
Flookup: Fractional decomposition-based lookups in

quasi-linear time independent of table size

Ariel Gabizon
Zeta Function Technologies

Dmitry Khovratovich
Ethereum Foundation

October 26, 2022

Abstract

We present a protocol for checking the values of a committed polynomial ϕ(X) ∈
F<m[X] over a multiplicative subgroup H ⊂ F of size m are contained in a table
T ∈ FN . After an O(N log2 N) preprocessing step, the prover algorithm runs in
quasi-linear time O(m log2 m). We improve upon the recent breakthrough results
Caulk [ZBK+22] and Caulk+ [PK22], which were the first to achieve the complexity
sublinear in the full table size N with prover time being O(m2+m logN) and O(m2),
respectively. We pose further improving this complexity to O(m logm) as the next
important milestone for efficient zk-SNARK lookups.

1 Introduction

The lookup problem is fundamental to the efficiency of modern zk-SNARKs. Some-
what informally, it asks for a protocol to prove the values of a committed polynomial
ϕ(X) ∈ F<m[X] are contained in a table T of size N of predefined legal values. When the
table T corresponds to an operation without an efficient low-degree arithmetization in
F, such a protocol produces significant savings in proof construction time for programs
containing the operation. Building on previous work of [BCG+18], plookup [GW20] was
the first to explicitly describe a solution to this problem in the polynomial-IOP con-
text. plookup described a protocol with prover complexity quasilinear in both m and N .
This left the intriguing question of whether the dependence on N could be made sub-
linear after performing a preprocessing step for the table T . Caulk [ZBK+22] answered
this question in the affirmative by leveraging bi-linear pairings, achieving a run time of
O(m2 +m logN). Caulk+ [PK22] improved this to O(m2) getting rid of the dependence
on table size completely.

However, the quadratic dependence on m of these works makes them impractical
for a circuit with many lookup gates. We resolve this issue by giving a protocol called
Flookup that is quasi-linear in m and has no dependence on N after the preprocessing
step.

1

1.1 Usefulness of the result

When is it worth it to use Flookup instead of plookup? The plookup prover runs in time

O(N logN) and the Flookup prover requires time O(m log2m) with small constants in

the O(). Hence, Flookup is worth it roughly when the table is larger than the number of
lookups by a logarithmic factor; i.e. when m << N/ logN .

We write<< instead of< as Flookup entails other complications that make the tradeoff
potentially less attractive. Notably, verification requires a pairing with a prover-defined
G2 point (as do Caulk and Caulk+), which makes rescursive aggregation of proofs less
smooth. Another inconvenience is that Flookup doesn’t have the nice linearity properties
of plookup, and so reducing a tuple lookup to a single element lookup (cf. Section 4
of [GW20]), is less efficient. Because of these drawbacks, “simple” tables, like T ={
0, . . . , 2t − 1

}
for a range check, may not be the best use case for Flookup. As in such a

case we can decompose into limbs and use a much smaller table; more generally, this is
the case when T is a product set.

A better use case would be complex “SNARK unfriendly” operations on large ranges.
For example, the Choose or Maj operation inside SHA-256 - taking as input 32-bit ele-
ments A,B,C and outputting a 32-bit D. We can implement such operations via a table
T of size 232 containing all values A+232 ·B +264 ·C +296 ·D such that ((A,B,C), D)
is a valid input-output tuple for the operation.

Roughly speaking, to show witness values ((w1, w2, w3), w4) constitute a valid input-
output pair, we would check the corresponding combination w1 + 232 · w2 + 264 · w3 +
296 · w4 ∈ T using Flookup. We additionaly range constrain each wi to 32 bits. The

need for the range constraints stems from Flookup not having nice reductions from vector
to single-element lookup. Even with them, being able to represent an entire 32-bit
(SNARK-unfriendly) operation in one table, constitutes a significant simplification and
potential efficiency boost over current use of lookups in zk-SNARKs.

1.2 Organization of the paper and recommended reading route

� In Section 2 we go over required preliminaries.

� In Section 3 we define the notion of a bi-linear polynomial IOP which enables us to
model protocols that use pairings in addition to polynomial commitment schemes.
A reader deterred by the formality of this section might skip it on a first read; and
simply keep in mind that the term “a bi-linear check” in the subsequent section
translates to a pairing in the compiled protocol.

� In section 4 we review a method of [PK22] to extract a commitment to the vanishing
polynomial of a subtable using pairings. We extend it to work with arbitrary sets
and not just subgroups.

� In Section 5 we give a lookup protocol given a commitment to the vanishing poly-
nomial of the table.

2

� In Section 6 we combine the table extraction and subtable lookup protocols to give
our final result.

2 Terminology and Conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate
polynomials over F of degree smaller than d. We assume all algorithms described receive
as an implicit parameter the security parameter λ.

Whenever we use the term “efficient”, we mean an algorithm running in time poly(λ).
Furthermore, we assume an “object generator” O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G1,G2,Gt, e, g1, g2, gt) where

� F is a prime field of super-polynomial size r = λω(1) .

� G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate
pairing e : G1 ×G2 → Gt.

