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Abstract

Threshold cryptographic algorithms achieve robustness against key and access compromise
by distributing secret keys among multiple entities. Most prior work focuses on threshold public-
key primitives, despite extensive use of authenticated encryption in practice. Though the latter
can be deployed in a threshold manner using multi-party computation (MPC), doing so incurs
a high communication cost. In contrast, dedicated constructions of threshold authenticated
encryption algorithms can achieve high performance. However to date, few such algorithms are
known, most notably DiSE (distributed symmetric encryption) by Agrawal et al. (ACM CCS
2018). To achieve threshold authenticated encryption (TAE), prior work does not suffice, due
to shortcomings in definitions, analysis, and design, allowing for potentially insecure schemes,
an undesirable similarity between encryption and decryption, and insufficient understanding of
the impact of parameters due to lack of concrete analysis. In response, we revisit the problem
of designing secure and efficient TAE schemes. (1) We give new TAE security definitions in
the fully malicious setting addressing the aforementioned concerns. (2) We construct efficient
schemes satisfying our definitions and perform concrete and more modular security analyses.
(3) We conduct an extensive performance evaluation of our constructions, against prior ones.

∗Work done while at Visa Research.
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1 Introduction

Cryptography is increasingly deployed within and across organizations to secure valuable data and
enforce authorization. Due to regulations such as GDPR and PCI, or via chip- and cryptocurrency-
based payments, a monetary amount can be attached to the theft, loss, or misuse of cryptographic
keys. Securing cryptographic keys is only becoming more important.

Underlining the significance of securing keys is the proliferation of trusted hardware on a wide
range of devices, with manufacturers installing secure enclaves on mobile devices (Apple [app],
Google [goo]) and commodity processors (ARM [arm], Intel SGX [sgx]). In addition, organizations
increasingly use hardware security modules (HSMs) to generate and secure their cryptographic
keys. However, such trusted hardware is expensive to build and deploy, often difficult to use,
offers limited flexibility in supported operations, and can be difficult to secure at large scale — for
example SGX attacks such as [LSG+18, KHF+19] or the recent HSM attack [BC]. As a result,
many seek to reduce reliance on trusted hardware.

Threshold cryptography considers a different, and complementary approach to using trusted
hardware: instead of relying on the security of each individual device, a threshold number of devices
must be compromised, thereby complicating attacks. Furthermore, as threshold cryptography can
be deployed in software, it provides a method of securing keys that is cheaper, faster to deploy, and
more flexible. It also provides a way to cryptographically enforce business policies that require a
threshold number of stakeholders to sign off on decisions.

The benefits of threshold cryptography have caught the attention of practitioners. For example,
the U.S. National Institute of Standards and Technology (NIST) has initiated an effort to stan-
dardize threshold cryptography [nis]. Furthermore, an increasing number of commercial products
use the technology, such as the data protection services offered by Vault [vaua], Curv [cura], and
Coinbase Custody [coi], and the HSM replacements by Unbound Tech [unb] and Sepior [sep].

Threshold symmetric encryption is used in many of the commercial products to protect stored
data, generate tokens or randomness. The schemes used vary in sophistication, choosing different
trade-offs between security, performance, and other deployment concerns.

1.1 Approaches to Threshold Symmetric Encryption

A naive way of deploying threshold symmetric encryption uses secret sharing. One takes an al-
gorithm, for example the authenticated encryption (AE) scheme AES-GCM [SMC08], and applies
a secret sharing scheme to its key. The key shares are sent to different parties so that one has
to contact a threshold number of parties to reconstruct the key, to then perform encryption or
decryption. However, this approach requires reconstructing the key at some point, thereby nearly
negating the benefits of splitting the secret among multiple parties in the first place.

Instead, a proper threshold cryptographic implementation of AES-GCM would not require
key reconstruction — even while encrypting or decrypting. One could secret share the plaintext
instead of the key, and send each share to different parties holding different keys. This avoids key
reconstruction, but significantly increases communication and storage if applied to an AE scheme
like AES-GCM.

Secure multi-party computation (MPC) also enables implementations of cryptographic algo-
rithms such as AES-GCM in a way that keys remain split during operation. MPC works with any
algorithm and therefore is used in applications where backwards compatibility is important, such
as the drop-in replacement for HSMs discussed by Archer et al. [ABL+18]. However, MPC has
a significant performance cost, often requiring multiple rounds of high bandwidth communication
among the different parties. Keller et al. [KOR+17] present the best-known performance results:
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per 128 bit AES block, they need anywhere from 2.9 to 8.4 MB of communication and at least 10
communication rounds for two-party computation. For settings where backwards compatibility is
not needed, using MPC-friendly ciphers such as MiMC [AGR+16] and LowMC [ARS+15] instead
of AES can improve performance modestly.

Unlike MPC, Agrawal et al.’s threshold AE (TAE) schemes [AMMR18a] — named DiSE —
operate in two communication rounds and require anywhere from 32 to 148 bytes per encryption in
the two party setting. Furthermore, the DiSE protocols output integrity-protected ciphertext like
conventional authenticated encryption schemes and communication complexity does not change
with message length. As a result, the DiSE protocols can outperform MPC implementations of
authenticated encryption by orders of magnitude. DiSE’s efficiency makes it a prime candidate
for applications seeking threshold security, which motivates the further study of dedicated TAE
schemes.

1.2 Revisiting Threshold Authenticated Encryption

Agrawal et al. [AMMR18a] (hereafter AMMR) initiate the study of TAE schemes to achieve con-
fidentiality and integrity in a threshold setting while ensuring the underlying master secret key
remains distributed during encryption and decryption. Security is defined relative to the threshold
t, which is one more than the number of malicious parties the protocols can tolerate. Confidential-
ity is defined as a CPA-like game where adversaries engage in encryption sessions and the goal is
to break semantic security of a challenge ciphertext. Integrity is defined as “one-more ciphertext
integrity” where an adversary must provide one more valid ciphertext than its “forgery budget”.

We note the following three shortcomings of AMMR’s formalization.

Confidentiality does not prevent key reconstruction. We show that AMMR’s confidentiality defini-
tion does not prevent participants from reconstructing master secrets. We give a counter-example
scheme that satisfies both confidentiality and integrity as formalized by AMMR, yet allows ad-
versaries to reconstruct the master encryption key, which can then be used to perform encryption
without contacting other participants. (See Appendix B for details.) This is because AMMR’s
CPA-like confidentiality game does not let the adversary initiate decryption sessions, so schemes
can disseminate secret keys during decryption. Therefore, a scheme that is proven secure under
AMMR’s confidentiality notion may not prevent key reconstruction. Their protocols, however, do
prevent that.

Loose notion of integrity. Participants in the DiSE protocols cannot distinguish whether they are
participating in an encryption or a decryption, and adversaries can generate a valid ciphertext
while running a decryption session — something that, ideally, should only be possible during
encryption. In practice, this can cause difficulties in logging or enforcing permissions and is generally
an undesirable property. The fact that participants cannot distinguish encryption from decryption
is not just a property of the DiSE protocols but allowed by AMMR’s integrity definition (decryption
sessions count towards the “forgery budget”).

In addition, AMMR’s integrity definition allows for “malleable” TAE schemes, where adversaries
can participate in an encryption session, make an honest party output an invalid ciphertext, and
then “patch” this ciphertext to obtain the correct ciphertext that the honest party should have
output (see Appendix C for more details). As a result, ciphertext integrity is not maintained. In
AMMR’s integrity game (termed authenticity by the authors), ciphertexts generated by an honest
party are not returned to the adversary which deprives it of having a ciphertext to patch in the
first place.

Abstract and non-concrete treatment of security. AMMR’s definitional framework captures a wide
class of protocols that could have parties arbitrarily interacting with each other. Although general,
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this approach complicates the formalization of adversarial power. Moreover, the security analyses
of the DiSE protocols are asymptotic, providing little guidance on how to securely instantiate
parameters in practice.

1.3 Contributions

In light of AMMR’s shortcomings, we seek to advance the state-of-the-art in the formalization,
design and analysis of TAE schemes. In addition to a concrete security analysis of our schemes, we
give the first concrete analysis of distributed pseudorandom functions (DPRFs) and its verifiable
extension DVRF, which might be of independent interest. Our analyses use a new modular tech-
nique via formalizing a variant of Matrix-DDH assumption [EHK+13], called Tensor DDH, which
helps in a tighter security reduction to DDH than AMMR’s.

New definitions. We introduce new TAE security definitions which fix the aforementioned issues
with AMMR’s definitions. To do so, we depart from a more abstract description of TAE schemes,
and instead only consider TAE schemes which operate in two communication rounds. We present
IND-CCA-type definitions capturing confidentiality and integrity, and preventing key reconstruc-
tion. Our definitions require that protocols enable participants to distinguish encryption from
decryption. Inspired by the definitions of the same name from the public-key literature [CKN03],
we present two definitions — CCA and RCCA (“Replayable” CCA) — which capture two different
integrity guarantees: RCCA guarantees plaintext integrity, whereas CCA guarantees ciphertext
integrity. We believe RCCA to be sufficient for many applications, and propose CCA for settings
where ciphertext integrity is important. Note that, as we show below, achieving CCA security
comes at a performance cost relative to RCCA security.

New constructions. We present new constructions satisfying our security definitions. To achieve
RCCA we present

1. an approach which departs from DiSE’s design (Section 5), by using a type of all-or-nothing
transform [Riv97, BF18] in combination with forward and inverse block cipher calls during
encryption and decryption, respectively, and

2. a new scheme inspired by DiSE combining DPRF and threshold signature.

To achieve CCA, we use a distributed verifiable PRF combined with threshold signatures. For a
more detailed overview and a comparison among our constructions we refer to Section 2.

Performance evaluation. We present an extensive performance study of our constructions (Ap-
pendix A), as well as a comparison with the DiSE protocols. In a three-party setting with threshold
set to two, our RCCA-secure random injection-based construction achieves over 777,000 encryp-
tions per second and a latency of 0.1 ms per encryption, and our CCA-secure construction achieves
about 350 encryptions per second and a latency of 4 ms per encryption. Although these figures
are about 0.7 times those of the comparable DiSE protocols, our constructions guarantee stronger
security by satisfying RCCA and CCA notions.

By combining practical considerations, new theoretical design, and concrete analysis, we believe
our TAE schemes—collectively named ParaDiSE—are sufficiently performant and secure for use
in practice, while presenting interesting, novel designs of independent interest.
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2 Technical Overview

2.1 Security Definitions

Fully malicious security model. As with AMMR, in our model the adversary obtains the secret
keys of corrupt parties and can act on their behalf during encryption or decryption. Moreover, the
adversary can initiate the protocols via these corrupt parties and receive the output of the honest
parties.

AMMR’s message privacy definition does not give the adversary decryption capability, which is
what allows for the counter example scheme discussed in Appendix B. In contrast, our model guar-
antees that even if the adversary can decrypt honestly generated ciphertext, it still cannot decrypt
the challenge ciphertexts. Furthermore, AMMR’s authenticity definition assumes the decryption
protocol is executed honestly. Instead, we require authenticity even if the adversary deviates from
the honest decryption protocol.

Capturing Privacy via the Decryption Criteria. Our threshold IND-RCCA and IND-CCA defini-
tions follow the standard left-or-right indistinguishability model: the adversary submits message
pairs (m0,m1) to obtain challenge encryptions of message mb for a hidden bit b, and it breaks
privacy if it can guess b. If the adversary asks for a challenge ciphertext and then honestly executes
the decryption protocol, it can trivially guess b seeing if decryption returns m0 or m1; as with stan-
dard AE definitions, we need to prevent such “trivial wins”. However, how to prevent such trivial
wins in the threshold setting is much less clear. For example, we cannot block the adversary from
initiating decryption protocols associated with challenge ciphertext c (the participating parties do
not get access to the input of the initiating party). Nevertheless, our security model should capture
when the adversary has effectively executed an honest decryption session. This is done via the
notion of decryption criteria. Informally, the decryption criteria, Eval-MSet(c, CR), for ciphertext
c and corrupt set of parties CR, captures the exact set of messages that needs to be sent (and
responded to) from the adversary, in order for the adversary to know the decryption of c.

Capturing Authenticity. In standard AE, authenticity is captured via INT-CTXT, which says that
the only valid ciphertext that the adversary can generate is what it receives from the encryption
oracle. Similar to privacy, complications arise when moving to our setting. First, the adversary
could generate ciphertext by initiating encryption sessions itself. Furthermore, an outside observer
(even while seeing all the protocol messages), might have no idea what messages the adversary is
trying to encrypt. Hence, to exclude trivial wins, we will give a forgery budget to the adversary
based on the amount of interactions it has with the honest parties. Second, the notion of valid
ciphertext requires the running of a decryption session. But we allow the adversary to deviate
arbitrarily in any execution of all protocols. This means that an adversary could potentially
deviate from the protocol to make the decryption valid for some ciphertext c, while the honest
decryption of c would return ⊥. Note that the previous notion from DiSE completely bypasses
this difficulty by assuming that decryption is executed honestly. We take a different approach.
We first consider a relaxation of authenticity of ciphertext to authenticity of plaintext (analogous
to INT-PTXT). We ask that valid decryptions to always decrypt to previous seen messages, even
if the adversary deviate arbitrarily during decryption (IND-RCCA). This notion still admits fast
symmetric-key based schemes. We also consider providing integrity of ciphertext, while having
malicious decryption (IND-CCA). Our model is given in full detail in Section 4.3.
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2.2 Constructions

We provide an overview for each of our three constructions. First we discuss the random injection-
based construction which utilizes a recent construction of indifferentiable authenticated encryption
[BF18]. Then, we describe the generic DPRF-based approach which builds on the DiSE protocol
and yields two constructions. The first adds a threshold signature to ensure IND-RCCA. The
second adds verifiability to the DPRF to ensure IND-CCA.

Random Injection based approach. This approach is based on symmetric-key primitives only and
achieves our RCCA security notion. The key is distributed in a t-out-of-n replicated format. In
particular, d =

(
n

t−1

)
random keys are shared among the parties such that any t parties together

have all d keys, but any strictly smaller subset of them would fall short of at least one key. Let us
call this sharing scheme combinatorial secret sharing.

Our construction requires two primitives. A random injection I : X → Y and inverse I−1 :
Y → X ∪ {⊥}. Intuitively, each call to I(x) outputs a uniformly random element from Y where
|Y| ≫ |X |. The inverse function has an authenticity property that it is computationally hard find
a y such that I−1(y) ̸= ⊥ and y was not computed as y = I(x) for some x. The second primitive is
a keyed pseudo- random permutation PRP : PRP.kl× {0, 1}k → {0, 1}k and inverse PRP−1.

Our construction has the encryptor compute (y1, y2, . . . , yℓ)← y←$ I(m) where yi ∈ {0, 1}k and
ℓ ≥ d. The encryptor chooses a set of t − 1 other parties and computes e1 = PRPk1(y1), . . . , ed =
PRPkd(yd) by sending yi to one of them which possesses ki. This party returns ei = PRPk1(yi) back
to the encryptor. Importantly, the encryptor sends yi only to a party that knows ki. The final
ciphertext is defined to be c = (e1, . . . ed, yd+1, . . . , yℓ) ∈ {0, 1}kℓ. During decryption, the decryptor
computes all the y1 = PRP−1

k1
(e1), . . . , yd = PRP−1

kd
(ed) again by interacting with any other t − 1

helpers in a similar fashion and then locally computes m = I−1(y1, . . . , yℓ) which could be ⊥ if
decryption fails.

The security of this scheme crucially builds on the hiding and authenticity properties of random
injection. Suppose we have a ciphertext c = (e1, . . . , ed, yd+1, . . . , yℓ) of either message m0 or m1.
Since the adversary only gets to corrupt t − 1 parties, there must be at least one key ki that it
does not know. Hence, it can only compute PRPki via interaction with honest parties that holds
this key. Connecting this to our security definition, the decryption criteria for ciphertext c is
Eval-MSet(c, CR) = {(i, ei)}—meaning that the adversary can trivially decrypt c if it queries ei to
some other honest parties holding key ki. Hence, assuming that this does not happen, then the
adversary have no information about PRP−1(ei). And, by the property of I−1, the adversary should
gain no information about the original message.

From a high-level, authenticity requires that given (m, y, c) computed as above (recall y =
(y1, . . . , yℓ)), one can not come up with another triple (m′, y′, c′) without executing a legitimate
encryption instance. Let us explore the options for a forgery attack: first if m′ ̸= m then computing
y′←$ I(m′) would completely change y′ due to the property of I and hence either the attacker needs
to predict the PRP outputs, which is hard, or it queries the honest parties for these PRPki(y

′
i)

values, which we capture via the forgery budget. Also, keeping m′ = m and trying with another
correctly generated y⋆ (since I is randomized) would not help for the same reason. Another forgery
strategy could be to mix and match between several y’s for which the PRP values are known from
prior queries. This is where the property of I comes into play—since the ideal functionality of I
generate a uniformly random output each time for any input, there cannot be should not be any
collisions among any of the k-bit blocks. In other words, each yi and ei value corresponds to at
most one message m.

A crucial property of this scheme is a clear distinction between encryption and decryption
queries which, in particular, strengthen the security compared to DiSE. During encryption, the
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(strong) PRP is used in the forward direction while decryption corresponds to an inverse PRP
operation. It is then a relatively standard task to prove that mixing these operations would not
aid the adversary either in constructing or inverting the I.

DPRF-based approach I: Achieving IND-RCCA via threshold signature Our first DPRF-based con-
struction is based on the DiSE construction. We first briefly recall their construction. The DiSE
constructions use a distributed pseudorandom function (DPRF) to force those encrypting or de-
crypting to communicate with sufficiently many participants. When encrypting a message m, a
commitment α = Com(m; r) is generated for m with commitment randomness r. The DPRF out-
put, β ← DP(j∥α), is used as an encryption key to encrypt (m, r) into ciphertext c ← encβ(m∥r)
with a symmetric-key encryption scheme. When decrypting a ciphertext (α, c), one must recom-
pute β ← DP(j∥α) and then compute m ← decβ(c). enc, dec here is a one-time secure encryption
scheme. Note that in DiSE, the interactive part of both encryption and decryption protocols are
exactly the same, which is just a DPRF query on (j, α).

We want the protocol to reject decryption of ciphertext that was not legitimately generated.
We ensure this using a threshold signature scheme. In particular, while computing a β ← DP(j∥α)
during encryption, one also gets a threshold signature σ on j∥α. During decryption, each party
verifies the signature before responding, and aborts if the verification fails.

