
Byzantine Consensus under Fully Fluctuating Participation

Dahlia Malkhi†, Atsuki Momose*, and Ling Ren*

†Chainlink Labs
*University of Illinois at Urbana-Champaign

October 2022

Abstract

The longest-chain paradigm introduced by the Bitcoin protocol allows Byzantine consensus
with fluctuating participation where nodes can spontaneously become active and inactive any-
time. Since then, there have been several follow-up works that aim to achieve similar guarantees
without Bitcoin’s computationally expensive proof of work. However, existing solutions do not
fully inherit Bitcoin’s dynamic participation support. Specifically, they have to assume mali-
cious nodes are always active, i.e., no late joining or leaving is allowed for malicious nodes, due
to a problem known as costless simulation. Another problem of Bitcoin is its notoriously large
latency. A series of works try to improve the latency while supporting dynamic participation.
The work of Momose-Ren (CCS 2022) eventually achieved constant latency, but its concrete
latency is still large. This work addresses both of these problems by presenting a protocol that
has 3 round latency, tolerates one-third malicious nodes, and allows fully dynamic participation
of both honest and malicious nodes. We also present a protocol with 2 round latency with
slightly lower fault tolerance.

1 Introduction

Byzantine consensus [22], a decade-old problem in distributed computing and cryptography, allows
a group of nodes to reach an agreement in the presence of corrupted participants. Classic consensus
research has focused on the static participation model where every honest node is assumed to be
always online [22, 12, 5, 15, 13, 6]. Recently, due to the rise of cryptocurrencies, Byzantine consensus
has been studied under the dynamic and unknown participation model, where nodes can become
active and inactive at any time. The celebrated Bitcoin protocol [27], with its underlying longest-
chain paradigm, is the first consensus protocol that supports dynamic participation. Since then,
there have been many efforts to improve or generalize the longest-chain paradigm [28, 10, 8]; there
have also been works that extend classic quorum-based consensus protocols to the dynamic and
unknown participation model [20, 18, 26].

Constraints on dynamic participation. However, all existing solutions fall short of achieving
fully dynamic participation like Bitcoin does. The dynamic participation in Bitcoin is natural and
elegant: both honest nodes and malicious nodes can fluctuate dynamically as long as we have an
honest majority. However, once we remove Bitcoin’s computationally expensive proof-of-work, we
lose an important feature that computation effort is not reusable. Without proof-of-work existing

1

protocols assume that faulty nodes are always active [28, 26, 9]. In other words, faulty nodes cannot
dynamically leave or join the system at all. This assumption is hard to justify in practice. Suppose
only dozens of nodes are active at the beginning, but a million nodes are active a few years later
when a system becomes popular. At that later time, the above protocols still require that only
dozens of nodes are faulty out of the one million nodes!

The difficulty in handling faulty nodes’ fluctuation is due to a problem called costless simula-
tion [11]. To elaborate, when a faulty node becomes active, it can pretend to have always been
active in the past. It can fabricate messages that were supposed to be sent when it was not active
and try to alter the consensus results in the past. For example, this directly affects the safety of
proof-of-stake longest-chain protocols as faulty nodes can create a longer chain than the honest
one retroactively, using the stake (and the voting power that comes with it) they had before they
became active.

Besides such a “backward” simulation, faulty nodes can also engage in “forward” simulation by
giving their secret keys to other faulty nodes before going inactive. This way, other faulty nodes
that are active in the future can send messages on their behalf, and it is as if those faulty nodes
never went inactive. Some works incorporate strong assumptions such as verifiable delay functions
(VDF) [11] or a trusted list of participants [8, 10] to defeat backward simulation. But even these
strong assumptions do not help prevent forward simulation.

We also point out that some prior works, especially the ones with improved efficiency, do not
even support fully dynamic participation of honest nodes [18, 26]. Goyal et al. require a minimum
number (linear in the security parameter) of nodes to be active at all times. The work of Momose-
Ren requires the number of honest nodes to eventually stabilize in order to make progress.

The primary goal of this work is to support fully dynamic participation of both honest and
faulty nodes without the enormous energy consumption of proof-of-work.

Long latency. Another drawback of existing solutions is the long latency. Longest-chain consensus
protocols have long latency because their latency depends on the security parameters (and some
other factors). There have been significant efforts to remove these dependencies [4, 16, 24, 18],
eventually leading to the work of Momose-Ren [26] which achieves O(∆) latency (∆ is the bound
on communication delay). Despite being asymptotically optimal, the concrete latency in Momose-
Ren is still quite large, at least 16∆, whereas classic BFT protocols (without dynamic participation
support) can make decisions in as low as ∆ time [2].

Main result. This work addresses both of the above problems. Concretely, the consensus problem
we study is Byzantine atomic broadcast [7], the underlying problem of blockchain, where nodes agree
on a sequence of values (i.e., a ledger). As for the model, our starting point is the sleepy model
of Pass-Shi [28]. The original sleepy model assumes that the number of active honest nodes can
fluctuate dynamically at the adversary’s control, but all faulty nodes are always awake. We extend
the model to allow the number of faulty nodes to fluctuate as well, which we call the sleepy model
with fluctuating adversary. Our main result below supports fully dynamic participation of both
honest nodes and faulty nodes and achieves a concretely small latency while sacrificing the fault
tolerance.

Theorem 1 (informal). Assuming authenticated channels and verifiable random functions (VRF),
there exists a Byzantine atomic broadcast protocol in the sleepy model with fluctuating adversary
with (best-case) 3∆ latency that allows less than 1/3 of active nodes at any time to be faulty.

2

Here, we assume authenticated channels do not deliver any stale messages (formalized in Sec-
tion 3). Thus, faulty nodes cannot send future messages unless they are active at that future
time.

