
Towards Practical Multi-key TFHE:
Parallelizable, Key-Compatible, Quasi-linear

Complexity

Hyesun Kwak, Seonhong Min, and Yongsoo Song

Seoul National University, Seoul, Republic of Korea
{hskwak,minsh,y.song}@snu.ac.kr

Abstract. Multi-key homomorphic encryption is a generalized notion
of homomorphic encryption supporting arbitrary computation on cipher-
texts, possibly encrypted under different keys. In this paper, we revisit
the work of Chen, Chillotti and Song (ASIACRYPT 2019) and present
yet another multi-key variant of the TFHE scheme.
The previous construction by Chen et al. involves a blind rotation pro-
cedure where the complexity of each iteration gradually increases as it
operates on ciphertexts under different keys. Hence, the complexity of
gate bootstrapping grows quadratically with respect to the number of
associated keys. On the other hand, our scheme is based on a new blind
rotation algorithm which consists of two separate phases. We first split a
given multi-key ciphertext into several single-key ciphertexts, take each of
them as input to the blind rotation procedure, and obtain accumulators
corresponding to individual keys. Then, we merge these single-key accu-
mulators into a single multi-key accumulator. In particular, we develop
a novel homomorphic operation between single-key RLEV and multi-key
RLWE ciphertexts to instantiate our pipeline.
Therefore, our construction achieves an almost linear time complexity
since the gate bootstrapping is dominated by the first phase of blind
rotation which requires only independent single-key operations. It also
enjoys with great advantages of parallelizability and key-compatibility.
Finally, we implement the proposed scheme and provide its performance
benchmark. For example, our experiment of 16-key gate bootstrapping
demonstrates about 5.3x speedup over prior work.

1 Introduction

Homomorphic encryption (HE) is a cryptosystem which allows us to evaluate
arbitrary functions directly on encrypted data without decryption. For example,
in a cloud environment, the user encrypts its message with its own key and send
it to the cloud. The desired computations are executed in the cloud side and fi-
nally the user receive the ciphertext that encrypts the result of the computation
without any information leakage. Due to such an attribute, it has been regarded
as one of the promising solutions to process privacy-sensitive data such as fi-
nancial or medical data. After the very first construction of HE by Gentry [14],

2 H. Kwak et al.

a variety of HE schemes have been proposed such as BFV [2, 13], GSW [15],
BGV [3], TFHE [9] and CKKS [8].

However, the conventional HE technology has an intrinsic disadvantage in
that the authority is concentrated to a single party, as it only supports operations
between data encrypted under the same secret key. Thereby, the usage of HE is
restricted to scenarios where all data owners commonly trust a party who owns
the secret key. To resolve this problem, several variants of HE with distributed
authority have been studied, such as Multi-Party HE (MPHE) [1, 21, 24] and
Multi-Key HE (MKHE) [18, 11, 22, 25, 5, 6]. The former acts like a single-key HE
by encrypting data under a jointly constructed public key and the latter supports
operations between data encrypted with different secret keys. Although MPHE
is generally more efficient in ciphertext size and computation cost, no additional
party can join the computation once the joint key is generated. On the other
hand, MKHE allows each user to independently generate its own keys and join
the computation. In this paper, we focus on the TFHE scheme [9], and its first
and the only multi-key variant by Chen, Chillotti and Song (CCS19) [5].

TFHE is a well-known homomorphic encryption based on the Learning with
Errors (LWE) [26] and Ring-LWE (RLWE) [19] problems. It allows us to perform
arbitrary binary gate operations via a costly operation called the gate bootstrap-
ping which mainly consists of three steps: linear combination, blind rotation and
key-switching. In the first step, it computes a linear combination of input LWE
ciphertexts corresponding to the gate to be evaluated. In the following blind
rotation step, it homomorphically decrypts the resulting LWE ciphertext from
the linear combination step over the exponent of a monomial using the external
product operation. By multiplying this monomial to the test polynomial with
pre-assigned coefficient and extracting the constant term, we obtain an LWE
ciphertext with ring dimension encrypting the output of the gate. Finally, the
key-switching step reduces the ciphertext dimension back to the LWE dimension.

The MK variant of TFHE follows the same pipeline although the blind ro-
tation step is realized in a multi-key manner. During the blind rotation step in
the original TFHE, it recursively evaluates the homomorphic MUX gates on the
accumulator ACC via the external product that multiplies an RGSW ciphertext
to an RLWE ciphertext. When it comes to the multi-key situation, the multipli-
cand of the external product is an MK-RLWE ciphertext whereas the multiplier
is an RGSW ciphertext generated by a single party. In CCS19 [5], the authors
designed an RGSW-like cryptosystem and a multiplication method called the
hybrid product which has the same functionality to external product with faster
speed and small noise growth. However, the time complexity of blind rotation
step from hybrid product is quadratic with respect to the number of associated
parties.

1.1 Our Contributions

In this paper, we construct an improved multi-key TFHE scheme from a novel
multi-key multiplication method called the generalized external product. We
refactored the blind rotation algorithm to perform party-wise computation with

Title Suppressed Due to Excessive Length 3

single-key multiplications and then merge them into a multi-key ciphertext. Dur-
ing the party-wise computation, we only make use of a single-key multiplication
and thus its time complexity is linear to the number of parties k. Merging the
resulting ciphertexts of each party requires O(k2) time complexity since we per-
form k multi-key multiplications, nevertheless it is relatively fast compared to
the party-wise blind rotation. Consequently, we achieve quasi-linear time com-
plexity which is dominated by the party-wise blind rotation.

However, this cannot be actualized with the existing building blocks in prior
work since they only support a multiplication between a fresh (structured) single-
key encryption and a multi-key ciphertext. Hence we instantiate our idea by
introducing a new homomorphic multiplication method called the generalized
external product. This generalized external product can be regarded as an im-
provement of the hybrid product from CCS19, but it exploits the hybrid product
as a building block. It multiplies a single-key RLEV ciphertext directly to an
MK-RLWE ciphertext, and then ‘relinearize’ the resulting ciphertext with a
quadratic key structure using the hybrid product. As a side contribution, we
improve the performance of hybrid product from the observation that we can
rearrange the order of operations and reduce the execution time in almost half.
The noise variance is slightly smaller than the original algorithm as well.