Even though adding a signature shouldn’t affect privacy, we are proving security against a much
stronger model than DiSE. In particular, we need to ensure that privacy is ensured even when the
adversary can interact arbitrarily with other honest parties as well as deviate from the honest
protocol. Intuitively, we need to ensure that the ability to initiate adversarial decryption sessions
and the ability to initiate decryption sessions from honest parties with malicious responses, do not
give the adversary extra information about any challenge ciphertext. This is done via a sequence
of game hops that “trivialize” the corresponding oracles. Recall that in the standard setting, the
decryption oracle can be “trivialized” by simply returning ⊥ for all ciphertexts that were not seen
before. In our setting, we need to be much more careful. First, we move to a game where α
corresponds to at most one message m. For adversarially started sessions, we compare the number
of valid ciphertexts generated against the forgery budget, ⌊ctEval/(n−|CR|)⌋. By the unforgeability
of threshold signature, the adversary would need to contact the gap number of parties, n − |CR|,
to obtain a fresh signature. Hence, we can ensure integrity for maliciously generated ciphertext.
But note that we only offer the integrity of j∥α, and in extension, the underlying message.

For ciphertexts generated by sessions initiated by honest parties, we can ensure that the number
of valid signatures is the same as the number of sessions that were executed. Moreover, the signature
actually offers integrity of the value of j∥α, hence we can achieve the notion of IND-RCCA. Using the
above, we can “trivialize” the decryption oracle. The rest of the proof is more straight forward. The
full detailed proof is given in Appendix ??. Setting up for our next construction, we demonstrate
why this scheme cannot achieve IND-CCA. Suppose an adversary starts an encryption session and
scrambles its DPRF responses so that the honest party derives some β′ to encrypt with. After
learning β′, the adversary would have gained enough information to know also the correct β if
everything was executed honestly (this is because of the key-homomorphic properties [BLMR13]
of the DPRFs). Hence, it can change the ciphertext c′ = encβ′(m∥r) to c = encβ(m∥r), which will
decrypt correctly. Whereas for IND-CCA, we would need to ensure that the generated ciphertext
c′ is the valid one.

DPRF based approach II: Achieving IND-CCA using DVRF. We take a natural approach to prevent
the aforementioned IND-CCA attack by adding a verifiability feature to the above construction.
This is achieved by adding a simple and efficient NIZK proof to each partial evaluation, similar to
the strongly-secure DDH-based DiSE construction. In particular, this prevents an adversary from
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sending a wrong partial evaluation without breaching the soundness of NIZK proofs, rendering the
above attack infeasible. Notably, our formalization of DVRF differs from that of AMMR’s and
instead follows a recent formalization of Galindo et al. [GLOW20]. This allows us to modularize
the proof: just by using a DVRF instead of DPRF in the above TAE construction, we upgrade the
IND-RCCA secure scheme to an IND-CCA secure one. So, the main task of proving IND-CCA
security of the upgraded construction boils down to arguing against CCA only attacks like above
which are not RCCA.

A new analysis of DPRF. Finally, we provide a new simpler, modular and tighter analysis of the
DDH-based DPRF construction of Naor et al. [NPR99]. Our analysis uses a new variant of Matrix-
DDH [EHK+13] assumption, that we call Tensor-DDH assumption. This assumption captures the
essence of the adversarial view of the DPRF security game (pseudorandomness) into an algebraic
framework consisting of tensor products of two secret vectors (provided in the exponent). We
show that irrespective of the dimensions of the vectors, this assumption is as hard as DDH with a
minimal security loss of a factor 2. In a similar reduction step, AMMR’s proof looses a factor that
scales with the number of evaluation and challenge queries. 1Our analysis provides better concrete
security and may be of independent interest.

2.3 Related work

Threshold cryptography. Starting with the work of Desmedt [Des88], most work on threshold cryp-
tography has focused on public-key encryption and digital signatures [DF90, BD10]. Starting from
Micali and Sidney [MS95], some work has focused on threshold and distributed PRFs [NPR99,
BLMR13, Dod03]. However, the pseudo-randomness requirements do not explicitly take into ac-
count several avenues of attacks. Agrawal et al. [AMMR18a] propose stronger notions for dis-
tributed DPRFs and build on the constructions of Naor et al. [NPR99] to achieve them.

Threshold Oblivious PRF.Another related notion is distributed/threshold oblivious PRF (TOPRF) [FIPR05],
which can be thought of as a DPRF, but with an additional requirement of hiding input from the
servers. This requirement makes TOPRF a stronger primitive, which is known to imply oblivious
transfer [JL09]. Furthermore, despite the structural similarities between the DDH-based TOPRF
[AMMM18, JKKX17] and the DDH-based DVRF [JKKX17] we used here, the TOPRF is proven
assuming interactive variant of DDH, in contrast to the DVRF which can be reduced to DDH.
Therefore, the proof techniques are also quite different.

Authenticated encryption. Authenticated encryption (AE) has seen a signficant amount research
since being identified as a primitive worthy of study in its own right [BN00, KY01]. AE research has
increasingly addressed practical concerns from a performance, security, and usability point-of-view.
AE schemes evolved from a generic composition of encryption and authentication schemes [BN00]
to dedicated schemes like GCM [MV04]. Initially the description of AE schemes did not match
with how they were used in practice, leading to the introduction of nonces [Rog04] and associated
data [Rog02]. Further security concerns with how AE schemes are used in practice lead to for-
malization of different settings and properties, such as varying degrees of nonce-misuse resistance
and deterministic AE [RS06, FFL12], blockwise adaptive security [FJMV04], online authenticated
encryption [BBKN12, RZ11], leakage concerns such as unverified plaintext and robustness against
it [ABL+14, HKR15, BMOS17], and multi-user security [BT16]. Recently, Barbosa and Farshim
proposed indifferentiable authenticated encryption [BF18], which has many of the properties of the
all-or-nothing transform introduced by Rivest [Riv97]. In Section 5.1 we discuss how we use these

1We remark that the number of queries actually translate to the dimensions of the secret vectors. Our gain in
security follows from the independence of the reduction from the dimensions.
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primitves to create one of our TAE schemes.

Multi-party computation. MPC allows a set of mutually distrustful parties to evaluate a joint
function of their inputs without revealing anything more than the function’s output. The last 10-
15 years have seen tremendous progress in bringing MPC closer to practice. The performance of
MPC protocols has improved by several order of magnitude with the introduction of new techniques
and optimizations.

General-purpose MPC protocols can help parties evaluate any function of their choice but they
work with a circuit representation of the function, which leads to a large communication/computation
complexity—typically, at least linear in the size of the circuit and the number of parties. Moreover,
the parties have to engage in several rounds of communication, with every party talking to every
other. (Some recent results reduce the round complexity but have substantially higher compu-
tational overhead.) So, general-purpose MPC protocols are not ideal for making a standard AE
scheme like AES-GCM distributed. Nonetheless, such a solution would be fully compatible with
the standards.

Adaptive DiSE. A recent work [Muk20] defined and constructed stronger TAE schemes that are
secure against adaptive corruption, in contrast we only focus on static corruption. Nevertheless,
the definitions considered in that work is based on the AMMR definitions and hence suffers from
similar limitations. Our work can be perceived as orthogonal to that. Augmenting our definitional
framework into adaptive setting and constructing secure scheme therein may be an interesting
future work.

3 Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. For a finite set S, we use x←$ S to denote
the process of sampling an element uniformly from S and assigning it to x. We ⊎ to denote the
union of multi-sets.

For example, {{1, 1, 3}} is the multiset containing 1 with multiplicity 2 and 3 with multiplicity 1.
We use s∥t to denote the concatenation of strings a and b. For a set X , we let x ∈ X n denote

vectors consisting of n components from X , with x = (x1, x2, . . . , xn). We let ε denote a special
“null value”, representing absence of an element from a set. For example, we could write x ∈ X 3

with x = (x1, ε, x3). We write |x| for the number of components of x, and ∥x∥ denotes the number
of non-ε elements in x. For x = (x1, ε, x3), |x| = 3 and ∥x∥ = 2. We assume ⊥ is not contained in
any set.

Let A be a randomized algorithm. We use y←$A(x1, x2, . . .) to denote running A with inputs
x1, x2, . . . and assigning its output to variable y. We use the notation JskKn to denote the tuple
(sk1, sk2, . . . , skn). We assume that variables for strings, sets, numbers are initialized to the empty
string, the empty set, and zero, respectively. We identify 1 with True and 0 with False.

We borrow some notation from Agrawal et al. [AMMR18a]. We use [j : x] to denote that the
value x is private to party j. For a protocol Π, we write (c′, [j : z′]) ← Π(c, JkKn, [i : (x, y)], [j : z])
to denote that all parties have a common input c, party ℓ has private input kℓ (for all ℓ ∈ [n], this
is usually the secret key), party i has two private inputs x and y, and party j has one private input
z. After the execution, all parties receive an output c′ and j additionally receives z′.

Threshold protocols. A threshold protocol, Π, is defined with respect to n ∈ N parties that are
labeled from 1 to n. We use t to denote the threshold. At least t parties are needed to execute
the scheme successfully. Formally, a protocol is specified by a setup algorithm Setup, a participant
algorithm E and an initiator algorithm L. The setup algorithms takes inputs integer n (and possibly
more parameters) to return n secret keys JskKn and a public parameter pp. Fix some secret keys
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JskKn and public parameter pp. The participant algorithm E defines n participant oracles Pi.E(·) :=
E(pp, ski, ·) for each i ∈ [n]. The initiator algorithm L is an algorithm with oracle access to Pi.E(·)
for each i ∈ [n] (including i = j). We write y←$ L(pp, JskKn, [j : x]) to denote the execution of the
protocol under public parameter pp, secret keys JskKn, with party j ∈ [n] being the initiator taking
(private) input x and producing (private) output y.

Security games. Every security game is defined with respect to a protocol Π and an adversary A.
Adversary A gets access to several procedures in the game. When Π is a threshold protocol, we
assume that A consists of two stages (A0,A1). The first stage adversary A0 takes input (pp, n, t)
and produces some set C ⊂ [n] with |C| < t. The second stage adversary A1 receives the list of
secret keys for parties in C, i.e. (ski)i∈C , and access to the procedures defined by the security game.

We write A⟨Proc⟩
1 to denote the execution of A1 where A1 has access to all the available game

oracles.
For a game G with a protocol Π and an adversary A, we use P

[
GΠ(A)

]
to denote the prob-

ability that G outputs 1. Throughout the paper, n denotes the total number of parties and t the
threshold. We define ∆A (O1 ; O2) := |P

[
AO1 = 1

]
− P

[
AO2 = 1

]
|, where AO denotes A’s output

after interacting with oracle O.

Random oracle model We work with random oracle model implicitly. In particular, any scheme Π
could depend on a hash function H that is modeled as a random oracle, with input and output spaces
implicitly defined by the scheme specifications. We require scheme Π to work given any particular
H with the correct input and output spaces. It is understood that any correctness definition about
Π is stated for all possible hash functions H. It is understood that in security games involving Π,
say GΠ(A) with some adversary A, the security game will sample a hash function H uniformly at
random from the space of functions with the correct input and output spaces at the beginning of
the game. Moreover, the sampled hash function will be exposed as an oracle both to the scheme Π
(and all its constituent algorithms) and the adversary A.
Threshold Signature. A threshold signature scheme allows for a signing key to be secret shared
among n parties such that any t parties can collectively generate a signature. On a common
message m, t parties call PartSign(ski,m)→ σi. The σi can then be collected and used to produce a
signature CombSig(vk, {(i, σi)}i∈S) → σ. Signature verification is non-interactive and is performed
as VerSig(vk,m, σ).

A threshold signature scheme SIG consists of:

• Setup(n, t) $→ (JskKn, vk), where n, t are integers s.t. 1 ≤ t ≤ n. Setup generates n signing key
shares and a public verification key vk.

• PartSign(ski,m)→ σi, where m ∈ M, the message space. PartSign generates a partial signa-
ture share on message m using signing key share ski.

• CombSig(vk, {(i, σi)}i∈S)→ σ. The algorithm Combine combines the signature shares σi for
i ∈ S, and returns a full signature or ⊥.

• VerSig(vk,m, σ)→ b. The algorithm VerSig takes the verification key vk, a message m ∈ M
and a signature σ to return a decision bit b ∈ {0, 1}, with 1 denoting that the signature is
valid and 0 otherwise.

A threshold signature scheme SIG is correct if for any n, t with 1 ≤ t ≤ n, for all m ∈ M,
(JskKn, vk)←$ Setup(n, t), and S ⊆ [n] of size at least t, VerSig(vk,m, σ) = 1, where σ←$ CombSig(vk, {(i,
PartSign(ski,m))}i∈S).

We also require the scheme to produce unique signatures, i.e. for any m ∈ M, there does not
exist σ1, σ2 s.t. σ1 ̸= σ2 but both VerSig(vk,m, σ1) and VerSig(vk,m, σ1) output 1.
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Game Gsig
SIG,n,t(A)

(JskKn, vk)←$ Setup(n, t)
(C, stA)←$A0(vk)

(m,σ)←$A⟨Proc⟩
1 (stA, (ski)i∈C)

Return (VerSig(vk,m, σ) = 1) ∧ (ctm < t− |C|)

Proc PartSign(i,m)

ctm ← ctm + 1
Return PartSign(ski,m)

Figure 1: Unforgeability game.

To capture unforgeability, consider the game Gsig given in Figure 1. The adversary A can
corrupt up to t− 1 parties, then gets access to the partial signing oracle for each party. It wins the
game if it can forge a signature on a message m for which it has called fewer than t − |C| partial
signatures; ctm denotes the number of partial signatures computed for message m. The advantage
of adversary A against signature scheme SIG is

Advsig
SIG,n,t(A) = P

[
Gsig

SIG,n,t(A)
]
. (1)

We take a concrete-security approach, we will define the advantage functions for security games
with the understanding that the scheme is secure when the advantage is small enough for some set
of adversaries.

4 Threshold Authenticated Encryption

4.1 Syntax

A threshold authenticated encryption scheme TAE consists of a setup algorithm and protocols for
encryption and decryption. Throughout, we let H denote a random oracle that the algorithms can
use. Parameter n denotes the number of parties involved in the protocol and parameter t denotes
the threshold of the protocol. We use the shorthand Pi.E(x, y, . . .) to refer to party i running some
algorithm E(pp, ski, ·) and returning the result.

Setup: takes integers n, t with 1 ≤ t ≤ n, and generates n secret key shares sk1, . . . , skn and public
parameters pp, denoted (JskKn, pp)←$ Setup(n, t).

Encryption: a 2-round protocol, consisting of three algorithms (Splitenc, Evalenc, Combineenc). For
an initiating party j ∈ [n], input m, and set S ⊆ [n], the Enc protocol is executed as follows:

Protocol Enc(pp, JskKn, [j : m,S])

(L, st)←$ Pj .SplitHenc(m,S)

For (i, x) ∈ L do ri,x←$ Pi.EvalHenc(j, x)
c←$ CombineHenc({ri,x}(i,x)∈L, st)
Return c

Protocol Dec(pp, JskKn, [j : c, S])

(L, st)← Pj .SplitHdec(c, S)
For (i, x) ∈ L do ri,x ← Pi.EvalHdec(j, x)
m← CombineHdec({ri,x}(i,x)∈L, st)
Return m

The list L contains tuples of the form (i, x), indicating that message x should be sent to party i
for evaluation. Since we assume all parties communicate over authenticated channels, receivers will
know the identity of the sender, hence the sending party index j is an input to the evaluation for
each receiving party i.
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We assume that S always contains the index j. We note that the size of the set L output by
Splitenc (and by Splitdec below) does not have to match the size of S. This allows multiple messages
to be sent to the same party for evaluation.

Decryption: a 2-round protocol, consisting of three deterministic algorithms (Splitdec, Evaldec,
Combinedec). For an initiating party j ∈ [n], input c, and set S ⊆ [n], the Dec protocol is ex-
ecuted shown above. We define the finite sets X,Y as Pi.Evaldec : X → Y .

Basic correctness We say that TAE satisfies basic correctness if for all positive integers n, t such
that t ≤ n, all (JskKn, pp)←$ Setup(n, t), any m ∈ {0, 1}∗, any S, S′ ⊆ [n] with |S|, |S′| ≥ t, and any
i ∈ S, j ∈ S′, we have that m = m′ where

c←$ Enc(pp, JskKn, [i : m,S]) ,m′ ← Dec(pp, JskKn, [j : c, S
′]) .

4.2 Decryption criteria

As is common with CCA-style security games, our games need to prevent the “trivial win” where
an adversary decrypts a challenge ciphertext simply by executing decryption as specified by the
TAE scheme. What complicates preventing such trivial wins in our setting is the fact that there
are many ways to decrypt since basic correctness requires that any group of t out of n parties may
decrypt. Furthermore, not only can adversaries corrupt up to t− 1 parties and recover their secret
keys, but they can also ask honest parties to run Evaldec.

Given a ciphertext, our goal is to detect when an adversary has collected Evaldec output from
at least t parties, either through an Evaldec query to an honest party or via a corrupted party’s key,
so that it could decrypt the ciphertext as specified by the protocol. If we can detect such events,
then we can rule out trivial decryptions of challenge ciphertexts.

Let (JskKn, pp) ←$ Setup(n, t), let S ⊆ [n] be a set of parties of size at least t, and j ∈ S an
initiator. When decrypting a ciphertext c, the initiator Pj first splits c into inputs for the other
parties in S: (L, st)← Pj .Splitdec(c, S). Then, Pj sends x to Pi for evaluation for every (i, x) ∈ L.

Although Splitdec(c, S) might assign x to Pi, depending on the TAE scheme, there might be
other parties with the key material to evaluate x. An adversary A can ask any party — including
corrupt ones — to evaluate x, and is not restricted to the one prescribed in L. Although the corrupt
parties can evaluate some of the x in L, a secure TAE scheme will require the adversary to interact
with honest parties to evaluate what it cannot. If these x’s are queried to honest parties, then A
has enough information to execute the decryption protocol on c.

Without further details about how a given scheme TAE works, the only way to know whether
TAE allows Pi to evaluate x, is to find a set S with i ∈ S such that (i, x) ∈ Pj .Splitdec(c, S). Instead,
we approach this as follows:

1. We require that for all S and j ∈ S, Pj .SplitHdec(c, S) always outputs the same multiset of
messages, Eval-MSetH(c) := {x}(i,x)∈L. In other words, although the assignment to parties
could change with S, the set of messages x and their multiplicity stays the same.

