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Abstract

Cuckoo hashing is a powerful primitive that enables storing items using small space with
efficient lookups. At a high level, cuckoo hashing maps n items into b entries storing at most ℓ
items such that each item is placed into one of k randomly chosen entries. Additionally, there
is an overflow stash that can store at most s items. Many cryptographic primitives rely upon
cuckoo hashing to privately and efficiently embed data. It is integral to ensure small failure
probability for constructing cuckoo hashing tables as it directly relates to the privacy.

As our main result, we present a more efficient cuckoo hashing construction using more hash
functions. For construction failure probability ϵ, the query complexity of our cuckoo hashing
scheme is O(

√
log(1/ϵ)/ log n). This is a quadratic improvement over previously known cuckoo

hashing constructions that used larger stashes or entries. We also prove lower bounds matching
our construction.

We also initiate the study of robust cuckoo hashing where the input set may be chosen with
knowledge of the hash functions. We present a cuckoo hashing scheme with query overhead
Õ(log λ) that is robust against PPT adversaries except with negl(λ) probability. Furthermore,
we present lower bounds showing that this construction is tight and that extending previous
approaches of large stashes or entries cannot obtain robustness except with Ω(n) query overhead.
In other words, robust cuckoo hashing may only be obtained efficiently with a large number of
hash functions.

As applications of our results, we obtain improved constructions for batch codes and pri-
vate information retrieval. In particular, we present the most efficient explicit batch code and
blackbox reduction from single-query PIR to batch PIR.

1 Introduction

Cuckoo hashing, introduced by Pagh and Rodler [PR04], is a powerful tool that enables embedding
data from a very large universe into memory whose size is linear in the total size of the data
while enabling very efficient retrieval. In more detail, the original cuckoo hashing scheme enables
taking a set of n items from a universe U and stores them into approximately 2n entries such that
retrieving any item x requires searching only two entries. A huge advantage of cuckoo hashing
is that the storage overhead is optimal up to a small constant factor and independent of the
universe size |U | while querying is very efficient. Due to the power of cuckoo hashing, it has found
usage in a wide range of applications such as high-performance hash tables [ZWY+15, BZG+16],
databases [PRR15], caching [FAK13] and cuckoo filters [FAKM14]. Furthermore, many follow-up
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works have studied further properties and variants of cuckoo hashing including [DM03, FPSS05,
Kut06, DW07, ANS09, FMM09, KMW10, FPS13, ADW14, MP20].

Cuckoo Hashing in Cryptography. One important area where cuckoo hashing has found wide
usage is cryptography. A common method used in cryptographic primitives is to leverage cuckoo
hashing to privately embed data while enabling efficient retrievals when necessary. For example,
suppose one party has a database of identifier-value pairs {(id1, v1), . . . , (idn, vn)} that it wishes to
outsource to another potentially untrusted third party for storage. As the third party is untrusted,
the data must be outsourced in a private manner such that the third party cannot be see the
data in plaintext. For utility, the data owner should still be able to query and retrieve certain
values efficiently. To do this, many works leverage cuckoo hashing with two modifications. First,
the underlying random hash functions are replaced with cryptographic hash functions (typically,
pseudorandom functions). Secondly, the contents of the resulting cuckoo hash tables are encrypted
in some manner such as standard IND-CPA encryption. The keys for the cryptographic hash
function and encryption are typically kept by the data owner to ensure privacy. To query any data,
the data owner can execute the standard cuckoo hashing query algorithm using the private keys
when necessary. We note the above does not comprehensively cover all usages of cuckoo hashing in
cryptography, but was elaborated to provide readers with intuition on an example usage of cuckoo
hashing to privately embed data.

In the majority of cryptographic applications, cuckoo hashing is used in a setting where all
n items are provided ahead of time to construct a hash table that is not modified in the future.
Throughout our work, we will focus on the setting of constructing a static cuckoo hash table and
ignore features of cuckoo hashing that enable inserting or deleting items.

Failure Probability and Adversarial Advantage. Cuckoo hashing is a randomized algorithm
that heavily relies upon the underlying random hash functions to ensure correctness. In particular,
there is a non-zero probability that it is impossible to allocate a set of n items using the sampled
random hash functions. We will refer to this as the construction failure probability. For standard
cuckoo hashing, it was shown that the failure probability is 1/poly(n). Without privacy concerns,
handling this failure is straightforward as one can simply sample new random hash functions and
repeat the construction algorithm. As the failure probability is 1/poly(n), this would increase the
expected running time of construction by a minimal amount.

For cryptography, the failure probability has much larger implications with respect to privacy
and adversarial advantage. Suppose we consider a cuckoo hashing instantiation with failure con-
struction probability ϵ with some randomly sampled hash functionH. This means that, if we choose
a uniformly random set of n items, the set of n items cannot be allocated correctly according to H
with probability ϵ. In other words, an ϵ-fraction of inputs will behave differently from the remaining
inputs. At a high level, an adversary can leverage this property to compromise privacy of the inputs
when ϵ is too large. Suppose the adversary picks two input sets S1 and S2. An ideal cryptographic
protocol would pick η ∈ {0, 1} at random and execute with Sη as input. Given the transcript of
the protocol, the adversary should not be able to guess η with probability better than 1/2+negl(λ)
probability. If the adversary picks S1 and S2 at random, it is not hard to see that exactly one of
S1 or S2 will fail to be allocated by cuckoo hashing with probability approximately O(ϵ). As the
transcripts will be different when cuckoo hashing fails to construct the hash table, the adversary
has advantage approximately 1/2 + ϵ of guessing η. So, it is essential that the construction failure
probability ϵ is negligible to ensure privacy of the embedded data. The 1/poly(n) failure probability
of standard cuckoo hashing cannot be used in most cryptographic applications.
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Current Approaches to Negligible Failure. As the standard 1/poly(n) failure probability
of cuckoo hashing schemes cannot be used in cryptography, many prior works have used variants
that can provide negligible failure guarantees. One common method is to utilize cuckoo hashing
with a stash, first introduced by Kirsch, Mitzenmacher and Wieder [KMW10], where a standard
cuckoo hashing scheme is augmented with an overflow stash that can store at most s items. By
picking a sufficiently large stash size s, it can be proven that cuckoo hashing will fail only with
negligible probability [ADW14]. Another approach considers entries that can store ℓ > 1 items. For
sufficiently large ℓ, it has been shown that negligible failure probability may be achieved by Minaud
and Papamanthou [MP20]. A final approach considers standard cuckoo hashing with large-scale
experiments to estimate the failure probability [CLR17, ACLS18].

The above approaches all obtain small failure probabilities in different ways. It is unclear that
they are most efficient way to obtain negligible failure leading us to the following question:

What is the most efficient method to obtain provably
negligible failure probability for cuckoo hashing?

As our major result, we present an approach with provable failure bounds that is quadratically
more efficient than previous constructions. We also prove lower bounds matching our construction.

Adversarial Robustness. In the prior discussions, we overlooked a subtle, but important, as-
sumption used in cuckoo hashing. The failure probabilities assumed that the chosen inputs were
independent of the sampled random hash functions. Instead, if we assume that a probabilistically
polynomial time (PPT) adversary is given the hash functions to choose the input set for cuckoo
hashing, the previous construction failure bounds no longer apply. In many settings, it is natural
that the adversary has knowledge of the random hash functions. Two such examples include if the
adversary may view or control the randomness in the system or if the hash functions need to be
published publicly for use by multiple parties.

We initiate the study of robust cuckoo hashing that provide negligible construction failure prob-
abilities for inputs chosen adversarially with knowledge of the hash functions. This leads to the
following natural question:

Is it possible to efficiently obtain negligible failure probability for cuckoo hashing
if inputs are adversarially chosen with knowledge of the hash functions?

In our work, we present efficient constructions for robust cuckoo hashing that we prove are optimal
with matching lower bounds. Furthermore, we show that robust cuckoo hashing must be more
expensive than standard cuckoo hashing. We also prove that it is impossible to extend cuckoo
hashing with a stash or larger entries to obtain robustness except if the query overhead becomes
linear.

1.1 Our Contributions

Cuckoo Hashing with Negligible Failure. As our major result, we present a new cuckoo hash-
ing construction using more hash functions with asymptotically smaller query overhead than all
prior schemes. To obtain failure probability ϵ, we prove it suffices to use k = O(

√
log(1/ϵ)/ log n)

hash functions resulting in O(
√

log(1/ϵ)/ log n) query overhead. This is a quadratic improve-
ment of the query overhead O(log(1/ϵ)/ log n) of cuckoo hashing schemes instantiated with large
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Hash Functions k Entry Size ℓ Entries b Stash Size s Failure ϵ Query Overhead

Cuckoo Hashing [PR04] 2 1 O(n) 0 1/nO(1) O(1)

Large-Sized Entries [DW07] 2 O(log(1/α)) (1 + α)n/ℓ 0 1/nO(1) O(1)

Large-Sized Entries [MP20] 2 O(log(1/ϵ)/ log n) O(n/ℓ) 0 ϵ O(log(1/ϵ)/ log n)

Constant-Sized Stash [KMW10] 2 1 O(n) O(1) 1/nO(s) O(1)

Large-Sized Stash [ADW14] 2 1 O(n) O(log(1/ϵ)/ log n) ϵ O(log(1/ϵ)/ log n)

More Hash Functions [FPSS05] O(log(1/ϵ)/ log n) 1 O(n) 0 ϵ O(log(1/ϵ)/ log n)

Our Work O(
√
log(1/ϵ)/ logn) 1 O(n) 0 ϵ O(

√
log(1/ϵ)/ logn)

Table 1: A comparison table of bounds for cuckoo hashing parameters with respect to error prob-
abilities.

stashes [ADW14] or larger entries [MP20]. Our results and comparisons to prior work can be
found in Table 1. Later, we present applications of our new cuckoo hashing schemes that results in
improved constructions for several primitives. We also prove lower bounds matching either our con-
structions or previously known upper bounds across all four cuckoo hashing parameters: number
of hash functions (k), number of entries (b), entry size (ℓ) and overflow stash size (s).

Robust Cuckoo Hashing. We also study the necessary and sufficient conditions to obtain robust
cuckoo hashing. All our results are summarized in Table 2. We say cuckoo hashing is (λ, ϵ)-robust
if any adversary running in poly(λ) time cannot find an input set that will incur a construction
failure with probability greater than ϵ. To our knowledge, we are the first to study robust variants
of cuckoo hashing. A natural step would be to try and extend the previous approaches of large
stashes and entry sizes to obtain robustness against adversarial inputs. We prove lower bounds
showing that only trivial values of s = Ω(n) and ℓ = Ω(n) can obtain robustness resulting in linear
query overhead.

Instead, we show using a larger number of hash functions is the most efficient approach. We
present a construction with more hash functions that has query overhead O(f(λ) log λ), for any
f(λ) = ω(1), that is (λ, negl(λ))-robust. For standard parameters such as λ = n, the query overhead
is roughly O(log n). We will leverage our robust cuckoo hashing construction to provide stronger
privacy or lower error probability for various primitives.

Applications. Using our new cuckoo hashing constructions with large number of hash functions,
we present improved constructions for several primitives:

• Probabilistic Batch Codes (PBC). PBCs are a primitive that aim to encode a database D
of n entries into m buckets such that any subset of q entries may be retrieved efficiently by
accessing at most t codewords from each bucket. The total number of codewords is denoted by
N and the goal is to maximize the rate n/N and to keep the bucketsm as close to q as possible.
Utilizing our efficient cuckoo hashing scheme, we obtain a PBC with rate O(

√
λ/ log logn),

m = O(q) and t = 1 with error probability 2−λ. Our construction has quadratically better
rate than prior provable PBCs.

• Robust PBCs. We also initiate the study of robust PBCs where the subset of q entries may
be chosen by an adversary with knowledge of the system’s randomness. By leveraging our
robust cuckoo hashing constructions, we obtain robust PBCs with rate O(log λ) while ensuring
that a PPT adversary cannot find an erring input except with probability negl(λ). To our
knowledge, this is the most efficient explicit robust PBC to date. All prior perfect PBCs with
zero error are either less efficient or are non-explicit.
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Hash Functions k Entry Size ℓ Entries b Stash Size s Robustness Query Overhead

Our Work O(f(λ) log λ), f(λ) = ω(1) 1 O(n) 0 (λ, negl(λ)) O(f(λ) log λ)

Our Work ω(log λ) o(n) O(n/ℓ) o(n) (λ, 1/2) ω(log λ)

Our Work O(log λ) Ω(n) O(n/ℓ) o(n) (λ, 1/2) Ω(n)

Our Work O(log λ) o(n) O(n/ℓ) Ω(n) (λ, 1/2) Ω(n)

Table 2: A table of bounds for cuckoo hashing parameters where (λ, ϵ)-robustness means that any
adversary running in probabilistic poly(λ) time cannot cause a construction failure with probability
greater than ϵ.

