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Abstract. In attribute-based signatures (ABS) for inner products, the
digital signature analogue of attribute-based encryption for inner prod-
ucts (Katz et al., EuroCrypt’08), a signing-key (resp. signature) is labeled
with an n-dimensional vector x ∈ Znp (resp. y ∈ Znp ) for a prime p, and the
signing succeeds iff their inner product is zero, i.e., 〈x,y〉 = 0 (mod p).
We generalize it to ABS for range of inner product (ARIP), requiring the
inner product to be within an arbitrarily-chosen range [L,R]. As secu-
rity notions, we define adaptive unforgeablity and perfect signer-privacy.
The latter means that any signature reveals no more information about x
than 〈x,y〉 ∈ [L,R]. We propose two efficient schemes, secure under some
Diffie-Hellman type assumptions in the standard model, based on non-
interactive proof and linearly homomorphic signatures. The 2nd (resp.
1st) scheme is independent of the parameter n in secret-key size (resp.
signature size and verification cost). We show that ARIP has many appli-
cations, e.g., ABS for range evaluation of polynomials/weighted averages,
fuzzy identity-based signatures, time-specific signatures, ABS for range
of Hamming/Euclidean distance and ABS for hyperellipsoid predicates.

Keywords: Attribute-based signatures for range of inner product, Adaptive
unforgeablity, Signer-privacy, Symmetric bilinear groups of prime order.

1 Introduction

Attribute-Based Encryption (ABE) for Inner Products. In ABE for inner prod-
ucts [15], n-dimensional vector x ∈ Znp (resp. y ∈ Znp ) for a prime p is associ-
ated with secret-key (resp. ciphertext). The decryption succeeds iff 〈x,y〉 = 0
(mod p). It can be generically transformed into various ABE primitives, e.g.,
(anonymous) identity-based encryption (IBE), hidden-vector encryption (HVE)
[10], the dual variant of HVE (= wildcarded IBE [1]), ABE for evaluation of
polynomials/weighted averages, ABE for CNF and DNF formulas, and ABE
for exact thresholds. Let us consider a generalized primitive, named ABE for
arbitrarily-chosen inner product (ACIP), enabling a signer to choose a value
of inner product a ∈ Zp. Obviously, ABE for ACIP with n dimensions can be
transformed from the usual ABE for inner products with n+ 1 dimensions1.

1 The (n+ 1)-th elements of x,y ∈ Zn+1
p are set to 1 and −a (mod p), respectively.



Attribute-Based Signatures (ABS) for Inner Products (AIP). AIP is the signa-
ture analogue of the ABE for inner products. The signing succeeds iff 〈x,y〉 = 0
(mod p). A signer-privacy guarantees that any signature leaks no more infor-
mation about x than 〈x,y〉 = 0. It has many applications, e.g., identity-based
signatures (IBS), hidden-vector signatures (HVS) (= the signature analogue of
HVE), the dual variant of HVS, ABS for evaluation of polynomials/weighted
averages, ABS for CNF and DNF formulas, and ABS for exact thresholds.

ABS for Range of Inner Product (ARIP). We generalize a specific value of inner
product to a range of values. A range [L,R] with L,R ∈ Zp is associated with
a signature. If the inner product is within the range, the signing succeeds. The
encryption analogue of ARIP, named ABE for range of inner product, can be
transformed from ABE for ACIP in a simple manner, where for each integer
i ∈ [L,R], the encryptor generates a ciphertext Ci whose inner product is set to
i2. The same transformation is not directly applicable to ARIP since the signer-
privacy requires the real inner product 〈x,y〉 to be hidden. The ABS scheme
by Sakai et al. [24] supporting any circuit as signer-predicate can be an ARIP
scheme by properly configuring the circuit. A vector x ∈ Znp is transformed into

a binary attribute x ∈ {0, 1}nλ. In their ABS scheme, at signature generation, a
signer generates a commitment of the non-interactive witness indistinguishable
proof (NIWI) system by Groth and Sahai (GS) [11] for each bit x[i] ∈ {0, 1} of
x. Thus, at least, its signature length linearly increases with n.

Contribution of this work is threefold. First, we formally define the syntax
and security of ARIP. Second, we propose two efficient ARIP schemes based on
NIWI and linearly homomorphic signatures (LHS)3 [9], one of which is indepen-
dent of n in signature length. Third, we show that ARIP has various applications.

Formalization of ARIP. As the security requirements, we define adaptive exis-
tential unforgeability [18,24] and perfect signer-privacy [7]. The latter guarantees
that any signature leaks no information about x ∈ Znp of the signer. Its defini-
tion is simulatability-based, which requires us to prove that any signature which
should be generated using a specific revealed secret-key associated with a vector
x ∈ Zp is simulatable even if without knowing the secret-key.

Our Efficient ARIP Schemes. We propose two efficient ARIP schemes, based on
symmetric bilinear pairing groups of prime order, and secure under the compu-
tational Diffie-Hellman (CDH), flexible CDH (flexCDH) [6] and decisional linear
(DLIN) assumptions. The 2nd (resp. 1st) scheme is independent of n in secret-
key size (resp. signature size and verification cost). They are originally a generic

2 A drawback of this simple approach is low efficiency. Ciphertext length and encryp-
tion cost linearly increase with the maximal cardinality of the range [L,R], which is
p if L,R ∈ Zp or T if L,R ∈ [0, T − 1] for T ∈ N.

3 In LHS, any signature on a message of vector v ∈ Znp is labeled with a tag τ ∈ {0, 1}∗.
Any entity collecting l signatures σ1, · · · , σl with the same tag τ on v1, · · · ,vl ∈ Znp
can derive a new σ on any linear combination v =

∑l
i=1 βi · vi ∈ Znp with βi ∈ Zp.
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construction based on NIWI and LHS, which is instantiated from the GS NIWI
system and a simplified variant of the LHS scheme by Attrapadung, Libert and
Peters (ALP) [6].

The generic construction behind our 1st scheme is as follows. For a secret-
key skx for x ∈ Znp , we generate n + 4 number of vectors {vi}n+4

i=1 . Each vi ∈
Zn+5
p is set to xi|ei if i ∈ [1, n], or 0|ei otherwise, where ei ∈ Zn+4

p is the

i-th unit vector. Then, randomly choose a tag τ ∈ {0, 1}N and generate n +
4 signatures σ1, · · · , σn+4 of the LHS on the vectors v1, · · · ,vn+4 under the
tag τ . skx consists of all of the signatures. To sign a message M ∈ Zp under
a vector y ∈ Znp and a range [L,R] ⊆ Zp, we set n + 4 number of weight
coefficients β1, · · · , βn+4 as βi := yi for each i ∈ [1, n], and (βn+1, βn+2, βn+3,
βn+4) := (L,R,M, 1). Then, derive a new signature σ on the linear combination

v :=
∑n+4
i=1 βivi. Note that v is in the form of (〈x,y〉 (mod p), y1, · · · , yn, L,R,

M, 1). Finally, under the witness of 〈x,y〉, τ and σ, generate an NIWI proof π
that both of the following two conditions are satisfied, namely (1) σ is a correct
LHS signature on v under τ , and (2) 〈x,y〉 ∈ [L,R]. In the GS NIWI system,
the prover computes a commitment for each variable, then generates proofs
that the variables satisfy a pairing-product equation in a form of

∏m
i=1 e(Ai,

Xi) ·
∏m
i=1

∏m
j=1 e(Xi,Xj)aij = tT , where Xi ∈ G are variables and Ai ∈ G,

aij ∈ Zp and tT ∈ GT are constants. Actually, the verification algorithm of the
simplified ALP LHS scheme consists of only two such equations. Thus, proving
for the 1st condition (1) is non-problematic. To prove for the 2nd condition (2),
we adopt the tree-based range membership technique used for efficient time-
specific encryption/signatures constructions [21,13].

In our 2nd scheme, each secret-key skx consists of only four LHS signatures
σ1, · · · , σ4 on vectors v1, · · · ,v4. Each vi ∈ Zn+4

p is set to (x1, · · · , xn)|ei if
i = 1, or (0, · · · , 0)|ei otherwise, where ei ∈ Z4

p is the i-th unit vector. At

signature generation, we derive a signature σ on v :=
∑4
i=1 βivi, where (β1, β2,

β3, β4) := (1, L,R,M). Note that v = (x1, · · · , xn, 1, L,R,M) ∈ Zn+4
p . Finally,

under the witness of 〈x,y〉, τ , σ and x, generate an NIWI proof that all of the
following three conditions are satisfied, namely (1) σ is a correct LHS signature
on v under τ , (2) 〈x,y〉 ∈ [L,R] and (3) 〈x,y〉 =

∑n
i=1 xi · yi (mod p).

Applications of ARIP. Since ARIP is a generalization of AIP, any ABS primitive
which can be transformed from AIP, can also be transformed from ARIP. And
not only that, for some of such primitives, ARIP can transform into more gener-
alized primitives. The first example is ABS for range evaluation of polynomials
(AREP), which is a generalization of the ABS for evaluation of polynomial. In
AREP, each signature is labeled with a polynomial f : Zp → {0, 1} and a range
[L,R] ⊆ Zp. A secret-key with x ∈ Zp correctly signs iff f(x) ∈ [L,R] (mod p).
Another example is ABS for range evaluation of weighted average (resp. fuzzy
identity-based signatures), which is a generalization of the ABS for evaluation of
weighted averages (resp. the ABS for exact thresholds). Moreover, ARIP can be
transformed into the following (original) ABS, namely time-specific signatures
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[21,13], ABS for range of Hamming/Euclidean distance, and ABS for hyper-
sphere/hyperellipsoid predicates. For the details, refer to Sect. 5.

Further Related Work. The idea of ABS was proposed by Maji et al. [17,18].
They proposed a generic construction, supporting monotone span programs
as predicate, based on a non-interactive proof system and a digital signature
scheme. Okamoto and Takashima [20] proposed an ABS scheme supporting non-
monotone span programs as predicate based on the technique of dual pairing
vector spaces. Sakai et al. [24] proposed an ABS scheme supporting arbitral
circuits as predicate, built from the GS proof [11] and the structure-preserving
signatures by Kiltz et al. [16]. Sakai et al. [25] proposed key-policy ABS for any
deterministic Turing machines as predicate. Zhang et al. [27] proposed an ABS
scheme for inner products, secure under a lattice assumption of Short Integer So-
lution problem in the random oracle model. In ABE for non-zero inner products
[15], unlike ABE for inner products [15], the decryption succeeds iff the inner
product is non-zero. A lot of secure schemes based on bilinear maps [3,4,19] or
lattice assumptions [14] have been proposed. Phuong et al. [22] proposed a se-
cure construction of edit distance based encryption (EdDBE). In EdDBE, each
secret-key (resp. ciphertext) is associated with an alphabet string A (resp. an
alphabet string A′ and a threshold value t). The decryption succeeds iff the edit
distance (aka. Levenshtein distance) between A and A′ is smaller than t. Guo et
al. [12] proposed the notion of Euclidean distance based encryption (EuDBE). In
EuDBE, each secret-key (resp. ciphertext) is associated with a vector x = (x1,
· · · , xn) ∈ Rn (resp. a vector y = (y1, · · · , yn) ∈ Rn and a threshold t ∈ R) with
a real number space R. The decryption succeeds iff the Euclidean distance be-
tween x and y is smaller than t4. They proposed a generic EuDBE construction
from any ABE for inner products [15].

Paper Organization. In Sect. 2, we explain some notations and define the CDH,
FlexCDH and DLIN assumptions. In Sect. 3, we define the syntax and security
of ABS for a general predicate f and ARIP. In Sect. 4, we propose two ARIP
schemes and its optimized versions in terms of efficiency. In Sect. 5, we explain
that ARIP has many applications. In Sect. 6, we summarize the paper, then
discuss possible functional developments of ARIP.

2 Preliminaries

Notations. For λ ∈ N, 1λ denotes a security parameter. A function f : N→ R is
negligible if for every c ∈ N, there exists x0 ∈ N s.t. for every x ≥ x0, f(x) ≤ x−c.
Given a binary string x ∈ {0, 1}L, for every i ∈ [0, L−1], let x[i] ∈ {0, 1} denote
its i-th bit. PPTA means probabilistic polynomial time algorithm. For a set A,

a
U←− A means that an element a is chosen uniformly at random from A.