2. We assume that a party i can evaluate x if its execution of Evaldec produces any valid output.
Formally, we define a relation RH ⊆ [n]×X where (i, x) ∈ RH ⇐⇒ Pi.EvalHdec(j, x) ̸= ⊥.

With the above two assumptions, given a ciphertext c and a party i, we can determine the values
that Pi can evaluate: {

x ∈ Eval-MSetH(c) | RH(i, x)
}
. (2)
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We are now ready to define the gap set of messages, i.e. the messages an attacker cannot evaluate
on its own. For a ciphertext c and a set of corrupt parties CR,

Eval-MSetH(c, CR) = Eval-MSetH(c)
∖ ( ⊎

i∈CR

{
x ∈ Eval-MSetH(c) | RH(i, x)

})
, (3)

where
⊎

and \ denote union and set-difference over multisets.
Let us take a simple example. Suppose we have a threshold of 3, S = {2, 5, 7}, and Pj .SplitHdec(c, S)

outputs L = {(2, “m1”), (5, “m1”), (7, “m1”), (2, “m2”), (5, “m3”), (7, “m3”)}. Let us consider a
rather peculiar Pi.EvalHdec(j, x) function which has non-⊥ output if x ∈ {“m1”, “m2”, ..., “mi”}. This
in turn similarly defines RH. Suppose A corrupts parties CR = {1, 2}.

First of all, Eval-MSetH(c) = {“m1”, “m1”, “m1”, “m2”, “m3”, “m3”}. Party Pi with i = 2 can
evaluate {x ∈ Eval-MSetH(c) | RH(i, x)} = {“m1”} and i = 2 can evaluate {“m1”, “m2”}. Thus, the
set of messages that can not be evaluated by the corrupt parties is Eval-MSetH(c, CR) = {“m1”,
“m3”, “m3”} as per Equation 3.
A could get a “m1” message evaluated by P1 even though L does not prescribe to do so. On

the other hand, L indicates that “m1” messages need to be evaluated by three different parties
(under their respective keys) while A has only two under its control. Moreover, none of P1, P2 can
evaluate “m3”. Thus, one can see that Eval-MSetH(c, CR) captures the messages A cannot process
on its own.

4.3 Security

We give two security notions for TAE. First is the IND-RCCA notion, which mirrors the IND-RCCA
security for PKE. This notion is relaxed from the standard IND-CCA by targeting the integrity
of plaintext. Second is the IND-CCA notion, which mirrors the standard IND-CCA notion for
standard PKE.

Consider the security game Gind−rcca
TAE,n,t , given in Figure 2. The goal of the adversary is to either

predict the bit b, or generate enough valid decryptions so that the flag forgery is set to True.
Several global variables keep track of the winning condition of the adversary: ctEval, EncCtxt,
ChlCtxt, DecCtxt, and Qdec.

• The counter ctEval counts the number of times Evalenc is called. Note that calling Evalenc on
honest parties helps the adversary to generate ciphertexts.

• The set EncCtxt contains the ciphertexts generated by challenge encryption processes where
m0 = m1 which the adversary obtained via GetCtxt.

• The set ChlCtxt contains the ciphertexts generated by challenge encryption processes where
m0 ̸= m1 which the adversary obtained via GetCtxt.

• The set EncMsg contains the set of all encrypted messages (including the challenge messages).
This is only used in the RCCA game.

• The set DecSet contains the valid and fresh decryptions that the adversary can generate.
Valid means that the ciphertext c must decrypt correctly. For IND-RCCA, fresh means that
ciphertext c decrypts to message m ̸= ⊥ than was not in the set EncMsg. For IND-CCA,
fresh means that ciphertext c is not a ciphertext in either EncCtxt or ChlCtxt.

• Qdec is a multiset containing all the queries to Evaldec made by the adversary.
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Game Gind−cca
TAE,n,t (A)

b←$ {0, 1}
(JskK,pp)←$ TAE.Setup(n, t)

(CR, stA)←$A0(pp)

b′←$A⟨Proc⟩
1 (stA, (skk)k∈CR)

If |DecSet| >
⌊

ctEval
t−|CR|

⌋
then forgery← True

If (∃c ∈ ChlCtxt : Eval-MSet(c, CR) ⊆ Qdec)
Return (b′′←$ {0, 1}) ∨ forgery

Return (b = b′) ∨ forgery

Challenge encryption sessions

Proc Splitenc(id,m0,m1, S)

Require id ̸∈ CR, |m0| = |m1|
u← u+ 1; idu ← id
mu,0 ← m0; mu,1 ← m1

(Lu, stu)←$ Splitenc(skid,mu,b, S)
Return {(k, x) ∈ Lu | k ∈ CR}

Proc Combineenc(u, rsp)

For (k, x) ∈ Lu with k ̸∈ CR do
rsp[(k, x)]←$ Evalenc(skk, idu, x)

cu←$ Combineenc(rsp[Lu], stu)
If mu,0 = mu,1 then
EncCtxt← EncCtxt ∪ {cu}
RCCA: EncMsg← EncMsg ∪ {mu,0}

Else
ChlCtxt← ChlCtxt ∪ {cu}
RCCA: ChlMsg← ChlMsg ∪ {mu,0,mu,1}

Return cu

Sessions initiated by adversary

Proc Evalenc(eid, id, x)

Require eid ̸∈ CR, id ∈ CR
ctEval ← ctEval + 1
Return Evalenc(skeid, id, x)

Proc Evaldec(eid, id, x)

Require eid ̸∈ CR, id ∈ CR
Qdec ← Qdec ⊎ {x}
Return Evaldec(skeid, id, x)

Decryption sessions

Proc Splitdec(id, c, S)

Require id ̸∈ CR
CCA: Require c ̸∈ ChlCtxt
v ← v + 1 ; idv ← id ; cv ← c
(Lv, stv)← Splitdec(skid, c, S)
Return {(k, x) ∈ Lv | k ∈ CR}

Proc Combinedec(v, rsp)

For (k, x) ∈ Lv with k ̸∈ CR do
rsp[(k, x)]←$ Evaldec(skk, idv, x)

mv←$ Combinedec(rsp[Lv], stv)
RCCA: Require mv ̸∈ ChlMsg
RCCA: fresh← (mv ̸∈ EncMsg)
CCA: fresh← (cv ̸∈ EncCtxt)
If mv ̸= ⊥ and fresh then
RCCA: DecSet← DecSet ∪ {mv}
CCA: DecSet← DecSet ∪ {cv}

Return mv

Figure 2: IND-RCCA & IND-CCA games for Threshold Authenticated Encryption.

We say that the adversary trivially breaks privacy if

∃c ∈ ChlCtxt : Eval-MSet(c, C) ⊆ Qdec . (4)

We also refer to the above check as the privacy condition. Intuitively, this captures when the
adversary has enough information, through calling Evaldec, to decrypt a challenge ciphertext c. In
this case, the adversary is essentially guaranteed to be able to predict the bit b by correctness of
the encryption scheme. Similarly, for authenticity, we need to set aside a budget for the amount of
ciphertexts that the adversary can generate herself via invoking Evalenc of honest parties. This is
captured by the following authenticity condition

|DecCtxt| >
⌊ ctEval
n− |CR|

⌋
. (5)

We say that A breaks authenticity if the above line is true (which will set forgery to True in the
game). We now describe the interfaces exposed to A1.
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Sessions initiated by adversary. The adversary can initiate encryption and decryption sessions from
corrupt parties. These are achieved via calling Evalenc and Evaldec on honest parties. Note that
the adversary can run Split and Combine itself. Counters ctEval is incremented every time Evalenc is
invoked. Multiset Qdec contains the list of all queries made to Evaldec (with id, eid removed).

Challenge encryptions. The adversary can initiate challenge encryptions by calling Splitenc and
Combineenc. This is done via keeping track of a session identifier u. The adversary first needs to
ask the desired honest party to initiate a session via calling Splitenc with some message m0 and m1

as well as set S ⊆ [n] (we require that |m0| = |m1|). Oracle Splitenc will call Splitenc(id,mb, S) and
return a session id u, which the adversary needs to supply to Combineenc. Via calling Combineenc
with some session id, the adversary can supply a set of corrupt eval responses, which are used
instead of the honest ones for corrupt parties. Any session id u can be input to Combineenc at
most once.

Decryptions. The adversary is able to submit ciphertext to honest parties and initiate decryptions
sessions. The adversary’s goal here is to submit all the valid ciphertext that it can generate. Similar
to challenge encryption, the adversary first needs to specify (to Splitdec oracle) an honest party
id, a ciphertext c, and a set S of parties that are chosen to participate in the decryption process.
The oracle shall return to the adversary the set of messages (k, x) designated to the corrupt parties
k. Next, the adversary can choose to reply with any corrupt responses to these messages via the
Combinedec oracle.

We define the IND-RCCA and IND-CCA advantage of an adversary A against TAE to be
Advind-cca

TAE,n,t(A) = 2 ·P
[
Gind−cca

TAE,n,t (A)
]
−1, and Advind-rcca

TAE,n,t (A) = 2 ·P
[
Gind−rcca

TAE,n,t (A)
]
−1, respectively.

Comparison with security model of DiSE. First, the DiSE model allows the adversary to generate
valid ciphertext by engaging in the decryption protocol. Our model prevents this by not including
the queries to Evaldec in the definition of the authenticity condition Equation 5. Second, our
security notions allow for malicious adversaries during decryption, whereas DiSE required all parties
to behave honestly during decryption. This is a significant strengthening of the model. Third,
DiSE targeted privacy and authenticity separately, which allowed for schemes that reconstruct the
(master) encryption scheme during decryption. We give such an example (in Appendix B) which
is secure in the model of DiSE but not secure according to our IND-CCA notion.

Finally, there are some subtle differences around what is considered a forgery and how they can
be constructed. In DiSE, when an honest party initiates an encryption the resulting ciphertext is not
revealed to the adversary in the authenticity game. However, it could be possible for the adversary
to take such a ciphertext and generate another which decrypts properly. In fact, Appendix C
discusses this exact scenario. Our definition prevents such attacks by explicitly providing ciphertext
generated by honest parties to the adversary.

5 Construction from Indifferential AE

In this section we present our first construction TAE1, based on random injections. We first define
random injections before presenting our construction TAE1 before presenting our construction which
we prove secure against the threshold IND-RCCA notion defined previously.

5.1 Random Injection

The core of our first construction is a random injection. There are two equivalent ways to view
and define this primitive. The first approach is to add authenticity to the notion of All-or-Nothing

16



m

RInj

e1 e5e2 e3 e4

Assign

e1 e2, e3

Ek2 Ek3Ek1 Ek2 Ek3Ek1

Evalsk1 Evalsk2

c2, c3c1

(a) Execution of TAE1.enc, with n = 3, t = 2. here,
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set S = {1, 2}, indicating that party 1 and 2 are to be
used for evaluation. The randomized transform gives
5 outputs blocks e1, . . . , e5. The first d = 3 blocks
are to be evaluated by parties 1 and 2. In the above
scenario, Assign has assigned block 1 to party 1 and
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encrypted blocks c1, c2, c3. The final ciphertext c′ is
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(b) OAEP(x; r) (left) and RInj(x; r) =
AOAEP(x; r) (right); x is the input, r is uni-
formly random.

Figure 3: TAE1.enc dataflow diagram (left) and random injection construction AOAEP(x; r) (right).

Transform[DSS01]. The second approach is to view a random injection as an un-keyed indifferen-
tiable Authenticated Encryption [BF18].

All-or-nothing transform Consider oracles I : X × R → Y and I−1 : Y → X . We view I as a
randomized transform (message space X and randomness space R), with invese I−1. Roughly,
[DSS01] required indistinguishability of I(x1), I(x2) given that ℓ bits of the transforms have been
erased. An example of such a transform is OAEP [BR95], which is defined for two random oracles
G : {0, 1}k → {0, 1}nk and H : {0, 1}nk → {0, 1}k as

OAEP(x; r) = (G(r)⊕ x,H(G(r)⊕ x)⊕ r) , (6)

where r←$ {0, 1}k. The inverse function is defined in the straightforward way. Myers and Shull [MS18]
prove adaptive security of OAEP as defined by [DSS01] (extending prior work by Boyko [Boy99]).
The core idea of OAEP is to mask the input x by a random value G(r). In turn, this masked
x⊕G(r) is used to mask r as r⊕H(x⊕G(r)). Missing any part of the output prevents the function
from being inverted efficiently.

Random Injection We add authenticity to the all-or-nothing transform. Specifically, we allow I−1

to output ⊥, meaning I−1 : Y → X ∪ {⊥}. Intuitively, we would like that all calls to I−1(y), where
y is not an output produced by I, to return ⊥. This is formalized as follows. We define an ideal
random injection, I : X ×R → Y with associated inverse I−1 : X → Y ∪{⊥}, from input domain X
to output domain Y to be the following.

Proc I(x)

y←$ Y ; T [y]← x ; Return y

Proc I−1(y)

Return T [y]
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Above, table T is initialized to ⊥ everywhere. Note that for I to be injective, it should be the case
that the number of queries to I, say q, should be much less than

√
|Y|. Formally, a random injection

should be indifferentialble [MRH04] from an ideal random injection. Specifically, let A : X → Y be
a randomized transform with inverse A−1, both depending on some random oracle H. We say that
A is a (q, ϵ)-RInj if there exists simulator SH (which has access to I, I−1) such that the RInj-advantage
of any distinguisher D, Advrinj

A,A−1(D) := ∆D
(
A,A−1, H ; I, I−1, SH

)
, is at most ϵ for distinguisher

D making at most q queries to any oracle.

Indifferentiable Authenticated Encryption. The other approach to view our definition of random
injection is through indifferentialble authenticated encryption [BF18]. Indifferentiable AE is essen-
tially a key-ed version of random injection. [BF18] present an extension of the OAEP construction
which meets this definition. Figure 3b shows the OAEP construction and the (un-keyed) con-
struction of [BF18] which we denote as Authenticated OAEP (AOAEP). The core difference from
OAEP is that the randomness used in OAEP is now chosen as r′ ← I(x∥r) where I is a random
oracle. When inverting OAEP, (x∥r) is reconstructed and checked to see if the randomness used
to construct the injection is consistent with r′. They show that finding such a consistent OAEP
output without querying the oracles in the forward direction is infeasible.

Let OAEP be defined in Equation 6, with input space {0, 1}nk+k and I : {0, 1}nk+k → {0, 1}k be
random oracle. AOAEP : {0, 1}nk → {0, 1}nk+2k is defined as AOAEP(x; r) = OAEP(x∥r; I(x∥r)) ,
where r is chosen uniformly at random from {0, 1}k. The inverse AOAEP−1 : {0, 1}nk+2k → {0, 1}nk
is defiend as

AOAEP−1(y) =

{
x if y = OAEP(x∥r; I(x∥r)); (x∥r)← OAEP−1(y),

⊥ otherwise
(7)

Theorem 1. Let AOAEP : {0, 1}nk+2k → {0, 1}nk be defined above. The proof specifies a simulator
S such that

Advrinj
AOAEP(D) ≤

9q2 + q

2k
+

3q2

2nk+k
. (8)

where q is the maximum number of queries to any oracle that D make.

This follows from [BF18, Theorem 5]. We also provide a standalone proof below.

Proof. We begin with A interacting with A,A−1, I, G,H oracle which are implemented by the
simulator/challenger. In the end A interacts directly with T, T−1 while the simulator controls
I,G,H.

First we consider A making direct oracle queries to I,G,H. When A first makes an I ◦ G
query with (x∥r) (i.e. queries G for the first time on I(x∥r)), the simulation queries y←$ T (x) and
programs the G oracle to output (y1∥...∥yn+1) ⊕ (x∥r) where y = (y1∥...∥yn+2) and yi ∈ {0, 1}k.
Conditioned on I(x∥r) not colliding with a previous I query and G at I(x∥r) not previously
be queried, this change is identically distributed. Subsequently, if A queries H(y1∥...∥yn+1) the
simulation programs H to return yn+2 ⊕ I(x∥r). Conditioned on A not previous querying H at
this point, this change is identically distributed.

We now bound the probability of these conditions. Let EI be the event that A queried I at

distinct (x, r) and (x′, r′) such that I(x∥r) = I(x′∥r′). Then P [EI ] ≤
q2I
2k

where A makes qI distinct
queries to I. Let EG◦I be the event that A queried G at y prior to querying I at some (x∥r)
such that I(x∥r) = y. Then P [EG◦I ] ≤ qGqI

2k
where A makes qG queries to G. When the simulator

programs any of the G queries to (y1∥...∥yn+1)⊕ (x∥r), let EH be the event that H has previously
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been queried at (y1∥...∥yn+1). Then P [EH ] ≤ qHashqG
2kn+k . In total we have these local queries agreeing

with T except with probability

P [EI ∧ EG◦I ∧ EH ] ≤
q2I + qGqI

2k
+

qHashqG
2nk+k

.

Now we consider A making A(x) queries which internally samples r←$ {0, 1}k. Let R be the
set of previously sampled r values and Er be the event that either r ∈ R or A has previous
queried I(·∥r). Over the qA queries to A the probability of the former is at most q2A/2

k while

the latter is at most qAqI/2
k and therefore P [Er] ≤

q2A+qAqI
2k

. Given ¬Er, then I(x∥r) has never

previously been queried and outputs a uniform value z←$ {0, 1}k. Let EA,I◦G be the event that
two of these I queries return the same value or if A has previously queried G at any of the values.
Clearly the former happens with probability at most q2A/2

k while the latter occurs with probability

at most qAqG/2
k and therefore P [EA,I◦G] ≤

q2A+qAqG
2k

. Assuming ¬EA,I◦G, A can program G to
output (y1∥...∥yn+1) ⊕ (x∥r) where (y1∥...∥yn+2)←$ T (x). Finally, let EA,H be the event that H

has previously been queried at (y1∥...∥yn+1) by A or A which happens with P [EA,H ] ≤ q2A+qAqHash

2nk+k .
Given ¬EA,H , A can program H to output I(x∥r)⊕yn+2. Now observe that the output of A agrees
with T except with probability

P [Er ∧ EA,I◦G ∧ EA,H ] ≤
q2A + qAqI + q2A + qAqG

2k
+

q2A + qAqHash

2nk+k
.

Therefore, A can now directly query T . This also means I,G,H are only programmed at points
directly queried by A.

