

N2
= N.

With similar calculation, index [Γ1(N) : Γ1(N
2)] is equal to N2.

Subgroup Γ1(N
2) is a normal subgroup of Γ̃(N) with the index N , so the quotient Γ̃(N)/

Γ1(N
2) acts as a group of automorphism of k(X1(N

2)) with �xed �eld k(X(Γ̃(N))), i.e.

k(X(Γ̃(N))) = k(X1(N
2))Γ̃(N)/Γ1(N2),

from which

k(X(Γ̃(N))) = k(X1(N
2))t,

so we have an equality of function �elds

k(X(Γ̃(N))) = k(X1(N
2)/⟨t⟩).

We have showed that function b ∈ π∗
1,N(k(X1(N))) is invariant under the operator t, so

π∗
1,N(k(X1(N))) N

⊂ k(X(Γ̃(N))) = k(X1(N
2)/⟨t⟩),

where the degree of the extension is equal to the index of subgroup. Coming back to equality
(3.4), modular function g : (E,R) 7→ gN,P (−R) is a element of �eld k(X1(N

2)/⟨t⟩) with property
gN = f . Polynomial xN − f is a polynomial of degree N in π∗

1,N(k(X1(N)))[x] having g as a

root. Equality (3.4) depends on irreducibility of the polynomial xN − f.

Lemma 3.2. Let f be a function de�ned on the set S1(N) with (E,P ) 7→ fN,P (−P ), where
fN,P is a normalized Miller function. Let g be a function de�ned on the set S1(N

2) with

(E,R) 7→ gN,P (−R), where P = NR and fN,P ◦ [N ] = gNN,P . Let t ∈ Gal(k(X1(N
2))/k(X1(N)))

be an operator de�ned with t(E,R) = (E, (N + 1)R), (E,R) ∈ S1(N
2). Let π∗

1,N : k(X1(N)) −→
k(X1(N

2) be a pullback operator de�ned with π1,N((E,R)) = (E,NR). Then the polynomial

xN − f is irreducible polynomial in π∗
1,N(k(X1(N)))[x].
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Proof. We will show that �eld extension π∗
1,N(k(X1(N)))(g) is of degree N over k(X1(N)), i.e.

that the function g is only invariant for the operator t, so it is an element of the function �eld
k(X(Γ̃(N))), and cannot be an element of some other �eld k(X(Γ)) with Γ̃(N) ⫋ Γ ⊂ Γ1(N)
and g ∈ k(X(Γ)).
Assume then that g is invariant for another operator T ∈ Gal(k(X1(N

2))/k(X1(N))) such
that T (E,R) = (E, T (R)), (E,R) ∈ S1(N

2), and where NT (R) = NR = P. Invariant property
of function g, together with previously de�ned Weil pairing implies:

1 =
gN,NR(−T (R))
gN,NR(−R)

=
gN,P ((R− T (R))−R)

gN,P (−R)
= eN(P,R− T (R)).

Point R− T (R) is in E[N ], because from the assumption NT (R) = NR = P, we have N(R−
T (R)) = P −P = O, so eN(P,R−T (R)) is consistent with the de�nition of Weil pairing. From
this, for every (E,R) ∈ S1(N

2) we have eN(P,R− T (R)) = 1.
For a �xed elliptic curve E and P point of order N on that curve such that P = NR, as Weil
pairing is non-degenerate, from eN(P,R − T (R)) = 1, for every R, we have that the point
R− T (R) ∈ ⟨P ⟩. Point T (R) then has a form R + lP for some l ∈ Z, depending on R.
Comparing this to the operator t, since g is invariant to t, we have

g(E,R) = g(t(E,R)) = g(E, (N + 1)R) = g(E,R + P ),

so g(E,R) = g(E,R + kP ) for every k ∈ Z. For the operator T, we have

g(E,R) = g(E, T (R)) = g(E,R + lP ),

for some l ∈ Z, thus the invariant property of the function g for the operator T follows from the
invariant property of the function g for the operator t, so g is modular only for the congruence
subgroup Γ̃(N).
This implies that function �eld π∗

1,N(k(X1(N)))(g) is a extension of degree exactly N over

k(X1(N)). Roots of the polynomial xN − f are of the form ζkNg, where ζN is N−th root of
unity and k ∈ N. If we assume that this polynomial is not irreducible, then there would exists
two non-constant polynomials f1, f2 ∈ k(X1(N))[x], such that xN − f = f1(x)f2(x), where
deg f1 < N and g a root for f1 which is a contradiction with the degree of g. □

To conclude, irreducibility of the polynomial xN − f from the Lemma 3.2 implies

π∗
1,N(k(X1(N)))(g) = k(X1(N

2)/⟨t⟩),

meaning b′ is element of π∗
1,N(k(X1(N)))(g), so equality (3.4) holds and radical isogeny formulas

can be extended to modular functions.

