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Abstract. This article explores the connection between radical isogenies and modular curves.
Radical isogenies are formulas designed for the computation of chains of isogenies of �xed small
degree N , introduced by Castryck, Decru, and Vercauteren at Asiacrypt 2020. One signi�cant
advantage of radical isogeny formulas over other formulas with a similar purpose is that they
eliminate the need to generate a point of order N that generates the kernel of the isogeny. While
radical isogeny formulas were originally developed using elliptic curves in Tate normal form,
Onuki and Moriya have proposed radical isogeny formulas of degrees 3 and 4 on Montgomery
curves and attempted to obtain a simpler form of radical isogenies using enhanced elliptic and
modular curves. In this article, we translate the original setup of radical isogenies in Tate
normal form into the language of modular curves. Additionally, we solve an open problem
introduced by Onuki and Moriya regarding radical isogeny formulas on X0(N).
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1. Introduction

Post-quantum cryptography (PQC) is an area of cryptography focused on developing cryp-
tosystems that can resist attacks from both classical and quantum computers. These sys-
tems rely on hard mathematical problems that di�er from the integer factorization problem or
(elliptic-curve) discrete logarithm problem, which are the basis of most current cryptographic
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algorithms. PQC includes various approaches to cryptography, such as lattice-based cryptogra-
phy, code-based cryptography, multivariate-based cryptography, hash-based cryptography, and
isogeny-based cryptography.
The �rst isogeny-based cryptosystem was proposed by Couveignes in 1997 [12], and then

again independently by Rostovtsev and Stolbunov in 2006 (commonly referred to as CRS) [23].
They described a non-interactive key exchange using ordinary elliptic curves. New momentum
in this �eld came in 2011 when De Feo and Jao proposed SIDH [17], the supersingular isogeny
Di�e-Hellman key exchange. A variant of this algorithm called SIKE was a promising candidate
for NIST PQC standardization,1 but it was broken in several independent papers in August
2022 [3,20,22]. In 2018, Castryck, Lange, Martindale, Panny, and Renes introduced CSIDH [6],
or commutative-SIDH, a key exchange protocol that adapts CRS protocol to supersingular
elliptic curves. CSIDH is not a�ected by the previously mentioned attacks.
Compared to other post-quantum protocols, the main advantages of isogeny-based cryptog-

raphy are smaller key sizes and ciphertext sizes. On the other hand, the main disadvantage
of isogeny-based protocols has been the high computational cost of encryption and decryption.
These advantages and disadvantages are particularly evident in digital signatures. SQISign,
introduced in 2020 [13], is among the most promising and compact isogeny-based digital sig-
natures. It has seen some speed improvements in 2022 [14], but despite this, it is still several
orders of magnitude slower than other post-quantum signature schemes.
Protocols like CRS, CSIDH or, for example, Charles, Goren and Lauter's hash function [8]

share the need to compute isogenies of low degree in �nite �eld. An isogeny can be computed
from the coordinates of the points in its kernel using Vélu's formulas [26]. To improve and
accelerate isogeny computation, various approaches and variants of Vélu's formulas have been
proposed for di�erent curve models, such as Montgomery curves in [11], Edwards curves [7,19],
and Hessian curves [2]. An algorithm by Bernstein, De Feo, Leroux and Smith [1] reduces the

cost of computation of isogeny of degree N from O(N) to Õ(
√
N) and can be applied to Hu�'s

and general Hu�'s curves [27].
Radical isogenies are formulas designed for computing a chain of isogenies of the same small

degree between elliptic curves over a �nite �eld. They were �rst introduced by Castryck,
Decru and Vercauteren in 2020 [5]. The authors showed that using radical isogeny formulas in
CSIDH-512 leads to a more e�cient implementation and a speed-up of 19%, see [5, Section 6].
In [5], formulas were given for N ≤ 13, and in 2022, the same group of authors, along with
Houben [4], developed a di�erent method for �nding radical isogeny formulas for a given degree
N , and provided formulas for N ≤ 37.
The concept of radical isogeny formulas was initially introduced for elliptic curves in Tate

normal form. Generally, an elliptic curve over a �eld k and a point on that curve with an order of
at least N ≥ 4 are isomorphic to an elliptic curve of the form E : y2+(1− c)xy− by = x3− bx2

with b, c ∈ k, and a point P = (0, 0) of the same order N . This form is known as the
Tate normal form and it provides two coe�cients, denoted b and c. Given a cyclic isogeny
φ : E −→ E ′ = E/⟨P ⟩, radical isogeny formulas compute points P ′ of order N on E ′ such that

composition E
φ−→ E ′ −→ E ′/⟨P ′⟩ is cyclic of degree N2. The coordinates of P ′ are elements of

the smallest �eld that contains the coe�cients b and c, along with a radicand ρ that is a N -th
root of a rational expression in the coe�cients b and c. The elliptic curve E ′ and point P ′ are
also isomorphic to an elliptic curve in Tate normal form (for example, de�ned with coe�cients
b′ and c′) and a point (0, 0) of order N . This allows us to use radical isogeny formulas again,
making the process iterative. The coe�cients b′ and c′ can be expressed as elements of the
same �eld as P ′.

1More information about standardization is available as https://csrc.nist.gov/Projects/

post-quantum-cryptography/post-quantum-cryptography-standardization.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
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As a �rst contribution of this article, in Section 3, we will extend the notion of radical isogeny
formulas to the language of modular curves. To achieve this, we will utilize enhanced elliptic
curves, which are curves paired with additional torsion data and a�liated with some congruence
subgroup. The aforementioned parameters from Tate normal form and the radicand ρ can all
be regarded as functions on the set of equivalence classes of enhanced elliptic curves. This
generalization of radical isogenies for degree N is directly related to the modular curve X1(N),
congruence subgroup Γ1(N) and pairs of enhanced elliptic curves consisting of an elliptic curve
and a point of order N .
In [21], Onuki and Moriya introduced radical isogeny formulas of degrees 3 and 4 on Mont-

gomery curves. A Montgomery curve over a �eld k is an elliptic curve of the form E : y2 =
x3 +Ax2 + x, where A ∈ k and A2 ̸= 4. The coe�cient A is called the Montgomery coe�cient
of E. For degree 4 (degree 3 is similar), the set of equivalence classes of enhanced elliptic curves
for Γ0(4), denoted by S0(4), is equal to the set of equivalence classes of enhanced elliptic curves
for Γ1(4). This equality implies the existence of radical isogenies formulas for the modular curve
X0(4). The Montgomery coe�cient A represents a class in the set S0(4), see [21, Section 2.3].
In other words, we can say that the coe�cient A describes an enhanced elliptic curve where
the additional torsion data is a cyclic subgroup of order 4. The Montgomery coe�cient for the
curve E ′ can be calculated by a rational expression depending on the fourth root from 4(A+2)
see [21, Theorem 8].
The authors of [21] explored the possibility of extending radical isogeny formulas to the

modular curve X0(N) when N ≥ 5. The idea behind this can be summarized in a few informal
steps. First, take a modular curve of genus zero, such as X0(5). Then, �nd a parameter that
speci�es its set of equivalence classes of enhanced elliptic curves, �nd a model of a universal
elliptic curve for X0(5) de�ned by that parameter (Tate, Montgomery, or something else) and
then �nd a radical isogeny formula on such a curve. This approach is presented as an example,
see [21, Section 4] and Section 2.5.1, that argues against the existence of radical isogeny formulas
for that curve. While this example indicates that �nding radical isogenies for degrees greater
than 4 is maybe not possible, a general answer was left as an open problem. This article
provides a solution to that open problem, i.e. in Corollary 4.3 we prove that radical isogeny
formulas cannot exist on the set of equivalence classes of enhanced elliptic curves for Γ0(N)
when N ≥ 5.