4 The EuDBE is similar to the encryption analogue of our ABS for range of Euclidean
distance, but more functionally-restricted than it, because in the latter, not only
the upper bound R (of the Euclidean distance) but also the lower bound L can be
chosen.
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2.1 Symmetric Bilinear Pairing on Groups with Prime Order

G takes a security parameter 1λ with λ ∈ N and outputs a group description
(p,G,GT , e, g). p is a prime with length λ. G and GT are multiplicative groups
with order p. g is a generator of G. e : G×G→ GT is an efficiently-computable
function which satisfies both of the following conditions.

Bilinearity. For any a, b ∈ Zp, e(ga, gb) = e(g, g)ab

Non-degeneracy. e(g, g) 6= 1GT , where 1GT denotes the unit element of GT .

Assumptions. We define the three computational hardness assumptions.

Definition 1. The computational Diffie-Hellman (CDH) assumption holds on
the group G if for every PPT A, AdvCDHA,G(λ) := Pr[gab ← A(g, ga, gb)] with

a, b
U←− Zp, is negligible.

Definition 2. The flexible CDH (FlexCDH) assumption [6] holds on the group
G if for every PPT A, AdvFlexCDHA,G (λ) := Pr[(gµ, ga·µ, gab·µ) ← A(g, ga, gb)] with

a, b
U←− Zp and µ 6= 0, is negligible.

Definition 3. The decisional linear (DLIN) assumption holds on the group G
if for every PPT A, AdvDLINA,G(λ) := |Pr[1 ← A(ga, gb, gab, gbd, gc+d)]| − Pr[1 ←
A(ga, gb, gab, gbd, gz)] with a, b, c, d, z

U←− Zp, is negligible.

3 ABS for Range of Inner-Product (ARIP)

We define general ABS for predicate f in the first subsection, then show that
ARIP is a concrete example of the general ABS in the second subsection.

3.1 General ABS for Predicate f

General ABS for predicate f : {0, 1}∗ → {0, 1} in F consists of the following four
polynomial-time algorithms. Ver is deterministic and the others are probabilistic.

Setup Setup: It takes a security parameter 1λ for λ ∈ N, then outputs a public
parameter pp and master-key mk. Let M denote the message space. Note
that the other algorithms implicitly take pp as input. [(pp,mk)← Setup(1λ)]

Key-Generation KGen: It takes mk and an attribute x ∈ {0, 1}∗, then outputs
a secret-key sk. [sk ← KGen(mk, x)]

Signing Sig: It takes a secret-key sk, a message M ∈ M, a predicate f ∈ F ,
then outputs a signature σ. [σ ← Sig(sk,M, f)]

Verification Ver: It takes a signature σ, a message M ∈M, a predicate f ∈ F ,
then outputs 1 or 0. [1/0← Ver(σ,M, f)]
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Every ABS scheme must be correct. Informally the property means that every
correctly generated signature is accepted. Formally the property is defined as
follows. An ABS scheme is correct if ∀λ ∈ N, ∀(pp,mk) ← Setup(1λ), ∀x ∈
{0, 1}∗, ∀sk ← KGen(mk, x), ∀M ∈ M, ∀f ∈ F s.t. 1← f(x), ∀σ ← Sig(sk,M,
f), 1← Ver(σ,M, f) holds.

As security for ABS, we require unforgeability and signer-privacy. As a notion
of unforgeability, we define (weak) existential unforgeability against adaptively-
chosen messages and predicate attack (EUF-CMA). For a PPT algorithm A, we
consider the following experiment.
ExptEUF-CMAΣABS,A

(1λ):

1. (pp,mk)← Setup(1λ). (σ∗,M∗ ∈ M, f∗ ∈ F)← AReveal,Sign(pp).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- Reveal(x ∈ {0, 1}∗): sk ← KGen(mk, x). Q := Q ∪ {x}. Rtrn sk.
- Sign(x ∈ {0, 1}∗,M ∈ M, f ∈ F): sk ← KGen(mk, x). σ ← Sig(sk,M, f).
Q′ := Q′ ∪ {(M, f, σ)}. Rtrn σ.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2. Rtrn 1 if (1) 1← Ver(σ∗,M∗, y∗), (2) ∀x ∈ Q, 0← f∗(x) and (3) (M∗, f∗, ·) /∈ Q′. Rtrn 0.

Definition 4. An ABS scheme ΣABS is EUF-CMA if for every λ ∈ N and every
PPT A, A’s advantage AdvEUF-CMAΣABS,A(λ) := Pr[1← ExptEUF-CMAΣABS,A(1λ)] is negligible.

As a notion of signer-privacy, we define perfect signer-privacy (PRV). For a prob-
abilistic algorithm A, we consider the following two experiments.
ExptPRVΣABS,A,0

(1λ): //ExptPRVΣABS,A,1

(pp,mk)← Setup(1λ). (pp,mk, µ)← SimSetup(1λ). Rtrn b′ ← AReveal,Sign(pp,mk).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- Reveal(x ∈ {0, 1}∗): sk ← KGen(mk, x). sk ← SimKGen(mk, µ, x). Q := Q∪{(x, sk)}. Rtrn sk.
- Sign(x ∈ {0, 1}∗, sk,M ∈ M, f ∈ F):

Rtrn ⊥ if (x, sk) /∈ Q ∨ 0← f(x). σ ← Sig(sk,M, f). σ ← SimSig(mk, µ,M, f). Rtrn σ.

The latter is associated with 3 polynomial-time algorithms {SimSetup, SimKGen,
SimSig}. The grey parts are considered in the latter, but ignored in the former.

Definition 5. An ABS scheme ΣABS is perfectly signer-private (PRV) if for ev-
ery λ ∈ N and every probabilistic algorithm A, there exist polynomial-time algo-
rithms {SimSetup, SimKGen, SimSig} such that A’s advantage AdvPRVΣABS,A(λ) :=

|
∑1
b=0(−1)b Pr[1← ExptPRVΣABS,A,b(1

λ)]| is 0.

3.2 ARIP

ARIP is a sub-class of the general ABS for predicate f . p denotes a prime
number of bit length λ. n ∈ poly(λ) is an integer. An attribute x ∈ {0, 1}∗ in
the general ABS is changed into an n-dimensional vector x ∈ Znp in ARIP. A
predicate f ∈ F is associated with an n-dimensional vector y ∈ Znp and a range
[L,R] with L,R ∈ Zp. We parse x (resp. y) as (x1, · · · , xn) (resp. (y1, · · · , yn)).
The predicate outputs 1 if (and only if) 〈x,y〉(:=

∑n
i=1 xi ·yi) ∈ [L,R] (mod p).

4 Our ARIP Schemes

Non-Interactive Witness-Indistinguishable Proof (NIWI). An NIWI system by
Groth and Sahai (GS) [11], based on a group G whose order is a prime p, is secure
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under the DLIN assumption. The CRS consists of 3 vectors
#»

f 1,
#»

f 2,
#»

f 3 ∈ G3,
where

#»

f 1 = (f1, 1, g),
#»

f 2 = (1, f2, g) and f1, f2 ∈ G. A commitment
#»

C to a

group element X ∈ G is given as
#»

C := (1, 1, X) · #»

f r1 ·
#»

f s2 ·
#»

f t3, where r, s, t
U←− Zp.

The CRS is in one of the following two settings, (1) perfect soundness setting
and (2) perfect witness-indistinguishability (WI) setting. The CRS in the former

setting satisfies
#»

f 3 =
#»

f ξ11 ·
#»

f ξ22 with ξ1, ξ2 ∈ Zp. From any commitment
#»

C =

(fr+ξ1t1 , fs+ξ2t2 , X ·gr+s+t(ξ1+ξ2)) distributing as a Boneh-Boyen-Shacham (BBS)
ciphertext [8], the committed variable X is extracted by using β1 = logg(f1) and

β2 = logg(f2). In the latter setting, where the element
#»

f 3 is chosen outside the

span of
#»

f 1 and
#»

f 2, any commitment is perfectly hiding. In the GS NIWI system,
the prover can efficiently prove that committed variables satisfy a paring-product
equation in the form of

∏m
i=1 e(Ai,Xi)·

∏m
i=1

∏m
j=1 e(Xi,Xj)aij = tT for variables

Xi ∈ G and constants Ai ∈ G, aij ∈ Zp and tT ∈ GT . Definitions of the syntax
and security notions for NIWI, namely perfect witness-indistinguishability and
perfect (witness-)extractability, are given in Subsect. A.1.

Linearly Homomorphic Signatures (LHS) [9]. In LHS, each signature on a mes-
sage of vector v ∈ Znp is labeled with a tag τ ∈ {0, 1}N . Any entity collect-
ing l number of signatures σ1, · · · , σl labeled with the same tag τ on mes-
sages v1, · · · ,vl ∈ Znp can derive a new signature σ on any linear combination

v =
∑l
i=1 βi ·vi ∈ Znp with βi ∈ Zp. The unforgeability security informally means

that no PPT adversary, given q number of signatures {σi}qi=1 with q ∈ poly(λ)
on arbitrarily and adaptively chosen vectors {vi}qi=1 with tags {τi}qi=1, can find a
correct signature on a vector v∗ /∈ Vτ∗ on a tag τ∗ with a non-negligible probabil-
ity, where Vτ∗ denotes the subspace spanned by all of the vectors vi s.t. τi = τ∗.
Attrapadung, Libert and Peters (ALP) [6] proposed unforgeable and complete
context-hiding (CCH) secure scheme, based on the CDH and FlexCDH assump-
tions. The CCH notion [5] and a weaker notion called strong context-hiding
(SCH) [2] are unlinkability-related notions, which guarantee that any derived
signature (from some of the other signatures) distributes identically to a fresh
signature directly generated by the signing-key. Our ARIP schemes do not need
these unlinkablity notions. We consider the following simplified variant of the
ALP LHS scheme lacking CCH security. The verification-key includes group el-
ements g, v, {gi}ni=1, u

′ and {ui}N−1
i=0 . The signing-key is α ∈ Zp. A signature on

v ∈ Znp under a tag τ ∈ {0, 1}N distributes as ((
∏n
i=1 g

vi
i v

s)αHG(τ)r, gr, gs, gs·α)

with randomnesses r, s
U←− Zp, where HG(τ) = u′

∏N−1
i=0 u

τ [i]
i . The definitions of

unforgeability, CCH and SCH are given in Subsect. A.2, and the simplified vari-
ant of the ALP LHS scheme is described in Sect. B.

4.1 Our First ARIP Scheme

Generic Construction Based on NIWI and LHS. A secret-key skx for x ∈ Znp
consists of a tag τ ∈ {0, 1}N for N ∈ N and n+4 signatures {σi}n+4

i=1 of LHS. The
tag is uniform-randomly chosen for each secret-key. The LHS signature σi is on

7



a vector vi ∈ Zn+5
p . Each vector vi is set to xi|ei if i ∈ [1, n], or 0|ei otherwise,

where ei ∈ Zn+4
p is the i-th unit vector. The signer with skx signs a message

M ∈ Zp under a vector y ∈ Znp and a range [L,R] with L,R ∈ Zp as follows.
Compute the weights β1, · · · , βn+4 ∈ Zp as follows. βi for i ∈ [1, n] is set to yi.
βi for i ∈ [n + 1, n + 4] is set to L, R, M , and 1, respectively. Derive an LHS

signature σ on the weighted vector v :=
∑n+4
i=1 βi · vi = (〈x,y〉 (mod p), y1, · · · ,

yn, L,R,M, 1) ∈ Zn+5
p . Finally, using 〈x,y〉, τ and σ as witness, generate NIWI

proofs that both of the following two conditions are satisfied, namely (a) σ is a
correct signature on the vector v under the tag τ and (b) 〈x,y〉 ∈ [L,R]. Since the
verification algorithm of the simplified variant of the ALP LHS scheme consists of
only two pairing-product equations, generating GS proofs for the first condition
(a) is non-problematic. For the second condition (b), we adopt the tree-based
range membership technique used for the efficient constructions of time-specific
encryption/signatures [21,13].