With these techniques, we finally realize the asymptotically faster MK-TFHE
scheme. In the blind rotation step, we first execute the blind rotation party-wise
with the temporary accumulators ACC′i of RLEV ciphertexts for 1 ≤ i ≤ k in a
single-key manner. Then we merge the ACC′is into a single MK-RLWE ciphertext
ACC using our generalized external product. Fig. 1.1 depicts the blind rotation
of CCS19 and our new algorithm.

We also remark that this party-wise blind rotation is parallelizable. Com-
pared to the sequential multiplications in the blind rotation from CCS19, our
algorithm can be executed party-wise in parallel and then merged sequentially.
Furthermore, the bootstrapping key in our scheme is compatible to a single-party
TFHE scheme [9] as well. Our scheme makes use of RGSW encryptions of the
LWE secret key as blind rotation key, identical to the blind rotation key for the
TFHE scheme with a single auxiliary key of the ring key. Finally, we implement
our multi-key variant of TFHE scheme and provide the basic benchmarks and
the comparison between CCS19 and ours.

1.2 Related Works

After López-Alt et al. [18] first proposed the concept of MKHE, there have
been several follow-up studies to construct multi-key HE schemes. Clear and
McGoldrick [11] constructed MKHE from GSW [15] by introducing a masking
system where a ciphertext encrypted under an individual key is converted to be
encrypted under a master secret key. Mukherjee and Wichs [22] simplified the
masking system and build a two-round MPC protocol from the MKHE scheme.
These schemes support a single-hop evaluation where participants must be de-
termined at the start. The contemporary studies Peikert and Shiehian [25] con-
structed a multi-hop scheme from GSW [15] that supports dynamic computation

4 H. Kwak et al.

Fig. 1. High-level overview of the blind rotation algorithm of MK variant of TFHE
from CCS19 and Ours.

on ciphertexts encrypted under additional keys by expanding the ciphertext to
be encrypted under the union of the original set of keys and the additional keys.

Then, there have been several studies on MK variants of batched HE schemes.
Chen, Zhang and Wang [7] built an MKHE scheme based on BGV [3] with a
compact ciphertext extension. Chen, Dai, Kim and Song [6] presented multi-key
variants of BFV [2, 13] and CKKS [8] with quadratic complexity, and it was
improved to have a linear complexity in a recent work of Kim et al. [17].

On the other hand, Brakerski and Perlman [4] presented an MK-LWE scheme
whose bootstrapping process relies on the external product. A follow-up study
by Chen, Chillotti and Song [5] improved its efficiency by introducing a hybrid
product between single-key and multi-key encryptions and constructing an MK-
variant of TFHE [9]. This is the most relevant work to ours, and its detailed
description will be given in Sec. 3.

2 Background

2.1 Notation

The real torus T = R/Z is the set of real numbers modulo 1. For a power-
of-two integer N , we write T = T[X]/(XN + 1). We denote vectors in lower-
case bold (e.g. a), and matrices in upper-case bold (e.g. A). The inner product
of two vectors a, b is denoted by ⟨a,b⟩. For a positive integer k, we write
[k] = {1, . . . , k}.

We use x ← S to denote that x is sampled uniformly from a set S. For a
real α ≥ 0, ψ′ denotes the Gaussian distribution of variance α2. When sampling

Title Suppressed Due to Excessive Length 5

a polynomial from T , we use ψ to denote a distribution over T which sam-
ples N coefficients of the output polynomial independently from the Gaussian
distribution of variance β2 for a real β ≥ 0.

2.2 LWE and RLWE assumptions

The security of TFHE relies on the torus variants of LWE and RLWE assump-
tions [9].

Definition 1 (The LWE assumption). Let n be a positive integer, α > 0 a
noise parameter, and χ′ a key distribution over Zn. An LWE instance of a secret
z ∈ Zn is a tuple (b,a) ∈ Tn+1 generated by a ← Tn, e ← ψ′ and b = − ⟨a,z⟩ + e
(mod 1). The LWE assumption states that the LWE distribution of a secret
z ← χ′ is computationally indistinguishable from the uniform distribution over
Tn+1.

Definition 2 (The RLWE assumption). Let N be a power of two, β > 0 a
noise parameter, and χ a key distribution over R. An RLWE instance of a secret
s ∈ R is a pair (b, a) ∈ T 2 generated by a ← T , e ← ψ and b = −a ⋅ s + e (mod 1).
The RLWE assumption states that the RLWE distribution of a secret s ← χ is
computationally indistinguishable from the uniform distribution over T 2.

Under these assumptions, we can define the (R)LWE cryptosystem. An LWE
ciphertext is a vector of torus elements, in a form of (b,a) ∈ Tn+1 and an RLWE
ciphertext is a tuple (b, a) ∈ T 2. Now we introduce phase, a randomized encoding
of (R)LWE ciphertexts. The phase for LWE ciphertext, φz(⋅) ∶ Tn+1 → T is
defined by φz(b,a) = b + ⟨a,z⟩ (mod 1) and the phase for RLWE ciphertext
φs(⋅) ∶ T 2 → T is defined by φs(b, a) = b + a ⋅ s (mod 1). We remark that the
phase preserves the linear combinations between the (R)LWE ciphertexts.

2.3 Gadget Decomposition

A gadget decomposition is a map h ∶ T → Zd with a gadget vector g ∈ Td that
satisfies ∥h(a)∥∞ ≤ δ and ∣ ⟨h(a),g⟩ − a∣ ≤ ε for some small constants ε, δ >
0. It is a widely used technique to manage noise growth in HE schemes. The
digit decomposition is an example of gadget decomposition corresponding to the
gadget vector g = [B−1, . . . ,B−d] ∈ Td, defined by h(a) = (a1, . . . , ad) where ai is
the ith-digit of a in base B. We can also balance the output h(a) by decomposing
a by a = ∑d

p=1 ai ⋅B−p where ai ∈ (−B/2,B/2], which minimizes the decomposition
error ∣ ⟨h(a),g⟩ − a∣.

