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Abstract

Bitcoin’s longest-chain protocol pioneered consensus under dynamic participation, also known as
sleepy consensus, where nodes do not need to be permanently active. However, existing solutions for
sleepy consensus still face two major issues, which we address in this work. First, existing sleepy consensus
protocols have high latency (either asymptotically or concretely). We tackle this problem and achieve
4∆ latency (∆ is the bound on network delay) in the best case, which is comparable to classic BFT
protocols without dynamic participation support. Second, existing protocols have to assume that the set
of corrupt participants remains fixed throughout the lifetime of the protocol due to a problem we call
costless simulation. We resolve this problem and support growing participation of corrupt nodes. Our
new protocol also offers several other important advantages, including support for arbitrary fluctuation
of honest participation as well as an efficient recovery mechanism for new active nodes.

1 Introduction

Byzantine fault-tolerant (BFT) consensus, a decade-old problem in distributed computing and cryptography,
allows a group of nodes to reach an agreement in the presence of corrupted nodes [26, 34]. Traditional
consensus research has mainly focused on the static participation model where all honest nodes remain
active throughout the execution [9, 24]. The celebrated Bitcoin protocol [30] pioneered consensus in a
dynamic participation model, enabling nodes to switch between active and inactive states spontaneously
without any prior notice. Furthermore, participants do not need to know how many other participants are
currently active in the system. This dynamic and unknown participation model was later formalized as
the sleepy model [33]. The sleepy model allows an arbitrary subset of nt nodes out of a total of N eligible
participants to be active at any given time t. The status of active/inactive can be determined arbitrarily by
an adversary, making the participation dynamic and unknown.

Inspired by Bitcoin’s longest-chain protocol, there have been many recent proposals employing the
longest-chain paradigm for the sleepy model [33, 15, 12]. However, all of these protocols face two major
problems, which we highlight in this work.

Problem 1: Latency. A notable drawback of the longest-chain paradigm has been its long latency. The
latency of Nakamoto’s longest-chain protocol depends on several factors, including the security parameter and
the actual level of participation [32, 35]. Substantial effort has been made to remove these dependencies [6,
21, 27, 23], culminating in the work of Momose-Ren [29] that achieves constant latency. However, despite
being asymptotically optimal, the concrete latency of Momose-Ren is still quite large. Specifically, its latency
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is at least 16∆1 (where ∆ is the bound on network delay). This is much slower than classic BFT protocols
operating under the static participation model, which can make decisions within ∆ time [3].

Our first result is to address this issue and achieve concretely small latency in the sleepy model. Specifi-
cally,

Theorem 1 (informal). Assuming a verifiable random function (VRF) and public-key infrastructure (PKI),
there exists an atomic broadcast protocol with (best-case) 4∆ latency in the sleepy model where up to ft < nt/2
corrupt nodes are active at any given time t.

Following prior works, we focus on the atomic broadcast problem [11], i.e., achieving consensus on a
linearizable log.

The core ingredient of our protocol is a new construction in the classic view-based approach to BFT
atomic broadcast. We construct each view from the composition of a graded proposal election (GPE) and a
sequence of graded agreements (GA). We observe that most classic construction puts the decision at the end
of each view after sequential invocations of GA, and this introduces a large latency. We instead push back
most of the tasks done by the sequential GAs and make a decision earlier after minimum steps (in GPE).
This results in a significant improvement in the best-case latency.

Problem 2: Costless simulation. Besides latency, another major limitation of previous sleepy consensus
protocols (without proof-of-work) do not allow dynamic participation of corrupt nodes. The Bitcoin protocol
allows both honest and corrupt nodes to fluctuate dynamically as long as there is an honest majority.
However, once we remove the computationally expensive proof-of-work, we lose the crucial property that
computational effort is not reusable. Because of this, the original sleepy model [33] by Pass-Shi assumes
stable participation of corrupt nodes. To elaborate, at each point in time t, they allow a maximum of
ft = O(n) active corrupt nodes where n represents the minimum count of active nodes throughout the
entire execution. In other words, even if the overall (honest plus corrupt) participation level fluctuates
tremendously throughout the execution, the count of corrupt participants must always be bounded by the
minimum participation level rather than the current level. This assumption is hard to justify in practice.
Suppose only dozens of nodes were active in the beginning, but a million nodes are active a few years later
when a system attains widespread recognition. Even at that later time, the number of corrupt nodes must
be limited to a few dozen out of the one million nodes!

This problem arises due to an attack known as costless simulation [16]. To elaborate, when a corrupt
node becomes active, it can pretend to have always been active in the past. It can fabricate messages that
were supposed to be sent when it was not active in an attempt to alter the consensus results in the past. Our
protocol tackles this problem and accommodates growing corrupt participation proportional to the active
participation level (formalized in Section 2).

Other advantages. Along the way, we also offer several other advantages elaborated below.

• We introduce a novel technique to eliminate the assumption of eventual stable participation, a requirement
for ensuring liveness in Momose-Ren. Intuitively, their protocol assumes that eventually, a large fraction
of active nodes stays active for a certain period of time to make progress. In contrast, our protocol
advances consistently even under arbitrary churn in active participants, offering guarantees akin to those
of longest-chain protocols.

• The original sleepy model by Pass-Shi assumes that nodes upon waking up receive all past messages includ-
ing those sent during their sleep, which is impractical. Momose-Ren addresses this issue by introducing
a concrete recovery mechanism for newly active nodes to retrieve only essential messages from other ac-
tive nodes. However, in Momose-Ren, nodes are required to recover messages from the past Ω(κ) rounds
(besides the log contents) where κ is a security parameter. Moreover, the recovery protocol introduces
additional overhead to the main protocol, resulting in an increased latency of at least 19∆. In contrast,
our recovery protocol mandates nodes to recover messages from only the constant number of past rounds
(in fact less than a dozen). This protocol also avoids introducing any additional latency.

1Assuming perfectly synchronized clocks for lockstep execution. This latency will further increase under the assumption of
a bounded clock skew.
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Organization. The rest of this paper is organized as follows. After defining the model and some primitives
in Section 2, we provide the overview of our protocol in Section 3. We present our graded agreement (GA)
protocol in Section 4 graded proposal election protocol (GPE) in Section 5. Then, building on the GA and
GPE protocols, we present our atomic broadcast protocol in Section 6. Finally, we review some related
works in Section 8 and conclude this paper with some future works in Section 9.

2 Model and Definitions

We consider a system comprising a total of N nodes communicating over a synchronous network. Note
that network synchrony is necessary for consensus in the sleepy model [33]. ∆ represents the bound on
communication delay. For simplicity, we assume the existence of a perfectly synchronous clock, meaning
nodes share access to a common global clock. We can extend our results to accommodate a model with
bounded clock skew by applying the round transformation technique in [29] (with a minor increase in
latency). We assume the communication channel is unauthenticated, implying that the origin of any message
is unknown to nodes. Let κ denote the security parameter. We assume an adaptive adversary that can
corrupt nodes anytime during an execution. Corrupt nodes exhibit arbitrary behavior under the control of
an adversary. Any non-corrupt node is said to be honest and behave as instructed by the protocol.

The sleepy model. Our protocol operates in an extended sleepy model that accommodates the dynamic
participation of corrupt nodes. Let us begin by briefly reviewing the original sleepy model introduced by
Pass-Shi [33]. In this model, nodes exist in one of two states: awake or asleep. Awake nodes actively engage
in the execution, while asleep nodes neither execute any code nor send/receive any message. The count of
awake nodes at any given time t is represented as 0 < nt ≤ N . At each time point, the status of each
node can change at the adversary’s control without any prior notice. Regarding the message delivery, the
assumption is that if an honest node p is awake at time t, then p must have received all messages sent to it
by other honest nodes prior to time t−∆. However, as pointed out in [29], this message delivery assumption
is not realistic. It essentially assumes all past messages are magically buffered until the recipient comes back
awake. We will eliminate this assumption in Section 6.3 where we introduce our recovery mechanism.

Dynamic participation of corrupt nodes. Now let us delve into the dynamic participation of corrupt
nodes and clarify the difference between the original sleepy model and our extended version. The original
sleepy model, while allowing arbitrary churn among honest nodes, imposes a strong restriction on the dynamic
participation of corrupt nodes. Precisely, the count of active corrupt nodes is capped at n/2 where n is the
minimum count of active nodes throughout the entire execution, essentially disallowing any fluctuation in
the corrupt node’s participation. This stems from the costless simulation problem, wherein corrupt nodes
can fabricate past messages during their inactive period.

We address part of this issue and manage to allow corrupt nodes’ participation to grow proportionally
to the current overall participation level. Formally, we measure corrupt nodes’ participation in the following
way. Let Ft be the set of corrupt nodes awake at time t, and define

f(t, Tf , Tb) =
∣∣ ⋃
t−Tf≤τ≤t+Tb

Fτ

∣∣.
We say an execution is admissible in the (Tf , Tb, α)-sleepy model if for all t ≥ 0

f(t, Tf , Tb) < αnt.

In other words, a corrupt node is counted as an active corrupt node for an extra Tf time forward and
an extra Tb time backward beyond the time interval it is actually active. This essentially acknowledges that
the protocol cannot effectively defeat costless simulation within that duration other than considering the
corrupt node active in that duration. On the other hand, any simulation outside of this time frame must be
tolerated by the protocol.
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For example, the original sleepy model can be described as the (∞,∞, 1/2)-sleepy model, and protocols
in this model essentially are not tolerant to any backward or forward simulations. Bitcoin works in the
(0, 0, 1/2)-sleepy model because any simulation is costly due to the non-reusable property of proof-of-works.

Our protocol is designed to operate in the (∞, Tb, 1/2)-sleepy model with Tb = O(∆). In other words, we
are still unable to tolerate forward simulation because a corrupt node can simply give its secret key to the
adversary before going to sleep. However, we prevent backward simulation for the most part. This allows
the number of active corrupt nodes to grow proportionally to the overall participation, albeit with a slight
delay of Tb = O(∆). Further insight into these parameters will be provided in Section 3.3.