Example 3.3. Let N = 5 and E be an elliptic curve over the �eld

Q5(b, c) := Frac
Q[b, c]

(F5(b, c))
.

Tate normal form for E, together with the point P of order 5 is

(3.5) E : y2 + (1− b)xy − by = x3 − bx2, P = (0, 0).

In general, polynomial FN(b, c) ∈ Z[b, c] is an irreducible polynomial calculated from scalar
multiples of the point P.When N ≥ 4, condition FN(b, c) = 0 together with Fm(b, c) ̸= 0, when
4 ≤ m < N and determinant of E not equal to zero, guaranties that point P is of order N .
Other direction is also true; when P is of order N, then FN(b, c) = 0. Additionally, FN(b, c) is
a de�ning polynomial for modular curve X1(N), so QN(b, c) is a function �eld of X1(N) over
Q. More details are available in [Str19].
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In case of N = 5 we have F5(b, c) = b − c = 0 and this implies a simpler Tate normal form
(3.5). On the other side curve E ′ and point P ′ of order 5 are

E ′ = E/⟨P ⟩ : y2 + (1− b′)xy − b′y = x3 − b′x2, P ′ = (0, 0).

Having only a parameter b results in only a modular function b in k(X1(5)). For a point P , let
R be a point of order 25 such that 5R = P . Pair (E,R) is enhanced elliptic curve for Γ1(25).
Pullbacks π1,5, π2,5 and maps b, b′ are de�ned as before.
From the example in [CDV20, Section 4], when N = 5, f5,P (−P ) = b ∈ Q5(b). The �fth

root of b is a function on X1(25), as (E,R)
g7−→ g5,5R(−R) is a well de�ned map with a property

g5 = b.
Observing the preimages of π2,5, points (E,R), (E,R+1 · 5R), (E,R+2 · 5R), (E,R+3 · 5R)

and (E,R + 4 · 5R) are all mapped to the same �nal point. Operator t de�ned as t(E,R) 7→
(E, (5 + 1)R) = (E, 6R) is of order 5 and ⟨t⟩ ≃ Z/5Z. Congruence subgroup generated with
Γ1(25) and matrix t = ( −4 −1

25 6 ) is

Γ̃(5) =
{(

ã b̃
c̃ d̃

)
∈ SL2(Z) : c̃ ≡ 0 (mod 25), ã, d̃ ≡ 1 (mod 5)

}
.

Functions b′, g and every pullback by π1,5 or π1,5 are invariant for t so they are also de�ned on

the quotient X1(25)/⟨t⟩. For the number of elements in group #
̂̃
Γ(5), after reducing elements

of Γ̃(5) modulo 25, conditions on elements are c̃ = 0, ã, d̃ ≡ 1 (mod 5) and ã, b̃, c̃, d̃ ∈ Z/25Z.
Only possibilities for ã and d̃ are from set {1, 6, 11, 16, 21}. Determinant of the matrix has to

be 1 in SL(Z/25Z), there are 25 possibilities for b̃, so altogether, there are 125 elements in this

group. Therefore, index [Γ̃(5) : Γ1(25)] = 5. Field extension π∗
1,5(k(X1(5))) ⊂ k(X1(25)/⟨t⟩) is

of order 5, polynomial X5 − b is irreducible in π∗
1,5(k(X1(5))), has a well de�ned root, thus

π∗
1,5(k(X1(5)))(

5
√
b) = k(X1(25)/⟨t⟩),

meaning b′ ∈ π∗
1,5(k(X1(5)))(

5
√
b) and b′ is a rational expression of 5

√
b.

4. Extending to X0(N)

Continuing from the setting of the previous section, the discussion for Γ1(N), X1(N) and
S1(N) can be expanded to Γ0(N), X0(N) and S0(N). Let β be a function on enhanced elliptic
curves for Γ0(N), i.e. an element of k(X0(N)). For example, we can take β to be Hauptmodul
for k(X0(N)). Such Hauptmodul will exist if the genus of the modular curve is zero. Pullback
operators π1,N and π2,N are de�ned as in the previous section, and ψ is a pullback operator
de�ned by

ψ∗
N : k(X0(N)) −→ k(X1(N)), ψN((E,P )) = (E, ⟨P ⟩).

