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Abstract. Adaptor signatures are a new cryptographic primitive that
binds the authentication of a message to the revelation of a secret value.
In recent years, this primitive has gained increasing popularity both in
academia and practice due to its versatile use-cases in different Blockchain
applications such as atomic swaps and payment channels. The security
of these applications, however, crucially relies on users storing and main-
taining the secret values used by adaptor signatures in a secure way. For
standard digital signature schemes, cryptographic wallets have been in-
troduced to guarantee secure storage of keys and execution of the signing
procedure. However, no prior work has considered cryptographic wallets
for adaptor signatures.
In this work, we introduce the notion of adaptor wallets. Adaptor wal-
lets allow parties to securely use and maintain adaptor signatures in the
Blockchain setting. Our adaptor wallets are both deterministic and op-
erate in the hot/cold paradigm, which was first formalized by Das et al.
(CCS 2019) for standard signature schemes. We introduce a new crypto-
graphic primitive called adaptor signatures with rerandomizable keys, and
use it to generically construct adaptor wallets. We further show how to in-
stantiate adaptor signatures with rerandomizable keys from the ECDSA
signature scheme and discuss that they can likely be built for Schnorr
and Katz-Wang schemes as well. Finally, we discuss the limitations of
the existing ECDSA- and Schnorr-based adaptor signatures w.r.t. de-
terministic wallets in the hot/cold setting and prove that it is impossible
to overcome these drawbacks given the current state-of-the-art design of
adaptor signatures.

1 Introduction

Blockchains have gained huge popularity in the past decade as they provide a
decentralized infrastructure that allows not only to make simple payments but
also to execute applications in a secure way. However, most Blockchains, includ-
ing Bitcoin, only support the execution of simple applications while others, such
as Monero or Zcash, are even more restrictive in their functionality and only
support simple payments [21, 26]. Nevertheless, virtually all Blockchains rely
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on digital signatures in order to authenticate the origin of a transaction. While
the functionality of Blockchains can be extended by appropriately adjusting the
mining algorithms, this requires a hard fork of the Blockchain code which can
take several years to complete in practice. In order to improve the restricted
functionality of many Blockchains without having to change the Blockchain im-
plementation and to allow for the execution of a larger class of applications, a
new type of signature scheme called adaptor signatures was introduced by the
cryptocurrency community [20] and first formally analyzed by Aumayr et al. [3].
At a high level, adaptor signatures allow two parties, say a signer and a publisher
to trade a signature in exchange for a secret, i.e., if the publisher publishes a
signature under the signer’s secret key on the Blockchain, a secret value is leaked
to the signer. More concretely, the publisher first generates an instance of a hard
relation, i.e., a statement and witness pair and sends the statement to the signer.
Using its secret key and the statement, the signer generates an incomplete sig-
nature called pre-signature which can be adapted by the publisher to a full valid
signature using the witness. Once the adapted full signature is published, the
signer can extract the witness given the pre- and full signature.

Adaptor signatures have proven to be extremely versatile for Blockchain ap-
plications. They allow for efficient constructions of two important categories of
applications, namely payment channels (e.g., [3, 23]) and atomic swaps (e.g., [7,
25]), while requiring only a minimal functionality from the underlying Blockchain.
Payment channels are a so-called off-chain solution, which allows two parties to
issue many micropayments to each other without incurring fees for each transac-
tion. Atomic swaps, on the other hand, allow two (or more) parties to atomically
exchange tokens, i.e., either the exchange terminates and both parties obtain the
other party’s token or none does. Both of these applications rely on a technique
that allows exchanging a secret value for a signature, which is exactly the func-
tionality that adaptor signatures provide.

As the security of a user’s funds in a Blockchain network depends solely
on the secure storage of this user’s signing secret key (and witnesses of adap-
tor signatures), it is of utmost importance how users store these secret values.
Unfortunately, despite the increasing popularity of adaptor signatures, no prior
work tried to address this issue. In other words we would like to answer the
following question:

How can parties in practice employ adaptor signatures securely?

A concept known as cryptographic wallets has been introduced to use standard
signature schemes securely in Blockchain networks. However, it has never been
investigated if this concept can be extended to adaptor signatures.

Deterministic Wallets. One of the most promising proposals for crypto-
graphic wallets are so-called deterministic wallets, which at a high level store a
master signing key pair from which session key pairs are deterministically de-
rived. Das et al. [5] gave the first formalization of such deterministic wallets in
the hot/cold setting and later extended their model [6] to incorporate hierarchi-
cal wallets. In a bit more detail, a wallet scheme in the hot/cold setting consists
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of two separate devices, a hot and a cold wallet, that store the public and se-
cret key respectively. The cold wallet is kept mostly offline and is only used to
generate a new signature, whereas the hot wallet is constantly online to receive
new transactions. This wallet structure ensures that it is inherently difficult for
an attacker to steal the wallet’s secret key, as it is stored in the offline cold
wallet. Besides a standard unforgeability notion, wallet schemes should typically
also satisfy an unlinkability property, which ensures that a third party cannot
link two transactions issued to the same wallet. A näıve approach to achieve
unlinkability is to let the wallet generate a fresh key pair for each transaction.
This, however, requires the wallet to store all key pairs, which is not efficient,
especially since cold wallets sometimes require special hardware (with limited
storage) to securely store the secret keys. As such, deterministic wallets were
introduced where the unlinkable keys are deterministically derived from a mas-
ter key pair. This allows the wallet to derive new keys on the fly when they are
needed instead of storing them indefinitely.

To date deterministic wallets have only been analyzed for digital signature
schemes (e.g., [5]). Considering that the security of adaptor signatures does not
only depend on the secure storage of the secret key but also on the secure
handling of witnesses, designing a secure wallet scheme for adaptor signatures
becomes even more pressing.

1.1 Our Contribution

In this work, we initiate the study of deterministic wallets in the hot/cold setting
for adaptor signatures following the approach of Das et al. [5]. To this end, we
first introduce a new notion of adaptor signatures, which we call adaptor signa-
ture with rerandomizable keys. This primitive extends regular adaptor signatures
by key rerandomization algorithms. That is, given an adaptor signature key pair
(sk , pk) and some randomness ρ, an adaptor signature with rerandomizable keys
allows to deterministically and independently rerandomize sk and pk using ρ to
obtain a new key pair (sk ′, pk ′) such that (1) (sk ′, pk ′) constitutes a valid signing
key pair, and (2) (sk ′, pk ′) is indistinguishable from a freshly generated key pair.
We formally define this primitive and show how to instantiate it by transforming
the existing ECDSA-adaptor signature scheme [3, 19] into an adaptor signature
with rerandomizable keys.

We provide a formal model for adaptor wallets. Our adaptor wallets are the
first cryptographic wallets that are deterministic, in the hot/cold setting and
support the use of adaptor signatures. While the hot/cold wallet setting allows
to provide strong security guarantees, it is not suitable for all applications in
practice. Payment channels, for instance, have a short life span but require a
frequent exchange of signatures. As such, storing the secret key in an offline cold
wallet seems counterintuitive. Instead, for such applications our model allows to
store secret values on one online device while guaranteeing that even if this device
gets corrupted, the master key pair and other keys derived from the master key
pair remain secure. To achieve this feature, we use the idea of hardened/non-
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hardened wallets as defined in [6] and adjust it for adaptor wallets (see Section
4.1 for more details).

We then show how to generically construct adaptor wallets from any adaptor
signature scheme with rerandomizable keys where the hard relation is witness
rerandomizable and further show how to initiate such a relation for ECDSA-
adaptor signatures. Witness rerandomizability of a hard relation R essentially
means that for any statement/witness pair (Y, y) ∈ R the witness y can be
rerandomized deterministically using some randomness ρ to a witness y′ with
corresponding statement Y ′ such that (Y ′, y′) ∈ R. We require this property
to alleviate the storage constraints on the cold wallet, i.e., as explained above,
the cold wallet is often a storage restricted device and hence deterministic reran-
domization can be useful to generate required values on the fly instead of storing
them long-term. Although we do not formally show how adaptor wallets can be
instantiated from Schnorr and Katz-Wang signature schemes [22, 14], it seems
that our approach can be used in order to transform these schemes to adaptor
signatures with rerandomizable keys and use them to instantiate adaptor wallets.

Our final contribution is closely related to witness rerandomizable hard rela-
tions. Surprisingly, we show that it is impossible to construct an adaptor wallet
from fully rerandomizable hard relations, i.e., hard relations where the statement
and witness can be rerandomized independently using the same randomness.
This is in stark contrast to the secret and public keys which can be rerandom-
ized independently.

We believe that our work paves the way for mainstreaming the usage of adap-
tor signatures by providing a secure and efficient deterministic wallet framework
in the hot/cold setting.

1.2 Related Work

We divide the related work into adaptor signatures and deterministic wallets.

Adaptor Signatures. After being first introduced by Poelstra [20], adap-
tor signatures have been used in many Blockchain related applications, such as
atomic swaps [7], payment channel networks [18] and payment channel hubs [23].
Aumayr et al. [3] later provided a standalone formalization of this primitive.
Shortly after, Esgin et al. and Tairi et al. [10, 24] provided instantiations of
adaptor signatures in the post-quantum setting where the adversary has access
to a quantum computer while the end users do not. Finally, Erwig et al. [9]
showed how to generically transform signature schemes built from identification
schemes which satisfy certain properties, into single party and two party adap-
tor signatures. There have been several other recent works on adaptor signatures
(e.g., [17, 25]) which have used or extended this primitive in order to build more
complex applications.

Deterministic Wallets. There have been many recent works formalizing and
analyzing cryptographic wallets, such as [2, 13, 15, 16]. The concept of deter-
ministic wallets in the hot/cold setting was first formalized and instantiated by
Das et al. [5]. Alkadri et al. [1] later showed how to realize such wallets with se-
curity in the post-quantum setting. In a follow-up work, Das et al. [6] extended
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the original model by allowing hierarchical derivation of new wallets. In order
to guarantee security even in case one of such wallets is corrupted, e.g., when a
wallet is not implemented in the hot/cold setting, the authors introduced two dif-
ferent key derivation mechanisms, namely hardened key derivation for keys that
might be leaked to the adversary and non-hardened key derivation for keys that
are stored securely via the hot/cold wallet paradigm. Later, Yin et al. [27] intro-
duced hierarchical deterministic wallets that support stealth addresses. However,
none of these works have considered adaptor signature support for deterministic
wallets.

2 Preliminaries

Notation.We denote by s←$ H the uniform random sampling of a value s from
the set H. For an integer l, the notation [l] denotes the set of integers {1, · · · , l}
and for a randomized algorithm A, we denote by y ←$ A(x) the execution of A
on input x that outputs y. For a deterministic algorithm B, we write y ← B(x, ρ)
to denote the execution of B on input x and ρ that outputs y. By y ∈ A(x) we
denote that y is an element in the set of possible outputs of an execution of A
on input x. Throughout our paper, we assume that public parameters par can
be used as input to all algorithms. For two strings a and b, we write a = (b, ·) if
b is a prefix of a. We abbreviate the expressions deterministic polynomial time
and probabilistic polynomial time by DPT and PPT respectively.