Formal Description. For any X ∈ G, ι(X) denotes (1, 1, X) ∈ G3. For any
X ∈ GT , ιGT (X) denotes the 3× 3 matrix which has X as the (3, 3)-th element
and 1GT as any of the other elements. For any h, g1, g2, g3 ∈ G, E(h, (g1, g2, g3))

denotes (e(h, g1), e(h, g2), e(h, g3)) ∈ G3
T . For any

#»

X = (X1, X2, X3) ∈ G3 and
#»

Y = (Y1, Y2, Y3) ∈ G3, F (
#»

X,
#»

Y ) := F̃ (
#»

X,
#»

Y )1/2 · F̃ (
#»

Y ,
#»

X)1/2 ∈ G3×3
T , where

F̃ (
#»

X,
#»

Y ) ∈ G3×3
T contains e(Xi, Yj) as the (i, j)-th element for all i, j ∈ {1, 2, 3}.

Setup(1λ, n): Choose bilinear groups (G,GT ) whose order is a prime p of bit
length λ. Conduct the following steps.

1. Choose α
U←− Zp. Choose g, v, g1, · · · , gn+5

U←− G.

2. Choose u′, u0, · · · , uN−1
U←− G for N ∈ N. We define HG : {0, 1}N → Zp

as a function which takes τ ∈ {0, 1}N and outputs u′
∏N−1
i=0 u

τ [i]
i ∈ G.

3. Generate a GS CRS f = (
#»

f 1,
#»

f 2,
#»

f 3) for the perfect WI setting as
#»

f 1 := (f1, 1, g),
#»

f 2 := (1, f2, g) and
#»

f 3 :=
#»

f ξ11 ·
#»

f ξ22 · (1, 1, g)−1, where

f1, f2
U←− G, ξ1, ξ2

U←− Zp.
Output (pp,mk), where pp := (G,GT , g, gα, v, {gi}n+5

i=1 , u
′, {ui}N−1

i=0 ,f) and
mk := α.

KGen(mk,x): Choose a tag τ
U←− {0, 1}N . Conduct the following steps.

1. Generate n+ 4 vectors vi ∈ Zn+5
p as follows. For each i ∈ [1, n],

vi := (xi, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i︸ ︷︷ ︸

n

, 0, 0, 0, 0︸ ︷︷ ︸
4

).

The others are

vn+1 := (0, 0, · · · , 0, 1, 0, 0, 0),

vn+2 := (0, 0, · · · , 0, 0, 1, 0, 0),

vn+3 := (0, 0, · · · , 0, 0, 0, 1, 0),

8



vn+4 := (0, 0, · · · , 0︸ ︷︷ ︸
n

, 0, 0, 0, 1︸ ︷︷ ︸
4

).

Each vector is parsed as (vi,1, · · · , vi,n+5) with vi,j ∈ Zp for all j ∈
[1, n+ 5].

2. Compute an ALP signature (σi,1, σi,2, σi,3, σi,4) on vi as follows.

(σi,1, σi,2, σi,3, σi,4) :=

n+5∏
j=1

g
vi,j
i vsi)αHG(τ)ri , gri , gsi , gα·si

 ,

where ri, si
U←− Zp.

Output the secret-key sk := (x, τ, {{σi,j}4j=1}
n+4
i=1 ).

Sig(sk,M,y, L,R): Conduct the following five steps first.

1. Calculate the inner product d := 〈x,y〉 (mod p). Assume that d ∈ [L,R].

2. Choose r
U←− Zp. For each i ∈ [1, n], βi := yi. Set (βn+1, βn+2, βn+3,

βn+4) := (L,R,M, 1). Derive a new ALP signature (σ1, σ2, σ3, σ4) as(
n+4∏
i=1

σβii,1 ·HG(τ)r,

n+4∏
i=1

σβii,2 · g
r,

n+4∏
i=1

σβii,3,

n+4∏
i=1

σβii,4

)
.

Note that if sk is a correct secret-key with inner-randomness {rj , sj}n+4
j=1 ,

the computed ALP signature distributes as({
g
〈x,y〉
1 ·

n∏
i=1

gyii+1 · g
L
n+2 · gRn+3 · gMn+4 · gn+5 · v

∑n+4
j=1 yjsj

}α
HG(τ)

∑n+4
j=1 yjrj+r,

g
∑n+4
j=1 yjrj+r, g

∑n+4
j=1 yjsj , gα

∑n+4
j=1 yjsj

)
. (1)

3. Compute the GS commitments for all of the following variables in G.
(a) gτ [i] and g1−τ [i]

(for all i ∈ [0, N − 1])
(b) HG(τ)

(c) g
d[i]
1 and g

1−d[i]
1

(for all i ∈ [0, λ− 1])
(d) gd1
(e) σ1, σ3 and σ4

Let the commitments be denoted by
#»

Cτ [i],
#»

C1−τ [i],
#»

CHG(τ),
#»

Cd[i],
#»

C1−d[i],
#»

Cd,
#»

Cσ1
,

#»

Cσ3
,

#»

Cσ4
∈ G3 respectively. The GS commitment

#»

CX for a

variable X ∈ G is computed as ι(X) · #»

f r1 ·
#»

f s2 ·
#»

f t3, where r, s, t
U←− Zp.

4. Compute the GS proofs that the variables satisfy the following relations.
[a] e(gτ [i], g1−τ [i]) = 1GT and e(gτ [i], g) · e(g1−τ [i], g) = e(g, g)

(for all i ∈ [0, N − 1])

[b] e(HG(τ), g) = e(u′, g)
∏N−1
i=0 e(ui, g

τ [i])

9



[c] e(g
d[i]
1 , g

1−d[i]
1 ) = 1GT and e(g

d[i]
1 , g1) · e(g1−d[i]

1 , g1) = e(g1, g1)
(for all i ∈ [0, λ− 1])

[d] e(gd1 , g) =
∏λ−1
i=0 e(g

d[i]
1 , g2i)

[e] e(σ1, g) = e(gd1 , g
α) · e(

∏n+4
i=1 g

yi
i+1, g

α) · e(v, σ4) · e(HG(τ), σ2)
[f] e(σ3, g

α) = e(g, σ4)
The relations [a] guarantee that the variable τ [i] used in the committed
variables gτ [i] and g1−τ [i] is one bit value. Likewise, the ones [c] guarantee
that the variable d[i] is one bit value. The above GS proofs are catego-
rized into two groups, namely type-1 (resp. type-2) proofs consisting of
3 (resp. 9) elements in G. Specifically, the proofs for the relations with
the grey background abc are type-2, and the others are type-1. Let the
proofs be denoted by #»π τ [i] ∈ G9 , #»π ′τ [i] ∈ G3, #»πHG(τ) ∈ G3, #»π d[i] ∈ G9 ,
#»π ′d[i] ∈ G3, #»π d ∈ G3, #»π σ1

∈ G3, #»π σ3
∈ G3, respectively.

What remains is proving that d ∈ [L,R].
Consider a complete binary tree with p leaf nodes. The root node is associ-
ated with the null value. Any non-leaf node associated with a binary value
a ∈ {0, 1}≤λ has two subordinates associated with a||0 and a||1 respectively.
The p leaf nodes are associated with 0, 1, · · · , p− 1 from left to right.
We derive a set of intermediate nodes Θ which covers two leaf nodes L and
R. For an intermediate node with θ ∈ {0, 1}≤λ, LEAVESθ denotes a set
of leaf nodes, each of which is descendant of the node with θ. The covering
set Θ consists of nodes with θ ∈ {0, 1}≤λ such that (1) the union set of
LEAVESθ for all θ ∈ Θ is identical to the set of leaf nodes for [L,R], and (2)
the cardinality of Θ, i.e., |Θ|, is the minimum5. Parse Θ as {θ ∈ {0, 1}≤λ}.
For each θ, we define a Boolean variable Aθ ∈ {0, 1} as follows.
[Aθ :] Be 1 if the leaf node with d ∈ {0, 1}λ is descendant of the leaf node

with θ ∈ {0, 1}≤λ. Be 0 otherwise.
Note that if d ∈ [L,R], there must exist (at most) one node θ∗ ∈ Θ which
has the leaf node d as descendant. The highest |θ∗| bits of d are identical
to θ∗. For each θ ∈ Θ and j ∈ [1, |θ|], we define two Boolean variables
Aθ,j , A

′
θ,j ∈ {0, 1} as follows.

[Aθ,j :] Be 1 if the j-th highest bit of d ∈ {0, 1}λ is identical to the one of
θ ∈ {0, 1}≤λ, i.e., d[λ− j] = θ[|θ| − j]. Be 0 otherwise.

[A′θ,j :] Be 1 if all of the j highest bits of d ∈ {0, 1}λ are identical to the

ones of θ ∈ {0, 1}≤λ, i.e., d[λ − k] = θ[|θ| − k] for all k ∈ [1, j]. Be 0
otherwise. Obviously, A′θ,|θ| = Aθ.

Finally, conduct the following two steps.
1. Compute the GS commitments for all of the following variables in G.

(f) gAθ1

(for all θ ∈ Θ)

(g) g
Aθ,j
1 and g

A′θ,j
1

(for all θ ∈ Θ and j ∈ [1, |θ|])
Let the commitments be denoted by

#»

CAθ ,
#»

CAθ,j ,
#»

C ′Aθ,j ∈ G3.

5 Note that |Θ| is maximized when [L,R] = [1, p− 2] and becomes 2λ− 2.
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2. Compute the GS proofs that the above variables satisfy the followings.

[g] e(g
Aθ,j
1 , g) =

{
e(g

d[λ−j]
1 , g) (if θ[|θ| − j] = 1)

e(g
1−d[λ−j]
1 , g) (otherwise)

(for all θ ∈ Θ and j ∈ [1, |θ|])
[h] e(g

A′θ,1
1 , g1) = e(g

Aθ,1
1 , g1)

(for all θ ∈ Θ)

[i] e(g
A′θ,j
1 , g1) = e(g

A′θ,j−1

1 , g
Aθ,j
1 )

(for all θ ∈ Θ and j ∈ [2, |θ|])
[j]
∏
θ∈Θ e(g

A′θ,|θ|
1 , g) = e(g1, g)

Let the computed GS proofs be denoted by πAθ,j ∈ G3, #»π ′Aθ,1 ∈ G3,
#»π ′Aθ,j ∈ G9 and πA ∈ G3 respectively.

The signature σ consists of all of the GS commitments and proofs, and the
second ALP signature element σ2 ∈ G.

Ver(σ,M,y, L,R): Each GS proof π ∈ G3 (resp. #»π ∈ G9), composed of 3 (resp.
9) elements in G, is parsed as (π1, π2, π3) (resp. ( #»π 1,

#»π 2,
#»π 3) with #»π i ∈ G3).