The definition of a gadget decomposition is naturally extended to T as h ∶
T → Rd by identifying an element of T to the vector of its coefficients in TN . In
TFHE [9], the digit decomposition is used for an element in T and the balanced
version for T .

6 H. Kwak et al.

2.4 RLEV and RGSW

In this section, we describe the RLEV [10] and RGSW [15] encryptions, and
multiplication operations between ciphertexts of different types. For a gadget
decomposition h ∶ T → Rd corresponding to a gadget vector g ∈ Td, we define
encryption algorithms as follows:

● RLEV.Enc(s;µ): Given a secret key s and a message µ ∈ R, sample a← T d and

e← ψd. return C← [−s ⋅ a + e + µ ⋅ g (mod 1),a] ∈ T d×2.

● RGSW.Enc(s;µ): Sample a ← T 2d and e ← ψ2d. Given a secret key s and a

message µ ∈ R, return C← [−s ⋅ a + e,a] + µ ⋅ [g 0
0 g
] (mod 1) ∈ T 2d×2.

We also define the phase of an RLEV encryptionC = (b,a) ∈ T d×2 by φs(C) =
b + s ⋅ a (mod 1). Note that an RLEV encryption C ← RLEV.Enc(s;µ) satisfies
that φs(C) ≈ µ ⋅ g (mod 1).

Now we define three homomorphic multiplications between RLWE, RLEV
and RGSW ciphertexts. For convenience, we generalize the definition of gad-
get decomposition to RLWE and RLEV ciphertexts by decomposing individual
entries in T . For example, we write h(c) = (h(c0), h(c1)) ∈ R2d for an RLWE

ciphertext c = (c0, c1) ∈ T 2, and h(C) =
⎡⎢⎢⎢⎢⎢⎣

h(c0,0) h(c0,1)
⋮

h(cd−1,0) h(cd−1,1)

⎤⎥⎥⎥⎥⎥⎦
∈ Rd×2d for an

RLEV ciphertext C =
⎡⎢⎢⎢⎢⎢⎣

c0,0 c0,1
⋮

cd−1,0 cd−1,1

⎤⎥⎥⎥⎥⎥⎦
∈ T d×2.

Definition 3 (T -RLEV multiplication). Let C ∈ T d×2 be an RLEV cipher-
text and c ∈ T be a torus polynomial. We define the T -RLEV multiplication
⊙ ∶ T × T d×2 → T 2 as c⊙C = h(c) ⋅C (mod 1).

If C is an RLWE encryption of µ under s, then the T -RLWE multiplication
outputs an RLWE ciphertext whose phase is

φs(c⊙C) = ⟨h(c), φs(C)⟩ ≈ ⟨h(c), µ ⋅ g⟩ ≈ µ ⋅ c (mod 1).

Definition 4 (RLWE-RGSW multiplication). Let c ∈ T 2 be an RLWE ci-
phertext and C ∈ T 2d×2 be an RGSW ciphertext. We define the RLWE-RGSW
multiplication ⊗ ∶ T 2 × T 2d×2 → T 2 as c⊗C = h(c) ⋅C (mod 1).

Definition 5 (RLEV-RGSW multiplication). Let C ∈ T d×2 be an RLEV
ciphertext and C ∈ T 2d×2 be an RGSW ciphertext. The RLEV-RGSW multipli-
cation ⍟ ∶ T d×2 × T 2d×2 → T d×2 is defined as C⍟C = h(C) ⋅C (mod 1).

IfC is RGSW encryption of µ under s, then the RLWE-RGSWmultiplication
outputs an RLWE ciphertext whose phase is

φs(c⊗C) = ⟨h(c), φs(C)⟩ ≈ ⟨h(c), µ ⋅ (g, s ⋅ g)⟩ ≈ µ ⋅ φs(c) (mod 1).

Title Suppressed Due to Excessive Length 7

The RLWE-RGSW multiplication is also called the external product [9]. Simi-
larly, the RLWE-RGSWmultiplication outputs an RLEV ciphertext whose phase
is

φs(C⍟C) = h(C) ⋅ φs(C) ≈ ⟨h(C), µ ⋅ (g, s ⋅ g)⟩ ≈ µ ⋅ φs(C) (mod 1).

3 Overview of Chen et al. (2019)

In 2016, Chillotti et al. [9] designed TFHE, which is a fully homomorphic encryp-
tion scheme based on the LWE and RLWE assumptions. The TFHE scheme can
encrypt a single bit in each LWE ciphertext, and evaluate an arbitrary binary
gate homomorphically using the “gate bootstrapping”. The basic idea of TFHE
bootstrapping is to homomorphically compute the phase of an LWE ciphertext
on the exponent of a ring polynomial and extract the pre-assigned coefficient.

The gate bootstrapping of TFHE consists of three steps: linear combination,
blind rotation and key-switching. Let z = (z0, . . . zn−1) be the LWE secret. For
given LWE ciphertexts ct1 and ct2 such that φz(cti) ≈ 1

4
mi (mod 1), the lin-

ear combination step computes an LWE ciphertext ct such that φz(ct) ≈ 1
2
m

(mod 1) where m is the resulting bit of a binary operation between m1 and
m2. In the next step, the ciphertext ct is scaled by 2N and converted into
(b̃, ã = (ã0, . . . , ãn−1)) such that b̃ + ⟨ã,z⟩ ≈ N ⋅m (mod 2N). The blind rotation

algorithm initializes an “accumulator” as a trivial RLWE encryption (v ⋅X b̃,0),
where v is a fixed torus polynomial called the test vector, and then multiplies
X ãizi recursively for 0 ≤ i < n using the external product to obtain an encryp-

tion of v ⋅X b̃+∑n−1
i=0 ãizi . The test vector v has pre-assigned coefficients so that we

can extract an LWE ciphertext that is decryptable by the RLWE key into the
constant term of the message polynomial of the output accumulator. Finally,
the key-switching procedure is used to produce an LWE encryption of the same
message under z.