Atomic broadcast. An atomic broadcast protocol [11] allows nodes to agree on a linearizable log. Specifi-
cally, nodes input a finite set of values and decide on a growing sequence of values [x0, x1, x2, ...] called a log.
The protocol provides the following guarantees:

1. Safety. If two honest nodes decide logs [x0, .., xj ] and [x′
0, .., x

′
j′ ], then xi = x′

i for all i ≤ min{j, j′}.

2. Liveness. If an awake honest node inputs a value x at time t, then there is a time t′ ≥ t s.t. all awake
honest nodes at any time after t′ decide a log containing x.

Here, we do not specify what the values are. It might be from a finite class depending on the application
built on top of the atomic broadcast.

Latency of atomic broadcast. We define latency as the time needed for a value input by an honest node
to get decided. Namely, suppose an honest node inputs a value x at time t, and an honest node decides a
log that includes the value x for the first time at time t′. In this context, the latency for deciding the value
x is t− t′. This paper primarily focuses on the best-case latency, representing the shortest possible latency,
typically when all nodes behave honestly.

Cryptographic assumptions. We make use of digital signatures with a public-key infrastructure (PKI).
We use ⟨µ⟩p to denote a message µ signed by node p. We assume a cryptographic hash function denoted
H(·). We also assume a verifiable random function (VRF). A node p with its secret key can evaluate
(ρ, π) ← VRFp(µ) on any input µ. The output is a deterministic pseudorandom value ρ along with a proof
π. Using π and the public key of node p, anyone can verify whether ρ is a correct evaluation of VRFp on
input µ.

2.1 Definitions and Primitives

We define some primitives and notions we will use in our protocol.

Blocks. As commonly done in recent BFT protocols, we employ the concept of block. In our protocol, a
batch of values are grouped into a block. Each block contains a hash reference pointing to another block,
forming a hash chain. The last block in the chain (i.e., without a hash reference) is called genesis block and
is denoted as B0 = (⊥,⊥, 0). The height of a block represents its position in the chain, measured as the
distance from the genesis block. The block of height k is formatted as

Bk := (bk,H(Bk−1), v)

where bk is the batch of values in this block and H(Bk−1) is the hash reference to the preceding block Bk−1.
Any block Bk uniquely defines a chain B0 . . . Bk, and hence a unique log. We say a block Bk extends Bl

(k ≥ l) if Bk = Bl or Bl is the ancestor of Bk in the chain (i.e., there is a path from Bk to Bl). We say
two blocks Bk and Bl conflict with each other if neither of them extends the other. The last element v is
an integer called view number. Intuitively, the view number identifies when the block was created (we will
elaborate more later). We say the block Bk is of view v and use the notation view(B) to denote the view of
block B. We say the block Bk is valid if the preceding block Bk−1 is valid and is of view v′ < v. In other
words, the view numbers in any valid chain must be strictly increasing.
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Graded agreement (GA).We use a primitive called graded agreement (GA), which is also used in Momose-
Ren [29] and is similar to gradecast [24]. Each node takes as input a block B and outputs a set of blocks
along with grades. More specifically, at the end of the protocol, each node outputs a set of pairs (B, g) of a
block B and a grade bit g ∈ {0, 1}, subject to the following constraints:

• Graded delivery. If an honest node outputs (B, 1), then all honest nodes output (B, ∗).

• Integrity. If an honest node outputs (B, ∗), then at least an honest node has input B′ extending B.

• Validity. Let B be the highest block that every honest node’s input extends. Then, all honest nodes
output (B, 1).

Note that the standard GA (also adopted in [29]) is defined for values, but we extend it to chained blocks.
We also note that we do not have any consistency guarantee for outputs. In other words, nodes (even a
single node) can output multiple conflicting blocks.

Graded proposal election (GPE). We introduce a primitive called graded proposal election, which re-
sembles the composition of a leader/proposal election and a graded agreement. In GPE, nodes propose their
own blocks B and elect a single block with grades. At the end of the protocol, each node outputs a single
pair (B, g) of a block B (or B = ⊥) and a grade bit g ∈ {0, 1} with the following constraints:

• Consistency. If two honest nodes output (B, ∗) and (B′, ∗) for B,B′ ̸= ⊥, then B = B′.

• Graded delivery. If an honest node outputs (B, 1), then all honest nodes output (B, ∗).

• Validity. With a probability of more than 1/2, all honest nodes output (B, 1) where B is inputted by an
honest node.

• Integrity. If an honest node outputs (B, ∗), then the block B is permissible for at least an honest node.

Here, the criterion for a block to be considered permissible for a node is defined externally. It is important
to note that there is a case that a block is permissible for one node but not for others.

Intuitively, with a probability of more than 1/2, all honest and awake nodes will output the same honest
node’s input with grade 1. For the remaining less than 1/2 probability, GPE still guarantees consistency in
the sense at most one proposal is output, albeit not by all honest and awake nodes since some of them may
output ⊥. Furthermore, the block must pass an external safety check (be permissible) by at least one honest
node, which helps eliminate unsafe proposals from corrupt nodes.

As mentioned, GPE resembles and can be implemented with, a composition of a leader election and a
GA. However, we will directly implement a GPE that is more efficient.

3 Overview

In this section, we present an overview of this work to elaborate on the technical details.

3.1 View-based BFT with Early Decision

At a high level, we follow the classic view-by-view construction that is employed by most mainstream BFT
protocols [19, 9, 24, 8, 37, 1, 2] as well as the latest sleepy consensus of Momose-Ren [29]. This paradigm
is useful in achieving expected constant round latency. Specifically, the protocol progresses through a series
of views, each possessing a fixed duration wherein one block is decided. View-based protocols in general
(including non-sleepy protocols) involve (often implicitly) sequential invocations of a graded agreement (or a
primitive with similar guarantees) and decide a block when all of the GAs from the initial to the final succeed.
However, this approach brings a notable latency overhead, especially in the sleepy model, as each GA takes
a few more rounds. For example, Momose-Ren involves five consecutive GAs, resulting in a latency of 16∆
at the minimum. To resolve this bottleneck, we introduce a new construction of each view. The high-level
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Each node in view v runs the following steps if it is awake. Let GA′
v and GAv be the two graded

agreements for view v.

GPE. Input to GPE a block B extending candidate: the highest grade-0 output from GAv−1. A block
is considered permissible within GPE if it extends lock : the highest grade-1 output from GAv−1.

Decide. If GPE outputs (B, 1), decide on B.

GA1. Each node inputs to GA′
v the output B from GPE (with any grade) if B ̸= ⊥, otherwise input

lock.

GA2. Each node inputs to GAv the highest block B s.t. GA′
v has outputted B with grade g = 1 and

has not output (with either grade) any block conflicting with B.

lock, candidate are initialized to the genesis block B0.

Figure 1: Summary of each view of our atomic broadcast protocol (simplified).

idea is that we can push back most of the tasks done by the sequential GAs to make a decision earlier.
Concretely, we observe that we can instantiate a view from a composition of a GPE and two sequential GAs
as outlined in Figure 1. The GPE performs the minimum task to make a safe decision within the view, and
the latter two GAs resolve all other works to maintain safety and liveness across all views. This way, our
protocol can decide on a block immediately after the GPE in the best case, taking 4∆. We elaborate more
on how our protocol maintains safety and liveness below.

Each view starts with a graded proposal election (GPE), and a grade-1 output from GPE is decided.
Again, the crucial role of the GPE is to converge on a unique proposal. The consistency of GPE ensures that
two distinct blocks cannot be decided simultaneously in the same view, thereby guaranteeing safety within
a view. To maintain safety across views, we want to make all nodes lock on the decided block and discard
any block conflicting with the lock in the subsequent views. To this end, the subsequent GAs resolve which
block has possibly been decided by other nodes. Specifically, grade-0 output from GPE is handed over to the
GAs, and grade-1 output from the second GA is locked. The graded delivery of GPE says, that if one node
decides on a grade-1 output from GPE, then all other nodes at least output the same block with grade-0
from GPE. Thus, they input the block to the GAs. The validity of GA makes sure all nodes output this
block with grade 1 and thus lock on this decided block. Lastly, any blocks conflicting with the locked block
are deemed impermissible during the GPE and are discarded.

Now we also need to ensure liveness when some nodes lock on a block. It is important that other nodes
extend this locked block in their proposals in later views; otherwise, honest nodes might discard an honest
node’s proposal. To this end, a grade-0 output from the second GA is set to candidate, and each node in
the next view proposes a block extending the candidate. The graded delivery of GA makes sure that when
some nodes lock on a block (by outputting from GA with grade 1), all other nodes at least output the same
block with grade 0 from GA, so they will always set the locked block (or its descendant) as their candidates.

So far, we have only mentioned the role of the second GA. In fact, the second GA plays the primary role
in maintaining safety and liveness across views. However, one missing aspect in the above is that a single
GA can output conflicting blocks (recall that GA does not guarantee consistency). Therefore, a single GA
does not guarantee that nodes lock on a unique block. The goal of the first GA is to prevent conflicting
outputs from the second GA. We will provide further details in Section 6.

Comparison with PBFT. We can get more intuition by drawing some analogy to classic view-based BFT
designs. The decide-lock relation and the lock-candidate relation that we employ are in fact two pillars of
classic view-based BFT protocols [37, 9]. In more detail, if a block is decided, then all (or supermajority)
other nodes must lock on the block to safeguard it from conflicting decisions in later views. For liveness, if a
block is locked, all (or supermajority) other nodes must recognize the block as the candidate of their future
proposals. We observe that our construction is somewhat similar to the classic PBFT-style construction
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with a main path for decision followed by a view-change sub-protocol to resolve conflict across views. The
GPE and GA can be viewed as the main path and the view-change, respectively.

3.2 Graded Agreement without Stable Participation Requirement

Another key technical contribution is a new construction of graded agreement (GA) summarized in Figure 2.
Our GA protocol builds on the GA protocol introduced by Momose-Ren but eliminates their reliance on the
eventual stable participation assumption. For ease of exposition, let us consider a GA on binary values, i.e.,
B ∈ {0, 1}, instead of blocks.