Applying the compositions π∗
1,N ◦ ψ∗

N and π∗
2,N ◦ ψ∗

N to functions from k(X0(N)) results in

elements of k(X1(N
2)). From now on, we will identify function β with β := π∗

1,N(ψ
∗
N(β)) and

de�ne β′ := π∗
2,N(ψ

∗
N(β)). Both β and β′ are elements of k(X1(N

2)). Maps and connections are
visible in Figure 2.
Because β′ is de�ned as pullback by π2, as before it is invariant for the operator t which

implies β′ ∈ k(X(Γ̃(N))). Similar to the previous section, if radical isogeny formulas exists on
X0(N) it should be possible to express β′ as an element of some function �eld depending on
β. To this end, we are interested in preimages of (E,P ), now under the maps π∗

1,N(ψ
∗
N) and

π∗
2,N(ψ

∗
N), i.e. pairs of enhanced elliptic curves for Γ1(N

2), (E,R) and (E,R′) mapped to the
same �nal points (E, ⟨NR⟩) and (E/⟨NR⟩, ⟨R + ⟨NR⟩⟩). Moreover, to include functions on
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X1(N
2),Γ1(N

2) (E,R)

X1(N),Γ1(N) (E,NR) (E/⟨NR⟩, R + ⟨NR⟩)

(E,P ) (E ′, P ′)

X0(N),Γ0(N) (E, ⟨P ⟩) (E ′, ⟨P ′⟩)

β(E,R) β′(E,R)

π1,N π2,N

ψN ψN

β β

Figure 2. Maps on enhanced elliptic curves, including X0(N)

X0(N), maps (3.2) and (3.3) are extended to

(4.1)
(E,R) −→ (E,NR) = (E,P ) −→ (E, ⟨P ⟩)
(E,R) −→ (E/⟨NR⟩, R + ⟨NR⟩) = (E ′, P ′) −→ (E ′, ⟨P ′⟩).

Describing preimages of maps in (4.1) will provide us with another quotient of X1(N
2) where

function β′ will be well de�ned. Addition of enhanced elliptic curves for Γ0(N) in maps (4.1),
i.e. maps (E,P ) −→ (E, ⟨P ⟩) and (E ′, P ′) −→ (E ′, ⟨P ′⟩) results in additional conditions on those
preimages and, as a consequence, β′ will be an element of a smaller function �eld k(X(Γ′)),

for some congruence subgroup Γ′ such that Γ̃(N) ⊂ Γ′. Groups describing preimages and their
connections to the function �elds are given in the following proposition.

Lemma 4.1. Let N ≥ 5 be a positive integer. Group G, de�ned as a semidirect product

G = (Z/NZ)2 ⋊φ̂ (Z/NZ)×,
where for a triple ((g1, g

′
1), g2) ∈ G we have φ̂g2(g1, g

′
1) = (g2g1, g2g

′
1), is isomorphic to Galois

group of function �eld extension k(X1(N
2))/k(X0(N)). In particular k(X0(N)) = k(X1(N

2))G.
Let subgroup H of G be de�ned as

H = (Z/NZ× {0})⋊φ̂ (Z/NZ)×,
and let π1,N , π2,N , ψN be pullback operators de�ned with

π∗
1,N : k(X1(N)) −→ k(X1(N

2)), π1,N((E,R)) = (E,NR),

π∗
2,N : k(X1(N)) −→ k(X1(N

2)), π2,N((E,R)) = (E/⟨NR⟩, R + ⟨NR⟩),
ψ∗
N : k(X0(N)) −→ k(X1(N)), ψN((E,P )) = (E, ⟨P ⟩).

Functions from the set π∗
1,N(ψ

∗
N(k(X0(N)))) are invariant under the action of group G and

functions from the set π∗
2,N(ψ

∗
N(k(X0(N)))) are invariant under the action of subgroup H.