In 2019, Chen, Chillotti and Song [5] presented the first MK variant of TFHE
(which we will refer to as CCS19 throughout the paper). Its gate bootstrapping
follows a similar pipeline but uses MK variants of LWE and RLWE. The main
challenge was to re-design the blind rotation algorithm in an MK manner which
requires substitution of the external product. To resolve the issue, the authors
introduced a variant of RGSW (called “uni-encryption”), together with a dyadic
operation (called “hybrid product”) for multiplying a uni-encryption to an MK-
RLWE ciphertext. In this section, we give a brief overview of CCS19.

3.1 Uni-encryption and Hybrid Product

We first present basic setup and key generation algorithms, then describe uni-
encryption and hybrid product. Uni-encryption is an RGSW-like single-key struc-
tured encryption scheme, while the hybrid product is a binary operation that
takes its input as a pair of uni-encryption and MK-RLWE encryption and re-
turns an MK-RLWE ciphertext. In general, an MK-RLWE ciphertext is in the

8 H. Kwak et al.

form of ct = (c0, . . . , ck) ∈ T k+1 with an index set {1, . . . , k} of the associated
parties. An MK-RLWE ciphertext corresponds to the concatenated secret key
s = (s1, . . . , sk), and its phase is defined as φs(ct) = c0+ c1s1+ ⋅ ⋅ ⋅ + cksk (mod 1).

● CCS.Setup(1λ): Given the security parameter λ, return the following parame-
ters:

– An LWE dimension n, a key distribution χ′ over Zn, an error parameter
α > 0.

– A base B′ and a degree d′ to set a gadget vector g′ = [B′−1, . . . ,B−d′] and a

gadget decomposition h′ ∶ T→ Zd′ for LWE.

– An RLWE dimension N , a key distribution χ over R = Z[X]/(XN + 1), and
an error parameter β > 0.

– A base B and a degree d to set a gadget vector g = [B−1, . . . ,B−d] and a
gadget decomposition h ∶ T → Rd for ring-based schemes.

– A CRS a← T d.

We set the LWE error distribution ψ′ as a Gaussian distribution over R of
variance α2, and the RLWE error distribution ψ as a distribution over T which
samples N coefficients independently from a Gaussian distribution of variance
β2.

● CCS.KeyGen(i): A party i generates its secret and public keys as follows:

– Sample an LWE secret key zi = (zi,0, . . . , zi,n−1)← χ′.
– Sample an RLWE secret key si = si,0 + si,1X + ⋯ + si,N−1XN−1 ← χ and an

error e ← ψd. Compute bi = −si ⋅ a + e (mod 1) and set the public key as
pki = bi.

For simplicity, we write s0 = 1 and b0 = −a.

● CCS.UniEnc(si;µ): A party i samples ri ← χ, fi,1 ← T d, and e1,e2 ← ψd. Given

a plaintext µ ∈ R and a secret si, return di = ri ⋅ a + µ ⋅ g + e1 (mod 1) and
Fi = [fi,0∣fi,1] where fi,0 = −si ⋅ fi,1 + ri ⋅ g + e2 (mod 1).

● CCS.HbProd({bj}j∈[k]; ct, (di,Fi)): Given an MK-RLWE ciphertext ct = (c0, . . . , ck) ∈
T k+1, a uni-encryption (di,Fi) of party i and the public keys {bj}j∈[k] of the
parties associated with ct, compute and output an MK-RLWE ciphertext ct

′
as

follows:

1. For 0 ≤ j ≤ k, let

uj = ⟨h(cj),di⟩ ,
vj = ⟨h(cj),bj⟩ ,

wj,0 = ⟨h(vj), fi,0⟩ ,
wj,1 = ⟨h(vj), fi,1⟩ .

Title Suppressed Due to Excessive Length 9

2. Output ct
′ = (c′0, . . . , c′k) ∈ T k+1 where

c′j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 +
k

∑
j=0

wj,0 (mod 1) if j = 0,

ui +
k

∑
j=0

wj,1 (mod 1) if j = i,

uj otherwise;

We explain the correctness of the hybrid product below. We refer the reader
to [5] for detailed analysis. Suppose that ct is an MK-RLWE ciphertext and
(di,Fi) is a uni-encryption of µ ∈ R of party i, and let ct

′
be the resulting

MK-RLWE ciphertext of the hybrid product algorithm. Then, we have

φs(ct′) ≈
k

∑
j=0
⟨h(cj), ri ⋅ a + µ ⋅ g⟩ ⋅ sj +

k

∑
j=0
⟨h(vj), ri ⋅ g⟩ (mod 1)

≈ µ ⋅ φs(ct) +
k

∑
j=0
⟨h(cj),a ⋅ sj⟩ ⋅ ri +

k

∑
j=0
⟨h(cj),bj⟩ ⋅ ri (mod 1)

≈ µ ⋅ φs(ct) (mod 1).

In other words, the phase of ct is multiplied by µ with a small noise.

3.2 Gate Bootstrapping

We now describe the gate bootstrapping of CCS19 which is based on the uni-
encryption and hybrid product algorithms. It requires additional generations of
blind rotation and key-switching keys.

● CCS.BootKeyGen(i): Each party i generates and publishes a blind rotation key
brki and a key-switching key kski as follows:

– Generate brki,j = (di,j ,Fi,j) ← CCS.UniEnc(si; zi,j) for 0 ≤ j < n. Set the
blind rotation key as brki = {brki,j}0≤j<n.