Time-shifted quorum [29]. Our starting point is the time-shifted quorum idea introduced by Momose-
Ren. Let us briefly review the original time-shifted quorum construction as a warm-up. First note that in the
classic static participation model, achieving the graded delivery guarantee is trivial: forwarding a predefined
quorum of votes is sufficient. When a node receives a quorum of votes (to obtain a grade-1 output), the
node forwards these votes to all other nodes. All other nodes receive the quorum of votes one round later
and output with grade g = 0. In the sleepy model, however, the quorum threshold (e.g., “majority”) is
not predefined but rather depends on the “perceived” participation level of each node. The above quorum
forwarding approach obviously breaks down because a quorum of votes is no longer transferable. In other
words, a set of votes may be accepted as a quorum by one node but may not meet the quorum threshold
for another node. To address this challenge, Momose-Ren introduced the following time-shifted quorum
technique.

Nodes send their inputs with “echo” messages at time t = 0.

• Let E1(B) and E2(B) denote the counts of “echo” messages for each B ∈ {0, 1} received by time t = ∆
and t = 2∆, respectively.

• Let E∗
2 and E∗

3 denote the count of “echo” messages (i.e., perceived participation level) received by time
t = 2∆ and t = 3∆, respectively.

These counts are maintained locally by each node (if awake at the specified times), and nodes forward all
received “echo” messages to all other nodes.

If a node p observes E1(B) > E∗
3/2, it outputs B with grade 1. Since all “echo” messages are forwarded,

any node q at time t = 2∆ receives at least the same number of “echo” messages for B as p. Similarly, node
q at t = 2∆ cannot observe a higher participation level than what p observes at time t = 3∆. Thus, q must
satisfy E2(B) > E∗

2/2, leading it to send a “vote” message for B at time t = 2∆. This process causes all
honest nodes awake at time t ≥ 3∆ to recognize a majority “vote” for B, leading them to carry B as grade-0
output.

Removing the stability requirement. An observant reader may have noticed that the protocol described
above imposes a constraint on nodes’ churn. A node relies on the values of E1(B) and E∗

3 counted at distinct
points in time to output with grade-1. Therefore, the node must be active at both of these time points to
make progress. This is why Momose-Ren assumes the participation level becomes eventually stable to ensure
liveness.

Our protocol sidesteps this assumption through the following novel technique. Instead of directly utilizing
the value of E1(B) counted at time t = ∆, a node awake at t = 3∆ obtains an estimation from the values
reported by those who were awake at time t = ∆. To ensure a robust estimation, we take the median of the
reported values. Since we have an honest majority at any time, the estimated value is both upper and lower
bounded by values reported by honest nodes. Thus, the time-shifted quorum argument still holds without
the eventual stable participation assumption.

3.3 Tolerating Backward Simulation with Stateless Algorithm

The challenge to tolerating costless simulation attacks lies in how to convince a newly awake node of the
correct execution history. In the sleepy model, an honest node that just woke up has no idea what happened
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• Input. Each node awake at time t = 0 multicasts the input value B through a message ⟨“echo”, B⟩.

• Report tally. Each node awake at time t = ∆ multicasts the following value for each B ∈ {0, 1}.

– E1(B) is the # of ⟨“echo”, B⟩

• Vote. Each node awake at time t = 2∆ computes the following values.

– E∗
2 is the # of ⟨“echo”, ∗⟩

– E2(B) is the # of ⟨“echo”, B⟩ for each B ∈ {0, 1}

If E2(B) > E∗
2/2, then the node multicasts ⟨“vote”, B⟩.

• Output. Each node awake at time t ≥ 3∆ compute the following values.

– E∗
3 be the # of ⟨“echo”, ∗⟩

– E1(B) is the median of all E1(B) received for each B ∈ {0, 1}

If E1(B) > E∗
3/2, then output (B, 1). Similarly, compute the following values.

– V ∗
3 is the # of ⟨“vote”, ∗⟩

– V3(B) is the # of ⟨“vote”, b⟩ for each B ∈ {0, 1}

If V3(B) > V ∗
3 /2, then output (B, 0).

Figure 2: Summary of our GA. For simplicity, we present an agreement on a binary value B ∈ {0, 1}.

during its sleep. In particular, it cannot distinguish messages that were truly sent/received earlier in the
execution from messages that corrupt nodes fabricate and claim to have been sent/received at those moments.
To give a more concrete example, consider a proof-of-stake longest-chain protocol. Suppose a newly awake
node receives two chains. One was built over the last ten years using the voting powers of honest nodes
active at each point in time. Another is recently put together by corrupt nodes who only became active
a few hours ago but claimed to have been building this chain over the entire decade. The newly awake
node cannot tell the honestly generated chain from the simulated corrupt chain. The Momose-Ren protocol
faces a similar challenge in spirit (despite not being based on longest chains). At each time, their protocol
determines the next move based on the history of graded agreements. Recall that graded agreement decides
the output once the number of votes reaches the threshold. Because corrupt nodes can fabricate votes in
the past, they can inflate the threshold and convince a newly awake node of a fake output. This is also why
all previous protocols have to assume Tb =∞, or equivalently, disallow the growing participation of corrupt
nodes. Without this assumption, a newly active corrupt node at time t can pretend to have been active all
the way back when it was not counted in the corruption budget and help undermine the protocol’s safety.

Making the protocol stateless. To tackle this issue, our approach is to make the protocol stateless. Note
that each view v of our protocol (summarized in Figure 1) updates crucial variables (namely, candidate
and lock) based on the result of GA from the immediate last view, occurring at most Tb = O(∆) time
earlier. Consequently, our protocol can ignore any message from the ancient past, including those fabricated
by corrupt nodes. The key to a stateless protocol is to ensure that each node always inputs a non-empty
value to GA even when the GPE results in failure. Specifically, each node provides its lock as input when
GPE produces an output of ⊥. This guarantees that GA in each view always yields an output (which could
potentially match the result of the previous GA or even the genesis block). As a result, we can safely discard
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the outputs of all past GAs except the most recent one.
The stateless nature of our protocol also brings benefits to the efficiency of our recovery mechanism.

When a new active node joins, it only needs to retrieve messages from the most recent view (along with any
missing blocks).

Impossibility of fluctuating corruption. We note that our protocol does not tolerate fluctuating corrup-
tion. To elaborate, while our protocol allows active corrupt nodes to increase over time, it does not allow the
set of corrupt participants to shrink, as implied by Tf =∞. This limitation stems from the simple fact that
corrupt nodes can hand off their secret keys to the adversary (or other corrupt nodes) before going inactive.
Then, the adversary can use their keys to sign any future messages on their behalf as if those corrupt nodes
never went inactive. In other words, a corrupt node can simulate indefinitely forward. Unfortunately, this
issue is inherent in a model without constraints on adversary computational power such as those imposed
by proof-of-work (Section 7).

4 Graded Agreement

This section presents a graded agreement (GA) protocol with 3∆ latency. Our protocol builds on the time-
shifted quorum technique of Momose-Ren [29] but eliminates the eventual stable participation assumption
with the “median trick” explained in Section 3. Our protocol is described in Algorithm 1.

The protocol runs up to time t = Tb (c.f., Section 2) since the beginning of the execution. The specific
value of Tb will be given when we present our atomic broadcast protocol in Section 6. We also note that GA
defined in this paper can output multiple pairs of (B, g). Therefore, we denote outputs as the set of outputs.
Now we proceed to provide a detailed explanation of our protocol below, mainly focusing on how to extend
the binary-valued GA in Section 3 to support chained blocks.

Tally echo and report. At time t = 0, awake nodes multicast their input blocks through “echo” messages.
At time t = ∆, each awake node tallies “echo” messages received for each block and reports these tallies.
Notably, even nodes that input non-conflicting blocks might input different blocks within the same chain.
This implies we have to count “echo” for a block B as an implicit “echo” for all ancestors of B. Namely,
for each block B, a node counts the number of “echo” messages received from distinct nodes for some block
B′ that extends B. This count is denoted as E(B) and is reported via a “tally” message. Moreover, each
node also forwards all “echo” messages counted in E(B). To avoid sending an unbounded number of tallies
(especially in cases where a corrupt node sends arbitrarily many “echo”), a node sends the “tally” message
only if E(B) > E∗/2 where E∗ is the total number of distinct nodes who send “echo” messages (for any
block). This ensures at least one honest node must have sent “echo” for B (or its descendant) when an
honest node reports a tally for B. If there is no tally to report, a node sends a “tally” for ⊥ just to announce
itself to other nodes.

Vote. At time t = 2∆, each awake node tallies “echo” messages in the same manner as above and sends
a “vote” message for a block B that has a majority of “echo”, namely satisfying E(B) > E∗/2. If there is
no such block, then send “vote” for ⊥. Additionally, if it has received an “echo” message (for any block)
from any node q, it forwards the “echo” message if it has not done so already (line 22). This ensures that
all awake nodes after time t = 3∆ will possess higher (or at least the same) quorum thresholds (i.e., E∗), a
critical aspect for the time-shifted quorum argument.

Output. At time t = 3∆ or later up to t = Tb, awake nodes decide outputs based on “tally” and “vote”
messages. In order to compute potential grade-1 outputs, each node obtains a robust estimation of E(B)
tallied at time t = 2∆ from the “tally” messages. Specifically, for each block B, a node calculates the set E
of reported tallies for B as follows (line 25-30):

1. If the node has received from a node q a “tally” for a block B′ extending B, then the reported tally E(B′)
in the message is adopted for node q.
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2. Otherwise, for example, if the node has received from a node q a “tally” for a block conflicting with B,
then node q is considered reporting E(B) = 0.

Next, the median E(B) from the set E is selected as the estimation. If the estimated tally meets the
threshold, i.e., E(B) > E∗/2, then the node outputs B with grade g = 1. Finally, the node computes a
grade-0 output based on “vote” messages. If the count of “vote” messages for a block B or its descendants
(referred to as V (B)) exceeds the majority of voters (denoted V ∗), then block B is taken as an output with
grade g = 0.

Time-shifted quorum. Let us quickly go over the time-shifted quorum argument. Suppose an honest node
p has the estimated tally ep = E(B). The estimated tally ep is upper bounded by an honest node’s tally er
at time t = ∆. This is because ep is the median of all reported tally and there is always an honest majority.
Now, suppose an honest node q awake at time t = 2∆ has tally eq = E(B). Since the node r has forwarded
all “echo” counted to er, we have er ≤ eq. As we also have ep ≤ er, this leads to ep ≤ eq. Similarly, given
that node q forwards all “echo” messages, the quorum threshold mp/2 = E∗/2 for node p is higher than (or
at least the same as) the threshold mq/2 observed by node q at time t = 2∆. Consequently, if ep > mp/2
(indicating p would consider B as a grade-1 output), we have eq > mq/2. Thus node q sends “vote” for B,
resulting in a majority vote for B, making all other nodes at least have B as grade-0 output, thus achieving
graded delivery.