Proof. Let E be an elliptic curve over the �eld k and P point of order N on that curve. Let R
and R′ be points of order N2 on curve E and R such that P = NR. Pair (E,R) is an enhanced
elliptic curve for Γ1(N

2). We are interested in preimages of composition π∗
1,N ◦ ψ∗

N , i.e. in map
(E,R) 7→ (E, ⟨NR⟩). Di�erent R and R′ are mapped to the same point if ⟨NR⟩ = ⟨NR′⟩, so
there exists k ∈ N such that kNR = NR′. Because R′ is a point of order N2 and kP = NR′ it
follows that gcd(N, k) = 1. Altogether, points

R′ = kR + P , where P ∈ E[N ] and k ∈ N, gcd(k,N) = 1,
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are mapped by (E,R) 7→ (E, ⟨NR⟩) to the same �nal point. Number of preimages of this type
is N2φ(N).1

De�ne G1 := (Z/NZ)2 and G2 := (Z/NZ)×. Let torsion group E[N ] be generated with basis
⟨P1, P2⟩, then a point P ∈ E[N ] is equal to P = aP1 + bP2 for some a, b ∈ Z/NZ. Point R′ is
equal to kR+ aP1 + bP2. We de�ne action of the triple (a, b, k) ∈ G1 ⋊φG2 on the point R, i.e.
on the set of preimages, with

(4.2) (a, b, k)R 7→ kR + aP1 + bP2.

This is a well de�ned action, because for two such triples (a1, b1, k1), (a2, b2, k2), we have:

(a1, b1, k1) ◦ (a2, b2, k2)R = (a1, b1, k1)(k2R + a2P1 + b2P2)

= k1(k2R + a2P1 + b2P2) + a1P1 + b1P2

= k1k2R + (k1a2 + a1)P1 + (k1b2 + b1)P2

= (a1 + k1a2, b1 + k1b2, k1k2)R.

Let G = G1 ⋊φ G2 and φ̂k(a, b) = (ka, kb), a, b ∈ G1, k ∈ G2. We have identi�ed functions
from k(X0(N)) with their double pullbacks �rst by ψN and then by π1,N . More generally, a
function �eld k(X0(N)) was identi�ed with π∗

1,N(ψ
∗
N(k(X0(N))). Set of preimages of functions

in π∗
1,N(ψ

∗
N(k(X0(N)))) is invariant under the action (4.2) of group G which implies k(X0(N)) =

k(X1(N
2))G.

For H, we are interested in preimages of composition π∗
2,N ◦ ψ∗

N , i.e. in map (E,R) 7→
(E/⟨NR⟩, ⟨R + ⟨NR⟩⟩). Similar as before for condition ⟨NR⟩ = ⟨NR′⟩ there exists ĥ ∈
N, gcd(ĥ, N) = 1 such that R′ = ĥR + P , for some P ∈ E[N ]. When R and R′ are satisfying
this, second condition becomes ⟨R+ ⟨NR⟩⟩ = ⟨R′ + ⟨NR⟩⟩, i.e. ⟨R+ ⟨P ⟩⟩ = ⟨R′ + ⟨P ⟩⟩. Now,
there exists ĵ, ŝ such that ĵR − R′ = ŝP. Combining everything together, ĵR − ĥR − P = ŝP,
and (ĵ − ĥ)R = ŝP +P . Right side of this equality is a point of order dividing N , so N |(ĵ − ĥ)

and there exist t̂ such that ĵ − ĥ = Nt̂. Now, t̂P = ŝP + P meaning P ∈ ⟨P ⟩. Altogether,
points of the form

R′ = hR + P , where P ∈ ⟨P ⟩ and h ∈ N, gcd(h,N) = 1

are mapped by (E,R) 7→ (E/⟨NR⟩, ⟨R+ ⟨NR⟩⟩) to the same �nal point. Number of preimages
of this type is Nφ(N). The di�erence here is that we are not working with the whole torsion
group E[N ], but with group generated with point P of order N. With a similar calculation as
for G, functions in π∗

2,N(ψ
∗
N(k(X0(N)))) are invariant under the action of subgroup H = (Z/

NZ× {0})⋊φ̂ (Z/NZ)×. □

Subgroup H from Lemma 4.1 can be used to de�ne a function �eld k′ := k(X1(N
2))H . Field

k′ is an intermediate �eld k(X0(N)) ⊂ k′ ⊂ k(X1(N
2)) and a function �eld for some modular

curve, so we can take k′ = k(X(Γ′)), where Γ′ is a congruence subgroup and X(Γ′) := Γ′/
H. Invariant property of the functions in the set π∗

2,N(ψ
∗
N(k(X0(N)))) under the action of

H implies that all functions from that set are well de�ned on the quotient X(Γ′). From the
construction above, Γ′ is a subset of Γ0(N) and from the calculated number of preimages, index
[Γ0(N) : Γ′] = N. The congruence subgroup Γ′ can be calculated similarly to the congruence

subgroup Γ̃(N) from the previous section.
Using the setup and proof of the Lemma 4.1 and the discussion above, we can prove the

following theorem.

