
Towards Practical Sleepy BFT

Dahlia Malkhi
∗

Chainlink Labs

dahliamalkhi@gmail.com

Atsuki Momose
†

University of Illinois at

Urbana-Champaign

atsuki.momose@gmail.com

Ling Ren

University of Illinois at

Urbana-Champaign

renling@illinois.edu

ABSTRACT
Bitcoin’s longest-chain protocol pioneered consensus under dy-

namic participation, also known as sleepy consensus, where nodes

do not need to be permanently active. However, existing solutions

for sleepy consensus still face two major issues, which we address

in this work. First, existing sleepy consensus protocols have high

latency (either asymptotically or concretely). We tackle this prob-

lem and achieve 4Δ latency (Δ is the bound on network delay) in

the best case, which is comparable to classic BFT protocols without

dynamic participation support. Second, existing protocols have to

assume that the set of corrupt participants remains fixed through-

out the lifetime of the protocol due to a problem we call costless
simulation. We resolve this problem and support growing partici-

pation of corrupt nodes. Our new protocol also offers several other

important advantages, including support for arbitrary fluctuation

of honest participation as well as an efficient recovery mechanism

for new active nodes.

CCS CONCEPTS
• Security and privacy → Distributed systems security;

KEYWORDS
BFT Protocols; Blockchain; Dynamic Participation; Sleepy Model

1 INTRODUCTION
Byzantine fault-tolerant (BFT) consensus, a decade-old problem in

distributed computing and cryptography, allows a group of nodes

to reach an agreement in the presence of corrupted nodes [25, 33].

Traditional consensus research has mainly focused on the static

participation model where all honest nodes remain active through-

out the execution [9, 23]. The celebrated Bitcoin protocol [29] pio-

neered consensus in a dynamic participation model, enabling nodes

to switch between active and inactive states spontaneously without

any prior notice. Furthermore, participants do not need to know

howmany other participants are currently active in the system. This

dynamic and unknown participation model was later formalized as

the sleepy model [32]. The sleepy model allows an arbitrary subset

of 𝑛𝑡 nodes out of a total of 𝑁 eligible participants to be active at

any given time 𝑡 . The status of active/inactive can be determined

arbitrarily by an adversary, making the participation dynamic and

unknown.

Inspired by Bitcoin’s longest-chain protocol, there have been

many recent proposals employing the longest-chain paradigm for

∗
Authors are ordered alphabetically.

†
Lead author.

the sleepy model [12, 14, 32]. However, all of these protocols face

two major problems, which we highlight in this work.

Problem 1: Latency. A notable drawback of the longest-chain par-

adigm has been its long latency. The latency of Nakamoto’s longest-

chain protocol depends on several factors, including the security

parameter and the actual level of participation [31, 34]. Substantial

effort has been made to remove these dependencies [6, 20, 22, 26],

culminating in the work of Momose-Ren [28] that achieves con-

stant latency. However, despite being asymptotically optimal, the

concrete latency of Momose-Ren is still quite large. Specifically, its

latency is at least 16Δ1
(where Δ is the bound on network delay).

This is much slower than classic BFT protocols operating under

the static participation model, which can make decisions within Δ
time [3].

Our first result is to address this issue and achieve concretely

small latency in the sleepy model. Specifically,

Theorem 1.1 (informal). Assuming a verifiable random function
(VRF) and public-key infrastructure (PKI), there exists an atomic
broadcast protocol with (best-case) 4Δ latency in the sleepy model
where up to 𝑓𝑡 < 𝑛𝑡/2 corrupt nodes are active at any given time 𝑡 .

Following prior works, we focus on the atomic broadcast prob-

lem [11], i.e., achieving consensus on a linearizable log.
The core ingredient of our protocol is a new construction in the

classic view-based approach to BFT atomic broadcast. We construct

each view from the composition of a graded proposal election (GPE)

and a sequence of graded agreements (GA). We observe that most

classic construction puts the decision at the end of each view after

sequential invocations of GA, and this introduces a large latency.

We instead push back most of the tasks done by the sequential GAs

and make a decision earlier after minimum steps (in GPE). This

results in a significant improvement in the best-case latency.

Problem 2: Costless simulation. Besides latency, another major

limitation of previous sleepy consensus protocols (without proof-

of-work) do not allow dynamic participation of corrupt nodes. The

Bitcoin protocol allows both honest and corrupt nodes to fluctuate

dynamically as long as there is an honest majority. However, once

we remove the computationally expensive proof-of-work, we lose

the crucial property that computational effort is not reusable. Be-

cause of this, the original sleepy model [32] by Pass-Shi assumes

stable participation of corrupt nodes. To elaborate, at each point in

time 𝑡 , they allow a maximum of 𝑓𝑡 = 𝑂 (𝑛) active corrupt nodes
where 𝑛 represents the minimum count of active nodes throughout

the entire execution. In other words, even if the overall (honest

1
Assuming perfectly synchronized clocks for lockstep execution. This latency will

further increase under the assumption of a bounded clock skew.

1

plus corrupt) participation level fluctuates tremendously through-

out the execution, the count of corrupt participants must always

be bounded by the minimum participation level rather than the

current level. This assumption is hard to justify in practice. Suppose

only dozens of nodes were active in the beginning, but a million

nodes are active a few years later when a system attains widespread

recognition. Even at that later time, the number of corrupt nodes

must be limited to a few dozen out of the one million nodes!

This problem arises due to an attack known as costless simu-
lation [15]. To elaborate, when a corrupt node becomes active, it

can pretend to have always been active in the past. It can fabricate

messages that were supposed to be sent when it was not active in

an attempt to alter the consensus results in the past. Our protocol

tackles this problem and accommodates growing corrupt partici-

pation proportional to the active participation level (formalized in

Section 2).

Other advantages. Along the way, we also offer several other

advantages elaborated below.

• We introduce a novel technique to eliminate the assumption

of eventual stable participation, a requirement for ensuring live-

ness in Momose-Ren. Intuitively, their protocol assumes that

eventually, a large fraction of active nodes stays active for a

certain period of time to make progress. In contrast, our proto-

col advances consistently even under arbitrary churn in active

participants, offering guarantees akin to those of longest-chain

protocols.

• The original sleepy model by Pass-Shi assumes that nodes upon

waking up receive all past messages including those sent during

their sleep, which is impractical. Momose-Ren addresses this

issue by introducing a concrete recovery mechanism for newly

active nodes to retrieve only essential messages from other active

nodes. However, in Momose-Ren, nodes are required to recover

messages from the past Ω(𝜅) rounds (besides the log contents)
where 𝜅 is a security parameter. Moreover, the recovery protocol

introduces additional overhead to the main protocol, resulting

in an increased latency of at least 19Δ. In contrast, our recovery

protocol mandates nodes to recover messages from only the

constant number of past rounds (in fact less than a dozen). This

protocol also avoids introducing any additional latency.

Organization. The rest of this paper is organized as follows. After

defining the model and some primitives in Section 2, we provide

the overview of our protocol in Section 3. We present our graded

agreement (GA) protocol in Section 4 graded proposal election

protocol (GPE) in Section 5. Then, building on the GA and GPE

protocols, we present our atomic broadcast protocol in Section 6.

Finally, we review some related works in Section 8 and conclude

this paper with some future works in Section 9.

2 MODEL AND DEFINITIONS
We consider a system comprising a total of 𝑁 nodes communicat-

ing over a synchronous network. Note that network synchrony

is necessary for consensus in the sleepy model [32]. Δ represents

the bound on communication delay. For simplicity, we assume the

existence of a perfectly synchronous clock, meaning nodes share

access to a common global clock. We can extend our results to

accommodate a model with bounded clock skew by applying the

round transformation technique in [28] (with a minor increase in

latency). We assume the communication channel is unauthenticated,
implying that the origin of any message is unknown to nodes. Let

𝜅 denote the security parameter. We assume an adaptive adversary

that can corrupt nodes anytime during an execution. Corrupt nodes

exhibit arbitrary behavior under the control of an adversary. Any

non-corrupt node is said to be honest and behave as instructed by

the protocol.

The sleepy model. Our protocol operates in an extended sleepy

model that accommodates the dynamic participation of corrupt

nodes. Let us begin by briefly reviewing the original sleepy model

introduced by Pass-Shi [32]. In this model, nodes exist in one of two

states: awake or asleep. Awake nodes actively engage in the execu-

tion, while asleep nodes neither execute any code nor send/receive

any message. The count of awake nodes at any given time 𝑡 is

represented as 0 < 𝑛𝑡 ≤ 𝑁 . At each time point, the status of each

node can change at the adversary’s control without any prior notice.

Regarding the message delivery, the assumption is that if an honest

node 𝑝 is awake at time 𝑡 , then 𝑝 must have received all messages

sent to it by other honest nodes prior to time 𝑡 − Δ. However, as
pointed out in [28], this message delivery assumption is not realistic.

It essentially assumes all past messages are magically buffered until

the recipient comes back awake. We will eliminate this assumption

in Section 6.3 where we introduce our recovery mechanism.

Dynamic participation of corrupt nodes. Now let us delve into

the dynamic participation of corrupt nodes and clarify the differ-

ence between the original sleepy model and our extended version.

The original sleepy model, while allowing arbitrary churn among

honest nodes, imposes a strong restriction on the dynamic par-

ticipation of corrupt nodes. Precisely, the count of active corrupt

nodes is capped at 𝑛/2 where 𝑛 is the minimum count of active

nodes throughout the entire execution, essentially disallowing any

fluctuation in the corrupt node’s participation. This stems from the

costless simulation problem, wherein corrupt nodes can fabricate

past messages during their inactive period.

We address part of this issue and manage to allow corrupt nodes’

participation to grow proportionally to the current overall partici-

pation level. Formally, we measure corrupt nodes’ participation in

the following way. Let F𝑡 be the set of corrupt nodes awake at time

𝑡 , and define

𝑓 (𝑡,𝑇𝑓 ,𝑇𝑏) =
�� ⋃
𝑡−𝑇𝑓 ≤𝜏≤𝑡+𝑇𝑏

F𝜏
��.

We say an execution is admissible in the (𝑇𝑓 ,𝑇𝑏 , 𝛼)-sleepy model if

for all 𝑡 ≥ 0

𝑓 (𝑡,𝑇𝑓 ,𝑇𝑏) < 𝛼𝑛𝑡 .

In other words, a corrupt node is counted as an active corrupt

node for an extra 𝑇𝑓 time forward and an extra 𝑇𝑏 time backward

beyond the time interval it is actually active. This essentially ac-

knowledges that the protocol cannot effectively defeat costless

simulation within that duration other than considering the corrupt

node active in that duration. On the other hand, any simulation

outside of this time frame must be tolerated by the protocol.

2

For example, the original sleepy model can be described as the

(∞,∞, 1/2)-sleepy model, and protocols in this model essentially

are not tolerant to any backward or forward simulations. Bitcoin

works in the (0, 0, 1/2)-sleepy model because any simulation is

costly due to the non-reusable property of proof-of-works.

Our protocol is designed to operate in the (∞,𝑇𝑏 , 1/2)-sleepy
model with𝑇𝑏 = 𝑂 (Δ). In other words, we are still unable to tolerate
forward simulation because a corrupt node can simply give its

secret key to the adversary before going to sleep. However, we

prevent backward simulation for the most part. This allows the

number of active corrupt nodes to grow proportionally to the overall

participation, albeit with a slight delay of𝑇𝑏 = 𝑂 (Δ). Further insight
into these parameters will be provided in Section 3.3.