Next, let us consider A making H queries on the output of y = T (x). Let H∗ be initialized
as H∗ ← ∅. For each H(y1∥...∥yn+1) query the simulator records the request as H∗ ← H∗ ∪
{(y1∥...∥yn+1)} and then responds as normal. If A makes a G(v) query, the simulator constructs
Y ← {(y1∥...∥yn+1∥v ⊕ H(y1∥...∥yn+1)) | (y1∥...∥yn+1) ∈ H∗} and checks if there exists a y ∈ Y
such that T−1(y) ̸= ⊥. If no such v exists then G responds normally. Otherwise, let Ey be the
event that more than one such y exists which occurs with P [Ey] ≤ qHash

2/2k. Given ¬Ey, there
is a unique y and the simulator queries x ← T−1(y). Prior to the corresponding y←$ T (x), let
Ev be the event that A queried G(v) for any of these (v, y) pairs. Given that y, and therefore
v = H(y1∥...∥yn+1)⊕ yn+2, is uniformly distributed, the probability of this is P [Ev] ≤ qGqHash/2

k.
Given ¬Ev, G is programmed to output G(v) = (y1∥...∥yn+1) ⊕ (x∥r) where r←$ {0, 1}k is

uniformly sampled. Let Er′ be the event that G is programmed here with an r such that I(·∥r)
has been queried by A. Clearly it holds that P [Er′ ] ≤ qGqI/2

k. Given ¬Er′ , if A queries I(x∥r) the
simulator programs it to return v. The advantage of A in distinguishing the output of T compared
to H,G, I is therefore

P [Ey ∧ Ev ∧ Er′ ] ≤
qHash

2 + qGqHash + qGqI
2k

Finally, we consider A−1(y) queries where y is not from a direct y = T (·) or indirect G(I(·)) oracles.
As such, y ̸∈ Y as defined above. Observe that since G(I(·)) for y has not been queried there are
two possibility. First, there could exist some (x∥r) and that I(x∥r) has been queried but G(I(x∥r))
has not. This case, G(I(x∥r)) is uniformly distributed and therefore the event Ef that G(I(x∥r)) =
(y1∥...∥yn+1) ⊕ (x∥r) has a probability P [Ef ] ≤ qA−1/2k. In the second case, we can assume A
evaluated H(y1∥...∥yn+1) and G(s) but not s ← I(·) an arbitrary s = H(y1∥...∥yn+1) ⊕ yn+2.
A−1(y) ̸= ⊥ iff s = I((y1∥...∥yn+1) ⊕ G(s)). Since I has not been evaluated at this point the
probability of this event Es is P [Es] ≤ qA−1/2k.
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Scheme TAE1[RInj,E]

Proc Setup(n, t)

d←
(

n
n−t+1

)
For i ∈ [d] do sk[i]← {0, 1}E.kl
For j ∈ [n] and i ∈ Dn,t(i) do skj [i]← sk[i]
pp← (n, t, d)
Return ((sk1, . . . , skn), pp)

Proc Splitenc(j,m, S)

(e1, . . . , eℓ)←$ RInjd(m)
st← (ed+1, . . . , eℓ)
L←$ Assign(e1, . . . , ed, S)
Return (L, st)

Proc Evalenc(sk, j, (i, ei))

If (sk[i] = ⊥) then return ⊥
ci ← E(sk[i], ei)
Return (i, ci)

Proc Combineenc(R, st)

(ed+1, ..., eℓ)← st ; {(i, ci)}i∈[d] ← R

Return (ℓ, c1, ..., cd, ed+1, ..., eℓ)

Proc Assign(a1, . . . , ad, S)

For i ∈ [d]:
j←$ Dn,t(i) ∩ S
L← L ∪ {(j, (i, ai))}

Return L

Proc Splitdec(c
′, S)

(c1, ..., cd, ed+1, ..., eℓ)← c′

st← (ed+1, ..., eℓ)
L←$ Assign(e1, . . . , ed, S)
Return (L, st)

Proc Evaldec(sk, j, (i, ci))

If (sk[i] = ⊥) then return ⊥
ei ← E−1(sk[i], ci)
Return (i, ei)

Proc Combinedec(R, st)

(ed+1, ..., eℓ)← st ; {(i, ei)}i∈[d]
m← RInj−1

d (e1, ..., eℓ)
Return m

Figure 4: TAE construction based on random injection RInj and block cipher E : {0, 1}E.kl ×
{0, 1}k → {0, 1}k. Recall that RInjd = RInj ◦ Padk,d.

Baring these events, A−1 agree on all outputs as T−1 and therefore A can now query T−1

directly. In total the advantage of A is bounded by the union of these events. Therefore,

Advrinj
AOAEP(D) ≤

9q2 + q

2k
+

3q2

2nk+k

where q is the maximum of qI, qG, qHash, qA, qA−1 .

Extension to variable-input-length Let d be some integer. Consider the following padding function
Padk,d : {0, 1}∗ → ({0, 1}k)∗. Upon input x, Padk,d first append a 1 at the end of x, then it appentd
0’s until the length ℓ is some m · k for some integer m ≥ d. Consider the variable-input-length
transformation RInjd := RInj ◦ Padk,d. It is not hard to show RInj ◦ Padk,d is indifferentiable to
variable-input-length random injections with the Equation 8 bound for n set to d.

5.2 The Construction

Our TAE construction in Figure 4 builds on an random injection RInj as defined above. We
define the sets Dn,t(i) for integers i ∈ [d] where d =

(
n

n−t+1

)
, with the following property:

Dn,t(1), . . . , Dn,t(d) shall be all the subsets of [n] with size exactly n− t+1. Each party i ∈ [n] will
hold secret key skj if and only if i ∈ Dn,t(j). Together these secret keys form type of a t-out-of-n
replicated secret sharing of the master key ((sk1, . . . , skd)). To encrypt, the initiating party com-
putes e←$ RInjd(m). e is then partitioned into at least d block e1, ..., ed, ..., eℓ with each ei ∈ {0, 1}k.
Each ei is sent to a single party which holds the key ski. This party returns ci ← PRP(ski, ei). The
final ciphertext is the comprised of c1, ..., cd plus any additional blocks of e. An illustration of this
is given in Figure 3a. Decryption is defined in the straightforward way where the RInj ensure that
the plaintext has not been modified.
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5.3 Security

We show that given a secure block cipher E and a secure random injection RInj, scheme TAE =
TAE1[RInj,E] is IND-RCCA secure.

Theorem 2. Let RInj be a random injection. Let E : E.kl×{0, 1}k → {0, 1}k be a block cipher. Let
TAE = TAE1[RInj,E]. Let A be an adversary against TAE. The proof gives adversaries B, C, whose
running times are about that of A plus some simulation overhead, such that

Advind-cca
TAE,n,t(A) ≤ 2 ·Advd-prp

E (B) + 2 ·Advrinj
RInj(C) +

(d+ 2) · q2

2k−1
, (9)

where q ≥ 2 is the maximum number of queries to any oracle available to A, and d =
(

n
n−t+1

)
is

assumed to be larger than 2.

of Theorem 2. Let G0 = Gind−cca
TAE,n,t (A). Let us also fix the adversary A. For the rest of the proof,

we let CR ⊂ [n] denote the set of corrupt parties that the adversary A choses to corrupt (formally,
CR is random variable).

Consider G1, modified from G0 such that E(ski, ·) is replaced with random permutations, Pi,
for i ∈ [n] \ C. More precisely, these permutations shall be lazily sampled as follows, so that we
can refer to the partial permuatation tables Ti and T−1

i

Proc Pi(x)

If Ti[x] = ⊥ then

y←$ {0, 1}k − {T−1
i }

Ti[x]← y

T−1
i [y]← x

Return Ti[x]

Proc P−1
i (y)

If T−1
i [y] = ⊥ then

x←$ {0, 1}k − {Ti}
T−1
i [y]← x

Ti[x]← y

Return T−1
i [y]

It is standard to construct a PRP-adversary B whose advantage bounds the distance between G0

and G1. Specifically,
P
[
G0

]
−P

[
G1

]
≤ Advd-prp

E (B) . (10)

Next, we modify G1 into G2 so that RInj is replaced with ideal random injection I and I−1. It is
standard to give adversary C such that

P
[
G1

]
−P

[
G2

]
≤ Advrinj

RInj(C) . (11)

Consider the event E in G2 indicating when that authenticity condition is violated.

E : |DecSet| >
⌊ ctEval
n− |CR|

⌋
.

We claim that

P
[
E
]
≤ d · q2

2k
. (12)

First, consider the event bad that there are some collisions in the first d blocks of the output of
I. More precisely, bad is True if and only if there is some x, x′ that was input to I such that
I(x)[i] = I(x′)[i] for some i ∈ [d]. Since, I is a random injection,

P
[
bad

]
≤ d · q(q − 1)

2k+1
(13)
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via the birthday bound and a union bound. Now, we shall bound P
[
E ∧ ¬bad

]
. If bad does not

happen, then each Evalenc and Evaldec query corresponds to at most one ciphertext. Note that
|DecSet| is the number of valid y that adversary A can generate such that I−1(y) ̸= ⊥. Suppose
E happens and ¬bad, then it must be that during one of the queries to Combinedec, one of P−1

i

samples a fresh point for some i ∈ [n]−CR. The probability that this freshly-sampled point makes
a valid y that goes through I−1 to make a valid decryption is at most

1

2k − |Ti|
≤ 1

2k−1
, (14)

since I−1 always output ⊥ unless it is given some y that was generated by I. Putting (13) and (14)
together, we obtain (12).

Consider G3, modified from G2 such that if forgery is set, then game G3 returns True or False
with probability a half each (instead of always returning True). By the fundamental lemma of
game playing,

P
[
G2

]
−P

[
G3

]
≤ P

[
E
]
≤ d · q2

2k
. (15)

Lastly, we try to bound
2 ·P

[
G3

]
− 1 . (16)

Let us analyze the Splitenc oralce in G3.

Proc Splitenc(id,m0,m1, S)

Require id ̸∈ CR, |m0| = |m1|
u← u+ 1; idu ← id
(e1, . . . , eq)←$ I(mb, d)
Lu←$ Assign(e1, . . . , ed)
stu ← (ed+1, . . . , eq)
Return {(k, x) ∈ Lu | k ∈ CR}
Note that since the privacy condition holds, one of the blocks ei is not given to the adversary.
Let us consider a game G4 in which the inverse of (e1, . . . , eq) is not set (to be mb). Instead, we
shall set bad if there is a query (e1, . . . , eq) to I−1 that would have returned some mb in G3. Note
that G4 does not leak any information about bit b and hence 2 ·P

[
G4

]
− 1 = 0. It is left to bound

the distance between G3 and G4. It remains to bound the probability of bad being set in G4.
Since one of these block is unknown to the adverasry. This probability is upperbounded by at most

1
2k−maxi |Ti|

≤ 1
2k−1 for each I−1 query and challenge ciphertext pair. Hence,

P
[
G3

]
−P

[
G4

]
≤ q2

2k−1
.

22



Game Gdprf
DP,n,t(A)

b←$ {0, 1}
(JskK,pp)←$ DP.Setup(n, t)

(C, stA)←$A0(pp)

b′←$A⟨Proc⟩
1 (stA, (ski)i∈C)

If (∃x ∈ chlSet : |ct[x] ∪ C| ≥ t):
Return b′′←$ {0, 1}

Return (b = b′)

Proc Eval(i, x)

Require i /∈ C
ct[x]← ct[x] ∪ {i}
Return DP.Eval(ski, x)

Proc Chl(x, S, rsp)

Require x /∈ chlSet
chlSet← chlSet ∪ {x}
For i ∈ S \ C:
rsp[i]← DP.Eval(ski, x)

v0 ← DP.Combine(rsp)
If (v0 = ⊥) then Return ⊥
v1←$ {0, 1}|v0| ; Return vb

Figure 5: The DPRF security game.

Putting things together, we have

Advind-cca
TAE,n,t(A)

= 2 ·P
[
G0

]
− 1

= 2 · (P
[
G1

]
+Advd-prp

E (B))− 1

= 2 · (P
[
G2

]
+Advd-prp

E (B) +Advrinj
RInj(C))− 1

= 2 · (P
[
G3

]
+Advd-prp

E (B) +Advrinj
RInj(C) +

d · q2

2k
)− 1

≤ 2 · (P
[
G4

]
+Advd-prp

E (B) +Advrinj
RInj(C) +

(d+ 2) · q2

2k
)− 1

= 2 ·Advd-prp
E (B) + 2 ·Advrinj

RInj(C) +
(d+ 2) · q2

2k−1
.

6 Constructions from Threshold PRF & Signature

In this section, we provide two TAE constructions. One of them achieves IND-RCCA security,
whereas the other one achieves IND-CCA security. The first construction is based on a DPRF and
a threshold signature scheme. The second construction is achieved simply replacing the DPRF with
a DVRF.

Here, we first formally define DPRF and DVRF. We then provide our instantiations of DPRF
and DVRF with accompanying security analysis that is modular and concrete. Our instantiations
include variants of the DDH-based DPRFs introduced by Naor et al. [NPR99] and used by Agrawal
et al. [AMMR18a] to construct TAE schemes. Finally, we provide our TAE constructions that use
them along with threshold signatures.

6.1 Definition and Constructions of DPRF and DVRF

6.1.1 DPRF.

A DPRF DP consists of algorithms Setup,Eval,Combine, as well as input and output spaces In,Out
⊆ {0, 1}∗. The algorithms have the following syntax.

• Setup(n, t) $→ (JskKn, pp), where n, t are positive integers such that t ≤ n. Setup generates n
secret keys and public parameter pp.
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• Eval(ski, x)→ zi. Eval generates its response for the input x ∈ In using secret key ski. We
require that zi = ⊥ if and only if x ̸∈ In.

• Combine({(i, zi)}i∈S)→ y. Combines the partial shares zi and returns an output y ∈ Out ∪
{⊥}.

The secret-key shares sk1, . . . , skn are distributed amongst n parties. If an initiating party Pj
intends to compute the DPRF on an input x, it sends x to a subset S of all parties. Each party i ∈ S
returns a partial evaluation zi ← Eval(ski, x). The initiator, on receiving the partial evaluations,
runs combine to obtain the output, i.e., y ← Combine({i, zi}i∈S).
Correctness. For a DPRF DP to be correct, every input x ∈ DP.In must map to a unique output
y ∈ DP.Out.2 Specifically, for any 0 < t ≤ n, any (JskKn, pp)←$ DP.Setup(n, t), x ∈ DP.In,
j, j′ ∈ [n], and S, S′ ⊆ [n] such that |S|, |S′| ≥ t,

Combine({i, zi}i∈S) = Combine({j, z′j}j∈S′),

where zi ← Eval(ski, x) for i ∈ S and z′j ← Eval(skj , x) for j ∈ S′. Note that this condition was
named “consistency” in previous literature.

DPRF security. Consider the security game given in Figure 5. The goal of a DPRF adversary is
to predict the value of the global variable bit b, while interacting with the following two oracles.

• Eval(i, x). Adversary A calls this oracle to have party i run Eval(pp, ski, x) and obtain the
resulting output. In doing so, the game adds party i to the set ct[x] so as to keep count of
the number of Eval queries made under x. If |ct[x] ∪ C| is at least the threshold value t, then
Eval(i, x) will return ⊥.

• Chl(x, S, rsp). The adversary calls this oracle to receive challenge outputs, which it can use
to help guess the challenge bit b. Each input x to Chl can only be queried once, hence Chl
keeps a set chlSet storing the set of challenges seen so far by the game. Upon input (x, S, rsp),
Chl sets zi ← rsp[i] if i ∈ C and rsp[i] is defined, and otherwise computes zi honestly using
ski. The oracle then outputs vb, where

– v0 is the combination of the values zi computed via Combine, and

– v1 is ⊥ if v0 is ⊥, or an uniformly sampled string of length |v0| otherwise.

The adversary wins if bad is not set to True and the predicted bit b′ is equal to b sampled by the
game. The DPRF advantage function is Advdprf

DP,n,t(A) = 2 ·P
[
Gdprf

DP,n,t(A)
]
− 1.

Comparison with DiSE. Our DPRF security notion strengthens that of Agrawal et al. [AMMR18a]
by allowing multiple, different challenge queries. This brings the DPRF security closer in-line
with traditional definitions of pseudo-random functions. However, as shown below, this incurs an
additional security loss proportional to the number of challenges in the reduction.

6.1.2 DVRF.

Our DVRF definition simply extends the DPRF definition above in a way that suffices for our
purposes. DVRFs were recently formalized by Galindo et al. [GLOW20] who, in turn, build on
DiSE [AMMR18a]. Their definition is similar to ours. However, they capture many other properties,

2The output is unique in the sense that no matter which parties participate in the protocol, the output must be
the same — as long as the parties behave honestly. The only thing that matters is that the size of S must be at least
t.
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Game Gdvrf
DV,n,t(A)

b←$ {0, 1} ; (JskK,pp)←$ DV.Setup(n, t)

(C, stA)←$A0(pp)

b′←$A⟨Proc⟩
1 (stA, (ski)i∈C)

If (∃x ∈ chlSet : |ct[x] ∪ C| ≥ t) then
Return b′′←$ {0, 1}

Return (b = b′)

Proc Eval(i, x)

Require i /∈ C
ct[x]← ct[x] ∪ {i}
Return DV.Eval(ski, x)

Proc Chl(x, S, rsp)

Require x /∈ chlSet
chlSet← chlSet ∪ {x}
For i ∈ S \ C do rsp[i]← DV.Eval(ski, x)
If DV.Verify(x, rsp) do:
v0 ← DV.Combine(rsp)
If (v0 = ⊥) then Return ⊥
v1←$ {0, 1}|v0| ; Return vb

Else Return ⊥

(a) The DVRF security game.

Game Gdvrf−rob
DV,n,t (A)

(JskK,pp)←$ DV.Setup(n, t)

(C, stA)←$A0(pp)

(S, x∗, {i, z∗i }i∈S)←$A⟨Proc⟩
1 (stA, (ski)i∈C)

If |S| < t then return 0
Else do:
For i ∈ S ∩ C do rsp[i] := z∗i
For i ∈ S \ C do rsp[i] := DV.Eval(ski, x

∗)
y∗ := DV.Combine(rsp)
y := DV.Combine({(i,Eval(ski, x∗))}i∈S)
b := Verify(pp, x∗, rsp)
Return (y ̸= y∗)∧(b = 1)

Proc Eval(i, x)

Require i /∈ C
Return DV.Eval(ski, x)

(b) The DVRF robustness game.
Figure 6: The DVRF games.
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specifically useful in their context, that we do not take into account here. Nevertheless, we believe
that their constructions satisfy our definition too.