Theorem 4.2. Let H be a group (Z/NZ×{0})⋊φ̂ (Z/NZ)×. Let k′ be a function �eld de�ned

with k′ := k(X1(N
2))H . Extension k′/k(X0(N)) is not a Galois extension.

1Throughout the proof φ denotes Euler totient function.
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k(X0(N)) k(X(Γ′)) k(X1(N
2))N

⊂

G

⊂

H

Figure 3. Function �elds related to groups G and H

Proof. Let group G and pullbacks π1,N , π2,N , ψN be de�ned as in Lemma 4.1. As discussed
above, k is by de�nition an intermediate �eld k(X0(N)) ⊂ k′ ⊂ k(X1(N

2)) and there exist
a congruence subgroup Γ′ such that k′ = k(X(Γ′)). Working with function �elds shown in
Figure 3, to get radical isogeny formulas on X0(N), we need to �nd α ∈ k(X0(N)) such
that k(X0(N))( N

√
α) = k(X(Γ′)). Functions from k(X0(N)) are identi�ed with composition of

pullbacks π1,N and ψN , i.e. α should be an element of the �eld π∗
1,N(ψ

∗
N(k(X0(N)))). If such

α exists, �eld extension k(X(Γ′))/k(X0(N)) should be a cyclic extension of order N, i.e. it
should be a Galois extension. This implies that H, a subgroup of index N, should be a normal
subgroup of G.
Points of type R′ = R + lP, l ∈ N are mapped by (E,R) 7→ (E/⟨NR⟩, R + ⟨NR⟩) to the

same �nal point. Corresponding congruence subgroup describing preimages of this type was
calculated in Proposition 3.1 and it is equal to

Γ̃(N) =
{
( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N2), a, d ≡ 1 (mod N)

}
.

Index [Γ̃(N) : Γ1(N
2)] is equal to N. This, combined with the calculated number of preimages

in the proof of the Lemma 4.1, implies that Γ̃(N) ⊂ Γ′ with index equal to φ(N). Function β′

is an element of k(X(Γ̃(N))) by de�nition and an element of k(X(Γ′)) by construction.
If H is a normal subgroup, then for every g ∈ G and every h ∈ H there should exist some

h′ ∈ H such that ghg−1 = h′. Let g = ((g1, g2), k1) ∈ G and h = ((h1, 0), k2) ∈ H. Using g and
h,

ghg−1 = ((g1, g2), k1)((h1, 0), k2)((g1, g2), k1)
−1

= ((g1, g2), k1)((h1, 0), k2)(φ̂k−1
1
((g1, g2)

−1), k−1
1 )

= ((g1, g2)φ̂k1(h1, 0), k1k2)(φ̂k−1
1
(−g1,−g2), k−1

1 )

= ((g1 + k1h1, g2 + k1 · 0), k1k2)((−k−1
1 g1,−k−1

1 g2), k
−1
1 )

= ((g1 + k1h1 − k2g1, g2 − k2g2), k2).

For this product to be in H, g2 − k2g2 = 0, for every k2 ∈ (Z/NZ)× and every g2 ∈ Z/NZ. Let
g2 be a generator for Z/NZ, for example, take g2 = 1. Then, for every k2 ∈ (Z/NZ)×, k2 ̸= 1
we have k2g2 = k2 · 1 = k2 ̸= 1 = g2. To conclude, H is not a normal subgroup of G. □

Coming back to Example 1.1, existence of radical isogeny formula for S0(5) depends on
�nding a parametrization of S0(5) for which the extension Q(ζ5)(β

′)/Q(ζ5)(β) would be Galois.
The Theorem 4.2 shows that such Galois extension cannot exists in a more generalized setting
of modular curves. As a direct consequence of that fact, we have the following corollary which
is a main result of this article.

Corollary 4.3. Let N ≥ 5. Radical isogeny formulas for S0(N) are not possible.
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