Atomic broadcast.An atomic broadcast protocol [11] allows nodes

to agree on a linearizable log. Specifically, nodes input a finite set of

values and decide on a growing sequence of values [𝑥0, 𝑥1, 𝑥2, ...]
called a log. The protocol provides the following guarantees:
(1) Safety. If two honest nodes decide logs [𝑥0, .., 𝑥 𝑗] and [𝑥 ′

0
, .., 𝑥 ′

𝑗 ′],
then 𝑥𝑖 = 𝑥 ′

𝑖
for all 𝑖 ≤ min{ 𝑗, 𝑗 ′}.

(2) Liveness. If an awake honest node inputs a value 𝑥 at time 𝑡 ,

then there is a time 𝑡 ′ ≥ 𝑡 s.t. all awake honest nodes at any

time after 𝑡 ′ decide a log containing 𝑥 .

Here, we do not specify what the values are. It might be from a

finite class depending on the application built on top of the atomic

broadcast.

Latency of atomic broadcast. We define latency as the time

needed for a value input by an honest node to get decided. Namely,

suppose an honest node inputs a value 𝑥 at time 𝑡 , and an honest

node decides a log that includes the value 𝑥 for the first time at time

𝑡 ′. In this context, the latency for deciding the value 𝑥 is 𝑡 − 𝑡 ′. This
paper primarily focuses on the best-case latency, representing the
shortest possible latency, typically when all nodes behave honestly.

Cryptographic assumptions. We make use of digital signatures

with a public-key infrastructure (PKI). We use ⟨𝜇⟩𝑝 to denote a

message 𝜇 signed by node 𝑝 . We assume a cryptographic hash

function denotedH(·). We also assume a verifiable random function

(VRF). A node 𝑝 with its secret key can evaluate (𝜌, 𝜋) ← VRF𝑝 (𝜇)
on any input 𝜇. The output is a deterministic pseudorandom value 𝜌

along with a proof 𝜋 . Using 𝜋 and the public key of node 𝑝 , anyone

can verify whether 𝜌 is a correct evaluation of VRF𝑝 on input 𝜇.

2.1 Definitions and Primitives
We define some primitives and notions we will use in our protocol.

Blocks. As commonly done in recent BFT protocols, we employ

the concept of block. In our protocol, a batch of values are grouped

into a block. Each block contains a hash reference pointing to

another block, forming a hash chain. The last block in the chain

(i.e., without a hash reference) is called genesis block and is denoted

as 𝐵0 = (⊥,⊥, 0). The height of a block represents its position in

the chain, measured as the distance from the genesis block. The

block of height 𝑘 is formatted as

𝐵𝑘 := (𝑏𝑘 ,H(𝐵𝑘−1), 𝑣)
where 𝑏𝑘 is the batch of values in this block and H(𝐵𝑘−1) is the
hash reference to the preceding block 𝐵𝑘−1. Any block 𝐵𝑘 uniquely

defines a chain 𝐵0 . . . 𝐵𝑘 , and hence a unique log. We say a block

𝐵𝑘 extends 𝐵𝑙 (𝑘 ≥ 𝑙) if 𝐵𝑘 = 𝐵𝑙 or 𝐵𝑙 is the ancestor of 𝐵𝑘 in the

chain (i.e., there is a path from 𝐵𝑘 to 𝐵𝑙). We say two blocks 𝐵𝑘
and 𝐵𝑙 conflict with each other if neither of them extends the other.

The last element 𝑣 is an integer called view number. Intuitively,

the view number identifies when the block was created (we will

elaborate more later). We say the block 𝐵𝑘 is of view 𝑣 and use

the notation view(𝐵) to denote the view of block 𝐵. We say the

block 𝐵𝑘 is valid if the preceding block 𝐵𝑘−1 is valid and is of view

𝑣 ′ < 𝑣 . In other words, the view numbers in any valid chain must

be strictly increasing.

Graded agreement (GA). We use a primitive called graded agree-

ment (GA), which is also used in Momose-Ren [28] and is similar

to gradecast [23]. Each node takes as input a block 𝐵 and outputs a

set of blocks along with grades. More specifically, at the end of the

protocol, each node outputs a set of pairs (𝐵,𝑔) of a block 𝐵 and a

grade bit 𝑔 ∈ {0, 1}, subject to the following constraints:

• Graded delivery. If an honest node outputs (𝐵, 1), then all honest

nodes output (𝐵, ∗).
• Integrity. If an honest node outputs (𝐵, ∗), then at least an honest

node has input 𝐵′ extending 𝐵.

• Validity. Let 𝐵 be the highest block that every honest node’s

input extends. Then, all honest nodes output (𝐵, 1).
Note that the standard GA (also adopted in [28]) is defined for

values, but we extend it to chained blocks. We also note that we

do not have any consistency guarantee for outputs. In other words,

nodes (even a single node) can output multiple conflicting blocks.

Graded proposal election (GPE).We introduce a primitive called

graded proposal election, which resembles the composition of a

leader/proposal election and a graded agreement. In GPE, nodes

propose their own blocks 𝐵 and elect a single block with grades.

At the end of the protocol, each node outputs a single pair (𝐵,𝑔) of
a block 𝐵 (or 𝐵 = ⊥) and a grade bit 𝑔 ∈ {0, 1} with the following

constraints:

• Consistency. If two honest nodes output (𝐵, ∗) and (𝐵′, ∗) for
𝐵, 𝐵′ ≠ ⊥, then 𝐵 = 𝐵′.

• Graded delivery. If an honest node outputs (𝐵, 1), then all honest

nodes output (𝐵, ∗).
• Validity. With a probability of more than 1/2, all honest nodes

output (𝐵, 1) where 𝐵 is inputted by an honest node.

• Integrity. If an honest node outputs (𝐵, ∗), then the block 𝐵 is

permissible for at least an honest node.

Here, the criterion for a block to be considered permissible for
a node is defined externally. It is important to note that there is a

case that a block is permissible for one node but not for others.

Intuitively, with a probability of more than 1/2, all honest and
awake nodes will output the same honest node’s input with grade

1. For the remaining less than 1/2 probability, GPE still guarantees

consistency in the sense at most one proposal is output, albeit not

by all honest and awake nodes since some of them may output

⊥. Furthermore, the block must pass an external safety check (be

permissible) by at least one honest node, which helps eliminate

unsafe proposals from corrupt nodes.

3

As mentioned, GPE resembles and can be implemented with,

a composition of a leader election and a GA. However, we will

directly implement a GPE that is more efficient.

3 OVERVIEW
In this section, we present an overview of this work to elaborate

on the technical details.

3.1 View-based BFT with Early Decision
At a high level, we follow the classic view-by-view construction that

is employed by most mainstream BFT protocols [1, 2, 8, 9, 18, 23, 36]

as well as the latest sleepy consensus of Momose-Ren [28]. This

paradigm is useful in achieving expected constant round latency.

Specifically, the protocol progresses through a series of views, each
possessing a fixed duration wherein one block is decided. View-

based protocols in general (including non-sleepy protocols) involve

(often implicitly) sequential invocations of a graded agreement (or

a primitive with similar guarantees) and decide a block when all

of the GAs from the initial to the final succeed. However, this ap-

proach brings a notable latency overhead, especially in the sleepy

model, as each GA takes a few more rounds. For example, Momose-

Ren involves five consecutive GAs, resulting in a latency of 16Δ
at the minimum. To resolve this bottleneck, we introduce a new

construction of each view. The high-level idea is that we can push

back most of the tasks done by the sequential GAs to make a deci-

sion earlier. Concretely, we observe that we can instantiate a view

from a composition of a GPE and two sequential GAs as outlined

in Figure 1. The GPE performs the minimum task to make a safe

decision within the view, and the latter two GAs resolve all other

works to maintain safety and liveness across all views. This way,

our protocol can decide on a block immediately after the GPE in

the best case, taking 4Δ. We elaborate more on how our protocol

maintains safety and liveness below.

Each view starts with a graded proposal election (GPE), and a

grade-1 output from GPE is decided. Again, the crucial role of the

GPE is to converge on a unique proposal. The consistency of GPE

ensures that two distinct blocks cannot be decided simultaneously

in the same view, thereby guaranteeing safety within a view. To

maintain safety across views, we want to make all nodes lock on

the decided block and discard any block conflicting with the lock

in the subsequent views. To this end, the subsequent GAs resolve

which block has possibly been decided by other nodes. Specifically,

grade-0 output from GPE is handed over to the GAs, and grade-1

output from the second GA is locked. The graded delivery of GPE

says, that if one node decides on a grade-1 output from GPE, then

all other nodes at least output the same block with grade-0 from

GPE. Thus, they input the block to the GAs. The validity of GA

makes sure all nodes output this block with grade 1 and thus lock

on this decided block. Lastly, any blocks conflicting with the locked

block are deemed impermissible during the GPE and are discarded.

Now we also need to ensure liveness when some nodes lock

on a block. It is important that other nodes extend this locked

block in their proposals in later views; otherwise, honest nodes

might discard an honest node’s proposal. To this end, a grade-0

output from the second GA is set to candidate, and each node in the

next view proposes a block extending the candidate. The graded

Each node in view 𝑣 runs the following steps if it is awake.

Let GA′𝑣 and GA𝑣 be the two graded agreements for view 𝑣 .

GPE. Input to GPE a block 𝐵 extending candidate: the highest
grade-0 output from GA𝑣−1. A block is considered permissible
within GPE if it extends lock: the highest grade-1 output from
GA𝑣−1.

Decide. If GPE outputs (𝐵, 1), decide on 𝐵.

GA1. Each node inputs to GA′𝑣 the output 𝐵 from GPE (with

any grade) if 𝐵 ≠ ⊥, otherwise input lock.
GA2. Each node inputs to GA𝑣 the highest block 𝐵 s.t. GA′𝑣
has outputted 𝐵 with grade 𝑔 = 1 and has not output (with

either grade) any block conflicting with 𝐵.

lock, candidate are initialized to the genesis block 𝐵0.

Figure 1: Summary of each view of our atomic broadcast
protocol (simplified).

delivery of GA makes sure that when some nodes lock on a block

(by outputting fromGAwith grade 1), all other nodes at least output

the same block with grade 0 from GA, so they will always set the

locked block (or its descendant) as their candidates.

So far, we have only mentioned the role of the second GA. In fact,

the second GA plays the primary role in maintaining safety and

liveness across views. However, one missing aspect in the above

is that a single GA can output conflicting blocks (recall that GA

does not guarantee consistency). Therefore, a single GA does not

guarantee that nodes lock on a unique block. The goal of the first

GA is to prevent conflicting outputs from the second GA. We will

provide further details in Section 6.

Comparison with PBFT.We can get more intuition by drawing

some analogy to classic view-based BFT designs. The decide-lock
relation and the lock-candidate relation that we employ are in fact

two pillars of classic view-based BFT protocols [9, 36]. In more

detail, if a block is decided, then all (or supermajority) other nodes

must lock on the block to safeguard it from conflicting decisions in

later views. For liveness, if a block is locked, all (or supermajority)

other nodes must recognize the block as the candidate of their

future proposals. We observe that our construction is somewhat

similar to the classic PBFT-style construction with a main path for

decision followed by a view-change sub-protocol to resolve conflict

across views. The GPE and GA can be viewed as the main path and

the view-change, respectively.