2.1 Non-interactive zero knowledge proofs.

A non-interactive zero knowledge proof (NIZK) [4] with respect to a polynomial-
time recognizable binary relation R is given by the following tuple of algorithms
NIZK := (SetupR,P,V), where (i) SetupR(1

n) outputs a common reference string
crs; (ii) P(crs, (Y, y)) outputs a proof π for (Y, y) ∈ R; (iii) V(crs, Y, π) outputs a
bit b ∈ {0, 1}. Further, the NIZK proof of knowledge w.r.t. R should satisfy the
properties completeness, soundness, and zero knowledge. We do not go into the
details of these properties here.

2.2 (Witness rerandomizable) Hard relation.

Definition 1 (Hard Relation). Let R ⊆ DY × Dw be a relation with state-
ment/witness pairs (Y, y) ∈ DY × Dw and let the language LR ⊆ DY associated
to R be defined as LR := {Y ∈ DY | ∃y ∈ Dw s.t. (Y, y) ∈ R}. We say that R
is a hard relation if: (i) There exists a PPT sampling algorithm GenR(1n) that
on input the security parameter outputs a pair (Y, y) ∈ R; (ii) There exists a
PPT algorithm WitToSt(y) that on input a witness y outputs a statement Y , s.t.
(Y, y) ∈ R; (iii) The relation R is poly-time decidable; (iv) For all PPT adver-
saries A, the probability that A outputs a valid witness y ∈ Dw for Y ∈ LR is
negligible.
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In this work we require a stronger notion of hard relation namely hard rela-
tions that are witness rerandomizable.

Definition 2 (Witness Rerandomizable Hard Relation). Let R ⊆ DY ×
Dw be a hard relation with statement/witness pairs (Y, y) ∈ DY × Dw and let
the public parameters par define a randomness space X := X(par). Further, let
RandWit be a DPT algorithm which is defined as follows:
RandWit(y, ρ): The deterministic witness randomization algorithm takes as input
a witness y ∈ Dw, a randomness ρ ∈ X and outputs a rerandomized witness y′.

We say that R is perfectly witness rerandomizable if for all (·, y) ∈ GenR(1n)
and all ρ←$ X the distributions of (Y ′, y′) and (Y ′′, y′′) are identical, where:

(Y ′, y′)← (WitToSt(RandWit(y, ρ)),RandWit(y, ρ))

(Y ′′, y′′)← GenR(1n)

2.3 Adaptor Signatures

We recall the definition of an adaptor signature scheme by Aumayr et al. [3]. We
then provide the correctness and security definitions of Adaptor signature.

Definition 3 (Adaptor signature scheme). An adaptor signature scheme
w.r.t. a hard relation R and a signature scheme Σ = (Gen,Sign,Verify) consists
of four algorithms ASigR,Σ = (pSign,Adapt, pVrfy,Ext) with the following syntax:
pSign(sk ,m, Y ) is a PPT algorithm that on input a secret key sk, message m ∈
{0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̃; pVrfy(pk ,m, Y, σ̃) is a
DPT algorithm that on input a public key pk, message m ∈ {0, 1}∗, statement
Y ∈ LR and pre-signature σ̃, outputs a bit b; Adapt(σ̃, y) is a DPT algorithm that
on input a pre-signature σ̃ and witness y, outputs a signature σ; and Ext(σ, σ̃, Y )
is a DPT algorithm that on input a signature σ, pre-signature σ̃ and statement
Y ∈ LR, outputs a witness y such that (Y, y) ∈ R, or ⊥.

An adaptor signature scheme ASigR,Σ must satisfy pre-signature correctness
stating that for every m ∈ {0, 1}∗ and every (Y, y) ∈ R, the following holds:

Pr

[
pVrfy(pk ,m, Y, σ̃) = 1,
Verify(pk ,m, σ) = 1, (Y, y′) ∈ R

∣∣∣∣ (sk , pk)← Gen(1n),
σ := Adaptpk (σ̃, y),

σ̃ ← pSign(sk ,m, Y )
y′ := Ext(pk , σ, σ̃, Y )

]
=1.

An adaptor signature scheme has to satisfy the following security properties.

Definition 4 (Existential unforgeability). An adaptor signature scheme
ASigR,Σ is unforgeable if for every PPT adversary A = (A1,A2) there exists a
negligible function ν such that: Pr[aSigForgeA,ASigR,Σ

(n) = 1] ≤ ν(n), where the

experiment aSigForgeA,ASigR,Σ
is defined in Fig. 1.

Definition 5 (Pre-signature adaptability). An adaptor signature scheme
ASigR,Σ satisfies pre-signature adaptability if for any message m ∈ {0, 1}∗, any
statement/witness pair (Y, y) ∈ R, any public key pk and any pre-signature
σ̃ ∈ {0, 1}∗ with pVrfy(pk ,m, Y, σ̃) = 1, we have Verify(pk ,m,Adapt(σ̃, y)) = 1.
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aWitExt(n)
00 Q := ∅, (sk , pk)← Gen(1n)

01 (m∗, Y ∗, st)← ASignO(·),PreSignO(·,·)
1 (pk)

02 σ̃∗ ← pSign(sk ,m∗, Y ∗)
03 σ∗ ← ASignO,PreSignO

2 (σ̃∗, st)
04 b1 ← (Y ∗,Ext(σ∗, σ̃∗, Y ∗)) ̸∈ R
05 b2 ← m∗ ̸∈ Q
06 b3 ← Verify(pk ,m∗, σ∗)
07 b4 ← Y ∗ ∈ LR

08 Return (b1 ∧ b2 ∧ b3 ∧ b4)

Oracle PreSignO(m,Y )
09 σ̃ ← pSign(sk ,m, Y )
10 Q := Q∪ {m}
11 Return σ̃

aSigForge(n)
12 Q := ∅, (sk , pk)← Gen(1n)
13 (Y, y)← GenR(1n)
14 (m∗, st)← ASignO,PreSignO

1 (pk , Y )
15 σ̃∗ ← pSign(sk ,m∗, Y )
16 σ∗ ← ASignO,PreSignO

2 (σ̃∗, st)
17 Return
(m∗ ̸∈ Q ∧ Verify(pk ,m∗, σ∗))

Oracle SignO(m)
18 σ ← Sign(sk ,m)
19 Q := Q∪ {m}
20 Return σ

Fig. 1. aSigForge and aWitExt games for an adaptor signature scheme ASig.

Definition 6 (Witness extractability). An adaptor signature scheme ASigR,Σ

is witness extractable if for every PPT adversary A = (A1,A2), there exists a
negligible function ν such that the following holds: Pr[aWitExtA,ASigR,Σ

(n) = 1] ≤
ν(n), where the experiment aWitExtA,ASigR,Σ

is defined in Fig. 1.

Definition 7. An adaptor signature scheme ASigR,Σ is secure, if it is unforge-
able, pre-signature adaptable and witness extractable.

2.4 ECDSA-based Adaptor Signature

We briefly recall the ECDSA-based adaptor signature scheme ECRg,PEC[H] =
(pSign,Adapt, pVrfy,Ext) as presented by Aumayr et al. [3], which is defined
w.r.t. the positive ECDSA signature scheme PEC = (Gen,Sign,Verify) and a
hard relation Rg. Recall that the positive ECDSA scheme operates over a cyclic
group G = ⟨g⟩ of prime order p and that the key generation outputs a key pair
(sk , pk) with sk ←$ Zp and pk ← gsk . A message m ∈ {0, 1}∗ is then signed by
first sampling k ←$ Zp, setting r ← f(gk) and computing s := k−1(H(m)+r·sk),
where H : {0, 1} → Zp is a hash function and f : G→ Zp. The signature is then

σ := (r, s), which can be verified by checking if f(gs
−1H(m)pks−1r) = r. The

hard relation Rg is defined as Rg := {((Y, π), y)|Y = gy ∧ V(Y, π) = 1}, i.e., it
is the standard dlog relation with an additional non-interactive zero knowledge
(NIZK) proof, which proves knowledge of the witness. The additional NIZK proof
is required for technical reasons which we do not discuss here. Apart from the
NIZK proof for relation Rg, the ECRg,PEC[H] construction also includes a NIZK

proof for another relation RY := {((K̃,K), k)|K̃ = gk ∧K = Y k}. For further
details we refer the reader to [3]. The construction of ECRg,PEC[H] is depicted
in Fig. 2.
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pSign(sk ,m, IY )

x := sk , (Y, πY ) := IY

k ←$ Zq, K̃ := gk

K := Y k, r := f(K)

s̃ := k−1(H(m) + rx)

π ← PY ((K̃,K), k)

return (r, s̃,K, π)

pVrfy(pk ,m, IY , σ̃)

X := pk , (Y, πY ) := IY

(r, s̃,K, π) := σ̃

u := H(m) · s̃−1

v := r · s̃−1,K′ := guXv

return (IY ∈ LR

∧ (r = f(K)) ∧ VY ((K′,K), π))

Adapt(σ̃, y)

(r, s̃,K, π) := σ̃

s := s̃ · y−1

return (r, s)

Ext(σ, σ̃, IY )

(r, s) := σ

(r̃, s̃, K, π) := σ̃

y′ := s−1 · s̃
if (IY , y′) ∈ Rg

then return y′

else return ⊥

Fig. 2. ECDSA-based adaptor signature scheme ECRg,PEC[H] instantiated with a hash
function H : {0, 1}∗ → Zp.

3 Adaptor Signatures with Rerandomizable Keys

In this section we define the notion of adaptor signatures with rerandomizable
keys and show how to instantiate it. Later in Sec. 4.1 we will use this primitive
to generically construct adaptor wallets.

3.1 Definition

The notion of signature schemes with rerandomizable keys has first been in-
troduced by Fleischhacker et al. [12] and has since been proven to be useful
for the construction of deterministic wallet schemes (e.g., [5, 6]). Essentially, a
signature scheme with rerandomizable keys extends regular signature schemes
by two deterministic algorithms, a public key and a secret key rerandomization
algorithm, which on input a public key or a secret key respectively and a ran-
domness, output rerandomized keys. Such keys, if rerandomized with the same
randomness, constitute a new signing key pair, which is distributed identically
to a freshly and independently generated signing key pair. These properties and
the deterministic nature of the rerandomization make such signature schemes
good candidates for the construction of deterministic wallets. In our work, we
are concerned with adaptor signatures. Therefore, we define in the following the
notion of adaptor signatures with rerandomizable keys.

Definition 8 (Adaptor signature scheme with rerandomizable keys).
An adaptor signature scheme with rerandomizable keys w.r.t. a hard relation
R and a signature scheme Σ = (Gen,Sign,Verify) consists of six algorithms
RASigR,Σ = (RandSK,RandPK, pSign,Adapt, pVrfy,Ext) where (pSign,Adapt, pVrfy,
Ext) are the same algorithms as defined for adaptor signatures (cf. Def. 3). As-
suming that the public parameters par define a randomness space X := X(par),
the remaining algorithms are defined as follows:

RandSK(sk , ρ): The deterministic secret key rerandomization algorithm takes as
input a secret key sk and a randomness ρ ∈ X and outputs a rerandomized
secret key sk ′.
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RandPK(pk , ρ): The deterministic public key rerandomization algorithm takes
as input a public key pk and a randomness ρ ∈ X and outputs a rerandomized
public key pk ′.