Output 1 if all of the following equations are satisfied.
1. F (

#»

Cτ [i],
#»

C1−τ [i]) = ιGT (1GT ) ·
∏3
k=1 F ( #»π τ [i],k,

#»

f k)
(for all i ∈ [0, N − 1])

2. E(g,
#»

Cτ [i]) · E(g,
#»

C1−τ [i]) = E(g, ι(g)) ·
∏3
k=1E(π′τ [i],k,

#»

f k)

(for all i ∈ [0, N − 1])

3. E(g,
#»

CHG(τ)) = E(u′, ι(g)) ·
∏N−1
i=0 E(ui,

#»

Cτ [i]) ·
∏3
k=1E(πHG(τ),k,

#»

f k)

4. F (
#»

Cd[i],
#»

C1−d[i]) = ιGT (1GT ) ·
∏3
k=1 F ( #»π d[i],k,

#»

f k)
(for all i ∈ [0, λ− 1])

5. E(g,
#»

Cd[i]) = E(g, ι(g)) · E(g,
#»

C1−d[i]) ·
∏3
k=1E(π′d[i],k,

#»

f k)

(for all i ∈ [0, λ− 1])

6. E(g,
#»

Cd) =
∏λ−1
i=0 E(g2i ,

#»

Cd[i]) ·
∏3
k=1E(πd,k,

#»

f k)

7. E(g,
#»

Cσ1) = E(gα,
#»

Cd) ·E(
∏n+4
i=1 g

yi
i+1, ι(g

α)) ·E(v,
#»

Cσ4) ·E(σ2,
#»

CHG(τ)) ·∏3
k=1E(πσ1,k,

#»

f k)

8. E(gα,
#»

Cσ3) = E(g,
#»

Cσ4) ·
∏3
k=1E(πσ3,k,

#»

f k)

9. E(g,
#»

CAθ,j ) =

{
E(g,

#»

Cd[λ−j]) ·
∏3
k=1E(πAθ,j ,k,

#»

f k) (if θ[|θ| − j] = 1)

E(g,
#»

C1−d[λ−j]) ·
∏3
k=1E(πAθ,j ,k,

#»

f k) (otherwise)

(for all θ ∈ Θ and j ∈ [1, |θ|])
10. E(g1,

#»

C ′Aθ,1) = E(g1,
#»

CAθ,1) ·
∏3
k=1E(π′Aθ,1,k,

#»

f k)

(for all θ ∈ Θ)

11. F (ι(g1),
#»

C ′Aθ,j ) = F (
#»

C ′Aθ,j−1
,

#»

CAθ,j ) ·
∏3
k=1 F ( #»π ′Aθ,j ,k,

#»

f k)

(for all θ ∈ Θ and j ∈ [2, |θ|])
12.

∏
θ∈Θ E(g,

#»

C ′Aθ,|θ|) = E(g1, ι(g)) ·
∏3
k=1E(πA,k,

#»

f k)

Output 0 otherwise.

Unforgeability. We present the following theorem.

Theorem 1. Our 1st ARIP scheme is EUF-CMA if the DLIN, CDH and FlexCDH
assumptions hold in the group G.
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Proof. To prove the theorem, we define the following 5 experiments.

Expt0: The standard EUF-CMA experiment for the ARIP scheme.
Expt1: The same as Expt0 except that it aborts when we choose a tag on the

key-revelation or signing oracle, the tag matches a tag previously chosen.
Expt2: The same as Expt1 except that the ALP signature (σ1, σ2, σ3, σ4) used

on the signing oracle Sign is directly generated by the master-key mk(= α)
as follows.({

g
〈x,y〉
1

n∏
i=1

gyii+1 · g
L
n+2 · gRn+3 · gMn+4 · gn+5 · vs

}α
·HG(τ)r, gr, gs, gαs

)
,

where r, s
U←− Zp and τ

U←− {0, 1}N .

Expt3: The same as Expt2 except that the GS CRS f = (
#»

f 1,
#»

f 2,
#»

f 3) is

generated as a perfectly sound one. Specifically,
#»

f 1 := (f1, 1, g),
#»

f 2 := (1,

f2, g) and
#»

f 3 :=
#»

f ξ11 ·
#»

f ξ22 , where f1 := gφ1 , f2 := gφ2 and φ1, φ2, ξ1, ξ2
U←−

Zp. Note that in this experiment and the next experiment Expt4, all GS
commitments are perfectly binding ones. We use the BBS decryption keys
(φ1, φ2) to extract all of the hidden variables from the GS commitments in
the forged signature σ∗. Since the GS proofs in σ∗ are perfectly sound, the
extracted variables satisfy all of the relations [a], [b], · · · , [j]. Hereafter, some
of the extracted variables are denoted by τ∗ ∈ {0, 1}N , d∗ ∈ Zp, σ∗1, σ∗3,
σ∗4 ∈ G. Let σ∗2 ∈ G denote the 2nd ALP signature element included in σ∗.

Expt4: The same as Expt3 except that it aborts if the tag τ∗ matches none of
the tags chosen on the key-revelation or signing oracle.

Wi denotes the event where Expti outputs 1. We obtain

AdvEUF-CMAΣARIP,A,n(λ) = Pr[W0] ≤
4∑
i=1

|Pr[Wi−1]− Pr[Wi]|+ Pr[W4]

≤ q(q − 1)/2N+1 + AdvDLINB1,G(λ) + 4q(N + 1)(AdvCDHB2,G(λ) + AdvFlexCDHB3,G (λ) + 2/p),

where q ∈ N is number that A uses the key-revelation and signing oracles. The
last inequality is because of the following lemmas. We omit the proof of Lemma
3 which is obviously true. ut

Lemma 1. |Pr [W0]− Pr [W1]| ≤ q(q − 1)/2N+1.

Proof. For i ∈ [1, q], τi denotes the tag chosen on the i-th key-revelation or
signing oracle. Ei denotes the event where τi is the first tag which matches one
of the tags previously chosen. Expt0 and Expt1 are identical except for the case
where an event from E2, · · · , Eq occurs. Thus, we obtain |Pr[W0] − Pr[W1]| ≤
Pr[
∨q
i=2Ei] ≤

∑q
i=2 Pr[Ei]. We derive an upper bound for Pr[Ei]. A denotes the

event where no one from τ1, · · · , τi−1 matches another.B denotes the event where
τi matches one of τ1, · · · , τi−1. Obviously, Pr[Ei] = Pr[A] · Pr[B | A] ≤ Pr[B |
A] = i−1

2N
. Hence, |Pr[W0]−Pr[W1]| ≤ 1

2N
+ · · ·+ q−1

2N
= 1

2N
· q(q−1)

2 = q(q−1)
2N+1 . ut

Lemma 2. |Pr [W1]− Pr [W2]| = 0.
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Proof. In Expt1, on the signing oracle, a secret-key skx for x ∈ Znp is generated.

Parse skx as (x, τ, {{σij}4j=1}
n+4
i=1 ). For each i ∈ [1, n + 4], ri, si ∈ Zp denote

the randomness used for the ALP signature {σij}4j=1. Using skx, we generate a
signature σ on M associated with y ∈ Znp and L,R ∈ Zp. Let σ = (σ1, σ2, σ3, σ4)
denote the ALP signature generated during the generation of σ. σ is expressed

as follows, where r
U←− Zp.({

g
〈x,y〉
1 ·

n∏
i=1

gyii+1 · g
L
n+2 · gRn+3 · gMn+4 · gn+5 · v

∑n+4
i=1 yisi

}α
·HG(τ)

∑n+4
i=1 yiri+r,

g
∑n+4
i=1 yiri+r, g

∑n+4
i=1 yisi , g(

∑n+4
i=1 yisi)α

)
Since any information about {ri, si}n+4

i=1 is not revealed to A, both
∑n+4
i=1 yiri and∑n+4

i=1 yisi distribute uniformly at random in Zp. Hence, σ in Expt1 distributes
identically to the one in Expt2. ut

Lemma 3. There is a PPTA B1 s.t. |Pr [W2]− Pr [W3]| ≤ AdvDLINB1,G(λ).

Lemma 4. There is a PPTA B2 s.t. |Pr [W3]− Pr [W4]| ≤ 4q(N+1)(AdvCDHB2,G(λ)+
1/p).

Proof. E denotes the event where A makes Expt3 output 1. F denotes the event
whereAmakes Expt4 abort. By a basic theorem, Pr[E]−Pr[E∧¬F ] = Pr[E∧F ].
Since Pr[E] = Pr[W3] and Pr[E ∧ ¬F ] = Pr[W4], we obtain Pr[W3]− Pr[W4] =
Pr[E ∧ F ]. Assume that A is a PPTA which makes the event E ∧ F occur with
a non-negligible probability. Let B2 be a PPTA who attempts to solve the CDH
problem by using A. B2 behaves as follows.

Receive (g, ga, gb) as an instance of the CDH problem. Conduct the following
four steps.

1. Set l := 2q. Choose uniformly at random an integer k satisfying 0 ≤ k ≤ N .
Assume that l(N + 1) ≤ p.

2. Set gα := ga. Choose κv, κ1, δ1, · · · , κn+5, δn+5
U←− Zp. Set v := gκv and

gi := (gb)κigδi for i ∈ [1, n+ 5].

3. Choose x′, x0, · · · , xN−1
U←− Zl and y′, y0, · · · , yN−1

U←− Zp. For a tag τ ∈
{0, 1}N , define two functions F, J : {0, 1}N → Zp as F (τ) := x′ +

∑N−1
i=0 xi ·

τ [i]− lk and J(τ) := y′ +
∑N−1
i=0 yi · τ [i]. Set u′ := (gb)−lk+x′ · gy′ and ui :=

(gb)xi ·gyi for i ∈ [0, N−1]. It holds that u′
∏N−1
i=0 u

τ [i]
i = (gb)−lk+x′+

∑N−1
i=0 xi·τ [i]·

gy
′+

∑N−1
i=0 yi·τ [i] = (gb)F (τ) · gJ(τ).

4. Generate the GS CRS f = (
#»

f 1,
#»

f 2,
#»

f 3) as perfectly sound one.

Set pp := (G,GT , g, gα, v, {gi}n+5
i=1 , u

′, {ui}N−1
i=0 ,f) and send it to A. When A

issues a query to the key-revelation or signing oracle, B2 behaves as follows.
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Key-Revelation Reveal(x): Let τ
U←− {0, 1}N . Consider the following two cases,

(1) F (τ) 6= 0 (mod l) and (2) F (τ) = 0 (mod l). If the case (2) occurs,
abort the simulation. If the case (1) occurs, continue as follows. Since we
have assumed that l(N + 1) < p and 0 ≤ k ≤ N , it holds that F (τ) = 0
(mod p) =⇒ F (τ) = 0 (mod l) for any τ . Its contraposition is that
F (τ) 6= 0 (mod l) =⇒ F (τ) 6= 0 (mod p) for any τ .

Choose r
U←− Zp. Compute (d1, d2) := ((gα)−

J(τ)
F (τ) (u′

∏N−1
i=0 u

τ [i]
i )r, (gα)−

1
F (τ) gr).

Let r̃ := r − α/F (τ). Obviously, d2 = gr̃. It holds that d1 = (gb)αHG(τ)r̃

since d1 = (gb)α{(gb)F (τ)gJ(τ)}−
α

F (τ) {(gb)F (τ)gJ(τ)}r = (gb)αHG(τ)r−
α

F (τ) .
Generate n+4 vectors v1, · · · ,vn+4 ∈ Zn+5

p in the normal manner. For each
i ∈ [1, n+ 4], generate an ALP signature (σi,1, σi,2, σi,3, σi,4) as(

d
∑n+5
j=1 κjvij

1 (gα)siκv+
∑n+5
j=1 δjvijHG(τ)ri , d

∑n+5
j=1 κjvij

2 gri , gsi , (gα)si
)
,

where ri, si
U←− Zp. Let r̂i := r̃

∑n+5
j=1 κjvij + ri. Obviously, σi,2 = gr̂i . It

holds that σi,1 = (
∏n+5
j=1 g

vij
j vsi)αHG(τ)r̂i since

σi,1 = (gbα)
∑n+5
j=1 κjvij ·HG(τ)r̃

∑n+5
j=1 κjvij+ri · (gα)siκv+

∑n+5
j=1 δjvij

= {(gb)
∑n+5
j=1 κjvijgsiκv+

∑n+5
j=1 δjvij}αHG(τ)r̂i =

n+5∏
j=1

{(gb)κjgδj}vijgsiκv
αHG(τ)r̂i .

Finally, return skx := (x, τ, {{σij}4j=1}
n+4
i=1 ) to A.

Signing Sign(x,M,y, L,R): Compute d := 〈x,y〉 (mod p). Choose τ
U←− {0, 1}L.

If F (τ) = 0 (mod l), abort the simulation. Else if F (τ) 6= 0 (mod l), as the
key-revelation oracle, B2 derives the variables (d1, d2), then an ALP sig-
nature (σ1, σ2, σ3, σ4) on the vector v = (d, y1, · · · , yn, L,R,M, 1). In the
normal manner, compute all of the GS commitments and proofs. Return a
signature σ, composed of all of the GS commitments/proofs and σ2, to A.