� g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1

and G2 additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.
We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p for “except

with probability”; i.e. e.w.p γ means with probability at least 1− γ.

universal SRS-based public-coin protocols We describe public-coin (meaning the verifier
messages are uniformly chosen) interactive protocols between a prover and verifier; when
deriving results for non-interactive protocols, we implicitly assume we can get a proof
length equal to the total communication of the prover, using the Fiat-Shamir transform/a
random oracle. Using this reduction between interactive and non-interactive protocols,
we can refer to the “proof length” of an interactive protocol.

We allow our protocols to have access to a structured reference string (SRS) that
can be derived in deterministic poly(λ)-time from an “SRS of monomials” of the form{[

xi
]
1

}
a≤i≤b

,
{[
xi
]
2

}
c≤i≤d

, for uniform x ∈ F, and some integers a, b, c, d with absolute

value bounded by poly(λ). It then follows from Bowe et al. [BGM17] that the required
SRS can be derived in a universal and updatable setup requiring only one honest par-
ticipant; in the sense that an adversary controlling all but one of the participants in
the setup does not gain more than a negl(λ) advantage in its probability of producing a
proof of any statement.

For notational simplicity, we sometimes use the SRS srs as an implicit parameter in
protocols, and do not explicitly write it.

3

2.1 Analysis in the AGM model

For security analysis we will use the Algebraic Group Model of Fuchsbauer, Kiltz and
Loss[FKL18]. In our protocols, by an algebraic adversary A in an SRS-based protocol
we mean a poly(λ)-time algorithm which satisfies the following.

� For i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it also outputs a vector v
over F such that A =< v, srsi >.

Idealized verifier checks for algebraic adversaries We introduce some terminology to cap-
ture the advantage of analysis in the AGM.

First we say our srs has degree Q if all elements of srsi are of the form [f(x)]i for f ∈
F<Q[X] and uniform x ∈ F. In the following discussion let us assume we are executing a
protocol with a degree Q SRS, and denote by fi,j the corresponding polynomial for the
j’th element of srsi.

Denote by a, b the vectors of F-elements whose encodings in G1,G2 an algebraic
adversary A outputs during a protocol execution; e.g., the j’th G1 element output by A
is [aj]1.

By a “real pairing check” we mean a check of the form

(a · T1) · (T2 · b) = 0

for some matrices T1, T2 over F. Note that such a check can indeed be done efficiently
given the encoded elements and the pairing function e : G1 ×G2 → Gt.

Given such a “real pairing check”, and the adversary A and protocol execution during
which the elements were output, define the corresponding “ideal check” as follows. Since
A is algebraic when he outputs [aj]i he also outputs a vector v such that, from linearity,
aj =

∑
vℓfi,ℓ(x) = Ri,j(x) for Ri,j(X) :=

∑
vℓfi,ℓ(X). Denote, for i ∈ {1, 2} the vector

of polynomials Ri = (Ri,j)j . The corresponding ideal check, checks as a polynomial
identity whether

(R1 · T1) · (T2 ·R2) ≡ 0

The following lemma from [GWC19] is inspired by [FKL18]’s analysis of [Gro16]. It
tells us that for soundness analysis against algebraic adversaries it suffices to look at
ideal checks. Before stating the lemma we define the Q-DLOG assumption similarly to
[FKL18].

Definition 2.1. Fix integer Q. The Q-DLOG assumption for (G1,G2) states that given

[1]1 , [x]1 , . . . ,
[
xQ

]
1
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negl(λ).

Lemma 2.2. Assume the Q-DLOG for (G1,G2). Given an algebraic adversary A partic-
ipating in a protocol with a degree Q SRS, the probability of any real pairing check passing
is larger by at most an additive negl(λ) factor than the probability the corresponding ideal
check holds.

4

Proof. Let γ be the difference between the satisfiability of the real and ideal check. We
describe an adversary A∗ for the Q-DLOG problem that succeeds with probability γ;
this implies γ = negl(λ). A∗ receives the challenge

[1]1 , [x]1 , . . . ,
[
xQ

]
1
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

and constructs using group operations the correct SRS for the protocol. Now A∗ runs
the protocol with A, simulating the verifier role. Note that as A∗ receives from A the
vectors of coefficients v, he can compute the polynomials {Ri,j} and check if we are in
the case that the real check passed but ideal check failed. In case we are in this event,
A∗ computes

R := (R1 · T1)(T2 ·R2).

We have that R ∈ F<2Q[X] is a non-zero polynomial for which R(x) = 0. Thus A∗ can
factor R and find x.

Knowlege soundness in the Algebraic Group Model We say a protocol P between a
prover P and verifier V for a relation R has Knowledge Soundness in the Algebraic
Group Model if there exists an efficient E such that the probability of any algebraic
adversary A winning the following game is negl(λ).

1. A chooses input x and plays the role of P in P with input x.

2. E given access to all of A’s messages during the protocol (including the coefficients
of the linear combinations) outputs ω.

3. A wins if

(a) V outputs acc at the end of the protocol, and

(b) (x, ω) /∈ R.