In practice, authenticated channels are usually established using a public key infrastructure
(PKI) and digital signatures. Thus, digital signatures plus PKI is traditionally considered to be
a stronger assumption than authenticated channels. Observe that Byzantine consensus in the
authenticated channels (without signatures) tolerates less than one-third of Byzantine faults [22];
with signatures, the fault tolerance can be up to one-half or even 99% [12].

However, the situation is quite different in the sleepy model. In the sleepy model, authenticated
channels are stronger in some ways than digital signatures plus PKI. With the latter, it seems
hard (if not impossible) to defeat forward simulation. A faulty node can give its secret key to the
adversary (or other faulty nodes) before going to sleep, allowing the adversary to act on its behalf
after it goes to sleep. It is then as if that faulty node never left.

Because of this, under the PKI settings, we have to consider a slightly weaker adversary. Specif-
ically, our protocol allows an increasing number of faulty nodes but they are not allowed to go from
active to inactive. We call it the sleepy model with growing adversary. In other words, we cannot
handle forward simulation but can still handle backward simulation. Under this model, we show
the following result:

Theorem 2 (informal). Assuming digital signatures, public key infrastructure (PKI), and verifiable
random functions (VRF), there exists a Byzantine atomic broadcast protocol in the sleepy model
with growing adversary with (best-case) 3∆ latency that allows less than 1/3 of active nodes at any
time to be faulty.

In fact, we believe the downgrade to the growing adversary can be an artifact in the modeling
itself. In practice, even malicious nodes are mutually distrustful and would not share keys with
each other. If we have a way to formally model faulty nodes going to sleep without giving away
their secret keys, then our protocol will likely work fine against fluctuating faulty nodes. We leave
this direction to future work.

Technical overview. We now explain at a high level how we address the two problems above.
Our starting point is the protocol by Momose-Ren [26], which is constructed in two steps: they
first construct a graded agreement (GA) subroutine [14, 19, 1, 25] in the sleepy model. The second
step uses the GA to build an atomic broadcast.

First, by slightly sacrificing the fault tolerance from 1/2 to 1/3, we design an extremely simple
GA with one round of communication. Our technique somewhat resembles the reliable broadcast
protocol of Khanchandani-Wattenhofer [20], though their work is presented in an unknown but
static participation model. Notably, our GA protocol is secure without digital signatures (assuming
authenticated channel), and hence trivially defeats forward simulation (as there is no secret key to
reveal).

However, this is not the end of the story. Näıvely plugging the one-round GA into the Momose-
Ren atomic broadcast does not work for either of the two settings above. To delve deeper into
the issue, the atomic broadcast of Momose-Ren is composed of sequential invocations of GA where
all past GAs potentially affect the current decision. In the case of authenticated channels without
digital signatures, messages from past rounds (and hence the results of past GAs) cannot be reliably
recovered. In the PKI plus signature case, past signed messages can be recovered, but this allows

3

faulty nodes to concoct messages of past rounds (back when they were inactive), again opening up
the vulnerability of backward simulation.

The main technical contribution of this work is to construct an atomic broadcast protocol in
which only the messages from the immediate last round have an impact on the current round.
The outcome is a remarkably simple protocol consisting of only two single-round GA instances per
decision. This is also how we get a significant latency improvement over the five-GA construction
of Momose-Ren.

Additional advantages and assumption. In addition to the two highlighted features, our
protocol has several other advantages over the state-of-the-art protocol of Momose-Ren [26]. First,
communication cost per decision is reduced from cubic to quadratic in the number of active nodes.
Another advantage of our protocol is that it has perfect safety (with authenticated channels),
whereas all previous protocols, longest-chain and sleepy BFT alike, only guarantee safety with
overwhelming probability.

Towards optimal latency. After giving the two results above, we explore further latency reduc-
tion towards optimal latency. It is easy to show that any protocol in the sleepy model cannot make
a decision in less than ∆ time (Appendix A). With this lower bound in mind, we show the following
result:

Theorem 3 (informal). Assuming digital signature and public-key infrastructure (PKI) a verifiable
random function (VRF), there exists a Byzantine atomic broadcast protocol in the sleepy model with
growing adversary with (best-case) 2∆ latency that tolerates up to 1/4 of active nodes being faulty.

The one-round latency improvement is attributed to reducing the number of GA invocations
from 2 to 1. Intuitively, our first protocol (and Momose-Ren) implements a three-graded agree-
ment with two invocations of a standard two-graded agreement. Our key insight is that further
downgrading the fault tolerance to 1/4 allows us to achieve a three-graded agreement in one round
of communication.

To summarize, this paper presents two protocols as follows:

1. Byzantine atomic broadcast with 3∆ latency and 1/3 fault tolerance (Section 5), which is
built on a graded agreement (Section 4)

2. Byzantine atomic broadcast with 2∆ latency and 1/4 fault tolerance (Section 6).

2 Related Work

Byzantine consensus has been studied for a few decades, mostly in the static and known partic-
ipation model [22, 12, 5, 15, 13, 6]. The Bitcoin protocol [27] inspired a new area of research in
Byzantine consensus that considers unknown and dynamic participation. The unknown and dy-
namic participation model was later formalized as the sleepy model [28]. Below, we review the
related works in sleepy consensus research.