B2 receives a forged signature σ∗ from A. Set v∗ := (d∗, y∗1 , · · · , y∗n, L∗, R∗,M∗,
1) ∈ Zn+5

p . Parse it as (v∗1 , · · · , v∗n+5). The ALP signature (σ∗1, σ
∗
2, σ
∗
3, σ
∗
4) ex-

tracted from the forged signature σ∗ satisfies that σ∗1 = (
∏n+5
i=1 g

v∗i
i v

s∗)αHG(τ∗)r
∗
,

σ∗2 = gr
∗
, σ∗3 = gs

∗
and σ∗4 = gs

∗·α for some r∗, s∗ ∈ Zp.
We assume that it holds κn+5 6= −

∑n+4
i=1 κiv

∗
i (mod p), which implies

∑n+5
i=1 κiv

∗
i 6=

0 (mod p). Since κn+5 has not been used yet from A’s viewpoint and κn+5

has been chosen uniformly at random from Zp, the probability that κn+5 =

−
∑n+4
i=1 κiv

∗
i (mod p) is at most 1/p. Hence, this assumption is reasonable.

Compute (ω∗1 , ω
∗
2) as{ σ∗1

(σ∗4)κv (gα)
∑n+5
i=1 δiv

∗
i

}1/
∑n+5
i=1 κiv

∗
i

, {σ∗2}
1/

∑n+5
i=1 κiv

∗
i

 .
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Let r̃∗ := r∗/
∑n+5
i=1 κiv

∗
i . Obviously, ω∗2 = gr̃

∗
. It holds ω∗1 = gabHG(τ∗)r̃

∗
since

ω∗1 =

{
(
∏n+5
i=1 g

v∗i
i v

s∗)αHG(τ∗)r
∗

(gα)s
∗κv+

∑n+5
i=1 δiv

∗
i

}1/
∑n+5
i=1 κiv

∗
i

=

[
{
∏n+5
i=1 (gbκigδi)v

∗
i gs

∗κv}αHG(τ∗)r
∗

(gα)s
∗κv+

∑n+5
i=1 δiv

∗
i

]1/
∑n+5
i=1 κiv

∗
i

=
{

(gbα)
∑n+5
i=1 κiv

∗
iHG(τ∗)r

∗
}1/

∑n+5
i=1 κiv

∗
i

= gabHG(τ∗)r
∗/

∑n+5
i=1 κiv

∗
i .

Consider the following two cases, (1) F (τ∗) = 0 (mod p) and (2) F (τ∗) 6= 0
(mod p). If the second case occurs, abort the simulation. If the first occurs, B2

outputs
ω∗1

(ω∗2 )J(τ∗) , which is equivalent to gabHG(τ∗)r̃
∗

(gr̃∗ )J(τ∗) = gab because HG(τ∗) =

(gb)F (τ∗)gJ(τ∗) = gJ(τ∗), as the correct answer to the CDH problem.
Consider a situation where B2 has not aborted and A has made E∧F occur.

Except for the case where κn+5 =
∑n+4
i=1 κiv

∗
i (mod p) which occurs with the

probability 1/p at most, B2 outputs the correct answer for the CDH problem.
Thus, it holds Pr[E ∧ F ∧ ¬abort]− AdvCDHB2,G(λ) ≤ 1/p, where abort is the event
where B2 aborts the simulation. The first term is equivalent to Pr[¬abort]·Pr[E∧
F | ¬abort] = Pr[¬abort]·Pr[E∧F ]. We obtain Pr[E∧F ] ≤ 1

Pr[¬abort] (Adv
CDH
B2,G(λ)+

1
p ). In the same manner as [26], the lower bound of Pr[¬abort] is derived, i.e.,

1
4q(N+1) . Details of the derivation are described in Subsect. C. ut

Lemma 5. There is a PPTA B3 s.t. Pr[W4] ≤ 4q(N + 1)(AdvFlexCDHB3,G (λ) + 1/p).

Proof. Assume that A is a PPT algorithm which makes Expt4 outputs 1 with
a non-negligible probability. Let B3 be a PPT simulator who attempts to solve
the FlexCDH problem by using A.

Receive (g, ga, gb) as an instance of the FlexCDH problem. As the proof of
Lemma 4, compute the variables l, k, κ1, δ1, · · · , κn+5, δn+5, x

′, x0, y0, · · · , xN−1,
yN−1 and f , and define the functions F and J .

Set gα := ga, v := gb, gi := (gb)κigδi , u′ := (ga)−lk+x′ · gy′ and ui :=

(ga)xi · gyi for i ∈ [0, N − 1]. It holds that u′
∏N−1
i=0 u

τ [i]
i = (ga)F (τ) · gJ(τ). Set

pp := (G,GT , g, gα, v, {gi}n+5
i=1 , u

′, {ui}N−1
i=0 ,f) and send it to A. When A issues

a query to the key-revelation or signing oracle, B3 behaves as follows.

Key-Revelation Reveal(x): Choose τ ∈ {0, 1}N . Generate the n + 4 vectors
v1, · · · ,vn+4 ∈ Zn+5

p in the normal way. As the proof of the previous lemma,
consider the following two cases.
(1) F (τ) 6= 0 (mod l): For each i ∈ [1, n + 4], generate an ALP signature

(σi,1, σi,2, σi,3, σi,4) as ((ga)
∑n+5
j=1 δjvij (gb)−

J(τ)
F (τ)

(
∑n+5
j=1 κjvij+si)HG(τ)ri , (gb)

−
∑n+5
j=1

κjvij+si

F (τ) gri ,

gsi , (gα)si), where ri, si
U←− Zp. Let r̃i := ri − b

∑n
j=1 κjvij+si

F (τ) . Obviously,

σi,2 = gr̃i . The ALP signature correctly distributes since (
∏n+5
j=1 g

vij
j ·

vsi)α ·HG(τ)r̃i = [
∏n+5
j=1 {(gb)κjgδj}vij · (gb)si ]α ·HG(τ)ri−b

∑n
j=1 κjvij+si

F (τ) =

((((
((((

((
{(gb)

∑n+5
j=1 κjvij+si}α·(g

∑n+5
j=1 δjvij )α·HG(τ)ri ·(((((

((((
(

(gα)−b(
∑n+5
j=1 κjvij+si)·g−b

J(τ)
F (τ)

(
∑n+5
j=1 κjvij+si)

is equivalent to the above σi,1.
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(2) F (τ) = 0 (mod l): Immediately abort the simulation if this condition
has already been satisfied by a tag previously chosen on the key-revelation

or signing oracle. For each i ∈ [1, n + 4], choose ri
U←− Zp, set si :=

−
∑n+5
j=1 κjvij , then generate an ALP signature (σi,1, σi,2, σi,3, σi,4) as

((ga)
∑n+5
j=1 δjvijHG(τ)ri , gri , gsi , (gα)si). Since the vectors {vi}n+4

i=1 are lin-
early independent and any of {κi}n+5

i=1 has been chosen randomly from
Zp, any of {si}n+4

i=1 distributes randomly in Zp. The ALP signature cor-

rectly distributes since (
∏n+5
j=1 g

vij
j ·vsi)α ·HG(τ)ri = [

∏n+5
j=1 {(gb)κigδi}vij ·

(gb)−
∑n+5
j=1 κjvij ]α ·HG(τ)ri is equivalent to the above σi,1.

Finally, return skx := (x, τ, {{σij}4j=1}
n+4
i=1 ) to A.

Signing Sign(x,M,y, L,R): Compute d := 〈x,y〉 (mod p). Choose τ
U←− {0, 1}N .

As the key-revelation oracle, consider the mutually exclusive two cases w.r.t.
F (τ) ∈ Zp, and in each case compute an ALP signature (σ1, σ2, σ3, σ4) on
the message v = (d, y1, · · · , yn, L,R,M, 1). In the normal manner, compute
all of the GS commitments and proofs. Return a signature σ, composed of
all of the GS commitments/proofs and σ2, to A.

B3 receives a forged signature σ∗ from A. Consider the following two cases,
namely (1) F (τ∗) = 0 (mod p) and (2) F (τ∗) 6= 0 (mod p). If the case (2)
occurs, abort the simulation. If the case (1) occurs, compute the three variables
ξ1, ξ2, ξ3 as follows.

ξ1 := σ∗3 · g
∑n+5
j=1 κjv

∗
j

ξ2 := σ∗4 · (gα)
∑n+5
j=1 κjv

∗
j

ξ3 := σ∗1 · (σ∗2)−J(τ∗) · (gα)−
∑n+5
j=1 δjv

∗
j

Let ŝ∗ := s∗ +
∑n+5
j=1 κjv

∗
j . Obviously, ξ1 := gŝ

∗
and ξ2 := gaŝ

∗
. It holds

that ξ3 = [
∏n+5
i=1 {(gb)κi��g

δi}v∗i · (gb)s∗ ]α ·���
��

HG(τ∗)r
∗

���
���(gr

∗
)−J(τ∗) ·���

��
��

(gα)−
∑n+5
j=1 δjv

∗
i =

(gab)s
∗+

∑n+5
j=1 κjv

∗
j = gabŝ

∗
.

Thus, (ξ1, ξ2, ξ3) is the correct answer to the FlexCDH problem under an

assumption that it holds ŝ∗ 6= 0 (mod p) ⇔ s∗ 6= −
∑n+5
j=1 κjv

∗
j (mod p). This

assumption is reasonable since the probability Pr[s∗ = −
∑n+5
j=1 κjv

∗
j (mod p)] is

at most 1/p. As the proof of the previous lemma, we obtain Pr[1← Expt4(1λ,
n)] ≤ 4q(N + 1)(AdvFlexCDHB3,G (λ) + 1

p ). ut

Signer-Privacy. We present the following theorem.

Theorem 2. Our 1st ARIP scheme is perfectly signer-private.

Proof. Expt1 is associated with the three simulation algorithms SimSetup,
SimKGen and SimSig. The first two are the same as the original ones of our
scheme6. SimSig is defined as follows.

6 The auxiliary variable µ has no information, i.e., µ =
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SimSig(mk,M,y, L,R): Arbitrarily choose an attribute x∗ ∈ Znp s.t. 〈x∗,y〉
(mod p) ∈ [L,R]. Arbitrarily choose τ∗ ∈ {0, 1}N . Generate an ALP signa-

ture (σ1, σ2, σ3, σ4) as ({g〈x
∗,y〉

1 ·
∏n
i=1 g

yi
i+1 · gLn+2 · gRn+3 · gMn+4 · gn+5 · vs}α ·

HG(τ∗)r, gr, gs, gαs), where r, s
U←− Zp. As the original signing algorithm,

generate all of the GS commitments and proofs. Return a signature, com-
posed of all of the GS commitments/proofs and σ2.

In Expt0, an ALP signature used to generate a signature on the signing oracle
distributes as (1). Its second element σ2 distributes identically to the one in

Expt1 because of r
U←− Zp. Even though the adversary A directly knows of

x, τ and indirectly knows of {si}ni=1, because of the perfect WI of the GS NIWI
system, all of the GS commitments (incl. the ones related to 〈x,y〉, τ, σ1, σ3, σ4)
and proofs distribute identically to the ones in Expt1. ut

4.2 Efficiency Analysis

We analyze efficiency of our 1st ARIP scheme. Precisely, we calculate (1) bit
length of a secret-key, (2) bit length of a signature, and (3) computational cost
of signature verification.

(1) Size of Secret-Key. Let |g| denote bit length of an element in G. A secret-
key consists of a tag with bit length L and 4(n+ 4) elements in G. Its length is
expressed as |sk| = L+ 4(n+ 4)|g|7.