Paper organization

Section 2 provides necessary background, including brief overview on elliptic curves, isogenies
of elliptic curves, the de�nition of congruence subgroups, modular curves, semidirect product
of groups, radical isogenies and the description of the previously mentioned open problem in
Example 2.4. In the section 3 we generalize radical isogenies using modular curves. Section
4 extends the setting from Section 3 to include modular curve X0(N). In the same section
Theorem 4.2 is proved, and a corollary of that theorem is a solution to the open problem from
Example 2.4.

2. Preliminaries

This section will provide summary of necessary background. For more details on elliptic and
modular curves refer to [24], [16] and [10, Chapter III].

2.1. Elliptic curves. Let k be a �eld. An elliptic curve E over k is a smooth projective curve
of genus one with a speci�ed base point OE. Group of all the points on E de�ned over k is
denoted by E(k). Given an integer N , multiplication by N map is denoted with [N ]. The
kernel of this map is the N torsion subgroup, E[N ] = {P ∈ E(k) : [N ]P = OE}. A point P on
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the curve E is of order N if [N ]P = OE and [m]P ̸= OE for m < N . For a curve E as above
and a point P of order N ≥ 4, the following Lemma holds:

Lemma 2.1. Let E be an elliptic curve over k and let P ∈ E(k) be a point of order N ≥ 4,
then the pair (E,P ) is isomorphic to a unique pair of the form

E : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0) (2.1)

with b, c ∈ k and

∆(b, c) = b3(c4 − 8bc2 − 3c3 + 16b2 − 20bc+ 3c2 + b− c) ̸= 0.

Curve E in (2.1) is said to be in Tate normal form. For proof see [25, Lemma 2.1].
If char(k) ∤ N , we can de�ne the Tate pairing as a bilinear map

tN : E(k)[N ]× E(k)/NE(k) −→ k∗/(k∗)N : (P1, P2) 7→ tN(P1, P2),

where E(k)[N ] consists of all the points in E[N ] de�ned over k.
Following [24, Chapter II.3], a divisor for a curve E is de�ned as a formal sum

∑
P∈E nP (P ),

where nP ∈ Z and nP = 0 for all but �nitely many P ∈ E. A Miller function fN,P1 is any
function on E with divisor N(P1)−N(OE). The support of a divisor is the set of points P ∈ E
for which nP ̸= 0. Let D be a k-rational divisor on E that is linearly equivalent to (P2)− (OE)
and whose support is disjoint from {P1,OE}. The support of this divisor is disjoint from the
divisor of Miller function fN,P1 , thus fN,P1(D) =

∏
P∈E fN,P1(P )

nP is well-de�ned. Then, the
Tate pairing can be calculated as tN(P1, P2) = fN,P1(D). Furthermore, if P1 ̸= P2 and the Miller
function is normalized, the Tate pairing tN(P1, P2) is equal to fN,P1(P2). When fN,P is a Miller

function as above and P point of order N , there exists a function gN,P ∈ k(E) such that

fN,P ◦ [N ] = gNN,P . (2.2)

The function gN,P can be used to de�ne the Weil pairing, see [24, Chapter III.8] for details.

2.2. Isogenies of elliptic curves. Let E and E ′ be elliptic curves over k. An isogeny
φ : E −→ E ′ is a non-constant morphism satisfying φ(OE) = OE′ . An example of an isogeny
is multiplication by N . Except for the zero isogeny, every other isogeny is a �nite map of
curves, so there is a usual injection of function �elds φ∗ : k(E ′) −→ k(E). The degree of φ, de-
noted by deg(φ), is the degree of the �nite extension k(E)/φ∗(k(E ′)). An isogeny is separable
(inseparable, purely inseparable) if this �nite extension is separable (inseparable, purely insep-
arable). There exists a dual isogeny φ̂ : E ′ −→ E for every isogeny φ. This dual isogeny satis�es
φ̂ ◦φ = [deg(φ)]. A kernel of an isogeny is a �nite subgroup of E(k). The size of the kernel di-
vides the degree of the isogeny, and they are equal when the isogeny is separable. Given a �nite
subgroup C ⊂ E there exists a unique separable isogeny having domain E, codomain E/⟨C⟩,
and C as its kernel. Vélu's formulas can be used to calculate this isogeny, see [5, Theorem 1]
for a complete list of formulas.

2.3. Congruence subgroups, modular and enhanced elliptic curves. The group of 2×2
matrices with integer entries and determinant equal to 1 is

SL2(Z) = {( a bc d ) : a, b, c, d ∈ Z, ad− bc = 1}.
The principle congruence subgroup for N > 0 is de�ned as

Γ(N) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 0
0 1 ) (mod N)}.

The reduction moduloN morphism Z −→ Z/NZ induces a homomorphism SL2(Z) −→ SL2(Z/NZ)
with kernel Γ(N), thus Γ(N) is normal subgroup in SL2(Z) of �nite index. This homomorphism
is a surjection, so there is an induced isomorphism

SL2(Z)/Γ(N)
∼−→ SL2(Z/NZ).
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Other standard congruence subgroups are

Γ1(N) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 ∗
0 1 ) (mod N)},

Γ0(N) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( ∗ ∗
0 ∗ ) (mod N)}.

These subgroups satisfy Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).
Let H = {τ ∈ C : Im(τ) > 0} be the upper half-plane and let ( a bc d ) in SL2(Z) be a matrix.

The action of the matrix on z ∈ H is de�ned by

( a bc d ) (z) =
az + b

cz + d
.

Using this fractional linear transformation, for a congruence subgroup Γ, we can de�ne the
modular curve by

Y (Γ) = Γ/H = {Γτ : τ ∈ H}.
For Γ(N),Γ1(N),Γ0(N),

Y (N) = Γ(N)/H, Y1(N) = Γ1(N)/H and Y0(N) = Γ0(N)/H.
If the action is extended to H∗ = H ∪Q ∪ {∞}, following modular curves can be de�ned

X(Γ) = Γ/H∗, X(N) = Γ(N)/H∗, X1(N) = Γ1(N)/H∗ and X0(N) = Γ0(N)/H∗.

Let E be an elliptic curve over algebraically closed �eld whose characteristic does not divide N.
An enhanced elliptic curve for Γ0(N) is an ordered pair (E,C), where C is a cyclic subgroup of
E of order N . Two enhanced elliptic curves (E,C) and (E ′, C ′) are equivalent if there exists an
isomorphism E

∼−→ E ′ that takes C to C ′. We denote the set of equivalence classes of enhanced
elliptic curves for Γ0(N) by

S0(N) = {enhanced elliptic curves for Γ0(N)}/ ∼ .

Similarly, an enhanced elliptic curve for Γ1(N) is a pair (E,P ), where P is a point of order
N . Two enhanced elliptic curves (E,P ), (E ′, P ′) are equivalent if there exists an isomorphism
E

∼−→ E ′ that takes P to P ′. We denote the set of equivalence classes of enhanced elliptic curves
for Γ1(N) by

S1(N) = {enhanced elliptic curves for Γ1(N)}/ ∼ .

Following [16, Chapter 1.3], we can de�ne the complex elliptic curve Eτ as the quotient of
the complex plane by the lattice

Eτ := C/Λτ = {z + Λτ : z ∈ C},
where Λτ = Z ⊕ τZ. De�nition of the sets S0(N) and S1(N) from the previous paragraph
remains unchanged when the underlying �eld is C and E is a complex elliptic curve. Points
of Y1(N) are in bijection with isomorphism classes of pairs (E,P ) ∈ S1(N). To establish this
bijection, to τ ∈ H, associate the pair (Eτ , 1

N
+Λτ ). Any pair (E,P ) is isomorphic to (Eτ ,

1
N
+Λτ )

for some τ ∈ H and Eτ is isomorphic to Eτ ′ if and only if τ ′ ∈ Γ1(N)τ. We have the following
theorem.

Theorem 2.2. Let N be a positive integer. The moduli space for Γ1(N) is

S1(N) = {[Eτ ,
1

N
+ Λτ ] : τ ∈ H}.