2.2 KZG-like Polynomial commitment schemes

We define a polynomial commitment scheme where we force the commitment procedure
to be consistent with that of [KZG10]. This will be useful in the next section when we
define bi-linear polynomial IOPs.

Definition 2.3. A d-polynomial commitment scheme (d-PCS) over a field F consists of

� gen(d) - a randomized algorithm that outputs an SRS srs that contains as a sub-
string [1]1 , [x]1 , . . . ,

[
xd−1

]
1
for uniformly chosen x ∈ F and no other G1 elements.

� com(f, srs) - that given a polynomial f ∈ F<d[X] returns the commitment cm to f
defined as com(f) := [f(x)]1.

� A public coin protocol open between parties PPC and VPC. PPC is given f1, . . . , ft ∈
F<d[X]. PPC and VPC are both given integer t = poly(λ), cm1, . . . , cmt - the alleged
commitments to f1, . . . , ft, z1, . . . , zt ∈ F and s1, . . . , st ∈ F - the alleged correct
openings f1(z1), . . . , ft(zt). At the end of the protocol VPC outputs acc or rej.

5

such that

� Completeness: Fix integer t, z1, . . . , zt ∈ F, f1, . . . , ft ∈ F<d[X]. Suppose that
for each i ∈ [t], cmi = com(fi, srs). Then if open is run correctly with values
t, {cmi, zi, si = fi(zi)}i∈[t], VPC outputs acc with probability one.

� Binding Knowledge soundness in the algebraic group model: For any
algebraic adversary A the probability of A winning the following game is negl(λ)
over the randomness of A and gen.

1. Given srs, A outputs t, cm1, . . . , cmt.

2. Note that as A is algebraic, in the step above it also outputs polynomials
f1, . . . , ft ∈ F<d[X] such that cmi = [fi(x)]1.

3. A outputs z1, . . . , zt ∈ F, s1, . . . , st ∈ F.
4. A takes the part of PPC in the protocol open with common inputs cm1, . . . , cmt, z1, . . . , zt, s1, . . . , st.

5. A wins if

– VPC outputs acc at the end of the protocol.

– For some i ∈ [t], si ̸= fi(zi).

2.3 Other notational conventions

Given a polynomial f ∈ F[X] and a subset I ⊂ F we define f |I to be the set {f(v)}v∈I .
Given a set T ⊂ F we denote by ZT (X) ∈ F[X] the vanishing polynomial of T :

ZT (X) :=
∏
i∈T

(X − i).

3 Bi-linear polynomial IOPs

While most recent works on zk-SNARKs have leveraged the power of polynomial com-
mitment schemes [KZG10], [ZBK+22] has additionaly leveraged the power of pairings
to essentially take products of commitments. This enables checking degree two identites
between polynomials without needing to compute the polyomials themselves, but only
their commitments - which can be much faster when they are a small linear combina-
tion of preprocessed polynomials. We formalize a framework to capture protocols using
pairings in addition to polynomial openings.

Definition 3.1. Fix positive integer d and field F. A d-bi-linear polynomial IOP over
F (d-BLIOP) is a multiround protocol between a prover Ppoly, verifier Vpoly and trusted
party I that proceeds as follows.

1. The protocol definition includes two sets of preprocessed polynomials P1, P2 ⊂
F<d[X].

6

2. The messages of Ppoly are sent to I and are of the form (f, i) for f ∈ F<d[X] and
i ∈ {1, 2}. If Ppoly sends a message not of this form, the protocol is aborted. Ppoly

may also send other messages directly to Vpoly.

3. The messages of Vpoly to Ppoly are always random coins.

4. At the end of the protocol,

� For i ∈ {1, 2}, let Fi denote the set of polynomials f that were sent from Ppoly

to I as part of a message (f, i). And denote Ai := Fi ∪ Pi.

� Vpoly may ask I
(a) evaluation queries of the form (f, x) for f ∈ A1 and x ∈ F. I responds

with the value f(x).

(b) bi-linear identity queries of the form
∑

j∈[k] cjfj(X)hj(X)
?≡ 0, where k

is some positive integer, cj ∈ F, fj ∈ A1, hj ∈ A2 for each j ∈ [k]. I
responds with true or false according to whether the identity holds.

� After concluding her queries Vpoly outputs acc or rej by a deterministic pro-
cedure depending only on the query results.

We define bi-linear polynomial iops for relations and languages in the natural way.

Definition 3.2. Given a relation R, a d-BLIOP for R is a d-BLIOP with the following
additional properties.

1. At the beginning of the protocol, Ppoly and Vpoly are both given - in addition to the
preprocessed polynomial sets P1, P2 - an input x. The description of Ppoly assumes
possession of ω such that (x, ω) ∈ R.

2. Completeness: If Ppoly follows the protocol correctly using a witness ω for x,
Vpoly accepts with probability one.

3. Knowledge Soundness: There exists an efficient E, that given access to the
messages of Ppoly to I, and the random coins of Vpoly outputs ω such that, for any
strategy of Ppoly, the probability of the following event is negl(λ).

(a) Vpoly outputs acc at the end of the protocol, and

(b) (x, ω) /∈ R.