• Single-Query to Batch PIR. Private information retrieval (PIR) considers the setting where
a client wishes to privately retrieve an entry from an array stored on a server. Batch PIR is
the extension where the client wishes to retrieve a subset of q entries at once. A standard
way to build batch PIR is to compose a single-query PIR with a (probabilistic) batch code
(see [IKOS04, ACLS18]). To our knowledge, these compositions are the most concretely effi-
cient ways to build batch PIRs to date. Using our new PBCs, we obtain a more asymptotically
efficient blackbox reduction from single-query PIR to batch PIR.

• Re-usable Batch PIR. We also consider re-usable batch PIR where the server must efficiently
handle multiple sequential queries. The standard reduction from single-query to batch PIR
requires the server to encode a database using a PBC where the construction failure probabil-
ity becomes the error probability. In the case of multiple queries (i.e. re-usable protocols), the
hash functions must be made public to all parties. As a result, adversarially chosen queries
can be made to fail with very high probability. To solve this problem, we utilize robust PBCs
to construct a re-usable batch PIR that guarantees a PPT adversary will be unable to find
erring query subsets.

Non-Goals of this Work. Many prior works (such as [CLR17, ACLS18]) aim to find concrete
parameters for specific failure probabilities. In contrast, the goal of our work is to explore and
push the theoretical limits of cuckoo hashing. We want to determine the optimal overhead that is
achievable for cuckoo hashing. We leave it as future work to find concrete parameter instantiations
of our constructions.

1.2 Related Works

Cuckoo Hashing with Negligible Failure. Following the seminal work of Pagh and Rodler [PR04],
there have been many follow-up works studying cuckoo hashing. We will focus on the variants that
enable negligible failure probability. Cuckoo hashing where entries can store ℓ > 1 items was stud-
ied in [DW07, KMW10, MP20] where negligible probability could be achieved for super-constant ℓ.
A variant of cuckoo hashing that was extended with an overflow stash that may store s ≥ 1 items
was studied in [KMW10, ADW14, MP20] where super-constant s could obtain negligible failure.
Finally, cuckoo hashing with k > 2 hash functions was studied in [FPSS05].

Cuckoo Hashing in Cryptography. Many prior works have relied heavily upon cuckoo hash-
ing to build many primitives including private information retrieval (PIR) [ACLS18, DRRT18,
ALP+21], private set intersection (PSI) [PSSZ15, CLR17, CHLR18, PSWW18, MRR20, PRTY20,
DPT20], symmetric searchable encryption (SSE) [PPYY19, BBF+21], oblivious RAMs [GM11,

5



PPRY18, AKL+20, HFNO21], history-independent data structures [NSW08] and hardness-preserving
reductions [BHKN19]. We also point readers to references therein for more prior works.

Adversarial Robustness. Similar notions of adversarial robustness has been studied in prior
works outside of cuckoo hashing where it is assumed the adversary has knowledge of the sys-
tem’s randomness. Some examples of prior works include sketching [MNS11, HW13], stream-
ing [BEJWY20], probabilitic data structures [NY15, CPS19] and property-preserving hash func-
tions [BLV19, FL+21, HLTW22].

Other Hashing Schemes. We note that there are other schemes beyond cuckoo hashing to
obtain efficient allocations. For example, the “power-of-two” choice paradigm inserts items into
the least loaded of two bins [ABKU94, RMS01]. A variant with a stash to obtain negligible failure
was presented in [PPY19]. Examples of other schemes include simple tabulation [PT12] and multi-
dimensional balanced allocations [ANSS16].

2 Definitions

In this section, we present the necessary definitions needed to analyze cuckoo hashing. In particular,
we present formal definitions for hashing schemes, adversarial robustness and perfect construction
algorithms.

2.1 Random Hash Functions

We start by presenting definitions of the various random hash functions that may be utilized by
our cuckoo hashing instantiations.

Definition 1 (t-Wise Independent Hash Functions). Let H be a family of hash functions where
H : D → R for every hash function H ∈ H. H is a t-wise independent hash family if, for any
distinct x1, . . . , xt ∈ D and any y1, . . . , yt ∈ R, the following is true:

Pr[H(x1) = y1, . . . ,H(xt) = yt] = |R|−t.

Next, we define a variant of hash families that behave like a t-wise independent hash family on
every set of t inputs except with probability ϵ. In other words, we can treat such hash families as
t-wise independence except with probability ϵ over the choice of the hash function (not the input
set).

Definition 2 ((t, ϵ)-Wise Independent Hash Functions). Let H be a family of hash functions where
H : D → R for every hash function H ∈ H. H is a (t, ϵ)-wise independent hash family if, for any
distinct S = {x1, . . . , xt} ∈ D and any y1, . . . , yt ∈ R, the following is true:

• There exists an event ES such that Pr[ES ] ≤ ϵ.

• Pr[H(x1) = y1, . . . ,H(xt) = yt : ES ] = |R|−t.

These weaker variants of hash functions have been studied in the past (such as [PP08, ADW14]).
It has been shown they can be constructed using lower independence hash functions and faster
evaluation. Regardless for both t-wise and (t, ϵ)-wise, for usable regimes of ϵ, independent hash
functions require Ω(t) storage to represent a random hash function from the hash family.
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The cost of storage for explicit random hash functions is large. Instead, we can resort to cryp-
tographic assumptions to obtain random functions. The above definition of (t, ϵ)-wise independent
hash functions considers the failure event ES from a statistical viewpoint. Instead, we could also
consider computational asssumptions where we can use pseudorandom functions (PRFs) that are
indistinguishable from random functions and may be represented succinctly.

Definition 3 (Pseudorandom Functions). For a security parameter λ, a deterministic function
F : {0, 1}s × {0, 1}n → {0, 1}m is a λ-PRF if:

• Given any k ∈ {0, 1}s and x ∈ {0, 1}n, there exists a polynomial time algorithm A to compute
F (k, x).

• For any PPT adversary A,
∣∣Pr [AF (k,·)(1λ) = 1

]
− Pr

[
AR(·)(1λ) = 1

]∣∣ ≤ negl(λ) where k is
drawn randomly from {0, 1}s and R is a random function from {0, 1}n → {0, 1}m.

We note that PRFs can be viewed as (poly(λ), negl(λ))-wise independent hash functions against
all PPT adversaries. For t = poly(λ), a λ-PRF is a (t, negl(λ))-wise independent hash function in
the view of a PPT adversary. This is stronger as it applies to any t = poly(λ) as opposed to a fixed
t.

Finally, we can also consider the ideal random oracle model (ROM) where there is an oracle O
that always output random values O(x) for each input x. For any repeated inputs, O returns the
same consistent output.

Definition 4 (Random Oracle Model). In the random oracle model (ROM), there exists an oracle
O such that for new input x, O(x) is uniformly random. For any repeated input, the same output
O(x) is returned.

Choosing the Hash Function. Throughout our work, we will assume that the hash function
outputs are random. To do this, we can choose to instantiate our hash functions using any of
the above options. The main differences are that t-wise and (t, ϵ)-wise independence require larger
storage while PRFs and ROM require stronger underlying assumptions. In any of our results, we
can switch between the above choices using different assumptions and storage costs.

2.2 Hashing Schemes

We start by defining the notion of hashing schemes. At a high level, the goal of a hashing scheme is
to take n identifier-value pairs {(id1, v1), . . . , (idn, vn)} with n distinct identifiers from a potentially
large identifier universe U id and allocate them into a hash table T whose size depends only on n and
not the universe size |U id|. Throughout the rest of our work, we will refer to an identifier-value pair
(id, v) as an item. Furthermore, the hash table T should enable efficient queries for any identifier
id ∈ U id. We will focus on the setting of constructing hash tables from an input data set as this
closely corresponds to the usage of cuckoo hashing in cryptography.

Definition 5 (Hashing Schemes). A hashing scheme for size n, identifier universe U id and value
universe UV consists of the following efficient algorithms:

• H ← Sample(1λ): A sampling algorithm that is given a security parameter λ as input and
returns a set of one or more hash functions H.
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• T ← Construct(H,X): A construct algorithm that is given the set of hash functions H and a
set X = {(id1, v1), . . . , (idn, vn)} ⊆ U id × UV of items such that idi ̸= idj for all i ̸= j ∈ [n]
and returns a hash table T allocating X or ⊥ otherwise.

• v ← Query(H,T, id): A query algorithm that is given the set of hash functions H, the hash
table T and an identifier id and returns a value v if (id, v) ∈ X or ⊥ otherwise.

As mentioned earlier, we consider Construct that enables a hashing scheme to get all items X
that need to be allocated at once. We choose to focus on this setting as it more closely aligns to the
usage of cuckoo hashing in cryptographic applications where one party encodes their entire input
using cuckoo hashing.

Next, we move onto the definition of error probabilities for hashing schemes. In our work,
we will focus on the notion of construction error probabilities that measures the probability that
a set X of identifier-value pairs cannot be constructed into a hash table according to the public
parameters and the sampled set of hash functions over the randomness of the sampling and construct
algorithms. We emphasize that this definition assumes that the input set X is chosen independent
of the sampled hash functions (see Section 2.3 for stronger definitions).

Definition 6 (Construction Error Probability). A hashing scheme for size n, identifier uni-
verse U id and value universe UV has construction error probability ϵ if, for any set of items
X = {(id1, v1), . . . , (idn, vn)} ⊆ U id × UV such that idi ̸= idj for all i ̸= j ∈ [n], the following
holds:

Pr[Construct(H,X) = ⊥: H ← Sample(1λ)] ≤ ϵ.

In cryptography, the typical requirement for ϵ would be to be negligible in the input size n.
However, in many constructions, cuckoo hashing is used as a sub-system on a smaller subset of the
input size (for example, subsets of log n size). For these settings, ϵ is still required to be negligible
in n even though the cuckoo hashing scheme considers significantly less than n items. Therefore,
the above definition considers generic error probability ϵ as there are various settings where the
error probability may need to be much smaller than negligible.

Throughout our paper, we will consider perfect construction algorithms. At a high level, a
perfect construction algorithm will always be able to find a successful allocation for the input set
X if at least one such allocation exists. The main benefit of perfect construction algorithms is
that construction failures only occur if the set of sampled hash functions H does not emit a proper
allocation for the input set X. We formally define these algorithms below:

Definition 7 (Perfect Construction Algorithms). A hashing scheme for size n, identifier universe
U id and value universe UV has a perfect construction algorithm Construct if, for any set of items
X = {(id1, v1), . . . , (idn, vn)} ⊆ U id×UV such that idi ̸= idj for all i ̸= j ∈ [n], the following holds:

Pr

[
Construct(H, X) ̸= ⊥: H ← Sample(1λ)

∃T a successful allocation of X according to H

]
= 1.

Next, we also consider query error probability.

Definition 8 (Query Error Probability). A hashing scheme for size n, identifier universe U id and
value universe UV has query error probability ϵq if, for any set of items X = {(id1, v1), . . . , (idn, vn)} ⊆
U id × UV such that idi ̸= idj for all i ̸= j ∈ [n] and for any query id ∈ U id,

Pr

[
Query(H, T, id) ̸= vid :

H ← Sample(1λ)
T ← Construct(H, X), T ̸=⊥

]
≤ ϵq
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where vid = vq if id = idq or vid = ⊥ otherwise.

Throughout our work, we will only consider hashing schemes with ϵq = 0 query error probability.
In other words, if the construction algorithm succeeds, every query will always be correct.

2.3 Robust Hashing Schemes

In the prior section, we defined the construction error probability with respect to any input set
X of identifier-value pairs that is chosen independently of the sampled hash functions. We define
the notion of adversarially robust hashing schemes where an adversary is given the sampled hash
functions H and aims to produce a set X of identifier-value pairs that will fail to allocate.