4.1 Correctness Proof

We prove the correctness of our GA protocol. Below, we use the notion of each node’s tally. We define
the “tally e of node q for a block B” as follows: 1) e = e′ if node q sent ⟨“tally”, B′, e′⟩q for any block B′

extending B (if multiple such e′ exists, then pick the largest one), and 2) e = 0 otherwise. In other words,
each node’s tally is the value counted to E (line 25–30).

Lemma 1. For any block B, let ep be the value of E(B) observed by an honest node p at time t ≥ 3∆, and
eq be the value of E(B) observed by an honest node q at time t = 2∆. Then, ep ≤ eq.

Proof. Since the total number of corrupt nodes ever awake by time t = Tb is less than half of the nodes
awake at time t = ∆, the median ep in the set E of all tallies for B must be upper bounded by at least one
honest node’s tally e for B. Consider the case where e > 0 (the lemma is obvious if e = 0). That node must
have forwarded all ⟨“echo”, B⟩∗ counted in e, which were received by node q by time t = 2∆. Hence, we
have e ≤ eq, leading to ep ≤ eq.

Lemma 2 (Graded consistency). If an honest node outputs (B, 1), then for all t where 3∆ ≤ t ≤ Tb, all
honest nodes awake at time t output (B, ∗).

Proof. Suppose an honest node p outputs (B, 1). Let ep and mp be the values of E(B) and E∗, respectively,
observed by node p. We have that ep > mp/2. Let eq and mq be the values of E(B) and E∗, respectively,
observed by any honest node q at time t = 2∆. By Lemma 1, we have ep ≤ eq. Since the node q forwards
all “echo” messages counted in mq, we also have mq ≤ mp. Thus, we have eq > mq/2. So all honest nodes
awake at time t = 2∆ must have sent ⟨“vote”, B⟩∗. Therefore, for all t from 3∆ to Tb, all honest nodes
awake at time t observe V (B) > V ∗/2 and output (B, 0).

Lemma 3 (Integrity). If an honest node outputs (B, ∗), then at least an honest node has input B′ extending
B.

Proof. Suppose all honest nodes awake at time t = 0 input blocks that do not extend B. Let e and m
represent the values of E(B) and E∗, respectively, observed by an honest node awake at time t = 2∆. The
“echo” messages counted toward the value e are only from corrupt nodes, while “echo” messages from honest
nodes awake at time t = 0 are counted to m. Given that the number of all corrupt nodes ever awake by time
t ≤ Tb is less than half of all honest nodes awake at time t = 0, we have e < m/2. As a result, none of the
honest nodes awake at time t = 2∆ would send ⟨“vote”, B′⟩ for any block B′ extending B. Therefore, any
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Algorithm 1 Graded Agreement – GAid

Initialize outputs = ∅. Node p executes the following algorithm at every time 0 ≤ t ≤ Tb after starting the
protocol. Below, we assume every message binds to the protocol’s id denoted id.

1: if t = 0 then
2: multicast ⟨“echo”, B⟩p for the input block B.

3: if t = ∆ then
4: E∗ ← # of nodes q s.t. p has received ⟨“echo”, ∗⟩q
5: for all block B do // examine blocks from a higher height
6: E(B)← # of nodes q s.t. p has received ⟨“echo”, B′⟩q for a block B′ extending B
7: if E(B) > E∗/2 and p has not sent ⟨“tally”, B′, e⟩p for e ≥ E(B) and a block B′ extending B then
8: multicast ⟨“tally”, B,E(B)⟩p
9: forward all “echo” counted in E(B)

10: if p has not sent “tally” then
11: multicast ⟨“tally”,⊥,⊥⟩∗

12: if t = 2∆ then
13: for all block B do // examine blocks from a higher height.
14: E(B)← # of nodes q s.t. p has received ⟨“echo”, B′⟩q for a block B′ extending B
15: E∗ ← # of nodes q s.t. p has received ⟨“echo”, ∗⟩q
16: if E(B) > E∗/2 then
17: if p has not sent “vote” for a block B′ extending B then
18: multicast ⟨“vote”, B⟩p
19: if p has not sent “vote” then
20: multicast ⟨“vote”,⊥⟩p
21: forward all ⟨“echo”, ∗⟩q // only once per q

22: if 3∆ ≤ t ≤ Tb then
23: for all block B do // examine blocks from a higher height.
24: E ← ∅
25: for all node q s.t. p has received ⟨“tally”, B′, e⟩q do
26: if B′ extends B then
27: add e to E
28: else
29: add 0 to E
30: E(B)← median in E
31: E∗ ← # of nodes q s.t. p has received ⟨“echo”, ∗⟩q
32: if E(B) > E∗/2 then
33: add (B, 1) to outputs

34: for all block B do
35: V ∗ ← # of nodes q s.t. p has received ⟨“vote”, ∗⟩q
36: V (B)← # of nodes q s.t. p has received ⟨“vote”, B′⟩q for a block B′ extending B
37: if V (B) > V ∗/2 then
38: add (B, 0) to outputs

39: // line 25: If multiple “tally” exist, choose one with B′ extending B with the largest e; if no such B′ exists, pick
one arbitrary.

honest node awake at any time 3∆ ≤ t ≤ Tb observes V (B) < V ∗/2, and thus would not output (B, 0). By
graded consistency (Lemma 2), nor would they output (B, 1).

Lemma 4 (Validity). Let B be the highest block that every honest node’s input extends. Then, for any
3∆ ≤ t ≤ Tb, all honest nodes awake at time t output (B, 1).

Proof. Let p be any honest node awake at time 3∆ ≤ t ≤ Tb, and let ep and mp be the values of E(B) and
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E∗ observed by node p at time t. We observe that there exists an honest node q awake at time t = ∆ and
the tally e of q for B satisfies e ≤ ep. This is because the number of all corrupt nodes ever awake by time
t = Tb is less than half of nodes awake at time t = ∆ (i.e., an honest majority), and the median ep in the
set E of all tallies for B must be lower bounded by at least one honest node’s tallies e for B. Now, if every
honest node’s (awake at time t = 0) input extends B, then all “echo” messages sent by these honest nodes
are counted to e. Again since we have an honest majority, we have e > mp/2, hence ep > mp/2. Therefore,
node p outputs (B, 1).

5 Graded Proposal Election

This section presents a graded proposal election (GPE) protocol with 4∆ latency. Intuitively, the GPE
protocol is a combination of a VRF-based leader election with the GA protocol presented in Section 4. Our
protocol is presented in Algorithm 2.

Input. The protocol starts with a VRF-based leader election. In this process, each node p sends its
own input block along with the VRF evaluation on the protocol’s ID in an “input” message. For ease of
presentation, we define the winning input to be the input message with the highest VRF value. Given that
each node may receive a distinct set of messages, the winning input is defined individually for each node.
Specifically, a message ⟨“input”, B, ρ, π⟩q is considered a winning input by a node p if both of the following
conditions are satisfied:

1. p has not received any ⟨“input”, ∗, ρ′, π′⟩r with ρ′ > ρ.

2. p has not received any ⟨“input”, B′, ρ, π⟩q for B′ ̸= B.

In simpler terms, if the VRF of node q’s input is the highest among all received inputs and p has not
received any equivocating input from node q, then node p considers node q’s input as the winning input. We
also refer to the corresponding block B as the winning block. Since we have an honest majority, there is a
probability of at least 1/2 that a VRF from an honest node will be the highest, resulting in its input being
the winner.

GA on the winning input. The rest of the algorithm (from time t = ∆ to t = 4∆) can be viewed as
achieving graded agreement on a winning input. At time t = ∆, awake nodes send “echo” messages for the
winning blocks they have received. At time t = 2∆, nodes tally “echo” for the winning block and report
their tallies. At time t = 3∆, if the count of “echo” for a winning block meets the majority, then the block
is voted. Finally, at time t = 4∆, each node calculates the median of the reported tallies, and if it meets the
majority, the node outputs the block with grade g = 1. If there are majority votes for a block, it becomes a
grade-0 output.

The key distinction from the GA in Section 4 is that each node performs every action exclusively on the
winning input/block. This helps achieve consistency of the GPE, a property that is not mandated by GA.
More concretely, each node votes only for the winning block, and all blocks voted by honest nodes are echoed
at least ∆ time before. So it is impossible for two different blocks to get majority votes. Additionally, each
node forwards the winning input to all other nodes. Similarly, if no winning input is present, indicating the
highest VRF holder is equivocating, the equivocating inputs are propagated to all nodes. This ensures that
if an honest node possesses a grade-1 output (at time t = 4∆), all honest nodes awake at time t = 3∆ have
unanimously identified the same input as the winner, i.e., there exists no input with a higher VRF and no
equivocating input. This makes sure the time-shifted quorum argument holds.

Another crucial distinction from GA is that each node sends “echo” only for a permissible block (line
8). Due to the honest majority, a block must be echoed by at least one honest node to become the GPE
output. This guarantees the integrity of GPE. We reiterate that the condition for a block to be permissible
is externally defined, which will be specified in Section 6.

Remark on the validity. We note that, during the tallying of “echo” or “vote” for a block, a node only
considers the messages regarding the specific block and excludes blocks extending that block. This distinction

12



Algorithm 2 Graded Proposal Election – GPEid

Node p executes the following algorithm at every time 0 ≤ t ≤ 4∆ after staring the protocol. Let id be the
protocol’s id.