Definition 3.3. Given a language L, a d-BLIOP for L is a d-BLIOP with the following
additional properties.

1. At the beginning of the protocol, Ppoly and Vpoly are both given an input x.

2. Completeness: If x ∈ L, and Ppoly follows the protocol correctly using x, Vpoly

accepts with probability one.

3. Soundness: If x /∈ L then any strategy of Ppoly will result in Vpoly rejecting e.w.p
negl(λ).

7

3.1 From bi-linear polynomial IOPs to protocols against algebraic adversaries

We wish to “compile” BLIOPs to protocols against algebraic adversaries. We will define
a few terms to enable us to track the compilation efficency in terms of the resultant
prover and verifier efficiency.

Note that given a polynomial protocol P and fixed input (x, ω) for the protocol. We
have some distribution over the sets of polynomials A1, A2 sent during the protocol.

Thus, we can define , D1(P, x, ω) :=
∑

f∈F1
(deg(f) + 1). And D2(P, x, ω) as the

number of G2 scalar multiplications required to compute [f]2 for all f ∈ F2. Also,
there will be some distribution over the set of evaluation queries (f, z) asked during the
protocol.

Define O to be the set of tuples ([f]1 , z, f(z); f) when iterating over all evaluation
queries asked by Vpoly.

Finally, define E(P, x, ω) to be the total number of summands in all bi-linear queries
asked by Vpoly during protocol execution.

Lemma 3.4. Assume the d-DLOG assumption holds for (G1,G2). Given a d-BLIOP P
over F and a d-PCS S we can construct a protocol P∗ for R with knowledge soundness
against algebraic adversaries such that

1. Preprocessing time: For i = 1, 2, Ci(P) Gi scalar multiplications, where Ci(P) is
the number of Gi scalar multiplications required to compute [f]i for all f ∈ Pi.

2. Prover efficiency: The prover P in P∗ consists of running Ppoly on the same
inputs; Di(P, x, ω) Gi scalar multiplications for i ∈ {1, 2} and running the prover
of S with input O.

3. Verifier efficiency: The verifier V in P∗ consists running Vpoly on the same inputs;
E(P, x, ω) pairings and Gt exponentiations, and running the verifer of S with
input O.

4. Proof size: For i ∈ {1, 2}, Let Bi(P) be the number of messaged (f, i) sent during
a protocol execution by an honest Ppoly; and assume this number doesn’t depend
on (x, ω). The final proof consists of Bi(P) Gi-elements, and a proof of S with
input O.

Proof. Let S = (gen, com, open). Let P1, P2 be the sets of preprocessd polynomials in
the definition of P. The SRS of P∗ consists of

� srs = [1]1 , . . . ,
[
xd−1

]
1
, [1]2 , . . . ,

[
xd−1

]
2
,

� {[f(x)]1}f∈P1
, {[h(x)]2}h∈P2

Given P we describe P∗. P and V behave identically to Ppoly and Vpoly, except in
the following two cases.

� Whenever Ppoly sends a message (f, i), for f ∈ F<d[X] and i ∈ {1, 2} to I in P;
P instead sends [f]i to V.

8

� Instead of making evaluation queries to I, V does the following.

1. For each evaluation query (f, z) made by Vpoly to I, V instead sends the
query directly to P which responds with the alleged value s = f(z). Let O
be the set of tuples ([f]1 , z, s; f) obtained by all evaluation queries.

2. P and V engage in the open protocol with input O
3. If V outputs rej in this execution of open, it also outputs rej in P∗.

� When Vpoly makes a bi-linear query
∑

i∈[k] cifi(X)hi(X)
?≡ 0, V instead checks the

pairing equation ∏
i∈[k]

e([fi(x)]1 , [hi(x)]2)
ci = 1

and proceeds as if the query reply was true if and only if the pairing equation held.

� Finally, V outputs acc or rej according to whether Vpoly did given the query replies
it has obtained.

To prove the claim about knowledge soundness in the AGM we must describe the
extractor E for the protocol P∗. For this purpose, let EP be the extractor of the
protocol P as guaranteed to exist from Definition 3.2, and ES be the extractor for the
Knowledge Soundness game of S as in Definition 2.3.

Now assume an algebraic adversary A is taking the role of P in P∗.

1. When A sends a message [f]i to V then E receives the coefficients of f from A
and adds f to a set Ai.

2. At the end of the protocol E sends A1, A2 and the random coins of V to EP , and
receives ω in return.

3. E returns ω.

Note that we can think of A1, A2 as random variables of the randomness of V,A and
gen.

Now let us define three events (also over the randomness of V,A and gen):

1. We let A be the event that for some (cm, z, s; f) ∈ O f(z) ̸= s, and at the same
time VPC has output acc when open was run by P and V. By the KS of S ,
Pr(A) = negl(λ).

2. LetB be the event that for one of the bi-linear queries, we had
∑

cifi(X)hi(X) ̸≡ 0;
but

∏
i∈[k] e([fi(x)]1 , [hi(x)]2)

ci = 1. The latter is equivalent to
∑

cifi(x)hi(x) = 0,
where x is the “secret” in srs. We show the probability of this event is negl(λ):
Note that in the above event we have that x is a root of P (X) :=

∑
cifi(X)hi(X).