Longest-chain paradigm. Early research on sleepy consensus naturally adopted Bitcoin’s longest-
chain paradigm. A number of works generalized the longest-chain paradigm by replacing the com-
putationally expensive proof-of-work with proof-of-stake [28, 21, 3, 8]. A major drawback of a
longest-chain protocol is its long latency. Specifically, a plain longest-chain protocol (e.g., Bitcoin)

4

has a latency of O(κ∆γ) where κ is the desired security level, γ is the active participation level (i.e.,
the fraction of active nodes compared to the total nodes), and ∆ is the bound on network delay. A
number of works try to remove some of the factors that lead to the long latency. Prism [4], Parallel
Chain [16], and Taiji [24] remove the dependency on κ using many parallel instances of longest
chains, but could not remove the dependency on γ. A recent work by Deb et al. [11] achieves O(∆)
latency under optimistic conditions where the participation level is high, but it still has the same
latency as a longest-chain protocol with low participation

The classic BFT paradigm. Another line of work tries to adapt the classic BFT paradigm from
the traditional known and static participation model to the sleepy model. Goyal et al. [18] removes
the dependency on γ by extending Algorand [17], but the dependency on κ remains. Besides,
due to the use of a static quorum threshold, it places a constraint on honest nodes’ fluctuation;
it requires Ω(κ) awake honest nodes at all times. This was resolved in Momose-Ren [26] using
dynamic quorum thresholds that adapt to the actual level of participation. Momose-Ren [26] also
removes the latency’s dependencies on both the security parameter κ and actual participation level
γ to achieve O(∆) latency. But their concrete latency is still quite high, at least 16∆. Moreover, the
liveness of their protocol is only guaranteed when participation is stable for long enough periods.
We also mention the work of Khanchandani-Wattenhofer [20]. While their protocols assume an
unknown but static participation model, some of their techniques seem applicable to the unknown
and dynamic participation model.

3 Model and Preliminaries

We study Byzantine atomic broadcast problem in the sleepy model. We consider a system of N
total nodes communicating over a synchronous network (note that network synchrony is necessary
in the sleepy model [28]). We use ∆ to denote the bound on communication delay. For simplicity,
we assume a completely synchronous clock, i.e., nodes have access to a common global clock. We
can extend our results to a model with bounded clock skew by applying the round transformation
technique in [26] (with a slight latency increase).

The adversary is adaptive and can corrupt nodes at any time. Faulty nodes are Byzantine
and deviate from the protocol arbitrarily. Non-faulty nodes are said to be honest and behave as
instructed by the protocol.

Sleepy model. The original sleepy model is introduced by Pass and Shi [28]. A node is in one of
two states: awake or asleep. Awake nodes actively participate in the execution, while asleep nodes
neither execute any code nor send/receive any message. The number of awake nodes at each time t
is denoted 0 < nt ≤ N ; The status of each node can change at the adversary’s control without any
advance notice. As for the faulty nodes’ dynamic participation, we consider two types of adversarial
assumptions.

1. Fluctuating adversary. faulty nodes can wake up and go to sleep at any time.

2. Growing adversary. Asleep faulty nodes can become awake but cannot go back to sleep
ever after. In other words, awake faulty nodes are non-decreasing.

Our protocols tolerate one of the adversaries above depending on the communication model.
With authenticated channels, we tolerate the fluctuating adversary. With digital signature with
PKI, we tolerate the growing adversary.

5

1. Authenticated channels. Each pair of nodes has an independent bidirectional channel to
which no other nodes can send any message. If an awake node p sends a message x at time
t to another node q who is awake at time t + ∆, then q will receive x by time t + ∆. We
also assume any message not received within ∆ will be lost including those from faulty nodes.
Therefore, even faulty nodes cannot send any future message unless it is awake in the future
time.

2. Digital signature with PKI. Communication channels are unauthenticated, i.e., no one
knows the origin of any message, but each node has access to digital signature with public-key
infrastructure (PKI). In this case, messages failed to be received can be transferred by other
awake nodes. So, we assume (for simplicity) messages not received within ∆ are not lost and
delivered later (this is also assumed in the original sleepy model [28]). More precisely, if an
awake node p sends a message x at time t to another node q who is awake at time t′ ≥ t+∆,
then q will receive x by time t′. In practice, only messages with necessary information must
be recovered; We will discuss this later in this paper (Section 7).

In both cases, we use ⟨x⟩p to denote a message from p. In the former case, it simply means the
message is sent by p. In the latter case, it is a message signed by p’s secret key.

Fault threshold. We define the fault threshold in the following way. Let Ft be the set of faulty
nodes at time t, and let ft,T = | ∪t≤τ≤t+T Fτ |, i.e., ft,T is the total number of faulty nodes that are
ever awake at some point during the time interval [t, t + T]. Section 4 and 5 assume ft,∆ < nt/3
for any t. Section 6 assumes ft,2∆ < nt/4 for any t. In other words, our fault threshold condition
requires that the number of faulty nodes that are ever awake in an interval of length ∆ (or 2∆) is
less than one-third (or one-fouth) of the total number of awake nodes at a given point in time. We
will explain why the fault threshold is defined this way in Section 4. For now, we remark that the
way we define fault threshold is a little stronger than what the Bitcoin protocol assumes. Bitcoin
simply requires a minority fault at any time (no time interval required) — which can be thought
of as ft,0 < nt/2 (again this is because computation effort is not reusable in proof-of-work). But
all prior works on sleep consensus [28, 18, 26] require the much stronger assumption that all faulty
nodes are always awake — essentially ft,∞ < nt/2.

Byzantine atomic broadcast. Byzantine atomic broadcast allows nodes to agree on a growing
sequence of values [x0, x1, x2, ...] called a log such that:

1. Safety. If two honest nodes decide logs [x0, x1, .., xj] and [x′0, x
′
1, .., x

′
j′], then xi = x′i for all

i ≤ min(j, j′).

2. Liveness. If an honest node inputs a value x, then there exists a time t such that all honest
nodes awake at t decide a log containing x.

Here, we do not care what the values are. It might be from a finite class depending on the
application built on top of the atomic broadcast.