Recall that a DPRF DP consists of algorithms Setup,Eval,Combine, as well as input and out-
put space In,Out ⊆ {0, 1}∗. Consider an additional verification algorithm Verify for DP with the
following syntax:

• Verify(pp, x, {i, zi}i∈S) =: 1/0. This is a deterministic procedure that takes an input value
x ∈ In, the public parameter pp3 and a bunch of partial evaluations from parties in set S, and
outputs a decision bit, where 1 implies that the verification is successful.

We require Verify to satisfy the following completeness property:

• Completeness. For any x ∈ In, any pp generated by Setup(n, t), and for any set S ⊆ [n] s.t.
|S| ≥ t, Verify(pp, x, {(i,Eval(ski, x))}i∈S) always outputs 1.

DVRF security. A DVRF is a DPRF too. Therefore it should have a pseudorandomness property
similar to DPRF. In particular we adapt the DPRF security game (from Figure 5) to DVRF in
Figure 6a. We define an adversary A’s advantage similarly: Advdvrf

( (A)) = 2 ·P
[
Gdvrf

DV,n,t(A)
]
− 1.

DVRF robustness. We require the procedure Verify to satisfy another security property. In par-
ticular, we consider a robustness game as described in Figure 6b. In this game, the goal of the
adversary is to produce a set of partial evaluations that result in a wrong computation, but make
the verification succeed. The adversary is allowed to query the evaluation oracle multiple times
to learn correct partial evaluation values for honest parties. The robustness advantage function is
defined as: Advdvrf−rob

DP,n,t (A) = P
[
Gdvrf−rob

DV,n,t (A)
]
.

Comparing with strongly-secure DiSE DPRF. Our DVRF definition is reminiscent of the DiSE
DPRF definition with (i) a (malicious) correctness property (Def. 5.4 of [AMMR18b]) and (ii)
a public verifiability (formalization of the Remark 8.3 of [AMMR18b])), apart from the multi-
challenge extension already incorporated into our DPRF. However, we remark that our formaliza-
tion is slightly different as we explicitly mention existence of a verification algorithm that can be
used in the protocol to immediately detect a malicious response, whereas their correctness defini-
tion guarantees that the adversary cannot force the “Combine” procedure to accept a valid (not
⊥) value which is different from the correct value. Looking ahead, this modular extension helps
us simplifying our proof for the IND-CCA secure TAE construction.

6.1.3 XOR DPRF [NPR99, AMMR18a]

Let F : K × X → Y be a function family. We assume that there are three integers associated
with F such that K,X ,Y are equal to {0, 1}F.kl, {0, 1}F.il, {0, 1}F.ol, respectively. Let µ be a positive
integer. Let ki ∈ {0, 1}F.kl and ρi : X → Y be chosen uniformly and independently at random for
i = 1, . . . , µ, then the µ-PRF advantage of A against F is defined as

Advµ-prf
F (A) = P

[
AFk1

,...,Fkµ
]
−P

[
Aρ1,...,ρµ

]
. (17)

In general, we have
Advµ-prf

f (A) ≤ µ ·Adv1-prf
f (A) , (18)

3Usually verification keys are separated from public parameters. Nevertheless, for simplicity, we include our
verification keys within pp. In particular, this also means that our verification procedure is public, which does not
seem to be necessary for our purpose. In fact, we believe that a privately verifiable variant, similar to the one
proposed in DiSE, also works. As noted in DiSE, private verifiability may lead to a slightly faster protocol. However,
we stick to the public verifiability notion because it is a useful feature to have (as also pointed out in Remark 8.3
of [AMMR18b]) and is also simpler to describe.
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Scheme DPPRF
F

Proc Setup(n, t)

d←
(

n
n−t+1

)
For i ∈ [d] do
sk[i]← {0, 1}F.kl

For j ∈ [n] do
For i ∈ Dn,t(i) do
skj [i]← sk[i]

pp← (n, t, d)
Return ((sk1, . . . , skn), pp)

Proc Eval(pp, sk, x)

V ← {F(sk[i], x)}i∈[d],sk[i]̸=⊥
Return V

Proc Combine(pp, L)

{(j, Vj)} ← L
W ←

⋃
Vj

Return
⊕

w∈W w

Figure 7: XOR DPRF construction.

and there are constructions where the above inequality is tight. However, there are constructions
for which Advµ-prf

f (A) equals Adv1-prf
f (A).

Let d :=
(

n
n−t+1

)
and Dn,t(1), . . . , Dn,t(d) be defined as as in 5.2. The XOR DPRF protocol

distributes PRF keys to the participants in such a way that no t− 1 subset of the parties are able
to reconstruct all the PRF keys, but any subset of t parties can. To evaluate the XOR DPRF,
one requests t parties to evaluate a PRF f on a given input x under all the keys they have. After
receiving all the PRF outputs, one XORs them together to get the final DPRF output. The protocol
is specified in Figure 7.

Note that a näıve implementation of the protocol has all participants send back all PRF out-
puts, which results in redundant computation and unnecessary communication overhead. One can
optimize the protocol further by letting the participants know which PRF keys to use. For example,
a bit vector of length n can be sent which indicates which t parties will participate. Which keys
to use can then be locally determined from this selection. Critically, the participating parties can
then locally XOR together their set of partial DPRF evaluations. The overall communication is
then (t− 1)(F.il+ F.ol+ n) bits.

Theorem 3. Let A be a DPRF adversary. The proof gives d-PRF adversary B, with running time
similar to A plus some simulation overhead, such that

Advdprf

DPPRF
F ,n,t

(A) ≤ 2 ·Advd-prf
F (B) .

Proof. Consider games G0 and G1 given in Figure 8. Note that G0 is simply a rewrite of
Gdprf

DPPRF
F ,n,t

A. Game G1 differs from G0 in that all evaluations of F by honest parties are replaced

with uniform random values. We claim that there exists adversary B such that

P
[
G0

]
−P

[
G1

]
≤ Advd-prf

F (B) . (19)

Consider Multi-PRF adversary B against F is constructed as follows. Adversary B simply runs G0

exactly besides that it answers queries to Fn using its own oracles. It is not hard to see that if B
is given oracles Fski(·), then it simulates G0; if B is given oracles ρi, then it simulates G1. This
justifies (19).

Next, we claim that

P
[
G1

]
=

1

2
. (20)
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Game G0 / G1

b←$ {0, 1} ; (JskK,pp)←$ DP.Setup(n, t)

(C, stA)←$A0(pp)

b′←$A⟨Proc⟩
1 (stA, (ski)i∈C)

If (∃x ∈ chlSet : |ct[x] ∪ C| ≥ t) then
Return b′′←$ {0, 1}

Return (b = b′)

Proc Eval(i, x)

If i ∈ C then return ⊥
ct[x]← ct[x] ∪ {i}
Return Fn(i, x)

Proc Chl(x, S, rsp)

If x ∈ chlSet then return ⊥
chlSet← chlSet ∪ {x}
For i ∈ S \ C do rsp[i]← Fn(i, x)
v0 ← DP.Combine(rsp)
If (v0 = ⊥) then return ⊥
v1←$ {0, 1}|v0| ; Return vb

Proc Fn(i, x)

If Ti[x] = ⊥ then Ti[x]← {0, 1}k
G0: Return F(ski, x)
G1: Return Ti[x]

Figure 8: Games G0 and G1 used in the proof of Theorem 3.

Consider the event
E : ∃x ∈ chlSet : |ct[x] ∪ C| ≥ t .

Note that, by construction, P
[
G1 | E

]
= 1

2 . Next, suppose ¬E, we will show that P [G1 | ¬E] = 1
2 .

Suppose Chl(x ; S, rsp) is a query made by A in G1. We know that |S| ≥ t and |ct[x] ∪ C| < t,
hence Chl includes an Fn(i, x) query where i ̸∈ C which A does not query directly. This output
is independent and uniformly random of all other values in the interaction. As a result, when
Fn(j∗, x) is XORed with the other Eval queries and rsp values, we know that Chl(x ; S, rsp) is
independent and uniformly random as well. Hence, there is no leakage about the bit b in game G1.
This justifies equation (20).
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Scheme DPDDH
G

Proc Setup(n, t)

s←$ Zp

For j ∈ [t− 1] do cj ←$ Zp

For i ∈ [n]
ski ← s+

∑
j∈[t−1] cj · ij

Return ((sk1, . . . , skn), ϵ)

Proc Eval(pp, sk, x)

Return H(x)sk

Proc Combine(pp, L)

If |L| < t then return ⊥
{(i, zi)} ← L
y ←

∏
i(zi)

λ0,i,S

Return y

Figure 9: DDH-based DPRF construction. λ0,i,S are the Lagrange coefficients.

Putting (19) and (20) together, we obtain that

Advdprf

DPPRF
F

(A) = 2 ·P
[
G0

]
− 1

= 2 · (P
[
G0

]
−P

[
G1

]
+P

[
G1

]
)− 1

= 2 ·Advd-prf
F (B) .

6.1.4 Instantiating DDH-based DPRF and DVRF

Here we provide our instantiation of DDH-based DPRF and DVRF. We note that the other DPRF
instantiation involving XORs of PRF values also satisfies our definition. We have provided details
of XOR DPRF in Appendix 6.1.3.

Notation. Throughout this section, we let G be a group of prime order p with generator g. We
require there be an efficient sampling algorithm that samples elements uniformly from G and we
write h←$ G to denote such sampling. For a vector a its i-th element is denoted by ai. The inner
product of two vectors a and b is denoted by ⟨a,b⟩. For a matrix A ∈ Zα×β

p with the (i, j)-th entry

denoted by aij the matrix gA is given by

g
a11 . . . ga1β

...
. . .

...
gaα1 . . . gaαβ

 . For a matrix A of dimension α × β

we define the matrix A(−i) of dimension α× (β − 1) to be A without its i-th column. For a vector
b of dimension α, [A | b] denotes a matrix of dimension α× (β + 1) that is A with the additional
(β + 1)-th column b. Similarly row-extension of A is a matrix of dimension (α + 1) × β and is

denoted by

[
A
c

]
for a vector c of dimension β. A(−i) denotes a matrix of dimension (α − 1) × β

that has the i-th row removed. The tensor product between two vectors is denoted ⊗.

6.1.5 A DPRF from DDH [NPR99, AMMR18a].

Naor et al.’s [NPR99] DDH-based DPRF construction DPDDH
G,g is depicted in Figure 9. Naor et

al. prove the construction’s security for semi-honest adversaries. Agrawal et al. [AMMR18a] prove
the DDH-based DPRF construction secure against malicious attackers under the DDH assumption
using their single-challenge security definition. We revisit the proof of the DDH-based DPRF to
provide a more modular and simpler proof with concrete analysis based on a new variant of the
Matrix-DDH assumption [EHK+13], that we call the Tensor-DDH (TDDH) assumption. We show
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that this assumption is as hard as DDH. Let p be a prime. Let D⊗
α,β denote the distribution

of matrix A = (s, 1) ⊗ r ∈ Z(α+1)×β
p such that (s, r)←$ Zα

p × Zβ
p for α, β ∈ N. We define the

(α, β)-tensor-DDH advantage of some adversary A in group G = ⟨g⟩ of prime order p to be

Adv
(α,β)-tddh
G,g (A) := P

[
A([gA | gA·u])

]
−P

[
A([gA | gz])

]
,

where the probability is taken over A←$D⊗
α,β, u←$ Zβ

p , z←$ Zα+1
p , and the randomness of A.

Let us denote the advantage of a adversary A in breaking the DDH assumption over a group
G generated by g as Advddh

G,g(A). We prove that TDDH is at least as hard as DDH.

Lemma 1 (Hardness of TDDH from DDH). Let G be a group of prime order p and g←$ G a
generator. Then, for any α, β ∈ N and any adversary A, there exists another adversary B that
runs in similar time as A such that

Adv
(α,β)-tddh
G,g (A) ≤ 2Advddh

G,g (B)

Proof. The adversary A is given an instance of TDDH, a matrix M = [gA | gb] ∈ G(α+1)×(β+1)

where b is either a uniformly chosen vector in Zα+1
p or equal to A ·u for a uniformly chosen vector

u ∈ Zβ
p and A = (s, 1) ⊗ r for some uniform random s ∈ Zα

p , r ∈ Zβ
p . Therefore, each element

of A, Ai,j can be written as sirj where sα+1 = 1. Let us call the mental experiment when A is
given a uniform random b the Ideal game and a b in the column space of A the Real game.
Let us define an intermediate security game (say, Hyb) where the adversary is given a matrix

M = [gA | gb] ∈ G(α+1)×(β+1) such that bα+1 = ⟨u, r⟩ for a uniform random u ∈ Zβ
p , but for all

i ∈ [α], bi is sampled uniformly at random from Zp. Now, given a DDH challenge (gx, gy, gz) where
z is either equal to xy mod p or a random element in Zp, we simulate either Real or Hyb (when
z = xy or uniform in Zp respectively) as follows:

1. Choose uniform random r1, . . . , rβ ← Zp and then define g⟨u,r⟩ := gx for an unknown u.

2. For all i ∈ [α], choose uniform random w
(1)
i , w

(2)
i ←$ Zp and then define gsi := gw

(1)
i +w

(2)
i y for

unknown si.

3. For all i ∈ [α] and j ∈ [β] compute gAij := (gsi)rj by raising each known rj to the power of
gsi for an unknown si.

4. For all i ∈ [α] compute gbi := gw
(1)
i x+w

(2)
i z for unknown bi.

5. For all j ∈ [β] define gAα+1j := gri and finally define gbα+1 := gx.

Now, we observe that when z = xy then Real is simulated perfectly. To see this, notice that,

since each w
(1)
i , w

(2)
i are chosen randomly, the distribution of w

(1)
i +w

(2)
i y is identical to a uniform

random element si in Zp. Furthermore, in that case we can re-write bi = w
(1)
i x+w

(2)
i xy = si⟨u, r⟩.

On the other hand when z is uniformly random in Zp, the distribution of each bi = w
(1)
i x+ w

(2)
i z

is uniform random in Zp for i ∈ [α]. Also note that, in both cases the element bα+1 is implicitly
defined to be x.

Next, given a DDH tuple (gx, gy, gz) we will simulate either experiment Hyb or Ideal if z = xy
or z←$ Zp respectively. This is done as follows:

1. Choose s1, . . . , sα←$ Zp uniformly at random.
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2. Choose r2, . . . , rβ ←$ Zp and u2, . . . , uβ ←$ Zp uniformly at random.

3. Define gr1 := gx for an unknown r1 and gu1 := gy for an unknown u1.

4. Define gAij = (grj )si for i ∈ [α], j ∈ [β].

5. Choose b1, . . . bα←$ Zp uniformly at random.

6. Finally define gbα+1 := gz · g
∑β

i=2 riui .

Now, if z = xy, then the distribution of [A | b] is identical to Hyb as then bα+1 =
∑β

i=1 riui.
On the other hand, if z is uniformly random in Zp, the bα+1 is statistically close to uniformly at
random and hence the distribution of [A | b] is identical with Ideal.

Therefore, the overall advantage in distinguishing Real and Ideal is bounded by 2·Advddh
G,g(B).

This concludes the proof of the lemma.

The security of the DPRF is formalized as follows.

Theorem 4. Let G = ⟨g⟩ be a group of prime order p. Let A be a DPRF adversary against
DPDDH

G,g . Let qEval, qHash, qChl be the number of queries A makes to the Eval,Hash,Chl oracles,
respectively. The proof gives a (qEval, t)-TDDH adversary B such that

Advdprf

DPDDH
G,g ,n,t

(A) ≤ 2qChl(qEval + qHash) ·Adv
(qEval+qHash,t)-tddh
G,g (B) (21)

Proof. First notice that we are in a model of malicious corruption where the adversary can corrupt
parties after seeing the public parameters, but before start making any query. Nonetheless, the
public parameters has not information about the secrets and hence the choice of corrupt parties is
also independent of the secrets. Therefore, in a mental game it is fine for the challenger to choose
the secret keys after receiving the corrupt sets.

Let us assume that without loss of generality the adversary corrupts ℓ < t specific parties with
identities from n − ℓ + 1 to n. This leaves the gap between the threshold and the corrupt parties
t− ℓ ≥ 1. Let us set τ = t− ℓ− 1; all parties with identity in [τ ] honest as τ < n− ℓ.

Proof intuition. First the reduction needs to correctly guess each challenge query ahead of time for
which would incur a security loss of factor (qHash+qEval). This seems necessary to take into account
for evaluation/random oracle queries on challenge inputs made ahead of respective challenge queries.
We will do that one challenge at a time and by union bound this leads to an additional security loss
of a multiplicative factor qChl. Now, for a fixed challenge and conditioning on the correct guess,
assume that it is sufficient to show that (see below for the argument why this is sufficient) the
following two distributions are computationally indistinguishable: the real distribution [gA | gAr]

and the random distribution

[
gA |

[
gu

gA[−1]r
′

]]
where A← D⊗

qEval+qHash,τ+1, r←$ Zτ+1
p and r′←$ Zτ

p

and u←$ Zp. By (qEval + qHash, t)-TDDH we have that: the real distribution is indistinguishable

with another distribution (let us call it the ideal distribution) [gA | gz] for z←$ Z(qEval+qHash)
p .

However, we can use again (qEval + qHash, t)-tensor DDH to show indistinguishability between the
random and ideal distribution. Hence, we need to apply the (qEvalqHash, t)-tensor DDH assumption
twice which incurs an additional loss of a factor 2.

Finally we argue that why it is sufficient to show that the real and random distributions are
computationally indistinguishable. Note that, given the real distribution one can perfectly simulate
the entire real experiment in the DPRF game (when b = 0 in the description in Figure 5). The
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(i+1, j)−th entry for the matrix would be the response to the j-th evaluation query on party i ∈ [τ ]
is a unique index assigned to. The first row of the matrix consists of values with respect to the final
DPRF values. Note that for A = [s0 | s | 1] ⊗ r we implicitly have that H(xi) = gri , when H is a
random oracle. The values sj are implicitly set to the shares of party j ∈ [τ ] whereas the value s0 is
the original secret-key. Combining this with other ℓ independently chosen values sn−ℓ+1, . . . , sn we
have t points in total for constructing a t-degree polynomial Similarly the random distribution can
be used to perfectly simulate the DPRF security game with b = 1. This concludes the intuitions.