1: if t = 0 then
2: multicast ⟨“input”, B, ρ, π⟩p for the input B where ρ, π ← VRFp(id)

3: if t = ∆ then
4: if A winning input ⟨“input”, B, ρ, π⟩L exists then
5: forward the winning input, and multicast ⟨“echo”, B⟩p if B is permissible.
6: else
7: forward the equivocating inputs, and multicast ⟨“echo”,⊥⟩p

8: if t = 2∆ then
9: if A winning input ⟨“input”, B, ρ, π⟩L exists then

10: forward the winning input (if not yet).
11: E(B)← # of nodes q s.t. p has received ⟨“echo”, B⟩q
12: forward all ⟨“echo”, B⟩∗
13: multicast ⟨“tally”, B,E(B)⟩∗
14: else
15: forward the equivocating inputs (if not yet), and multicast ⟨“tally”,⊥,⊥⟩∗

16: if t = 3∆ then
17: if A winning input ⟨“input”, B, ρ, π⟩L exists then
18: forward the winning input (if not yet)
19: forward all ⟨“echo”, ∗⟩q (once per node q)
20: E(B)← # of nodes q s.t. p has received ⟨“echo”, B⟩q
21: E∗ ← # of nodes q s.t. p has received ⟨“echo”, ∗⟩q
22: if E(B) > E∗/2 then
23: multicast ⟨“vote”, B⟩p
24: else
25: multicast ⟨“vote”,⊥⟩p
26: else
27: forward the equivocating inputs (if not yet), and multicast ⟨“vote”,⊥⟩p

28: if t = 4∆ then
29: if A winning input ⟨“input”, B, ρ, π⟩L exists then
30: E ← ∅
31: for all node q s.t. p has received ⟨“tally”, B′, e⟩q received do
32: if B′ = B then
33: add e to E
34: else
35: add 0 to E
36: E(B)← the median in E
37: E∗ ← # of nodes q s.t. p has received ⟨“echo”, ∗⟩q
38: if E(B) > E∗/2 then
39: output (B, 1)

40: for all block B do
41: V ∗ ← # of nodes q s.t. p has received ⟨“vote”, ∗⟩q
42: V (B)← # of nodes q s.t. p has received ⟨“vote”, B⟩q
43: if V (B) > V ∗/2 and p has not outputted yet then
44: output (B, 0)

arises from the validity requirement. Our GA must produce grade-1 output for the highest common input
(i.e., the block that all honest nodes’ inputs extend). In contrast, the validity of GPE requires the algorithm

13



to have grade-1 output for an honest node’s input (with probability 1/2). Therefore, honest nodes will not
echo different blocks when the winning input is from an honest node, which is why we do not need to count
indirect echoes/votes.

5.1 Correctness Proof

We prove the correctness of our GPE protocol. As in the proof for GA, we employ the notion of each node’s
tally. We define the “tally e of node q for a block B” as follows: 1) e = e′ if node q sent ⟨“tally”, B, e′⟩q,
and 2) e = 0 otherwise.

Lemma 5 (Graded delivery). If an honest node outputs (B, 1), then all honest nodes output (B, ∗).

Proof. Suppose an honest node p outputs (B, 1). Let ep and mp denote the values of E(B) and E∗, respec-
tively, observed by node p at time t = 4∆. We have that ep > mp/2. We observe that there exists an honest
node r awake at time t = 2∆ and the tally e for B satisfies ep ≤ e. Let q be any honest node awake at
time t = 3∆, and eq and mq be the values of E(B) and E∗, respectively, observed by node q. Since node q
forwards ⟨“echo”, ∗⟩s for every node s counted to mq, we have mq ≤ mp. We further observe that node r
has B as the winning block; otherwise, it would have forwarded its winning input (or equivocating inputs),
and node p would not have considered B as the winning block. So, r must have forwarded all “echo” for
the winning block B, leading to e ≤ eq and hence ep ≤ eq. Given that mq ≤ mp, it follows that eq > mq/2.
Consequently, node q sends ⟨“vote”, B⟩q. Therefore, any honest node awake at time t = 4∆ should observe
V (B) > V ∗/2 and output (B, ∗).

Lemma 6 (Consistency). If two honest nodes output (B, ∗) and (B′, ∗), respectively, then B = B′.

Proof. Suppose for the sake of contradiction two honest nodes output (B, ∗) and (B′, ∗), respectively, with
B ̸= B′. These two nodes must have independently observed local conditions V (B) > V ∗/2 and V (B′) >
V ∗/2, implying that both B and B′ receive votes from honest nodes. Let p and q denote the nodes who
voted for B and B′, respectively. By definition, node p must have observed E(B) > E∗/2 at time t = 3∆,
indicating that at least an honest node sent ⟨“echo”, B⟩. Similarly, node q, voting for B′, must have witnessed
E(B′) > E∗/2, indicating an honest node must have sent ⟨“echo”, B′⟩. However, this scenario implies that
both p and q have received the corresponding “input” messages for B and B′, one of which is not the actual
winning input. Given that nodes would not vote for non-winning blocks, this contradicts both B and B′ are
voted.

Here, we note that the validity we prove below assumes that every honest node inputs a permissible
block; otherwise, the validity would be trivially false. It is worth noting that this assumption will be justified
by our atomic broadcast (c.f., Section 6).

Lemma 7 (Validity). With probability more than 1/2, all honest nodes output (B, 1) for a block B that
honest node inputs.

Proof. Let p be an honest node awake at time t = 4∆, and let ep and mp be the values of E(B) and E∗,
respectively, observed by node p. We observe that there exists an honest node r awake at time t = 2∆ whose
tally er for B satisfies er ≤ ep. Given that the number of corrupt nodes ever awake by time t = Tb is less
than half of all honest nodes awake at time t = 0, with probability α > 1/2, an honest node’s VRF will be
the highest, making its input B the winning block. Consequently, all honest nodes awake at time t = ∆ will
send ⟨“echo”, B⟩. This leads to er > mp/2. Given that er ≤ ep, it follows that ep > mp/2. As a result, node
p outputs (B, 1).

Lemma 8 (Integrity). If an honest node outputs (B, ∗), then the block B is permissible for at least an
honest node.

Proof. As we have observed, when an honest node outputs a block B, it indicates that at least one honest
node has sent “echo” message for B. This means the block is deemed permissible by the honest node that
sent the “echo”.
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6 Atomic Broadcast

This section presents an atomic broadcast protocol with 4∆ latency in the best case, building on the GA
protocol (in Section 4) and the GPE protocol (in Section 5). Our protocol achieves safety and liveness in
the O(∞, Tb, 1/2)-sleepy model with Tb = 11∆.

The protocol is described in Algorithm 3. It progresses through repeated views. Each view is identified
by an integer v > 0 and takes 10∆ time. As mentioned in Section 3, each view consists of a GPE and two
GAs. Based on the output from GPE and GA, nodes lock on a potentially decided block to safeguard it
from future conflicting decisions. Nodes also determine the next proposal does do not conflict with locked
blocks to ensure liveness. These values are maintained by the variables lock and candidate, initially set to
the genesis block B0 (which is considered a block of view v = 0).

Each view begins with a GPE. At time t = 0, each node inputs to GPEv a block B that extends its
current candidate. candidate is updated to the highest block that GAv−1 has output with grade 0. Within
the GPE, a block is considered permissible if it extends lock. Again, this makes sure any block conflicting
with a potentially decided block is precluded from the GPE output.

The output from GPEv is passed to two consecutive GAs (first GA′
v and then GAv). Let us call them the

pre-GA and the main GA, respectively. The pre-GA GA′
v is to preclude conflicting outputs from the main

GA. Specifically, a node inputs to GAv a grade-1 output from GA′
v only if there is no other conflicting output

from GA′
v. This makes sure honest nodes’ inputs to GAv are always non-conflicting, avoiding divergent locks

and candidates among nodes.
A grade-1 output from GPEv is decided immediately. When a node decides on a block, the node multicasts

a “decide” message for the block to let other nodes (especially those who were not awake at t = 4∆) decide
on the block. If a node receives “decide” messages for a block B (or its descendants) from a majority of all
senders of “decide” messages, i.e., D(B) > D∗/2, the node also decides on the block B (line 27–31, 4–8).

Tolerating backward simulation. Each view in our protocol examines only messages from the immediate
preceding view. To be more specific, all steps that depend on previous messages are summarized below:

1. At time t = 0, each node computes its input to GPEv based on the result of GAv−1 (i.e., candidate), which
starts at time t = 7∆ of view v − 1. These messages are sent at most 3∆ earlier.

2. At time t = 4∆, each node decides a block or computes its input to GAv based on the result of GAv−1

(i.e., lock), which are derived from messages sent at most 7∆ earlier.

3. At any time up to time t = 5∆ of view v, nodes decide blocks based on the “decide” messages sent at
time t = 4∆ of view v − 1, which are at most 11∆ earlier.

To sum up, attempts by corrupt nodes to fabricate messages of more than Tb = 11∆ time before have no
impact on the execution of honest nodes.

6.1 Safety and Liveness Proofs

We prove the safety and liveness of our atomic broadcast protocol. We say a node directly decides a block B
if the node has not decided any descendant of B by that moment. We first show below that locks are always
non-conflicting in the same view.

Lemma 9. Let p and q be honest nodes awake at time t = 4∆ of a view v, and let lockp and lockq be the
value of lock observed by honest nodes p and q, respectively. Then, lockp and lockq do not conflict with each
other.

Proof. In each view, an honest node inputs to GAv (the main GA) a block received from GA′
v (the pre GA)

with grade g = 1. Moreover, the block should not conflict with any other outputs from GA′
v. The graded

delivery ensures that other honest nodes deliver the block with grade g = 0, so they would not input any
conflicting block to GAv. Due to the integrity of GA, GAv will output non-conflicting blocks. Thus, lockp
and lockq do not conflict with each other.
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Algorithm 3 Atomic Broadcast

Variables are initialized as lock, candidate = B0.
In each view v, node p executes the following algorithm at every time 0 ≤ t ≤ 10∆ during view v, and enter the
next view v + 1.

// update variables
1: candidate← the highest block B s.t. GAv−1 outputs (B, ∗)
2: lock← the highest block B s.t. GAv−1 outputs (B, 1)
3: if t ≤ 5∆ then
4: D∗ ← # of nodes q s.t. p has received ⟨“decide”, ∗, v − 1⟩q.
5: for all block B do
6: D(B)← # of nodes q s.t. p has received ⟨“decide”, B′, v − 1⟩q for any block B′ extending B.
7: if D(B) > D∗/2 then
8: decide B and all its ancestors

// GPE invocation
9: if t = 0 then

10: B ← (b,H(B′), v) where B′ = candidate.
11: start GPEv with input B; within GPE, any block is considered permissible if it extends lock and view(B) = v.