Log format. For simplicity, we assume values input by nodes are batched into a block. A log is
represented as an ordered set of blocks [b1, b2, .., bk]. We say a log Λ extends Λ′ if Λ′ is a prefix of
Λ. We say two logs conflict if they do not extend one another.

Verifiable random function. We use verifiable random function (VRF) for liveness. Each node
p with its secret key can evaluate (ρ, π)← VRFp(µ) on any input µ. The output is a deterministic

6

pseudorandom value ρ along with a proof π. Using π and the public key of node p, anyone can
verify whether ρ is a correct evaluation of VRFp on input µ.

4 Graded Agreement with 1/3 Fault Tolerance

This section presents a graded agreement (GA) tolerating ft,∆ < nt/3 faulty nodes.

Graded agreement. Graded agreement (GA) is a weak form of agreement problem that has been
used widely (either implicitly or explicitly) as a stepping stone to full consensus. At the beginning
of the GA protocol, nodes input logs1; at the end of the protocol, each node outputs a set of logs,
with each log assigned a grade bit. Informally, it provides the following guarantees:

1. Graded consistency. If an honest node outputs a log with grade 1, then all honest nodes
output the log with at least grade 0.

2. Integrity. If an honest node outputs a log with any grade, then there exists an honest node
that inputs the log.

3. Validity. Nodes output with grade 1 the longest common prefix among honest nodes’ input
logs.

4. Uniqueness. If an honest node outputs a log with grade 1, then no honest node outputs any
conflicting log with grade 1.

5. Bounded divergence. Each honest node outputs at most 2 conflicting logs (of course with
grade 0).

We remark that our GA definition above is a little weaker than the standard GA definition in
which each node outputs only one value (and hence uniqueness and bounded divergence hold by
definition in standard GA). Both properties are useful to our atomic broadcast construction (see
more in Section 5).

Our protocol. Our GA protocol is described in Figure 1. It takes one round of communication.
At the beginning of the round (time t = 0), awake nodes vote for their own input logs. At the end
of the round (time t = ∆), awake nodes tally votes, and decide the outputs. Here, note that a node
does not know the actual participation level (i.e., how many nodes are awake), and furthermore,
different nodes can hear from different sets of nodes. So, each node makes a decision based on its
own perceived participation. If a log is voted by more than 2/3 of voters (the node hears from),
the node outputs the log with grade 1; and if the log is voted by more than 1/3 but less than 2/3
of voters, then the node outputs the log with grade 0. Here, a vote for a log is also considered as
vote for all its prefixes. Also, votes for different logs from the same node (an obvious Byzantine
behavior) are simply ignored. Note that the set of nodes awake at the beginning of a round may
be different from the set of nodes awake at the end of a round.

Proof sketch. This simple protocol achieves the above-mentioned properties by the following
logic. First, although the number of voters is unknown, more than 2/3 of voters are honest and
every honest node hears from them; validity holds. If > 2/3 of voters (that a node hears from) vote

1GAs are usually defined on a single value, but we define it on logs

7

for the same log, all other nodes at least receive votes for the log from > 1/3 of voters (that they
hear from); graded consistency holds. Moreover, these > 1/3 voters are in fact honest, so no other
log can collect > 2/3 votes; uniqueness holds. Integrity follows from the fact that > 1/3 of voters
must include one honest node. Finally, as different vote messages from the same node are ignored,
bounded divergence holds.

Remark on fault threshold. Recall we define the fault threshold slightly differently from the
most straightforward way (see Section 3). This is due to a subtle technical reason. Counting faulty
nodes in a time interval makes sure a large enough fraction of voters are honest nodes. Otherwise,
faulty nodes could be replaced arbitrarily many times during one round of voting, and could easily
outnumber honest nodes. To elaborate, suppose the fault threshold is simply defined for each point
in time without using an interval, e.g. ft < nt/3 for all t. Then, an adversary can launch the
following attack: a faulty node wakes up, votes, and goes to sleep immediately; then another faulty
node wakes up, votes, and goes to sleep immediately; and this process repeats arbitrarily many
times. This way, at no point in time did the adversary have many faulty nodes awake, but the total
number of faulty votes that can be produced this way is arbitrarily large and easily outnumbers
the honest nodes.

Node p runs the following algorithm if it is awake at time t.

1. time t = 0. Send ⟨vote,Λ⟩p where Λ is the input log.

2. time t = ∆. Tally vote messages and decides the outputs as follows. Let m be the number
of vote messages received.

(a) For any Λ voted by > 2m/3 nodes, output (Λ, 1)

(b) For any Λ voted by > m/3 nodes (but ≤ 2m/3), output (Λ, 0)

Here, if Λ′ extends Λ, then ⟨vote,Λ′⟩ is also counted as a vote for Λ. Two different vote messages
from the same node are ignored.

Figure 1: GA: our graded agreement protocol

4.1 Correctness Proof

Our GA protocol provides the following formal guarantees. Note that all of the proofs below hold
assuming either authenticated channels or digital signatures plus PKI.

Lemma 1 (graded consistency). If an honest node outputs (Λ, 1), then all honest nodes awake at
time t = ∆ output (Λ, ∗)

Proof. Suppose an honest node p outputs (Λ, 1), then it sees more than 2m/3 votes for Λ where
m is the number of vote messages p receives by time t = ∆. Let n be the number of nodes awake
at time t = 0. Then, more than 2n/3 honest nodes are awake at time t = 0, and these nodes will
vote. Given the way we define the fault threshold, there are less than n/3 faulty nodes that are
ever awake during the time interval [0,∆]. Thus, the m messages p receives consist of h > 2n/3

8

messages from honest nodes and α < n/3 messages from faulty nodes. By the same argument,
another honest node q awake at time t = ∆ receives m′ = h+α′ messages where α′ < n/3 messages
are from faulty nodes. Now, the number of vote messages for Λ that p receives from honest nodes
is more than

2m/3− α = 2(h+ α)/3− α = 2h/3− α/3

> h/3 + α′/3 = m′/3.