Two points [Eτ ,
1
N
+ Λτ ] and [Eτ ′ ,

1
N
+ Λτ ′ ] are equal if and only if Γ1(N)τ = Γ1(N)τ ′. Thus,

there is a bijection

ψ1 : S1(N)
∼−→ Y1(N), [C/Λτ ,

1

N
+ Λτ ] 7→ Γ1(N)τ.

Proof. See [16, Theorem 1.5.1.]. □



6 RADICAL ISOGENIES AND MODULAR CURVES

Theorem 2.2 has analogous versions for congruence subgroups Γ0(N) and Γ(N), also part of
the [16, Theorem 1.5.1.].

2.4. Semidirect product of groups. Following [9], for two groups G1 and G2 and an action
φ̂ : G2 → Aut(G1) of G2 on G1 (by automorphisms), the corresponding semidirect product
G1 ⋊φ̂ G2 is de�ned as a set

G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2},
where the group law on G1 ⋊φ̂ G2 is

(g1, g2)(g
′
1, g

′
2) = (g1φ̂g2(g

′
1), g2g

′
2).

Element (eG1 , eG2) is the identity, and inverse for an element (g1, g2) is

(g1, g2)
−1 = (φ̂g−1

2
(g−1

1 ), g−1
2 ) = ((φ̂g−1

2
(g1))

−1, g−1
2 ).

Examples of subgroups are G1 × eG2 = {(g1, eG2) : g1 ∈ G1} which is a normal subgroup, and
eG1 ×G2 = {(eG1 , g2) : g2 ∈ G2}.

2.5. Radical isogenies. Following [5], this section will provide a necessary background on
radical isogenies. Let k be a �eld, N ≥ 4 such that char(k) ∤ N . Consider an elliptic curve
E over k and a point P ∈ E(k) of order N . Using Lemma 2.1, the curve-point pair (E,P ) is
isomorphic to a unique pair of a curve

y2 + (1− c)xy − by = x3 − bx2,

where b, c ∈ k, and a point (0, 0) of order N . There exists an isogeny φ : E −→ E/⟨P ⟩ with ⟨P ⟩,
a cyclic subgroup generated by the point P , as a kernel. We denote curve E/⟨P ⟩ over k by E ′

and let P ′ be a point on E ′ of order N such that φ̂(P ′) = P, where φ̂ is a dual isogeny of φ.
The point P ′ satisfying this condition is called P -distinguished and it is not unique. According
to [5, Theorem 5] the coordinates of the point P ′ can be expressed using a formula that depends
on b, c and N

√
ρ, where ρ is a representative of Tate pairing tN(P,−P ). Hence, the point P ′ is

de�ned over k(b, c, N
√
ρ). As P ′ is of order N on curve E ′, a Tate normal form for this pair can

be de�ned by the unique coe�cients b′ and c′. The iterative process of radical isogeny formulas
can be repeated on pair (E ′, P ′). Moreover, the formulas for b′ and c′ can be expressed directly
as elements of the �eld extension k(b, c, N

√
ρ), which is a simple radical2 extension of k(b, c).

The explicit radical isogeny formulas when N = 5, are written in the following example:

Example 2.3 ([5, Section 4]). Let N = 5. Elliptic curve E is of the form

y2 + (1− b)xy − by = x3 − bx2,

and, using Vélu's formulas, curve E ′ is equal to

y2 + (1− b)xy − by = x3 − bx2 − 5b(b2 + 2b− 1)x− b(b4 + 10b3 − 5b2 + 15b− 1).

With some details omitted, ρ = f5,P (−P ) = b, α = 5
√
ρ and point P ′ has coordinates

x′0 = 5α4 + (b− 3)α3 + (b+ 2)α2 + (2b− 1)α− 2b,

y′0 = 5α4 + (b− 3)α3 + (b2 − 10b+ 1)α2 + (13b− b2)α− b2 − 11b.

After translating point P ′ to (0, 0), isomorphic curve in Tate normal form will be

E ′ : y2 + (1− b′)xy − b′y = x3 − b′x2,

where

b′ = α
α4 + 3α3 + 4α2 + 2α + 1

α4 − 2α3 + 4α2 − 3α + 1

2A �eld extension K ⊂ L is a simple radical extension of degree N ≥ 2 if there exists an α such that
L = K(α), αN ∈ K, and xN − αN ∈ K[x] is irreducible.
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and the process can be repeated.

The standard method of calculating isogenies requires a point of a particular order for each
isogeny in the chain. With radical isogeny formulas, such a point is only required for the initial
step, i.e. the one step that uses Vélu's formulas. Subsequent steps can be calculated without
any knowledge of torsion points. The list of formulas for radicand ρ for N ≤ 13 can be found
in [5, Section 5] and link to a repository containing formulas for prime powers 16 < N ≤ 37
can be found in [4, Section 4.3].

2.5.1. Radical isogenies on Montgomery curves. In [21], Onuki and Moriya introduced
radical isogeny formulas on Montgomery curves of degrees 3 and 4. A Montgomery curve over
a �eld k is an elliptic curve of the form

E : y2 = x3 + Ax2 + x,

where A ∈ k and A2 ̸= 4. The coe�cient A determines a class of enhanced elliptic curve
(E, (0, 0)) in the set S0(4), see [21, Section 2.3] for details. Applying radical isogeny formulas
on elements of set S1(N), i.e. on an enhanced elliptic curve (E,P ), results in a curve-point pair
that is also an element of S1(N). When N = 3 or 4, the equality S0(N) = S1(N) holds, and
the existence of radical isogeny formulas on S1(3) and S1(4) implies a radical isogeny formula
on S0(3) and S0(4), respectively. This means that there is a formula between Montgomery
coe�cients of curves, see [21, Section 3]. However, the methods used in [21] for cases N = 3
or 4 cannot be directly applied to case N ≥ 5, partly because S0(N) ̸= S1(N). Moreover,
developing radical isogeny formulas on S0(N) when N ≥ 5 might not be possible, as illustrated
by the following example.

Example 2.4 ([21, Section 4]). Let N = 5. Let k be a �eld with char(k) ∤ N , and E,E ′ two
elliptic curves over the �eld k given in Tate normal form:

E : y2 + (1− b)xy − by = x3 − bx,

E ′ : y2 + (1− b′)xy − b′y = x3 − b′x.

Points (0, 0) are of order 5 on these curves. The cyclic subgroup of E generated by point (0, 0)
is

{OE, (0, 0), (b, b
2), (b, 0), (0, b)}.

Pairs (E, (0, 0)) and (E ′, (0, 0)) are equivalent if and only if b = b′, while pairs (E, ⟨(0, 0)⟩) and
(E ′, ⟨(0, 0)⟩) are equivalent if and only if b = b′ or b = − 1

b′
. From this we have b2−1

b
= b′2−1

b′
, thus

b2−1
b

is a parametrization of S0(5). From radical isogeny formula we know that b′ is a rational

expression in a �fth root of b, i.e. Q(b′) = Q( 5
√
b). Let β = b2−1

b
and β′ = b′2−1

b′
. Field extension

Q(b)/Q(β) is of degree 2. Adjoining to the �eld extension Q(b′)/Q(β) a primitive �fth root of
unity ζ5 ∈ C, we obtain a Galois extension Q(ζ5)(b

′)/Q(ζ5)(β) of degree 10. Galois group of this
extension Gal(Q(ζ5)(b

′)/Q(ζ5)(β)) is generated by automorphisms σ : b′ 7→ − 1
b′
and τ : b′ 7→ ζ5b

′.
The �xed �eld of σ is Q(ζ5)(β

′), and of τ is Q(ζ5)(b). Because τ
−1στ ̸= σ, the group ⟨σ⟩ is not

a normal subgroup of Galois group Gal(Q(ζ5)(b
′)/Q(ζ5)(β)), thus extension Q(ζ5)(β

′)/Q(ζ5)(β)
cannot be a Galois extension.