3.2 Graded Agreement without Stable
Participation Requirement

Another key technical contribution is a new construction of graded

agreement (GA) summarized in Figure 2. Our GA protocol builds

on the GA protocol introduced by Momose-Ren but eliminates their

reliance on the eventual stable participation assumption. For ease of

exposition, let us consider a GA on binary values, i.e., 𝐵 ∈ {0, 1},
instead of blocks.

Time-shifted quorum [28]. Our starting point is the time-shifted
quorum idea introduced by Momose-Ren. Let us briefly review the

4

original time-shifted quorum construction as a warm-up. First note

that in the classic static participation model, achieving the graded

delivery guarantee is trivial: forwarding a predefined quorum of

votes is sufficient. When a node receives a quorum of votes (to

obtain a grade-1 output), the node forwards these votes to all other

nodes. All other nodes receive the quorum of votes one round later

and output with grade 𝑔 = 0. In the sleepy model, however, the

quorum threshold (e.g., “majority”) is not predefined but rather

depends on the “perceived” participation level of each node. The

above quorum forwarding approach obviously breaks down be-

cause a quorum of votes is no longer transferable. In other words, a

set of votes may be accepted as a quorum by one node but may not

meet the quorum threshold for another node. To address this chal-

lenge, Momose-Ren introduced the following time-shifted quorum

technique.

Nodes send their inputs with “echo” messages at time 𝑡 = 0.

• Let 𝐸1 (𝐵) and 𝐸2 (𝐵) denote the counts of “echo” messages for

each 𝐵 ∈ {0, 1} received by time 𝑡 = Δ and 𝑡 = 2Δ, respectively.
• Let 𝐸∗

2
and 𝐸∗

3
denote the count of “echo” messages (i.e., per-

ceived participation level) received by time 𝑡 = 2Δ and 𝑡 = 3Δ,
respectively.

These counts are maintained locally by each node (if awake at the

specified times), and nodes forward all received “echo” messages to

all other nodes.

If a node 𝑝 observes 𝐸1 (𝐵) > 𝐸∗
3
/2, it outputs 𝐵 with grade 1.

Since all “echo” messages are forwarded, any node 𝑞 at time 𝑡 = 2Δ
receives at least the same number of “echo” messages for 𝐵 as 𝑝 .

Similarly, node 𝑞 at 𝑡 = 2Δ cannot observe a higher participation

level than what 𝑝 observes at time 𝑡 = 3Δ. Thus, 𝑞 must satisfy

𝐸2 (𝐵) > 𝐸∗
2
/2, leading it to send a “vote” message for 𝐵 at time

𝑡 = 2Δ. This process causes all honest nodes awake at time 𝑡 ≥ 3Δ
to recognize a majority “vote” for 𝐵, leading them to carry 𝐵 as

grade-0 output.

Removing the stability requirement. An observant reader may

have noticed that the protocol described above imposes a con-

straint on nodes’ churn. A node relies on the values of 𝐸1 (𝐵) and
𝐸∗
3
counted at distinct points in time to output with grade-1. There-

fore, the node must be active at both of these time points to make

progress. This is why Momose-Ren assumes the participation level

becomes eventually stable to ensure liveness.

Our protocol sidesteps this assumption through the following

novel technique. Instead of directly utilizing the value of 𝐸1 (𝐵)
counted at time 𝑡 = Δ, a node awake at 𝑡 = 3Δ obtains an estimation

from the values reported by those who were awake at time 𝑡 = Δ.
To ensure a robust estimation, we take the median of the reported

values. Since we have an honest majority at any time, the estimated

value is both upper and lower bounded by values reported by honest

nodes. Thus, the time-shifted quorum argument still holds without

the eventual stable participation assumption.

3.3 Tolerating Backward Simulation with
Stateless Algorithm

The challenge to tolerating costless simulation attacks lies in how

to convince a newly awake node of the correct execution history.

In the sleepy model, an honest node that just woke up has no idea

Input. Each node awake at time 𝑡 = 0 multicasts the input

value 𝐵 through a message ⟨“echo”, 𝐵⟩.

Report tally. Each node awake at time 𝑡 = Δ multicasts the

following value for each 𝐵 ∈ {0, 1}.
• 𝐸1 (𝐵) is the # of ⟨“echo”, 𝐵⟩

Vote. Each node awake at time 𝑡 = 2Δ computes the following

values.

• 𝐸∗
2
is the # of ⟨“echo”, ∗⟩

• 𝐸2 (𝐵) is the # of ⟨“echo”, 𝐵⟩ for each 𝐵 ∈ {0, 1}
If 𝐸2 (𝐵) > 𝐸∗

2
/2, then the node multicasts ⟨“vote”, 𝐵⟩.

Output. Each node awake at time 𝑡 ≥ 3Δ compute the fol-

lowing values.

• 𝐸∗
3
be the # of ⟨“echo”, ∗⟩

• 𝐸1 (𝐵) is themedian of all 𝐸1 (𝐵) received for each𝐵 ∈ {0, 1}
If 𝐸1 (𝐵) > 𝐸∗

3
/2, then output (𝐵, 1). Similarly, compute the

following values.

• 𝑉 ∗
3
is the # of ⟨“vote”, ∗⟩

• 𝑉3 (𝐵) is the # of ⟨“vote”, 𝑏⟩ for each 𝐵 ∈ {0, 1}
If 𝑉3 (𝐵) > 𝑉 ∗

3
/2, then output (𝐵, 0).

Figure 2: Summary of our GA. For simplicity, we present an
agreement on a binary value 𝐵 ∈ {0, 1}.

what happened during its sleep. In particular, it cannot distinguish

messages that were truly sent/received earlier in the execution

from messages that corrupt nodes fabricate and claim to have been

sent/received at those moments. To give a more concrete example,

consider a proof-of-stake longest-chain protocol. Suppose a newly

awake node receives two chains. One was built over the last ten

years using the voting powers of honest nodes active at each point

in time. Another is recently put together by corrupt nodes who

only became active a few hours ago but claimed to have been

building this chain over the entire decade. The newly awake node

cannot tell the honestly generated chain from the simulated corrupt

chain. The Momose-Ren protocol faces a similar challenge in spirit

(despite not being based on longest chains). At each time, their

protocol determines the next move based on the history of graded

agreements. Recall that graded agreement decides the output once

the number of votes reaches the threshold. Because corrupt nodes

can fabricate votes in the past, they can inflate the threshold and

convince a newly awake node of a fake output. This is also why

all previous protocols have to assume 𝑇𝑏 = ∞, or equivalently,
disallow the growing participation of corrupt nodes. Without this

assumption, a newly active corrupt node at time 𝑡 can pretend to

have been active all the way back when it was not counted in the

corruption budget and help undermine the protocol’s safety.

Making the protocol stateless. To tackle this issue, our approach
is to make the protocol stateless. Note that each view 𝑣 of our pro-

tocol (summarized in Figure 1) updates crucial variables (namely,

candidate and lock) based on the result of GA from the immediate

last view, occurring at most 𝑇𝑏 = 𝑂 (Δ) time earlier. Consequently,

5

our protocol can ignore any message from the ancient past, in-

cluding those fabricated by corrupt nodes. The key to a stateless

protocol is to ensure that each node always inputs a non-empty

value to GA even when the GPE results in failure. Specifically, each

node provides its lock as input when GPE produces an output of

⊥. This guarantees that GA in each view always yields an out-

put (which could potentially match the result of the previous GA

or even the genesis block). As a result, we can safely discard the

outputs of all past GAs except the most recent one.

The stateless nature of our protocol also brings benefits to the

efficiency of our recovery mechanism. When a new active node

joins, it only needs to retrieve messages from the most recent view

(along with any missing blocks).

Impossibility of fluctuating corruption. We note that our pro-

tocol does not tolerate fluctuating corruption. To elaborate, while

our protocol allows active corrupt nodes to increase over time, it

does not allow the set of corrupt participants to shrink, as implied

by 𝑇𝑓 = ∞. This limitation stems from the simple fact that corrupt

nodes can hand off their secret keys to the adversary (or other

corrupt nodes) before going inactive. Then, the adversary can use

their keys to sign any future messages on their behalf as if those

corrupt nodes never went inactive. In other words, a corrupt node

can simulate indefinitely forward. Unfortunately, this issue is in-
herent in a model without constraints on adversary computational

power such as those imposed by proof-of-work (Section 7).

4 GRADED AGREEMENT
This section presents a graded agreement (GA) protocol with 3Δ
latency. Our protocol builds on the time-shifted quorum technique

of Momose-Ren [28] but eliminates the eventual stable participation
assumption with the “median trick” explained in Section 3. Our

protocol is described in Algorithm 1.

The protocol runs up to time 𝑡 = 𝑇𝑏 (c.f., Section 2) since the

beginning of the execution. The specific value of 𝑇𝑏 will be given

when we present our atomic broadcast protocol in Section 6. We

also note that GA defined in this paper can output multiple pairs

of (𝐵,𝑔). Therefore, we denote outputs as the set of outputs. Now
we proceed to provide a detailed explanation of our protocol below,

mainly focusing on how to extend the binary-valued GA in Section 3

to support chained blocks.

Tally echo and report. At time 𝑡 = 0, awake nodes multicast their

input blocks through “echo” messages. At time 𝑡 = Δ, each awake

node tallies “echo” messages received for each block and reports

these tallies. Notably, even nodes that input non-conflicting blocks

might input different blocks within the same chain. This implies

we have to count “echo” for a block 𝐵 as an implicit “echo” for all

ancestors of 𝐵. Namely, for each block 𝐵, a node counts the number

of “echo” messages received from distinct nodes for some block

𝐵′ that extends 𝐵. This count is denoted as 𝐸 (𝐵) and is reported

via a “tally” message. Moreover, each node also forwards all “echo”

messages counted in 𝐸 (𝐵). To avoid sending an unbounded number

of tallies (especially in cases where a corrupt node sends arbitrarily

many “echo”), a node sends the “tally” message only if 𝐸 (𝐵) > 𝐸∗/2
where 𝐸∗ is the total number of distinct nodes who send “echo”

messages (for any block). This ensures at least one honest node

must have sent “echo” for 𝐵 (or its descendant) when an honest

node reports a tally for 𝐵. If there is no tally to report, a node sends

a “tally” for ⊥ just to announce itself to other nodes.

Vote. At time 𝑡 = 2Δ, each awake node tallies “echo” messages in

the same manner as above and sends a “vote” message for a block

𝐵 that has a majority of “echo”, namely satisfying 𝐸 (𝐵) > 𝐸∗/2. If
there is no such block, then send “vote” for ⊥. Additionally, if it
has received an “echo” message (for any block) from any node 𝑞, it

forwards the “echo” message if it has not done so already (line 22).

This ensures that all awake nodes after time 𝑡 = 3Δ will possess

higher (or at least the same) quorum thresholds (i.e., 𝐸∗), a critical
aspect for the time-shifted quorum argument.

Output. At time 𝑡 = 3Δ or later up to 𝑡 = 𝑇𝑏 , awake nodes decide

outputs based on “tally” and “vote” messages. In order to compute

potential grade-1 outputs, each node obtains a robust estimation of

𝐸 (𝐵) tallied at time 𝑡 = 2Δ from the “tally” messages. Specifically,

for each block 𝐵, a node calculates the set E of reported tallies for

𝐵 as follows (line 25-30):

(1) If the node has received from a node 𝑞 a “tally” for a block 𝐵′

extending 𝐵, then the reported tally 𝐸 (𝐵′) in the message is

adopted for node 𝑞.