An adaptor signature scheme with rerandomizable keys RASigR,Σ must satisfy
the following two correctness properties:

1. Pre-signature correctness stating that for all (sk , pk) ← Gen(1n), all m ∈
{0, 1}∗, all ρ ∈ X and all (Y, y) ∈ R, the rerandomized keys sk ′ ← RandSK(sk , ρ)
and pk ′ ← RandPK(pk , ρ) satisfy:

Pr

[
pVrfy(pk ′,m, Y, σ̃) = 1,
Verify(pk ′,m, σ) = 1, (Y, y′) ∈ R

∣∣∣∣ σ̃ ← pSign(sk ′,m, Y ),
σ := Adapt(σ̃, y),

y′ := Ext(σ, σ̃, Y )

]
=1.

2. (Perfect) rerandomizability of keys: For all (sk , pk) ∈ Gen (1n) and ρ←$ X,
the distributions of (sk ′, pk ′) and (sk ′′, pk ′′) are identical, where:

(sk ′, pk ′)← (RandSK(sk , ρ),RandPK(pk , ρ)) ,

(sk ′′, pk ′′)←$ Gen (1n) .

Like adaptor signatures, an RASigR,Σ scheme must satisfy pre-signature
adaptability.

Definition 9 (Pre-signature adaptability). An adaptor signature scheme
with perfectly rerandomizable keys RASigR,Σ satisfies pre-signature adaptability
if for any message m ∈ {0, 1}∗, any statement/witness pair (Y, y) ∈ R, any
public key pk and any pre-signature σ̃ ∈ {0, 1}∗ with pVrfy(pk ,m, Y, σ̃) = 1, we
have Verify(pk ,m,Adapt(σ̃, y)) = 1.

For adaptor signatures with rerandomizable keys, we introduce the notions
of existential unforgeability under honestly rerandomizable keys and witness ex-
tractability under honestly rerandomizable keys. These notions extend the re-
spective security notions of adaptor signatures by allowing the adversary to not
only obtain (pre-)signatures under sk but also under secret keys that constitute
honest rerandomizations of sk . An honest rerandomization is one where the ran-
domness has been chosen uniformly at random from the randomness space X.
Further, in our security notions the adversary can win the game by providing
a forgery either under sk or under any honestly rerandomized key. We formally
describe these security notions in Fig. 3.

Definition 10 (Existential unforgeability under honestly rerandomiz-
able keys). An adaptor signature scheme with rerandomizable keys RASigR,Σ

is unforgeable if for every PPT adversary A = (A1,A2) there exists a negligi-
ble function ν such that: Pr[aSigForge−hrkA,RASigR,Σ

(n) = 1] ≤ ν(n), where the

experiment aSigForge−hrkA,RASigR,Σ
is defined as in Fig. 3.

Definition 11 (Witness extractability under honestly rerandomizable
keys). An adaptor signature scheme with rerandomizable keys RASigR,Σ is
witness extractable if for every PPT adversary A = (A1,A2), there exists a neg-
ligible function ν such that the following holds: Pr[aWitExt−hrkA,RASigR,Σ

(n) =
1] ≤ ν(n), where the experiment aWitExt−hrkA,RASigR,Σ

is defined as in Fig. 3.
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aSigForge−hrkA,RASigR,Σ
(n)

00 Q := ∅,R := ∅
01 (sk , pk)← Gen(1n)
02 (Y, y)← GenR(1n)
03 (m∗, ρ∗, st)← AO

1 (pk , Y )
04 sk∗ ← RandSK(sk , ρ∗)
05 pk∗ ← RandPK(pk , ρ∗)
06 σ̃∗ ← pSign(sk∗,m∗, Y )
07 σ∗ ← AO

2 (σ̃∗, st)
08 b1 ← m∗ ̸∈ Q
09 b2 ← Verify(pk∗,m∗, σ)
10 b3 ← ρ∗ ∈ R
11 Return (b1 ∧ b2 ∧ b3)

aWitExt−hrkA,RASigR,Σ
(n)

00 Q := ∅,R := ∅
01 (sk , pk)← Gen(1n)
02 (m∗, ρ∗, Y ∗, st)← AO

1 (pk)
03 sk∗ ← RandSK(sk , ρ∗)
04 pk∗ ← RandPK(pk , ρ∗)
05 σ̃∗ ← pSign(sk∗,m∗, Y ∗)
06 σ∗ ← AO

2 (σ̃∗, st)
07 b1 ← (Y ∗,Ext(σ∗, σ̃∗, Y ∗)) ̸∈ R
08 b2 ← m∗ ̸∈ Q
09 b3 ← Verify(pk∗,m∗, σ∗)
10 b4 ← ρ∗ ∈ R
11 b5 ← Y ∗ ∈ LR

12 Return (b1 ∧ b2 ∧ b3 ∧ b4 ∧ b5)

Oracle RSignO(m, ρ)
00 If ρ /∈ R : return 0
01 sk ′ ← RandSK(sk , ρ)
02 σ ← Sign(sk ′,m)
03 Q := Q∪ {m}
04 Return σ

Oracle PreSignO(m,Y, ρ)
05 If ρ /∈ R : return 0
06 sk ′ ← RandSK(sk , ρ)
07 σ̃ ← pSign(sk ′,m, Y )
08 Q := Q∪ {m}
09 Return σ̃

Oracle RandO

10 ρ←$ X
11 R := R∪ {ρ}
12 Return ρ

Fig. 3. aSigForge−hrk and aWitExt−hrk games for an adaptor signature scheme
with rerandomizable keys RASigR,Σ . In the above games we have O :=
{RSignO, PreSignO, RandO}.

3.2 Construction

In Fig. 4, we present an adaptor signature with rerandomizable keys RECR,PEC[H]
from the ECDSA-based adaptor signature ECRg,PEC[H] from Fig. 2. Similar to
the rerandomizable ECDSA construction of Das et al. [5], we use public key-
prefixed messages in our construction which is required to ensure security (see
the proof sketch of Thm. 1) and we use a hash function H : {0, 1}∗ → Zp.

In order to prove the security of our construction, we follow the approach
of Das et al. [5], who presented a security proof of the plain ECDSA signature
scheme with rerandomizable keys via a reduction to the (non-rerandomizable)
ECDSA signature scheme. The main ingredient in their security proof is a re-
lated key attack which allows to transform a signature on message m1 under
public key pk1 to a signature for message m0 under a related public key pk0.
We recall their transformation in the following (and formally in Fig. 5). Let
PEC[H0] and PEC[H1] denote two (positive) ECDSA signature schemes instan-
tiated with hash functions H0 and H1 respectively. Then the authors show that

if pk1 = (pk0)
ρ where ρ = H1(m1)

H0(m0)
∈ Zp and given a valid signature σ1 (i.e.,

PEC[H1].Verify(pk1,m1, σ1) = 1), the algorithm Trf[H0,H1](m0,m1, σ1, ρ, pk0, pk1)
returns a valid signature σ0 under pk0 andm0, i.e., PEC[H0].Verify(pk0,m0, σ0) =
1. Let us now recall the formal lemma of Das et al. for this transformation.

Lemma 1. Consider the algorithm Trf[H0,H1] in Figure 5. Suppose that:

– ρ = H1(m1)
H0(m0)

∈ Zp,

– pk0, pk1 ∈ G s.t. pk0 = gx0 and pk1 = pkρ
0,

– PEC[H1].Verify(pk1,m1, σ1) = 1,
– σ0 ← Trf[H0,H1](m0,m1, σ1, ρ, pk0, pk1).
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Algorithm RECR,PEC[H].pSign (sk ,m, Y )
00 pm← (pk ,m)
01 σ̃ ← ECRg,PEC[H].pSign (sk , pm, Y )
02 Return σ̃

Algorithm RECR,PEC[H].pVrfy (pk ,m, Y, σ̃)
03 pm← (pk ,m)
04 Return ECRg,PEC[H].pVrfy (pk , pm, Y, σ̃)

Algorithm RECR,PEC[H].Adapt (σ̃, y)
05 Return ECRg,PEC[H].Adapt (σ̃, y)

Algorithm RECR,PEC[H].RandSK (sk , ρ)
06 sk ′ ← sk · ρ mod p
07 Return sk ′

Algorithm RECR,PEC[H].Sign (sk ,m)
08 pm← (pk ,m)
09 σ ← ECRg,PEC[H].Sign (sk , pm)
10 Return σ

Algorithm RECR,PEC[H].Verify (pk , σ,m)
11 pm← (pk ,m)
12 Return ECRg,PEC[H].Verify (pk , σ

′, pm)

Algorithm RECR,PEC[H].Ext (σ, σ̃, Y )
13 Return ECRg,PEC[H].Ext (σ, σ̃, Y )

Algorithm RECR,PEC[H].RandPK (pk , ρ)
14 pk ′ ← pkρ

15 Return pk ′

Fig. 4. Construction of a key-prefixed ECDSA-based adaptor signature scheme with
perfectly rerandomizable keys RECR,PEC[H] from the ECDSA-based adaptor signature
scheme ECRg,PEC[H] as described in Fig. 2. Both schemes are instantiated with a hash
function H : {0, 1}∗ → Zp.

Then PEC[H0].Verify(pk0,m0, σ0) = 1.

This lemma has been previously proven by Das et al. [5].

Trf[H0,H1](m0,m1, σ1, ρ, pk0, pk1)
00 z0 ← H0(m0)
01 z1 ← H1(m1)
02 If

(
PECRg,PEC[H1].Verify(pk1, σ1,m1) = 0

)
∨
(
ρ ̸= z1

z0
∨ pk1 ̸= pkρ

0

)
:

03 Return ⊥
04 (r, s1)← σ1

05 s0 ← s1
ρ

mod p
06 σ0 ← (r, s0)
07 Return σ0

ATrf[H0,H1](m0,m1, σ̃1, ρ, pk0, pk1, IY )
00 z0 ← H0(m0)
01 z1 ← H1(m1)
02 If

(
ECRg,PEC[H1].pVrfy(pk1,m1, IY , σ̃1

)
∨(

ρ ̸= z1
z0
∨ pk1 ̸= pkρ

0 ∨ IY /∈ LR

)
:

03 Return ⊥
04 (r, s̃1,K, π)← σ̃1

05 s̃0 ← s̃1
ρ

mod p
06 σ̃0 ← (r, s̃0,K, π)
07 Return σ̃0

Fig. 5. Figure shows the Trf[H0,H1] and ATrf[H0,H1] algorithms for hash functions
H0,H1 : {0, 1}∗ → Zp.

We show that a similar transformation can be applied to the ECDSA-based
adaptor signature scheme ECRg,PEC[H] to transform pre-signatures. Since pre-
signatures in this scheme include a zero-knowledge proof, it is not immediately
clear that such a transformation goes through. We next give the lemma for the
pre-signature transformation as well as the proof for the lemma.

Lemma 2. Let ECRg,PEC[H0] and ECRg,PEC[H1] denote two ECDSA-based adap-
tor signature schemes according to Fig. 2 instantiated with hash functions H0

and H1. Consider the algorithm ATrf[H0,H1] in Figure 5. Suppose that:
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– IY ∈ LRY
, ρ = H1(m1)

H0(m0)
∈ Zp,

– pk0, pk1 ∈ G s.t. pk0 = gx0 and pk1 = pkρ
0,

– ECRg,PEC[H1].pVrfy(pk1,m1, IY , σ̃1) = 1,
– σ̃0 ← ATrf[H0,H1](m0,m1, σ̃1, ρ, pk0, pk1, IY ).