// pre GA invocation
12: if t = 4∆ then
13: B, g ← the output from GPEv.
14: if g = 1 then
15: decide B and all its ancestors
16: multicast ⟨“decide”, B, v⟩p
17: else
18: multicast ⟨“decide”, B′, v⟩p for the highest decided block B′.

19: if B ̸= ⊥ then
20: start GA′

v with input B
21: else
22: start GA′

v with input lock

// main GA invocation
23: if t = 7∆ then
24: B ← the highest block s.t. GA′

v has output (B, 1) but has not output (B′, ∗) for any B′ conflicting with B
25: start GAv with input B

// decide
26: if t ≥ 5∆ then
27: D∗ ← # of nodes q s.t. p has received ⟨“decide”, ∗, v⟩q.
28: for all block B do
29: D(B)← # of nodes q s.t. p has received ⟨“decide”, B′, v⟩q for any block B′ extending B.
30: if D(B) > D∗/2 then
31: decide B and all its ancestors

Lemma 10. If a block B of view v is directly decided by an honest node, then at least an honest node has
sent ⟨“decide”, B, v⟩.

Proof. Assume for the sake of contradiction that none of the honest nodes awake at time t = 4∆ in view v
sends ⟨“decide”, B, v⟩. Then, the block B will not be decided (either directly or indirectly) until time t = 5∆
of view v+1. Thus, none of the honest nodes awake at time t = 4∆ in view v+1 will send ⟨“decide”, B, v+1⟩.
By induction, in all subsequent views v′ ≥ v, honest nodes will never send ⟨“decide”, B, v′⟩. This contradicts
that the block B was directly decided.

Next, we show that a directly decided block will always be handed over to the immediately following GA,
thereby ensuring its subsequent locking.
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Lemma 11. If an honest node sends ⟨“decide”, B, v⟩ for a block B of view v, then all honest nodes awake
at time t = 7∆ of view v input the block B to GAv.

Proof. Suppose an honest node p sends ⟨“decide”, B, v⟩. This implies that node p must have received a block
B of view v from GPEv with grade g = 1. Let q be any honest node awake at time t = 4∆. The graded
delivery of GPE ensures that node q has received B from GPEv (with any grade). So node q will input B
to GA′

v (the pre-GA). Due to the validity of GA, the pre-GA will output B (or a block extending B) to all
honest nodes awake at time t = 7∆, leading them to input B to GAv (the main GA).

Lemma 12 (Safety). If two honest nodes decide B and B′, then B does not conflict with B′.

Proof. Suppose for the sake of contradiction two conflicting blocks are decided by honest nodes. This implies
there are two conflicting blocks B and B′ of view v and v′, respectively, decided directly by honest nodes.
We have that v ̸= v′ due to the consistency of GPE. Without loss of generality, we assume v < v′. Based
on Lemma 10 and 11, all honest nodes awake at time t = 4∆ of view v input blocks extending B into GAv,
leading to all honest nodes awake during view v + 1 locking on B (i.e., set lock to B or its descendants).
Consequently, any conflicting block will be precluded from GPE/GA outputs during view v. By induction,
in all subsequent views, all honest nodes keep inputting blocks extending B to GPE/GA. However, by the
same argument, in view v′, honest nodes must input blocks extending B′ into GAv′ . This contradicts that
B and B′ are conflicting.

The above lemma directly implies safety as non-conflicting blocks B and B′ represent consistent logs,
i.e., one of them is a prefix of the other.

Lemma 13 (Liveness). If an awake honest node inputs a value x at time t, then there is a time t′ ≥ t s.t.
all honest nodes awake after t′ decide a log containing x.

Proof. We first observe that if an honest node (say p) inputs a block B to GPEv, then B extends lock
observed by other honest nodes, indicating that B is permissible for all honest nodes. This is due to the
graded delivery of GA. An honest node q sets to lockq a grade-1 output from GAv−1. This implies node p
has received lockq from GAv−1, at least as grade-0 output, leading to node p setting it to p’s candidate. Node
p inputs a block extending candidate, so B must extend lockq.

Now, if the honest node’s input becomes the winning block, then all honest nodes awake at time t = 4∆
of the view decide the block B and send ⟨“decide”, B, v⟩. So all honest nodes awake at any time from time
t = 5∆ of view v to time t = 5∆ of view v + 1 decide the block B. By induction, all honest nodes awake at
any time after t = 5∆ of view v decide B.

The validity of GPE implies that such a view v eventually and repeatedly appears. All values input
by honest nodes before this view will get included in block B (with input dissemination, i.e., honest nodes
multicast their input values) and get decided. So all values input by honest nodes will eventually be decided.

6.2 Analysis

We give the analysis of the latency and communication complexity of our protocol.

Latency. The best-case latency of our protocol is 4∆ as nodes can decide on a block immediately after
GPE. This is far better than prior and concurrent works such as 16∆ of Momose-Ren [29] and 10∆ of Gafni-
Losa [28]. The expected latency of our protocol is 14∆, which is also better than prior and concurrent works:
32∆ of Momose-Ren and 20∆ of Gafni-Losa. Finally, the latency in the worst case (except with negligible
probability) is O(κ∆). This matches the lower bound [4].

Communication complexity. The expected communication complexity of our protocol described in Al-
gorithm 3 is O(Ln3) per view, where L represents the block size. To elaborate, recall that honest nodes
input to GA an output from GPE or blocks they are locking on. Since GPE guarantees consistency, there is
no disagreement among honest nodes on the former. For the latter, honest nodes might have distinct locks.
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However, in the last few (constant in expectation) views, there is at least one “good” view where all honest
nodes lock on the same block proposed by an honest node. Therefore, honest nodes collectively input at
most constant number of blocks to GA. This implies each honest node sends O(1) “vote/tally” messages and
forwards O(n) “echo” messages associated with these vote/tally, which means O(n3) messages are sent in
total.

The communication complexity can be reduced to O(Ln2+κn3) with a simple modification: each message
contains only the hash of the block (of length O(κ)) and nodes transmit blocks separately (and only once
per block). When dealing with sufficiently large blocks, i.e., L = Ω(κn), it will be O(Ln2). This matches
the cost of all existing sleepy consensus protocols including longest-chain protocols.

6.3 Efficient Recovery

We have assumed for simplicity that any message sent by an honest node at time t is received by the recipient
awake at any time t′ ≥ t + ∆ (Section 2). This is clearly an impractical assumption since it implies that
messages must be magically buffered until the recipient comes back awake. In practice, we have to assume
that the message will be lost if not received by the recipient within ∆ time, and we must provide an explicit
message recovery mechanism for newly awake nodes.

Let us begin by adjusting the model to accommodate message loss. We follow the sleepy model with
recovery model introduced by Momose-Ren [29]. In addition to the awake/asleep statuses, we introduce a
third status called recovering. When a node transitions from asleep to awake, it enters the recovering status.
During this period, the node retrieves missing information from other awake nodes to catch up. The length
of this grace period is denoted as Γ ≥ 2∆. In theory, Γ = 2∆ suffices as a single round trip fetches all
missing data. In practice, Γ will depend on how much data a node needs to retrieve. The message delivery
assumption is that if an honest node p awake at time t sends a message, then the message will be received by
the recipient q as long as q is recovering or awake at all times during [t, t+∆]. A node is treated as awake
after completing the recovery process.

Now we present the concrete recovery sub-protocol of our atomic broadcast in Algorithm 4. When a
node p joins the execution (i.e., as a new recovering node), it begins the process by querying other nodes
with a “recovery” message with the hash of the highest block B it has ever decided (line 1–4). If p has not
decided or has not even been awake, then the hash corresponds to the genesis block. Other nodes respond
to the recovering node with the required information p might have missed. Specifically, each node sends p
all decided blocks after B (i.e., missing log contents) as well as all messages of the current view v and the
preceding view v − 1. Recall that each view of our main protocol (Algorithm 3) relies only on messages
from the current view and the immediate last view. More concretely, it relies on the result from GAv−1 and
“decide” messages from view v − 1. As a direct consequence, all messages from older views v′ < v − 1 do
not need to be recovered (except for the log contents).

Note that our recovery protocol is completely decoupled from the main protocol, so the proofs in Sec-
tion 6.1 still hold.

7 Impossibility of Supporting Fluctuating Corruption

This section shows the impossibility of consensus in the sleepy model with corrupt nodes’ fluctuation. Namely,
there is no atomic broadcast protocol against the standard (PPT) adversary in the (Tf , Tb, α)-sleepy model
with any bounded Tf , Tb, and constant α.

Assumptions. For clarity, let us review the assumptions that are critical to the result.

1. We assume a standard probabilistic polynomial-time (PPT) adversary that is allowed to perform any
polynomial (in κ) amount of computation. This means we do not have any proof-of-work style assumption
on relative computation power.

2. The adversary can fully control any corrupt node once it becomes awake. This includes extracting the
entire private state as well as deciding all the messages the node sends.
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Algorithm 4 Recovery mechanism for Algorithm 3

Node p executes the following algorithm.

// query other nodes
1: upon joining the execution
2: B ← the highest block that p has ever decided
3: multicast ⟨“recover”,H(B)⟩p
4: wait for Γ and resume the execution of Algorithm 3

// respond to a recovering node
5: upon receiving ⟨“recover”, h⟩q
6: if p has decided a block B s.t. H(B) = h then
7: send to q all decided blocks extending B

8: Let v be the current view.
9: sends to q all messages of view v and v − 1.

3. We assume the communication channels between nodes are unauthenticated. When an honest node receives
a message, the node cannot tell the origin of the message. It is worth emphasizing and clarifying that
what we are assuming here is that there are no innate authenticated channels in the model. A protocol
can choose to implement authenticated channels using digital signatures and PKI; but looking ahead,
these cryptographic authenticated channels will be broken by an adversary who extracts private keys.

Under these assumptions, we can show the following result.

Theorem 2. For any Tf , Tb = poly(κ) and 0 < α < 1, no atomic broadcast protocol exists in the (Tb, Tf , α)-
sleepy model.