(2) Otherwise, for example, if the node has received from a node 𝑞

a “tally” for a block conflicting with 𝐵, then node 𝑞 is considered

reporting 𝐸 (𝐵) = 0.

Next, themedian 𝐸 (𝐵) from the set E is selected as the estimation.

If the estimated tally meets the threshold, i.e., 𝐸 (𝐵) > 𝐸∗/2, then
the node outputs 𝐵 with grade 𝑔 = 1. Finally, the node computes

a grade-0 output based on “vote” messages. If the count of “vote”

messages for a block 𝐵 or its descendants (referred to as 𝑉 (𝐵))
exceeds the majority of voters (denoted 𝑉 ∗), then block 𝐵 is taken

as an output with grade 𝑔 = 0.

Time-shifted quorum. Let us quickly go over the time-shifted

quorum argument. Suppose an honest node 𝑝 has the estimated tally

𝑒𝑝 = 𝐸 (𝐵). The estimated tally 𝑒𝑝 is upper bounded by an honest

node’s tally 𝑒𝑟 at time 𝑡 = Δ. This is because 𝑒𝑝 is the median of all

reported tally and there is always an honest majority. Now, suppose

an honest node 𝑞 awake at time 𝑡 = 2Δ has tally 𝑒𝑞 = 𝐸 (𝐵). Since
the node 𝑟 has forwarded all “echo” counted to 𝑒𝑟 , we have 𝑒𝑟 ≤ 𝑒𝑞 .

As we also have 𝑒𝑝 ≤ 𝑒𝑟 , this leads to 𝑒𝑝 ≤ 𝑒𝑞 . Similarly, given

that node 𝑞 forwards all “echo” messages, the quorum threshold

𝑚𝑝/2 = 𝐸∗/2 for node 𝑝 is higher than (or at least the same as) the

threshold𝑚𝑞/2 observed by node 𝑞 at time 𝑡 = 2Δ. Consequently,
if 𝑒𝑝 > 𝑚𝑝/2 (indicating 𝑝 would consider 𝐵 as a grade-1 output),

we have 𝑒𝑞 > 𝑚𝑞/2. Thus node 𝑞 sends “vote” for 𝐵, resulting in

a majority vote for 𝐵, making all other nodes at least have 𝐵 as

grade-0 output, thus achieving graded delivery.

4.1 Correctness Proof
We prove the correctness of our GA protocol. Below, we use the

notion of each node’s tally. We define the “tally 𝑒 of node 𝑞 for

a block 𝐵” as follows: 1) 𝑒 = 𝑒′ if node 𝑞 sent ⟨“tally”, 𝐵′, 𝑒′⟩𝑞 for

any block 𝐵′ extending 𝐵 (if multiple such 𝑒′ exists, then pick the

largest one), and 2) 𝑒 = 0 otherwise. In other words, each node’s

tally is the value counted to E (line 25–30).

6

Algorithm 1 Graded Agreement – GAid
Initialize outputs = ∅. Node 𝑝 executes the following algorithm at

every time 0 ≤ 𝑡 ≤ 𝑇𝑏 after starting the protocol. Below, we assume

every message binds to the protocol’s id denoted id.

1: if 𝑡 = 0 then
2: multicast ⟨“echo”, 𝐵⟩𝑝 for the input block 𝐵.

3: if 𝑡 = Δ then
4: 𝐸∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, ∗⟩𝑞
5: for all block 𝐵 do // examine blocks from a higher height
6: 𝐸 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, 𝐵′ ⟩𝑞 for a

block 𝐵′ extending 𝐵
7: if 𝐸 (𝐵) > 𝐸∗/2 and 𝑝 has not sent ⟨“tally”, 𝐵′, 𝑒 ⟩𝑝 for 𝑒 ≥

𝐸 (𝐵) and a block 𝐵′ extending 𝐵 then
8: multicast ⟨“tally”, 𝐵, 𝐸 (𝐵) ⟩𝑝
9: forward all “echo” counted in 𝐸 (𝐵)
10: if 𝑝 has not sent “tally” then
11: multicast ⟨“tally”,⊥,⊥⟩∗

12: if 𝑡 = 2Δ then
13: for all block 𝐵 do // examine blocks from a higher height.
14: 𝐸 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, 𝐵′ ⟩𝑞 for a

block 𝐵′ extending 𝐵
15: 𝐸∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, ∗⟩𝑞
16: if 𝐸 (𝐵) > 𝐸∗/2 then
17: if 𝑝 has not sent “vote” for a block 𝐵′ extending 𝐵 then
18: multicast ⟨“vote”, 𝐵⟩𝑝
19: if 𝑝 has not sent “vote” then
20: multicast ⟨“vote”,⊥⟩𝑝
21: forward all ⟨“echo”, ∗⟩𝑞 // only once per 𝑞

22: if 3Δ ≤ 𝑡 ≤ 𝑇𝑏 then
23: for all block 𝐵 do // examine blocks from a higher height.
24: E ← ∅
25: for all node 𝑞 s.t. 𝑝 has received ⟨“tally”, 𝐵′, 𝑒 ⟩𝑞 do
26: if 𝐵′ extends 𝐵 then
27: add 𝑒 to E
28: else
29: add 0 to E
30: 𝐸 (𝐵) ← median in E
31: 𝐸∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, ∗⟩𝑞
32: if 𝐸 (𝐵) > 𝐸∗/2 then
33: add (𝐵, 1) to outputs

34: for all block 𝐵 do
35: 𝑉 ∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“vote”, ∗⟩𝑞
36: 𝑉 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“vote”, 𝐵′ ⟩𝑞 for a

block 𝐵′ extending 𝐵
37: if 𝑉 (𝐵) > 𝑉 ∗/2 then
38: add (𝐵, 0) to outputs

39: // line 25: If multiple “tally” exist, choose one with 𝐵′ extending 𝐵 with
the largest 𝑒 ; if no such 𝐵′ exists, pick one arbitrary.

Lemma 4.1. For any block 𝐵, let 𝑒𝑝 be the value of 𝐸 (𝐵) observed
by an honest node 𝑝 at time 𝑡 ≥ 3Δ, and 𝑒𝑞 be the value of 𝐸 (𝐵)
observed by an honest node 𝑞 at time 𝑡 = 2Δ. Then, 𝑒𝑝 ≤ 𝑒𝑞 .

Proof. Since the total number of corrupt nodes ever awake by

time 𝑡 = 𝑇𝑏 is less than half of the nodes awake at time 𝑡 = Δ, the
median 𝑒𝑝 in the set E of all tallies for 𝐵 must be upper bounded by

at least one honest node’s tally 𝑒 for 𝐵. Consider the case where 𝑒 >

0 (the lemma is obvious if 𝑒 = 0). That node must have forwarded

all ⟨“echo”, 𝐵⟩∗ counted in 𝑒 , which were received by node 𝑞 by

time 𝑡 = 2Δ. Hence, we have 𝑒 ≤ 𝑒𝑞 , leading to 𝑒𝑝 ≤ 𝑒𝑞 . □

Lemma 4.2 (Graded consistency). If an honest node outputs
(𝐵, 1), then for all 𝑡 where 3Δ ≤ 𝑡 ≤ 𝑇𝑏 , all honest nodes awake at
time 𝑡 output (𝐵, ∗).

Proof. Suppose an honest node 𝑝 outputs (𝐵, 1). Let 𝑒𝑝 and𝑚𝑝

be the values of 𝐸 (𝐵) and 𝐸∗, respectively, observed by node 𝑝 . We

have that 𝑒𝑝 > 𝑚𝑝/2. Let 𝑒𝑞 and𝑚𝑞 be the values of 𝐸 (𝐵) and 𝐸∗,
respectively, observed by any honest node 𝑞 at time 𝑡 = 2Δ. By
Lemma 4.1, we have 𝑒𝑝 ≤ 𝑒𝑞 . Since the node 𝑞 forwards all “echo”

messages counted in𝑚𝑞 , we also have𝑚𝑞 ≤ 𝑚𝑝 . Thus, we have

𝑒𝑞 > 𝑚𝑞/2. So all honest nodes awake at time 𝑡 = 2Δ must have

sent ⟨“vote”, 𝐵⟩∗. Therefore, for all 𝑡 from 3Δ to𝑇𝑏 , all honest nodes

awake at time 𝑡 observe 𝑉 (𝐵) > 𝑉 ∗/2 and output (𝐵, 0). □

Lemma 4.3 (Integrity). If an honest node outputs (𝐵, ∗), then at
least an honest node has input 𝐵′ extending 𝐵.

Proof. Suppose all honest nodes awake at time 𝑡 = 0 input

blocks that do not extend 𝐵. Let 𝑒 and𝑚 represent the values of

𝐸 (𝐵) and 𝐸∗, respectively, observed by an honest node awake at

time 𝑡 = 2Δ. The “echo” messages counted toward the value 𝑒 are

only from corrupt nodes, while “echo” messages from honest nodes

awake at time 𝑡 = 0 are counted to𝑚. Given that the number of

all corrupt nodes ever awake by time 𝑡 ≤ 𝑇𝑏 is less than half of

all honest nodes awake at time 𝑡 = 0, we have 𝑒 < 𝑚/2. As a
result, none of the honest nodes awake at time 𝑡 = 2Δ would send

⟨“vote”, 𝐵′⟩ for any block 𝐵′ extending 𝐵. Therefore, any honest

node awake at any time 3Δ ≤ 𝑡 ≤ 𝑇𝑏 observes 𝑉 (𝐵) < 𝑉 ∗/2, and
thus would not output (𝐵, 0). By graded consistency (Lemma 4.2),

nor would they output (𝐵, 1). □

Lemma 4.4 (Validity). Let 𝐵 be the highest block that every honest
node’s input extends. Then, for any 3Δ ≤ 𝑡 ≤ 𝑇𝑏 , all honest nodes
awake at time 𝑡 output (𝐵, 1).

Proof. Let 𝑝 be any honest node awake at time 3Δ ≤ 𝑡 ≤ 𝑇𝑏 ,

and let 𝑒𝑝 and𝑚𝑝 be the values of 𝐸 (𝐵) and 𝐸∗ observed by node 𝑝

at time 𝑡 . We observe that there exists an honest node 𝑞 awake at

time 𝑡 = Δ and the tally 𝑒 of 𝑞 for 𝐵 satisfies 𝑒 ≤ 𝑒𝑝 . This is because

the number of all corrupt nodes ever awake by time 𝑡 = 𝑇𝑏 is less

than half of nodes awake at time 𝑡 = Δ (i.e., an honest majority),

and the median 𝑒𝑝 in the set E of all tallies for 𝐵 must be lower

bounded by at least one honest node’s tallies 𝑒 for 𝐵. Now, if every

honest node’s (awake at time 𝑡 = 0) input extends 𝐵, then all “echo”

messages sent by these honest nodes are counted to 𝑒 . Again since

we have an honest majority, we have 𝑒 > 𝑚𝑝/2, hence 𝑒𝑝 > 𝑚𝑝/2.
Therefore, node 𝑝 outputs (𝐵, 1). □

5 GRADED PROPOSAL ELECTION
This section presents a graded proposal election (GPE) protocol

with 4Δ latency. Intuitively, the GPE protocol is a combination of

a VRF-based leader election with the GA protocol presented in

Section 4. Our protocol is presented in Algorithm 2.

Input. The protocol starts with a VRF-based leader election. In

this process, each node 𝑝 sends its own input block along with

7

Algorithm 2 Graded Proposal Election – GPEid

Node 𝑝 executes the following algorithm at every time 0 ≤ 𝑡 ≤ 4Δ after

staring the protocol. Let id be the protocol’s id.