Then ECRg,PEC[H0].pVrfy(pk0,m0, IY , σ̃0) = 1.

We would like to point out that Lemma 2 requires that after the transforma-
tion, the new pre-signature σ̃0 is indeed valid with respect to the same statement
IY . In other words, given the witness y, both σ̃0 and σ̃1 can be adapted into full
signatures under pk0 and pk1 respectively.

Proof. The proof of this lemma is similar to the proof of Lemma 1 from [5]. To
prove the lemma, we have to show that given a statement IY := (Y, πY ) ∈ LR,

a public key pk1 = pkρ
0 where ρ = H1(m1)

H0(m0)
and a pre-signature σ̃1 such that

ECRg,PEC[H1].pVrfy(pk1,m1, IY , σ̃1) = 1, ATrf[H0,H1] outputs a pre-signature
σ̃0 such that ECRg,PEC[H0].pVrfy(pk0,m0, IY , σ̃0) = 1. Recall that for the pre-
signature σ̃1 := (r, s̃1,K, π) it holds that s̃1 = k−1(H1(m) + r · sk1), r := f(K),
K := Y k and π is a valid proof that (K̃,K) is a valid statement in RY . Then
ECRg,PEC[H0].pVrfy(pk0,m0, Y, σ̃0) computes the following:

K ′ =gu · pkv
0 = g(H0(m0)·s̃−1

0 ) · pkr·s̃−1
0

0 = gs̃
−1
0 ·(H0(m0)+x0·r)

=g
ρ
s̃1

·(H1(m1)·ρ−1+x1·ρ−1·r) = g
ρ

k−1(H1(m1)+x1·r)
·(H1(m1)+x1·r)·ρ−1

= g
ρ·ρ−1

k−1 = gk

Therefore, the zero-knowledge proof π is valid w.r.t. the statement (K ′,K)
where K ′ = gk and K = Y k. We can conclude that the pre-signature σ̃0 ←
ATrf[H0,H1](m0,m1, σ̃1, ρ, pk0, pk1, IY ) with σ̃0 := (r, s̃1

ρ ,K, π) constitutes a
valid pre-signature w.r.t. public key pk0, message m0 and statement IY .

Theorem 1. Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be hash functions modeled
as random oracle and let ECRg,PEC[H0] be the secure ECDSA-based adaptor sig-
nature as per Fig. 2. Then the construction RECRg,PEC[H1] as described in Fig. 4
is existentially unforgeable under honestly rerandomizable keys as per Def. 10.

Proof (Sketch). The proof of this theorem is similar to the proof of the mul-
tiplicatively rerandomizable ECDSA signature scheme as provided by Das et
al. [5]. In their proof, the authors show unforgeability of an ECDSA scheme
with rerandomizable keys by exhibiting a reduction to the unforgeability of the
regular ECDSA signature scheme. The proof of Das et al. relies crucially on the
related key attack as depicted by the algorithm Trf[H0,H1] in Fig. 5, which al-
lows to transform a signature under a public key pk to a valid signature under a

related public key pk ′ ← pkρ′
, if ρ′ has a certain structure. In more details, Das

et al. instantiate the ECDSA scheme with a hash function H0 and the ECDSA
scheme with rerandomizable keys with a hash function H1 (both hash functions
are modeled as random oracles). They then program the random oracle H1 in
such a way that on input m′ = (pk ′,m), where pk ′ is a public key rerandomized
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with randomness ρ′ (i.e., pk ′ = pkρ′
), it holds H1(m

′) = H0(m) · ρ′. This allows
the reduction to transform signatures for rerandomized public keys to signatures
for the original public key and vice versa using algorithm Trf[H0,H1].

In our proof, we can show unforgeability of the RECRg,PEC[H1] scheme via a
reduction to the unforgeability of the ECDSA-based adaptor signature scheme
ECRg,PEC[H0]. The main difference in our proof as compared to the proof of
Das et al. arises from the fact that we need to apply the related key attack
on pre-signatures as well. This transformation requires us to use the algorithm
ATrf[H0,H1] as described in Fig. 5. To apply this transformation, we program the
random oracle H1 in exactly the same way as is done in the proof of Das et al. and
hence, the programming of H1 is consistent for signatures and pre-signatures.

Theorem 2. Let H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → Zp be hash functions modeled
as random oracle and let ECRg,PEC[H0] be the secure ECDSA-based adaptor sig-
nature as per Fig. 2. Then the construction RECRg,PEC[H1] as described in Fig. 4
is witness extractable under honestly rerandomizable keys as per Def. 11.

Proof (Sketch). The proof of this theorem is similar to the proof of Thm. 1. Here
we must provide a reduction to the witness extractability property aWitExt of
the ECDSA-based adaptor signature scheme ECRg,PEC[H0]. The main difference,
however, is that we have to show that a valid forgery in game aWitExt−hrk
for scheme RECRg,PEC[H1] can be transformed into a valid forgery in game
aWitExt for scheme ECRg,PEC[H0]. Recall that for a valid forgery σ∗ in game
aWitExt−hrk and given the corresponding pre-signature σ̃∗, it must hold that
(I∗Y ,RECRg,PEC[H1].Ext(σ

∗, σ̃∗, I∗Y )) ̸∈ Rg. Therefore, we must show that apply-
ing the transformations Trf[H0,H1] and ATrf[H0,H1] from Fig. 5 on σ∗ and σ̃∗

respectively preserves the above condition w.r.t. scheme RECRg,PEC[H0]. We show
this via the following claim, for which we assume that m0,m1 ∈ {0, 1}∗ are two

messages, ρ∗ = H1(m1)
H0(m0)

∈ Zp and pk∗ = pkρ∗

aWitExt, where pk aWitExt is the public

key in game aWitExt.

Claim 1 If it holds that (I∗Y ,RECRg,PEC[H1].Ext(σ
∗, σ̃∗, I∗Y )) ̸∈ Rg then we have

(I∗Y ,ECRg,PEC[H0].Ext(σ
′, σ̃′, I∗Y )) ̸∈ Rg, where

σ′ ← Trf[H0,H1](m0,m1, σ
∗, ρ∗, pk aWitExt, pk

∗)

σ̃′ ← ATrf[H0,H1](m0,m1, σ̃
∗, ρ∗, pk aWitExt, pk

∗, I∗Y ).

Let σ∗ = (r, s) and σ̃∗ = (r, s̃,K, π), then we have: σ′ := (r, s
ρ∗ ), σ̃

′ := (r, s̃
ρ∗ ,K, π).

Therefore, we can conclude that:

RECRg,PEC[H1].Ext(σ
∗, σ̃∗, I∗Y ) = s−1s̃ =

(
s

ρ∗

)−1
s̃

ρ∗
= ECRg,PEC[H0].Ext(σ

′, σ̃′, I∗Y )

Hence, we can conclude that if (I∗Y ,RECRg,PEC[H1].Ext(σ
∗, σ̃∗, I∗Y )) ̸∈ Rg then

(I∗Y ,ECRg,PEC[H0].Ext(σ
′, σ̃′, I∗Y )) ̸∈ Rg. And thus, a forgery in game aWitExt−hrk

can be transformed into a valid forgery in game aWitExt.

We note that pre-signature adaptability (cf. Def. 9) of RECRg,PEC follows
immediately from the pre-signature adaptability property of ECRg,PEC.
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3.3 Discussion

Note that our ECDSA-based instantiation of an adaptor signature with reran-
domizable keys is compatible with a plethora of cryptocurrencies, since many
cryptocurrency networks, including Bitcoin and Ethereum, rely on the ECDSA
signature scheme. In our instantiation, we use a multiplicative key rerandom-
ization instead of an additive one. This seemingly insignificant difference has a
crucial impact on the security of the resulting scheme as shown by Das et al. [6].
More concretely, Das et al. presented an ECDSA scheme with additive key reran-
domization, which incurred a security loss in the number of rerandomized keys,
whereas the ECDSA scheme with multiplicative rerandomization from [5] does
not incur such a loss.∗ In a nutshell, this security loss stems from the related key
attack that is required to prove security of the additively rerandomizable scheme.
Since the security proof for ECDSA-based adaptor signatures with rerandomiz-
able keys would rely on the same related key attack, a similar security loss can
be expected for the additively rerandomizable ECDSA-based adaptor signature.
Worse yet, the related key attack for additively rerandomizable ECDSA allows to
prove only one-per-message unforgeability [11], which is a weaker security notion
than standard unforgeability. Therefore, we used multiplicative rerandomization
in our instantiation.

While we did not work out the details, it is likely that adaptor signatures
with rerandomizable keys can be constructed from Schnorr and Katz-Wang-
based adaptor signatures [9] (due to the existing related key attack for Schnorr
signatures as presented in [12]). Finally, we believe that it would be an interesting
future work to extend the notion of two-party adaptor signatures as presented
in [9] to two-party adaptor signatures with rerandomizable keys.

4 Adaptor Wallets

In this section, we introduce the idea of adaptor wallets, which securely main-
tain and operate adaptor signature schemes in a cryptocurrency network. We
first provide our model and then present a generic wallet construction from any
adaptor signature scheme with rerandomizable keys and witness rerandomizable
hard relation. Finally, we show that it is impossible to achieve deterministic and
independent statement/witness rerandomization in our model. In Appx. A we
provide the security arguments for our generic construction.

4.1 Adaptor Wallet Model

We now describe a model for adaptor wallets and we discuss how adaptor signa-
ture schemes with rerandomizable keys can be used to instantiate such a wallet.
Our notion of adaptor wallets resembles the notion of hierarchical deterministic
wallets by Das et al. [6], however, extending their notion to support adaptor

∗Das et al. show that this loss results in 20 bits less security for certain parameters.
We refer the reader to [6] for details.
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signature operations such as pre-signing. We describe here the formal model and
show a construction from adaptor signatures with rerandomizable keys.

An adaptor wallet considers one master wallet, which is used to determinis-
tically initialize new wallets, so-called child wallets. Such child wallets are then
used to generate (adaptor) signatures and are identified in our model by an
identifier ID. In more detail, the master wallet generates and stores a master key
pair (msk,mpk), a state St and a master statement/witness pair (Ym, ym) of a
hard relation. However, the master wallet is not used to generate signatures, but
only to deterministically initialize child wallets, i.e., in order to initialize a child
wallet with identifier ID, the master wallet deterministically derives a new key
pair (sk ID, pk ID) from (msk,mpk), and a new statement/witness pair (Y ID, yID)
from (Ym, ym). The child wallet can then use its key pair (sk ID, pk ID) to gen-
erate signatures and its statement/witness pair (Y ID, yID) and a counter ctr to
deterministically derive further statement/witness pairs.

To keep our model simple, we do not allow child wallets to initialize further
child wallets (as is done in the fully hierarchical setting [6]). We note, however,
that our model can be extended to the fully hierarchical setting.