If the parameter β′ from Example 2.4 could be expressed as a rational expression depending
on the parameter β, we would have a direct and simpler way (quadratic equation) to calculate b′,
rather than the radical isogeny formulas. However, since the �eld extension Q(ζ5)(β

′)/Q(ζ5)(β)
is not a Galois extension, this is not possible. Nevertheless, it may be possible to �nd a di�erent
β′, i.e. a di�erent parametrization of S0(5) which will make the �eld extension Q(ζ5)(β

′)/
Q(ζ5)(β) Galois.
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3. Radical isogenies in the language of modular curves

Throughout this section we are using the same notation introduced in Section 2.5, E is the
starting elliptic curve over a �eld k, N ≥ 4 such that char(k) ∤ N , P ∈ E(k) a point of order
N , E ′ a curve over k de�ned with E/⟨P ⟩, φ : E −→ E ′ an isogeny with kernel equal to ⟨P ⟩ and
P ′ a point of order N on E ′ such that φ̂(P ′) = P .
We will continue to work with enhanced elliptic curves for di�erent congruence subgroups.

For any elliptic curve Ẽ and point P̃ of order N ≥ 4, let its unique Tate normal form be de�ned

with parameters b̃ and c̃. Let b denote a mapping (Ẽ, P̃ ) 7→ b̃, i.e. b is a function on the set of

the enhanced elliptic curves for Γ1(N), such that for a curve (Ẽ, P̃ ) it returns parameter b̃ from
corresponding Tate normal form. This is a well-de�ned function because Tate's normal form
is unique. Analogously, for parameter c̃, function c : (E,P ) 7→ c is well-de�ned. De�nition of
modular functions on enhanced elliptic curves implies that b and c are elements of k(X1(N)).

For curves E and E ′ we have (E,P )
b7−→ b, (E,P )

c7−→ c, (E ′, P ′)
b7−→ b′ and (E ′, P ′)

c7−→ c′. We
would like to connect parameters b, c with b′, c′ using modular curves and maps on them. The
following sequence of maps will be considered:

(E,P ) −→ (E ′, P ′)
b7−→ b′,

(E,P ) −→ (E ′, P ′)
c7−→ c′.

(3.1)

Since the point P ′ is not unique, the map (E,P ) −→ (E ′, P ′) is not uniquely de�ned, and
therefore is no obvious connection on X1(N). For a point P of order N, let R be a point on
curve E of order N2 such that [N ]R = P . This point R is not unique. The pair (E,R) is an
enhanced elliptic curve for Γ1(N

2). Let P ′ be an image of a point R under the isogeny φ, i.e.

P ′ := φ(R) = R + ⟨P ⟩.

This is a point of order N on the curve E ′. Since we have

φ̂(P ′) = φ̂(φ(R)) = [deg φ]R = [N ]R = P,

point P ′ is P -distinguished. We can modify the sequence of maps in (3.1) and continue to work
with parameter b and associated functions, as the approach for c is the same. Beginning with
the enhanced elliptic curve (E,R), we have the following maps:

(E,R) −→ (E, [N ]R) = (E,P )
b7−→ b, (3.2)

(E,R) −→ (E/⟨[N ]R⟩, R + ⟨[N ]R⟩) = (E/⟨P ⟩, R + ⟨P ⟩) = (E ′, P ′)
b7−→ b′. (3.3)

Using the mappings described in (3.3), we can, similar to b, de�ne a function b′ : (E,R) 7→ b′,
which is a function on the set of enhanced elliptic curves for Γ1(N

2). Maps and functions are
visualized in Figure 1.
The connection between parameters b and b′ can now be extended to an enhanced elliptic

curve (E,R), i.e. to functions in X1(N
2). For every N, let π1,N and π2,N de�ne a pair of

pullback operators:

π∗
1,N : k(X1(N)) −→ k(X1(N

2)), π1,N((E,R)) = (E, [N ]R),

π∗
2,N : k(X1(N)) −→ k(X1(N

2)), π2,N((E,R)) = (E/⟨[N ]R⟩, R + ⟨[N ]R⟩).

From

(π∗
1,Nb)(E,R) = b(π1,N(E,R)) = b(E, [N ]R) = b(E,P )

and

(π∗
2,Nb)(E,R) = b(π2,N(E,R)) = b(E/⟨[N ]R⟩, R + ⟨[N ]R⟩) = b(E ′, P ′) = b′(E,R),
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X1(N
2),Γ1(N

2) (E,R)

(E, [N ]R) (E/⟨[N ]R⟩, R + ⟨[N ]R⟩)

X1(N),Γ1(N) (E,P ) (E ′, P ′)

b b′

N ·
φ

b b

Figure 1. Maps on enhanced elliptic curves

we can identify b and b′ with their respective pullbacks by π1,N and π2,N and de�ne

b := π∗
1,Nb and b′ := π∗

2,Nb

as functions on X1(N
2). Function b′ is an element of π∗

2,N(k(X1(N))), so if proved that there

exist some modular function g in k(X1(N
2)), de�ned using b and c, such that

π∗
1,N(k(X1(N)))(g) = π∗

2,N(k(X1(N))), (3.4)

b′ will also be an element of π∗
1,N(k(X1(N)))(g).

Let P be a point of order N as before, and let fN,P be a normalized Miller function. With the
value of fN,P at point −P, we can de�ne a modular function f on the set of enhanced elliptic
curves for Γ1(N) as:

f : (E,P ) 7→ fN,P (−P ) ∈ k(X1(N)).

For the function fN,P and the point P , from equation (2.2), there exists a function gN,P ∈ k(E)
such that fN,P ◦ [N ] = gNN,P . Using this equality, for an enhanced elliptic curve (E,R), where,

as before, P = [N ]R, we have a function on X1(N
2) given by

(E,R) 7→ fN,[N ]R(−[N ]R) = fN,[N ]R([N ](−R))
= gN,[N ]R(−R)N = gN,P (−R)N .

The function g de�ned as g := (E,R) 7→ gN,P (−R) ∈ k(X1(N
2)) satis�es the property

gN = f,

which means that the N -th root of f is a function on X1(N
2). Both functions b, b′, as well as

function g are elements of k(X1(N
2)). However, due to the large size of this �eld, it is currently

impossible to prove (3.4). Thus, it is necessary to identify a smaller quotient of X1(N
2) where

b, b′, and g are well-de�ned.

3.1. "Shrinking" the �eld of de�nition. To gain a better understanding of the function
b′, we will investigate the preimages of (E,P ) under the pullback operator π2,N . Speci�cally,
we will investigate pairs (E,R) and (E,R′) that are mapped by π2,N to the same point
(E/⟨[N ]R⟩, R + ⟨[N ]R⟩). For the equality

(E/⟨[N ]R′⟩, R′ + ⟨[N ]R′⟩) = (E/⟨[N ]R⟩, R + ⟨[N ]R⟩)

to hold, we require ⟨[N ]R′⟩ = ⟨[N ]R⟩ and R′ + ⟨[N ]R′⟩ = R + ⟨[N ]R⟩. Combining these
conditions, we get R′ + ⟨[N ]R⟩ = R + ⟨[N ]R⟩, which implies that there exists some l ∈ Z/NZ
such that

R′ = R + [l] · ([N ]R) and [N ]R′ = [N ](R + [l]P ).
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Therefore, we have

⟨[N ](R + [l]P )⟩ = ⟨[N ]R⟩.
Since point R has order N2, the points (E,R), (E,R+[1 ·N ]R), . . . , (E,R+[(N −1) ·N ]R) are
all mapped to the same �nal point. From the de�nition of b′, it is apparent that it is a function
on X1(N

2) that maps points of this form to the same �nal point.
Let tm be an operator on S1(N

2) de�ned as tm : (E,P ) 7→ (E, [m]P ). When m = N + 1,
de�ne t := tN+1. On an enhanced elliptic curve (E,R) ∈ S1(N

2), this operator act as follows:

(E,R)
t7−→ (E, [N + 1]R)

t7−→ (E, [(N + 1)2]R)
t7−→ . . .

t7−→ (E, [(N + 1)N−1]R).