First let us define two mental games: Real which is the DPRF security game (see Fig, 5 condi-
tioned on b = 0, in that all challenge queries are output of the DPRF; and a game corresponding to
b = 1 called Rand. Overall there are qChl challenge queries to Chl. So we define (qChl+1) hybrid
games Hybi in which all j ∈ [i− 1]-th challenge queries are responded with random values and all
challenge queries in {i, . . . , qChl} are responded with real DPRF outputs using Combine. Let us
denote the challenge values by {x⋆1, . . . , x⋆qChl

} Clearly Hyb1 is identical to Real and HybqChl+1 is

identical to Rand. For each hybrid Hybi we define an additional hybrid Hybi which is the same as
Hybi except that: in response to the evaluation queries to Eval(j, x⋆i ) on the i-th challenge query
to a honest party j ∈ [τ ] is responded with a random value from G.

We state two lemma now.

Lemma 2. If there is a attacker Ai that can distinguish between hybrids Hybi+1 and Hybi making
qEval Eval queries and qHash Hash queries for all i ∈ [qChl] with advantage δi, we are able to
construct another attacker Bi running in similar time as Ai such that

δi ≤ (qHash + qEval) ·Adv
(qEval+qHash,τ+1)-tddh
G,g (Bi)

Lemma 3. If there is an attacker A′
i that can distinguish between hybrids Hybi and Hybi making

qEval Eval queries and qHash Hash queries for all i ∈ [qChl] with advantage εi, we are able to
construct another attacker B′i that runs in similar time as A′

i such that

εi ≤ (qHash + qEval) ·Adv
(qEval+qHash,τ)-tddh
G,g (B′i)

Notice that, combining the above two lemmas and applying this for all i ∈ [qChl] we obtain the
desired statement. In the rest we provide the proofs of these two lemma.

Proof of Lemma 2. We need Bi to simulate the games either Hybi or Hybi+1 for Ai from the
(τ + 1, qHash + qEval)-TDDH challenges. Bi works as follows:

1. Let qEval + qHash = γ. On receiving the public parameters (p, g,G) forward them to Ai.
Receive the TDDH challenge M = [gA | gb] where b is either uniform random (random
instance) or A ·u for some uniform random u (real instance). We expand A and b as follows
for notational convenience: 

r1s0 . . . rγs0
...

. . .
...

r1sτ . . . rγsτ
r1 . . . rγ

 ∈ Z(τ+2)×γ
p

b = [b0 | b1 | · · · bτ+1] ∈ Zτ+2
p
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2. Receive the set of corrupt parties, which is the parties with identities in {n − ℓ + 1, n} as
assumed without loss of generality. Choose random values sn−ℓ+1, . . . , sn ∈ Zp and give
out to the attacker as the shares of corrupt parties. Note that these values, together with
s0, s1, . . . , sτ , are t random points that define the t-degree polynomial used for secret-sharing
the value s0 which is the implicit DPRF secret-key. The key shares for parties in [τ ] are set
to be {sj}j∈[τ ]. Initiate a counter η = 0 for simulating hash and evaluation queries.

3. Simulate the hash queries Hash(x) and Eval(j, x) queries (made in any order) as follows:
guess an index j⋆←$ [qHash + qChl] for the i-th challenge query. If this is a new x that never
appeared earlier, increment the counter η and if η ̸= j⋆ return grη for hash query or gsjrη

for eval query from M implicitly. For the j⋆-th one, if it is a hash query reply with gbτ+1 ,
otherwise with gsjbj implicitly. If this is a repeated query reply consistently with that value
without incrementing the counter.

4. Simulate the j-th challenge query Chl by returning random values for j < i and correct
DPRF values for j > i. For the i-th challenge return b0.

Clearly when the TDDH instance is real B simulates Hybi+1 perfectly and when it is random then
it simulates Hybi. This concludes the proof.

Proof of Lemma 3. B′ needs to simulate Hybi and Hybi from real and random instances of TDDH
respectively. First note that, the hybrids Hybi and Hybi gets exactly same response from the
challenge oracle in all queries. The response only differs on evaluation queries on the i-th challenge
x⋆i . This is why the matrix A has one less row than the instance used in the previous proof. The
proof is very similar to the previous proof with some necessary changes. We highlight the changes
below in red.

1. Let qEval + qHash = γ. On receiving the public parameters (p, g,G) forward them to Ai.
Receive the TDDH challenge M = [gA | gb] where b is either uniform random (random
instance) or A · u for some uniform random u (real instance). We expand A as follows:

r1s1 . . . rγs1
...

. . .
...

r1sτ . . . rγsτ
r1 . . . rγ

 ∈ Z(τ+1)×γ
p

b = [b1 | · · · bτ+1] ∈ Zτ+2
p

2. Receive the set of corrupt parties, which is the parties with identities in {n − ℓ + 1, n} as
assumed without loss of generality. Choose random values s0, sn−ℓ+1, . . . , sn ∈ Zp and give
out to the attacker as the shares of corrupt parties. Note that these values, together with
s0, s1, . . . , sτ , are t random points that define the t-degree polynomial used for secret-sharing
the value s0 which is the chosen DPRF secret-key. The key shares for parties in [τ ] are set to
be {sj}j∈[τ ]. Initiate a counter η = 0 for simulating hash and evaluation queries.

3. Simulate the hash queries Hash(x) and Eval(j, x) queries (made in any order) as follows:
guess an index j⋆←$ [qHash + qChl] for the i-th challenge query. If this is a new x that never
appeared earlier, increment the counter η and if η ̸= j⋆ return grη for hash query or gsjrη

for eval query from M implicitly. For the j⋆-th one, if it is a hash query reply with gbτ+1 ,
otherwise with gsjbj implicitly. If this is a repeated query reply consistently with that value
without incrementing the counter.
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Scheme DVDDH
G

Proc Setup(n, t)

s←$ Zp

ppcom ← Setupcom
For j ∈ [t− 1] do cj ←$ Zp

For i ∈ [n]
si ← s+

∑
j∈[t−1] cj · ij

ri←$ {0, 1}κ
γi := Com(si, ppcom; ri)
ski := (si, ri)

Return ((sk1, . . . , skn),
(ppcom, γ1, . . . γn))

Proc Eval(pp, sk, x)

w := H(x); z := ws; (s, r) := sk
π ← NIZK.Prv(σ, µ)
Return (z, π)

Proc Combine(pp, L)

If |L| < t then return ⊥
{(i, zi, πi)} ← L
y ←

∏
i(zi)

λ0,i,S

Return y

Proc Verify(pp, x, L)

{(i, zi, πI)} ← L
w = H(x)
For i ∈ L do:
σi := (w, γi)
di := NIZK.Ver(σi, πi)

Return ∧idi

Figure 10: DDH-based DVRF. λ0,i,S are the Lagrange coefficients.

4. Simulate the j-th challenge query Chl by returning random values for j ≤ i and correct
DPRF values for j > i easily using the knowledge of s0 without using the TDDH instance.

Clearly when the TDDH instance is real B simulates Hybi perfectly and when it is random
then it simulates Hybi. This concludes the proof.

Combining Theorem 5 and Lemma 1, we obtain the following corollary.

Corollary 1. Let G = ⟨g⟩ be a group of prime order p. Let A be a DPRF adversary against
DPDDH

G,g . Let qEval, qHash, qChl be the number of queries A makes to the Eval,Hash,Chl oracles,
respectively. Then the proof gives a DDH adversary B such that

Advdprf

DPDDH
G,g ,n,t

(A) ≤ 4qChl(qHash + qEval) ·Advddh
G,g(B) (22)

6.1.6 Extension to DVRF.

The strongly-secure publicly verifiable version of the DPRF presented in DiSE [AMMR18a], which
in turn builds on the Naor et al. [NPR99] construction, satisfies our definition. The algorithm
Verify would simply verify the NIZK proofs included in each partial evaluation. For completeness,
we provide the construction in Figure 10. It is an extension of the DPRF construction provided in
Figure 9. It additionally uses a trapdoor commitment scheme (Setupcom,Com) and a (simulation
sound) NIZK proof system4 (NIZK.Prv,NIZK.Ver) with perfect soundness and failure probability
of zero-knowledge simulator εzk. In particular, the NIZK system is used to prove relations of the
form {∃ (s, r) : z = ws ∧ γ = Com(s, ppcom; r)} with statement σ := (z, w, γ, ppcom) and witness
µ := (s, r). For formal definitions of these we refer to the full version of DiSE [AMMR18b].

It is easy to see that the robustness advantage will be bounded by the failure probability
of NIZK simulation soundness for t proofs. But since we use a NIZK with 0 soundness we get
Advdvrf−rob

DP,n,t (A) = 0. Furthermore, to prove the DVRF security as per Figure 6a, a reduction
would need to produce simulated proofs. So the adversary’s advantage will increase by an additive
factor of t · qChl · εzk. The security can be formalized as follows.

4The concrete implementation will be assuming random oracles, but here we keep it implicit for simplicity.
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Scheme TAE2[DP,SIG, k]

Proc Splitenc(j,m, S)

Require |S| ≥ t
Let S′ be a t-sized subset of S
r ← {0, 1}k ; α← H(m∥r)
st← (j, α,m, r)
Return ({(i, α)}i∈S′ , st)

Proc Evalenc(ski, j, α)

(skDP,i, skSIG,i)← ski
y ← DP.Eval(skDP,i, j∥α)
σ ← SIG.PartSign(skSIG,i, j∥α)
Return (y, σ)

Proc Combineenc(R, st)

(j, α,m, r)← st ; {(i, (yi, σi))} ← R
β ← DP.Combine({(i, yi)})
σ ← SIG.CombSig(vk, {(i, σi)})
If VerSig(vk, j∥α, σ) ̸= 1 then return ⊥
e← G(β)⊕ (m∥r)
Return (j, α, σ, e)

Proc Setup(n, t)

(JskDPKn, ppDP)←$ DP.Setup(n, t)
(JskSIGKn, vk)←$ SIG.Setup(n, t)
For i ∈ [n] do ski ← (skDP,i, skSIG,i)
pp← (ppDP, vk)
Return ((sk1, . . . , skn), pp)

Proc Splitdec(j, c, S)

Require |S| ≥ t
Let S′ be a t-sized subset of S
(j, α, σ, e)← c ; st← (j, α, e)
Return ({(i, (j∥α, σ))}i∈S′ , st)

Proc Evaldec(ski, j, x)

(ppDP, vk)← pp ; (j∥α, σ)← x
(skDP,i, skSIG,i)← ski
If SIG.VerSig(vk, j∥α, σ) then
Return DP.Eval(skDP,i, j∥α)

Else return ⊥
Proc Combinedec(R, st)

(j, α, e)← st
β ← DP.Combine(R)
m∥r ← G(β)⊕ e
If (H(m∥r) ̸= α) then return ⊥
Return m

Figure 11: DPRF & threshold signature based TAE scheme.

Theorem 5. Let G = ⟨g⟩ be a group of prime order p. Let A be a DVRF adversary against
DVDDH

G,g . Let qEval, qHash, qChl be the number of queries A makes to the Eval,Hash,Chl oracles,
respectively. The proof gives a (qEval, t)-TDDH adversary B such that

Advdvrf
DVDDH

G,g ,n,t
(A) ≤ 2qChl(qEval + qHash) ·Adv

(qEval+qHash,t)-tddh
G,g (B) + t · qChl · εzk. (23)

The proof of the above theorem is similar to the proof of Theorem 5 and is therefore omitted.
Combining Theorem 5 and Lemma 1, we obtain:

Corollary 2. Let G = ⟨g⟩ be a group of prime order p. Let A be a DVRF adversary against
DVDDH

G,g . Let qEval, qHash, qChl be the number of queries A makes to the Eval,Hash,Chl oracles,
respectively. Then the proof gives a DDH adversary B such that

Advdvrf
DVDDH

G,g ,n,t
(A) ≤ 4qChl(qHash + qEval) ·Advddh

G,g(B) + t · qChl · εzk (24)

6.2 IND-RCCA TAE using DPRF and Threshold Signature

The construction TAE2 is parameterized by a DPRF DP, a threshold signature scheme SIG, and
an integer k. The specification of the construction is given in Figure 11. We explain below the
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high-level ideas of the scheme.

Keys. Each party holds a key share of the DPRF key and a key share of the threshold signature
signing key.

Encryption. When initiator j is encrypting a message m, a commitment α = H(m∥r) is generated
for the message m by using hash function H (modeled as a random oracle with input space {0, 1}∗
and output space DP.In) and randomly generated r. The DPRF output, β ← DP(j∥α), is used
as an encryption key to encrypt message m and randomness r into c ← G(β) ⊕ (m∥r), where G
is a random oracle with input space {0, 1}k and output space {0, 1}∞. Meanwhile, a threshold
signature σ on j∥α is also generated using SIG. The final ciphertext is (j, α, σ, c).

Decryption. When an initiator j′ is decrypting a ciphertext (j, α, σ, c) (note that j′ does not have
to equal j), each party i receives (j∥α, σ) and first verifies if σ is a valid signature on j∥α before
returning the Eval output of DP. After reconstructing the DPRF output β, the initiator can recover
the message m and randomness r. It checks if H(m∥r) = α. If the check succeeds, then plaintext
m is returned. Otherwise, decryption fails and ⊥ is returned.

Capturing the decryption criteria. In the scheme TAE2, for a ciphertext c = (j, α, σ, e), Splitdec(c, S)
returns a list ({(i, (j∥α, σ))}i∈S′ , where S′ is a t-sized subset of S. The multiset Eval-MSet(c) just
has the element (j∥α, σ) repeated t times. Evaldec, with inputs ski and (j∥α, σ), outputs a non-⊥
value if σ is a valid signature. Therefore, for a set CR, Eval-MSet(c, CR) is either Eval-MSet(c) (if
σ is invalid) or the set with (j∥α, σ) repeated t− |CR| times.

Theorem 6. Let TAE = TAE2[DP,SIG, k]. Let A be an adversary in the IND-RCCA game against
TAE (Figure 2). Suppose A makes qH and qG queries to oracles H and G, respectively. Further,
it makes qenc, qEval and qdec queries to encryption (Splitenc, Combineenc), evaluation (Evalenc,
Evaldec) and decryption procedures (Splitdec, Combinedec), respectively. Then there exist adver-
saries B and C such that

Advind-rcca
TAE,n,t (A) ≤

(qenc + qdec)
2

|DP.In|
+

q2enc + 2 · qH · qenc
2k

+
2 · qG · qenc
|DP.Out|

+ 2 ·Advsig
SIG,n,t(B) + 2 ·Advdprf

DP,n,t(C) .
(25)

6.2.1 Proof of Theorem 6

TAE game. As the first step in the proof, we instantiate the RCCA security game from Figure 2
with the scheme TAE2. The instantiated game, say G1, is described in full detail in Figure 12.
Let us fix an adversary A in the game. We assume that A makes qH and qG queries to oracles
H and G, respectively. It also makes qenc, qEval and qdec queries to encryption, evaluation and
decryption procedures, respectively. Note that qenc, for example, is the total number of queries
made to Splitenc and Combineenc (under challenge encryption sessions).

Unique RO outputs. The first modification we make toG1 is a simple one. Observe that the random
function H appears in exactly two places in the game, in the oracles Splitenc and Combinedec.
We replace H with a new function that behaves exactly like H but for distinct inputs in Splitenc

and Combinedec, it produces distinct outputs. We call the modified game G2. Using a birthday
bound, we have

P
[
G1

]
−P

[
G2

]
≤ (qenc + qdec)

2

2|DP.In|
.

Unique encryption randomness. The second step is to modify how the randomness ru (a k-bit
string) is sampled in Splitenc. We define a new game G3 where ru is still chosen at random but

36



Game Gind−cca
TAE2,n,t(A)

b←$ {0, 1}
(JskDPKn, ppDP)←$ DP.Setup(n, t)
(JskSIGKn, vk)←$ SIG.Setup(n, t)
For i ∈ [n] do ski ← (skDP,i, skSIG,i)
pp← (ppDP, vk)
(CR, stA)←$A0(pp)

b′←$A⟨Proc⟩
1 (stA, (ski)i∈CR)

If |DecSet| >
⌊

ctEval
t−|CR|

⌋
then forgery← True

If (∃c ∈ ChlCtxt : Eval-MSet(c, CR) ⊆ Qdec)
Return (b′′←$ {0, 1}) ∨ forgery

Return (b = b′) ∨ forgery

Challenge encryption sessions

Proc Splitenc(id,m0,m1, S)

Require id ̸∈ CR, |m0| = |m1|, |S| ≥ t
u← u+ 1; idu ← id
mu,0 ← m0; mu,1 ← m1

Let S′ be a t-sized subset of S
ru ← {0, 1}k ; αu ← H(mu,b∥ru)
Lu ← {(i, αu)}i∈S′

Return {(i, x) ∈ Lu | i ∈ CR}

Proc Combineenc(u, rsp)

For (i, x) ∈ Lu with i ̸∈ CR do
yi ← DP.Eval(skDP,i, idu∥αu)
σi ← SIG.PartSign(skSIG,i, idu∥αu)

For (i, x) ∈ Lu with i ∈ CR do
(yi, σi)← rsp[(i, x)]

β ← DP.Combine({(i, yi)})
σ ← SIG.CombSig(vk, {(i, σi)})
If VerSig(vk, idu∥αu, σ) ̸= 1 then return ⊥
e← G(β)⊕ (mu,b∥ru)
cu ← (idu, αu, σ, e)
If mu,0 = mu,1 then
EncCtxt← EncCtxt ∪ {cu}
EncMsg← EncMsg ∪ {mu,0}

Else
ChlCtxt← ChlCtxt ∪ {cu}
ChlMsg← ChlMsg ∪ {mu,0,mu,1}

Return cu

Sessions initiated by adversary

Proc Evalenc(eid, id, x)

Require eid ̸∈ CR, id ∈ CR
ctEval ← ctEval + 1 ; α← x
y ← DP.Eval(skDP,eid, id∥α)
σ ← SIG.PartSign(skSIG,eid, id∥α)
Return (y, σ)

Proc Evaldec(eid, id, x)

Require eid ̸∈ CR, id ∈ CR
Qdec ← Qdec ⊎ {x}
(j∥α, σ)← x
If SIG.VerSig(vk, j∥α, σ) then
Return DP.Eval(skDP,eid, j∥α)

Else return ⊥

Decryption sessions

Proc Splitdec(id, c, S)

Require id ̸∈ CR, |S| ≥ t
v ← v + 1 ; idv ← id ; cv ← c
Let S′ be a t-sized subset of S
(jv, αv, σv, ev)← c
Lv ← {(i, (jv∥αv, σv))}i∈S′

Return {(i, x) ∈ Lv | i ∈ CR}

Proc Combinedec(v, rsp)

For (i, x) ∈ Lv with i ̸∈ CR do
If SIG.VerSig(vk, jv∥αv, σv) then
yi ← DP.Eval(skDP,i, jv∥αv)

Else yi ← ⊥
For (i, x) ∈ Lv with i ∈ CR do
yi ← rsp[(i, x)]

β ← DP.Combine({(i, yi)})
mv∥rv ← G(β)⊕ ev
If (H(mv∥rv) ̸= αv) then mv ← ⊥
Require mv ̸∈ ChlMsg
fresh← (mv ̸∈ EncMsg)
If mv ̸= ⊥ and fresh then
DecSet← DecSet ∪ {mv}

Return mv

Figure 12: Game from Figure 2 instantiated with TAE2.
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Proc Combine⋆dec(v, rsp)

If ((jv /∈ CR) ∧ ((jv, αv, σ
⋆, e⋆) /∈ EncCtxt ∪ ChlCtxt for any σ⋆, e⋆))

Return ⊥
For (i, x) ∈ Lv with i ̸∈ CR do
If SIG.VerSig(vk, jv∥αv, σv) then
yi ← DP.Eval(skDP,i, jv∥αv)

Else yi ← ⊥
For (i, x) ∈ Lv with i ∈ CR do
yi ← rsp[(i, x)]

β ← DP.Combine({(i, yi)})
mv∥rv ← G(β)⊕ ev
If (H(mv∥rv) ̸= αv) then mv ← ⊥
Require mv ̸∈ ChlMsg
fresh← (mv ̸∈ EncMsg)
If mv ̸= ⊥ and fresh then
DecSet← DecSet ∪ {mv}

Return mv

Figure 13: Combine decryption oracle for G4. The difference from Combinedec is highlighted in
red.

without repetition. We can see that

P
[
G2

]
−P

[
G3

]
≤ q2enc

2 · 2k
.