1: if 𝑡 = 0 then
2: 𝜌, 𝜋 ← VRF𝑝 (id)
3: multicast ⟨“input”, 𝐵, 𝜌, 𝜋 ⟩𝑝 for the input 𝐵.

4: if 𝑡 = Δ then
5: if there exists a winning input then
6: Let ⟨“input”, 𝐵, 𝜌, 𝜋 ⟩𝐿 be the winning input

7: forward the winning input

8: multicast ⟨“echo”, 𝐵⟩𝑝 if 𝐵 is permissible
9: else
10: forward the equivocating inputs

11: multicast ⟨“echo”,⊥⟩𝑝

12: if 𝑡 = 2Δ then
13: if there exists a winning input then
14: Let ⟨“input”, 𝐵, 𝜌, 𝜋 ⟩𝐿 be the winning input

15: forward the winning input (if not yet).

16: 𝐸 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, 𝐵⟩𝑞
17: forward all ⟨“echo”, 𝐵⟩∗
18: multicast ⟨“tally”, 𝐵, 𝐸 (𝐵) ⟩∗
19: else
20: forward the equivocating inputs (if not yet)

21: multicast ⟨“tally”,⊥,⊥⟩∗

22: if 𝑡 = 3Δ then
23: if there exists a winning input then
24: Let ⟨“input”, 𝐵, 𝜌, 𝜋 ⟩𝐿 be the winning input

25: forward the winning input (if not yet)

26: forward all ⟨“echo”, ∗⟩𝑞 (once per node 𝑞)

27: 𝐸 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, 𝐵⟩𝑞
28: 𝐸∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, ∗⟩𝑞
29: if 𝐸 (𝐵) > 𝐸∗/2 then
30: multicast ⟨“vote”, 𝐵⟩𝑝
31: else
32: multicast ⟨“vote”,⊥⟩𝑝
33: else
34: forward the equivocating inputs (if not yet)

35: multicast ⟨“vote”,⊥⟩𝑝

36: if 𝑡 = 4Δ then
37: if there exists a winning input then
38: Let ⟨“input”, 𝐵, 𝜌, 𝜋 ⟩𝐿 be the winning input

39: E ← ∅
40: for all node 𝑞 s.t. 𝑝 has received ⟨“tally”, 𝐵′, 𝑒 ⟩𝑞 received do
41: if 𝐵′ = 𝐵 then
42: add 𝑒 to E
43: else
44: add 0 to E
45: 𝐸 (𝐵) ← the median in E
46: 𝐸∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“echo”, ∗⟩𝑞
47: if 𝐸 (𝐵) > 𝐸∗/2 then
48: output (𝐵, 1)
49: for all block 𝐵 do
50: 𝑉 ∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“vote”, ∗⟩𝑞
51: 𝑉 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“vote”, 𝐵⟩𝑞
52: if 𝑉 (𝐵) > 𝑉 ∗/2 and 𝑝 has not outputted yet then
53: output (𝐵, 0)

the VRF evaluation on the protocol’s ID in an “input” message.

For ease of presentation, we define the winning input to be the

input message with the highest VRF value. Given that each node

may receive a distinct set of messages, the winning input is defined

individually for each node. Specifically, a message ⟨“input”, 𝐵, 𝜌, 𝜋⟩𝑞
is considered a winning input by a node 𝑝 if both of the following

conditions are satisfied:

(1) 𝑝 has not received any ⟨“input”, ∗, 𝜌′, 𝜋 ′⟩𝑟 with 𝜌′ > 𝜌 .

(2) 𝑝 has not received any ⟨“input”, 𝐵′, 𝜌, 𝜋⟩𝑞 for 𝐵′ ≠ 𝐵.

In simpler terms, if the VRF of node𝑞’s input is the highest among

all received inputs and 𝑝 has not received any equivocating input

from node 𝑞, then node 𝑝 considers node 𝑞’s input as the winning

input. We also refer to the corresponding block 𝐵 as the winning
block. Since we have an honest majority, there is a probability of

at least 1/2 that a VRF from an honest node will be the highest,

resulting in its input being the winner.

GA on the winning input. The rest of the algorithm (from time

𝑡 = Δ to 𝑡 = 4Δ) can be viewed as achieving graded agreement on

a winning input. At time 𝑡 = Δ, awake nodes send “echo” messages

for the winning blocks they have received. At time 𝑡 = 2Δ, nodes
tally “echo” for the winning block and report their tallies. At time

𝑡 = 3Δ, if the count of “echo” for a winning block meets the majority,

then the block is voted. Finally, at time 𝑡 = 4Δ, each node calculates

the median of the reported tallies, and if it meets the majority, the

node outputs the block with grade 𝑔 = 1. If there are majority votes

for a block, it becomes a grade-0 output.

The key distinction from the GA in Section 4 is that each node

performs every action exclusively on the winning input/block. This

helps achieve consistency of the GPE, a property that is not man-

dated by GA. More concretely, each node votes only for the winning

block, and all blocks voted by honest nodes are echoed at least Δ
time before. So it is impossible for two different blocks to get ma-

jority votes. Additionally, each node forwards the winning input to

all other nodes. Similarly, if no winning input is present, indicating

the highest VRF holder is equivocating, the equivocating inputs

are propagated to all nodes. This ensures that if an honest node

possesses a grade-1 output (at time 𝑡 = 4Δ), all honest nodes awake
at time 𝑡 = 3Δ have unanimously identified the same input as the

winner, i.e., there exists no input with a higher VRF and no equivo-

cating input. This makes sure the time-shifted quorum argument

holds.

Another crucial distinction from GA is that each node sends

“echo” only for a permissible block (line 8). Due to the honest major-

ity, a block must be echoed by at least one honest node to become

the GPE output. This guarantees the integrity of GPE. We reiterate

that the condition for a block to be permissible is externally defined,

which will be specified in Section 6.

8

Remark on the validity. We note that, during the tallying of

“echo” or “vote” for a block, a node only considers the messages

regarding the specific block and excludes blocks extending that

block. This distinction arises from the validity requirement. Our

GA must produce grade-1 output for the highest common input

(i.e., the block that all honest nodes’ inputs extend). In contrast, the

validity of GPE requires the algorithm to have grade-1 output for

an honest node’s input (with probability 1/2). Therefore, honest
nodes will not echo different blocks when the winning input is from

an honest node, which is why we do not need to count indirect

echoes/votes.

5.1 Correctness Proof
We prove the correctness of our GPE protocol. As in the proof

for GA, we employ the notion of each node’s tally. We define the

“tally 𝑒 of node 𝑞 for a block 𝐵” as follows: 1) 𝑒 = 𝑒′ if node 𝑞 sent

⟨“tally”, 𝐵, 𝑒′⟩𝑞 , and 2) 𝑒 = 0 otherwise.

Lemma 5.1 (Graded delivery). If an honest node outputs (𝐵, 1),
then all honest nodes output (𝐵, ∗).

Proof. Suppose an honest node 𝑝 outputs (𝐵, 1). Let 𝑒𝑝 and𝑚𝑝

denote the values of 𝐸 (𝐵) and 𝐸∗, respectively, observed by node

𝑝 at time 𝑡 = 4Δ. We have that 𝑒𝑝 > 𝑚𝑝/2. We observe that there

exists an honest node 𝑟 awake at time 𝑡 = 2Δ and the tally 𝑒 for 𝐵

satisfies 𝑒𝑝 ≤ 𝑒 . Let 𝑞 be any honest node awake at time 𝑡 = 3Δ, and

𝑒𝑞 and𝑚𝑞 be the values of 𝐸 (𝐵) and 𝐸∗, respectively, observed by

node 𝑞. Since node 𝑞 forwards ⟨“echo”, ∗⟩𝑠 for every node 𝑠 counted
to 𝑚𝑞 , we have 𝑚𝑞 ≤ 𝑚𝑝 . We further observe that node 𝑟 has

𝐵 as the winning block; otherwise, it would have forwarded its

winning input (or equivocating inputs), and node 𝑝 would not have

considered 𝐵 as the winning block. So, 𝑟 must have forwarded all

“echo” for the winning block 𝐵, leading to 𝑒 ≤ 𝑒𝑞 and hence 𝑒𝑝 ≤ 𝑒𝑞 .

Given that 𝑚𝑞 ≤ 𝑚𝑝 , it follows that 𝑒𝑞 > 𝑚𝑞/2. Consequently,
node 𝑞 sends ⟨“vote”, 𝐵⟩𝑞 . Therefore, any honest node awake at

time 𝑡 = 4Δ should observe 𝑉 (𝐵) > 𝑉 ∗/2 and output (𝐵, ∗). □

Lemma 5.2 (Consistency). If two honest nodes output (𝐵, ∗) and
(𝐵′, ∗), respectively, then 𝐵 = 𝐵′.

Proof. Suppose for the sake of contradiction two honest nodes

output (𝐵, ∗) and (𝐵′, ∗), respectively, with 𝐵 ≠ 𝐵′. These two nodes
must have independently observed local conditions 𝑉 (𝐵) > 𝑉 ∗/2
and 𝑉 (𝐵′) > 𝑉 ∗/2, implying that both 𝐵 and 𝐵′ receive votes

from honest nodes. Let 𝑝 and 𝑞 denote the nodes who voted for

𝐵 and 𝐵′, respectively. By definition, node 𝑝 must have observed

𝐸 (𝐵) > 𝐸∗/2 at time 𝑡 = 3Δ, indicating that at least an honest

node sent ⟨“echo”, 𝐵⟩. Similarly, node 𝑞, voting for 𝐵′, must have

witnessed 𝐸 (𝐵′) > 𝐸∗/2, indicating an honest node must have sent

⟨“echo”, 𝐵′⟩. However, this scenario implies that both 𝑝 and 𝑞 have

received the corresponding “input” messages for 𝐵 and 𝐵′, one of
which is not the actual winning input. Given that nodes would not

vote for non-winning blocks, this contradicts both 𝐵 and 𝐵′ are
voted. □

Here, we note that the validity we prove below assumes that

every honest node inputs a permissible block; otherwise, the validity

would be trivially false. It is worth noting that this assumption will

be justified by our atomic broadcast (c.f., Section 6).

Lemma 5.3 (Validity). With probability more than 1/2, all honest
nodes output (𝐵, 1) for a block 𝐵 that honest node inputs.

Proof. Let 𝑝 be an honest node awake at time 𝑡 = 4Δ, and let

𝑒𝑝 and𝑚𝑝 be the values of 𝐸 (𝐵) and 𝐸∗, respectively, observed by

node 𝑝 . We observe that there exists an honest node 𝑟 awake at

time 𝑡 = 2Δ whose tally 𝑒𝑟 for 𝐵 satisfies 𝑒𝑟 ≤ 𝑒𝑝 . Given that the

number of corrupt nodes ever awake by time 𝑡 = 𝑇𝑏 is less than half

of all honest nodes awake at time 𝑡 = 0, with probability 𝛼 > 1/2,
an honest node’s VRF will be the highest, making its input 𝐵 the

winning block. Consequently, all honest nodes awake at time 𝑡 = Δ
will send ⟨“echo”, 𝐵⟩. This leads to 𝑒𝑟 > 𝑚𝑝/2. Given that 𝑒𝑟 ≤ 𝑒𝑝 ,

it follows that 𝑒𝑝 > 𝑚𝑝/2. As a result, node 𝑝 outputs (𝐵, 1). □

Lemma 5.4 (Integrity). If an honest node outputs (𝐵, ∗), then the
block 𝐵 is permissible for at least an honest node.