Intuitively, our proof is based on an adversary performing a forward simulation attack. More concretely,
consider a network of two sets of 1/α nodes P and Q (assume for simplicity that 1/α is an integer), and a
node r. Nodes in P are honest and always awake. Since less than α fraction of awake nodes can be corrupt,
we can have one corrupt node in each period of T = Tf + Tb time. For k ∈ [1, 1/α], the adversary makes
each node qk ∈ Q awake and then asleep immediately at time t = (k − 1)T after extracting all its private
states. Now, after time t = T/α, the adversary holds all private states of Q and can simulate any execution
using nodes in Q as if they were awake from the beginning. This essentially breaks the honest majority
requirement [33] of the (∞,∞, 1/2)-sleepy model (the original sleepy model) and allows the adversary to
convince an honest node r who wakes up after time T/α with the simulated execution, leading to an incorrect
decision.

Proof. Let β = 1/α. We assume β is an integer (the proof is easily extended to the case β is not an integer).
Suppose there exists such a protocol. Let T = Tf + Tb. Let Γ > βT be the smallest value s.t. the protocol
satisfies Γ-Liveness. Let P and Q be two disjoint sets of β nodes, and r ̸∈ P ∪ Q be a node. Consider the
following two executions.

• W1. For each k ∈ [1, β], there is a unique corrupt node pk ∈ P that becomes awake and then asleep
immediately at time t = (k − 1)T . All nodes in Q are honest and always awake. At time t = Γ, a new
honest node r becomes awake. The honest nodes Q input a set X of values. All corrupt nodes P do
not send any message. Until time t = Γ, the adversary simulates an honest execution among the corrupt
nodes P as if all nodes in P were always awake from time 0 to Γ and they had a set X ′ of input values
s.t. X ∩X ′ = ∅. At time t = Γ, the adversary delivers all messages in the simulated execution to the new
awake node r.

• W2. The second execution is symmetric. For each k ∈ [1, β], there is a unique corrupt node qk ∈ Q
that becomes awake and then asleep immediately at time t = (k − 1)T . All nodes in P are honest and
always awake. At time t = Γ, a new honest node r becomes awake. The honest nodes P input a set X ′
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of values. All corrupt nodes Q do not send any message. Until time t = Γ, the adversary simulates an
honest execution among the corrupt nodes Q as if all nodes in Q were always awake from time 0 to Γ and
they had a set X of input values s.t. X ∩X ′ = ∅. At time t = Γ, the adversary delivers all messages in
the simulated execution to the new awake node r.

Let view1 and view2 be the random variables that describe the set of messages that r receives in W1 and
W2, respectively. Obviously, the distribution of these two variables must be identical since they both consist
of two separate honest executions among P with input X ′, and among Q with input X. So, the log decided
by r must be identically distributed in both W1 and W2. However, due to Γ-liveness, r must decide a log
containing X in W1, and in W2, r must decide a log containing X ′. So the two distributions should be
different, leading to a contradiction.

8 Related Work

Byzantine consensus has been studied for several decades, with a primary focus on the static and known
participation model [26, 17, 7, 20, 18, 9]. The emergence of the Bitcoin protocol [30] marked a turning
point, which inspired a new area of research in Byzantine consensus that considers unknown and dynamic
participation. This unknown and dynamic participation model was later formalized as the sleepy model [33].
Below, we review the related works in sleepy consensus research.

Latency of sleepy consensus. Early research on sleepy consensus naturally adopted Bitcoin’s longest-chain
paradigm. A number of works generalized the longest-chain paradigm by substituting the computationally
intensive proof-of-work with proof-of-stake [33, 25, 5, 12]. However, one of the major drawbacks of the
longest-chain protocol is its inherent long latency. In particular, the basic longest-chain protocol like Bitcoin
has a latency of Ω(κ∆γ ) where κ is the desired security level, γ is the active participation level (i.e., the fraction

of active nodes compared to the total nodes), and ∆ is the bound on network delay. Efforts have been made
to eliminate some of the factors that contribute to this long latency. Prism [6], Parallel Chain [21], and
Taiji [27] removed the dependency on κ using many parallel instances of longest chains, but maintained the
dependency on γ. A recent work by D’Amato et al. [14] achieves O(∆) latency under optimistic conditions
where the participation level is high, but it inherits the long latency of a longest-chain protocol under low
participation level.

Another line of work adapts the classic BFT paradigm from the traditional known and static participation
model to the sleepy model. Goyal et al. [23] removes the dependency on γ by extending Algorand [22], but the
dependency on κ remains. Furthermore, due to the use of a static quorum threshold, it places a constraint
on honest nodes’ fluctuation as it requires a steady presence of Ω(κ) awake honest nodes at all times.

The closest to our work is the work by Momose-Ren [29], which for the first time eliminates both of the
above dependencies and achieves O(∆) latency. The protocol is built on the classic view-based construction
and each view consists of a VRF-based leader election and five consecutive invocations of GA. That protocol
incurs a latency of at least 16∆ time. Moreover, their GA protocol requires eventual stable participation for
liveness.

A concurrent and independent work by Gafni-Losa [28] also presents a sleepy consensus with O(∆)
expected latency with optimal corruption threshold. They also remove the eventual stable participation
assumption. The best-case latency is 10∆ and the expected latency is 20∆. In contrast, our protocol achieves
4∆ best-case latency and 14∆ expected latency. The protocol consists of sequential invocations of Commit-
Adopt sub-protocol (similar to GA). We also note that their protocol is a single-shot and agreement-style
protocol rather than an atomic broadcast. Furthermore, their adversary model is rather strong, abstracting
away the possibility of a costless simulation attack.

Dynamic participation of corrupt nodes. Another drawback of the previous sleepy consensus protocols
is that they do not support growing corrupt participation (proportional to the overall participation level)
unless assuming proof-of-work (or other strong assumptions [12, 15, 16]) due to the costless simulation
problem [16]. Our protocol removes this constraint and supports growing corruption. An interesting insight
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latency
protocol best-case expected

longest-chain PoS [33, 25, 5, 12] O(κ∆/γ)
multi-chain [6, 21, 27] O(∆/γ)
Goyal et al. [23] O(κ∆)
Momose-Ren [29] 16∆ 32∆
Gafni-Losa [28] 10∆ 20∆
this work 4∆ 14∆

Table 1: Latency of sleepy consensus. κ is the security level, γ is the active participation level, and ∆ is the
bound on network delay.

we learned is “stateless” algorithm is the key to supporting growing corruption. Namely, each protocol’s step
must depend only on the recent messages. If the protocol makes decisions based on long-past messages, it
would be vulnerable to an adversary trying to fabricate past messages (i.e., the backward simulation). This
shows another advantage of the classic BFT-like quorum-based design for sleepy consensus; the longest-chain
paradigm is by design vulnerable to backward simulation as they depend on the whole mining results in the
past.

A possible but orthogonal technique to defend against backward simulation is key evolution [10, 15].
Here, honest nodes constantly evolve their signing keys and erase their stale keys so that when they are
corrupted, the adversary cannot access their old keys to simulate past messages on their behalf. This
technique is effective in preventing backward simulation in the static and known participation model (e.g., in
Algorand [10]). In the sleepy model with dynamic participation, however, an additional strong assumption
is required for this technique to work: an adversary cannot corrupt a new active node before it completes
evolving the key. Otherwise, an adversary could corrupt nodes immediately after they wake up, gain access
to their original keys and sign their past messages.

Fallback under asynchrony. As mentioned in Section 2, the synchrony assumption is necessary for
consensus in the sleepy model. Therefore, it is inherent that our protocol loses safety under asynchrony.
Nonetheless, there have been a few proposals to balance dynamic participation and partition tolerance [31,
36]. These protocols involve running a partially synchronous checkpointing protocol on top of the underlying
sleepy consensus, which is also applicable to our protocol.

Tolerating bounded asynchrony. D’Amato et al. [13] proposes extending our protocol with 1/3 fault
tolerance (in Appendix A) to withstand a bounded period of asynchrony by restricting the degree of corrupt
nodes’ dynamic participation.

9 Conclusion

This work presents an atomic broadcast protocol in the sleepy model with 4∆ latency in the best case, based
on the new construction of a view-based protocol optimized for reducing best-case latency. Our protocol
achieves liveness under wildly fluctuating honest participation with the new GA protocol that does not
require stable honest nodes. The stateless nature of our atomic broadcast protocol allows us to achieve
tolerance to growing corruption and also achieve efficient recovery for new active nodes.

We have shown the impossibility of supporting fluctuating corruption (both growing/shrinking) with the
standard adversary that can extract all corrupt nodes’ private state. However, the assumption is too strong
in practice. For example, in the proof-of-stake protocols, it is highly unlikely that corrupt nodes hand off
their secret keys to the adversary (or other corrupt nodes) at the risk of losing their entire stake. Supporting
corrupt nodes’ fluctuation in a weaker but more realistic model is an interesting future work.
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[5] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availability. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 913–930, 2018.

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism: Decon-
structing the blockchain to approach physical limits. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 585–602, 2019.

[7] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of the ACM
(JACM), 32(4):824–840, 1985.

[8] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis, 2016.

[9] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In 3rd Symposium on Operating
Systems Design and Implementation (OSDI), pages 173–186. USENIX, 1999.

[10] Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

[11] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic broadcast: From simple message
diffusion to byzantine agreement. Information and Computation, 118(1):158–179, 1995.

[12] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and applications
to provably secure proof of stake. In Financial Cryptography and Data Security (FC), pages 23–41.
Springer, 2019.

[13] Francesco D’Amato, Giuliano Losa, and Luca Zanolini. Improving asynchrony resilience in dynamically
available total-order broadcast protocols. arXiv preprint arXiv:2309.05347, 2023.

[14] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No more attacks on proof-of-stake
ethereum? arXiv preprint arXiv:2209.03255, 2022.
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A Atomic Broadcast with 1/3 Fault Tolerance and 3∆ latency

This section presents an atomic broadcast protocol with the best-case 3∆ latency by slightly degrading the
fault tolerance from α = 1/2 to 1/3. More specifically, our protocol operates in (∞, Tb, 1/3)-sleepy model
with Tb = ∆. Our protocol consists of a VRF-based proposal election followed by two sequential graded
agreements (GA). We will first describe a GA protocol and then the atomic broadcast protocol.

A.1 Graded Agreement

Our GA protocol provides two properties besides the GA definition given in 2. Specifically,

1. Uniqueness. If an honest node outputs a block B with grade 1, then no honest node outputs any conflicting
block B′ with grade 1.