Definition 9 ((Q, ϵ)-Robust Hashing Schemes). A hashing scheme for size n, security parameter λ,
identifier universe U id and value universe UV is (Q, ϵ)-robust if, for any adversary A with running
time O(Q), the following holds:

Pr

Construct(H, X) = ⊥:
H ← Sample(1λ)
X = {(id1, v1), . . . , (idn, vn)} ← A(H)
idi ̸= idj , ∀i ̸= j ∈ [n]

 ≤ ϵ.

Once again, we define robustness in a more fine-grained manner for adversaries running in
expected time in O(Q) and arbitrary probabilities ϵ. Typically, we would use Q = poly(n) to
consider efficient adversaries and ϵ to be negligible in n. As mentioned earlier, cuckoo hashing may
be used as a sub-system for smaller inputs where we have to consider adversaries with running time
larger than polynomial in the cuckoo hashing size and probabilities smaller than negligible in the
cuckoo hashing size.

Finally, we define strongly robust to consider all polynomial time adversaries.

Definition 10 (Strongly Robust Hashing Schemes). A hashing scheme is (λ, ϵ)-strongly robust if,
for any polynomial t(n, λ), it is (t, ϵ)-robust.

3 Cuckoo Hashing

In this section, we re-visit the cuckoo hashing. We will consider a generic version of cuckoo hashing
that considers arbitrary numbers of hash functions, entries that can store multiple items and an
overflow stash. Furthermore, we will define specific graphs that will be useful for analyzing cuckoo
hashing schemes.

3.1 Description

Cuckoo hashing aims to allocate a set X of n identifier-value pairs into k ≥ 2 disjoint tables
T1, . . . , Tk with b/k entries in each table. For convenience, we will assume that k divides b evenly.
Each entry is able to store at most ℓ ≥ 1 items. The hash table may also consist of an overflow
stash that may be able to store at most s ≥ 0 items that were not allocated into any of the k tables.

Each identifier-value pair is mapped to a random entry in each of the k tables using k random
hash functions, (H1, . . . ,Hk) such that Hi : {0, 1}∗ → [b/k]. For convenience, we can use a single
hash function H that can simulate k hash functions by setting Hi(·) = H(i || ·). Therefore, the
Sample algorithm for cuckoo hashing simply samples a hash function H. See Section 2.1 for various
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choices of these random hash functions. Any identifier-value pair (id, v) is mapped to the H1(id)-th
entry of T1, the H2(id)-th entry of T2 and so forth. The pair (id, v) is guaranteed to be stored in any
of the k entries specified by H1, . . . ,Hk or the overflow stash. Therefore, the Query algorithm only
checks the k locations specified by H1, . . . ,Hk as well as the overflow stash that requires O(kℓ+ s)
overhead. Furthermore, assuming the construction is successful, the query algorithm will never fail
to provide the correct answer (i.e., the query error will always be 0). For the Construct algorithm,
there are several options that we will outline later in Section 3.3 once we have defined the necessary
graph terminology.

In summary, we note that the most important parameters of cuckoo hashing are: the number
of hash functions (k), the number of items stored per entry (ℓ), the number of items stored in the
stash (s) and the number of total entries (b). A major goal of our work is to tightly characterize
failure probabilities and adversarial robustness with respect to all four parameters.

Definition 11. The cuckoo hashing scheme CH(k, b, ℓ, s) refers to the algorithm using k hash
functions, b entries across k disjoint tables storing at most ℓ items and an overflow stash storing
at most s items with Sample and Query as described above and any perfect construction algorithm
Construct from Section 3.3.

Discussion about Disjoint Tables. In the above description, we assume that cuckoo hashing
considers k disjoint tables T1, . . . , Tk each of b/k entries. Each hash function Hi maps an identifier
to a random entry in Ti. By using disjoint tables, we guarantee that each identifier is mapped
to k distinct entries. We note that another variant of cuckoo hashing considers a single table
with b entries and each Hi maps to a random entry in the shared table (as studied in [FPSS05]).
In our work, we will focus on the disjoint tables setting as we show that obtaining similar error
probabilities requires a smaller number of hash functions compared to the single table setting (see
Section 4.2).

3.2 Cuckoo Bipartite Graphs

To be able to analyze cuckoo hashing, we define the notion of cuckoo bipartite graphs to accurately
model the behavior of cuckoo hashing. The left vertex set will consist of the q items that should be
allocated. The right vertex set represents all potential slots that an item can be stored. If a cuckoo
hashing scheme has b entries each storing at most ℓ items and an stash storing at most s items,
there will be bℓ+ s total right vertices. An edge between an item vertex v and an entry vertex v′

means that the item may be allocated to the corresponding entry. As each item can be stored in
at most k entries or one of the s slots in the stash, each left vertex will have degree exactly kℓ+ s.
Each of the k hash functions will be a random function, so the above description can be modelled
as drawing randomly from a distribution of bipartite graphs that we define as follows.

Definition 12. Let G(q, k, b, ℓ, s) denote the distribution of random bipartite cuckoo graph generated
in the following way:

• The left vertex set contains q vertices representing the q items to be allocated.

• The right vertex set contains bℓ+ s vertices that are partitioned into b+ 1 sub-groups in the
following way. The first b sub-groups contain ℓ vertices while the last sub-group S contains s
vertices corresponding to b entries and the stash respectively. We further group together the
first b sub-groups (i.e., b entries) as follows. The group B1 consists of the first b/k sub-groups,
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the group B2 consists of the second b/k sub-groups and so forth to obtain k groups B1, . . . , Bk

that each correspond to a disjoint table of b/k entries each.

• Each left vertex is connected to kℓ+s vertices by choosing a uniformly random sub-group from
each group B1, . . . , Bk and adding an edge to all ℓ vertices in each of the k chosen sub-groups
corresponding to picking a random entry of size ℓ from each of the k tables. Finally, each
vertex is assigned to all s vertices in S corresponding to the stash.

The major benefit of modelling cuckoo hashing in this manner is that we can directly map item
allocations to matchings in the bipartite graph. In particular, we can choose an edge between an
item and entry slot if and only if that item was allocated into that entry’s slot. Therefore, we
can see that any successful allocation directly corresponds to a left perfect matching meaning that
there exists a set of edges where each left vertex is adjacent to exactly one edge and each right
vertex is adjacent to at most one edge. Throughout our paper, our proofs will consist of analyzing
the probability of the existence of left perfect matchings for various parameter settings for random
graphs drawn from the distribution G(q, k, b, ℓ, s).

As a note, the entire bipartite graph may be quite large but does not need to be represented
explicitly. In particular, the graph can be fully re-created using only the parameters (q, k, b, ℓ, s),
the hash functions H1, . . . ,Hk and the set of items to be allocated. Additionally, we note that any
allocation of n items can be stored using O(n) storage of the corresponding edges.

3.3 Perfect Construction Algorithms

Finally, we present perfect construction algorithms. We note that one can rephrase a construction
algorithm as finding a perfect left matching. This amounts to finding an alternating path from each
node to a free right vertex (i.e., empty entry). To do this, we could perform breadth first search
(BFS) starting from each of the n left vertices that guarantees a perfect construction algorithm.
One can also use the more popular random walk algorithm. However, random walks are not
guaranteed to terminate. To make it a perfect construction algorithm, one can bound the random
walk to O(n) length before running BFS. Finally, one can also use the local search allocation
algorithm of [Kho13] that runs in O(nk) time with high probability. In Appendix C, we describe
the construction algorithms in detail and analyze the running times. As most prior works consider
constant k, we modify their proofs to obtain bounds for super-constant values of k.

4 Cuckoo Hashing with Negligible Failure

In this section, we will systematically study cuckoo hashing across all four parameters of the number
of hash functions k, the number of entries b, entry size ℓ and stash size s. As our major contribution,
we show that using large k is the most efficient method to obtain any failure probability ϵ. In
particular, we show that k needs to grow at a quadratically smaller rate than stash size s or entry
size ℓ with respect to ϵ. We present our construction with large k below:

Theorem 1. If H is a (nk)-wise independent hash function, then the cuckoo hashing scheme
CH(k, b, ℓ, s) has construction failure probability at most ϵ when k = O(

√
log(1/ϵ)/ log n), ℓ = 1,

s = 0 and b = αn for some constant α ≥ 1. The query overhead is O(
√
log(1/ϵ)/ log n) and storage

overhead is O(n).
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In comparison, cuckoo hashing with a stash requires s = O(log(1/ϵ)/ log n) [ADW14] and cuckoo
hashing with larger entries requires ℓ = O(log(1/ϵ/ log n) [MP20]. The resulting query overheads of
these instantiations is O(log(1/ϵ)/ log n) that is quadratically larger than the one from the above
theorem.

We will also show that all these parameter dependencies are asymptotically optimal by proving
a matching lower bound in Section 4.3. In other words, we show that the gap in efficiency is inherent
and cuckoo hashing with more hash functions is, indeed, the most efficient approach.

Different Parameter Sets. In our above results, we considered three extreme parameter regimes
of large k, s or ℓ to obtain ϵ failure. One could also consider parameters that aim to balance
between the three parameter choices using our techniques. However, it turns out that the best
choice remains using large values of k. We refer to Section 4.3 for further discussions using the
lower bound.

Different Values for b. We did not consider varying the number of entries b as it is the most
inefficient approach. In particular, one must have b = Ω(1/ϵ) that may be super-polynomial in the
input size for negligible ϵ. For completeness, we present tight bounds for parameters with large b
in Appendix A.

Choice of Random Hash Function. In our above results, we assumed that H is a (nk)-wise
independent hash function. One could, instead, plug in a (nk, ϵH)-wise independent hash function
and obtain similar results with construction failure probability increased by an additive ϵH factor.
One could also use PRFs or random oracles for H requiring stronger assumptions.

4.1 Technical Lemmas

We start with a technical lemma that relates the existence of an allocation of n items to perfect
left matchings in bipartite graphs. From there, we can utilize Hall’s Theorem [Hal87] to get a very
simple characterization of when an allocation for any n items via cuckoo hashing exists. We abstract
out these lemmas as we will re-use them when constructing robust cuckoo hashing in Section 5.1.

Lemma 1. Consider any cuckoo hashing scheme CH(k, b, ℓ, s) with a perfect insertion algorithm
where H is a (qk)-wise independent hash function. Then, for any set S of q items, the construction
failure probability is equal to the probability that there exists a subset of left vertices X such that
|N(X)| < |X| for a random graph drawn from the distribution G(q, k, b, ℓ, s).

Proof. As we consider cuckoo hashing schemes with perfect insertion algorithms, we know that if
there exists a proper allocation that successfully allocates all q items, then the construction will be
successful. Therefore, the cuckoo hashing scheme fails to insert if and only if no allocation fitting
all the q items exists.

We can directly map a successful allocation of the q items to a perfect left matching in the
corresponding cuckoo graph. Consider any cuckoo hashing scheme given q items to construct after
fixing the hash function. Then, there exists a corresponding bipartite graph G in the support of
the distribution G(q, k, b, ℓ, s). There exists a correct allocation if and only if each of the q items is
assigned uniquely to a bin or stash location. In other words, a correct allocation exists if and only
if there exists a left perfect matching in G where the allocation of an item to a bin corresponds to
an edge in the matching. By Hall’s Theorem [Hal87], no left perfect matching exists in a bipartite
graph if and only if there exists some subset X of left vertices such that its neighbor vertex set is
strictly smaller than X, that is, |N(X)| < |X|.
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Lemma 2. Let q, k, b, ℓ ≥ 1 and s ≥ 0 and consider the distribution of random bipartite cuckoo
graphs G(q, k, b, ℓ, s). Then, the probability that there exists a subset X of left vertices of size t such
that it has less than t neighbors, |N(X)| < t, for any kℓ+ s+ 1 ≤ t ≤ min{q, b/2} is at most

Pr[∃X : |X| = t, |N(X)| < t] ≤
(
q

t

)
·
(

b

⌊(t− s− 1)/ℓ⌋

)
·
(
2(t− s− 1)

bℓ

)k·t
.

For t ≤ kℓ+ s, the above probability is 0.