Thus, we can define an algorithm A for finding x given srs that runs P∗ between
A and V, and for each bi-linear query of V attempts to factor the corresponding
P , and checks for each of its roots x′ if it’s equal to x. The success probability of
A is at least the probability of the event C, and thus must be negl(λ) as otherwise
we would contradict the d-DLOG assumption for (G1,G2).

9

3. We think of an adversary AP participating in P, where Vpoly is using the same
randomness as V, and using the polynomials A1, A2 as their messages to I. We
define C to be the event that Vpoly outputs acc but (x, ω) /∈ R. By the KS of P,
Pr(C) = negl(λ).

Now look at the eventD thatV outputs acc, but E failed in the sense that (x, ω) /∈ R.
This is the event we need to show has probability negl(λ). We claim that D ⊂ A∪B∪C.
If A,B didn’t happen, it means that V and Vpoly have received exactly the same answers
to their queries, and thus will have the same output. In particular, if we are outside of
the event A∪B, V will output acc only when Vpoly does. In other words, D\(A∪B) ⊂ C.

Remark 3.5. The above also implies a similar transformation for protocols for languages
rather than relations: Given a language L we can define a relation R = {(x, ω)|x ∈ L}.
A sound protocol for L will be knowledge sound for R (e.g. by defining an extractor that
always outputs ω = 0), and vice versa.

3.2 Conventions for describing BLIOPs and PIOPs

1. When a d-BLIOP doesn’t include any bi-linear checks, and accordingly A2 is empty,
we call it a d-polynomial IOP or d-PIOP. In this case we abbreviate “Ppoly sends
(f, 1)” to “Ppoly sends f”.

2. When we say Vpoly “checks the identity P (f1(X), . . . , fk(X))”, for fi ∈ A1, we
mean that Vpoly chooses a random α ∈ F, queries f1(α), . . . , fk(α), computes the
value z = P (f1(α), . . . , fk(α)) and outputs rej if z ̸= 0. Note that when analyzing
soundness or knowledge-soundness of a d-BLIOP, we can assume the event that
g(X) := P (f1(X), . . . , fk(X)) is not the zero-polynomial but g(x) = 0 didn’t
happen as it has negl(λ) probability.

3. When we say Vpoly “checks the identity P (f1(X), ..., fk(X)) on H”, for fi ∈ A1 and
a setH ⊂ F, we mean that Ppoly sends the quotient T (X) := P (f1(X), ..., fk(X))/ZH(X)
and that Vpoly checks the identity P (f1(X), . . . , fk(X)) = ZH(X)T (X).

4. When describing the efficiency of specific PIOPs and BLIOPs in the rest of the
paper, we implicitly use the compilation lemma above, and actually describe the
efficiency of the resultant protocl against algebraic adversaries. For example, when
we state a BLIOP “requires t G1-scalar multiplications on input x”, we are implic-
itly claimingD1(P, x) = t and therefore this is the number of scalar multiplications
in the resultant protocol against algebraic adversaries.

4 Protocol for subtable extraction

The protocol in the following section is similar to one implicit in Caulk+ [PK22]. Based
on the innovation of Caulk, Caulk+ uses fractional decomposition to efficiently “extract”

10

a vanishing polynomial ZI of a subset I ⊂ T from ZT . In [PK22], the large set T is
always a multiplicative subgroup. This is fine for their protocol, as there T represents
indices of table values, rather than the table values themselves.

Our main innovation in this section is an algorithm that computes all subtable com-
mitments of size |T |−1 efficiently - this insures that also when T is an arbitrary set, our
preprocessing remains quasilinear rather than quadratic. This allows us later to work
with vanishing polynomials representing the actual table values.

Lemma 4.1. Given T ⊂ F of size N and
{[
xi
]
2

}
i∈{0,...,N−1} there is an algorithm

using O(N log2N) G2-scalar multiplications and F-operations for computing the set of
elements

T =
{[

ZT\{i}(x)
]
2

}
i∈T

Proof. Denote by ZT\{i} the vector [a0 a1 · · · aN−1] (N columns, 1 row) of coefficients of
the polynomial ZT\{i}. Then consider a matrix whose rows are coefficients of ZT\{i}(X):

ZT\∗ =

ZT\{0}
ZT\{1}
· · ·

ZT\{N−1}

Thus we have to compute T = ZT\∗ × SRS where

SRS =
[
[1]2 , [x]2 , · · · ,

[
xN−2

]
2
,
[
xN−1

]
2

]T
Before we describe an algorithm to compute T , we first introduce the ideas behind

it:

1. For polynomials a(X), b(X) of degree N/2 and c(X) such that c(X) = a(X)b(X)
with coefficient vectors c, a, b it holds that[

c0 c1 c2 · · · cN−2 cN−1 cN
]
=

=
[
a0 a1 a2 · · · aN/2−1 aN/2

]
·

b0 b1 b2 b3 · · · bN/2 · · · 0

0 b0 b1 b2 · · · bN/2−1 · · · 0

0 0 b0 b1 · · · bN/2−2 · · · 0
. . .