The inequality step uses the fact that h > α + α′. These honest nodes must also send the same
vote messages to q. Therefore, out of the m′ votes q receives, > m′/3 votes are for Λ, and output
(Λ, ∗).

Lemma 2 (integrity). If an honest node outputs (Λ, ∗), then at least an honest node inputs a log
that extends Λ.

Proof. Suppose an honest node p outputs (Λ, ∗), then it sees > m/3 votes for Λ where m is the
number of vote messages p receives by time t = ∆. The m messages include h > 2n/3 messages
from honest nodes and α < n/3 messages from faulty nodes, where n is the number of nodes awake
at time t = 0. So the number of vote messages voting for Λ that p receives from honest nodes is
more than

m/3− α = (h+ α)/3− α = (h− 2α)/3 > 0.

This implies at least one honest node must have input a log that extends Λ.

Lemma 3 (validity). Let Λ be the longest common prefix of honest nodes’ inputs. Then all honest
nodes awake at t = ∆ output (Λ, 1).

Proof. Let m be the number of messages an honest node p awake at time t = ∆ receives. The
m messages consist of h > 2n/3 messages from honest nodes and α < n/3 messages from faulty
nodes, where n is the number of nodes awake at time t = 0. As all h honest nodes awake at time
t = 0 must vote for Λ, p must receive h > 2m/3 votes for Λ, and output (Λ, 1).

Lemma 4 (uniqueness). If an honest node outputs (Λ, 1) and another honest node outputs (Λ′, 1),
then B and Λ′ do not conflict with each other.

Proof. Suppose an honest node p outputs (Λ, 1), then it sees > 2m/3 votes for Λ where m is the
number of vote messages p receives. By the same logic in the proof of graded consistency, we have
that out of the m′ votes received by an honest node q awake at t = ∆, > m′/3 votes are for Λ and
come from honest nodes. So q cannot see more than 2m′/3 votes for a log conflicting with Λ and
cannot output such a log with grade 1.

Lemma 5 (bounded divergence). Each honest node outputs (with grade 0) at most two conflicting
logs.

Proof. In order to be an output, a log must be voted by > m/3 nodes out of the m votes received.
Recall that conflicting vote messages from the same node are ignored. Thus, each node outputs at
most two conflicting logs.

9

5 Atomic Broadcast with 1/3 Fault Tolerance

This section presents an atomic broadcast protocol building on the GA protocol described in Sec-
tion 4. Our protocol tolerates ft,∆ < nt/3 faulty nodes controlled by either a fluctuating or a
growing adversary (depending on the communication model).

View-based execution. Our protocol is described in Figure 2. Time is divided into views. Each
view lasts 2∆ time, but the first view (view 0) lasts only ∆. Thus, view v ≥ 1 starts at time
(2v − 1)∆. For convenience, we also say “time t = τ of view v” to refer to time t = (2v − 1)∆+ τ .

Propose. Nodes propose logs for view v in the second round of view v − 1 (i.e., time [∆, 2∆] of
view v − 1). They also include VRF evaluation on the view number VRFp(v) in their proposals,
which work as leader election lotteries. At the beginning of view v (time 0 of view v), a node
chooses a proposal with the highest valid VRF evaluation and treats the node who sent it as the
leader. The very first view v = 0 serves only as the “propose” step for view v = 1, which is why it
takes ∆.

Decide A log is decided after two sequential invocations of GA. A node inputs the leader’s log to
the first GA (denoted GAv,1) at time 0. An output log by the first GA with grade 1 is input to the
second GA (denoted GAv,2) at time ∆. Recall that GA always outputs a (possibly empty) log with
grade 1 (by validity). Finally, an output log by the second GA with grade 1 is decided at time 2∆.
The two GA invocations also update two key variables respectively: Cv and Lv, which stand for
“candidate” and “lock”, respectively. We explain how they help achieve safety and liveness below.

1. Safety. Lv is set to the longest log that GAv,2 outputs (with either grade 0 or 1). Lv is then
used to perform a consistency check on a proposed log at time 0 of the next view (view v+1).
A log is input to GAv+1,1 only if it does not conflict with Lv, i.e., the node “locks” on the
log. If a log Λ is decided, all honest nodes update Lv to be Λ (due to graded consistency and
uniqueness). So no honest node will input a log conflicting with Λ to GA in the next view,
and any decision will be consistent with Λ (due to the integrity of GA).

2. Liveness. Cv is set to the longest log that GAv,1 outputs (with either grade 0 or 1). Each
node proposes a log extending Cv, i.e., a “candidate” for the next decision. In order for an
honest leader’s proposal to get decided, the honest leader’s “candidate” Cv must be consistent
with honest nodes’ locks Lv−1; Otherwise, it cannot pass the consistency check. We will show
this ”good” event happens with probability at least 1/2.

A key feature of our protocol is that every step of the protocol depends only on the immediate
last round. More concretely, at time t = 0, an input to GAv,1 depends only on the propose messages
and vote messages (from GAv−1,2) sent during [∆, 2∆] of view v − 1. Likewise, at time t = ∆, an
input to GAv,2 depends only on the vote messages (from GAv,1) sent during [0,∆] of view v. This
feature is critical to supporting a fluctuating or growing adversary. First of all, this is necessary
when we assume authenticated channels where messages are lost after one round (∆ time). When
we assume digital signatures and PKI in case of a growing adversary, this feature allows us to
tolerate backward simulation because faulty nodes who fabricate messages of past rounds now have
no influence on the current actions of honest nodes.