Proof. Fix any vertex set X of size t. For the case of t ≤ kℓ + s, it is impossible to find a subset
X since every left vertex has degree kℓ + s. Consider t > kℓ + s. We know that X immediately
has s neighbors in the stash vertices. Therefore, X must have at most t− s− 1 neighbors outside
of the stash vertices. So, X must connect to at most ⌊(t− s− 1)/ℓ⌋ bins that consist of ℓ vertices
each. Suppose that these bins are chosen such that a1 come from the first table, a2 come from the
second table and so forth such that a1 + . . .+ ak ≤ ⌊(t− s− 1)/ℓ⌋. We note that the total number
of ways to choose these bins is at most

(
b

⌊(t−s−1)/ℓ⌋
)
. For any vertex x ∈ X, the probability that

the k random hash functions pick edges in these bins is at most (a1k/b) · · · (akk/b) as there are b/k
bins in each of the tables. Therefore, we get the probability upper bound of

Pr[|N(X)| < t] ≤
(

b

a1 + . . .+ ak

)
·

(
k∏

i=1

aik

b

)t

≤
(

b

⌊(t− s− 1)/ℓ⌋

)
·

(
k∏

i=1

aik

b

)t

since t ≤ b/2. The right side of the equation is maximized when the product a1 · · · ak is maximized.
Therefore, we get an upper bound by setting each ai = ⌈(t − s − 1)/(ℓk)⌉ ≤ 2(t − s − 1)/(ℓk).
Plugging this in as well as taking a final Union Bound over all

(
q
t

)
choices of X we get the following

upper bound

Pr[∃X : |X| = t, |N(X)| < t] ≤
(
q

t

)
·
(

b

⌊(t− s− 1)/ℓ⌋

)
·
(
2(t− s− 1)

bℓ

)k·t

to complete the proof.

4.2 Our Construction

Next, we prove that our cuckoo hashing construction with more hash functions (i.e., larger k)
results in quadratically more efficient queries. In particular, we show that k = O(

√
log(1/ϵ)/ log n)

is sufficient.

Proof of Theorem 1. To prove this, we will leverage Lemma 1 that provides a tight characterization
between a successful insertion in cuckoo hashing and left perfect matchings in random bipartite
graphs. We start from the probability upper bound from Lemma 2 and plug in our values of k, ℓ, b
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and s to get the following for values of k + 1 ≤ t ≤ n assuming b ≥ 2n:

Pr[∃X : |X| = t, |N(X)| < |X|] ≤
(
n

t

)
·
(

b

t− 1

)
·
(
2(t− 1)

b

)k·t

≤
(en

t

)t
·
(

eb

t− 1

)t−1

·
(
2(t− 1)

b

)k·t

≤
(

eb

t− 1

)2(t−1)

·
(

eb

t− 1

)t−1

·
(
2(t− 1)

b

)k·t

≤ (2e)kt ·
(
t− 1

b

)(k−3)t

.

Note that we used Stirling’s approximation that
(
x
y

)
≤ (ex/y)y in the second inequality. For the

second and third inequality, we use that n ≤ b and t ≥ k ≥ 3. Note, if we set b ≥ (2e)5 · n
appropriately and assume that k ≥ 4, we get the following inequality:

Pr[∃X : |X| = t, |N(X)| < |X|] ≤
(
t− 1

2n

)(k−3)(t−1)

.

We break the analysis into two parts depending on the value of t. We start with the case that
for the smaller range k + 1 ≤ t ≤ n0.75. As a result, we can upper bound the probability by
(1/n0.25)(k−3)(k−1). For the other case, assume that n0.75 < t ≤ n. Therefore, we can upper bound
the probability by (1/2)(k−3)·(n0.75) ≤ (1/n)(k−3)(n0.75/ logn). Finally, we know that

max{(1/n0.25)(k−3)(k−1), (1/n)(k−3)(n0.75/ logn)} ≤ (1/n0.25)(k−3)(k−1)

for sufficiently large n. Applying a Union Bound for all values of k + 1 ≤ t ≤ n, we get that

Pr[∃X : |N(X)| < |X|] ≤ (n− k) · (1/n0.25)(k−3)(k−1) = (1/n)Θ(k2) .

We solve the following inequality to get a lower bound on k based on ϵ

(1/n)Θ(k2) ≤ ϵ =⇒ k = O(
√
log(1/ϵ)/ log n)

that completes the proof.

Necessity of k Disjoint Tables. We note that the prior work [FPSS05] aimed to analyze a similar
probability of the existence of a matching for cuckoo hashing with k hash functions. Rephrasing
their results, the prior result required k = O(log(1/ϵ)/ log n) that is quadratically higher than our
result. The core difference between the two results is that our work analyzes the setting where there
are k disjoint tables while the prior result considered a single shared table. By using k disjoint
tables, we guarantee that any set of at most k left vertices will have k distinct neighbors. Therefore,
our analysis only needs to consider left vertex sets of larger size. For the setting where each of the
k hash functions may choose any entry as studied in [FPSS05], we note a result similar to ours is
impossible. For example, consider the setting of left vertex sets of size 2, |X| = 2. The probability
that all 2k hash function evaluations resulting in the same entry is already (1/b)2k. If b = Θ(n),
this immediately implies that k = Ω(log(1/ϵ)/ log n). By avoiding this case using disjoint tables,
we are able to obtain the same failure probability with a quadratically smaller number of hash
functions.
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4.3 Lower Bounds

Next, we prove lower bounds on the best possible parameters obtainable in cuckoo hashing. In
particular, we will show that the chosen parameters in Theorem 1 are asymptotically optimal for
failure probabilities ϵ.

The lower bounds that we will prove do not make any assumptions on the construction algorithm
used. In other words, the results apply regardless of the construction algorithm (such as whether
they are perfect or whether they are efficient). Additionally, we only make the assumption that
the underlying hash function H is a (kℓ+ s+1)-wise independent hash function to mimic standard
cuckoo hashing constructions.

At a high level, we will present a simple attack on any cuckoo hashing scheme. By the structure
of our cuckoo hashing scheme using k disjoint tables and a stash, we know that any set of kℓ+s+1
will be allocated correctly. Our goal is to simply pick a random set of kℓ + s + 1 items and lower
bound the probability that all these items will hash into the exact same k entries. In this case, the
construction algorithm would fail.

Theorem 2. Let 1 ≤ k ≤ n2/5, 1 ≤ ℓ ≤ n2/5, b ≥ n/ℓ and s ≥ 0. The failure probability of
CH(k, b, ℓ, s) cuckoo hashing scheme where H is a (kℓ + s + 1)-wise independent hash function
satisfies the following:

k2ℓ+ ks = Ω(log(1/ϵ)/ log(n)). (1)

Proof. We know that the first item will be successfully inserted. Consider the k distinct locations
that were chosen for the first item denoted by S. Suppose that another kℓ + s different items
were also assigned to the same k locations or a subset of the k locations. In this case, there are
kℓ + s + 1 items that must be assigned to kℓ + s locations in the k entries and the stash that is
impossible and will result in an insertion failure regardless of the choice of the insertion algorithm.
To obtain our lower bound, we simply lower bound this probability. Consider the other kℓ + s to
be inserted. Each of these kℓ + s items will pick k locations uniformly at random from each of
the k disjoint tables. Therefore, the probability that the k choices will be a subset of S is (k/b)k.
As all choices are independent, the probability that this is true for all kℓ items is (k/b)k(kℓ+s).
Therefore, the probability of an insertion failure is at least ϵ ≥ (k/b)k

2ℓ+ks. Applying logs to
both sides gets that k2ℓ + ks ≥ log(1/ϵ)/ log(b/k). Using the fact that b ≥ n/ℓ, we get that
log(b/k) ≥ log(n/(ℓk)). As ℓk ≤ n4/5, we get that log(b/k) = Ω(log n). Therefore, we get the
inequality k2ℓ+ ks = Ω(log(1/ϵ)/ log n) completing the proof.

Theorem 3. Let 1 ≤ k ≤ n2/5 and 1 ≤ ℓ ≤ n2/5. Suppose that the cuckoo hashing scheme
CH(k, b, ℓ, s) where H is a (kℓ + s + 1)-wise independent hash function. Then, the following are
true:

• If ℓ = O(1), b = nO(1) and s = O(1), then k = Ω(
√
log(1/ϵ)/ log n).

• If k = O(1), b = nO(1) and s = O(1), then ℓ = Ω(log(1/ϵ)/ log n).

• If k = O(1), b = nO(1) and ℓ = O(1), then s = Ω(log(1/ϵ)/ log n).

Proof. Plug in the values for each parameter regime into Theorem 2.
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We note that the above corollary shows that our construction in Theorem 1 is asymptotically
optimal. Furthermore, we also show that the constructions of large stashes [ADW14] and large
entries [MP20] are also tight.

Balancing Parameters. For our constructions, we only consider the extreme regime of large
k while the other parameters s and ℓ remain very small. Instead, we could consider trying to
balance the parameters to obtain more efficient constructions. Using Theorem 2, we can see why
the choice of large k is the most efficient approach. Recall that the query overhead is O(kℓ + s).
However, it must be that k2ℓ + ks = Ω(log(1/ϵ)/ log n). In other words, we want to minimize
kℓ + s while satisfying the above condition. It is not hard to see that the optimal approach is to
set k = O(

√
log(1/ϵ)/ log n) as we do in our constructions.

Implications to Other Hashing Schemes. As stated earlier, our results do not make any
assumptions on the construction algorithm. Therefore, our results can apply to other hashing
schemes other than cuckoo hashing. For example, we can consider multiple-choice allocation
schemes [ABKU94, RMS01] where items are allocated to multiple entries and placed into the
entry with the current smallest load. In general, one can apply our lower bounds to any scheme
that limits the candidate entries for any item to at most k locations and can set an upper limit on
the number of items per entry to ℓ.

Assumptions in Our Lower Bounds. In the above theorem, we made the assumptions that
k ≤ n2/5 and ℓ ≤ n2/5. We do not believe these limit the applicability of our lower bounds as,
otherwise, the query overhead of cuckoo hashing will be too large. As query overhead is O(kℓ+ s),
either condition being false immediately implies Ω(n2/5) query overhead that is impractical.

One or Two Hash Functions. These lower bounds match constructions for cuckoo hashing
with large stashes [ADW14] and entries [MP20] with k = 2. Our lower bound does not preclude
obtaining the same results with k = 1. However, it turns out that k ≥ 2 is necessary as one can
use analysis from “balls-into-bins” analysis to show that k = 1 is impossible. For completeness, we
include impossibility results for k = 1 in Appendix B.

Comparison with Prior Lower Bounds. We note that prior work [MP20] also proved lower
bounds for constant values of s and ℓ and fixed k = 2. In particular, for k = 2, constant entry
size ℓ ≥ 1, constant stash size s ≥ 0, and b = O(n/ℓ), they proved that ϵ = Ω(n−s−ℓ). Our lower
bounds improve upon this as we can consider arbitrary s and ℓ.

5 Robust Cuckoo Hashing

In this section, we study robust cuckoo hashing where the input set can be chosen by an adversary
that is also given input to the hash function H. We will present variants of cuckoo hashing that
can still guarantee smaller construction failures even when the input set is chosen adversarially by
efficient adversaries with knowledge of the randomness (that is, the hash function H).

5.1 Robustness Constructions

We start by presenting parameter sets for cuckoo hashing that obtain robustness. In particular, we
present a cuckoo hashing construction where the number of hash functions k is large. For parameter
sets considering large s and ℓ, we show that robustness can be obtained only using trivial parameter
regimes of s = Ω(n) or ℓ = Ω(n) resulting in linear query overhead.
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Throughout this section, we will make the assumption that the hash function H is truly random
and that H may also be queried by the adversary. We point readers to Section 2.1 to see various
options to instantiate random hash functions.

Recall that in the prior section, we required that k = O(
√
log(1/ϵ)/ log n) to obtain ϵ con-

struction failure probabilities. We show that increasing the number of hash functions by a small
amount suffices to obtain robustness. We will also show our choice of k is optimal in Section 5.2
by presenting lower bounds for robust cuckoo hashing.

Lemma 3. For any 0 < ϵ < 1, let k = O(log(Q/ϵ)), s = 0, ℓ = 1, b = αn for some constant
α ≥ 1. If H is a random hash function, then for any n ≤ Q ≤ poly(λ), the cuckoo hashing scheme
CH(k, b, ℓ, s) is (Q, ϵ)-robust.

Proof. We will consider hash oracle O that returns O(x) = (H1(x), . . . ,Hk(x)) on input x. That
is, a single oracle query will return the outputs of all k hash functions. Without loss of generality,
we will assume that if the adversary returns a set S of n items, then the adversary has computed
H1(s), . . . ,Hk(s) for all s ∈ S. This only increases the number of queries of the adversary by
at most n ≤ Q for a total of at most 2Q hash queries. Let U be the set of all items that the
adversary has queried to the hash functions. That is, if u ∈ U , then the adversary knows the values
O(u) = (H1(u), . . . ,Hk(u)). We know that |U | ≤ 2Q.