Similarly to the model of hierarchical deterministic wallets [6], we consider
two kinds of child wallets, namely (1) non-hardened wallets, and (2) hardened
wallets. Broadly speaking, the difference between these two is that we allow full
corruption of hardened wallets, i.e., in our security games we allow the adversary
to learn all secret values stored in a hardened wallet, including the session secret
key sk ID. For non-hardened wallets, on the other hand, we allow the adversary
to only learn the session public key pk ID and statement Y ID. As a motivation for
these two kinds of child wallets, recall the main applications of adaptor signatures
as mentioned in the Introduction, namely payment channels and atomic swaps. A
payment channel is typically used for frequent micropayments, i.e., users deposit
only small amounts of money in a channel and use it often to sign transactions. In
this case, it would be sensible to assume that the user operates the corresponding
wallet on a mobile device, as it has to sign many transactions (possibly at remote
locations) and the impact of a wallet corruption is limited. Such a wallet would be
represented by a hardened wallet in our model. On the other hand, atomic swaps
are used, e.g., to swap coins of one cryptocurrency with coins of another currency.
Such swaps are often one-time transactions of large amounts of funds or valuable
tokens. In this example, it seems reasonable to implement the corresponding
wallet as a hot/cold wallet, as it is crucial to secure such large amounts of funds
or valuable tokens in the best possible way. The security goal for an adaptor
wallet scheme is that the full corruption of hardened wallets does not compromise
the security of any other (child or master) wallet. Additionally, we require that
for all uncorrupted wallets, the derived public keys and statement/witness pairs
are indistinguishable from freshly generated public keys and statement/witness
pairs. Lastly, adaptor wallets must satisfy security notions similar to witness
extractability under honestly rerandomizable keys (cf. Def. 11) and pre-signature
adaptability (cf. Def. 9) of adaptor signatures with rerandomizable keys. Fig. 6
gives an illustration of our wallet model.
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Fig. 6. Exemplatory design of our adaptor wallet scheme with three child wallets. H
and NH denote hardened and non-hardened nodes respectively, cw and hw denote
cold and hot wallets respectively and the values below the child wallets (e.g. yID

ctr, Y
ID
ctr )

illustrate the statement/witness pairs that are being derived within each child wallet.

Statement/Witness rerandomization. According to the hot/cold wallet set-
ting, it would be ideal if the deterministic derivation of statements and witnesses
can be done independently. That is, we would like to store and derive statements
exclusively on the hot wallet and witnesses only on the cold wallet. This would
allow the cold wallet to stay entirely inactive (and therefore secure) in applica-
tions where it suffices to derive statements first and the corresponding witnesses
only at a later time. Surprisingly, we show in Sec. 4.3 that for any multiplica-
tive or additive statement/witness derivation, such an independent derivation is
impossible. In our model and construction, we therefore resort to a joint state-
ment/witness derivation.

Let us now formally define the notion of an adaptor wallet. An adaptor wallet
scheme consists of a Setup algorithm, which initializes the master wallet, deriva-
tion algorithms for hardened and non-hardened keys (SKDerH,PKDerH,SKDerNH,
PKDerNH) as well as for statement/witness pairs RDer, adaptor signature algo-
rithms (pSign, pVrfy,Adapt,Ext) and signing and verification algorithms (Sign,
Verify). In the following, we assume that public parameters par are known to all
algorithms and we define secret and public key sets SK and PK respectively.
Formally we have:

Definition 12 (Adaptor wallet). An adaptor wallet scheme is defined w.r.t.
a hard relation R and consists of algorithms ADWalR = (Setup,SKDerH,SKDerNH,
PKDerH,PKDerNH,RDer, pSign, pVrfy,Adapt,Ext,Sign,Verify) which are defined
as follows:

– The following algorithm describes the setup procedure of the adaptor wallet
scheme.

Setup(1n): The probabilistic setup algorithm takes as input a security parame-
ter n and outputs a master key pair (msk,mpk) ∈ SK×PK, a state St ∈ {0, 1}∗
and a master statement/witness pair (Ym, ym) ∈ R.
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– The following algorithms describe the deterministic derivation of keys and
statement/witness pairs.

SKDerH(msk,St, ID): The deterministic hardened secret key derivation algo-
rithm takes as input a master secret key msk ∈ SK, a state St ∈ {0, 1}∗ and
an identifier ID ∈ {0, 1}∗. It outputs a secret key sk ID ∈ SK.
SKDerNH(msk,mpk,St, ID): The deterministic non-hardened secret key deriva-
tion algorithm takes as input a master secret key msk ∈ SK, a master public
key mpk ∈ PK, a state St ∈ {0, 1}∗ and an identifier ID ∈ {0, 1}∗. It outputs
a secret key sk ID ∈ SK.
PKDerH(msk,mpk,St, ID): The deterministic hardened public key derivation
algorithm takes as input a master secret key msk ∈ SK, a master public key
mpk ∈ PK, a state St ∈ {0, 1}∗ and an identifier ID ∈ {0, 1}∗. It outputs a
public key pk ID ∈ PK.
PKDerNH(mpk,St, ID): The deterministic non-hardened public key derivation
algorithm takes as input a master public key mpk ∈ PK, a state St ∈ {0, 1}∗
and an identifier ID ∈ {0, 1}∗. It outputs a public key pk ID ∈ PK.
RDer(Y, y, ctr, ID): The deterministic statement/witness derivation algorithm
takes as input a statement/witness pair (Y, y) ∈ R, a counter ctr ∈ {0, 1}∗
and an identifier ID ∈ {0, 1}∗. It outputs a statement/witness (Y ID

ctr , y
ID
ctr).

– The following algorithms describe the adaptor signature procedures.

pSign(sk ID,m, Y ID
ctr ): The probabilistic pre-signing algorithm takes as input a

secret key sk ID ∈ SK, a message m ∈ {0, 1}∗ and a statement Y ID
ctr ∈ LR. It

outputs a pre-signature σ̃.

pVrfy(pk ID,m, Y ID
ctr , σ̃): The deterministic pre-verification algorithm takes as

input a public key pk ID ∈ PK, a message m ∈ {0, 1}∗, a statement Y ID
ctr ∈ LR

and a pre-signature σ̃. It outputs 0 or 1.

Adapt(σ̃, yIDctr): The deterministic adapting algorithm takes as input a pre-
signature σ̃ and a witness yIDctr. It outputs a signature σ.

Ext(σ, σ̃, Y ID
ctr ): The deterministic extracting algorithm takes as input a signa-

ture σ, a pre-signature σ̃ and a statement Y ID
ctr ∈ LR. It outputs a witness yIDctr

such that (Y ID
ctr , y

ID
ctr) ∈ R, or ⊥.

– The following algorithms describe the relevant procedures for signing and ver-
ification.

Sign(sk ID,m): The probabilistic signing algorithm takes as input a secret key
sk ID ∈ SK and a message m ∈ {0, 1}∗. It outputs a signature σ.

Verify(pk ID,m, σ): The deterministic verification algorithm takes as input a
public key pk ID, a message m ∈ {0, 1}∗ and a signature σ. It outputs 0 or 1.

An adaptor wallet scheme is correct, if (1) statement/witness pairs that
are derived by the algorithm RDer form valid statement/witness pairs for the
hard relation R, (2) secret/public key pairs that are derived by the algorithms
SKDerH,PKDerH and SKDerNH,PKDerNH respectively form valid signing key pairs,
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and (3) derived statement/witness pairs and derived secret/public key pairs sat-
isfy pre-signature correctness in the sense of an adaptor signature scheme.

We denote keys with subscript nh (e.g., sk ID
nh or pk ID

nh) as non-hardened keys
and keys with subscript h (e.g., sk ID

h or pk ID
h ) as hardened keys.

Definition 13 (Correctness of adaptor wallets). Let ADWalR be an adap-
tor wallet scheme. For n ∈ N, any ID ∈ {0, 1}∗ and any (msk,mpk,St, Ym, ym) ∈
Setup(1n), we define tuples (sk ID

h , pk ID
h ) as

sk ID
h := SKDerH(msk,St, ID)

pk ID
h := PKDerH(msk,mpk,St, ID)

and tuples (sk ID
nh, pk

ID
nh) as

sk ID
nh := SKDerNH(msk,mpk,St, ID)

pk ID
nh := PKDerNH(mpk,St, ID).

Further, for any ctr ∈ {0, 1}∗ we define tuples
(
Y ID
ctr , y

ID
ctr

)
:= RDer(Y ID, yID, ctr, ID)

where (Y ID, yID) := RDer(Ym, ym, 0, ID).

ADWalR is correct if for all m ∈ {0, 1}∗, all ID ∈ {0, 1}∗, all ctr ∈ {0, 1}∗ and
all (msk,mpk,St, Ym, ym) ∈ Setup(1n) the following four conditions hold:

Pr

pVrfy(pk ID
h ,m, Y ID

ctr , σ̃) = 1,

Verify(pk ID
h ,m, σ) = 1, (Y ID

ctr , y
′) ∈ R

∣∣∣∣∣∣
σ̃ ← pSign(sk ID

h ,m, Y ID
ctr )

σ := Adapt(pk ID
h , σ̃, yIDctr),

y′ := Ext(pk ID
h , σ, σ̃, Y ID

ctr )

 =1. (1)

Pr

pVrfy(pk ID
nh,m, Y ID

ctr , σ̃) = 1,

Verify(pk ID
nh,m;σ) = 1, (Y ID

ctr , y
′) ∈ R

∣∣∣∣∣∣
σ̃ ← pSign(sk ID

nh,m, Y ID
ctr )

σ := Adapt(pk ID
nh, σ̃, y

ID
ctr),

y′ := Ext(pk ID
nh, σ, σ̃, Y

ID
ctr )

 =1. (2)

Pr
[
Verify(pk ID

h ,m, σ) = 1
∣∣σ ← Sign(sk ID

h ,m)
]
=1. (3)

Pr
[
Verify(pk ID

nh,m, σ) = 1
∣∣σ ← Sign(sk ID

nh,m)
]
=1. (4)

Additionally, an adaptor wallet scheme must satisfy the properties wallet un-
forgeability, wallet witness extractability, wallet unlinkability and wallet signature
adaptability. We formalize these properties via the games wUfcma, wWitExt,
wUnl and wAdapt in Figures 8 and 9. The required oracles for these games
are described in Fig. 7.
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Oracles Before we formally define the security notions that an adaptor wallet
scheme has to satisfy, we describe the oracles to which the adversary will ob-
tain access in the security games. We give a formal description of the oracles
in Fig. 7. The oracles HKeyO and NHKeyO allow the adversary to adaptively cre-
ate new hardened or non-hardened child wallets for an adaptively chosen ID.
The LeakO oracle allows the adversary to adaptively corrupt a hardened wallet
and thereby to learn all secret values of this wallet, including its session se-
cret key. Note that, according to our model, this oracle can only be called for
hardened wallets. The StLeakO oracle leaks the state of the scheme. The oracles
SignO and PreSignO allow the adversary to receive signatures and pre-signatures
respectively for adaptively chosen messages, wallet identifiers and statements.
Finally, the HardRelO oracle gives the adversary the ability to learn derived
statement/witness pairs for adaptively chosen wallets and counters. This models
the adversary’s capability in certain use cases, such as the revocation process in
payment channels, to learn statement/witness pairs of an uncorrupted wallet.