Note that in G3, every ciphertext cu = (idu, αu, σ, e) produced by Combineenc is unique because a
different αu is generated every time in Splitenc.

New combine oracle for decryption. The next step is to change the behavior of Combinedec. In the
new game, G4, we have a new oracle Combine⋆dec, described formally in Figure 13. The behavior of
Combine⋆dec is different from Combinedec when (jv /∈ CR) and (jv, αv, σ

⋆, e⋆) /∈ ChlCtxt ∪ EncCtxt
for any σ⋆, e⋆. In this case, Combine⋆dec immediately returns ⊥. In particular, no attempt at
decryption is made and nothing is added to DecSet. On the other hand, Combinedec will attempt
to decrypt the ciphertext, which can succeed or fail. If the attempt fails, then note that nothing is
added to DecSet and ⊥ is returned.

There are only two oracles that generate (partial) signatures, Combineenc and Evalenc. Evalenc
actually generates partial signatures only on id∥α for id ∈ CR. So the only way to get any type
of signature on j∥α for j /∈ CR and some α is through Combineenc. Moreover, Combineenc only
returns a full signature. Therefore, if Combinedec is called with a ciphertext cv = (jv, αv, σv, ev)
where jv /∈ CR, either σv is not a valid signature on jv∥αv, or some signature σ⋆ on it must have been
returned by Combineenc as part of some ciphertext. Thus a ciphertext of the form (jv, αv, σ

⋆, e⋆)
for some e⋆ must be in either EncCtxt or ChlCtxt.

In other words, if (jv, αv, σ
⋆, e⋆) /∈ ChlCtxt ∪ EncCtxt for any choice of σ⋆, e⋆, then either σ⋆ is

not a valid signature (in which case Combinedec’s attempt at decryption will fail) or adversary has
managed to forge a signature. Thus, we can construct an attacker B0 such that

P
[
G3

]
−P

[
G4

]
≤ Advsig

SIG,n,t(B0) .

38



Proc Combine⋆⋆dec(v, rsp)

If (jv /∈ CR)
If ((jv, αv, σ

⋆, e⋆) /∈ EncCtxt ∪ ChlCtxt for any σ⋆, e⋆)
Return ⊥

Else If ((jv, αv, σ
⋆, e⋆) ∈ ChlCtxt for some σ⋆, e⋆)

Return ⊥
For (i, x) ∈ Lv with i ̸∈ CR do
If SIG.VerSig(vk, jv∥αv, σv) then
yi ← DP.Eval(skDP,i, jv∥αv)

Else yi ← ⊥
For (i, x) ∈ Lv with i ∈ CR do
yi ← rsp[(i, x)]

β ← DP.Combine({(i, yi)})
mv∥rv ← G(β)⊕ ev
If (H(mv∥rv) ̸= αv) then mv ← ⊥
Require mv ̸∈ ChlMsg
fresh← (mv ̸∈ EncMsg)
If mv ̸= ⊥ and fresh then
DecSet← DecSet ∪ {mv}

Return mv

Figure 14: Combine decryption oracle for G5.

Another change to combine. We define another game G5 that modifies Combine⋆dec further. We
call the new oracle Combine⋆⋆dec and describe it formally in Figure 14. The only difference from
Combine⋆dec is the addition of a new abort condition: If (jv, αv, σ

⋆, e⋆) ∈ ChlCtxt for some σ⋆, e⋆,
then Combine⋆⋆dec immediately returns ⊥. The new condition is added under jv /∈ CR.

Let us consider what happens whenCombine⋆dec (from previous game) tries to decrypt (jv, αv, σv, ev)
such that (jv, αv, σ

⋆, e⋆) ∈ ChlCtxt for some σ⋆, e⋆. Either the decryption succeeds or fails. If it
fails, then nothing is added to DecSet and ⊥ is returned (the same effect as in Combine⋆⋆dec). If the
decryption succeeds, then a message mv is recovered.

Note that the condition (jv, αv, σ
⋆, e⋆) ∈ ChlCtxt could be satisfied for at most one σ⋆, e⋆ because

α is unique for every ciphertext added to ChlCtxt. Let m⋆ be the message that was encrypted to
(jv, αv, σ

⋆, e⋆) in Combineenc (thus, m⋆ ∈ ChlMsg). Either mv (from previous paragraph) is same
as m⋆ or it isn’t. If mv = m⋆ then mv ∈ ChlMsg, which forces Combine⋆dec to abort. If mv ̸= m⋆

then H(mv∥rv) = αv (because decryption succeeded) and αv = H(m⋆∥r) for some r (this is how αv

is derived in Splitenc). Thus H(mv∥rv) = H(m⋆∥r) for mv ̸= m⋆. This, however, is not possible
because H maps distinct inputs in Splitenc and Combine⋆dec to distinct outputs.

In a nutshell, we can see that adding the new abort condition in Combine⋆⋆dec does not matter.
Put simply,

P
[
G4

]
−P

[
G5

]
= 0 .

There are a few things to note about the newest version of combine decryption, Combine⋆⋆dec.
It starts the decryption process only under two cases: either jv ∈ CR or (jv, αv, σ

⋆, e⋆) ∈ EncCtxt
for some σ⋆, e⋆. In the latter case, we now argue that nothing is added to DecSet. Clearly, if the
decryption fails, then nothing is added. On the other hand, if a valid message mv is recovered,
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then it could be same as m⋆ or not (where m⋆ is defined the same way as above). We know that
mv ̸= m⋆ is not possible and, if they are equal, mv ∈ EncMsg. In the latter case, fresh is set to
False so, once again, nothing is added to DecSet. To summarize, DecSet can only be modified if
jv ∈ CR.
Removing forgery check. In the next game, G6, we get rid of the forgery check but the rest remains
the same as before (Figure 15). The output of G6 can differ from G5 only when the size of DecSet
is larger than ⌊ctEval/g⌋, where g := t− |CR|. Let us consider what happens when this condition is
satisfied in the previous game, G5.

Game G5(A)
b←$ {0, 1}
(JskDPKn, ppDP)←$ DP.Setup(n, t)
(JskSIGKn, vk)←$ SIG.Setup(n, t)
For i ∈ [n] do ski ← (skDP,i, skSIG,i)
pp← (ppDP, vk)
(CR, stA)←$A0(pp)

b′←$A⟨Proc⟩
1 (stA, (ski)i∈CR)

If |DecSet| >
⌊

ctEval
t−|CR|

⌋
then forgery← True

If (∃c ∈ ChlCtxt : Eval-MSet(c, CR) ⊆ Qdec)
Return (b′′←$ {0, 1}) ∨forgery

Return (b = b′) ∨forgery

Figure 15: Forgery check removed

Previously, we argued that the size of DecSet can only increase if jv ∈ CR. If the size of DecSet
is d after the adversary is done querying the oracles (i.e., after A1 outputs b′), then it must be
that d distinct messages were added to DecSet. Thus, at least d ciphertexts with jv ∈ CR must
have been decrypted successfully, each with a different αv. (If two ciphertexts have the same αv,
they cannot decrypt to two valid messages.) Therefore, signature verification on at least d distinct
values of the form jv∥αv must have succeeded.

Now observe that only the oracle Evalenc generates signatures on id∥α for id ∈ CR. A single
call returns just one partial signature and at least g partial signatures are needed to produce a full
signature. Therefore, if the oracle has been called ctEval times, signatures on at most ⌊ctEval/g⌋
values can be produced. So, if d > ⌊ctEval/g⌋, adversary was able to forge a signature successfully.
We can use this adversary to build an attacker B1 such that

P
[
G5

]
−P

[
G6

]
≤ Advsig

SIG,n,t(B1) .

Declining evaluation & encryption. The next step is to modify Evaldec and Combineenc for a
new game G7. The new oracle Eval⋆dec adds an extra check right after adding x to Qdec: if the
query x = (j∥α, σ) belongs to a ciphertext in ChlCtxt and has been queried g − 1 times or more
before, then return ⊥. The new oracle Combine⋆enc adds an extra check right after σ is computed:
if mu,0 ̸= mu,1 and (idu∥αu, σ) has already been queried to Eval⋆dec g times or more, then return
⊥. (Also, Combine⋆enc defers the computation of β till after this check is complete.)

Let us define an event E. We say that E happens if ∃c ∈ ChlCtxt s.t. Eval-MSet(c, CR) ⊆ Qdec

(see Figure 15, after A outputs b′). We want to show that the games G6 and G7 have the same
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output distribution. We break this down into two cases, depending on whether E happens or not.
If E does happen, then both games just output a random bit (so their output distribution is clearly
the same). If E does not happen, then the output of the games is determined by the output of A.

We will argue that the probability that E happens is the same in both the games. Moreover, if
E does not happen, the output distribution of both the games is the same.

Fix a random tape for the adversary A. Also fix the random choices made inG6 andG7. In fact,
consider the same random choices for both the games. Suppose E happens in G6. This implies
that for some c = (j, α, σ, e) ∈ ChlCtxt, Eval-MSet(c, CR) ⊆ Qdec. Recall that for a ciphertext
c′ = (j′, α′, σ′, e′), the multiset Eval-MSet(c′, CR) just contains (j′∥α′, σ′), but repeated g times.
Also note that in G6, the multiset Qdec is modified only in the oracle Evaldec; whenever (j∥α, σ)
is queried to Evaldec, it is added to Qdec. (For game G7, just replace Evaldec with Eval⋆dec.)
Therefore, if Eval-MSet(c, CR) ⊆ Qdec, then (j∥α, σ) must have been input to Evaldec (or Eval

⋆
dec)

at least g times (and vice versa). The g-th (j∥α, σ) query could have been made either before or
after c is added to ChlCtxt.

Recall that we are under the assumption that E happens in G6. Let c
′ = (j′, α′, σ′, e′) ∈ ChlCtxt

be the first ciphertext for which a g-th query, on (j′∥α′, σ′), is made to Evaldec. Let Q be this
query. (Note that c′ may not have been added to ChlCtxt before Q.) Before Q is made, for all
ciphertexts that will eventually be added to ChlCtxt, A has not yet made the corresponding g-th
query to Evaldec. Let us focus on the period before Q in the new game G7. We can easily see that
the new condition added to Eval⋆dec will not be true in this period. On the other hand, the new
condition added to Combine⋆enc could be true when some query Q′ is made. However, when the
same query is made to Combineenc, it must not recover a valid ciphertext (else for this ciphertext,
at least g queries have already been made). Thus, the output of Combine⋆enc and Combineenc is
the same for any query made before Q.

To sum up, up to the point Q, A has the same view in both the games. So if it makes the Q-th
query in G6, it will also make the same query in G7. In other words, if E happens in G6, it will
also happen in G7.

We can extend this argument to the case when E does not happen in G6. A query of type Q
will never be made in this case, so A’s view until the end of the game will be same in both the
games. E will not happen in G7 either and A will output the same bit. To conclude,

P
[
G6

]
−P

[
G7

]
= 0 .

Pseudorandomness of DPRF. For the next game, G8, we change the oracle Combine⋆enc. When
mu,0 ̸= mu,1, DP.Eval and DP.Combine are not used to compute β. Instead, a random value of the
same length is used. We call the new oracle Combine⋆⋆enc.

We can show that if the DPRF DP is pseudorandom, then G7 and G8 are indistinguishable. In
other words, we can construct an attacker C s.t.

P
[
G7

]
−P

[
G8

]
≤ Advdprf

DP,n,t(C) .

C will take part in the DPRF security game (Figure 5), and try to simulate games G7 and G8 for
A. In the DPRF game, C has access to oracles Eval and Chl. For clarity in the text below, we
will refer to them as DP.Eval and DP.Chl, respectively.

Let us first see where and how DP.Eval is used in the two games, and compare that with its
use in the two oracles, Combine⋆enc and Combine⋆⋆enc. Evalenc uses DP.Eval but only on id∥α s.t.
id ∈ CR. Eval⋆dec uses DP.Eval too but for a ciphertext c = (j, α, σ, e) ∈ ChlCtxt, it returns ⊥
for the g-th onwards call on (j∥α, σ). Combine⋆⋆dec also uses DP.Eval but only when jv ∈ CR or
(jv, αv, σ

⋆, e⋆) ∈ EncCtxt for some σ⋆, e⋆.
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Now we are ready to discuss C’s strategy. In the simulation of combine encryption oracle,
when mu,0 ̸= mu,1, it would not try to evaluate DP. Instead, it would query DP.Chl with inputs
idu∥αu, S

′ and rsp, where idu /∈ CR, and use the value returned in place of β. In the simulation of
other oracles, if DP.Eval is needed for i-th party on input j∥α, then C invokes the oracle DP.Eval
on inputs i and j∥α. At the end, C outputs whatever A does.

This strategy can work only if idu∥αu is queried to DP.Eval strictly less than g times. C’s
queries to DP.Eval in the simulation of Evalenc and Combine⋆⋆dec are not a problem because at
least one of j or α is different. However, simulation of Eval⋆dec may require invoking DP.Eval
with idu∥αu. Nonetheless, two important things must be noted here. First, for C to even get to the
stage of invoking DP.Chl in the simulation of combine encryption, A must have queried Eval⋆dec
with input (idu∥αu, σ) strictly less than g times (else, the combine oracle is supposed to just return
⊥). Second, after (idu, αu, σ, e) is added to ChlCtxt, if subsequent calls on (idu∥αu, σ) are made to
Eval⋆dec so that the total number of them exceeds g − 1, then C does not need to invoke DP.Eval
because Eval⋆dec is supposed to just return ⊥.
Final steps. In the next game, G9, e is replaced with a random value in Combine⋆⋆enc when
mu,0 ̸= mu,1. In the previous game, e is the XOR of G(β) and (mu,b∥ru), where β is a random
value which is not used anywhere else. If G is modeled as a random oracle, then the e values appear
completely random to A as long as it never queries for any of the β values. So, by applying a union
bound, we have

P
[
G8

]
−P

[
G9

]
≤ qG · qenc
|DP.Out|

.

The final step is to replace αu with a random value in Splitenc. The new game is called G10.
In this game, no information about the bit b is available to the adversary. In the previous game,
αu is defined to be H(mu,b∥ru), where ru is random k-bit value which is not used anywhere else. If
H is modeled as a random oracle, then the αu values appear completely random to A as long as it
never queries for any of the ru values. Thus, we have

P
[
G9

]
−P

[
G10

]
≤ qH · qenc

2k
.

6.3 IND-CCA construction from DVRF & threshold signatures

In this section, we construct an IND-CCA secure TAE scheme. We start with the construction
in Section 6 which was based on DPRF and threshold signature. We replace the DPRF in TAE2
with a DVRF. The new construction, TAE3, can actually be shown to be IND-CCA secure. The
DVRF, in turn, can be instantiated in several ways. We discussed one instantiation, that adds
efficient zero-knowledge proofs to the Naor et al. [NPR99] DDH-based DPRF construction similar
to AMMR, in Appendix 6.1.4.

We present TAE3 formally in Figure 16. The construction is the same as TAE2 but DPRF is
replaced with a DVRF. The important thing to note is that both Combineenc and Combinedec verify
the PRF shares before combining them. If verification fails, then they return ⊥. The security is
formalized as follows.

Theorem 7. Let TAE = TAE3[DV, SIG, k]. Let A be an adversary in the IND-CCA game against
TAE (Figure 2). Suppose A makes qH and qG queries to oracles H and G, respectively. Further,
it makes qenc, qEval and qdec queries to encryption (Splitenc, Combineenc), evaluation (Evalenc,
Evaldec) and decryption procedures (Splitdec, Combinedec), respectively. Then there exist adver-
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saries B, C and D such that

Advind-rcca
TAE,n,t (A) ≤

(qenc + qdec)
2

|DV.In|
+

q2enc + 2 · qH · qenc
2k

+
2 · qG · qenc
|DV.Out|

+ 2 ·Advsig
SIG,n,t(B) + 2 ·Advdvrf

( (C)) + 4 ·Advdvrf−rob
DP,n,t (D) .

(26)

We can prove the theorem in a manner similar to Theorem 6. We need a stronger security
guarantee now though. IND-RCCA allows ciphertexts to be modified as long as the underlying
message remains the same but IND-CCA does not allow that. However, we have a DVRF now.