2. Bounded divergence. Suppose an honest node outputs a block B, then the node can output at most one
block B′ conflicting with B (expect blocks consistent with B′).

Our protocol. Our GA protocol is described in Figure 3. It takes one round of communication. At the
beginning of the round (time t = 0), awake nodes vote for their own input blocks. At the end of the round
(time t = ∆), awake nodes tally votes and decide the outputs. If a block is voted by more than 2/3 of voters
(the node hears from), the node outputs the block with grade 1; and if the block is voted by more than 1/3
but less than 2/3 of voters, then the node outputs the block with grade 0. Here, a vote for a block is also
considered a vote for all its prefixes. Also, votes for different blocks from the same node (an obvious corrupt
behavior) are simply ignored.

Proof sketch. This simple protocol achieves GA by the following arguments. First, although the number
of voters is unknown, more than 2/3 of voters are honest, and every honest node hears from them; validity
holds. If > 2/3 of voters (that a node hears from) vote for the same block, all other nodes at least receive
votes for the block from > 1/3 of voters (that they hear from); graded consistency holds. Moreover, these
> 1/3 voters are honest, so no other block can collect > 2/3 votes; uniqueness holds. Integrity follows from
the fact that > 1/3 of voters must include one honest node. Finally, as different vote messages from the
same node are ignored, bounded divergence holds.

Our GA protocol provides the following formal guarantees. Note that all of the proofs below hold
assuming either authenticated channels or digital signatures plus PKI.

Lemma 14 (Graded delivery). If an honest node outputs (B, 1), then all honest nodes awake at time t = ∆
output (B, ∗)

Proof. Suppose an honest node p outputs (B, 1), then it sees more than 2m/3 votes for B where m is the
number of vote messages p receives by time t = ∆. Let n be the number of nodes awake at time t = 0. Then,
more than 2n/3 honest nodes are awake at time t = 0, and these nodes will vote. Given the way we define
the fault threshold, there are less than n/3 corrupt nodes that are ever awake during the time interval [0,∆].
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Node p executes the following algorithm at every time 0 ≤ t ≤ Tb after starting the protocol.

1. time t = 0. send ⟨vote, B⟩p where B is the input block.

2. time t = ∆. tally vote messages and decides the outputs as follows. Let m be the number of vote
messages received.

(a) For any B voted by > 2m/3 nodes, output (B, 1)

(b) For any B voted by > m/3 nodes (but ≤ 2m/3), output (B, 0)

Here, B′ extends B, then ⟨vote, B′⟩ is also counted as a vote for B. Two different vote messages from the
same node are ignored.

Figure 3: GA: Our graded agreement protocol with 1/3 fault tolerance

Thus, the m messages p receives consist of h > 2n/3 messages from honest nodes and β < n/3 messages
from faulty nodes. By the same argument, another honest node q awake at time t = ∆ receives m′ = h+ β′

messages where β′ < n/3 messages are from faulty nodes. Now, the number of vote messages for B that p
receives from honest nodes is more than

2m/3− β = 2(h+ β)/3− β = 2h/3− β/3

> h/3 + β′/3 = m′/3.

The inequality step uses the fact that h > β+β′. These honest nodes must also send the same vote messages
to q. Therefore, out of the m′ votes q receives, > m′/3 votes are for B, and output (B, ∗).

Lemma 15 (integrity). If an honest node outputs (B, ∗), then at least an honest node inputs a block extending
B.

Proof. Suppose an honest node p outputs (B, ∗), then it sees > m/3 votes for B where m is the number of
vote messages p receives by time t = ∆. The m messages include h > 2n/3 messages from honest nodes and
β < n/3 messages from faulty nodes, where n is the number of nodes awake at time t = 0. So the number
of vote messages voting for B that p receives from honest nodes is more than

m/3− β = (h+ β)/3− β = (h− 2β)/3 > 0.

This implies at least one honest node must have input a block that extends B.

Lemma 16 (validity). Let B be the highest block that every honest node’s input extends. Then, all honest
nodes awake at t = ∆ output (B, 1).

Proof. Let m be the number of messages an honest node p awake at time t = ∆ receives. The m messages
consist of h > 2n/3 messages from honest nodes and β < n/3 messages from faulty nodes, where n is the
number of nodes awake at time t = 0. As all h honest nodes awake at time t = 0 must vote for B, p must
receive h > 2m/3 votes for B, and output (B, 1).

Lemma 17 (uniqueness). If an honest node outputs (B, 1) and another honest node outputs (B′, 1), then B
and B′ do not conflict with each other.

Proof. Suppose an honest node p outputs (B, 1), then it sees > 2m/3 votes for B where m is the number of
vote messages p receives. By the same logic in the proof of graded consistency, we have that out of the m′

votes received by an honest node q awake at t = ∆, > m′/3 votes are for B and come from honest nodes.
So q cannot see more than 2m′/3 votes for a block conflicting with B and cannot output such a block with
grade 1.
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Lemma 18 (bounded divergence). Suppose an honest node outputs a block B, then the node can output at
most one block B′ conflicting with B (expect blocks consistent with B′).

Proof. In order to be an output, a block must be voted by > m/3 nodes out of the m votes received.
Recall that conflicting vote messages from the same node are ignored. Thus, each node outputs at most two
conflicting chains of blocks.

A.2 Atomic Broadcast

Now we described our atomic broadcast protocol. The protocol is summarized in Figure 4.

Overview. Our protocol progresses through iterated views with each view lasts 2∆ time, but the first view
(view 0) lasts only ∆. Thus, view v ≥ 1 starts at time (2v − 1)∆. For convenience, we also say “time t = τ
of view v” to refer to time t = (2v − 1)∆ + τ .

Nodes propose blocks for view v in the second round of view v − 1 (i.e., sent at time ∆ of view v − 1).
They also include VRF evaluation on the view number VRFp(v) in their proposals for electing a proposal. At
the beginning of view v (time 0 of view v), a node chooses a proposal with the highest valid VRF evaluation
and treats the node who sent it as the leader. The very first view v = 0 serves only as the “propose” step
for view v = 1, which is why it takes ∆.

A block is decided after two sequential invocations of GA. A node inputs the leader’s proposed block to
the first GA (denoted GAv,1) at time 0. A block output by the first GA with grade 1 is input to the second
GA (denoted GAv,2) at time ∆. Recall that GA always outputs a block with grade 1 (by validity). Finally,
a block output by the second GA with grade 1 is decided at time 2∆. The two GA invocations also update
two key variables respectively: lock and candidate, denoted by candidatev and lockv. The subscript refers to
the view these variables are set.

lock0 and candidate0 are defined as the genesis block. Node p runs the following algorithm if it is awake
at time t. View 0 lasts ∆ time. At time t = 0 of view 0, send ⟨propose, B,VRFp(1)⟩p to propose the first
block B extending the genesis block. All later views v ≥ 1 each take 2∆ and work as follows.

1. time t = 0. start GAv,1; The input is a block in the propose message with the largest valid VRF on
v that does not conflict with lockv−1.

2. time t = ∆.

• start GAv,2; The input is the highest block B such that GAv,1 outputs (B, 1).

• Let candidatev be the highest block such that GAv,1 outputs with any grade. (If there are two
such blocks, pick one at random.) Then, send ⟨propose, B′,VRFp(v + 1)⟩p where the new block
B′ extends candidatev.

3. time t = 2∆.

• If GAv,2 outputs (B, 1), decide the block B.

• set lockv to the highest block B′ such that GAv,2 outputs (B′, ∗).

Note that t = 2∆ of view v matches t = 0 of view v + 1.

Figure 4: Atomic broadcast with 1/3 fault tolerance and 3∆ latency

We prove the safety and liveness of our protocol.

Lemma 19 (safety). If two honest nodes decide blocks B and B′, then B and B′ do not conflict with each
other.
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Proof. Without loss of generality, suppose B is decided in view v and B′ is decided in view v′ ≥ v. The
honest node who decides B must have output (B, 1) in GAv,2. If v = v′, then the lemma follows from the
uniqueness of GAv,2. So we consider v′ > v. Due to graded delivery of GAv,2, any honest node p awake at
time t = 2∆ of view v must have output (B, ∗) in GAv,2. We also observe that p could not have output
any block conflicting with B in GAv,2; otherwise, two conflicting blocks must have been output with grade
1 from GAv,1 by honest nodes, which violates GA uniqueness. Therefore, p must have set lockv to a block
extending B, and hence input to GAv+1,1 a block extending B. Due to integrity, GAv+1,1, and inductively
all later GAs, must output blocks extending B. Hence, B′ must extend B.

Lemma 20 (liveness). If an honest node inputs a value x to the atomic broadcast protocol, then there exists
a time t such that all honest nodes awake at t decide a block containing x.

Proof. If an honest node has the highest VRF in view v, we call that node the honest leader. If all honest
nodes awake at time t = 0 of view v input to GAv,1 a block proposed by an honest leader, then the block
must be decided. The only reason an honest node does not input the leader’s proposal to GAv,1 is that it
conflicts with its lock lockv−1. We prove all awake honest node accept (i.e., input to GAv,1) the leader’s
proposal with probability more than 1/2.

Let B be the highest block among the locks (i.e., variable lockv−1) of honest nodes awake at time t = 0 of
view v. Then, there exists an honest node p who outputs (B, ∗) from GAv−1,2. Then, at least an honest node
q must have input to GAv,2 a block extending B after outputting (B, 1) in GAv−1,1. Due to graded delivery,
the leader must have output (B, 0) in GAv−1,1. Due to bounded divergence, the leader outputs at most one
other conflicting block from GAv−1,1. Therefore, with probability at least 1/2, the leader proposes a block
extending B. Due to uniqueness, all honest nodes awake at time t = 0 of view v set their lock values lockv−1

to blocks extending B (as we are assuming B is the longest among them). Therefore, with probability at
least 1/2, the leader’s proposal is accepted by all honest nodes awake at time t = 0 of view v.

Now, as more than 2/3 of awake nodes are honest at all times, an honest leader exists in each view with
at least 2/3 probability. Hence, a block is decided in each view with at least 1/3 probability. All values
input by honest nodes to the atomic broadcast are eventually included in a decided block.
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