The order of the operator t is equal to N since we have tN(E,R) = (E, [(N +1)N ]R) = (E,R).
Composing t with π1,N on the enhanced elliptic curve (E,R), we have:

π1,N(t(E,R)) = π1,N(E, [N + 1]R)

= (E, [N(N + 1)]R) (since order of R is N2)

= (E, [N ]R)

= π1,N(E,R),

and for π2,N :

π2,N(t(E,R)) = π2,N(E, [N + 1]R)

= (E/⟨[N(N + 1)]R⟩, [N + 1]R + ⟨[N(N + 1)]R⟩)
= (E/⟨[N ]R⟩, R + ⟨[N ]R⟩) (since [N ]R ∈ ⟨[N ]R⟩)
= π2,N(E,R),

thus, every pullback by π1,N or by π2,N will be invariant under t. Modular function (E,R)
g7−→

gN,P (−R), with property gN = f, is also invariant under t. Referring again to [24, Chapter III.8]
for more details, function gN,[N ]R can be used to de�ne Weil pairing

eN(S, P ) =
gN,[N ]R(X + S)

gN,[N ]R(X)
,

where X ∈ E and S, P ∈ E[N ] with S = P allowed, and as before, we have P = [N ]R. To see
that function g is invariant under t, let (E,R) ∈ S1(N

2), then

t(E,R) = (E, [N + 1]R)
g7−→ gN,[N(N+1)]R(−[N + 1]R)

= gN,[N ]R(−[N ]R−R)

= gN,[N ]R(−R− P )

and together with the bilinearity and alternating property of Weil pairing,

gN,[N ]R(−R− P ) = gN,[N ]R(−R)eN(−P, P ) = gN,[N ]R(−R)eN([N ]P, P )

= gN,[N ]R(−R)eN(P, P )N−1 = gN,[N ]R(−R) = gN,P (−R).

Let ⟨t⟩ denote the group of automorphisms of X1(N
2) generated by t. A function on X1(N

2)
that is invariant under the operator t can be viewed as a function on the quotient X1(N

2)/
⟨t⟩. As discussed above, b′ is an example of such a function. The quotient X1(N

2)/⟨t⟩, i.e. the
quotient of modular curve with the operator, is again a modular curve. To see this, following [18]
and [15] we can assume, for a �eld k de�ned at the beginning of this section, that k = C. Then,
we have the following proposition, which explicitly calculates the congruence subgroup de�ning
this quotient, i.e. corresponding modular curve.
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Proposition 3.1. Let t be an operator de�ned on the set of enhanced elliptic curves for Γ1(N
2)

with t(E,R) = (E, [N+1]R). Let ⟨t⟩ denote the subgroup of automorphisms of X1(N
2) generated

by t. The quotient of the extended upper half-plane H∗ = H ∪ Q ∪ {∞} and the congruence
subgroup

Γ̃(N) :=
{
( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N2), a, d ≡ 1 (mod N)

}
,

i.e. Γ̃(N)/H∗, is a modular curve consisting of all the functions on X1(N
2) invariant under t.

Proof. As shown in [16, Section 1.5], sets of equivalence classes of enhanced elliptic curves can
be used to describe the quotients of the upper half-plane by congruence subgroups. In other
words, for a function f on X1(N

2)/⟨t⟩, there is a corresponding meromorphic function f on
the upper half-plane that is invariant under the action of Γ1(N

2) and a matrix t ∈ SL2(Z)
corresponding to the operator t. To see this, note that Theorem 2.2 shows that S1(N

2) is a
moduli space of isomorphism classes of complex elliptic curves and N2-torsion data, i.e.

S1(N
2) = {[Eτ ,

1

N2
+ Λτ ]},

where τ,Λτ and Eτ are de�ned as in Section 2. Describing what the operator t does in the
sense of congruence subgroup implies working with the pair (E,R) after applying the operator
t, i.e. with

t(Eτ ,
1

N2
+ Λτ ) = (Eτ ,

N + 1

N2
+ Λτ ).

We need to �nd τ ′ ∈ H, such that (Eτ ,
N+1
N2 + Λτ ) is isomorphic to (Eτ ′ ,

1
N2 + Λτ ′). Let

τ ′ = (1−N)τ−1
N2τ+1+N

and Λτ ′ = ⟨1, τ ′⟩. Elements 1 and τ are linear combination of 1 and τ ′, which is
obvious for 1, and for τ we have:

(1 +N)(N2τ +N + 1) · (1−N)τ − 1

N2τ +N + 1
+ (N2τ +N + 1) · 1 = τ.

From this, Λτ ′ is isomorphic to Λτ . Moreover, for the matrix

t =
(
1−N −1
N2 1+N

)
∈ Γ0(N

2) \ Γ1(N
2),

using the usual fractional linear transformation on H, we have t(τ) = τ ′. Desired congruence

subgroup Γ̃(N) is generated by Γ1(N
2) and matrix t, thus

Γ̃(N) =
{
( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N2), a, d ≡ 1 (mod N)

}
.

It is clear from the construction of the congruence subgroup Γ̃(N) that the quotient Γ̃(N)/H∗

de�nes a modular curve consisting of all the functions on X1(N
2) invariant under t. □

As a direct consequence of Proposition 3.1, X1(N
2)/⟨t⟩ is a well-de�ned modular curve with

a function �eld equal to

k(X1(N
2)/⟨t⟩) = {f ∈ k(X1(N

2)) : f(t(E,R)) = f(E,R),∀(E,R) ∈ S1(N
2)}.

The following proposition shows the relationship between the congruence subgroups Γ̃(N) and
Γ1(N

2).

Proposition 3.2. Let Γ̃(N) be a congruence subgroup de�ned as

Γ̃(N) =
{
( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N2), a, d ≡ 1 (mod N)

}
.

The congruence subgroup

Γ1(N
2) = {( a bc d ) ∈ SL2(Z) : ( a bc d ) ≡ ( 1 ∗

0 1 ) (mod N2)}

is a normal subgroup of Γ̃(N) with index N .
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Proof. The congruence subgroup Γ̃(N) is generated with the congruence subgroup Γ1(N
2) and

matrix t =
(
1−N −1
N2 1+N

)
∈ Γ0(N

2)\Γ1(N
2). To prove that Γ1(N

2) is a normal subgroup of Γ̃(N)

it is enough to see that t−1 ( a bc d ) t ∈ Γ1(N
2), for every matrix ( a bc d ) ∈ Γ1(N

2). This is true
because(

1−N −1
N2 1+N

)
( a bc d )

(
1+N 1
−N2 1−N

)
=

=
(
a(1−N)(N+1)+c(1−N)+N2(b(N+1)+d) −a(N+1)+b(N+1)(N+1)+d(N+1)−c
c(1−N)2−aN2(1−N)+N2(d(1−N)−bN2) aN2+d(1−N)(N+1)−bN2(N+1)−c(1−N))

)
≡

(
1 2(N+1)+b(2N+1)
0 1

)
(mod N2).

To calculate the index of Γ1(N
2) in Γ̃(N) we will use the homomorphism πN : SL(Z) → SL(Z/NZ),

induced by the reduction modulo N for N ≥ 1. The kernel of πN is the principal congruence
subgroup Γ(N), which is a normal subgroup of �nite index in SL(Z). Any other congruence

subgroup Γ(N) ⊂ Γ̃ is of �nite index in SL(Z) and it is a preimage of πN , i.e. Γ̃ = π−1
N (Γ̂)

where Γ̂ is some subgroup of SL(Z/NZ). The index [Γ̃ : Γ(N)] is equal to #Γ̂.