To show that the scheme is robust, we will show that a random graph drawn from the distribu-
tion G(|U |, k, b, ℓ, s) does not contain any set of left vertices X such that |X| ≤ n and |N(X)| < |X|.
By proving no such set of left vertices X exists, it will be impossible for the adversary to identify
any input set that would cause the cuckoo hashing scheme CH(k, b, ℓ, s) to fail.

By applying Lemma 2 with our parameters of s = 0, ℓ = 1 and b = Θ(n), we get the following
for probability upper bounds for the values of k + 1 ≤ t ≤ n:

Pr[∃X : |X| = t, |N(X)| < |X|] ≤
(
|U |
t

)
·
(

b

t− 1

)
·
(
2(t− 1)

b

)k·t

≤
(
2eQ

t

)t

·
(

eb

t− 1

)t−1

·
(
2(t− 1)

b

)k·t

≤ (2Q)t · (2e)k· ·
(
t− 1

b

)(k−3)t

≤ (2Q)t ·
(
t− 1

2n

)(k−3)t

≤
(
tk−3 · (2Q)

(2n)k−3

)t

.

Since k + 1 ≤ t ≤ n, we can upper bound the above probability by

Pr[∃X : |X| = t, |N(X)| < |X|] ≤
(

2Q

2k−3

)k+1

.

As this needs to be at most ϵ, we can derive the following inequalities(
2Q

2k−3

)k+1

≤ ϵ =⇒ (k + 1)(k − 3− log(2Q)) ≥ log(1/ϵ).

If we set k = O(log(Q/ϵ)), we get the desired bound that completes the proof.
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Theorem 4. For security parameter λ and error 0 < ϵ < 1, let k = O(f(λ) + log(1/ϵ)) for some
function f(λ) = ω(log λ), s = 0, ℓ = 1 and b = αn for some constant α ≥ 1. If H is a random
hash function, then the cuckoo hashing scheme CH(k, b, ℓ, s) is (λ, ϵ)-strongly robust.

Proof. The adversary runs in polynomial time and, more importantly, makes at most poly(λ) queries
to the hash oracle. We fix Q = 2ω(log λ) = λω(1) to be any function super-polynomial in λ and,
thus, Q is larger than the running time of any poly(λ) time algorithm. By applying Lemma 3
with Q = 2ω(log λ) to obtain robustness except with probability ϵ, we get that k = O(log(Q/ϵ)) =
ω(log λ) +O(log(1/ϵ)) suffices to complete the proof.

Finally, we can apply our above theorem for standard values of λ = n and ϵ = nf(n) for any
f(n) = ω(1) that is negligible in n to get the following corollary.

Corollary 1. Let ϵ = nf(n) for any function f(n) = ω(1). Let k = O(f(n) log n), s = 0, ℓ = 1 and
b = αn for some constant α ≥ 1. Then, the cuckoo hashing scheme CH(k, b, ℓ, s) is (n, negl(n))-
strongly robust.

5.2 Lower Bounds for Robustness

In this section, we prove lower bounds for the required parameters to ensure that cuckoo hashing is
robust. We will show that our construction in Theorem 4 is asymptotically optimal in the regime of
sub-linear stash and entry sizes. First, we will assume that the stash and entry size are sub-linear,
s = o(n) and ℓ = o(n), and that the number of entries is b = O(n/ℓ). We prove our lower bound
with respect to (λ, 1/2)-robustness. Since we only consider weaker probabilities, this is a stronger
lower bound that also applies to more reasonable negligible probability.

Theorem 5. Suppose that k, ℓ ≥ 1 and s ≥ 0 such that ℓ = o(n), s = o(n) and b = O(n/ℓ). If H is
a random hash function and the cuckoo hashing scheme CH(k, b, ℓ, s) is (λ, 1/2)-robust for λ ≥ n,
then it must be that k = ω(log λ).

Proof. To prove this, we assume a contradiction that k = O(log λ) and we will show that there
exists a poly(λ) time adversary that outputs a set S of n items to insert such that all n items hash
to the same n/(2ℓ) bins except with at most 1/2 probability. In this case, we note that the n/(2ℓ)
bins and the stash can store at most n/(2ℓ) · ℓ + s = n/2 + o(n) ≤ 3n/4 that cannot store all n
items in the set S that would complete the proof.

To construct our adversary, we will leverage that k = O(log λ). Assuming that H is a random
hash function, we know that for any input x,

Pr[H1(x) ≤ n/(2ℓk) ∧ . . . ∧Hk(x) ≤ n/(2ℓk)] =

(
n/(2ℓk)

b/k

)k

=
( n

2ℓb

)k
.

As b = O(n/ℓ), there exists some constant α > 0 such that b ≤ αn/(2ℓ) meaning that (n/(2ℓb))k ≤
(1/α)k. Suppose that k ≤ c logα n for some constant c > 0 since k = O(log n) and α is a positive
constant, then we know that Pr[H1(x) ≤ n/(2ℓk)∧ . . .∧Hk(x) ≤ n/(2ℓk)] ≤ (1/α)k ≤ 1/λc. Next,
we construct the following adversary using the above probability that aims to find a set S of n
items such that all items satisfy the above property in the following way:

Adversary A(H1, . . . ,Hk):
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1. Let S ← ∅.

2. Let cnt← 0.

3. While |S| < n and cnt ≤ λc+2:

(a) If H1(cnt) ≤ n/(2ℓk) ∧ . . . ∧Hk(cnt) ≤ n/(2ℓk), set S ← S ∪ {cnt}.
(b) Set cnt← cnt+ 1.

4. If |S| < n, return ⊥.

5. Return S as the n items to insert.

We analyze a slight modification of the adversary that executes all λc+2 iterations before returning.
Let Xi = 1 if and only if the i-th iteration (when cnt = i) succeeds in being placed into S. Let
X = X1 + . . . + Xnc+2 . We know that the adversary outputs ⊥ if and only if X < n. Note that
Pr[Xi = 1] = 1/λc, so µ = E[X] = λc+2/λc = λ2. As each Xi is independent due to the random
hash functions and λ ≥ n, we can apply Chernoff’s Bound to get that Pr[X < n] ≤ Pr[X < λ2/2] =
Pr[X < µ/2] ≤ 2−Θ(λ2). In other words, the adversary outputs the desired set S with probability
at least 1− 2−Θ(λ2) < 1/2 as required. Note the adversary is polynomial time as each of the λc+2

iteration requires O(k) = O(log λ) time by assumption. Therefore, the adversary’s running time is
O(λc+2 log λ) that is polynomial in λ as c is a positive constant.

The above shows that if we consider sub-linear s and t, then it must be that k = ω(log λ). We
can consider the contrapositive of the above theorem. Suppose that k = O(log λ) that is slightly
smaller than the lower bound above. Assuming that b = O(n/ℓ) to ensure storage of the hash
table remains linear, this immediately implies that either s = Ω(n) or ℓ = Ω(n). These parameter
sets are essentially trivial as the resulting cuckoo hashing scheme has Ω(n) query overhead that is
essentially retrieving the entire hash table.

Theorem 6. Suppose that k, ℓ ≥ 1 and s ≥ 0 such that k = O(log λ) and b = O(n/ℓ). If the cuckoo
hashing scheme CH(k, b, ℓ, s) is (λ, 1/2)-robust for λ ≥ n, then it must be that s + ℓ = Ω(n). In
other words, the query overhead must be Ω(n).

Implications to Other Hashing Schemes. Just like our lower bounds from Section 4.3, the lower
bounds in this section do not make any assumptions on the construction algorithms. Therefore,
our lower bounds can also apply to robust versions of multi-choice hashing [ABKU94, RMS01] that
choose entries based on load sizes.

6 Batch Codes

6.1 Probabilistic Batch Codes

The notion of batch codes was introduced by Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS04]. At
a high level, the goal of a batch code is to distribute a database of n entries into m buckets such
that any subset of q entries may be retrieved by querying at most t codewords from each of the m
buckets. The size parameter N denotes the total codewords across all m buckets and we denote
the rate of the batch code by n/N . When constructing batch codes, the goal is to maximize the
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PBC Size (N) Buckets (b) Explicit? Error

Subset [IKOS04] O(n) qO(1) ✓ 0
Expander Graphs [IKOS04] O(n log n) O(q) × 0
Balbuena Graphs [RSDG16] O(n) O(q3) ✓ 0
Pung [AS16] 4.5n 9q ✓ 2−20∗

3-way Cuckoo Hashing [ACLS18] 3n 1.5q ✓ 2−40∗

Large Stash Cuckoo Hashing O(n · λ) O(q) ✓ 2−λ

Our Work O(n ·
√
λ/ log log n) O(q) ✓ 2−λ

Table 3: A comparison table of prior PBC constructions with t = 1. Constructions with only
experimental evaluations are marked with asterisks(*).

rate n/N while keeping the number of buckets m as close to q as possible, ideally m = O(q), and
minimizing t, ideally t = 1.

Leveraging our results in cuckoo hashing, we will present improved constructions for batch
codes. In particular, we will present a probabilistic batch code (PBC) with quadratically smaller
rate compared to prior works (see Table 3).

Probabilistic Batch Codes. As our first application, we will focus on probabilistic batch codes
(PBCs) as introduced by Angel, Chen, Laine and Setty [ACLS18]. Unlike batch codes, PBCs are
able to err on a subset of potential queries with the goal of obtaining more efficient parameters.
To date, state-of-the-art PBCs are built from either directly adapting batch codes with zero error
or constructions whose error probabilities have only been experimentally evaluated. By adapting
our analysis of cuckoo hashing, we are able to construct a PBC with provable error probabilities
that have better parameters than all prior works. To our knowledge, our batch code either has
quadratically better rate or cubically smaller number of buckets than the best prior construction
(including non-explicit ones). We point readers to Table 3 for more details.

Before we present our constructions, we formally define the notion of PBCs. Note, we will
construct systematic or replication batch codes where each codeword must be one of the n entries
in the database.

Definition 13 (Probabilistic Batch Codes). A (n,N, q,m, t)-systematic PBC consists of the fol-
lowing four efficient algorithms:

• prms ← Init(1λ): The initialization algorithm takes the security parameter and outputs pa-
rameters.

• (C1, . . . , Cm) ← Encode(prms,DB): The encode algorithm takes a database DB of n entries
as input and outputs m buckets such that the total number of codewords is at most N . Fur-
thermore, each (Ci)j must be one of the n database entries in the set {DBi}i∈[n].

• (S1, . . . , Sm) ← Schedule(prms, Q): The schedule algorithm takes as input a query Q of q
distinct elements and outputs a schedule of the indices of each bucket to read such that each
|Si| ≤ t.

• A ← Decode(prms, Q, (C1)i∈S1 , . . . , (Cm)i∈Sm): The decode algorithm takes as input a query
Q of q distinct elements in [n] and the scheduled indices of each code and outputs the queried
database entries.
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Furthermore, the PBC has error at most ϵ if, for all database DB and queries Q of q distinct
elements, the following holds:

Pr

R ̸= (DBi)i∈Q :

prms← Init(1λ)
(C1, . . . , Cm)← Encode(prms,DB)
(S1, . . . , Sm)← Schedule(prms, Q)
R← Decode(prms, Q, (C1)i∈S1 , . . . , (Cm)i∈Sm)

 ≤ ϵ.

As a note, we only consider PBCs whose queries do not contain duplicate entries (i.e., each query
is to a unique entry). In most practical applications, the querier can handle duplicate entries in the
scheduling algorithm by removing duplicates and then duplicating them in the decode algorithm.
This assumption is not limiting in most practical applications such as PIR (see Section 7.1).

Next, we present a cuckoo hashing scheme may be used to construct PBCs with similar param-
eters. We note that a similar reduction was informally shown in [ACLS18] previously. We formally
present the reduction below.

Lemma 4. If there exists a cuckoo hashing CH(k, b, ℓ, s) for q items that has failure probability at
most ϵ, then there exists a (n, (k+ ⌈s/ℓ⌉)n, q, b+ ⌈s/ℓ⌉, ℓ)-systematic PBC for a universe U of size
n with error at most ϵ.