(2) Size of Signature. Each signature consists of 3 types of element, namely the
ALP signature element σ2, GS commitments, and GS proofs. If we denote the bit
length of the 3 types of element by s1, s2, s3 respectively, bit length of a signature
is |σ| = s1 + s2 + s3. Obviously, s1 = |g|. Total number of the GS commitments
is 5

(b),(d),(e)

+ 2N
(a)

+ 2λ
(c)

+ |Θ|
(f)

+ 2
∑
θ∈Θ |θ|
(g)

. Note that the blue alphabet below

each number indicates the alphabet assigned to each committed variable in the
signing algorithm of our ARIP scheme. Both of the two terms |Θ| and

∑
θ∈Θ |θ|

are maximized when [L,R] = [1, p−2] and become 2λ−2 and (2+3+· · ·+λ)×2 =
λ2 + λ − 2 respectively. As a result, total number of the GS commitments is
upper bounded by 2N + 6λ+ 2λ2− 1, which is asymptotically O(N +λ2). Since
each GS commitment consists of 3 group elements, s2 = O(N + λ2)|g|. Total
number of the type-1 (resp. type-2) GS proofs is 4 + N + λ +

∑
θ∈Θ |θ| + 2

(resp. N + λ +
∑
θ∈Θ(|θ| − 1)), either of which is asymptotically O(N + λ2).

Since a type-1 (resp. type-2) GS proof consists of 3 (resp. 9) group elements,
s1 = O(N + λ2)|g|. Hence, |σ| = O(N + λ2)|g|.

(3) Cost of Verification. We derive total number of multiplication and exponen-
tiation on the group GT and calculation of the paring function e. In verification,

7 Note that bit length of x ∈ Znp is ignored here.
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Table 1. Efficiency of Our ARIP Schemes.

Our Schemes
Size of Secret- Size of Signature Cost of Verification

Key |sk| |σ| # of Mul. # of Exp. # of Pair.

The 1st Scheme (Subsect. 4.1) N + (4n+ 16)|g| O(N + λ2)|g| O(N + λ2)

→ Its Optimization (Subsect. 4.3) N + (4n+ 16)|g| O(N + log2 T )|g| O(N + log2 T )

The 2nd Scheme (Subsect. 4.4) N + 16|g| O(N + λ2 + n)|g| O(N + λ2 + n)

→ Its Optimization N + 16|g| O(N + log2 T + n)|g| O(N + log2 T + n)

a verifier checks whether all of the 12 equations hold or not. The verifier con-
ducts following 4 types of calculation, namely (a) calculation of the function E,
(b) calculation of F , (c) multiplication of two vectors in G3

T outputted by E,

and (d) multiplication of two matrices in G3×3
T outputted by F . They require the

following number of multiplication, exponentiation and pairing, respectively, (a)
(0, 0, 3), (b) (9, 9, 9), (c) (3, 0, 0), and (d) (9, 0, 0). Total number of the 4 types
of calculation executed in one verification is derived as follows.

– Na := 5N
2

+ 5 +N
3

+ 5λ
5

+ 4 + λ
6

+ 8
7

+ 5
8

+
∑
θ∈Θ

∑|θ|
j=1 5

9

+ 5|Θ|
10

+ |Θ|+ 4
12

= L+ 6λ+ 26 + 6|Θ|+
∑
θ∈Θ

∑|θ|
j=1 5

– Nb := 4N
1

+ 4λ
4

+
∑
θ∈Θ

∑|θ|
j=2 5

11

– Nc := 4N
2

+N + 3
3

+ 4λ
5

+ λ+ 2
6

+ 6
7

+ 3
8

+
∑
θ∈Θ

∑|θ|
j=1 3

9

+ 3|Θ|
10

+ |Θ| − 1 + 3
12

= 5N + 5λ+ 16 + 4|Θ|+
∑
θ∈Θ

∑|θ|
j=1 3

– Nd := 3N
1

+ 3λ
4

+
∑
θ∈Θ

∑
j∈[2,|θ|] 3

11

Note that the blue number below each number indicates the identification num-
ber assigned to each equation verified in the verification algorithm of our ARIP
scheme. Each of them is asymptotically O(N +λ2). Each of number of multipli-
cation, number of exponentiation and number of pairing per one verification is
the linear summation of Na, Nb, Nc and Nd with coefficients of integers from 0
to 9. Thus, O(N + λ2).

As a result we obtain the 1st entry in Table 1. The 2nd, 3rd and 4th entries
are for the other our schemes explained in later subsections.

4.3 Efficiency Optimization

The prime p is exponentially large in λ. In some applications of ARIP, it is
possible that for every vectors x,y ∈ Zp, their inner product 〈x,y〉 is upper-
bounded by T − 1 for an integer T ∈ poly(λ) s.t. T � p. In this case, our 1st
scheme (in Subsect. 4.1) can be optimized in terms of efficiency.

The inner product d := 〈x,y〉 ∈ [0, T − 1] is log T ∈ N bit. Since for every
i ∈ [log T, λ−1], d[i] (= the i-th bit of d) must be 0, we do not need to generate the

GS commitments
#»

Cd[i],
#»

C1−d[i] ∈ G3 and the related GS proofs #»π d[i],
#»π ′d[i] ∈ G3.

The complete binary tree used to prove that d ∈ [L,R] has only T leaf nodes
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associated with 0 to T − 1 from left to right. Both cardinality of the set Θ
(consisting of nodes covering all of the leaf nodes from L to R) and

∑
θ∈Θ |θ|

are maximized when [L,R] = [1, log T − 2] and become 2 log T − 2 and log T 2 +
log T − 2. As a result we obtain the 2nd entry in Table. 1.

4.4 Our 2nd ARIP Scheme with Constant-Size Secret-Keys

We propose another scheme that a trade-off relationship in terms of efficiency
holds with our 1st scheme. Its secret-key length is independent of n. In return,
any of its signature length and verification cost linearly increases with n.

A secret-key skx consists of only four ALP signatures σ1, · · · , σ4 on the
following four vectors v1, · · · ,v4 ∈ Zn+4

p .

v1 := (x1, · · · , xn︸ ︷︷ ︸
n

, 1, 0, 0, 0︸ ︷︷ ︸
4

) (2)

v2 := (0, · · · , 0︸ ︷︷ ︸
n

, 0, 1, 0, 0) (3)

v3 := (0, · · · , 0︸ ︷︷ ︸
n

, 0, 0, 1, 0) (4)

v4 := (0, · · · , 0︸ ︷︷ ︸
n

, 0, 0, 0, 1) (5)

At signature generation, the signer derives an ALP LHS signature σ on v :=∑4
i=1 βi · vi, where (β1, β2, β3, β4) := (1, L,R,M). It holds that

v = (x1, · · · , xn, 1, L,R,M) ∈ Zn+4
p .

The signer has to compute GS commitments for x1, · · · , xn ∈ Zp and d(:=
〈x,y〉) ∈ Zp then prove that d is genuinely the inner product of x and y. Actually,
the signer computes GS commitments for gxi and gxii for all i ∈ [1, n]. Then, the
signer computes GS proofs for the following two relations,

– e(gxi , gi) = e(g, gxii ) for all i ∈ [1, n], and
– e(gd1 , g) =

∏n
i=1 e(g

xi , gyi1 ).

Moreover, the relation [e] (in our 1st scheme) is modified into e(σ1, g) = e(
∏n
i=1 g

xi
i , g

α)·
e(
∏4
i=1 g

βi
i+n, g

α)·e(v, σ4)·e(HG(τ), σ2). The formal description of our 2nd scheme
is given in Subsect. D.

Theorem 3. Our 2nd ARIP scheme is EUF-CMA if the DLIN, CDH and Flex-
CDH assumptions hold in the group G and perfectly signer-private.

5 Applications of ARIP

Katz et al. [15] showed that attribute-based encryption (ABE) for inner prod-
ucts8 can be transformed into various ABE primitives, namely (anonymous)

8 Like ARIP, vectors x,y are associated with secret-key and ciphertext respectively.
The decryption succeeds if the inner product is 0.
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identity-based encryption (IBE), hidden-vector encryption (HVE), the dual ver-
sion of HVE (= wildcarded IBE [1]), ABE for evaluation of polynomials/weighted
averages/CNF and DNF formulas, and ABE for exact thresholds. Based on the
same techniques, its digital signature analogue named ABS for inner products
can be transformed into identity-based signatures (IBS), hidden-vector signa-
tures (HVS), the dual of HVS (= wildcarded IBS), ABS for evaluation of poly-
nomials/weighted averages/CNF and DNF formulas, and ABS for exact thresh-
olds. Since ARIP is a generalization of the ABS for inner products, it can be
transformed into more generalized (or powerful) ABS primitives as follows.

(1) ABS for Range Evaluation of Polynomials (AREP): Assume that the
polynomial is univariate. AREP is a sub-class of the general ABS in Sub-
sect. 3.1. The attribute x ∈ {0, 1}∗ in the general ABS is changed into a
single variable x ∈ Zp in AREP. The predicate fAREP, associated with a
d-dimensional polynomial φ with coefficients ad, · · · , a0 ∈ Zp and a range
[L,R] with L,R ∈ Zp, is defined as

fAREP(x) :=

{
1 (If φ(x) :=

∑d
i=0 ai · xi ∈ [L,R] (mod p))

0 (Otherwise).

An AREP scheme is transformed from any ARIP scheme of d+1 dimensions.
The vector x ∈ Zd+1

p in ARIP is changed into (xd, xd−1, · · · , x, 1). The vector

y ∈ Zd+1
p in ARIP is (ad, ad−1, · · · , a1, a0). The AREP scheme is correct

because if φ(x) =
∑d
i=0 ai · xi ∈ [L,R] implies 〈x,y〉 ∈ [L,R]. Even if the

polynomial is multivariate with t variables, the transformation still works.
In this case, we need an ARIP scheme of (dt + 1) dimensions.

(2) ABS for Range Evaluation of Weighted Average (AREWA): The at-
tribute x consists of t variables x1, · · · , xt ∈ Zp. The predicate fAREWA, as-
sociated with t coefficients a1, · · · , at ∈ Zp and a range [L,R] for L,R ∈ Zp,
is defined as

fAREWA(x1, · · · , xt) :=

{
1 (If

∑t
i=1 ai · xi ∈ [L,R] (mod p))

0 (Otherwise).

An AREWA scheme is transformed from an ARIP scheme of n = t dimen-
sions. The vector x ∈ Ztp (resp. y ∈ Ztp) in ARIP is (x1, · · · , xt) (resp. (a1,
· · · , at)). The AREWA scheme obviously satisfies the correctness.

(3) Fuzzy IBS (FIBS): This is a generalization of the ABS for exact thresh-
olds. Let A be {1, · · · , l} for l ∈ N. The attribute x is a set of attributes
S ⊆ A. The predicate fFIBS, associated with a set of attributes S′ ⊆ A and
a range [L,R] for 0 ≤ L ≤ R ≤ l, is defined as

fFIBS(S) :=

{
1 (If |S ∩ S′| ∈ [L,R])

0 (Otherwise).

This FIBS is a further generalization of the signature analogue of FIBE [23]
since the upper bound R of the overlapped attributes can be set.
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Table 2. Efficiency of Existing and Our TSS Schemes.

TSS Schemes |pp| |mk| |sk| |σ| Assumptions

FSS-Based [13]
(2 log T +m+ 3)

·(|g|+ |g̃|) |g| O(log T )|g| (2 log T + 2)|g| co-CDH

WIBRS-Based [13] O(log T )|g̃| O(log T )|g| O(1)(|g|+ |g̃|) O(log2 T )(|g|+ |g̃|) SXDH

Ours 1 (N + 9)|g| λ (N + 20)|g| O(N + log2 T )|g| CDH,FlexCDH,DLIN

Ours 2 (N + 8)|g| λ (N + 16)|g| O(N + log2 T )|g| CDH,FlexCDH,DLIN

Note: Both of the FSS-based and WIBRS-based schemes [13] use an asymmetric bilinear map e :

G × G̃ → GT . |g| (resp. |g̃|) denotes bit length of an element in G (resp. G̃). For the FSS-based
scheme, m ∈ N denotes bit length of a message. SXDH means Symmetric External Diffie-Hellman.

An FIBS scheme is transformed from an ARIP scheme with n = l dimen-
sions. For the vector x ∈ Zlp, its i-th element xi is set to 1 if i ∈ S or 0

otherwise. For the vector y ∈ Zlp, yi is 1 if i ∈ S′ or 0 otherwise. The FIBS
scheme is correct since 〈x,y〉 = |S ∩ S′|.

Additionally, we present the following 4 applications.