Proof. As we have observed, when an honest node outputs a

block 𝐵, it indicates that at least one honest node has sent “echo”

message for 𝐵. This means the block is deemed permissible by the

honest node that sent the “echo”. □

6 ATOMIC BROADCAST
This section presents an atomic broadcast protocol with 4Δ latency

in the best case, building on the GA protocol (in Section 4) and

the GPE protocol (in Section 5). Our protocol achieves safety and

liveness in the 𝑂 (∞,𝑇𝑏 , 1/2)-sleepy model with 𝑇𝑏 = 11Δ.
The protocol is described in Algorithm 3. It progresses through

repeated views. Each view is identified by an integer 𝑣 > 0 and

takes 10Δ time. As mentioned in Section 3, each view consists of a

GPE and two GAs. Based on the output from GPE and GA, nodes

lock on a potentially decided block to safeguard it from future

conflicting decisions. Nodes also determine the next proposal does

do not conflict with locked blocks to ensure liveness. These values

are maintained by the variables lock and candidate, initially set to

the genesis block 𝐵0 (which is considered a block of view 𝑣 = 0).

Each view begins with a GPE. At time 𝑡 = 0, each node inputs

to GPE𝑣 a block 𝐵 that extends its current candidate. candidate is
updated to the highest block that GA𝑣−1 has output with grade

0. Within the GPE, a block is considered permissible if it extends
lock. Again, this makes sure any block conflicting with a potentially

decided block is precluded from the GPE output.

The output from GPE𝑣 is passed to two consecutive GAs (first

GA′𝑣 and then GA𝑣). Let us call them the pre-GA and the main GA,

respectively. The pre-GA GA′𝑣 is to preclude conflicting outputs

from the main GA. Specifically, a node inputs to GA𝑣 a grade-1

output from GA′𝑣 only if there is no other conflicting output from

GA′𝑣 . This makes sure honest nodes’ inputs to GA𝑣 are always

non-conflicting, avoiding divergent locks and candidates among

nodes.

A grade-1 output from GPE𝑣 is decided immediately. When a

node decides on a block, the node multicasts a “decide” message for

the block to let other nodes (especially those who were not awake

at 𝑡 = 4Δ) decide on the block. If a node receives “decide” messages

for a block 𝐵 (or its descendants) from a majority of all senders of

“decide” messages, i.e., 𝐷 (𝐵) > 𝐷∗/2, the node also decides on the

block 𝐵 (line 27–31, 4–8).

9

Tolerating backward simulation. Each view in our protocol

examines only messages from the immediate preceding view. To

be more specific, all steps that depend on previous messages are

summarized below:

(1) At time 𝑡 = 0, each node computes its input to GPE𝑣 based on

the result ofGA𝑣−1 (i.e., candidate), which starts at time 𝑡 = 7Δ
of view 𝑣 − 1. These messages are sent at most 3Δ earlier.

(2) At time 𝑡 = 4Δ, each node decides a block or computes its

input to GA𝑣 based on the result of GA𝑣−1 (i.e., lock), which
are derived from messages sent at most 7Δ earlier.

(3) At any time up to time 𝑡 = 5Δ of view 𝑣 , nodes decide blocks

based on the “decide” messages sent at time 𝑡 = 4Δ of view

𝑣 − 1, which are at most 11Δ earlier.

To sum up, attempts by corrupt nodes to fabricate messages of

more than 𝑇𝑏 = 11Δ time before have no impact on the execution

of honest nodes.

6.1 Safety and Liveness Proofs
We prove the safety and liveness of our atomic broadcast protocol.

We say a node directly decides a block 𝐵 if the node has not decided

any descendant of 𝐵 by that moment. We first show below that

locks are always non-conflicting in the same view.

Lemma 6.1. Let 𝑝 and 𝑞 be honest nodes awake at time 𝑡 = 4Δ
of a view 𝑣 , and let lock𝑝 and lock𝑞 be the value of lock observed
by honest nodes 𝑝 and 𝑞, respectively. Then, lock𝑝 and lock𝑞 do not
conflict with each other.

Proof. In each view, an honest node inputs to GA𝑣 (the main

GA) a block received from GA′𝑣 (the pre GA) with grade 𝑔 = 1.

Moreover, the block should not conflict with any other outputs

from GA′𝑣 . The graded delivery ensures that other honest nodes

deliver the block with grade 𝑔 = 0, so they would not input any

conflicting block toGA𝑣 . Due to the integrity of GA,GA𝑣 will output

non-conflicting blocks. Thus, lock𝑝 and lock𝑞 do not conflict with

each other. □

Lemma 6.2. If a block 𝐵 of view 𝑣 is directly decided by an honest
node, then at least an honest node has sent ⟨“decide”, 𝐵, 𝑣⟩.

Proof. Assume for the sake of contradiction that none of the

honest nodes awake at time 𝑡 = 4Δ in view 𝑣 sends ⟨“decide”, 𝐵, 𝑣⟩.
Then, the block 𝐵 will not be decided (either directly or indirectly)

until time 𝑡 = 5Δ of view 𝑣 + 1. Thus, none of the honest nodes
awake at time 𝑡 = 4Δ in view 𝑣 + 1 will send ⟨“decide”, 𝐵, 𝑣 + 1⟩. By
induction, in all subsequent views 𝑣 ′ ≥ 𝑣 , honest nodes will never

send ⟨“decide”, 𝐵, 𝑣 ′⟩. This contradicts that the block 𝐵 was directly

decided. □

Next, we show that a directly decided block will always be

handed over to the immediately following GA, thereby ensuring

its subsequent locking.

Lemma 6.3. If an honest node sends ⟨“decide”, 𝐵, 𝑣⟩ for a block 𝐵
of view 𝑣 , then all honest nodes awake at time 𝑡 = 7Δ of view 𝑣 input
the block 𝐵 to GA𝑣 .

Proof. Suppose an honest node 𝑝 sends ⟨“decide”, 𝐵, 𝑣⟩. This
implies that node 𝑝 must have received a block 𝐵 of view 𝑣 from

Algorithm 3 Atomic Broadcast

Variables are initialized as lock, candidate = 𝐵0.

In each view 𝑣, node 𝑝 executes the following algorithm at every time

0 ≤ 𝑡 ≤ 10Δ during view 𝑣, and enter the next view 𝑣 + 1.
// update variables

1: candidate← the highest block 𝐵 s.t. GA𝑣−1 outputs (𝐵, ∗)
2: lock← the highest block 𝐵 s.t. GA𝑣−1 outputs (𝐵, 1)
3: if 𝑡 ≤ 5Δ then
4: 𝐷∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“decide”, ∗, 𝑣 − 1⟩𝑞 .
5: for all block 𝐵 do
6: 𝐷 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“decide”, 𝐵′, 𝑣 − 1⟩𝑞

for any block 𝐵′ extending 𝐵.
7: if 𝐷 (𝐵) > 𝐷∗/2 then
8: decide 𝐵 and all its ancestors

// GPE invocation
9: if 𝑡 = 0 then
10: 𝐵 ← (𝑏,H(𝐵′), 𝑣) where 𝐵′ = candidate.
11: start GPE𝑣 with input 𝐵; within GPE, any block is considered per-

missible if it extends lock and view(𝐵) = 𝑣.

// pre GA invocation
12: if 𝑡 = 4Δ then
13: 𝐵,𝑔← the output from GPE𝑣 .
14: if 𝑔 = 1 then
15: decide 𝐵 and all its ancestors

16: multicast ⟨“decide”, 𝐵, 𝑣⟩𝑝
17: else
18: multicast ⟨“decide”, 𝐵′, 𝑣⟩𝑝 for the highest decided block 𝐵′ .

19: if 𝐵 ≠ ⊥ then
20: start GA′𝑣 with input 𝐵

21: else
22: start GA′𝑣 with input lock

// main GA invocation
23: if 𝑡 = 7Δ then
24: 𝐵 ← the highest block s.t.GA′𝑣 has output (𝐵, 1) but has not output
(𝐵′, ∗) for any 𝐵′ conflicting with 𝐵

25: start GA𝑣 with input 𝐵

// decide
26: if 𝑡 ≥ 5Δ then
27: 𝐷∗ ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“decide”, ∗, 𝑣⟩𝑞 .
28: for all block 𝐵 do
29: 𝐷 (𝐵) ← # of nodes 𝑞 s.t. 𝑝 has received ⟨“decide”, 𝐵′, 𝑣⟩𝑞 for

any block 𝐵′ extending 𝐵.
30: if 𝐷 (𝐵) > 𝐷∗/2 then
31: decide 𝐵 and all its ancestors

GPE𝑣 with grade 𝑔 = 1. Let 𝑞 be any honest node awake at time

𝑡 = 4Δ. The graded delivery of GPE ensures that node𝑞 has received
𝐵 from GPE𝑣 (with any grade). So node 𝑞 will input 𝐵 to GA′𝑣 (the
pre-GA). Due to the validity of GA, the pre-GA will output 𝐵 (or

a block extending 𝐵) to all honest nodes awake at time 𝑡 = 7Δ,
leading them to input 𝐵 to GA𝑣 (the main GA). □

Lemma 6.4 (Safety). If two honest nodes decide 𝐵 and 𝐵′, then 𝐵

does not conflict with 𝐵′.

Proof. Suppose for the sake of contradiction two conflicting

blocks are decided by honest nodes. This implies there are two

conflicting blocks 𝐵 and 𝐵′ of view 𝑣 and 𝑣 ′, respectively, decided
10

directly by honest nodes. We have that 𝑣 ≠ 𝑣 ′ due to the consistency
of GPE. Without loss of generality, we assume 𝑣 < 𝑣 ′. Based on

Lemma 6.2 and 6.3, all honest nodes awake at time 𝑡 = 4Δ of

view 𝑣 input blocks extending 𝐵 into GA𝑣 , leading to all honest

nodes awake during view 𝑣 + 1 locking on 𝐵 (i.e., set lock to 𝐵

or its descendants). Consequently, any conflicting block will be

precluded from GPE/GA outputs during view 𝑣 . By induction, in all

subsequent views, all honest nodes keep inputting blocks extending

𝐵 to GPE/GA. However, by the same argument, in view 𝑣 ′, honest
nodes must input blocks extending 𝐵′ into GA𝑣′ . This contradicts

that 𝐵 and 𝐵′ are conflicting. □

The above lemma directly implies safety as non-conflicting blocks
𝐵 and 𝐵′ represent consistent logs, i.e., one of them is a prefix of

the other.

Lemma 6.5 (Liveness). If an awake honest node inputs a value 𝑥
at time 𝑡 , then there is a time 𝑡 ′ ≥ 𝑡 s.t. all honest nodes awake after
𝑡 ′ decide a log containing 𝑥 .

Proof. We first observe that if an honest node (say 𝑝) inputs

a block 𝐵 to GPE𝑣 , then 𝐵 extends lock observed by other honest

nodes, indicating that 𝐵 is permissible for all honest nodes. This is

due to the graded delivery of GA. An honest node 𝑞 sets to lock𝑞 a

grade-1 output from GA𝑣−1. This implies node 𝑝 has received lock𝑞
from GA𝑣−1, at least as grade-0 output, leading to node 𝑝 setting it

to 𝑝’s candidate. Node 𝑝 inputs a block extending candidate, so 𝐵
must extend lock𝑞 .