For all our games, we assume that the lists HK, NHK, C, Q and W have been
initialized to the emptyset ∅ (i.e., HK := ∅, NHK := ∅ etc.). The lists HK and NHK

are used throughout the oracles and games to bookkeep the internal values of all
hardened and non-hardened wallets, whereas C keeps track of all corrupted hard-
ened wallets and Q stores for each wallet on which messages a (pre-) signature
has already been generated. Finally, W keeps track of the statement/witness
pairs per wallet that have been leaked to the adversary.

Wallet Unforgeability and Witness Extractability We now describe the
security notions of wallet unforgeabilty and wallet witness extractability that an
adaptor wallet has to satisfy. These two notions are formally defined in Fig. 8.

Wallet Unforgeability In a nutshell, unforgeability for adaptor wallets guar-
antees that an adversary cannot forge a signature of any uncorrupted wallet
instance even if the adversary receives a pre-signature on a fresh message of its
choice for a fresh yet deterministically generated statement/witness pair. Recall
that in our model, only hardened secret keys can be corrupted.

More concretely, in the unforgeability game, the challenger generates a mas-
ter key pair, a state and a master statement/witness pair via the execution of
Setup(1n). The adversary receives the master public key, the master statement
and the state as input and obtains access to the oracles described in Fig. 7. Even-
tually, the adversary outputs an identifier ID∗ and a counter ctr∗. If a hardened
or non-hardened wallet exists for this ID∗ and no statement/witness pair was re-
turned to the adversary for the given ID∗ and ctr∗, the challenger derives a new
statement/witness pair using ID∗ and ctr∗ and returns the derived statement
to the adversary. Note that the adversary does not receive the witness corre-
sponding to this statement and cannot query it from the HardRelO oracle. At
this point the adversary provides a message for which the challenger generates
and returns a pre-signature using the derived statement. Finally, the adversary
outputs a forgery. It wins the game if (1) the forgery is valid, (2) the message
has not been queried to the (pre-) signing oracles PreSignO and SignO for this
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Oracle HKeyO(ID)
00 If NHK[ID] ̸= ⊥: return ⊥
01 If HK[ID] ̸= ⊥:
02 (·, pk ID

h , ·, ·, ·) := HK[ID]
03 return pk ID

h

04 sk ID
h ← SKDerH(msk, St, ID)

05 pk ID
h ← PKDerH(msk,mpk, St, ID)

06 (Y ID, yID) := RDer(Ym, ym, 0, ID)
07 HK[ID] = (sk ID

h , pk ID
h , yID, Y ID)

08 Return pk ID
h

Oracle NHKeyO(ID)
09 If HK[ID] ̸= ⊥: return ⊥
10 If NHK[ID] ̸= ⊥:
11 (·, pk ID

nh, ·, ·, ·) := NHK[ID]
12 return pk ID

nh

13 sknh,ID ← SKDerNH(msk,mpk, St, ID)
14 pk ID

nh ← PKDerNH(mpk, St, ID)
15 (Y IDyID) := RDer(Ym, ym, 0, ID)
16 NHK[ID] = (sk ID

nh, pk
ID
nh, y

ID, Y ID)
17 Return (pk ID

nh, Y
ID)

Oracle LeakO(ID)
18 If HK[ID] = ⊥: return ⊥
19 (sk ID

h , pk ID
h , yID, Y ID) := HK[ID]

20 C ← C ∪ {ID}
21 Return (sk ID

h , yID)

Oracle StLeakO

22 stLeak = 1
23 Return St

Oracle SignO(m, ID)
24 If HK[ID] = ⊥ ∧ NHK[ID] = ⊥: return ⊥
25 If HK[ID] = ⊥:
26 (sk , ·, ·, ·, ·) := NHK[ID]
27 Else (sk , ·, ·, ·, ·) := HK[ID]
28 σ ← Sign(sk ,m)
29 Q[ID] := Q[ID] ∪ {m}
30 Return σ

Oracle PreSignO(m, ID, Y )
31 If HK[ID] = ⊥ ∧ NHK[ID] = ⊥: return ⊥
32 If HK[ID] = ⊥:
33 (sk , ·, ·, ·, ·) := NHK[ID]
34 Else (sk , ·, ·, ·, ·) := HK[ID]
35 σ̃ ← pSign(sk ,m, Y )
36 Q[ID] := Q[ID] ∪ {m}
37 Return σ̃

Oracle HardRelO(ID, ctr)
38 If ctr ∈ W[ID]: return ⊥
39 If HK[ID] = ⊥ ∧ NHK[ID] = ⊥: return ⊥
40 If HK[ID] ̸= ⊥: (·, ·, ·, yID, Y ID) := HK[ID]
41 Else: (·, ·, ·, yID, Y ID) := NHK[ID]
42 (Y ID

ctr , y
ID
ctr) := RDer(Y ID, yID, ctr, ID)

43 W[ID]←W[ID] ∪ {ctr}
44 Return (Y ID

ctr , y
ID
ctr)

Fig. 7. Oracles for the security games in Figures 8 and 9.

specific ID∗ before, and (3) the session secret key of this wallet has not been
leaked to the adversary.

Definition 14. An adaptor wallet scheme ADWalR is wallet unforgeable if for
every PPT adversary A := (A1,A2,A3) there exists a negligible function ν in
the security parameter n such that Pr[wUfcmaA,ADWalR(n) = 1] ≤ ν(n), where
the experiment wUfcmaA,ADWalR is defined in Fig. 8.

Wallet Witness Extractability Witness extracatbility for adaptor wallets is
similar to the unforgeability notion with the main difference that the adversary
chooses the challenge statement/witness pair itself. The adversary then receives
a pre-signature on the chosen statement and message and its goal is to output
a full signature such that given the pre-signature and full signature, no valid
witness for the challenge statement can be extracted.
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Definition 15. An adaptor wallet scheme ADWalR is wallet witness extractable
if for every PPT adversary A := (A1,A2) there exists a negligible function ν in
the security parameter n such that Pr[wWitExtA,ADWalR(n) = 1] ≤ ν(n), where
the experiment wWitExtA,ADWalR is defined in Fig. 8.

wUfcmaA,ADWalR(n)
00 (msk,mpk, St, Ym, ym)← Setup(1n)
01 (ID∗, ctr∗, st1)← AO

1 (mpk, St, Ym)
02 If ctr∗ ∈ W[ID∗]: return 0
03 If HK[ID] ̸= ⊥: (sk , pk , yID∗

, Y ID∗
) := HK[ID∗]

04 If NHK[ID] ̸= ⊥: (sk , pk , yID∗
, Y ID∗

) := NHK[ID∗]
05 Else: return 0
06 W[ID∗]←W[ID∗] ∪ ctr∗

07 (Y ID∗
ctr∗ , y

ID∗
ctr∗)← RDer(Y ID∗

, yID∗
, ctr∗, ID∗)

08 (m∗, st2)← AO
2 (st1, Y

ID∗
ctr∗ )

09 σ̃ ← pSign(sk ,m, Y ID∗
ctr∗ )

10 σ∗ ← AO
3 (σ̃, st2)

11 Return (m∗ ̸∈ Q[ID∗] ∧ Verify(pk ,m∗, σ∗)∧
ID∗ /∈ C)

wWitExtA,ADWalR(n)
00 (msk,mpk,St, Ym, ym)← Setup(1n)
01 (m∗, ID∗, Y ∗, st)← AO

1 (mpk, St, Ym)
02 If HK[ID∗] ̸= ⊥:

(sk , pk , yID∗
, Y ID∗

) := HK[ID∗]
03 If NHK[ID∗] ̸= ⊥:

(sk , pk , yID∗
, Y ID∗

) := NHK[ID∗]
04 Else: return 0
05 σ̃ ← pSign(sk ,m∗, Y ∗)
06 σ∗ ← AO

2 (σ̃, st)
07 b1 ← (Y ∗,Ext(σ∗, σ̃, Y ∗)) ̸∈ R
08 b2 ← m∗ ̸∈ Q[ID∗]
09 b3 ← Verify(pk ,m∗, σ∗)
10 b4 ← ID∗ /∈ C
11 Return (b1 ∧ b2 ∧ b3 ∧ b4)

Fig. 8. Wallet unforgeability (wUfcma) and wallet witness extractability
(wWitExt) games for an adaptor scheme. In the above games we have
O := {HKeyO, NHKeyO, LeakO, SignO, PreSignO, HardRelO}.

Wallet Unlinkability At a high level, the notion of wallet unlinkability de-
scribes that an adversary, upon receiving the master public keympk of an adaptor
wallet scheme, cannot distinguish whether a session public key pk ID∗

(hardened
or non-hardened) was derived from mpk or from a freshly generated mpk′. This
should hold, even if the adversary learns all previously generated session public
keys of the adaptor wallet scheme and if it corrupts some or all hardened wallets.

The game is formally described in Fig. 9. In its essence, the game allows the
adversary, on input the master public key and the master statement, to query
the oracles of Fig. 7. Eventually, the adversary outputs an ID∗ and a value c,
which indicate for which child wallet the adversary wishes to be challenged and
if the wallet should be hardened or non-hardened. The game then uniformly at
random chooses a bit b and proceeds as follows depending on b. If b = 0, the game
derives the challenge session public key from mpk corresponding to the value of
c. Otherwise, if b = 1 the game chooses a fresh master public key mpk′ and state
St′ and derives the challenge session public key from mpk′. Upon receiving the
challenge session public key, the adversary has to decide whether b = 0 or b = 1.
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Definition 16. An adaptor wallet scheme ADWalR is wallet unlinkable if for
every PPT adversary A := (A1,A2) there exists a negligible function ν in the
security parameter n such that Pr[wUnlA,ADWalR(n) = 1] ≤ ν(n), where the
experiment wUnlA,ADWalR is defined in Fig. 9.

wUnlA,ADWalR(n)
00 stLeak = 0
01 (msk,mpk, St, Ym, ym)← Setup(1n)
02 (ID∗, c, st)← AO

1 (mpk, Ym)
03 If HK[ID∗] ̸= ⊥ ∨ NHK[ID∗] ̸= ⊥: return 0
04 (msk′,mpk′,St′, Y ′

m, y′
m)← Setup(1n)

05 b←$ {0, 1}
06 If b = 0 ∧ c = h:
07 pk ID∗

c ← HKeyO(ID∗)
08 If b = 0 ∧ c = nh:
09 pk ID∗

c ← NHKeyO(ID∗)
10 If b = 1 ∧ c = h:

pk ID∗

c ← HKeyO(ID∗,msk′,mpk′, St′, Y ′
m, y′

m)
11 If b = 1 ∧ c = nh:

pk ID∗

c ← NHKeyO(ID∗,msk′,mpk′, St′, Y ′
m, y′

m)
12 b′ ← AO

2 (pk ID∗

c , st)
13 If c = nh ∧ stLeak = 1:
14 return 0
15 Return (b = b′ ∧ ID∗ /∈ C)

wAdaptA,ADWalR
(n)

00 (msk,mpk, St, Ym, ym)← Setup(1n)
01 (pkA,m∗, σ̃∗, ID∗, ctr∗)

← AO(msk,mpk,St, Ym, ym)
02 If HK[ID∗] ̸= ⊥:

(sk , pk , yID∗
, Y ID∗

) := HK[ID∗]
03 If NHK[ID∗] ̸= ⊥:

(sk , pk , yID∗
, Y ID∗

) := NHK[ID∗]
04 Else: return 0
05 (Y ID∗

ctr∗ , y
ID∗
ctr∗) := RDer(Y ID∗

, yID∗
, ctr∗, ID∗)

06 σ∗ ← Adapt(σ̃∗, yID∗
ctr∗)

07 b1 ← pkA ∈ PK
08 b2 ← pVrfy(pkA,m∗, Y ID∗

ctr∗ , σ̃
∗)

09 b3 ← Verify(pkA,m∗, σ∗)
10 Return b1 ∧ b2 ∧ ¬b3

Fig. 9. Wallet unlinkability (wUnl) and wallet signature adaptability
(wAdapt) games for a adaptor scheme. In the above games we have
O := {HKeyO, NHKeyO, LeakO, SignO, PreSignO, HardRelO, StLeakO}
and we denote by NHKeyO(ID,msk′,mpk′,St′, Y ′

m, y′
m) (and for HKeyO respectively)

the execution of oracle NHKeyO w.r.t. the values (msk′,mpk′,St′, Y ′
m, y′

m) instead of
(msk,mpk, St, Ym, ym).