(4) Time-Specific Signatures (TSS) [21,13]: TSS is a sub-class of the ABS.
The attribute x ∈ {0, 1}∗ is a time-period t ∈ [0, T −1] for an integer T ∈ N.
The predicate fTSS, associated with a range [L,R] with L,R ∈ [0, T − 1], is
defined as

fTSS(t) :=

{
1 (If t ∈ [L,R]

0 (Otherwise).

We use an ARIP scheme of 1 dimension. The scalar x1 ∈ Zp in ARIP is t.
The scalar y1 ∈ Zp in ARIP is always 1. The TSS scheme is correct because
t ∈ [L,R] implies 〈x,y〉 = x1 · y1 = t ∈ [L,R].
In [21], TSS was firstly mentioned and its secure construction was presented
as a open problem. In [13], the authors formally defined TSS and proposed
two secure schemes based on forward-secure signatures (FSS) and wildcarded
identity-based ring signatures (WIBRS), respectively. In Table 5, their TSS
schemes [13] and ours are compared in terms of efficiency and security as-
sumptions. Ours 1 (resp. Ours 2) is the TSS scheme obtained by instantiating
the optimized variant of our 1st (resp. 2nd) ARIP scheme. Ours are the first
ones whose |pp|, |mk| and |sk| are independent of the parameter T .

(5) ABS for Range of Hamming Distance (ARHD): A signer with a (bi-
nary) string x ∈ {0, 1}l can sign a message under a string y ∈ {0, 1}l iff the
Hamming distance between x and y is within a range [L,R]. The attribute
x in the ABS is a string x ∈ {0, 1}l. The predicate fARHD is defined as

fARHD(x) :=

{
1 (If HD(x, y) ∈ [L,R])

0 (Otherwise),

where the function HD(x, y) returns
∑l−1
i=0 |x[i]−y[i]| which is the Hamming

distance between x and y.
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We use an ARIP scheme of 2l dimensions. The strings x, y ∈ {0, 1}l are
changed into x,y ∈ Z2l

p as follows. For each i ∈ [0, l−1], (x2i+1, x2i+2) (resp.
(y2i+1, y2i+2)) is set to (0, 1) (resp. (1, 0)) if x[i] = 0, or (1, 0) (resp. (0, 1))
otherwise. Obviously, x2i+1 · y2i+1 + x2i+2 · y2i+2 is 1 if x[i] 6= y[i], or 0
otherwise. The ARHD scheme is correct because 〈x,y〉 = HD(x, y).

(6) ABS for Range of Euclidean Distance (ARED): A signer with a vec-

tor
#»

X ∈ Znp declares another vector
#»

Y ∈ Znp and a range [L,R]. If the Eu-
clidean distance between the two vectors is within the range, the signing
succeeds. The predicate fARED is defined as

fARED(
#»

X) :=

{
1 (If ED(

#»

X,
#»

Y ) ∈ [L,R])

0 (Otherwise),

where the function ED(
#»

X,
#»

Y ) returns
√∑n

i=1(Xi − Yi)2 ∈ [L,R] which is

the Euclidean distance between
#»

X and
#»

Y .
An ARIP scheme with 2n+1 dimensions is available. The vectors

#»

X,
#»

Y ∈ Znp
for ARED are transformed into x,y ∈ Z2n+1

p as follows.
– (x2i−1, x2i) := (X2

i , Xi) for all i ∈ [1, n] and x2n+1 := 1.
– (y2i−1, y2i) := (1,−2Yi) for all i ∈ [1, n] and y2n+1 :=

∑n
i=1 Y

2
i .

The range [L,R] for ARED is extended into [L2 (mod p), R2 (mod p)] for

ARIP. The ARED scheme is correct since it holds 〈x,y〉 =
∑2n+1
i=1 xi · yi =∑n

i=1X
2
i − 2XiYi + Y 2

i =
∑n
i=1(Xi − Yi)

2 = ED(
#»

X,
#»

Y )2, which implies

ED(
#»

X,
#»

Y ) ∈ [L,R]⇔ 〈x,y〉(= ED(
#»

X,
#»

Y )2) ∈ [L2, R2].
(7) ABS for Hyperellipsoid Predicates (AHEP): An n-dimensional hyper-

sphere is a set of points (or vectors) whose Euclidean distance to the central
point is constant. Let us consider a special type of ABS, where a secret-key
is associated with a vector

#»

X ∈ Znp , a signature is associated with a hy-

persphere with center
#»

Y ∈ Znp and radius a ∈ Zp and the signing succeeds

iff the vector
#»

X is inside of the hypersphere, named ABS for hypersphere
predicates (AHSP). Obviously, AHSP is transformed from ARED defined
above.
AHEP is a generalization of AHSP. Each hypersphere is generalized to a
hyperellipsoid. The predicate fAHEP is defined as

fAHEP(
#»

X) :=

{
1 (If

∑n
i=1(Xi − Yi)2/a2

i ≤ 1),

0 (Otherwise),

where
#»

Y ∈ Znp is the center and ai ∈ Zp is the radius in the i-th axis.
An AHEP scheme is transformed from an ARIP scheme with 2n + 1 di-
mensions. For i ∈ [1, n], let δi := (

∏n
j=1 a

2
j )/a

2
i . The vectors

#»

X,
#»

Y ∈ Znp for

AHEP are transformed into x,y ∈ Z2n+1
p as follows.

– (x2i−1, x2i) := (X2
i , Xi) for all i ∈ [1, n] and x2n+1 := 1.

– (y2i−1, y2i) := (δi,−2δiYi) for all i ∈ [1, n] and y2n+1 :=
∑n
i=1 δiY

2
i .

The range [L,R] for ARIP is set to [1,
∏n
i=1 a

2
i (mod p)]. The AHEP scheme

is correct since 〈x,y〉 =
∑2n+1
i=1 xi·yi =

∑n
i=1 δi(Xi−Yi)2 =

∑n
i=1

∏n
j=1 a

2
j

a2i
(Xi−

Yi)
2 ∈ [0,

∑n
j=1 a

2
j ]⇔

∑n
i=1(Xi − Yi)2/a2

i ∈ [0, 1].
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6 Conclusion

We formally defined ARIP and proposed two efficient schemes secure under
standard assumptions, i.e., the CDH, FlexCDH and DLIN assumptions, in the
standard model, based on the GS NIWI system [11] and a simplified variant
of the ALP LHS scheme [6]. The 2nd (resp. 1st) scheme is independent of the
number of dimensions n ∈ poly(λ) in secret-key length (resp. signature length
and verification cost). We also optimized their efficiency for the case where each
possible variable for xi, yi, L,R, 〈x,y〉 ∈ Zp is upper-bounded by T −1 with T �
p. We showed that ARIP can be generically transformed into various ABS. Since
this work is the first research on ARIP, ARIP can develop in many directions.
Some of the examples are given below.

Key-Policy ARIP (KPARIP): A range [L,R] is associated with each secret-
key (but not signature). The transformations from ARIP to various ABS (in
Sect. 5) work for KPARIP. Specifically, KPARIP can be transformed into the
key-policy analogues of AREP, AREWA, TSS, ARHD, ARED and AHEP.

Multi-Dimensional ARIP: Each secret-key has l number of n-dimensional
vectors x1, · · · ,xl ∈ Znp . Each signature has l number of n-dimensional vec-
tors y1, · · · ,yl ∈ Znp and ranges [L1, R1], · · · , [Ll, Rl] ⊆ Zp, and a Boolean
formula f : {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

l

→ {0, 1}. For each i ∈ [1, l], a Boolean vari-

able zi is set to 1 if 〈xi,yi〉 ∈ [Li, Ri], or 0 otherwise. If f(z1, · · · , zl) = 1,
the signing succeeds. For the form of f , we have various options, e.g., AND,
OR or Threshold function, CNF or DNF formula, and a general circuit.

Attribute-Based Encryption for Range of Inner-Product: The transfor-
mations from ARIP to various ABS (in Sect. 5) also work for the encryption
analogue of ARIP. Specifically, it can be transformed into the encryption
analogues of AREP, AREWA, TSS, ARHD, ARED and AHEP.
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A Omitted Definitions

A.1 Non-Interactive Witness-Indistinguishable Proof (NIWI)

Syntax. An NIWI system for the NP relation R : {0, 1}∗×{0, 1}∗ → 1/0 consists
of the following 3 polynomial-time algorithms. Note that Ver is deterministic and
the others are probabilistic.

Setup Setup: It takes a security parameter 1λ for λ ∈ N, then outputs a com-
mon reference string (CRS) crs.

[crs← Setup(1λ)]

Proving Pro: It takes the CRS crs, a statement x ∈ {0, 1}∗ and a witness
w ∈ {0, 1}∗, then outputs a proof π.

[π ← Pro(crs, x, w)]

Verification Ver: It takes the CRS crs, a statement x ∈ {0, 1}∗ and a proof π,
then outputs a verification result, which is 1 (accept) or 0 (reject).

[1/0← Ver(crs, x, π)]

We require every NIWI system to be correct. An NIWI system is correct if for
every λ ∈ N, every crs ← Setup(1λ), every x ∈ {0, 1}∗, every w ∈ {0, 1}∗ s.t.
1← R(x,w), and every π ← Pro(crs, x, w), it holds that 1← Ver(crs, x, π).

Security. We define two security requirements, namely

1. perfect witness-indistinguishability (WI), and

2. perfect witness-extractability (WE).

Definition 6. An NIWI system is perfectly witness-indistinguishable (WI), if
for every λ ∈ N, every crs ← Setup(1λ), every x ∈ {0, 1}∗, and every w0, w1 ∈
{0, 1}∗ s.t. 1 ← R(x,wb) for each b ∈ {0, 1}, Pro(crs, x, w0) distributes identi-
cally to Pro(crs, x, w1).

Definition 7. An NIWI system is perfectly witness-extractable (WE), if for every
λ ∈ N, there exist two algorithms SimSetup and Extract that satisfy both of the
following two conditions.

1. For every PPT A,∣∣Pr
[
1← A(crs) | crs← Setup(1λ)

]
− Pr

[
1← A(crs) | (crs, ek)← SimSetup(1λ)

]∣∣
is negligible.

2. For every PPT A,

Pr

[
(crs, ek)← SimSetup(1λ); (x, π)← A(crs);

w ← Extract(crs, ek, x, π) : 1← Ver(crs, x, π) ∧ 0← R(x,w)

]
= 0.

25



A.2 Linearly Homomorphic Signatures (LHS)

Syntax. An LHS scheme consists of the following 4 polynomial-time algorithms.
Note that Setup and Sig are probabilistic, Ver is deterministic and Derive is
(possibly) probabilistic.

Key-Generation KGen: It takes a security parameter 1λ for λ ∈ N and an
integer n ∈ N, being polynomial in λ, that indicates the dimension of a
vector to be signed, then outputs a key-pair (pk, sk).

[(pk, sk)← KGen(1λ, n)]
Signing Sig: It takes the secret-key sk, a tag (called a file identifier in [5])

τ ∈ {0, 1}∗ and a vector v ∈ Znp to be signed, then outputs a signature σ.
[σ ← Sig(sk, τ,v)]

Derivation Derive: It takes the public-key pk, a tag τ ∈ {0, 1}∗ and l triples
{vi, σi, βi}li=1, consisting of a vector vi ∈ Znp , a signature σi and a weight βi,

then outputs a signature σ on the weighted vector v :=
∑l
i=1 βi · vi ∈ Znp .

[σ ← Derive(pk, τ, {vi, σi, βi}li=1)]
Verification Ver: It takes the public-key pk, a tag τ ∈ {0, 1}∗, a vector v ∈ Znp

and a signature σ, then outputs a verification result 1 or 0.
[1/0← Ver(pk, τ,v, σ)]

We require every LHS scheme to be correct. An LHS scheme is correct if for
every λ ∈ N, every n ∈ poly(λ) and every (pk, sk) ← KGen(1λ, n), both of the
following conditions hold.