0 0 0 0 · · · b2 · · · 0
0 0 0 0 · · · b1 · · · 0
0 0 0 0 · · · b0 · · · bN/2

or in matrix form

c = a×Ab,

where Ab is a matrix with N/2 + 1 rows and N + 1 columns.

11

2. Let us split T into T1 = {v1, v2, . . . , vN/2} and T2 = {vN/2+1, . . . , vN}. Then we
have

ZT\∗ =

ZT1\{0} · ZT2

ZT1\{1} · ZT2

· · ·
ZT2\{n−1} · ZT1

 =

ZT1\{0} ×AZT2

ZT1\{1} ×AZT2

· · ·
ZT2\{N−1} ×AZT1

 =

[
ZT1\∗ ×AZT2

ZT2\∗ ×AZT1

]

Therefore

ZT\∗ × SRS =

[
ZT1\∗ ×AZT2

× SRS

ZT2\∗ ×AZT1
× SRS

]
Algorithm to compute T = ZT\∗ × SRS

1. Compute coefficients of ZT (X) and its tree of subproducts in O(N log2N) time
(see below).

2. Split T into halves T1 and T2. Retrieve ZT2(X) and ZT1(X).

3. Compute vectors a2 = AZT2
×SRS and a1 = AZT1

×SRS as Toeplitz matrix-vector
multiplication in O(N logN) time [GVL13].

4. Apply algorithm recursively (go to step 2) to compute b1 = ZT1\∗ × a2 and b2 =
ZT2\∗ × a1.

5. Output concatenation of b1 and b2.

We have an equation for the complexity C1(N) of the algorithm:

C1(N) = 2C1(N/2) +O(N logN)

which gives C1(N) = O(N log2N).

Algorithm to compute ZT and subproducts: This algorithm is a direct adaptation of
[vzGG] (Alg. 10.3).

1. Split T to T1 and T2.

2. Compute ZT1 and ZT2 by two recursive calls to this algorithm with T = T1 and
T = T2.

3. Multiply ZT1 by ZT2 in O(N logN) time using FFT.

We have
C2(N) = 2C2(N/2) +O(N logN)

which gives C2(N) = O(N log2N). This ends the proof.

We proceed to describe the subtable extraction protocol.

IsVanishingSubtableT(g(X))

12

Preprocessed polynomials: Let P1 = {ZT }. For each i ∈ T insert into P2 the polynomial
ZT\{i}.

Inputs: g(X) ∈ F<d[X].

Protocol:

� Ppoly sends (ZT\S , 2) to I.

� Vpoly makes the bi-linear query g · ZT\S
?≡ ZT and outputs acc iff it returns true.

Lemma 4.2. IsVanishingSubtableT is a d-BLIOP for the language
L := {g(X) ∈ F<d[X]|g(X) = ZS(X) for some S ⊆ T}. On input g = ZS, the prover
complexity is O(m log2m) F-operations and O(m) G1 and G2-scalar multiplications,
where m = |S|. Denoting |T | = N , preprocessing takes O(N log2N) G2-scalar multipli-
cations and F-operations.

Proof. Correctness and soundness are obvious: The check in Step 4 passes if and only if
g divides ZT which happens if and only if g = ZS for some S ⊆ T .

We turn to analyzing efficiency. Denote m = |S|. The coefficients of polynomial ZS

can be computed in time O(m log2m) (Lemma 4.1). Then, as noted in [TAB+20, vzGG],
it holds that

ZT\S(X) =
∑
i∈S

ciZT\{i}(X)

where coefficients ci are computed via the derivative Z ′
S(X) as ci =

1
Z′
S(i)

in O(m log2m)

time. Thus we can compute
[
ZT\S(x)

]
2
with m G2 scalar multiplications from the

elements of P2.
We move to analyze the cost of preprocessing. We must compute given

{[
xj
]
2

}
j∈{0,...,N−1}

the set
T =

{[
ZT\{i}(x)

]
2

}
i∈T

.

The complexity of this is O(N log2N) G2-scalar multiplications and F-operations ac-
cording to Lemma 4.1.

5 A PIOP for lookups when given the table in vanishing form

The previous section gives us a way to extract the vanishing polynomial of the subtable
we are interested in. We could use a grand product argument to convert the subtable
into evaluation/Lagrange form, and then use a lookup protocol like plookup that expects
to have the table in this form. Instead, we give a protocol that works directly with
the vanishing form of the table. In fact, it is considerably more efficient than plookup in
group operations: It requires roughly 3m G1-scalar multiplications, when both witness
and table are of size m, as opposed to plookup requiring roughly 5m (Lemma 3.2 in
[GW20]). On the other hand, with the prover here requires O(m log2m) F-operations
compared to plookup’s O(m logm) (in the case where m also denotes the table size).

13

Unnormalized rational Lagrange functions Central to our analysis is the idea of defin-
ing “rational Lagrange functions” also for points outside of the relevant set. Roughly
speaking, this allows us to check inclusion in the set by checking if we ended up with a
polynomial or rational function. Details follow.