– Let (s∗i,0, . . . , s∗i,N−1) = (si,0,−si,N−1, . . . ,−si,1). Sample Ai,j ← Td′×n and

ei,j ← ψ′d
′

for 0 ≤ j < N , and let kski,j = [bi,j ∣Ai,j] where bi,j = −Ai,j ⋅ zi +
ei,j + s∗i,j ⋅ g′ (mod 1). Set the key-switching key as kski = {kski,j}0≤j<N .

● CCS.Enc(zi;m): A party i samples ai ← Tn and e ← ψ′. Given a message

bit m ∈ {0,1} and its secret key zi, return the ciphertext ct = (bi,ai) where
bi = − ⟨ai,zi⟩ + 1

4
m + e (mod 1).

A fresh encryption of CCS19 returns a usual (single-key) LWE ciphertext,
but an MK-LWE ciphertext is generally written as a vector of the form ct =
(b,a1, . . . ,ak) ∈ Tkn+1 where k denotes the number of associated parties. It
can be decrypted using the concatenated key z = (z1, . . . ,zk) of k parties,

10 H. Kwak et al.

Algorithm 1 Blind Rotation of CCS [5]

Input: ct = (b,a1, . . . ,ak),{(pki,brki)}i∈[k]
Output: ACC
1: Let b̃ ∶= ⌊2Nb⌉, ãi,j ∶= ⌊2Nai,j⌉ for 1 ≤ i ≤ k, 0 ≤ j < n
2: and v ∶= − 1

8
⋅ (1 +X +⋯ +XN/2−1 −XN/2 −⋯ −XN−1).

3: ACC← (v ⋅X b̃,0, . . . ,0)
4: for 1 ≤ i ≤ k do
5: for 0 ≤ j < n do
6: ACC← ACC + HbProd({pkℓ}ℓ∈[k]; (X ãi,j − 1) ⋅ACC,brki,j)
7: end for
8: end for

i.e., φz(ct) = b+∑k
i=1 ⟨ai,zi⟩ ≈ 1

4
m (mod 1). In the encryption phase, each party

locally encrypts its message without knowing any information about other par-
ties. The ciphertexts are extended before evaluation to be encrypted under the
concatenated secret key of associated parties.

● CCS.Dec({zi}i∈[k]; ct): Given a ciphertext ct ∈ Tkn+1 and secret keys {zi}i∈[k],
return the bit m ∈ {0,1} which minimizes ∣b +∑i∈[k] ⟨ai,zi⟩ − 1

4
m∣.

● CCS.HomNAND({(pki,brki, kski)}i∈[k]; ct1, ct2): Given two ciphertexts ct1, ct2 and

key-triple {(pki,brki, kski)}i∈[k] of associated parties, perform the following steps:

1. Compute ct← (5
8
,0, . . . ,0) − ct1 − ct2 (mod 1).

2. Compute ct ← CCS.BlindRotate({(pki,brki)}i∈[k]; ct) using the blind rota-
tion algorithm (Alg. 1).

3. Compute ct ← (1
8
,0, . . . ,0) + ct (mod 1) and return ct = (b,a1, . . . ,ak) ∈

TkN+1 where b is the constant term of ct0 and ai is the coefficient vector of
cti for i ∈ [k].

4. Perform the key-switching process: Compute (b′i,a′i) = ∑N−1
j=0 h′(ai,j) ⋅ kski,j

(mod 1) for i ∈ [k] and b′ = b +∑i∈[k] b′i. Return ct′ = (b′,a′1, . . . ,a′k) ∈ Tkn+1.

4 Accelerating Multi-key TFHE

In this section, we present a new MK variant of the TFHE scheme. Our scheme
is asymptotically faster than CCS19, and its bootstrapping procedure is paral-
lelizable. In addition, its key structure is almost compatible with the original
TFHE, but we only need to publish a small number of auxiliary keys. At the
heart of our construction, we design a generalized external product to re-design
the blind rotation algorithm.

Recall that the blind rotation algorithm (Alg. 1) of CCS19 takes nk hybrid
products to homomorphically multiply X ãi,jzi,j to the accumulator. The hybrid
product operates on multi-key ciphertext to have a linear complexity with respect

Title Suppressed Due to Excessive Length 11

to the number of parties, which consequently incurs quadratic complexity in
total.

In our scheme, we minimize the cost of operations on MK ciphertexts and
exploit single-key multiplication to reduce the overall complexity. This is based
on our observation that an encryption of X⟨ãi,zi⟩ for each 1 ≤ i ≤ k can be ob-
tained in a ‘single-key’ manner since the secret zi = (zi,0, . . . , zi,n−1) is related
solely to party i. However, this approach cannot be achieved by known tech-
niques in CCS19 since the hybrid product can only multiply a fresh single-key
uni-encryption. To realize our framework, we introduce a novel homomorphic
operation called the generalized external product, which enables us to multiply a
single-key RLEV ciphertext to MK-RLWE accumulator. This operation does not
require an input RLEV ciphertext to have a special structure like uni-encryption,
so can be generally used for operation between possibly noisy ciphertexts.

Before we describe the overall scheme in Sec. 4.3, we first introduce our
improved hybrid product in Sef. 4.1 as a building block, and then the external
product in Sec. 4.2.

4.1 Improved Hybrid Product

We present an improved hybrid product that enjoys better performance in terms
of speed and noise growth. In the correctness proof of hybrid product in CCS19,
we have

k

∑
j=0
(wj,0 +wj,1si) =

k

∑
j=1
⟨h(vj), fi,0 + si ⋅ fi,1⟩

≈
k

∑
j=1
⟨h(vj), ri ⋅ g⟩ ≈ ri ⋅

k

∑
j=0

vj (mod 1).

We observe that since

k

∑
j=1
⟨h(vj), fi,0 + si ⋅ fi,1⟩ ≈ ⟨h(

k

∑
j=1

vj), fi,0 + si ⋅ fi,1⟩ ,

the computation of h(vj) for 1 ≤ j ≤ k can be replaced by a single decomposition

h(∑k
j=1 vj). We provide a formal description of the new hybrid product operation

below.