10

L0 and C0 are defined as an empty log []. Node p runs the following algorithm if it is awake at
time t. View 0 lasts ∆ time. At time t = 0 of view 0, send ⟨propose,Λ,VRFp(1)⟩p to propose the
first log Λ := [b]. All later views v ≥ 1 each takes 2∆ and work as follows.

1. time t = 0. Start GAv,1; The input is a log in the propose message with the largest valid
VRF on v that does not conflict with Lv−1.

2. time t = ∆.

• Start GAv,2; The input is the longest log Λ such that GAv,1 outputs (Λ, 1).

• Let Cv be the longest log C such that GAv,1 outputs (C, ∗). (If there are two such
C, pick one at random.) Then, send ⟨propose,Λ′,VRFp(v + 1)⟩p where the new log is
Λ′ := b | Cv.

3. time t = 2∆.

• If GAv,2 outputs (Λ, 1), decide Λ.

• Set Lv to the longest log Λ′ such that GAv,2 outputs (Λ′, ∗).

Note that t = 2∆ of view v matches t = 0 of view v + 1.

Figure 2: Atomic broadcast with 1/3 fault tolerance and 3∆ latency

5.1 Correctness Proof

We prove safety and liveness of our protocol.

Lemma 6 (safety). If two honest nodes decide logs Λ and Λ′, then Λ and Λ′ do not conflict with
each other.

Proof. Without loss of generality, suppose Λ is decided in view v and Λ′ is decided in view v′ ≥ v.
The honest node who decides Λ must have output (Λ, 1) in GAv,2. If v = v′, then the lemma follows
from the uniqueness of GAv,2. So we consider v′ > v. Due to graded consistency of GAv,2, any
honest node p awake at time t = 2∆ of view v must have output (Λ, ∗) in GAv,2. We also observe
that p could not have output any log conflicting with Λ in GAv,2; otherwise, two conflicting logs
must have been output with grade 1 from GAv,1 by honest nodes, which violates GA uniqueness.
Therefore, p must have set Lv to a log extending Λ, and hence input to GAv+1,1 a log extending Λ.
Due to integrity, GAv+1,1, and inductively all later GAs, must output logs extending Λ. Hence, Λ′

must extend Λ.

Lemma 7 (liveness). If an honest node inputs a value x to the atomic broadcast protocol, then
there exists a time t such that all honest nodes awake at t decide a log containing x.

Proof. If an honest node has the highest VRF in view v, we call that node the honest leader. If
all honest nodes awake at time t = 0 of view v input to GAv,1 a log proposed by an honest leader,
then the log must be decided. The only reason an honest node does not input the leader’s proposal
to GAv,1 is that it conflicts with its lock L. We prove all awake honest node accept (i.e., input to
GAv,1) the leader’s proposal with probability more than 1/2.

11

Let Λ be the longest log among the locks (i.e., variable Lv−1) of honest nodes awake at time t = 0
of view v. Then, there exists an honest node p who outputs (Λ, ∗) from GAv−1,2. Then, at least an
honest node q must have input to GAv,2 a log extending Λ after outputting (Λ, 1) in GAv−1,1. Due
to graded consistency, the leader must have output (Λ, 0) in GAv−1,1. Due to bounded divergence,
the leader outputs at most one other conflicting log from GAv−1,1. Therefore, with probability at
least 1/2, the leader proposes a log extending Λ. Due to uniqueness, all honest nodes awake at
time t = 0 of view v set their lock values Lv−1 to logs extending Λ (as we are assuming Λ is the
longest among them). Therefore, with probability at least 1/2, the leader’s proposal is accepted by
all honest nodes awake at time t = 0 of view v.

Now, as more than 3/4 of awake nodes are honest at all times, an honest leader exists in each
view with probability at least 3/8. Hence, a log is decided in each view with probability at least
3/8. All values input by honest nodes to the atomic broadcast are eventually included in a decided
log.

6 Atomic Broadcast with 1/4 fault tolerance

This section presents an atomic broadcast protocol with 2∆ latency that tolerates ft,2∆ < nt/4
faulty nodes controlled by the growing adversary. The protocol is described in Figure 3.

The basic structure of the protocol is very similar to our previous protocol in Figure 2. In each
view, logs are proposed by nodes along with VRFs, and an elected leader’s proposal is then voted
and decided after collecting enough votes. The difference is that only one voting round is used
instead of two (the two GA invocations) to reduce the latency of the protocol to 2∆.

To aid understanding, we point out the connection between the two protocols below. The pre-
vious protocol, in fact, implements a multi-graded agreement (in fact 3 grades) using two sequential
invocations of a single-graded agreement. We can re-interpret grade 0 of GA1 as grade 0, grade 0
of GA2 as grade 1, and grade 1 of GA2 as grade 2. Then, we have the following informal guarantee:
if an honest node outputs a value with grade g, then all honest nodes output that value with grade
g− 1. This property is the multi-graded version of graded consistency and we crucially relied on it
to achieve safety and liveness. The protocol in this section implements a multi-graded agreement
using a single voting round as follows: if a value is voted by 3/4 of voters, it is assigned grade
2; likewise, 1/2 votes result in grade 1, and 1/4 votes result in grade 0. It is not hard to verify
multi-graded consistency. Finally, as done in the previous protocol, a log is decided if it is assigned
grade 2, and logs with grades 1 and 0 updates Lv and Cv, respectively. We can then argue safety
and liveness in the same way.

6.1 Correctness Proof

Lemma 8 (safety). If two honest nodes decide Λ and Λ′, then Λ and Λ′ do not conflict with each
other.