Wallet Signature Adaptability The final property of an adaptor wallet
scheme, wallet signature adaptability, intuitively says that an adversary can-
not produce a pre-signature for a statement under a self-chosen key pair, such
that the pre-signature verifies but the adapted full signature does not verify. The
formal game is depicted in Fig. 9 and proceeds as follows: The game initiates an
adaptor wallet scheme and gives the entire internal state of the master wallet to
the adversary, which is allowed to make queries to oracles as described in Fig. 7.
Eventually, the adversary outputs its own public key pkA, a message m∗, a
pre-signature σ̃∗, an ID∗ and a counter ctr∗, upon which the game derives the
statement/witness pair corresponding to ID∗ and ctr∗. The adversary wins the
game if the pre-signature σ̃∗ verifies w.r.t. to m∗ and the derived statement, but
the adapted full signature (adapted with the derived witness) does not verify.
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Definition 17. An adaptor wallet scheme ADWalR is wallet signature adapt-
able if for every PPT adversary A there exists a negligible function ν in the
security parameter n such that Pr[wAdaptA,ADWalR(n) = 1] ≤ ν(n), where the
experiment wAdaptA,ADWalR is defined in Fig. 9.

Definition 18. An adaptor wallet scheme ADWalR is secure, if satisfies wallet
unforgeability, wallet witness extractability, wallet unlinkability and wallet signa-
ture adaptability.

4.2 Construction

We now provide our generic construction of adaptor wallets, from an adaptor sig-
nature scheme with rerandomizable keys RASigR,Σ = (RandSK,RandPK, pSign,
Adapt, pVrfy,Ext). This construction uses a hash function H : {0, 1}∗ → X and
we require that the hard relation R is witness rerandomizable as per Def. 2. Our
construction can be found in Figure 10.

Algorithm Setup(1n)
00 St←$ {0, 1}n
01 (Ym, ym)← R.GenR(1n)
02 (msk,mpk)← RASigR,Σ .Gen(1n)
03 Return (msk,mpk, St, Ym, ym)

Algorithm pSign(sk ID,m, Y )
04 σ̃ ← RASigR,Σ .pSign(sk ID,m, Y )
05 Return σ̃

Algorithm pVrfy(pk ID,m, Y, σ̃)
06 Return RASigR,Σ .pVrfy(pk ID,m, Y, σ̃)

Algorithm Adapt(σ̃, yID
ctr)

07 σ ← RASigR,Σ .Adapt(σ̃, yID
ctr)

08 Return σ

Algorithm Ext(σ, σ̃, Y ID
ctr )

09 Return RASigR,Σ .Ext(σ, σ̃, Y ID
ctr )

Algorithm Sign(sk ID,m)
10 σ ← RASigR,Σ .Sign(sk ID,m)
11 Return σ

Algorithm Verify(pk ID,m, σ)
12 Return RASigR,Σ .Verify(pk ID,m, σ)

Algorithm SKDerH(msk, St, ID)
13 ρ← H(msk, St, ID)
14 sk ID ← RASigR,Σ .RandSK(msk, ρ)

15 Return sk ID

Algorithm SKDerNH(msk,mpk, St, ID)
16 ρ← H(mpk, St, ID)
17 sk ID ← RASigR,Σ .RandSK(msk, ρ)

18 Return sk ID

Algorithm PKDerH(msk,mpk, St, ID)
19 ρ← H(msk, St, ID)
20 pk ID ← RASigR,Σ .RandPK(mpk, ρ)

21 Return pk ID

Algorithm PKDerNH(mpk, St, ID)
22 ρ← H(mpk, St, ID)
23 pk ID ← RASigR,Σ .RandPK(mpk, ρ)

24 Return pk ID

Algorithm RDer(Y, y, ctr, ID)
25 ρ← H(y, ctr, ID)
26 yID

ctr ← R.RandWit(y, ρ)
27 Y ID

ctr ← R.WitToSt(yID
ctr)

28 Return (Y ID
ctr , y

ID
ctr)

Fig. 10. Generic construction of adaptor wallets w.r.t. an adaptor signature scheme
with rerandomizable keys RASigR,Σ , where R is a witness rerandomizable hard relation
as per Def. 2 and a hash function H : {0, 1}∗ → X.
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Theorem 3. Let RASigR,Σ be an adaptor signature scheme with rerandomizable
keys as per Def. 8, let R be a witness rerandomizable hard relation as per Def. 2,
and let H : {0, 1}∗ → X be a hash function modeled as random oracle. Then the
construction from Fig. 10 is a secure adaptor wallet scheme.

In order to prove this theorem, we have to show that the construction from Fig. 10
satisfies wallet unforgeability, wallet witness extractability, wallet unlinkability
and wallet signature adaptability. We provide security arguments for these prop-
erties in Appx. A.

4.3 Impossibility of Independent Statement/Witness Derivation

As mentioned above, one main question that arises when modeling derivation
of statement/witness pairs in a deterministic fashion is whether an independent
derivation of statement/witness pairs in hot and cold wallets respectively is
possible. Surprisingly, unlike the secret and public key derivation mechanism, we
show that this is not necessarily the case. At a high level, this is because unlike
session secret keys, derived witnesses do not remain secret but are typically
revealed in adaptor signature applications.

More formally, we say that a hard relation R ⊆ DY ×Dw has independently
rerandomizable statement/witness pairs, if there exist two functions fSTDer :
DY×{0, 1}∗ → DY and fWitDer : Dw×{0, 1}∗ → Dw where for any ρ ∈ {0, 1}∗ and
any (Y, y) ∈ R we have: Y ′ ← fSTDer(Y, ρ), y

′ ← fWitDer(y, ρ), and (Y ′, y′) ∈ R.

Translating the above to the hot/cold wallet setting, means that the cold
wallet executes function fWitDer and the hot wallet function fSTDer where ρ is
computed as ρ ← ω(Y, ctr, ID) for some deterministic and publicly known func-
tion ω(·) which is typically instantiated with a hash function and modeled as
a random oracle. An adversary in this setting can corrupt the hot wallet but
not the cold wallet, and hence can learn the statements Y and Y ′ as well as the
respective randomness ρ. In addition, as required by certain adaptor signature
applications, the adversary eventually learns a derived witness y′ ← fWitDer(y, ρ).
Therefore, if there exists a function f−1 : Dw × {0, 1}∗ → Dw which on input
y′ and ρ returns y, i.e., y ← f−1(y′, ρ), then we cannot construct deterministic
and independent statement/witness derivation from fWitDer and fSTDer. This is,
because an adversary could compute y and thereby break unforgeability of the
adaptor wallet scheme.

For the following (informal) theorem, we introduce the notion of an adaptor
wallet with independent statement/witness derivation. This notion differs from
adaptor wallets in the sense that statement/witness pairs are derived via func-
tions fSTDer and fWitDer respectively (instead of RDer) and randomness is derived
via ω as described above.

Theorem 4 (informal). Let AW be an adaptor wallet scheme with indepen-
dent statement/witness derivation and assume that the function f−1 as described
above exists. Then AW does not satisfy wallet unforgability.
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Proof (Sketch). We can prove this theorem by exhibiting an adversary A =
(A1,A2,A3) that breaks the wallet unforgeability of AW. The attack proceeds
as follows:

In the wallet unforgeability game, A1 chooses an ID∗ and queries oracle
NHKeyO on input ID∗ and receives (pk ID∗

nh , Y ID∗
). It then queries oracle HardRelO

on input ID∗ and a counter ctr and receives (Y ID∗

ctr , yID
∗

ctr ). Note that, since A1

knows Y ID∗
, it can compute the randomness ρID

∗

ctr ← ω(Y ID∗
, ctr, ID∗) that was

used for the derivation of (Y ID∗

ctr , yID
∗

ctr ). Finally,A1 executes y
ID∗ ← f−1(yID

∗

ctr , ρ
ID∗

ctr ),
which allows the adversary to run fWitDer on input yID

∗
and any randomness

ρ. A1 now outputs (ID∗, ctr∗, st1) where st1 := (yID
∗
, ID∗, ctr∗). Upon receiving

Y ∗
ctr∗ , A2 chooses any message m∗ from the message space and outputs (m∗, st2)

where st2 := st1. Upon receiving σ̃, A3, executes yID
∗

ctr∗ ← fWitDer(y
ID∗

, ρID
∗

ctr∗), for
ρID

∗

ctr∗ ← ω(Y ID∗
, ctr∗, ID∗). Finally, A3 executes Adapt(pk , σ̃, yID

∗

ctr∗) and receives
the full signature σ∗ which constitutes a valid forgery.

Let us now see how this result affects existing adaptor signature construc-
tions. For the ECDSA-based adaptor signature construction ECRg,PEC[H] as de-
scribed in Sec. 2.4 it is not possible to define fSTDer without providing the wit-
ness as input. This is mainly because the hard relation Rg := {((Y, π), y) | Y =
gy ∧ Vg(Y, π) = 1} requires a zero-knowledge proof alongside the statement Y ,
that proves knowledge of the witness y. Naturally, generating this proof with-
out the witness is not possible. Now consider the “pure” dlog hard relation
Rdlog := {(Y, y) | Y = gy}, which is required for adaptor signature schemes
based on Schnorr and Katz-Wang [9]. The statement/witness pairs for this re-
lation can be rerandomized either multiplicatively or additively. Both of these
operations, however, can easily be inverted. For instance, for a statement/witness
pair (gy, y) ∈ Rdlog, an additive rerandomization would instantiate the functions
fSTDer and fWitDer as fSTDer(g

y, ρ) := gy · gρ = Y ′ and fWitDer(y, ρ) := y+ ρ = y′.
Naturally, the function f−1 can simply be instantiated as f−1(y′, ρ) := y′−ρ = y.

Impact of the impossibility result. Due to the above impossibility result of
independent statement/witness derivation we cannot construct an adaptor wal-
let scheme with statement derivation in the hot wallet. However, for certain
applications of adaptor signatures, this restriction is tolerable as the cold wallet
does not need to generate many signatures and/or statement/witness pairs and
therefore does not need to be activated frequently. Further, in practice one can
minimize the number of times a cold wallet must be activated by batching the
generation of statement/witness pairs, i.e., the cold wallet can generate multiple
pairs and send all statements at once to the hot wallet. For other applications
with frequent transactions, such as payment channels, an adaptor wallet user
can use a hardened wallet as explained in Sec. 4.1.