For #
̂̃
Γ(N), after reducing elements of Γ̃(N) modulo N2, the conditions on elements are

c = 0, a, d ≡ 1 (mod N) and a, b, c, d ∈ Z/N2Z. There are no conditions on b, but a and d must
satisfy a condition for determinant ad ≡ 1 (mod N2). Writing a = 1 + kN and d = 1 + lN,
where k, l ∈ {0, 1, . . . , N − 1}, we get

(1 + kN)(1 + lN) = 1 +N(k + l) + klN2 ≡ 1 (mod N2),

which implies k+l ≡ 0 (mod N), so l depends completely on k. Therefore, d depends completely

on a. Altogether,#
̂̃
Γ(N) = N3. The index [Γ̃(N) : Γ(N2)] is equal to [Γ̃(N) : Γ1(N

2)][Γ1(N
2) : Γ(N2)],

thus

[Γ̃(N) : Γ1(N
2)] =

#
̂̃
Γ(N)

[Γ1(N2) : Γ(N2)]
=

#
̂̃
Γ(N)

N2
=
N3

N2
= N.

□

By performing a calculation similar to the one used in the proof of Proposition 3.2, it can
be shown that the index of [Γ1(N) : Γ1(N

2)] is equal to N2. Let k(X1(N
2)) denote the function

�eld corresponding to the modular curve X1(N
2). Using the results of the Proposition 3.2,

the quotient Γ̃(N)/Γ1(N
2) acts as a group of automorphism of k(X1(N

2)) with �xed �eld

k(X(Γ̃(N))), i.e.

k(X(Γ̃(N))) = k(X1(N
2))Γ̃(N)/Γ1(N2).

This gives us an equality of function �elds:

k(X(Γ̃(N))) = k(X1(N
2))t.

So we have

k(X(Γ̃(N))) = k(X1(N
2)/⟨t⟩).

We have shown that the function b ∈ π∗
1,N(k(X1(N))) is invariant under the operator t.

Therefore,

π∗
1,N(k(X1(N))) N

⊂ k(X(Γ̃(N))) = k(X1(N
2)/⟨t⟩),

where the degree of the extension is equal to the index of the subgroup. Returning to the equal-
ity (3.4), the modular function g : (E,R) 7→ gN,P (−R) is an element of the �eld k(X1(N

2)/⟨t⟩)
with property gN = f . The polynomial xN−f is a polynomial of degree N in π∗

1,N(k(X1(N)))[x]

having g as a root. The equality (3.4) depends on the irreducibility of the polynomial xN − f.
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Lemma 3.3. Let f be a function de�ned on the set S1(N) with (E,P ) 7→ fN,P (−P ), where fN,P
is a normalized Miller function. Let g be a function de�ned on the set S1(N

2) with (E,R) 7→
gN,P (−R), where P = [N ]R and fN,P ◦ [N ] = gNN,P . Let t ∈ Gal(k(X1(N

2))/k(X1(N))) be an

operator de�ned as t(E,R) = (E, [N+1]R), (E,R) ∈ S1(N
2). Let π∗

1,N : k(X1(N)) −→ k(X1(N
2)

be a pullback operator de�ned as π1,N((E,R)) = (E, [N ]R). Then, the polynomial xN − f is an
irreducible polynomial in π∗

1,N(k(X1(N)))[x].

Proof. We will show that the �eld extension π∗
1,N(k(X1(N)))(g) has degree N over k(X1(N)),

i.e. that the function g is only invariant under the operator t, thus it is an element of the
function �eld k(X(Γ̃(N))), and cannot be an element of some other �eld k(X(Γ)) with Γ̃(N) ⫋
Γ ⊂ Γ1(N) and g ∈ k(X(Γ)).
Assume then that g is invariant under another operator T ∈ Gal(k(X1(N

2))/k(X1(N))) such
that T (E,R) = (E, T (R)), (E,R) ∈ S1(N

2), and where NT (R) = [N ]R = P. The invariant
property of the function g, together with the previously de�ned Weil pairing implies:

1 =
gN,[N ]R(−T (R))
gN,[N ]R(−R)

=
gN,P ((R− T (R))−R)

gN,P (−R)
= eN(P,R− T (R)).

The point R − T (R) belongs to E[N ] because, by assuming NT (R) = [N ]R = P, we have
N(R − T (R)) = P − P = O. Therefore, eN(P,R − T (R)) is consistent with the de�nition of
Weil pairing. From this, for every (E,R) ∈ S1(N

2), we have eN(P,R− T (R)) = 1.
Let E be a �xed elliptic curve and P be a point of order N on that curve such that P = [N ]R.

Since the Weil pairing is non-degenerate, and eN(P,R− T (R)) = 1 for every R, it follows that
the point R − T (R) belongs to the subgroup ⟨P ⟩. As a consequence, the point T (R) can be
written as R + [l]P for some l ∈ Z, which depends on R.
In comparison to the operator t, since g is invariant under t, we have:

g(E,R) = g(t(E,R)) = g(E, [N + 1]R) = g(E,R + P ),

which implies g(E,R) = g(E,R + [k]P ) for every k ∈ Z. For the operator T, we have:

g(E,R) = g(E, T (R)) = g(E,R + [l]P ),

for some l ∈ Z. Therefore, the invariant property of the function g under the operator T fol-
lows from the invariant property of the function g under the operator t, which means that
g is modular only for the congruence subgroup Γ̃(N). This implies that the function �eld
π∗
1,N(k(X1(N)))(g) is an extension of degree exactly N over k(X1(N)). The roots of the poly-

nomial xN − f are of the form ζnNg, where ζN represents the N -th root of unity and n is a
positive integer. If we assume that this polynomial is not irreducible, then we could �nd two
non-constant polynomials f1, f2 ∈ k(X1(N))[x], such that xN − f = f1(x)f2(x). However, this
would lead to a contradiction since g is a root for f1 and has degree greater than or equal to
N , which is the degree of g. Therefore, the polynomial xN − f is irreducible.

□

In conclusion, the irreducibility of the polynomial xN − f, as stated in Lemma 3.3, implies

π∗
1,N(k(X1(N)))(g) = k(X1(N

2)/⟨t⟩),

which means b′ is an element of π∗
1,N(k(X1(N)))(g). Therefore, equality (3.4) holds, and it is

possible to generalize radical isogenies using modular functions.

Example 3.4. Let N = 5 and E be an elliptic curve over the �eld

Q5(b, c) := Frac
Q[b, c]

(F5(b, c))
.
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Tate normal form for E, together with the point P of order 5 is

E : y2 + (1− b)xy − by = x3 − bx2, P = (0, 0). (3.5)

In general, polynomial FN(b, c) ∈ Z[b, c] is an irreducible polynomial calculated from scalar
multiples of the point P. When N ≥ 4, condition FN(b, c) = 0 together with Fm(b, c) ̸= 0, when
4 ≤ m < N , and determinant of E not equal to zero, ensures that the point P is of order N .
Other direction is also true, when P is of order N, then FN(b, c) = 0. Additionally, FN(b, c) is
a de�ning polynomial for the modular curve X1(N), so QN(b, c) is a function �eld of X1(N)
over Q. More details are available in [25].
In the case of N = 5 we have F5(b, c) = b− c = 0, which implies a simpler Tate normal form

(3.5). Having only a parameter b results in only one modular function b in k(X1(5)). On the
other side, the curve E ′ and the point P ′ of order 5 are given by

E ′ = E/⟨P ⟩ : y2 + (1− b′)xy − b′y = x3 − b′x2, P ′ = (0, 0).

For a point P , let R be a point of order 25 such that [5]R = P . The pair (E,R) is an enhanced
elliptic curve for Γ1(25). The pullbacks π1,5, π2,5 and maps b, b′ are de�ned as before.
From the example in [5, Section 4], when N = 5, f5,P (−P ) = b ∈ Q5(b). The �fth root of b

is a function on X1(25), as (E,R)
g7−→ g5,[5]R(−R) is a well-de�ned map with a property g5 = b.