Now, if the honest node’s input becomes the winning block, then

all honest nodes awake at time 𝑡 = 4Δ of the view decide the block

𝐵 and send ⟨“decide”, 𝐵, 𝑣⟩. So all honest nodes awake at any time

from time 𝑡 = 5Δ of view 𝑣 to time 𝑡 = 5Δ of view 𝑣 + 1 decide

the block 𝐵. By induction, all honest nodes awake at any time after

𝑡 = 5Δ of view 𝑣 decide 𝐵.

The validity of GPE implies that such a view 𝑣 eventually and

repeatedly appears. All values input by honest nodes before this

view will get included in block 𝐵 (with input dissemination, i.e.,

honest nodes multicast their input values) and get decided. So all

values input by honest nodes will eventually be decided. □

6.2 Analysis
We give the analysis of the latency and communication complexity

of our protocol.

Latency. The best-case latency of our protocol is 4Δ as nodes can

decide on a block immediately after GPE. This is far better than prior

and concurrent works such as 16Δ of Momose-Ren [28] and 10Δ of

Gafni-Losa [27]. The expected latency of our protocol is 14Δ, which
is also better than prior and concurrent works: 32Δ of Momose-

Ren and 20Δ of Gafni-Losa. Finally, the latency in the worst case

(except with negligible probability) is 𝑂 (𝜅Δ). This matches the

lower bound [4].

Communication complexity. The expected communication com-

plexity of our protocol described in Algorithm 3 is𝑂 (𝐿𝑛3) per view,
where 𝐿 represents the block size. In more detail, each node will

send at most 𝑛 votes/tally when honest nodes input conflicting

blocks to GA. As a result, 𝑛3 messages are exchanged in total. This

cubic communication complexity can be reduced to 𝑂 (𝐿𝑛2 + 𝜅𝑛3)

with a simple modification: each message contains only the hash

of the block (of length 𝑂 (𝜅)) and nodes transmit blocks separately

(and only once per block). When dealing with sufficiently large

blocks, i.e., 𝐿 = Ω(𝜅𝑛), it will be 𝑂 (𝐿𝑛2). This matches the cost

of all existing sleepy consensus protocols including longest-chain

protocols.

6.3 Efficient Recovery
We have assumed for simplicity that any message sent by an honest

node at time 𝑡 is received by the recipient awake at any time 𝑡 ′ ≥
𝑡 + Δ (Section 2). This is clearly an impractical assumption since it

implies that messages must be magically buffered until the recipient

comes back awake. In practice, we have to assume that the message

will be lost if not received by the recipient within Δ time, and we

must provide an explicit message recovery mechanism for newly

awake nodes.

Let us begin by adjusting the model to accommodate message

loss. We follow the sleepy model with recovery model introduced

by Momose-Ren [28]. In addition to the awake/asleep statuses, we

introduce a third status called recovering. When a node transitions

from asleep to awake, it enters the recovering status. During this

period, the node retrieves missing information from other awake

nodes to catch up. The length of this grace period is denoted as

Γ ≥ 2Δ. In theory, Γ = 2Δ suffices as a single round trip fetches all

missing data. In practice, Γ will depend on how much data a node

needs to retrieve. The message delivery assumption is that if an

honest node 𝑝 awake at time 𝑡 sends a message, then the message

will be received by the recipient 𝑞 as long as 𝑞 is recovering or

awake at all times during [𝑡, 𝑡 +Δ]. A node is treated as awake after

completing the recovery process.

Nowwe present the concrete recovery sub-protocol of our atomic

broadcast in Algorithm 4. When a node 𝑝 joins the execution (i.e.,

as a new recovering node), it begins the process by querying other

nodes with a “recovery” message with the hash of the highest block

𝐵 it has ever decided (line 1–4). If 𝑝 has not decided or has not

even been awake, then the hash corresponds to the genesis block.

Other nodes respond to the recovering node with the required

information 𝑝 might have missed. Specifically, each node sends 𝑝

all decided blocks after 𝐵 (i.e., missing log contents) as well as all

messages of the current view 𝑣 and the preceding view 𝑣 − 1. Recall
that each view of our main protocol (Algorithm 3) relies only on

messages from the current view and the immediate last view. More

concretely, it relies on the result fromGA𝑣−1 and “decide” messages

from view 𝑣 − 1. As a direct consequence, all messages from older

views 𝑣 ′ < 𝑣 − 1 do not need to be recovered (except for the log

contents).

Note that our recovery protocol is completely decoupled from

the main protocol, so the proofs in Section 6.1 still hold.

7 IMPOSSIBILITY OF SUPPORTING
FLUCTUATING CORRUPTION

This section shows the impossibility of consensus in the sleepy

model with corrupt nodes’ fluctuation. Namely, there is no atomic

broadcast protocol against the standard (PPT) adversary in the

(𝑇𝑓 ,𝑇𝑏 , 𝛼)-sleepy model with any bounded 𝑇𝑓 ,𝑇𝑏 , and constant 𝛼 .

11

Algorithm 4 Recovery mechanism for Algorithm 3

Node 𝑝 executes the following algorithm.

// query other nodes
1: upon joining the execution

2: 𝐵 ← the highest block that 𝑝 has ever decided

3: multicast ⟨“recover”,H(𝐵) ⟩𝑝
4: wait for Γ and resume the execution of Algorithm 3

// respond to a recovering node
5: upon receiving ⟨“recover”, ℎ⟩𝑞
6: if 𝑝 has decided a block 𝐵 s.t. H(𝐵) = ℎ then
7: send to 𝑞 all decided blocks extending 𝐵

8: Let 𝑣 be the current view.

9: sends to 𝑞 all messages of view 𝑣 and 𝑣 − 1.

Assumptions. For clarity, let us review the assumptions that are

critical to the result.

(1) We assume a standard probabilistic polynomial-time (PPT) ad-

versary that is allowed to perform any polynomial (in𝜅) amount

of computation. This means we do not have any proof-of-work

style assumption on relative computation power.

(2) The adversary can fully control any corrupt node once it be-

comes awake. This includes extracting the entire private state

as well as deciding all the messages the node sends.

(3) We assume the communication channels between nodes are

unauthenticated. When an honest node receives a message, the

node cannot tell the origin of the message. It is worth emphasiz-

ing and clarifying that what we are assuming here is that there

are no innate authenticated channels in the model. A protocol

can choose to implement authenticated channels using digi-

tal signatures and PKI; but looking ahead, these cryptographic
authenticated channels will be broken by an adversary who

extracts private keys.

Under these assumptions, we can show the following result.

Theorem 7.1. For any𝑇𝑓 ,𝑇𝑏 = poly(𝜅) and 0 < 𝛼 < 1, no atomic
broadcast protocol exists in the (𝑇𝑏 ,𝑇𝑓 , 𝛼)-sleepy model.

Proof sketch.We give a sketch of the proof here and defer the full

proof to Appendix A). Intuitively, our proof is based on an adversary

performing a forward simulation attack. More concretely, consider

a network of two sets of 1/𝛼 nodes 𝑃 and 𝑄 (assume for simplicity

that 1/𝛼 is an integer), and a node 𝑟 . Nodes in 𝑃 are honest and

always awake. Since less than 𝛼 fraction of awake nodes can be

corrupt, we can have one corrupt node in each period of𝑇 = 𝑇𝑓 +𝑇𝑏
time. For𝑘 ∈ [1, 1/𝛼], the adversarymakes each node𝑞𝑘 ∈ 𝑄 awake

and then asleep immediately at time 𝑡 = (𝑘 − 1)𝑇 after extracting

all its private states. Now, after time 𝑡 = 𝑇 /𝛼 , the adversary holds

all private states of 𝑄 and can simulate any execution using nodes

in 𝑄 as if they were awake from the beginning. This essentially

breaks the honest majority requirement [32] of the (∞,∞, 1/2)-
sleepy model (the original sleepy model) and allows the adversary

to convince an honest node 𝑟 who wakes up after time 𝑇 /𝛼 with

the simulated execution, leading to an incorrect decision.

8 RELATEDWORK
Byzantine consensus has been studied for several decades, with a

primary focus on the static and known participation model [7, 9,

16, 17, 19, 25]. The emergence of the Bitcoin protocol [29] marked

a turning point, which inspired a new area of research in Byzantine

consensus that considers unknown and dynamic participation. This

unknown and dynamic participation model was later formalized

as the sleepy model [32]. Below, we review the related works in

sleepy consensus research.

Latency of sleepy consensus. Early research on sleepy consensus

naturally adopted Bitcoin’s longest-chain paradigm. A number of

works generalized the longest-chain paradigm by substituting the

computationally intensive proof-of-work with proof-of-stake [5, 12,

24, 32]. However, one of the major drawbacks of the longest-chain

protocol is its inherent long latency. In particular, the basic longest-

chain protocol like Bitcoin has a latency of Ω(𝜅Δ𝛾) where 𝜅 is the

desired security level, 𝛾 is the active participation level (i.e., the

fraction of active nodes compared to the total nodes), and Δ is the

bound on network delay. Efforts have been made to eliminate some

of the factors that contribute to this long latency. Prism [6], Parallel

Chain [20], and Taiji [26] removed the dependency on𝜅 using many

parallel instances of longest chains, but maintained the dependency

on 𝛾 . A recent work by D’Amato et al. [13] achieves 𝑂 (Δ) latency
under optimistic conditions where the participation level is high,

but it inherits the long latency of a longest-chain protocol under

low participation level.

Another line of work adapts the classic BFT paradigm from

the traditional known and static participation model to the sleepy

model. Goyal et al. [22] removes the dependency on 𝛾 by extending

Algorand [21], but the dependency on 𝜅 remains. Furthermore, due

to the use of a static quorum threshold, it places a constraint on

honest nodes’ fluctuation as it requires a steady presence of Ω(𝜅)
awake honest nodes at all times.

The closest to our work is the work by Momose-Ren [28], which

for the first time eliminates both of the above dependencies and

achieves 𝑂 (Δ) latency. The protocol is built on the classic view-

based construction and each view consists of a VRF-based leader

election and five consecutive invocations of GA. That protocol

incurs a latency of at least 16Δ time. Moreover, their GA protocol

requires eventual stable participation for liveness.

A concurrent and independent work by Gafni-Losa [27] also

presents a sleepy consensus with 𝑂 (Δ) expected latency with op-

timal corruption threshold. They also remove the eventual stable

participation assumption. The best-case latency is 10Δ and the

expected latency is 20Δ. In contrast, our protocol achieves 4Δ best-

case latency and 14Δ expected latency. The protocol consists of

sequential invocations of Commit-Adopt sub-protocol (similar to

GA).We also note that their protocol is a single-shot and agreement-

style protocol rather than an atomic broadcast. Furthermore, their

adversary model is rather strong, abstracting away the possibility

of a costless simulation attack.

Dynamic participation of corrupt nodes. Another drawback
of the previous sleepy consensus protocols is that they do not

support growing corrupt participation (proportional to the overall

participation level) unless assuming proof-of-work (or other strong

12

latency

protocol best-case expected

longest-chain PoS [5, 12, 24, 32] 𝑂 (𝜅Δ/𝛾)
multi-chain [6, 20, 26] 𝑂 (Δ/𝛾)
Goyal et al. [22] 𝑂 (𝜅Δ)
Momose-Ren [28] 16Δ 32Δ
Gafni-Losa [27] 10Δ 20Δ
this work 4Δ 14Δ

Table 1: Latency of sleepy consensus. 𝜅 is the security level,
𝛾 is the active participation level, and Δ is the bound on
network delay.

assumptions [12, 14, 15]) due to the costless simulation problem [15].