Fix a set T ⊂ F. For v ∈ F, we denote by ΓT
v the rational function

ΓT
v (X) :=

ZT (X)

X − v

Note that ΓT
v is a polynomial exactly when v ∈ T .

The following lemma allows us to reduce lookups to distinguishing between polyno-
mials and rational functions.

Lemma 5.1. Fix any vectors v, a ∈ Fm, and any subset T ⊂ F. Define the rational
function R(X) :=

∑
j∈[m] ajΓ

T
vj (X).

1. If for all j ∈ [m], vj ∈ T ; then R(X) ∈ F[X].

2. Let S ⊂ [m] be the set of j ∈ [m] such that vj /∈ T . Assume that S ̸= ∅. Then if∑
j∈S aj ̸= 0, R(X) /∈ F[X]. In particular, assuming |char(F)| > m, R(X) /∈ F[X]

when taking aj = 1 for all j ∈ [m].

Proof. The first item in the lemma is obvious - a sum of polynomials is a polynomial.
We prove the second. Let S be as in the lemma statement and assume it is non-empty.
Our task is essentially to show the rational functions do not “cancel out” and create a
polynomial. Let a ∈ Fm be such that

∑
j∈S aj ̸= 0. We can write

R(X) = R1(X) +R2(X)

where R1(X) =
∑

j∈[m]\S ΓT
vj (X) and R2(X) :=

∑
j∈S ajΓ

T
vj (X). Since R1 is a poly-

nomial, R is a polynomial if and only if R2 is. If R2(X) ∈ F[X], then we have the
polynomial identity

ZT (X)
∑
j∈S

aj
X − vj

= R2(X).

Multiplying denominators, we get

ZT (X)Q′(X) = R2(X)Q(X)

where Q′(X) :=
∑

j∈S aj
∏

i∈S\{j}(X − vi) and Q(X) :=
∏

j∈S(X − vj). We first rule

out the possibility R2(X) ≡ 0. If this was the case, we would have Q′(X) ≡ 0. However,
the coefficient of X |S|−1 in Q′ is

∑
j∈S aj which we are assuming is non-zero.

So assume now that R2(X) ̸≡ 0. Since none of the factors of Q divide ZT , we must
have Q|Q′. However, we have deg(Q) = |S| and deg(Q′) < |S|; so Q doesn’t divide Q′ .
Therefore, R2 /∈ F[X].

In summary, R /∈ F[X] in this case, and the second item in the lemma holds.

14

The above lemma suggests the following protocol. Let H =
{
g,g2, . . . ,gm = 1

}
⊂ F

be a multiplicative subgroup of size m with generator g. Given a polynomial ϕ(X) ∈
F<d[X], a set T ⊂ F and H, define RT,ϕ(X) :=

∑
v∈H ΓT

ϕ(v)(X) (H is an implicit param-

eter in this definition). We commit to RT,ϕ(X) and prove the commitment is correct.
This will show RT,ϕ is a polynomial and therefore ϕ|H ⊂ T according to the lemma. To
show the commitment is indeed to RT,ϕ(X), we open it at random β ∈ F, and com-
pare the value to an independent evaluation of RT,ϕ(β). To compute this independent
evaluation of RT,ϕ(β) we use a “grand sum argument” suggested by Justin Drake [Dra]
similar to [GWC19]’s grand product argument.

Below we denote by {Li(X)}i∈[m] the Lagrange basis of H. That is, Li(X) ∈ F<m[X],

Li(g
i) = 1 and Li(g

j) for i ̸= j ∈ [m]. Given subsets H, T ⊂ F we define the following
protocol.

IsInVanishingH,T(ϕ)

Preprocessed polynomials: Let P1 = {ZT }

Inputs: A polynomial ϕ ∈ F<d[X]

Protocol:

1. Ppoly sends the polynomial g(X) := RT,ϕ(X)

2. Vpoly chooses and sends random β ∈ F and queries the value z := g(β).

3. Ppoly computes and sends a polynomial Z(X) ∈ F<m[X] defined as follows

� For each i ∈ [m], Z(ωi) =
∑i

j=1 Γ
T
ϕ(gi)

(β)

4. Vpoly queries the value ZT (β).

5. Vpoly checks on H the identities

(a) L1(X)(Z(X)(β − ϕ(X))− ZT (β)) = 0.

(b) (X − g)
(
Z(X)− Z(X/g) ZT (β)

β−ϕ(X)

)
= 0.

(c) Lm(X)(Z(X)− z) = 0.

Theorem 5.2. IsInVanishingH,T is a d-PIOP for the language L := {ϕ(X) ∈ F<d[X]|ϕ|H ⊂ T}.
When deg(ϕ), |T | = O(m), the prover runs in time O(m log2m).

Proof. Assume that ϕ /∈ L. We show that Vpoly accepts with negl(λ) probability. Let E
be the event that g(β) = RT,ϕ(β). When ϕ(X) /∈ L, Lemma 5.1 implies that RT,ϕ(X) /∈
F[X]. As g ∈ F<d[X], E has probability negl(λ).

Note that the checks in step 5 passing imply that RT,ϕ(β) = g(β):

15

� The first check implies Z(g) = ΓT
ϕ(g)(β).