1. For every tag τ ∈ {0, 1}∗ and every vector v ∈ Znp , it holds that 1← Ver(pk,
τ,v, Sig(sk, τ,v)).

2. For every tag τ ∈ {0, 1}∗, every integer l ∈ N and every l triples {vi ∈ Znp ,
σi, βi ∈ Zp}li=1 such that 1 ← Ver(pk, τ,vi, σi) for all i, it holds that 1 ←
Ver(pk, τ,

∑l
i=1 βivi, Derive(pk, τ, {vi, σi, βi}li=1)).

Security. As security properties for LHS, we define

1. unforgeability,
2. strong context-hiding (SCH) [2], and
3. complete context-hiding (CCH) [5].

For the definition of unforgeability, we have referred to [5]. We define the
following experiment that a PPT adversary A participates. H denotes the space
of handles for the queue Q.
ExptUNFΣLHS,A

(1λ, n):

1. (pk, sk)← Setup(1λ, n). (τ∗ ∈ {0, 1}∗,v∗ ∈ Znp , σ
∗)← ASign,Derive,Reveal(pk).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- Sign(τ ∈ {0, 1}∗,v ∈ Znp ):

Choose a handle h
U←− H. σ ← Sig(sk, τ, v). Q := Q ∪ {(h, τ, v, σ)}. Rtrn h.

- Derive(τ ∈ {0, 1}∗, {hi ∈ H, σi, βi ∈ Zp}li=1):
Rtrn ⊥ if ∃i ∈ [1, l] s.t. [6 ∃vi s.t. (hi, τ, vi, σi) /∈ Q].

Choose a handle h
U←− H. σ ← Derive(pk, τ, {vi, σi, βi}li=1).

Q := Q ∪ {(h, τ,
∑l
i=1 βivi, σ)}. Rtrn h.

- Reveal(h ∈ H, τ ∈ {0, 1}∗,v ∈ Znp ):
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Rtrn ⊥ if 6 ∃σ s.t. (h, τ, v, σ) ∈ Q. Q′ := Q′ ∪ {(τ,v)}. Rtrn σ.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2. Rtrn 1 if (1) 1← Ver(pk, τ∗,v∗, σ∗) and (2) one of the following conditions is satisfied.
(a) τ∗ 6= τi for any entry (τi, ·) ∈ Q′ and v∗ 6= 0.
(b) τ∗ = τi for k > 0 entries (τi,vi) in Q′ and v∗ /∈ span{v1, · · · ,vk}.

Definition 8. An LHS scheme ΣLHS is unforgeable if for every λ ∈ N, every
n ∈ poly(λ) and every PPT A, A’s advantage defined as AdvUNFΣLHS,A(λ) :=

Pr[1← ExptUNFΣLHS,A(1λ, n)] is negligible.

Both SCH and CCH are security notions guaranteeing that no signature
generated by the deriving algorithm Derive based on some original signatures
can be linked to the original ones. In the former, the original signatures have been
honestly generated by the signing algorithm Sig. In the latter, the condition that
the original signatures must satisfy is that they are correct ones, which means
that they might have been dishonestly generated. Obviously, the latter notion is
truly stronger than the former.

Definition 9 ([2]). An LHS scheme is strongly context-hiding (SCH) if for
every λ ∈ N, every n ∈ poly(λ), every (pk, sk) ← KGen(1λ, n), every tag τ ∈
{0, 1}∗, every integer l ∈ [1, n], all l linearly-independent vectors v1, · · · ,vl ∈ Znp
and all l weights β1, · · · , βl ∈ Zp, the following two distributions are statistically
close, namely

– {sk, {σi}li=1, Derive(pk, τ, {vi, σi, βi}li=1)} and

– {sk, {σi}li=1, Sig(sk, τ,
∑l
i=1 βivi)},

where σi ← Sig(sk, τ,vi) for each i ∈ [1, l].

Definition 10 ([5]). An LHS scheme is completely context-hiding (CCH) if
for every λ ∈ N, every n ∈ poly(λ), every (pk, sk) ← KGen(1λ, n), every tag
τ ∈ {0, 1}∗, every integer l ∈ [1, n], all l linearly-independent vectors v1, · · · ,vl ∈
Znp , all l correct signatures σ1, · · · , σl s.t. 1 ← Ver(pk, τ,vi), and all l weights
β1, · · · , βl ∈ Zp, the following two distributions are statistically close, namely

– {sk, {σi}li=1, Derive(pk, τ, {vi, σi, βi}li=1)} and

– {sk, {σi}li=1, Sig(sk, τ,
∑l
i=1 βivi)}.

B The Simplified Variant of the ALP LHS Scheme [6]

KGen(1λ, n): Choose bilinear groups (G,GT ) whose order is a prime p of bit lengh

λ. Choose α
U←− Zp. Let g, v, g1, · · · , gn

U←− G. Let u′, u0, · · · , uN−1
U←− G for

an integer N ∈ N. Let HG be a function which takes τ ∈ {0, 1}N as input,

then outputs u′
∏N−1
i=0 u

τ [i]
i ∈ G. Output (pk, sk), where pk := (G,GT , g, gα,

v, {gi}ni=1, u
′, {ui}N−1

i=0 ) and sk := α.
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Sig(sk, τ ∈ {0, 1}N ,v ∈ Znp ): Parse v as (v1, · · · , vn). Choose r, s
U←− Zp. Com-

pute

(σ1, σ2, σ3, σ4) :=

(

n∏
j=1

gvii v
s)αHG(τ)r, gr, gs, gα·s

 .

Output σ := (v, τ, σ1, σ2, σ3, σ4).
Derive(pk, τ ∈ {0, 1}N , {vi ∈ Znp , σi, βi ∈ Zp}): Parse σi as (v, τ, σi,1, σi,2, σi,3,

σi,4). Choose r
U←− Zp. Compute

(σ1, σ2, σ3, σ4) :=

(
l∏
i=1

σβii,1 ·HG(τ)r,

l∏
i=1

σβii,2 · g
r,

l∏
i=1

σβii,3,

l∏
i=1

σβii,4

)
.

Output σ := (
∑l
i=1 βi · vi, τ, σ1, σ2, σ3, σ4).

Ver(pk, τ ∈ {0, 1}N ,v ∈ Znp , σ): Parse v ∈ Znp as (v1, · · · , vn). Parse σ as (v, τ,
σ1, σ2, σ3, σ4). Output 1 if both of the following two conditions hold.

e(g, σ1) = e(

n∏
i=1

gvii , g
α) · e(v, σ4) · e(HG(τ), σ2)

e(gα, σ2) = (g, σ4)

Output 0 otherwise.

We have not rigorously proven, but it is expected that the following theorem
holds.

Theorem 4. The simplified variant of the ALP LHS scheme is unforgeable (un-
der Definition 8) if the CDH and FlexCDH assumptions hold in the group G.

C Analysis of the Probability Pr[¬abort] in the Proof of
Lemma 4

Let τi ∈ {0, 1}N for i ∈ [1, q] denote the tag chosen at the i-th key-revelation or
signing oracle. We obtain

Pr[¬abort] = Pr

[
F (τ∗) = 0 (mod p)

q∧
i=1

F (τi) 6= 0 (mod l)

]
= Pr [F (τ∗) = 0 (mod p)]

·Pr

[
q∧
i=1

F (τi) 6= 0 (mod l) | F (τ∗) = 0 (mod p)

]
. (6)

We analyze each of the two terms in (6) one by one. The first term is analyzed
as follows.

Pr [F (τ∗) = 0 (mod p)]
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= Pr [F (τ∗) = 0 (mod p) ∧ F (τ∗) = 0 (mod l)]

= Pr [F (τ∗) = 0 (mod l)] Pr [F (τ∗) = 0 (mod p) | F (τ∗) = 0 (mod l)]

=
1

l

1

N + 1
. (7)

The second term is analyzed as follows.

Pr

[
q∧
i=1

F (τi) 6= 0 (mod l) | F (τ∗) = 0 (mod p)

]

= 1− Pr

[
q∨
i=1

F (τi) = 0 (mod l) | F (τ∗) = 0 (mod p)

]

≥ 1−
q∑
i=1

Pr [F (τi) = 0 (mod l) | F (τ∗) = 0 (mod p)]

= 1− q

l
. (8)

By (6), (7), (8), we obtain

Pr[¬abort] ≥ 1

l

1

N + 1
(1− q

l
) =

1

4q(N + 1)
,

because l = 2q.

D Our 2nd ARIP Scheme

Setup(1λ, n): The same as the one of our 1st ARIP scheme except that number
of the variables {gi}n+5

i=1 is reduced to n+ 4.

KGen(mk,x): Parse x as (x1, · · · , xn). Choose a tag τ
U←− {0, 1}N . Generate 4

vectors v1, · · · ,v4 ∈ Zn+4
p in the manner explained in Subsect 4.4, i.e., (2)-

(5). For each i ∈ [1, 4], parse vi as (vi,1, vi,2, · · · , vi,n+4), and compute an
ALP signature (σi,1, σi,2, σi,3, σi,4) as

σi,1 :=

n+4∏
j=1

g
vi,j
i vsi

α

HG(τ)ri , σi,2 := gri , σi,3 := gsi , σi,4 := gα·si ,

where ri, si
U←− Zp. Finally, output the secret-key sk := (x, τ, {{σi,j}4j=1}4i=1).

Sig(sk,M,y, L,R): Parse sk as (x, τ, {{σi,j}4j=1}4i=1). Parse y as (y1, · · · , yn).
To generate a signature σ, conduct the following five steps first.
1. Set d := 〈x,y〉 (mod p). Assume that d ∈ [L,R].

2. Choose r
U←− Zp. Set (β1, β2, β3, β4) := (1, L,R,M).

3. Compute

(σ1, σ2, σ3, σ4) :=

(
4∏
i=1

σyii,1 ·HG(τ)r,

4∏
i=1

σyii,2 · g
r,

4∏
i=1

σyii,3,

4∏
i=1

σyii,4

)
.
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Note that if sk is a correct secret-key with inner-randomness {rj , sj}4j=1,
the computed ALP signature distributes as({

n∏
i=1

gxii · gn+1 · gLn+2 · gRn+3 · gMn+4 · v
∑4
j=1 βjsj

}α
HG(τ)

∑
j βjrj+r,

g
∑
j βjrj+r, g

∑
j βjsj , gα

∑
j βjsj

)
.

4. As our 1st ARIP scheme, compute the GS commitments for all of the
variables (a), · · · , (e). Additionally, compute the commitments for all of
the following variables.
– gxi and gxii

(for all i ∈ [1, n])

Let the commitments be denoted by
#»

Cxi ,
#»

C ′xi ∈ G3, respectively.
5. As our 1st ARIP scheme, compute the GS proofs for all of the relations

[a], · · · , [f] except for the relation [e] which is modified as follows.

[e’] e(σ1, g) =
∏n
i=1(gxii , g

α) · e(
∏4
i=1 g

yi
i+n, g

α) · e(v, σ4) · e(HG(τ), σ2)
Additionally, compute the GS proofs for all of the following relations.
– e(gxi , gi) = e(g, gxii )

(for all i ∈ [1, n])
– e(gd1 , g) =

∏n
i=1 e(g

xi , gyi1 )
Let the proofs be denoted by #»π xi ,

#»π ip ∈ G3, respectively.
As our 1st ARIP scheme, generate the GS commitments/proofs for the fact
that d ∈ [L,R].
The signature σ consists of all of the GS commitments and proofs generated
so far, and the second ALP signature element σ2 ∈ G.

Ver(σ,M,y, L,R): As our 1st ARIP scheme, verify the 12 equations except for
the 7th equation which is modified as follows.
7’. E(g,

#»

Cσ1
) =

∏n
i=1E(gα,

#»

C ′xi)·E(
∏4
i=1 g

yi
i+n, ι(g

α))E(v,
#»

Cσ4
)·E(σ2,

#»

CHG(τ))·∏3
k=1E(πσ1,k,

#»

f k)
Additionally, verify the following 13rd and 14th equations.
13. E(gi,

#»

Cxi) = E(g,
#»

C ′xi) ·
∏3
k=1E(πxi,k,

#»

f k)
(for all i ∈ [1, n])

14. E(g,
#»

Cd) =
∏n
i=1E(gyi1 ,

#»

Cxi) ·
∏3
k=1E(πip,k,

#»

f k)
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