An interesting open problem is to design an adaptor wallet scheme that
overcomes this impossibility result.
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A Proof of Thm. 3

A.1 Wallet Unforgeability

Lemma 3. The adaptor wallet construction from Fig. 10 satisfies wallet un-
forgeability as per Def. 14.

Proof (sketch). The proof of this lemma works in a similar way as the wallet
unforgability proof of Das et al. [6] for hierarchical deterministic wallets. In
their proof, Das et al. provide a reduction to the unforgeability property of a
signature scheme with rerandomizable keys. In our case, we reduce the wallet
unforgeability of our adaptor wallet construction to the unforgeability of adaptor
signatures with rerandomizable keys. Therefore, we will discuss how to adjust
the reduction of Das et al. in our setting. At a high level, in addition to their
proof, we have to show how the reduction can simulate pre-signing queries and
we have to exhibit reductions to the witness rerandomizable hard relation.

The main issue in the proof arises from the fact that the reduction on
input only a public key pk from game aSigForge−hrk has to simulate game
wUfcmaA,ADWalR to adversary A. At the beginning of game wUfcmaA,ADWalR ,
the reduction generates its own master statement/witness pair as well as a
state, which it can use to derive all required witnesses itself. In order to an-
swer queries to the non-hardened wallet generation oracle NHKeyO, the reduction
simply queries a rerandomized public key from game aSigForge−hrk and honestly
generates statement/witness pairs itself. The derivation of hardened wallets is
more challenging, because A can query the LeakO oracle, upon which the re-
duction must provide the secret key sk ID and witness yID of a hardened wallet.
As mentioned before, revealing yID is not a problem, but it is not clear how the
reduction can reveal sk ID. Therefore, the reduction simulates the derivation of
hardened wallets by sampling fresh key pairs that are independent of pk . This
allows the reduction to answer A’s LeakO queries, but has the disadvantage that,
if A outputs a forgery for a hardened wallet in game wUfcmaA,ADWalR , then the
reduction cannot use this forgery to win game aSigForge−hrk (since the keys of
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hardened wallets are independent of pk). For this reason, the reduction guesses
the position of one single hardened wallet that the adversary will not corrupt
and will potentially choose to generate a forgery for. This wallet is then gen-
erated as a non-hardened wallet, such that, should A provide a forgery for it,
the reduction can use the forgery to win game aSigForge−hrk. We note that this
simulation allows the reduction to answer A’s queries to oracles PreSignO and
SignO, since (1) for hardened wallets the reduction knows the secret key, and
(2) for non-hardened wallets the reduction can query the corresponding oracles
of game aSigForge−hrk to receive (pre-)signatures. Proving indistinguishability
of the above simulation works similarly as in the proof of Das et al.

During the challenge phase of game wUfcmaA,ADWalR , adversary A first
outputs an identifier ID∗ and counter ctr∗ and later a message m∗. The reduction
then sends the public key pk∗ of the wallet with identifier ID∗ and the message
m∗ to game aSigForge−hrk and receives a pre-signature on m∗ under public key
pk∗ for a randomly sampled statement Y . We have to show that the reduction
can forward this pre-signature to A without A realizing that Y was sampled
at random instead of deterministically derived from Ym. Note that the hard
relation is witness rerandomizable and that the randomness ρ for the witness
rerandomization is derived as ρ ← H(yID

∗
, ctr∗, ID∗), where H is modeled as

a random oracle. Therefore, the adversary can distinguish statement Y from
Y ID∗

ctr∗ only if it queries H on input (yID
∗
, ctr∗, ID∗) or (ym, ·, ·). However, we can

show that these queries happen at most with negligible probability by exhibiting
reductions to the witness rerandomizable hard relation. These reductions work
similarly as the one described in Claim. 3 of the wallet unlinkability proof with
the only difference that we must provide two reductions, i.e., one for each critical
random oracle query (yID

∗
, ctr∗, ID∗) and (ym, ·, ·).

A.2 Wallet Witness Extractability

Lemma 4. The adaptor wallet construction from Fig. 10 satisfies wallet witness
extractability as per Def. 15.

The proof of this lemma follows in a similar way as the proof of Lemma 3 with
the only difference that we do not require the final reductions to the witness
rerandomizable hard relation.

A.3 Wallet Unlinkability

Lemma 5. The adaptor wallet construction from Fig. 10 satisfies wallet unlink-
ability as per Def. 16.

The proof of this lemma is similar to the wallet unlinkability proof for hierarchical
deterministic wallets of Das et al. [6], however, we have to show additionally that
derived statement/witness pairs of the witness rerandomizable hard relation do
not help an adversary to win the game. For completeness, we present the entire
proof here.
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Proof. Consider a PPT adversary A that plays in the wallet unlinkability game
wUnl. The game proceeds by first generating a master key pair, a state, and
a master statement/witness pair via an execution of the Setup procedure, i.e.,
(msk,mpk,St, Ym, ym) ← Setup(1n). The game then executes A on input mpk
and Ym and grants access to oracles O. Upon the adversary outputting the tuple
(ID∗, c, st), the game first checks if the (hardened or non-hardened) wallet with
identifier ID∗ has already been generated, and if so aborts, i.e., the adversary
loses the game.

In case A challenges a non-hardened wallet (i.e., c = nh), the game ei-

ther derives a public key pk ID∗

nh ← PKDerNH(mpk,St, ID∗) or it executes the
setup procedure (msk′,mpk′,St′, Y ′

m, y′m) ← Setup(1n) and derives a public key

pk ID∗

nh

′ ← PKDerNH(mpk′,St′, ID∗). Recall that non-hardened public keys are
computed as follows:

ρ←H(mpk,St, ID∗),

pk ID∗

nh ←RASigR,Σ .RandPK(mpk, ρ)

Due to the (perfect) rerandomizability of keys property (cf. Def. 8) of the

RASigR,Σ scheme, the public keys pk ID∗

nh and pk ID∗

nh

′
are identically distributed

from A’s view as long as ρ is uniformly random. This is the case, if A has not
previously queried the random oracle H on input (mpk,St, ID∗). In order to make
such a query, A must correctly guess the state St, which is a uniformly random
n-bit string. Since Amakes a polynomial number (in n) of random oracle queries,
the probability of guessing St correctly is negligible.

In case A challenges a hardened wallet (i.e., c = h), the game either derives a

public key pk ID∗

h ← PKDerH(msk,mpk,St, ID∗) or it executes (msk′,mpk′,St′, Y ′
m, y′m)←

Setup(1n) and derives a public key pk ID∗

h

′ ← PKDerH(msk′,mpk′,St′, ID∗). For
hardened wallets, A is allowed to query the StLeakO oracle which returns the
state St. Therefore, A does not need to guess St correctly in this case. Recall
that hardened public keys are computed as follows:

ρ←H(msk,mpk,St, ID∗),

pk ID∗

h ←RASigR,Σ .RandPK(mpk, ρ)

Therefore, due to the (perfect) rerandomizability of keys property, A can

distinguish pk ID∗

h and pk ID∗

h

′
only if it is able to compute the master secret key

msk. Let E be the event that A calls the random oracle on input (msk,mpk,St, ·).
Then we can state the following claim:

Claim 2 If E happens with more than negligible probability, then there exists a
PPT algorithm C that wins game aSigForge−hrkC,RASigR,Σ

with more than negli-

gible probability.

Proof. We prove this claim via reduction to the aSigForge−hrkC,RASigR,Σ
game.

In this reduction, C first receives a public key pk from game aSigForge−hrk and
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C additionally chooses a state St ←$ {0, 1}n and a master statement/witness
pair (Ym, ym) ← R.GenR(1n). C then forwards pk and Ym to A. The generated
values St and (Ym, ym) allow C to honestly simulate oracles NHKeyO, HardRelO
and StLeakO. The remaining oracles are simulated as follows:

– Random oracle H: C queries the oracle Rand from game aSigForge−hrk to
receive randomness ρ and outputs ρ.

– (Pre-) Signing oracles PreSignO and SignO for non-hardened wallets: On
input (m, ID, Y ) and (m, ID) respectively, C calls the corresponding oracles
in game aSigForge−hrk using the randomness that corresponds to ID.

– Hardened Child Derivation oracle HKeyO and LeakO oracle: On input ID, C
generates a fresh key pair (sk ′, pk ′) ← RASigR,Σ .Gen(1

n) and assigns the

tuple (sk ID
h , pk ID

h ) := (sk ′, pk ′). This allows also to simulate (pre-) signing
queries for hardened wallets. The LeakO oracle on input ID can then be sim-
ulated by outputting sk ID

h and the corresponding witness yID. This simulation
is indistinguishable for A due to the rerandomizability of keys property of
RASig.

The only way to distinguish this simulation from the real game for A is if event
E happens, i.e., if A correctly guesses the secret key sk corresponding to pk and
makes a random oracle query on input sk . In this case, however, C learns sk and
can use it to win its own game.

Finally, we have to show that A cannot break the wallet unlinkability prop-
erty by distinguishing the master statement/witness pair (Y ′

m, y′m) from (Ym, ym)
(in case of b = 1). In a nutshell, if A was able to correctly guess ym, it can check,
whether the challenge wallet with identifier ID∗ has been initialized with a state-
ment/witness pair derived from (Ym, ym) or from (Y ′

m, y′m). Let E′ be the event
that A calls the random oracle on input (ym, ·, ·). Then we can state the following
claim:

Claim 3 If E′ happens with more than negligible probability, then there exists an
algorithm C that breaks the hard relation R with more than negligible probability.

Proof. We prove this claim via reduction to the hard relation R. In this reduc-
tion, C first receives a statement Ym and additionally chooses a state St ←$

{0, 1}n and a master key pair (msk,mpk)← RASigR,Σ .Gen(1
n). C then forwards

mpk to A. The generated values St and (msk,mpk) allow C to honestly simulate
oracles PreSignO, SignO and StLeakO. The remaining oracles are simulated as
follows:

– (Non-) Hardened Child Derivation oracles NHKeyO and HKeyO: On input ID,
C computes the child key pair (sk ID, pk ID) correctly from (msk,mpk) and
generates a fresh statement/witness pair (Y ′, y′)← R.GenR(1n) and assigns
(Y ID, yID) := (Y ′, y′). This simulation is indistinguishable for A due to the
witness rerandomizability property of R, as long as A does not correctly
guess ym and query H on input (ym, ·, ID).
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– LeakO and HardRelO oracles: Using the freshly generated statement/witness
pairs (Y ID, yID) during the NHKeyO and HKeyO oracle executions, C can now
correctly simulate the LeakO and HardRelO oracles.

The only way to distinguish this simulation from the real game for A is if event
E′ happens, i.e., if A correctly guesses ym and makes a random oracle query on
input ym. In this case, however, C learns ym s.t. (Ym, ym) ∈ R and therefore
breaks the hard relation R.

A.4 Wallet Signature Adaptability

Lemma 6. The adaptor wallet construction from Fig. 10 satisfies wallet signa-
ture adaptability as per Def. 17.

The proof of this lemma follows directly from the pre-signature adaptability
property of RASigR,Σ .
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