Observing the preimages of π2,5, points (E,R), (E,R+[1·5]R), (E,R+[2·5]R), (E,R+[3·5]R)
and (E,R+[4 ·5]R) are all mapped to the same �nal point. The operator t de�ned as t(E,R) 7→
(E, [5+ 1]R) = (E, [6]R) is of order 5 and ⟨t⟩ is isomorphic to Z/5Z. The congruence subgroup
generated by Γ1(25) and matrix t = ( −4 −1

25 6 ) is

Γ̃(5) =
{(

ã b̃
c̃ d̃

)
∈ SL2(Z) : c̃ ≡ 0 (mod 25), ã, d̃ ≡ 1 (mod 5)

}
.

Functions b, b′, g and every pullback by π1,5 or π2,5 are invariant under t, so they are also de�ned

on the quotient X1(25)/⟨t⟩. For the number of elements in group #
̂̃
Γ(5), after reducing elements

of Γ̃(5) modulo 25, conditions on elements are c̃ = 0, ã, d̃ ≡ 1 (mod 5) and ã, b̃, c̃, d̃ ∈ Z/25Z.
The only possibilities for ã and d̃ are from the set {1, 6, 11, 16, 21}. Since the determinant of

the matrix has to be 1 in SL(Z/25Z), there are 25 possibilities for b̃. Therefore, there are 125

elements in this group, and the index [Γ̃(5) : Γ1(25)] = 5. The �eld extension π∗
1,5(k(X1(5))) ⊂

k(X1(25)/⟨t⟩) has degree 5, polynomial X5−b is irreducible in π∗
1,5(k(X1(5))), has a well-de�ned

root, thus

π∗
1,5(k(X1(5)))(

5
√
b) = k(X1(25)/⟨t⟩),

meaning b′ ∈ π∗
1,5(k(X1(5)))(

5
√
b) and b′ is a rational expression of 5

√
b.

4. Extending to X0(N)

Continuing from the setting of the previous section, the discussion for Γ1(N), X1(N) and
S1(N) can be extended to Γ0(N), X0(N) and S0(N). Let β be a function on enhanced elliptic
curves for Γ0(N), i.e. an element of k(X0(N)). For example, we can take β to be Hauptmodul3

for k(X0(N)). Such Hauptmodul will exist if the genus of the modular curve is zero. Pullback
operators π1,N and π2,N are de�ned as in the previous section, and ψN is a pullback operator
de�ned by

ψ∗
N : k(X0(N)) −→ k(X1(N)), ψN((E,P )) = (E, ⟨P ⟩).

Applying the compositions π∗
1,N ◦ ψ∗

N and π∗
2,N ◦ ψ∗

N to functions from k(X0(N)) results in

elements of k(X1(N
2)). From now on, we will identify the function β with β := π∗

1,N(ψ
∗
N(β))

3A Hauptmodul for a congruence subgroup Γ is a function that generates the �eld of modular functions for
Γ.
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X1(N
2),Γ1(N

2) (E,R)

X1(N),Γ1(N) (E, [N ]R) (E/⟨[N ]R⟩, R + ⟨[N ]R⟩)

(E,P ) (E ′, P ′)

X0(N),Γ0(N) (E, ⟨P ⟩) (E ′, ⟨P ′⟩)

β(E,R) β′(E,R)

π1,N π2,N

ψN ψN

β β

Figure 2. Maps on enhanced elliptic curves, including X0(N)

and de�ne β′ := π∗
2,N(ψ

∗
N(β)). Both β and β′ are elements of k(X1(N

2)). Maps and connections
are visible in Figure 2.
Because β′ is de�ned as pullback by π2, as before, it is invariant under the operator t, which

implies β′ ∈ k(X(Γ̃(N))). Similarly to the previous section, if radical isogeny formulas exist on
X0(N) it should be possible to express β′ as an element of some function �eld depending on
β. To this end, we are interested in preimages of (E,P ), now under the maps π∗

1,N(ψ
∗
N) and

π∗
2,N(ψ

∗
N), i.e. pairs of enhanced elliptic curves for Γ1(N

2), (E,R) and (E,R′) mapped to the
same �nal points (E, ⟨[N ]R⟩) and (E/⟨[N ]R⟩, ⟨R+ ⟨[N ]R⟩⟩). Moreover, to include functions on
X0(N), maps (3.2) and (3.3) are extended to

(E,R) −→ (E, [N ]R) = (E,P ) −→ (E, ⟨P ⟩)
(E,R) −→ (E/⟨[N ]R⟩, R + ⟨[N ]R⟩) = (E ′, P ′) −→ (E ′, ⟨P ′⟩).

(4.1)

Describing preimages of maps in (4.1) will result in another quotient of X1(N
2) where the

function β′ will be well-de�ned. If we add enhanced elliptic curves for Γ0(N) in maps (4.1),
i.e. maps (E,P ) −→ (E, ⟨P ⟩) and (E ′, P ′) −→ (E ′, ⟨P ′⟩), we obtain additional conditions on
those preimages. Consequently, β′ will belong to a smaller function �eld k(X(Γ′)), for some

congruence subgroup Γ′ satisfying Γ̃(N) ⊂ Γ′. The groups that describe the preimages and their
connections to the function �elds are provided in the following lemma.

Lemma 4.1. Let N ≥ 5 be a positive integer. Group G, de�ned as a semidirect product

G = (Z/NZ)2 ⋊φ̂ (Z/NZ)×,
where for a triple ((g1, g

′
1), g2) ∈ G we have φ̂g2(g1, g

′
1) = (g2g1, g2g

′
1), is isomorphic to Galois

group of function �eld extension k(X1(N
2))/k(X0(N)). In particular k(X0(N)) = k(X1(N

2))G.
Let subgroup H of G be de�ned as

H = (Z/NZ× {0})⋊φ̂ (Z/NZ)×,
and let π1,N , π2,N , ψN be pullback operators de�ned by

π∗
1,N : k(X1(N)) −→ k(X1(N

2)), π1,N((E,R)) = (E, [N ]R),

π∗
2,N : k(X1(N)) −→ k(X1(N

2)), π2,N((E,R)) = (E/⟨[N ]R⟩, R + ⟨[N ]R⟩),
ψ∗
N : k(X0(N)) −→ k(X1(N)), ψN((E,P )) = (E, ⟨P ⟩).

Functions from the set π∗
1,N(ψ

∗
N(k(X0(N)))) are invariant under the action of group G and

functions from the set π∗
2,N(ψ

∗
N(k(X0(N)))) are invariant under the action of subgroup H.
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Proof. Let E be an elliptic curve over the �eld k and P a point of order N on that curve. Let R
and R′ be points of order N2 on curve E and R such that P = [N ]R. Pair (E,R) is an enhanced
elliptic curve for Γ1(N

2). We are interested in preimages of composition π∗
1,N ◦ ψ∗

N , i.e. in map
(E,R) 7→ (E, ⟨[N ]R⟩). Di�erent R and R′ are mapped to the same point if ⟨[N ]R⟩ = ⟨[N ]R′⟩, so
there exists k ∈ N such that [kN ]R = [N ]R′. Because R′ is a point of order N2 and [k]P = [N ]R′

it follows that gcd(N, k) = 1. Altogether, points

R′ = [k]R + P , where P ∈ E[N ] and k ∈ N, gcd(k,N) = 1,

are mapped by (E,R) 7→ (E, ⟨[N ]R⟩) to the same �nal point. Number of preimages of this
type is N2φ(N).4

De�ne G1 := (Z/NZ)2 and G2 := (Z/NZ)×. Let torsion group E[N ] be generated by the
basis ⟨P1, P2⟩, so a point P ∈ E[N ] can be expressed as P = [a]P1+[b]P2 for some a, b ∈ Z/NZ.
Point R′ is equal to [k]R + [a]P1 + [b]P2. We de�ne action of the triple (a, b, k) ∈ G1 ⋊φ̂ G2 on
the point R, i.e. on the set of preimages, with

(a, b, k)R 7→ [k]R + [a]P1 + [b]P2. (4.2)

This is a well-de�ned action, because for two such triples (a1, b1, k1), (a2, b2, k2), we have:

(a1, b1, k1) ◦ (a2, b2, k2)R = (a1, b1, k1)([k2]R + [a2]P1 + [b2]P2)

= [k1]([k2]R + [a2]P1 + [b2]P2) + [a1]P1 + [b1]P2

= [k1k2]R + [k1a2 + a1]P1 + [k1b2 + b1]P2

= (a1 + k1a2, b1 + k1b2, k1k2)R.