Proof. Without loss of generality, suppose Λ is decided in view v and Λ′ is decided in view v′ ≥ v.
The node p who decides the log Λ must see votes for Λ from more than 3m/4 nodes (at time t = 2∆
of view v) where m is the number of vote messages of view v (i.e., ⟨vote, ∗, v⟩) that p received. The
m messages consist of h > 3n/4 messages from honest nodes and α < n/4 messages from faulty
nodes, where n is the number of awake nodes at time t = ∆ of view v. Similarly, another honest
node q awake at time t = ∆ of view v + 1 receives m′ = h+ α messages, out of which α′ messages

12

L0 and C0 are defined as an empty log []. Each view v ≥ 0 takes 2∆. Note that t = 2∆ of view v
is also t = 0 of view v + 1. Node p runs the following algorithm at each time t if it is awake.

1. time t = 0. Send ⟨propose,Λ,VRFp(v)⟩p where the log is Λ := b | Cv−1.

2. time t = ∆.

• Let m be the number of ⟨vote, ∗, v − 1⟩ received. Set Lv−1 to longest log that is voted
by > m/2 nodes.

• Let Λ be the log in the propose message with the largest valid VRF on v that extends
Lv−1, or Λ := Lv−1 if no such block exists. Send ⟨vote,Λ, v⟩p.

3. time t = 2∆. Let m be the number of ⟨vote, ∗, v⟩ and update variables.

• Set Cv to the longest log that is voted by > m/4 nodes.

• Decide any log that is voted by > 3m/4 nodes.

If Λ′ extends Λ, then ⟨vote,Λ′⟩ is also counted as a vote for Λ. Two different vote messages from
the same node are ignored.

Figure 3: Atomic broadcast with 1/4 fault tolerance and 2∆ latency

are from faulty nodes. So the number of vote messages of view v voting for Λ that p receives from
honest nodes is

3m/4− α = 3(h+ α)/4− α = 3h/4− α/4

> h/2 + α′/2 = m′/2.

These honest nodes must also send the same vote messages to all other honest nodes. Therefore, q
also sees at least > m′/2 votes for Λ, and sets Lv to a log that extends Λ. The rest of the proof is
the same as that of Lemma 6.

Lemma 9 (liveness). If an honest node inputs a value x, then there exists a time t such that all
honest nodes awake at t decide a log containing x.

Proof. We prove all honest nodes awake at time t = ∆ of view v send vote for a log proposed by
an honest leader with probability 1/4; rest of the proof is the same as that of Lemma 7. Again,
the only reason an honest node p does not vote for an honest leader’s proposal is it conflicts with
its lock Lv−1. We prove all honest nodes awake at time t = ∆ of view v accept the honest leader’s
proposal with probability at least 1/3.

Let Λ be the longest log among the locks (i.e., value of Lv−1) of honest nodes awake at time
t = ∆ of view v. Then, there exists an honest node p who observes > m/2 votes for Λ; m is the
number of vote of view v (i.e., ⟨vote, ∗, v − 1⟩) p receives by time t = ∆ of view v, which include
h > 3n/4 messages from honest nodes and α < n/4 messages from faulty nodes, where n is the
number of awake nodes at time t = ∆ of view v − 1. Similarly, the honest leader (say q) receives
vote of view v from m′ nodes by time t = 0 of view v. The number of vote of view v for Λ that p
receives from honest nodes is

13

m/2− α = (h+ α)/2− α = h/2− α/2

> h/4 + α′/4 = m′/4.

These honest nodes must also send the same vote messages to all other honest nodes. Therefore,
the honest leader q observe > m′/4 votes for Λ. As two different vote messages of the same view
from the same node are ignored, the honest leader q observes > m′/4 votes for at most two logs
conflicting with Λ. Therefore, with probability at least 1/3, the honest leader q chooses to propose
a log extending Λ, and all honest nodes awake at time t = ∆ of view v accept the proposal.

7 Practical Recovery

Recall for the PKI setting, we have been assuming that messages are buffered for an arbitrarily
long time and delivered when recipients wake up (Section 3). This assumption is only made for
ease of presentation. In fact, the protocols in Section 4 and 5 do not even need this assumption.
The protocol in Section 6 uses a much weaker assumption: messages are buffered 2∆ time; this is
because vote messages sent in t = ∆ of view v are used to compute Lv in t = ∆ of the next view
v + 1. Thus, in theory, we can easily get rid of this assumption. However, an important point to
note is that our protocols presented thus far assume that every vote or propose message carries the
entire sequence of blocks in a log. This is impractical as the size of a log is unbounded. In practice,
these messages contain only a hash digest of the log, and the blocks in the log must be disseminated
separately. A node may be temporarily missing some blocks if it goes to sleep for some time during
the protocol. These blocks must be recovered from other awake nodes after it wakes up. For this
process, we can adopt the model formalized in [26]. Basically, there is a recovery period when an
honest node wakes up from its sleep; an honest node is considered awake only after it has recovered
the previously decided blocks from other nodes.

8 Conclusion

We have presented Byzantine atomic broadcast protocols in the sleepy model that have concretely
small (3∆ or 2∆) latency and tolerate fluctuating or growing faulty nodes’ participation. Our
protocols use messages from the immediate last round (or 2 rounds) to decide the next move, which
protects from costless simulation and allows us to handle faulty nodes’ dynamic participation. We
finalize this paper with a few open questions below:

Optimal latency. An interesting question is the tightness of the latency lower bound (i.e., ∆).
As a propose-then-vote style protocol necessarily takes 2 rounds, we have to make at least one of
these rounds independent of the ∆ waiting step, which is technically challenging.