Proof. We convert a cuckoo hashing scheme into a PBC in the following manner. The Init algorithm
executes the Sample algorithm of cuckoo hashing to obtain hash functions H1, . . . ,Hk. The Encode
algorithm creates b + ⌈s/ℓ⌉ buckets representing the b entries and the stash. For the ⌈s/ℓ⌉ stash
buckets, all n database entries are added to each bucket using ⌈s/ℓ⌉ · n codewords. As at most s
items needs to be retrieved from the stash and we can retrieve ℓ codewords from each bucket, only
⌈s/ℓ⌉ buckets are needed. For the remaining b buckets, each of the n items in U are added to k
buckets according to H1, . . . ,Hk using kn codewords meaning N = (k + ⌈s/ℓ⌉)n.

In Schedule, the querier allocates the q elements in Q using cuckoo hashing. As a result, the
querier can determine the correct indices in each of the b + s buckets needed to decode the q
database entries. Finally, we note that the cuckoo hashing algorithm fails with probability at most
ϵ for any set of q items. Therefore, this immediately implies that Decode has error probability at
most ϵ.

As an immediate consequence of this lemma, one can immediately construct a PBC with neg-
ligible error using prior cuckoo hashing with large stash results [KMW10, ADW14, MP20]. For
example, one can obtain a (n,O(nλ), q, O(q), 1)-PBC with error 2−λ. We omit the proof as it was
already known to exist in folklore.

Using the above reduction, we can construct an efficient PBC with rate 1/O(
√
λ/ log log n)

from Theorem 1 with quadratically better rate than prior constructions with b = O(q). We point
to Table 3 for further comparisons.

Theorem 7. For all 1 ≤ q ≤ n, there exists a (n,N, q, b, ℓ)-systematic PBC with at most 2−λ error
where b = O(q), ℓ = 1 and N = O(n ·

√
λ/ log log n).

Proof. We break the construction into two different regimes for values of q. First, we consider
larger values of q = Ω(

√
λ/ log logn). For this case, we utilize the cuckoo hashing with negligible

failure of Theorem 1 for a set of q items. In particular, we use the setting of large k with b = O(q),
ℓ = 1 and s = 0. We set ϵ = 2−λ for any function to get that k = O(

√
λ/ log q) where k ≤ b. Note,
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PBC Size (N) Buckets (b) Explicit?

Subset [IKOS04] O(n) qO(1) ✓
Expander Graphs [IKOS04] O(n log n) O(q) ×
Balbuena Graphs [RSDG16] O(n) O(q3) ✓

Our Work O(n · f(λ) log λ), f(λ) = ω(1) O(q) ✓

Table 4: A comparison table of λ-robust PBC constructions with t = 1. A scheme is λ-robust if
any adversary running in probabilistic poly(λ) time can find an erring input with probability at
most negl(λ).

this requirement comes from the fact that we use k disjoint tables that is only possible when k ≤ b.
To guarantee that k ≤ b, we can also ensure that k ≤ q as b ≥ q/ℓ = q since ℓ = 1. From this, we
derive the following requirement for q:

O(
√

λ/ log q) = k ≤ q =⇒ q2 log q = Ω(λ).

Plugging in values q = Ω(
√
λ/ log log n) ensures that the inequality is true. By applying Lemma 4,

we get the PBC with the desired parameters for the setting of q = Ω(
√

λ/ log log n).
For the case of smaller q = O(

√
λ/ log log n), we can use a simple batch code of b = q bins

where each bin stores all q items. Clearly, this is a batch code with zero error while still satisfying
the desired parameters to complete the proof.

In general, we only focus on the case of t = 1 as these are the PBCs that are most useful in
applications to PIR. However, one can apply our reduction to get PBCs for larger t using cuckoo
hashing with larger ℓ.

6.2 Robust Probabilistic Batch Codes

We introduce the notion of adversarially robust PBCs that lies in between batch codes with zero
error and PBCs with negligble error. Robust PBCs guarantee that even, if there does exist an
input that would err, no PPT adversary will be able to find the erring input with non-negligible
probability. In other words, robust PBCs provide stronger guarantees compared to normal PBCs.
However, we note that batch codes with zero error are robust PBCs as no erring input exists.
We show this relaxation enables more efficient explicit constructions. We will also show later in
Section 7.2 that robust PBCs may be useful for batch PIR schemes where hash functions must be
made public.

We present robust PBC constructions from robust cuckoo hashing. Our robust PBC is the best
explicit construction with O(q) buckets. To our knowledge, all other robust PBCs come directly
from zero-error batch codes. Furthermore, the most efficient zero-error schemes from expander
graphs are non-explicit. See Table 4 for more comparison.

At a high level, the PPT adversary is given the parameters of the scheme (including the hash
functions) and the database. The goal of the adversary is to produce a subset Q that cannot be
correctly decoded by the scheme.

Definition 14 (Robust Probabilistic Batch Codes). A (n,N, q,m, t)-systematic PBC is λ-robust,
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if for any PPT adversary A, the following holds:

Pr

R ̸= (DBi)i∈Q :

prms← Init(1λ)
(DB, Q)← A(1λ, prms)
(C1, . . . , Cm)← Encode(prms,DB)
(S1, . . . , Sm)← Schedule(prms, Q)
R← Decode(prms, Q, {(Cj)j∈Si}i∈[m])

 ≤ negl(λ).

Discussion about Computational Adversaries. At first, our usage of computational adver-
saries may seem unnecessary. For proving robustness in cuckoo hashing, we consider PPT adver-
saries to limit the number of hash evaluations known to the adversary. For PBCs, this is already
limited by the query universe [n]. So, it seems like one could build a robust PBC against compu-
tationally unbounded adversaries. The difficulty lies in the random hash functions. If we leverage
explicit random hash functions that are (nk)-wise independent, we will require Ω(nk) storage that
increase the rate logarithmically for databases of single bits. Therefore, we must construct our
random hash functions using either PRFs or random oracles, which would require computational
guarantees.

For our construction, we will simply use a robust cuckoo hashing scheme and follow the exact
same approach as Lemma 4. The additional work needed is to show that one can build robust
PBCs using robust cuckoo hashing.

Theorem 8. For all 1 ≤ q ≤ n and any function f(λ) = ω(1), there exists a (n,N, q, b, ℓ)-
systematic PBC that is λ-robust where b = O(q), ℓ = 1 and N = O (n · f(λ) log λ).

Proof. We break down the analysis into two cases depending on the value of q. We start for
larger values of q = Ω(f(λ) log λ). This construction follows from using the robust cuckoo hashing
of Theorem 4. By setting ϵ = nf(λ) for any function f(λ) = ω(1), we can set k = Θ(f(λ) log λ),
b = O(q), ℓ = 1 and s = 0 to obtain a cuckoo hashing scheme that is (λ, ϵ)-strongly robust assuming
that H is a PRF. Note, ϵ = negl(λ). As our cuckoo hashing uses k disjoint tables, we must have
k ≤ b. Note that we require that k ≤ b as we use k disjoint tables in cuckoo hashing. We can
guarantee that k ≤ b by ensuring k ≤ q as b ≥ q/ℓ = q as ℓ = 1. We can derive the following
requirements for values of q:

O(f(λ) log λ) = k ≤ q =⇒ q = Ω(f(λ) log λ).

Next, we need to show that the robustness of cuckoo hashing implies the robustness of the PBC.
Suppose this PBC is not robust and a PPT adversary can find a subset Q of size q that cannot be
decoded correctly with probability strictly larger than ϵ. In other words, this means that this set
of q items cannot be constructed into a cuckoo hash table according to the current hash functions.
The same PPT adversary can also find a set of q items that causes a construction failure in the
cuckoo hashing contradicting that the scheme was robust. Therefore, we obtain the desired robust
PBC for this regime of q = Ω(f(λ) log λ).

For the case of q = O(f(λ) log λ), we use the straightforward batch code construction with zero
error where each of the b = q entries stores all q items that also achieves the desired parameters
for the regime.
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7 Private Information Retrieval

Private information retrieval (PIR) [CKGS98, CG97] is a powerful cryptographic primitive that
considers the setting where a client wishes to retrieve the i-th entry from a server hold an n-entry
database. For privacy, the server should not learn the index i that is queried by the client. In this
section, we present improved constructions of PIR utilizing our new cuckoo hashing instantiations.

7.1 Single-Query to Batch PIR Reductions

Batch PIR is an extension of standard PIR where the client wishes to perform batch queries. The
client holds a set Q ⊆ [n] of q queries and wishes to return the i-th entry for all i ∈ Q. We present
a definition of batch PIR below along with adversarial error.

IndGameηA(1
λ):

1. The challenger C runs prms← Init(1λ).

2. The adversary (DB, Q0, Q1, S) ← A(prms) on input the parameters prms and outputs
a state st, the database DB, two batch queries Q0 and Q1 and a subset S ⊆ [s] of at
most sA servers to compromise.

3. The challenge executes E ← Encode(prms,DB).

4. The challenger C executes Query(prms, Qη, E) and records transcript T1, . . . , Ts for all
s servers.

5. The challenger C sends transcripts {Tx}x∈S to the adversary A.

6. The adversary A({Tx}x∈S) outputs a bit b.

Definition 15 (Batch PIR). A q-query batch PIR scheme consists of the following three efficient
randomized algorithms:

• prms ← Init(1λ): The initialization algorithm takes the security parameter λ and outputs
parameters for the scheme.

• E ← Encode(prms,DB): The encoding algorithm is executed by the server to compute an
encoding E of the database DB.

• res ← Query(prms, Q,E): The query algorithm is jointly executed by the client and server
where the client receives the parameters and a set Q = {i1, . . . , ik} ⊆ [n] of q queries and the
server receives the parameters and the encoded database E.

The scheme has error at most ϵ if, for every database DB ∈ {0, 1}n and every query Q ⊂ [n] such
that |Q| ≤ q,

Pr[Query(prms, Q,E) ̸= {DBi}i∈Q : prms← Init(1λ), E ← Encode(prms,DB)] ≤ ϵ.

Finally, the scheme is (s, sA, δ)-secure if for all stateful PPT adversaries A that compromise sA of
the s servers and all sufficiently large databases DB,

|p0A − p1A| ≤ δ(|DB|)
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Explicit Batch PIR Computational Time Queries Error

Subset [IKOS04] O(n) qO(1) 0
Balbuena Graphs [RSDG16] O(n) O(q3) 0
Pung [AS16] 4.5n 9q 2−20∗

3-way Cuckoo Hashing [ACLS18] 3n 1.5q 2−40∗

Large Stash Cuckoo Hashing O(n · λ) O(q) 2−λ

Our Work O(n ·
√

λ/ log log n) O(q) 2−λ

Table 5: A comparison table of explicit blackbox single to batch PIR transformations. The error
probability considers queries chosen independently of the hash functions. Asterisks (*) denote
experimental error probabilities.

where pηA is defined as the probability A outputs 1 in IndGameηA.

We consider the problem of taking a PIR construction for a single-query and efficiently trans-
form it to a batch-query PIR. We note that single-query PIR definitions may be obtained from
Definition 15 by setting the number of queries q = 1. The standard way to do this is to utilize
a (probabilistic) batch code to encode the database to reduce the problem of a batch PIR query
of size q to executing q single-query PIR schemes (for example, see [IKOS04, ACLS18]). To our
knowledge, these approaches result in the most efficient blackbox transformations that do not make
any other assumptions about the single query PIR scheme.

We present an improved transformation that leverages our explicit batch codes in Theorem 7.
Using our cuckoo hashing based PBC with more hash functions, we obtain a transformation with
quadratically smaller computational overhead compared to prior works. We point readers to Table 5
for a comparison.

Theorem 9. Suppose there exists a single-query PIR scheme Π with communication c(n) and
computation O(n). Then, there exists a batch-query PIR scheme for q queries with communication
q · c(O(n

√
λ/ log log n/q + λ)) and computation O(n ·

√
λ/ log log n) with error probability at most

2−λ.

Proof. We use the standard approach of combining our PBC from Theorem 7 with any single-query
PIR scheme Π. We instantiate the PBC with parameters (n,N, q,O(q), 1) for an n-entry database
for performing a batch query to q entries where N = O(n ·

√
λ/ log logn) that has 2−λ−1 error. We

will use Π to execute a PIR query into each of the O(q) buckets to retrieve the necessary entry. As
Π uses O(n) computation, the total computation becomes O(N) = O(n ·

√
λ/ log log n).