● NewHbProd({bj}j∈[k]; ct, (di,Fi)): Given an MK-RLWE ciphertext ct = (c0, . . . , ck) ∈
T k+1, a uni-encryption (di,Fi) of party i and the public keys {bj}j∈[k] of parties
associated with ct, return an MK-RLWE ciphertext ct

′
as follows:

1. Compute

uj = ⟨h(cj),di⟩ (0 ≤ j ≤ k)

v =
k

∑
j=0
⟨h(cj),bj⟩

12 H. Kwak et al.

2. Output ct
′ = (c′0, . . . , c′k) ∈ T k+1 where

c′j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u0 + ⟨h(v), fi,0⟩ (mod 1) if j = 0,
ui + ⟨h(v), fi,1⟩ (mod 1) if j = i,
uj otherwise;

Correctness. Let ct = (c0, . . . , ck) be an MK-RLWE encryption and (di,Fi) be
a uni-encryption of µ of party i. The output ct

′ = (c′0, . . . , c′k) satisfies that

φs(ct′) =
k

∑
j=0
⟨h(cj),di⟩ ⋅ sj + ⟨h(v), fi,0⟩ + ⟨h(v), fi,1⟩ ⋅ si

≈
k

∑
j=0
⟨h(cj), ri ⋅ a + µ ⋅ g⟩ ⋅ sj + ⟨h(v), fi,0 + si ⋅ fi,1⟩

≈ µ ⋅ φs(ct) + ri ⋅
k

∑
j=0
⟨h(cj), sj ⋅ a⟩ + ri ⋅

k

∑
j=0
⟨h(cj),bj⟩

≈ µ ⋅ φs(ct) (mod 1).

Performance. We estimate the number of ⟨h(⋅), ⋅⟩, say gadget product, to ana-
lyze the time complexity. The hybrid product of CCS19 requires 4(k+1) gadget
products to compute uj , vj , wj,0, and wj,1 for 0 ≤ j ≤ k. Meanwhile, our algorithm
takes only 2k + 4 gadget products in total.

Noise growth.As we compute ⟨h(v), fi,0⟩ and ⟨h(v), fi,1⟩ for v = ∑k
j=0 ⟨h(cj),bj⟩

where it previously computed ∑k
j=0 ⟨h(vj), fi,0⟩ and ∑k

j=0 ⟨h(vj), fi,1⟩, the error
introduced in this part has reduced by a factor of k + 1. Nevertheless, the differ-
ence is negligibly small and thus the two hybrid product algorithms show similar
error variance. We refer the reader to Sec. 5.2 for thorough noise analysis.

4.2 Generalized External Product

We introduce a new multiplication operation that multiplies an arbitrary single-
key RLEV ciphertext to an MK-RLWE ciphertext. To understand the underlying
idea, we first recall the external product: given an RLWE ciphertext c and an
RGSW encryption C of µ under the secret t, c⊗C outputs an RLWE ciphertext
with φt(c ⊗C) ≈ µ ⋅ φt(c) = φt(µ ⋅ c). Our key observation is that the external
product can be comprehended as multiplying the message µ homomorphically
to each component of c.

Now let us ‘generalize’ the external product to the multi-key setting. Suppose
that we are given an MK-RLWE ciphertext ct = (c0, . . . , ck) under the concate-
nated key s = (1, s1, . . . , sk) and a single-key RLEV encryption C of µ under
another key ti of party i. Inspired by the external product, we aim to multiply µ
to ct homomorphically. This goal can be achieved by executing (k + 1) T -RLEV
multiplications: cj ⊙C for 0 ≤ j ≤ k. However, the resulting ciphertext is not de-
cryptable by s, but it is encrypted under the tensor product of two keys, namely

Title Suppressed Due to Excessive Length 13

(1, t)⊗s = (s, t ⋅s). To change the secret key back to s, we exploit the relineariza-
tion technique, which is used in a variety of HE schemes such as [2, 13, 3, 8]. Let
i-th party publish a relinearization key, a uni-encryption of t under the key si.
Then we can obtain an MK-RLWE ciphertext ct

′
with φs(ct′) ≈ µ⋅φs(ct) by mul-

tiplying t homomorphically to the corresponding components to t ⋅s with hybrid
product and adding it to the rest of the components. The concise correctness
check and the exact algorithm are given below.

● ExtProd({bj}j∈[k], rlki; ct,Ci): Given an MK-RLWE ciphertext ct = (c0, . . . , ck) ∈
T k+1, the public keys {bj}j∈[k] of parties associated with ct, an RLEV cipher-

text Ci ∈ T d×2 and the relinearization key rlki of party i ∈ [k], it returns an
MK-RLWE ciphertext ct

′
as follows:

1. Compute (xj , yj) ← cj ⊙ Ci for 0 ≤ j ≤ k. Let x = (x0, . . . , xk) and y =
(y0, . . . , yk)

2. Compute ct
′ ← NewHbProd({bj}j∈[k];y, rlki) + x and return ct

′
.

Correctness. Suppose that ct = (c0, c1 . . . , ck) is a MK-RLWE ciphertext under
the secret s = (s1,⋯, sk) and Ci is an RLEV encryption of µ under the secret ti.
Now, 0 ≤ j ≤ k, (xj , yj) = cj⊙Ci satisfies xj ⋅ti+yj ≈ µ ⋅cj . Let ct′ = (c′0, . . . , c′k)←
NewHbProd({bj}j∈[k];y, rlki) + x where rlki = UniEnc(si; ti). Then we have

φs(ct′) ≈
k

∑
j=0

xjsj + ti ⋅
k

∑
j=0

yjsj

=
k

∑
j=0
(xj + tiyj) ⋅ sj ≈ µ ⋅

k

∑
j=0

cjsj = µ ⋅ φs(ct) (mod 1)

where s0 = 1. Note that this algorithm is exact for any RGSW ciphertext C as
well, by replacing cj ⊙Ci to (0, cj)⊗C.