Scheme TAE3[DV, SIG, k]

Proc Splitenc(j,m, S)

Require |S| ≥ t
Let S′ be a t-sized subset of S
r ← {0, 1}k ; α← H(m∥r)
st← (j, α,m, r)
Return ({(i, α)}i∈S′ , st)

Proc Evalenc(ski, j, α)

(skDV,i, skSIG,i)← ski
y ← DV.Eval(skDV,i, j∥α)
σ ← SIG.PartSign(skSIG,i, j∥α)
Return (y, σ)

Proc Combineenc(R, st)

(j, α,m, r)← st ; {(i, (yi, σi))} ← R
If DV.Verify(j∥α, {(i, yi)}) then
β ← DV.Combine({(i, yi)})

Else return ⊥
σ ← SIG.CombSig(vk, {(i, σi)})
If VerSig(vk, j∥α, σ) ̸= 1 then return ⊥
e← G(β)⊕ (m∥r)
Return (j, α, σ, e)

Proc Setup(n, t)

(JskDVKn, ppDV)←$ DV.Setup(n, t)
(JskSIGKn, vk)←$ SIG.Setup(n, t)
For i ∈ [n] do ski ← (skDV,i, skSIG,i)
pp← (ppDV, vk)
Return ((sk1, . . . , skn), pp)

Proc Splitdec(j, c, S)

Require |S| ≥ t
Let S′ be a t-sized subset of S
(j, α, σ, e)← c ; st← (j, α, e)
Return ({(i, (j∥α, σ))}i∈S′ , st)

Proc Evaldec(ski, j, x)

(ppDV, vk)← pp ; (j∥α, σ)← x
(skDV,i, skSIG,i)← ski
If SIG.VerSig(vk, j∥α, σ) then
Return DV.Eval(skDV,i, j∥α)

Else return ⊥
Proc Combinedec(R, st)

(j, α, e)← st
If DV.Verify(j∥α,R) then
β ← DV.Combine(R)

Else return ⊥
m∥r ← G(β)⊕ e
If (H(m∥r) ̸= α) then return ⊥
Return m

Figure 16: DVRF & threshold signature based TAE scheme.

6.4 Proof of Theorem 7

We will prove Theorem 7 in a manner similar to Theorem 6. Instead of the weaker RCCA security
though, we have to prove CCA security now (both are defined in Figure 2). Fix an adversary A in
the CCA security game.
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We will go through a series of games. Proof of Theorem 6 in Appendix ?? (henceforth referred
to as RCCA proof) defines games G1 through G10. We will consider similar games here but will
denote them with G′

i for clarity.

Games 1-3. In RCCA proof, G1 is just the RCCA TAE game instantiated with TAE2. Here, G′
1

will be the instantiation of the CCA version of TAE game with TAE3. We can then define G′
2 and

G′
3 in a manner similar to RCCA proof and show that the security loss in going from G′

1 to G′
3

will be the same.

New combine oracle for decryption. Recall that G4 defines the oracle Combine⋆dec which checks if
(jv /∈ CR) and (jv, αv, σ

⋆, e⋆) /∈ ChlCtxt ∪ EncCtxt for any σ⋆, e⋆. If so, it immediately returns ⊥.
Indistinguishability of G3 and G4 in RCCA proof follows from the unforgeability of the signature
scheme: σv must be a valid signature for decryption to succeed but such signatures for jv /∈ CR
can only come from Combineenc.

We can define a stronger form of G4 here, called G′
4. Combine⋆dec will check if (jv /∈ CR) and

(jv, αv, σv, e
⋆) /∈ ChlCtxt ∪ EncCtxt for any e⋆. In simple words, we require that if jv /∈ CR, then

the first three components of the ciphertext (not just two) must match with some ciphertext in
ChlCtxt or EncCtxt, otherwise Combine⋆dec will abort immediately. This does not have any effect
on the analysis though if SIG produces unique signatures.

Verifiability of DVRF. We will use the verifiability of DVRF to define a new intermediate game
here, a game that was not present in RCCA proof. Thus, we will call the new game G′

4.5. In this
game, we will again modify the combine decryption oracle. The new oracle is called Combine′dec.
In Combine⋆dec from the previous game, if jv /∈ CR, then (jv, αv, σv, e

⋆) must be in ChlCtxt or
EncCtxt for some e⋆ (otherwise it aborts). We know that there could be at most one ciphertext c
in ChlCtxt ∪ EncCtxt with which the first three components of cv match (because α is unique for
every ciphertext in Combineenc). Let β be the DVRF value generated in Combineenc for c. (This
value may not be the true DPRF value though because adversary can provide malformed partial
values.) In Combine′dec, when jv /∈ CR, instead of first verifying the yi values and then computing
a new β, say βv, we compute βv directly. If βv ̸= β, then Combine′dec returns ⊥.

We can show the advantage of A in distinguishing G′
4 and G′

4.5 can be bounded by twice
the advantage of an adversary D in the DVRF robustness game (Figure 6b). The idea is simple:
Consider the ciphertext cv = (jv, αv, σv, e

⋆) from above. Suppose it is successfully decrypted by
Combine⋆dec but Combine′dec returns ⊥ because of the new condition. Then DVRF verification
must succeed in Combine⋆dec but βv recovered is different from β. Note that DVRF verification
for β has already succeeded in Combineenc. Now, if verification succeeds for two different DPRF
values on the same jv∥αv, one of them must not be correct.

Thus, the adversary D looks for a βv ̸= β in the simulation of combine decryption for which
verification succeeds. When it finds such a pair, it outputs one of βv or β at random. We have that

P
[
G′

4

]
−P

[
G′

4.5

]
≤ 2 ·Advdvrf−rob

DP,n,t (D) .

Another change to combine. In RCCA proof, G5 defines another combine decryption oracle,
Combine⋆⋆dec. If (jv, αv, σ

⋆, e⋆) ∈ ChlCtxt for some σ⋆, e⋆, then Combine⋆⋆dec immediately returns ⊥.
Combine⋆⋆dec for G′

5 will be slightly different as expected. It returns ⊥ if (jv, αv, σv, e
⋆) ∈ ChlCtxt

for some e⋆.
We know that c⋆ = (jv, αv, σv, e

⋆) ∈ ChlCtxt could be satisfied for at most one e⋆. Let m⋆ be
the message that was encrypted to c⋆ in Combineenc and β⋆ be the recovered DPRF value. In
RCCA proof, we were able to argue that mv ̸= m⋆ is not possible (outputs of H do not collide) and
mv = m⋆ is not a problem (because mv ∈ ChlMsg is required).
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Here, the situation is different because we want CCA security. If c⋆ successfully decrypts, then
it will be added to DecSet. However, we know that ev cannot be equal to e⋆, else Splitdec itself
would have aborted. When decryption of c⋆ starts, Combine′dec would only proceed if β = β⋆ (see
the previous paragraph for β⋆). If β = β⋆ but ev ̸= e⋆, an mv different from m⋆ is recovered, which
is not possible. Thus, we have:

P
[
G′

4.5

]
−P

[
G′

5

]
= 0 .

As defined, Combine⋆⋆dec starts the decryption process only under two cases: either jv ∈ CR
or (jv, αv, σv, e

⋆) ∈ EncCtxt for some e⋆. As in RCCA proof, we can argue that in the latter case,
nothing is added to DecSet but the argument here would be different. We know that e⋆ is unique
and if ev = e⋆, then cv = c⋆. As a result, fresh will be set of False and DecSet will not be affected.
On the other hand, when ev ̸= e⋆, we can argue that decryption will fail (in the same manner as
above).

Remaining games. The remaining games in RCCA proof can also be defined here (with appropriate
adjustments) and their analysis would essentially be the same. We will also incur the same security
loss when switching between the games. We skip the details and conclude the proof here.
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A Performance Experiments

We implement our protocols TAE1 of Figure 4 and TAE3 of Figure 16 and report on their perfor-
mance. All performance results are obtained on a single laptop with an Intel i7 9th Gen (9740H)
CPU and 16GB of RAM. Network communication was routed over local host with a theoretical
bandwidth of 10Gbps and a measured latency of 0.1 milliseconds. Each party is run on a single
thread.

t n
Throughput Latency

(enc/s) (Mbps) (ms/enc)
TAE1 DiSE1 TAE3 DiSE2 TAE1 DiSE1 TAE3 DiSE2 TAE1 DiSE1 TAE3 DiSE2

n/3
6 730,627 1,123,555 346 444 88 111 0.3 0.4 0.1 0.1 4.0 3.3
12 86,588 326,193 145 172 581 97 0.4 0.5 0.4 0.3 7.9 6.7
18 2,179 13,464 91 105 633 8 0.5 0.5 1.0 0.7 12.1 10.5

n/2

4 745,486 1,123,555 346 452 77 111 0.3 0.4 0.1 0.1 4.0 3.3
6 561,777 722,285 222 259 333 143 0.4 0.5 0.2 0.2 5.6 4.8
12 24,543 131,324 91 106 988 78 0.5 0.5 0.5 0.5 12.0 10.4
18 311 3,351 58 68 738 3 0.6 0.5 2.7 1.0 17.9 15.8

2n/3

3 777,846 1,123,555 348 445 77 111 0.3 0.4 0.1 0.1 4.0 3.3
6 421,333 505,600 143 174 500 150 0.4 0.5 0.3 0.3 7.9 6.9
12 24,845 129,641 65 77 1,400 103 0.6 0.5 0.6 0.6 16.0 14.2
18 483 6,347 42 49 1,149 8 0.6 0.5 2.3 1.0 24.1 21.4

n− 2
12 81,548 297,411 51 60 1,637 324 0.6 0.5 0.6 0.6 19.9 17.5
18 23,905 219,826 30 36 1,983 391 0.6 0.5 1.0 1.0 32.5 28.6

2
12 674,133 1,011,200 337 445 67 100 0.3 0.4 0.2 0.2 4.1 3.4
18 594,823 919,272 345 441 59 91 0.3 0.4 0.2 0.2 4.1 3.5

Table 1: Encryption performance metrics with various number of parties n and threshold t. Throughput is
computed by performing many encryptions concurrently (single thread per party). Mbps denotes network
bandwidth. Latency is computed by performing sequential encryptions.

Table 1 contains the results of two experiments. 1) peak encryptions per second each scheme
can perform. In particular, 32 byte messages are repeatedly encrypted in an asynchronous manner,
where a single party repeatedly initiates 10 batches of 128 encryptions which are processed concur-
rently. 2) latency of one encryption by running multiple encryptions one at a time in a sequential
manner. We report the average time required to perform a single encryption.

We compare with the less secure DiSE schemes [AMMR18a]. In particular, DiSE was proven
secure in an arguably weaker model and does not provide a way to distinguish if the initiating party
is performing an decryption or encryption query. We consider the pure symmetric-key based DiSE
protocol DiSE1 which utilizes an AES/PRF based DPRF. Like our TAE1 Protocol, DiSE1 does not
guarantee that a ciphertext output by encryption is “well formed” if some of the parties behave
maliciously. We also consider the DDH-key based DiSE protocol DiSE2 which utilizes ZK-proofs
to ensure the correctness of any ciphertext output by the encryption procedure.

Our protocols are very competitive given the added security guarantees. Our symmetric-key
based protocol TAE1 achieves a throughput of 778 thousand encryptions per second for n = 3, t = 2
while our public-key based protocol TAE3 achieves 346 encryptions per second. This is approx-
imately 0.7 times the throughput of the weaker DiSE protocol. We observe a similar relative
performance for other parameter choices when t is close to n or 2. The largest differences occurs
for our TAE1 protocol when n is large and t ≈ n/2. This results in the largest relative communica-
tion overhead compared to DiSE1 due to their protocol achieving O(t) communication while ours
achieves O

(
n
t

)
which is maximized for t = n/2.

50



With respect to encryption latency our protocols perform similarly well. Both TAE1 and DiSE1
achieve a latency of 0.1 milliseconds for n = 3, t = 2 which is effectively the network latency of
just sending the messages. For the public-key based protocol we again observe that the DiSE2
protocol achieves times 0.7 times improvement in latency compared to our TAE3 protocol. This
added overhead consists of performing the additional threshold signature.

We argue that the presented performance evaluation shows that our protocols achieve highly
practical performance. In particular, the majority of the practical applications of threshold authen-
ticated encryption only require relatively small n, e.g. n ∈ {3, 4, 5}. For this range of parameters
both of our protocols are highly competitive with the DiSE protocols while providing stronger secu-
rity guarantees. Our schemes also preserve the property that the network communication overhead
is independent of the length of the message being encryption. This property is not enjoyed by
generic MPC based approaches, e.g. [KOR+17].

B Key-Reconstruction Scheme

We present a scheme which 1) reconstructs encryption key during encryption and decryption, 2)
satisfies the message privacy and authenticity notion of DiSE, 3) is insecure against our IND-RCCA
notion. First, we recall the message privacy notion of DiSE [AMMR18a, Section 6.2]. Roughly, the
message privacy game of DiSE can be obtained by making the following modifications to our game
Gind−cca (Figure 2).

• Remove checking of privacy and authenticity conditions. The resulting game only checks if
b = b′ after running the adversary.

• Remove oracles Evaldec, Splitdec, and Combinedec.

• Allow only one call to Splitenc and Combineenc.

Note that for such a security notion, it suffices to keep the messages encrypted by honest parties
private. The notion does not rule out a scheme where each party i ∈ [n] has their own encryption
key ski, which is secret shared among all n parties.

To construct a scheme satisfying the two properties above, we need a nonce-based authenticated
encryption scheme nAE, t-out-of-n threshold signature scheme TS, and a t-out-of-n secret sharing
scheme SS. The high level idea of the scheme is as follows: each party i ∈ [n] has its own symmetric
encryption key ki, which it uses to encrypt messages. To make the scheme threshold, we secret
share each ki into n shares and distribute it amongst the n-parties. To ensure authenticity, we add
a threshold signature on the commitment of the message.

First, we argue why this scheme is secure againt the DiSE notions. For message privacy, the
adversary is not allowed to query any decryption oracles or even starting its own decrypton sessions.
Hence, there is no way for the adversary to gain information regarding encryption keys ki for honest
parties i. Authenticity is guaranteed by the use of threshold signature.

Next, we argue why our notion of IND-RCCA rules this scheme insecure. To see this, consider
the adversary that queries a challenge encryption, Splitenc(i,m,m), on two identical messages m
to obtain some ciphertext c, which is then decrypted by the adversary via Splitdec and Combinedec.
Note that during this process, the adversary to reconstruct the encryption key ki for party i. Hence,
the adversary is able to distinguish the bit b by decrypting any challenge ciphertext generated by
party i with distinct messages.
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Scheme TAE0

Proc Setup(1λ, n, t)

(JsigkKn, vk)←$ TS.Kg(1λ, n, t)
For i ∈ [n] do
ki←$ nAE.Kg(1λ)
(ki,1, . . . , ki,n)←$ SS.Share(n, t, ki)

For j ∈ [n] do
skj ← (j, k1,j , . . . , kn,j , sigkj)

Return ((sk1, . . . , skn), pp← vk)

Proc Splitdec(pp, c, S)

(j,N, c, com, σ)← c ; st← c
Return ((j, com, σ), st)

Proc Evaldec(pp, sk, x)

(j, com, σ)← x
If TS.Verify(pp, com, σ) = ⊥ then return ⊥
(j, k1,j , . . . , kn,j , sigkj)← sk ; Return ki,j

Proc Combinedec(pp, sk, R, st)

(j,N, c, com, σ)←$ st ; vk← pp
(i, k1,i, . . . , kn,i, sigki)← sk
k ← SS.Recover(R)
If not r∥m← nAE.dec(k, c) then return ⊥
If com ̸= Com((m,N); r) then return ⊥
If not TS.Verify(vk, com, σ) then return ⊥
Return m

Proc Splitenc(pp, sk,m, S)

N ←$ {0, 1}nAE.NL(|m|)

r←$ {0, 1}Com.RL(|(m,N)|)

com←$ Com((m,N); r)
st← (com,m,N, r)
Return (com, st)

Proc Evalenc(pp, sk, i, x)

(j, k1,j , . . . , kn,j , sigkj)← sk
σ ← TS.Sign(sigkj , (x, i)
Return (ki,j , σ)

Proc Combineenc(pp, sk, R, st)

(i, k1,i, . . . , kn,i, sigki)← sk
(com,m,N, r)← st
{(ki,j , σj) | j ∈ S} ← R
σ ← TS.Combine({σj | j ∈ S})
k ← SS.Recover({ki,j | j ∈ S})
c← nAE.enc(k,N, r∥m)
c← (i,N, c, com, σ)
Return c

Figure 17: Counter example TAE scheme TAE0

C DiSE construction in Our Model

For the most part, the DiSE constructions [AMMR18a] can be proven secure in a modified version
of our definition where the ctEval counter is not only incremented on calls to Evalenc but also
to Evaldec. The addition of threshold signatures is what allows our DPRF and DVRF based
constructions to avoid incrementing this counter when the adversary makes a Evaldec query.

However, there is an additional issue when proving the security of DiSE construction (without
strong correctness) in this modified model. Specifically, when an honest party j makes DPRF
queries on α, it is possible for an adversary to manipulate the protocol so that the honest party
computes the DPRF output β′ = β + δ where β = DP(j∥α) is the correct DPRF output and δ is
some nonzero error term that the adversary introduced. In the DiSE construction which achieves
strong correctness using zero knowledge proofs, this modification would be detected and the honest
party would abort. However, DiSE (and this work) also considers a weaker notion of DPRF where
the honest party will accept β′ as a valid output. This party will then output the ciphertext
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c′ = (j, α, e′) where e′ = G(β′)⊕ (m∥r).
For a pseudo-random generator G, it may be possible for an adversary to compute ∆ = G(β′)⊕

G(β) without knowledge of β. Doing so would require G to have some sort of homomorphic property.
Adversary could then “correct” the ciphertext c′ to construct a new ciphertext c = (j, α, e) where
e = e′ ⊕∆ = G(β)⊕ (m∥r). The adversary can then submit the valid ciphertext c as a forgery.

Such attacks are not captured in the DiSE security model because the ciphertexts generated
by honest parties, such as c′, are not returned to the adversary. Instead, the authenticity game
of DiSE only allows the adversary to perform targeted decryption queries wherein it could ask an
honest party to initiate a decryption session with c′ (by providing a reference to it).

In our security model, we do capture the attack described above. Adversary can call Splitenc

and Combineenc to encrypt any message m of its choice through an honest party (it picks both m0

and m1 to be m). In the encryption process, the adversary can provide malformed responses on
behalf of corrupt parties. Combineenc returns the resulting ciphertext c to the adversary, which
may not be valid. If adversary could “fix” c, it could get the fixed ciphertext c′ decrypted back to
m with the help of Splitdec and Combinedec. In the CCA version of our security game, fresh is
set to True because c′ /∈ EncCtxt. As a result, c′ is added to DecSet and adversary wins the game.
Adversary could even take the help of various oracles to fix c like Evaldec which do not increment
ctEval.

In our construction we replace the pseudo-random generator G with a random oracle. This
prevents the adversary from computing ∆ because the outputs G(β) and G(β′) are completely
independent of each other. We leave it to future work to determine if a weaker property on G
would be sufficient to prove security of DiSE in our modified model where Evaldec queries also
increment ctEval.
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