Our protocol removes this constraint and supports growing corrup-

tion. An interesting insight we learned is “stateless” algorithm is the

key to supporting growing corruption. Namely, each protocol’s step

must depend only on the recent messages. If the protocol makes

decisions based on long-past messages, it would be vulnerable to

an adversary trying to fabricate past messages (i.e., the backward

simulation). This shows another advantage of the classic BFT-like

quorum-based design for sleepy consensus; the longest-chain para-

digm is by design vulnerable to backward simulation as they depend

on the whole mining results in the past.

A possible but orthogonal technique to defend against backward

simulation is key evolution [10, 14]. Here, honest nodes constantly

evolve their signing keys and erase their stale keys so that when

they are corrupted, the adversary cannot access their old keys to

simulate past messages on their behalf. This technique is effective

in preventing backward simulation in the static and known par-

ticipation model (e.g., in Algorand [10]). In the sleepy model with

dynamic participation, however, an additional strong assumption

is required for this technique to work: an adversary cannot corrupt

a new active node before it completes evolving the key. Otherwise,

an adversary could corrupt nodes immediately after they wake up,

gain access to their original keys and sign their past messages.

Fallback under asynchrony. As mentioned in Section 2, the syn-

chrony assumption is necessary for consensus in the sleepy model.

Therefore, it is inherent that our protocol loses safety under asyn-

chrony. Nonetheless, there have been a few proposals to balance dy-

namic participation and partition tolerance [30, 35]. These protocols

involve running a partially synchronous checkpointing protocol

on top of the underlying sleepy consensus, which is also applicable

to our protocol.

9 CONCLUSION
This work presents an atomic broadcast protocol in the sleepymodel

with 4Δ latency in the best case, based on the new construction

of a view-based protocol optimized for reducing best-case latency.

Our protocol achieves liveness under wildly fluctuating honest par-

ticipation with the new GA protocol that does not require stable

honest nodes. The stateless nature of our atomic broadcast proto-

col allows us to achieve tolerance to growing corruption and also

achieve efficient recovery for new active nodes.

We have shown the impossibility of supporting fluctuating cor-

ruption (both growing/shrinking) with the standard adversary that

can extract all corrupt nodes’ private state. However, the assump-

tion is too strong in practice. For example, in the proof-of-stake

protocols, it is highly unlikely that corrupt nodes hand off their

secret keys to the adversary (or other corrupt nodes) at the risk of

losing their entire stake. Supporting corrupt nodes’ fluctuation in a

weaker but more realistic model is an interesting future work.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers at ACM CCS

2023 for their helpful feedback. We also thank Lorenzo Alvisi, Ittay

Eyal, Jacob Leshno, Kartik Nayak, Youer Pu, Jun Wan, for valuable

discussions. This work is supported in part by NSF award 2143058.

REFERENCES
[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.

2019. Synchronous Byzantine Agreement with Expected𝑂 (1) Rounds, Expected
𝑂 (𝑛2) Communication, and Optimal Resilience. In Financial Cryptography and
Data Security (FC). Springer, 320–334.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.

Sync HotStuff: Simple and Practical Synchronous State Machine Replication. In

IEEE Symposium on Security and Privacy (S&P). IEEE, 106–118.
[3] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-case

latency of byzantine broadcast: A complete categorization. In ACM Symposium
on Principles of Distributed Computing (PODC). 331–341. https://doi.org/10.1145/

3465084.3467899

[4] Hagit Attiya and Keren Censor. 2008. Lower bounds for randomized consen-

sus under a weak adversary. In ACM Symposium on Principles of Distributed
Computing (PODC). 315–324.

[5] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. 2018. Ouroboros genesis: Composable proof-of-stake blockchains

with dynamic availability. In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). 913–930.

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.

2019. Prism: Deconstructing the blockchain to approach physical limits. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). 585–602.

[7] Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast

protocols. Journal of the ACM (JACM) 32, 4 (1985), 824–840.
[8] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of

blockchains. Ph.D. Dissertation.
[9] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In

3rd Symposium on Operating Systems Design and Implementation (OSDI). USENIX,
173–186.

[10] Jing Chen and Silvio Micali. 2016. Algorand. arXiv preprint arXiv:1607.01341
(2016).

[11] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. 1995. Atomic

broadcast: From simple message diffusion to Byzantine agreement. Information
and Computation 118, 1 (1995), 158–179.

[12] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow white: Robustly reconfig-

urable consensus and applications to provably secure proof of stake. In Financial
Cryptography and Data Security (FC). Springer, 23–41.

[13] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. 2022. No

More Attacks on Proof-of-Stake Ethereum? arXiv preprint arXiv:2209.03255
(2022).

[14] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake

blockchain. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer, 66–98.

[15] Soubhik Deb, Sreeram Kannan, and David Tse. 2020. PoSAT: Proof-of-Work Avail-

ability and Unpredictability, without the Work. arXiv preprint arXiv:2010.08154
(2020).

[16] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.
[17] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. J. ACM 35, 2 (1988), 288–323.

[18] Paul Feldman and Silvio Micali. 1988. Optimal algorithms for Byzantine agree-

ment. In 20th Annual ACM Symposium on Theory of Computing (STOC). 148–161.
[19] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

13

https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1145/3465084.3467899

[20] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Parallel

Chains: Improving Throughput and Latency of Blockchain Protocols via Parallel

Composition. IACR Cryptology ePrint Archive, Report 2018/1119 (2018).
[21] Yossi Gilad, RotemHemo, SilvioMicali, Georgios Vlachos, andNickolai Zeldovich.

2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In 26th
Symposium on Operating Systems Principles (SOSP). 51–68.

[22] Vipul Goyal, Hanjun Li, and Justin Raizes. 2021. Instant Block Confirmation in

the Sleepy Model. In Financial Cryptography and Data Security (FC).
[23] Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols

for byzantine agreement. J. Comput. System Sci. 75, 2 (2009), 91–112.
[24] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference (CRYPTO). Springer, 357–388.

[25] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-

erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382–401.

[26] Songze Li and David Tse. 2020. TaiJi: Longest Chain Availability with BFT Fast

Confirmation. arXiv preprint arXiv:2011.11097 (2020).

[27] Giuliano Losa and Eli Gafni. 2023. Consensus in the Unknown-Participation

Message-Adversary Model. arXiv preprint arXiv:2301.04817 (2023).

[28] Atsuki Momose and Ling Ren. 2022. Constant latency in sleepy consensus.

In ACM SIGSAC Conference on Computer and Communications Security (CCS).
2295–2308.

[29] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[30] Joachim Neu, Ertem Nusret Tas, and David Tse. 2020. Ebb-and-flow protocols: A

resolution of the availability-finality dilemma. arXiv preprint arXiv:2009.04987
(2020).

[31] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain

protocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT). Springer,
643–673.

[32] Rafael Pass and Elaine Shi. 2017. The sleepy model of consensus. In Annual Inter-
national Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT). Springer, 380–409.

[33] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement

in the presence of faults. Journal of the ACM (JACM) 27, 2 (1980), 228–234.
[34] Ling Ren. 2019. Analysis of Nakamoto Consensus. IACR Cryptology ePrint

Archive, Report 2019/943. (2019).

[35] Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan, and Pramod

Viswanath. 2020. The Checkpointed Longest Chain: User-dependent Adaptivity

and Finality. arXiv preprint arXiv:2010.13711 (2020).
[36] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In ACM
Symposium on Principles of Distributed Computing (PODC). ACM, 347–356.

A PROOF OF IMPOSSIBILITY OF SUPPORTING
FLUCTUATING CORRUPTION

We give the proof of Theorem 7.1 below.

TheoremA.1 (Theorem 7.1 restated.). For any𝑇𝑓 ,𝑇𝑏 = poly(𝜅)
and 0 < 𝛼 < 1, there does not exists an atomic broadcast in the
(𝑇𝑏 ,𝑇𝑓 , 𝛼)-sleepy model.

Proof. Let 𝛽 = 1/𝛼 . We assume 𝛽 is an integer (the proof is

easily extended to the case 𝛽 is not an integer). Suppose there exists

such a protocol. Let 𝑇 = 𝑇𝑓 +𝑇𝑏 . Let Γ > 𝛽𝑇 be the smallest value

s.t. the protocol satisfies Γ-Liveness. Let 𝑃 and 𝑄 be two disjoint

sets of 𝛽 nodes, and 𝑟 ∉ 𝑃 ∪𝑄 be a node. Consider the following

two executions.

W1. For each 𝑘 ∈ [1, 𝛽], there is a unique corrupt node 𝑝𝑘 ∈ 𝑃

that becomes awake and then asleep immediately at time 𝑡 =

(𝑘 − 1)𝑇 . All nodes in 𝑄 are honest and always awake. At time

𝑡 = Γ, a new honest node 𝑟 becomes awake. The honest nodes

𝑄 input a set 𝑋 of values. All corrupt nodes 𝑃 do not send any

message. Until time 𝑡 = Γ, the adversary simulates an honest

execution among the corrupt nodes 𝑃 as if all nodes in 𝑃 were

always awake from time 0 to Γ and they had a set 𝑋 ′ of input
values s.t. 𝑋 ∩ 𝑋 ′ = ∅. At time 𝑡 = Γ, the adversary delivers all

messages in the simulated execution to the new awake node 𝑟 .

W2. The second execution is symmetric. For each 𝑘 ∈ [1, 𝛽], there
is a unique corrupt node 𝑞𝑘 ∈ 𝑄 that becomes awake and then

asleep immediately at time 𝑡 = (𝑘 − 1)𝑇 . All nodes in 𝑃 are

honest and always awake. At time 𝑡 = Γ, a new honest node 𝑟

becomes awake. The honest nodes 𝑃 input a set 𝑋 ′ of values.
All corrupt nodes 𝑄 do not send any message. Until time 𝑡 = Γ,
the adversary simulates an honest execution among the corrupt

nodes 𝑄 as if all nodes in 𝑄 were always awake from time 0

to Γ and they had a set 𝑋 of input values s.t. 𝑋 ∩ 𝑋 ′ = ∅. At
time 𝑡 = Γ, the adversary delivers all messages in the simulated

execution to the new awake node 𝑟 .

Let view1 and view2 be the random variables that describe the set

of messages that 𝑟 receives in W1 and W2, respectively. Obviously,

the distribution of these two variables must be identical since they

both consist of two separate honest executions among 𝑃 with input

𝑋 ′, and among 𝑄 with input 𝑋 . So, the log decided by 𝑟 must be

identically distributed in both W1 and W2. However, due to Γ-
liveness, 𝑟 must decide a log containing 𝑋 in W1, and in W2, 𝑟

must decide a log containing 𝑋 ′. So the two distributions should

be different; a contradiction. □

14

	Abstract
	1 Introduction
	2 Model and Definitions
	2.1 Definitions and Primitives

	3 Overview
	3.1 View-based BFT with Early Decision
	3.2 Graded Agreement without Stable Participation Requirement
	3.3 Tolerating Backward Simulation with Stateless Algorithm

	4 Graded Agreement
	4.1 Correctness Proof

	5 Graded Proposal Election
	5.1 Correctness Proof

	6 Atomic Broadcast
	6.1 Safety and Liveness Proofs
	6.2 Analysis
	6.3 Efficient Recovery

	7 Impossibility of Supporting Fluctuating Corruption
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Proof of Impossibility of Supporting Fluctuating Corruption