General-Purpose Utility. We remark that this generalized external product
is a general-purpose multiplication in that it multiplies a commonly used single-
key ciphertext to a multi-key ciphertext. Compared to the previous (R)GSW-like
MKHEs [11, 22, 4, 25] which construct multiplications on multi-key ciphertexts,
CCS19 [5] and our scheme introduces multiplications, hybrid product and exter-
nal product, between single-key and multi-key ciphertexts. These multiplications
enable better performance in both time and memory. However, the hybrid prod-
uct requires fresh uni-encryption of a multiplicand. For example, if one wants
to evaluate arbitrary operations between uni-encryptions from the same party
before they are multiplied to an MK ciphertext, they should be expanded to
an MK-RGSW ciphertext and then evaluated via MK-RGSW operations. We
refer to method 1 from CCS19 for more information. In contrast, our general-
ized external product enables us to perform arbitrary operations as a single-key
ciphertext and then multiply the resulting RLEV or RGSW ciphertext to a
multi-key ciphertext at any time, with the relinearization key generated once in
the key generation phase.

14 H. Kwak et al.

Performance. In the first step of the external product, it executes k + 1 T -
RLEV multiplications, which takes 2(k + 1) gadget products in total. Then in
the second step, the new hybrid product consumes 2k + 4 gadget products as
explained in Sec. 4.1. To sum up, the external product requires 4k + 6 gadget
products.

Noise Growth. The error variance of our external product will be discussed in
Sec. 5.2.

4.3 Our Scheme

In this section, we combine all building blocks to construct yet another MK-
variant of TFHE. Similar to CCS19, our scheme shares the same blueprint for
gate bootstrapping as TFHE. However, the major difference is that our blind
rotation algorithm has a different structure consisting of two distinguished phases
involving single-key and multi-key computation, respectively.

More precisely, the first phase of our blind rotation aims to perform blind
rotation party-wise with the accumulator staying as a single-key ciphertext.
In other words, we compute X⟨ãi,zi⟩(1 ≤ i ≤ k) simultaneously. Compared to
TFHE [9] or CCS19 [5], the accumulator should be in a form of an RLEV ci-
phertext for the sake of further computation in the next step. In the second
phase of blind rotation, we merge k accumulators, which are single-key RLEV

encryptions of X⟨ãi,zi⟩ under si, into a trivial MK-RLWE ciphertext of v ⋅X b̃

under k secrets s1, . . . , sk. This is achieved by using the generalized external
product introduced in the previous section.

Below we provide a formal description of our MK-TFHE scheme. We remark
that its setup, basic key generation and ciphertext structure are the same as
CCS19.

● Setup(1λ): Given the security parameter λ, return the following parameters:

– An LWE dimension n, a key distribution χ′ over Zn, an error parameter
α > 0.

– A base B′ and a degree d′ to set a gadget vector g′ = [B′−1, . . . ,B−d′] and a

gadget decomposition h′ ∶ T→ Zd′ for LWE.
– An RLWE dimension N , a key distribution χ over R = Z[X]/(XN + 1), and

an error parameter β > 0.
– A base B and a degree d to set a gadget vector g = [B−1, . . . ,B−d] and a

gadget decomposition h ∶ T → Rd for ring-based schemes.
– A CRS a← T d.

● KeyGen(i): A party i generates its secret and public keys as follows.

– Sample an LWE secret key zi = (zi,0, . . . , zi,n−1)← χ′.
– Sample an RLWE secret key si = si,0 + si,1X + ⋯ + si,N−1XN−1 ← χ and an

error e ← ψd. Compute bi = −si ⋅ a + e (mod 1) and set the public key as
pki = bi.

Title Suppressed Due to Excessive Length 15

● BootKeyGen(i): A party i generates and publishes a blind rotation key brki, a
relinearization key rlki and a key-switching key kski as follows.

– Sample ti ← χ and generate brki,j ← RGSW.Enc(ti; zi,j) for 0 ≤ j < n. Set the
blind rotation key brki = {brki,j}0≤j<n.

– Generate the relinearization key rlki ← CCS.UniEnc(si; ti).
– Let (s∗i,0, . . . , s∗i,N−1) = (si,0,−si,N−1, . . . ,−si,1). Sample Ai,j ← Td′×n and

ei,j ← ψ′d
′

for 0 ≤ j < N , and let kski,j = [bi,j ∣Ai,j] where bi,j = −Ai,j ⋅ zi +
ei,j + s∗i,j ⋅ g′. Set the key-switching key kski = {kski,j}0≤j<N .

● Enc(zi;m): A party i samples ai ← Tn and e ← ψ′. Given a message bit

m ∈ {0,1} and its secret key zi, return the ciphertext ct = (bi,ai) where bi =
− ⟨ai,zi⟩ + 1

4
m + e (mod 1).

● Dec({zi}i∈[k]; ct): Given a ciphertext ct ∈ Tkn+1 and secret keys {zi}i∈[k], return
the bit m ∈ {0,1} which minimizes ∣b +∑i∈[k] ⟨ai,zi⟩ − 1

4
m∣.

● HomNAND({(pki,brki, rlki, kski)}i∈[k]; ct1, ct2): Given two ciphertexts ct1, ct2 and

key-quadruple {(pki,brki, rlki, kski)}i∈[k] of associated parties, perform the fol-
lowing steps:

1. Compute ct← (5
8
,0, . . . ,0) − ct1 − ct2 (mod 1).

2. Compute ct← BlindRotate({(pki,brki, rlki)}i∈[k]; ct) where BlindRotate(⋅)
is the blind rotation algorithm in Alg. 2.

3. Compute ct ← (1
8
,0, . . . ,0) + ct (mod 1) and return ct = (b,a1, . . . ,ak) ∈

TkN+1 where b is the constant term of ct0 and ai is the coefficient vector of
cti for i ∈ [k].