For communication, we need to bound the size of each bucket. Recall the underlying PBC is
cuckoo hashing with k = O(

√
λ/ log logn) disjoint tables that consists of O(q/k) entries. Within

each table, we throw n balls uniformly at random into the O(q/k) entries. Therefore, the expected
size of each entry is O(nk/q). Using standard “balls-and-bins” analysis (see [MU17] for example),
we can guarantee that no entry will contain more than max{O(nk/q), O(λ)} entries except with
probability 2−λ−1. Therefore, the communication of each PIR query can be upper bounded by
c(O(nk/q + λ)) with error probability at most 2−λ to complete the proof.

Note, if we plug in any of the asymptotically optimal single-query PIR schemes with Õ(log n)
communication and O(n) communication, the resulting batch PIR for q queries has communi-
cation Õ(q log(nλ)) and computation O(n

√
λ/ log logn) that is nearly optimal except for the

Õ(
√

λ/ log logn) multiplicative factor in computation.
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Explicit Batch PIR Computational Time Queries Adversarial Error

Subset [IKOS04] O(n) qO(1) (λ, 0)
Balbuena Graphs [RSDG16] O(n) O(q3) (λ, 0)
Pung [AS16] 4.5n 9q (n, γ), γ ≥ 1/2
3-way Cuckoo Hashing [ACLS18] 3n 1.5q (n, γ), γ ≥ 1/2
Large Stash Cuckoo Hashing O(n · λ) O(q) (n, γ), γ ≥ 1/2

Our Work O(n · f(λ) log λ), f(λ) = ω(1) O(q) (λ, negl(λ))

Table 6: A comparison table of explicit re-usable batch PIR schemes where (λ, γ)-adversarial error
means an adversary running in probabilistic poly(λ) time cannot find an erring input except with
probability γ.

We note that optimal batch PIR constructions were shown by Groth, Kiayias and Lipmaa [GKL10]
by utilizing the properties of a specific single-query PIR scheme of Gentry and Ramzan [GR05] that
is not a blackbox transformation. While asymptotically optimal, more recent PIR schemes based
on lattice-based assumptions are more practically efficient (such as [ALP+21, MCR21, MW22]).
The most practical batch PIR schemes do make use of the above transformation using PBCs and
state-of-the-art lattice-based PIR constructions (for example, see [ACLS18]).

7.2 Adversarial Error for Re-usable Batch PIR

In the above batch PIR constructions and prior works [AS16, ACLS18] that utilize PBCs in-
stantiated through cuckoo hashing, the error probabilities are considered for batch queries chosen
independent of the hash functions. In practice, this means that the fresh random hash functions
are chosen for each batch query issued by the client to ensure that query indices are independent.
Unfortunately, this requires the server to constantly generate new databases for each set of hash
functions and, thus, each query perform by a client.

In an ideal setting, we would like for the server to generate a single database that could be
re-used for multiple batch PIR queries. In more detail, a set of public hash functions are sampled
once and made available to all clients that may issue batch PIR queries. The server would only
need to encode the database according the hash functions a single time. Unfortunately, this means
that a PPT adversary during the challenge phase may be able to pick two batch PIR queries
such that only one of the two batch PIR queries would fail to allocate. For example, the PPT
adversary could choose to employ any of the attacks that we outline in Theorem 5 using knowledge
of the hash functions. If the adversary’s view is different for queries that would fail to allocate
correctly, the resulting batch PIR scheme would be insecure. Therefore, prior works have accepted
that batch queries that may not be allocated will simply err and fail to return the correct answer
(see [ACLS18]). Unfortunately, this can result in very high error probability in the re-usable batch
PIR setting. In particular, we note that our lower bounds in Theorem 5 immediately imply that
there exists PPT adversaries that can find one batch PIR query that fails to allocate with probability
at least 1/2 for prior constructions using PBCs from weaker cuckoo hashing parameters.

To solve this problem, we introduce the notion of adversarial error where the PPT adversary
can aim to choose inputs that will cause query errors and/or failure to encode databases. By
using our robust PBC schemes, we can guarantee that error remain low even with databases and
batch queries chosen by a PPT adversary. In other words, we can construct re-usable batch PIR
schemes with low error rates even with adversarially chosen inputs. We point readers to Table 6
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for comparisons with prior works.

Definition 16 (Adversarial Error for Batch PIR). A batch PIR scheme has (λ, γ)-adversarial error
if for every PPT adversary A, the following holds:

Pr

E = ⊥ ∨ Query(prms, Q,E) ̸= (DBi)i∈Q :
prms← Init(1λ)
(DB, Q)← A(1λ, prms)
E ← Encode(prms,DB)

 ≤ γ.

We follow the same approach of building batch PIR using a PBC and a single query PIR.
The main difference is that we utilize a robust PBC. Given a robust PBC, if there exists a PPT
adversary that can find erring queries, the same adversary can also find subsets of items that cannot
be decoded by the robust PBC. Our approach results in the most efficient explicit construction with
negligible adversarial error for the regime of O(q) queries. The next theorem follows in a similar
way as Theorem 9 using our robust PBC from Theorem 8.

Theorem 10. Suppose there exists a single-query PIR scheme Π with communication c(n) and
computation O(n). Fix any k = ω(log λ). Then, there exists a batch-query PIR scheme for q
queries with communication q ·c(O(nk/q+λ)) and computation O(nk) with (λ, negl(λ))-adversarial
error.

Lack of Robustness for Previous Works. Using our adversarial error definition, we can
analyze prior constructions. For example, we can consider the batch PIR using a PBC based on
3-way cuckoo hashing [ACLS18]. We note that a batch query errs if we can find a subset of q items
from [n] that would fail to allocate in cuckoo hashing using the 3 sampled hash functions. We can
simply employ the attack described in Theorem 5 that directly applies. In other words, there exists
a PPT adversary A that finds an erring query with probability at least 1/2. The same attack can
also be applied to prior works using weaker hashing parameters including our construction from
Theorem 9 as well as Pung [AS16].

Discussion about Error Definition. Our definition differs slightly from standard error defi-
nitions used in most algorithms and data structures. Most non-cryptographic works consider a
statistical definition where the above probability must hold true for every set of queries Q. In our
work, we choose a computational definition where it is hard for a PPT adversary A to even find an
erring query if it exists. In general, we believe this weaker definition suffices because, in practice,
if it is difficult for a PPT adversary A to find such an erring query, it will be very unlikely for the
query to be found and executed in practical applications.

8 Conclusions

In this paper, we present new cuckoo hashing constructions that are based on a large number of
hash functions. The query complexity of our new schemes are quadratically smaller than prior
constructions based on large stashes or entries. Furthermore, we define the notion of robust cuckoo
hashing where the adversary has knowledge of the underlying hash functions. We show that we
can extend our schemes with a large number of hash functions to obtain robustness while prior
approaches cannot be extended except with linear query overhead. We also present matching lower
bounds for all parameters. Finally, we obtain state-of-the-art constructions for probabilistic batch
codes and blackbox reductions from single-query to batch PIR.
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A Cuckoo Hashing with More Entries

For completeness, we consider cuckoo hashing with more entries for small failure probability and
robustness. In general, this setting is not practically feasible as the number of entries will be much
larger than the input set. In particular, for reasonable failure and robustness parameters, the
number of entries will be super-polynomial in the input size (that is tight according to our lower
bounds).

A.1 Negligible Failure

We will consider the simple setting where k = 1 as it suffices to obtain optimal constructions for
all k ≥ 1. As we are considering the case where inputs are chosen independent of the random hash
functions, this corresponds to simply determining if a collision will occur. For small enough ϵ, our
result matches the Ω(1/ϵ) lower bound that we prove later.

Theorem 11. Let k = 1, s = 0, ℓ = 1 and b = O(n2/ϵ). If H is a (nk)-wise independent hash
function, then the cuckoo hashing scheme CH(k, b, ℓ, s) with a perfect construction algorithm has
construction failure probability at most ϵ.

Proof. The chosen parameters incur an insertion failure if and only if any two items hashed into
the same entry. This probability is upper bounded by(

n

2

)
· 1
b
≤ n2/b ≤ ϵ =⇒ b = O(n2/ϵ)

to complete the proof.

A.2 Robustness

Using a large number of entries turns out to be a straightforward case to enable robustness. We
simply add it for completeness as it will require super-polynomial in n storage that is not feasible
in most practical settings. The result below is tight as it matches the non-robust lower bounds that
we show later.

Theorem 12. For security parameter λ and error ϵ = negl(λ), let k = 1, s = 0, ℓ = 1 and
b = O(1/ϵ), then the cuckoo hashing scheme CH(k, b, ℓ, s) with a perfect construction algorithm is
(λ, ϵ)-strongly robust.
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Proof. Let U be the set of all items sent to the hash function where |U | ≤ f(λ) for all f(λ) = poly(λ).
Once again, we prove that the probability that there exists any two items amongst the poly(λ) items
sent to the hash functions by the adversary are mapped to the same entry is as follows:

Pr[∃u1 ̸= u2 ∈ U : H1(u1) = H2(u2)] ≤
(
|U |
2

)
· 1
b
≤ |U |

2

b
.

As ϵ = negl(λ) and |U | ≤ poly(λ), we can set b = O(1/ϵ) to get that the above is smaller than
ϵ.

A.3 Lower Bound

Finally, we present a lower bound that will match our two constructions above.

Theorem 13. Let k = O(1), ℓ = O(1), b ≥ n/ℓ and s = O(1). The failure probability of
CH(k, b, ℓ, s) cuckoo hashing scheme where H is a (kℓ + s + 1)-wise independent hash function
satisfies the following:

b = Ω(1/ϵ).

Proof. We can re-do the proof of Theorem 2 until we obtain the inequality

k2ℓ+ ks ≥ log(1/ϵ)/ log(b/k).

By plugging in that k = O(1), ℓ = O(1) and s = O(1), we obtain the desired result of b =
Ω(1/ϵ).

Note, if we choose typical parameters of ϵ = negl(n), this matches the b = O(n2/ϵ) upper
bounds of the prior constructions.

B Lower Bounds for Single Hash Function Settings

The lower bounds in Section 4.3 also immediately imply results in the single hash function setting
of k = 1. However, it turns out stronger lower bounds can be achieved using well-known results in
the area of balls-and-bins. It has already been proved that for b = n, the number of items assigned
to a single bin will be Ω(log n/ log logn) with probability except 1/n (for example, see Lemma 5.12
in [MU17]). We re-prove the theorem for b = α ·n for constant α > 1, but the proof techniques are
identical. Note, this justifies prior works usage of k = 2 for parameter settings with large entries
ℓ [MP20] and stashes s [KMW10].

Theorem 14. Suppose that k = 1 and b = αn for some constant α ≥ 1. If the cuckoo hashing
scheme CH(k, b, ℓ, s) has failure probability at most ϵ ≤ 1/n, then ℓ+ s = Ω(log n/ log logn).

Proof. If we can prove that t = Ω(log n/ log logn) items are hashed into the same entry with
probability at least ϵ, then we immediately complete the proof as it must be that the single entry
and stash must store all of the t allocated items implying that ℓ+ s = Ω(log n/ log log n).

We use the Poisson approximation of entry sizes where the number of items in each entry is
modelled using an independent Poisson variable with mean n/b = 1/α. We denote the event E
when there exists one bin with at least t items. We note that E is monotonically increasing in the
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number of items n. Therefore, if we bound the probability of E using the Poisson approximation,
we lose only a factor of 2 when considering the true balls-and-bins distribution using Corollary 5.11
in [MU17].

The probability that Poisson variable with mean 1/α is greater than t is at least 1/(αt · t! ·e1/α).
The probability that n independent Poisson variables are all at most t is(

1− 1

αt · t! · e1/α

)n

≤ e−n/(αt·t!·e1/α).

The above probability must be at most ϵ/2 as we lose a factor of two from the Poisson approxima-
tion. After re-arranging, it can be seen that

e−n/(αt·t!·e1/α) ≤ ϵ/2 =⇒ t log t = Ω(log n+ log log(1/ϵ)).

We note that log log(1/ϵ) = O(log log n), so we only need t log t = Ω(log n). Therefore, setting
t = Ω(log n/ log log n) suffices to complete the proof.

C Running Time of Construction Algorithms

Throughout this section, we will rely heavily on the random bipartite graphs that model cuckoo
hashing that we described in Section 3.2. We point readers back to that description for more details
on the bipartite graph and the importance of perfect left matchings.