Let G = G1 ⋊φ̂ G2 and φ̂k(a, b) = (ka, kb), a, b ∈ G1, k ∈ G2. We have identi�ed functions
from k(X0(N)) with their double pullbacks �rst by ψN and then by π1,N . More generally, a
function �eld k(X0(N)) was identi�ed with π∗

1,N(ψ
∗
N(k(X0(N))). Set of preimages of functions

in π∗
1,N(ψ

∗
N(k(X0(N)))) is invariant under the action (4.2) of group G which implies k(X0(N)) =

k(X1(N
2))G.

For H, we are interested in the preimages of composition π∗
2,N ◦ ψ∗

N , i.e. in map (E,R) 7→
(E/⟨[N ]R⟩, ⟨R + ⟨[N ]R⟩⟩). As before, for the condition ⟨[N ]R⟩ = ⟨[N ]R′⟩ there exists ĥ ∈
N, gcd(ĥ, N) = 1 such that R′ = [ĥ]R+ P , for some P ∈ E[N ]. When R and R′ are satisfying
this, second condition becomes ⟨R+⟨[N ]R⟩⟩ = ⟨R′+⟨[N ]R⟩⟩, i.e. ⟨R+⟨P ⟩⟩ = ⟨R′+⟨P ⟩⟩. Now,
there exists ĵ, ŝ such that [ĵ]R−R′ = [ŝ]P. Combining everything together, [ĵ]R− [ĥ]R− P =

[ŝ]P, and [ĵ − ĥ]R = [ŝ]P + P . Right side of this equality is a point of order dividing N , so

N |(ĵ − ĥ) and there exist t̂ such that ĵ − ĥ = Nt̂. Now, [t̂]P = [ŝ]P + P meaning P ∈ ⟨P ⟩.
Altogether, points of the form

R′ = [h]R + P , where P ∈ ⟨P ⟩ and h ∈ N, gcd(h,N) = 1

are mapped by (E,R) 7→ (E/⟨[N ]R⟩, ⟨R+ ⟨[N ]R⟩⟩) to the same �nal point. Number of preim-
ages of this type is Nφ(N). The di�erence here is that we are not working with the whole
torsion group E[N ], but with subgroup generated by a point P of order N. Using a analo-
gous calculation as for G, functions in π∗

2,N(ψ
∗
N(k(X0(N)))) are invariant under the action of

subgroup H = (Z/NZ× {0})⋊φ̂ (Z/NZ)×. □

Subgroup H from Lemma 4.1 can be used to de�ne a function �eld k′ := k(X1(N
2))H . Field

k′ is an intermediate �eld k(X0(N)) ⊂ k′ ⊂ k(X1(N
2)) and a function �eld for some modular

curve, so we can take k′ = k(X(Γ′)), where Γ′ is a congruence subgroup and X(Γ′) := Γ′/H.
All functions from the set π∗

2,N(ψ
∗
N(k(X0(N)))) are well-de�ned on the quotient X(Γ′) due to

their invariant property under the action of H. From the construction above, Γ′ is a subset of

4Throughout the proof φ denotes Euler totient function.
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Γ0(N) and from the calculated number of preimages, index [Γ0(N) : Γ′] = N. The congruence

subgroup Γ′ can be calculated similarly to the congruence subgroup Γ̃(N) from the previous
section.
Using the setup and the proof of Lemma 4.1 and the discussion above, we can prove the

following theorem.

Theorem 4.2. Let H be a group (Z/NZ×{0})⋊φ̂ (Z/NZ)×. Let k′ be a function �eld de�ned
as k′ := k(X1(N

2))H . Extension k′/k(X0(N)) is not a Galois extension.

Proof. Let group G and pullbacks π1,N , π2,N , ψN be de�ned as in Lemma 4.1. As discussed
above, k′ is by de�nition an intermediate �eld k(X0(N)) ⊂ k′ ⊂ k(X1(N

2)) and there exists
a congruence subgroup Γ′ such that k′ = k(X(Γ′)). Working with function �elds shown in
Figure 3, to get radical isogeny formulas on X0(N), we need to �nd an α ∈ k(X0(N)) such
that k(X0(N))( N

√
α) = k(X(Γ′)). Functions from k(X0(N)) are identi�ed with composition of

pullbacks π1,N and ψN , i.e. α should be an element of the �eld π∗
1,N(ψ

∗
N(k(X0(N)))). If such

α exists, �eld extension k(X(Γ′))/k(X0(N)) should be a cyclic extension of order N, i.e. it
should be a Galois extension. This implies that H, a subgroup of index N, should be a normal
subgroup of G.
Points of type R′ = R+ [l]P, l ∈ N are mapped by (E,R) 7→ (E/⟨[N ]R⟩, R+ ⟨[N ]R⟩) to the

same �nal point. Corresponding congruence subgroup describing preimages of this type was
calculated in Proposition 3.1 and it is equal to

Γ̃(N) =
{
( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod N2), a, d ≡ 1 (mod N)

}
.

The index [Γ̃(N) : Γ1(N
2)] is equal to N. This, combined with the calculated number of preim-

ages in the proof of Lemma 4.1, implies that Γ̃(N) ⊂ Γ′ with index equal to φ(N). Function β′

is an element of k(X(Γ̃(N))) by de�nition and an element of k(X(Γ′)) by construction.
If H is a normal subgroup, then for every g ∈ G and every h ∈ H there should exist some

h′ ∈ H such that ghg−1 = h′. Let g = ((g1, g2), k1) ∈ G and h = ((h1, 0), k2) ∈ H. Using g and
h,

ghg−1 = ((g1, g2), k1)((h1, 0), k2)((g1, g2), k1)
−1

= ((g1, g2), k1)((h1, 0), k2)(φ̂k−1
1
((g1, g2)

−1), k−1
1 )

= ((g1, g2)φ̂k1(h1, 0), k1k2)(φ̂k−1
1
(−g1,−g2), k−1

1 )

= ((g1 + k1h1, g2 + k1 · 0), k1k2)((−k−1
1 g1,−k−1

1 g2), k
−1
1 )

= ((g1 + k1h1 − k2g1, g2 − k2g2), k2).

For this product to be in H, g2 − k2g2 should be equal to 0, for every k2 ∈ (Z/NZ)× and
every g2 ∈ Z/NZ. Let g2 be a generator for Z/NZ, for example, take g2 = 1. Then, for every
k2 ∈ (Z/NZ)×, k2 ̸= 1 we have k2g2 = k2 · 1 = k2 ̸= 1 = g2. To conclude, H is not a normal
subgroup of G. □

Returning to Example 2.4, the existence of radical isogeny formulas on S0(5) depends on
�nding a parametrization of S0(5) for which the extension Q(ζ5)(β

′)/Q(ζ5)(β) is Galois. How-
ever, Theorem 4.2 proves that a Galois extension is not possible in a more generalized setting
of modular curves. As a direct consequence of that fact, we have the following corollary which
is the main result of this article.

Corollary 4.3. Let N ≥ 5. Radical isogeny formulas on S0(N) are not possible.



18 RADICAL ISOGENIES AND MODULAR CURVES

k(X0(N)) k(X(Γ′)) k(X1(N
2))N

⊂

G

⊂

H

Figure 3. Function �elds related to groups G and H
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