Deterministic solution. Our protocol in Section 5 achieves perfect safety but it still uses ran-
domness (from VRF) and its liveness is not a perfect guarantee. It is an interesting open question
whether a deterministic protocol exists or not. We conjecture it is impossible to have a fully deter-
ministic protocol, and the impossibility proof for the permissionless model [23, 29] might be applied
to the sleepy model as well.

14

Modeling a fluctuating adversary with PKI. Handling forward simulation in the PKI settings
is hard. In the real world, however, malicious nodes do not trust each other and are not willing
to reveal their secret keys before going down. It is interesting to formalize malicious nodes going
down while hiding their keys.

Acknowledgement

We would like to thank Lorenzo Alvisi, Ittay Eyal, Jacob Leshno, Kartik Nayak, Youer Pu, for
valuable discussions. This work is supported in part by NSF award 2143058.

References

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with expected o(1) rounds, expected o(n2) communication, and optimal
resilience. In Financial Cryptography and Data Security (FC), pages 320–334. Springer, 2019.

[2] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of byzan-
tine broadcast: A complete categorization. In ACM Symposium on Principles of Distributed
Computing (PODC), pages 331–341, 2021.

[3] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), pages 913–930, 2018.

[4] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 585–602, 2019.

[5] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of
the ACM (JACM), 32(4):824–840, 1985.

[6] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In 3rd Symposium
on Operating Systems Design and Implementation (OSDI), pages 173–186. USENIX, 1999.

[7] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic broadcast: From
simple message diffusion to byzantine agreement. Information and Computation, 118(1):158–
179, 1995.

[8] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography and Data Security
(FC), pages 23–41. Springer, 2019.

[9] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No more attacks on
proof-of-stake ethereum? arXiv preprint arXiv:2209.03255, 2022.

[10] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), pages
66–98. Springer, 2018.

15

[11] Soubhik Deb, Sreeram Kannan, and David Tse. Posat: proof-of-work availability and un-
predictability, without the work. In International Conference on Financial Cryptography and
Data Security, pages 104–128. Springer, 2021.

[12] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[13] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

[14] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In 20th Annual
ACM Symposium on Theory of Computing (STOC), pages 148–161, 1988.

[15] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[16] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Parallel chains: Improving
throughput and latency of blockchain protocols via parallel composition. IACR Cryptology
ePrint Archive, Report 2018/1119, 2018.

[17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In 26th Symposium on Operating Systems
Principles (SOSP), pages 51–68, 2017.

[18] Vipul Goyal, Hanjun Li, and Justin Raizes. Instant block confirmation in the sleepy model.
In Financial Cryptography and Data Security (FC), 2021.

[19] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. Journal of Computer and System Sciences, 75(2):91–112, 2009.

[20] P. Khanchandani and R. Wattenhofer. Byzantine agreement with unknown participants and
failures. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
952–961. IEEE Computer Society, 2021.

[21] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference (CRYPTO), pages 357–388. Springer, 2017.

[22] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[23] Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the permissionless setting.
arXiv preprint arXiv:2101.07095, 2021.

[24] Songze Li and David Tse. Taiji: Longest chain availability with bft fast confirmation. arXiv
preprint arXiv:2011.11097, 2020.

[25] Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine
agreement. In International Symposium on Distributed Computing (DISC), 2021.

16

[26] Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2022.

[27] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[28] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Annual International Conference
on the Theory and Application of Cryptology and Information Security (ASIACRYPT), pages
380–409. Springer, 2017.

[29] Youer Pu, Lorenzo Alvisi, and Ittay Eyal. Safe permissionless consensus. IACR Cryptology
ePrint Archive, Report 2022/796, 2022.

A Latency Lower Bound

We show that any Byzantine atomic broadcast cannot make a decision (even in a good-case) in less
than ∆ time.

Definition of latency. We first need to define the latency in compliance with the measure applied
to our protocols. We say an atomic broadcast protocol has a latency of τ if the following holds:
If all honest nodes awake at time 0 receive a value x at time 0, all honest nodes decide x at a log
position by time τ with non-negligible probability.

With the definition above, we show the lower bound as follows. Note that it holds even for the
original sleepy model that does not allow faulty nodes’ dynamic participation.

Theorem 4. There does not exist a Byzantine atomic broadcast protocol in the sleepy model that
has a latency of less than ∆.

The proof basically follows the proof of the necessity of a message delay upper bound ∆ in [28].

Proof. Suppose, for contradiction, there exists such a protocol. We consider two sets of nodes P
and Q. Consider three executions as follows:

W1. Nodes in P are always awake and honest, but nodes in Q are asleep. All messages are
delivered instantly. By definition, nodes in P decide a log Λ in less than ∆ with non-negligible
probability.

W2. Symmetric to W1. Nodes in Q are always awake and honest, but nodes in P are asleep. All
messages are delivered instantly. By definition, nodes in P decide a log Λ′ in less than ∆ with
a non-negligible probability.

W3. Nodes in P and Q are both honest and awake. Messages across P and Q are delivered with
delay ∆, and those sent inside each set of nodes are delivered instantly.

In W3, if nodes in P have the same input values as W1, they cannot distinguish from W1 until
time ∆, so they decide Λ with non-negligible probability. Likewise, if Q have the same input
values as W2, they cannot distinguish from W2 until time ∆, so they decide Λ′ with non-negligible
probability. If P and Q input different sets of values, Λ and Λ′ will conflict with each other; safety
is violated with non-negligible probability.

17

	Introduction
	Related Work
	Model and Preliminaries
	Graded Agreement with 1/3 Fault Tolerance
	Correctness Proof

	Atomic Broadcast with 1/3 Fault Tolerance
	Correctness Proof

	Atomic Broadcast with 1/4 fault tolerance
	Correctness Proof

	Practical Recovery
	Conclusion
	Latency Lower Bound