We will consider several different construction algorithms for constructing cuckoo hashing tables.
We will describe each algorithm and then analyze the construction times.

We quickly recall the most common usage of cuckoo hashing in cryptographic primitives. Typ-
ically, one party will have an input set of items X and will construct a cuckoo hashing table based
on the set X (or an encrypted version of the set X). In particular, the construction of the cuckoo
hashing table is done locally by the party and the transcript is typically not revealed to any other
parties including the adversary. Therefore, in this section, we will consider the running time of
the construction algorithm as if it were being performed by a single party without any privacy
considerations. In that case that one is concerned about timing side channels, the construction
algorithm may be padded to execute in the worst case running time.

Given the above, our goal is to bound the time of construction algorithms where all n items are
given as input. In other words, we are going to bound the time of inserting all n items. In contrast,
most previous works considered the time to bound the insertion of a single item.

For convenience, we consider the most important setting for cuckoo hashing with a large number
of hash functions k where stashes are empty s = 0, entries may store at most one item ℓ = 1 and
the number of entries is linear in the number of items b = O(n). We will consider an arbitrary
number of hash functions where k is a sufficiently large constant.1 The analysis can be extended
to consider arbitrary stash sizes s, entry sizes ℓ and number of entries b.

Finally, we note that a lot of our analysis will rely on prior works that analyze these inser-
tion/construction algorithms for cuckoo hashing. Most prior works consider k = O(1). For exam-
ple, the bounds for breadth first search in [FPSS05] proved O(1) insertion time. However, the real
bound is O(poly(k)) that is no longer constant for super-constant k. In our work, we modify the
proofs of prior works to obtain bounds with respect to arbitrary k.

1We restrict k to be a sufficiently large constant to ensure that both random walks and BFS behave well. For
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Construction Algorithm Expected Time
Worst Case Time

with 1− negl(n) Probability
Maximum Cardinality
Bipartite Matching [Mad13]

Õ((nk)10/7) Õ((nk)10/7)

Breadth First Search [FPSS05] O(n · poly(k)) O(n1+α · k)
Breadth First Search, k = ω(log n) O(nk) O(nk)
Random Walk [FMM09, FPS13, FJ19, Wal22] O(nk) O(nk · polylog(n))
Local Search Allocation [Kho13] O(nk) O(nk · polylog(n))

Table 7: A comparison table of construction algorithms and their expected and worst case running
times. We consider the most important setting of sufficiently large k, s = 0, ℓ = 1 and b = O(n).

C.1 Maximum Cardinality Bipartite Matching

Any allocation of the items corresponds to a matching in the bipartite graph corresponding to
the cuckoo hashing scheme. Therefore, one can re-phrase the goal of cuckoo hashing allocation
as determining whether the maximum cardinality bipartite matching is as large as the number of
left vertices. Therefore, we can use any maximum cardinality bipartite matching algorithm such
as Ford and Fulkerson [FF56].The most efficient one to date is due to Madry [Mad13] that runs
in Õ(m10/7) time for graphs with m edges. In our setting, we have that m = nk to get that the
worst case running time is Õ((nk)10/7). However, we will analyze algorithms with better guarantees
below.

C.2 Breadth First Search

Description. Next, we consider breadth first search (BFS) that incrementally inserts a new item
to a current left perfect matching. A very convenient way to maintain perfect left matchings
corresponding to allocations is by using the direction of edges. All edges outside of the current
matching are directed from left vertices to right vertices (prior works have used this technique
including [FPSS05]). On the other hand, all edges in the matching are directed from right vertices
to left vertices. When adding a new item (i.e., a left vertex), the goal of inserting the item is
equivalent to finding an alternating path from the new vertex to any right vertex that is currently
unoccupied. By the orientation of the edges, this amounts to simply finding a path from the new
left vertex to any free right vertex. To obtain a construction algorithm, we can run breadth first
search for all n items to be allocated. Note, this is a perfect construction algorithm as a new item
may be inserted if and only if there exists a path to a free right vertex and BFS will always find
such a path if it exists.

Analysis. Recall that breadth first search (BFS) may be used to incrementally insert new items
into a cuckoo hash table. At a high level, BFS starts from the node corresponding to the item in
the cuckoo graph and attempts to find an augmenting path to an empty entry node.

We will build upon the proof techniques of Fotakis, Pagh, Sanders and Spirakis [FPSS05].2 At
a high level, they proved that BFS takes O(poly(k)) expected time and O(nα · k) worst case time

small k, these algorithms may behave differently. For example, random walks with k = 2 are essentially following a
fixed path.

2The paper considers cuckoo hashing with a single shared table. However, their proofs rely on vertex expansion
in the cuckoo graph that is better when considering multiple disjoint tables.
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for some constant 0 < α < 1 except with probability (2−Ω(n) + n−Ω(k)).3 We formally present the
theorem below.

Theorem 15 ([FPSS05]). Let k = ω(1), s = 0, ℓ = 1 and b = O(n). For cuckoo hashing
CH(k, b, ℓ, s) with a BFS construction algorithm where H is (nk)-wise independent, then a single
item will be inserted using a random walk in expected time O(poly(k)) and worst case time O(nα ·k)
for some constant 0 < α < 1 except with probability 1/2Ω(n) + 1/nΩ(k).

Theorem 16. Let k = ω(1), s = 0, ℓ = 1 and b = O(n). For cuckoo hashing CH(k, b, ℓ, s) with a
BFS construction algorithm where H is (nk)-wise independent, the following holds:

• The expected construction time is O(n · poly(k)).

• The worst case construction time is O(n1+α · k) except with negligible probability.

Proof. The expected time follows trivially from Theorem 15. As k = ω(1), the worst case time of
any insertion is O(nα · k) from Theorem 15 meaning the worst case time is O(n1+α · k).

To our knowledge, it remains an open problem to prove worst case bounds for BFS with high
probability that are sub-polynomial.

We note that we can prove better bounds for BFS for larger values of k = ω(log n). In particular,
we show that BFS will terminate after the first step except with negligible probability. As a result,
we can prove optimal worst case construction times of O(nk).

Theorem 17. Let k = ω(log n), s = 0, ℓ = 1 and b = O(n). For cuckoo hashing CH(k, b, ℓ, s) with
a BFS construction algorithm where H is (nk)-wise independent, the following holds:

• The expected construction time is O(nk).

• The worst case construction time is O(nk) except with negligible probability.

Proof. Consider the BFS algorithm at the first step. Assuming that b = αn for some constant
α > 1, we know that the hash table is only half full. Suppose the number of entries in the first
table is n1, the number of entries in the second table is n2 and so forth such that n1+ . . .+nk ≤ n.
The probability that the k different entries are all occupied is at most (n1/(αn/k)) · · · (nk/(αn/k))
that is maximized by setting n1 = . . . = nk = k/n to get an upper bound on the probability of
(1/α)k. As k = ω(log n) and α is a constant strictly greater than 1, the probability that the first
step of BFS fails to insert the item is negligible. As a result, we get that the worst case time to
insert a single item is O(k) except with negligible probability. This implies the expected and worst
case time (except with negligible probability) to insert n items is O(nk).

C.3 Random Walk

Description. The last insertion algorithm considers random walks. Using the same idea of find
alternating paths from BFS, we could instead try to find such a path using a random walk. In
general, random walks are considered more efficient as they require less memory usage compared
to BFS as one does not need to remember the prior paths. To do this, as the random walk visits

3The original theorem was meant to apply for all values of k ≥ 8. As a result, they could only obtain worst case
times except with 1− n−Ω(1) probability.
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entries, it will evict items from full entries and only remember that item that it will try to place
next.

The main challenge is that a random walk can, in theory, run forever without terminating even
if an alternating path exists. In the past, cuckoo hashing with random walks will bound the length
of the random walk before simply terminating and putting the item in the stash. However, this
does not work for us if we wish to obtain a perfect construction algorithm.

Instead, we can obtain a perfect construction algorithm using a different approach. In particular,
we can let the random walk algorithm execute until trying a path of length O(n). If such a path
has not yet been found, we can instead execute a BFS to find the alternating path that also has
worst case O(nk) overhead.

Worst Case Analysis. We use the results of Fountoulakis, Panagiotou and Steger [FPS13] that
consider the running time of inserting a single item using a random walk. We could also use
the results of Frieze, Melsted and Mitzenmacher [FMM09] as we ignore additional log factors and
consider larger values of k. At a high level, they show a random walk must traverse polylog(n)
nodes before finding an augmenting path.

Theorem 18 ([FPS13]). Let k ≥ 3, s = 0, ℓ = 1 and b = O(n). For cuckoo hashing CH(k, b, ℓ, s)
where H is (nk)-wise independent, then a single item will be inserted using a random walk in worst
case time O(polylog(n)) except with probability 1/n.4

Using this result, we can immediately derive the following theorem that bounds the expected
and worst case running times of random walks.

Theorem 19. Let k ≥ 3, s = 0, ℓ = 1 and b = O(n). For cuckoo hashing CH(k, b, ℓ, s) with a
random walk construction algorithm where H is (nk)-wise independent, then the worst case con-
struction time is O(nk · polylog(n)) except with negligible probability.

Proof. We note that we can consider random variables Xi = 1 if and only if the i-th item that is
inserted exceeds time O(polylog(n)). We know that Pr[Xi = 1] ≤ 1− 1/n. If we let X = X1+ . . .+
Xn, we know that Pr[X > log2 n] ≤ negl(n) by Chernoff Bounds. Therefore, the total construction
time except with negligible probability is (n−X) ·O(polylog(n)) +X ·O(nk) = O(nk · polylog(n))
as X ≤ log2 n except with negligible probability.

Expected Analysis. We note the same papers [FMM09, FPS13] that we relied upon above
proved a polylog(n) expected time bound for random walks. Instead, we can move to more recent
works [FJ19, Wal22] that proved constant bounds for the expected times of random walks. Again,
they proved bounds for constant k, but one can re-interpret their results for arbitrary k.

Theorem 20 ([Wal22]). Let k ≥ 3, s = 0, ℓ = 1 and b = O(n). For cuckoo hashing CH(k, b, ℓ, s)
with a random walk construction algorithm where H is (nk)-wise independent, then a single item
will be inserted using a random walk in expected time O(k).

By linearity of expectation, the expected construction time for random walks immediately
follows as O(nk).

4In the original paper [FPS13], the authors showed this is true except with probability 1/nα for α > 0. However,
by increasing the running time by poly-logarithmic factors, one can drive the probability down to 1/n.
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C.4 Local Search Allocation

Description. Khosla [Kho13] presented a construction algorithm for the case of k ≥ 3, ℓ = 1,
s = 0 and b = O(n). Unlike BFS and random walks, this is a construction algorithm that takes
the entire input at once and aims to create a hash table.

At a high level, each of the b entries maintains an integer label. Initially, all labels are 0.
Whenever an item is inserted, it will search amongst its k options to find the minimum label entry.
The item will be placed into that entry. Furthermore, the label of that entry is increased to be one
more than the minimum amongst the other k − 1 options for that item. If that entry was already
occupied, we repeat this algorithm by evicting the original item in the entry. This is considered
a construction algorithm as one must maintain the labels throughout the construction. If one is
content with storing all labels, it is possible to convert this algorithm into an insertion algorithm
as well.

In comparison with BFS, we note that both algorithms require linear storage. This algorithm
provides stronger expected and worst-case guarantees compared to BFS. Compared to random
walk, this algorithm requires more storage but can still provide stronger worst case guarantees.
Furthermore, experiments in the original paper [Kho13] showed that the algorithm outperforms
random walks in terms of running time.

Analysis. In the paper [Kho13], it was proven that the construction of this algorithm is O(nk)
except with 1/poly(n) probability. As a result, we can immediately get that the expected running
time is also O(nk). Similarly, it was shown that the maximum contribution to the total running
time by any vertex (i.e., the label) is at most O(log n) with 1/poly(n) probability. As a result, we
can obtain a worst case bound as well by showing that at most polylog(n) such vertices will exceed
O(log n) except with negligible probability.

C.5 Discussion about Model

In this section, we only analyze the running times for construction algorithms with the assumption
that items to be constructed are chosen independent of the hash functions. This is necessary as
a computationally unbounded adversary can find sequences that incur the worst case construction
times for random walks and BFS. In fact, such powerful adversaries can find sets of items that will
cause the construction algorithm to fail. We leave it as an open problem to analyze the running
times of construction algorithms against PPT adversaries that may adversarially choose input sets.
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