� The second check implies for i ∈ {2, . . . ,m}, Z(gi) = Z(gi−1) + ΓT
ϕ(gi)

(β). Thus,

the two first checks together imply Z(gm) =
∑

i∈[m] Γ
T
ϕ(gi)

(β) = RT,ϕ(β).

� The third check implies Z(gm) = z = g(β). Hence together with the first two
checks, we have RT,ϕ(β) = g(β).

Thus, Vpoly outputs acc only during a negl(λ) probability event.
Turning to analyze the Ppoly’s runtime, the heaviest component is computing the

coefficients of RT,ϕ. We show that we can derive RT,ϕ’s values on T in time O(m log2m).
From there, we can interpolate the coefficients in time O(m log2m). To do so, Ppoly

computes in O(m logm) time1 the values {av}v∈T where av is defined to be the number
of x ∈ H with ϕ(x) = v. We have that

RT,ϕ(X) =
∑
v∈T

avΓ
T
v (X).

Let {τv(X)}v∈T be the Lagrange base of T . We have for v ∈ T , that ΓT
v (X) = cvτv(X)

for the constant cv =
∏

v ̸=i∈T (v − i). Thus, we have that

RT,ϕ(X) =
∑
v∈T

avcvτv(X).

Equivalently, RT,ϕ(v) = avcv for each v ∈ T . Thus, once we obtain the values {avcv}v∈T ,
we can interpolate the coefficients of RT,ϕ(X) in O(m log2m) time.

For this purpose, similarly to the proof of Lemma 4.2, we note that the constants
{cv}v∈T are precisely the evaluations of the derivative Z ′

T (X) of ZT (X) at T . Thus they
can be computed in the required time bound.

6 Putting it all together

IsInVanishingTableH,T(ϕ)

Preprocessed polynomials: P1 = {ZT } where

Input: ϕ ∈ F<d[X]

1In applications, this will typically be O(m) time as ϕ is often given in evaluation form over H.

16

Protocol:

1. Ppoly computes the set I ⊆ T such that I = ϕ|H.

2. Ppoly computes and sends ZI .

3. Ppoly and Vpoly run IsVanishingSubtableT(ZI)

4. Ppoly and Vpoly run IsInVanishingH,ZI
(ϕ).

Combining Lemma 4.2 and Theorem 5.2 we have

Theorem 6.1. Let N = |T |. IsInVanishingTableH,T is a d-BLIOP for the language
{ϕ ∈ F<d[X]|ϕ|H ⊂ T} such that

� O(N log2N) G2-scalar multiplications and F-operations are required in preprocess-
ing.

� The prover requires O(m log2m) F-operations and O(m) G1 and G2-scalar multi-
plications.

Proof. The only thing left to address given previous sections is that the computation
of ZI in the second step can be done in time O(m log2m). This, again, follows from
algorithm 10.3 in [vzGG].

Acknowledgements

The first author thanks Aztec Network for support of this work. We thank Mary Maller
and Arantxa Zapico for helpful discussions. The construction in Section 5 is inspired by
a construction of Carla Ràfols and Arantxa Zapico for a similar problem.

References

[BCG+18] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller. Arya: Nearly
linear-time zero-knowledge proofs for correct program execution. In Thomas
Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes in
Computer Science, pages 595–626. Springer, 2018.

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for zk-
snark parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050.

[Dra] J. Drake. https://youtu.be/tbnaud5wgxm?t=2251.

17

https://eprint.iacr.org/2017/1050

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part II, pages 33–62, 2018.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part II, pages 305–326, 2016.

[GVL13] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press,
2013.

[GW20] A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol
for lookup tables. IACR Cryptol. ePrint Arch., page 315, 2020.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to
polynomials and their applications. pages 177–194, 2010.

[PK22] J. Posen and A. A. Kattis. Caulk+: Table-independent lookup arguments.
2022.

[TAB+20] A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovra-
tovich. Aggregatable subvector commitments for stateless cryptocurrencies.
In Clemente Galdi and Vladimir Kolesnikov, editors, Security and Cryptogra-
phy for Networks - 12th International Conference, SCN 2020, Amalfi, Italy,
September 14-16, 2020, Proceedings, volume 12238 of Lecture Notes in Com-
puter Science, pages 45–64. Springer, 2020.

[vzGG] J. von zur Gathen and J. Gerhard. Fast polynomial evaluation and interpo-
lation. Modern Computer Algebra, chapter 10, pages 295–310.

[ZBK+22] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and
M. Simkin. Caulk: Lookup arguments in sublinear time. IACR Cryptol.
ePrint Arch., page 621, 2022.

18

	Introduction
	Usefulness of the result
	Organization of the paper and recommended reading route

	Terminology and Conventions
	Analysis in the AGM model
	KZG-like Polynomial commitment schemes
	Other notational conventions

	Bi-linear polynomial IOPs
	From bi-linear polynomial IOPs to protocols against algebraic adversaries
	Conventions for describing BLIOPs and PIOPs

	Protocol for subtable extraction
	A PIOP for lookups when given the table in vanishing form
	Putting it all together
	References