4. Perform the key-switching process: Compute (b′i,a′i) = ∑N−1
j=0 h′(ai,j) ⋅ kski,j

(mod 1) for i ∈ [k] and b′ = b +∑i∈[k] b′i. Return ct′ = (b′,a′1, . . . ,a′k) ∈ Tkn+1.

Security. In the bootstrapping key generation, each party publishes the blind
rotation key brki encrypting the elements of zi under ti, the relinearization key
rlki encrypting ti under si, and key-switching key kski encrypting the coefficients
of si under zi. As the previous TFHE [9] and multi-key TFHE [5] schemes, we
require a circular security assumption along with the (R)LWE assumption to
have our scheme semantically secure.

Correctness. We show that the output ACC of our blind rotation in Alg. 2 is an

MK-RLWE encryption of v ⋅X b̃+∑k
i=1⟨ãi,zi⟩ under s = (s1, . . . , sk) ∈ T k. Initially,

ACC is an MK-RLWE encryption of v ⋅X b̃ under s (line 3). In the i-th iteration
of the first loop, it computes ACC′i which is an RLEV encryption of X⟨ãi,zi⟩ (line
5-8). In line 5, ACC′i is initialized to a trivial RLEV encryption of 1 ∈ T . Then for
0 ≤ j < n (line 6-8), ACC′ is updated by ACC′i + [(X ãi,j − 1) ⋅ACC′i]⍟brki,j . Since
brki,j is the RGSW encryption of zi,j , it implies that ACC′i is multiplied by X ãi,j

if zi,j = 1, or else (zi,j = 0), stays the same. As a result, we get k different ACC′i(1 ≤
i ≤ k) encrypting X⟨ãi,zi⟩ under ti. Finally, in the i-th iteration of the second

16 H. Kwak et al.

Algorithm 2 New Blind Rotation

Input: ct = (b,a1, . . . ,ak),{(pki,brki, rlki)}i∈[k]
Output: ACC
1: Let b̃ ∶= ⌊2Nb⌉, ãi,j ∶= ⌊2Nai,j⌉ for 1 ≤ i ≤ k, 0 ≤ j < n
2: and v ∶= − 1

8
⋅ (1 +X +⋯ +XN/2−1 −XN/2 −⋯ −XN−1).

3: ACC← (v ⋅X b̃,0, . . . ,0)
4: for 1 ≤ i ≤ k do
5: ACC′i ← (g,0) ∈ T d×2

6: for 0 ≤ j < n do
7: ACC′i ← ACC′i + [(X ãi,j − 1) ⋅ACC′i]⍟ brki,j
8: end for
9: end for

10: for 1 ≤ i ≤ k do
11: ACC← ExtProd({pkℓ}ℓ∈[k], rlki;ACC,ACC′i)
12: end for

loop (line 10-12), ACC is homomorphically multiplied by X⟨ãi,zi⟩ with external

product. Consequently, ACC is an MK-RLWE encryption of v ⋅ X b̃+∑k
i=1⟨ãi,zi⟩

under s.

Our new scheme provides an asymptotically faster NAND algorithm as we
perform single-key, parallelizable operations in the first phase by which the time
complexity is dominated. Furthermore, the bootstrapping keys are almost com-
patible with the single-key TFHE [9], which allows to perform multi-key eval-
uation from the original (single-key) TFHE scheme with a small number of
auxiliary keys. We describe the advantages in detail below.

– Performance. As will be analyzed in Sec. 5.1, our blind rotation algorithm
Alg. 2 requires O(nkd+ k2) gadget decompositions, while the blind rotation
algorithm Alg. 1 of CCS19 requires O(nk2). In typical settings, n is much
bigger than k, therefore the time complexity of our algorithm is quasi-linear
to the number of parties.

– Parallelization. Our blind rotation generates k different single-key RLEV
encryptions ACC′i of X

⟨ãi,zi⟩ and then merge them into a single MK-RLWE
ciphertext ACC by the generalized external product. Since ACC′is are in-
dependently generated, we can evaluate them in parallel. However, merging
the RLEV ciphertext cannot be parallelized since they should be sequentially
multiplied, thus the time complexity of the parallelized algorithm becomes
O(nd + k2).

– Key Compatibility. Recall that our scheme generates three bootstrap-
ping keys: the blind rotation key brki, the relinearization rlki and the key-
switching key kski. We note that the blind rotation key and the key-switching
key is identical to the single-key TFHE [9]. Thus, the single-key TFHE
scheme can be easily expanded to the multi-key scheme with each party
generating a key rlki = UniEnc(si; ti)(1 ≤ i ≤ k).

Title Suppressed Due to Excessive Length 17

On the other hand, it consumes two levels (one for each phase) so that the noise
blows up to an extent which cannot be handled in the ring dimension N = 1024
used in CCS19. We use a larger ring dimension N = 2048 in spite of performance
degradation, but still, it is negligible as the number of parties increases.

4.4 Using Different Gadget Decompositions

So far we have used the same gadget decomposition h for elements in T , but in
fact, different gadgets can be applied for different encryptions in our scheme. Let
hlev and huni be two different gadget decompositions corresponding to gadget
vectors glev and guni, respectively. In the external product, for example, we can
use hlev in T -RLEV multiplication (step 1) and use huni in the hybrid product
(step 2). More precisely, let the input RLEV ciphertext C of µ under a secret s
involve the gadget vector glev i.e., C = (b = −s ⋅ a + e + µ ⋅ glev (mod 1),a), and
compute the T -RLEV multiplication as

c⊙C = (⟨hlev(c),b⟩ , ⟨hlev(c),a⟩) (mod 1)

for c ∈ T . Then it satisfies that

ϕs(c⊙C) = ⟨hlev(c),b⟩ + ⟨hlev(c),a⟩ ⋅ s ≈ ⟨hlev(c), µ ⋅ glev⟩ ≈ µ ⋅ c (mod 1).

In a similar argument, we can compute the hybrid product using the decompo-
sition huni when the uni-encryption as input involves guni.

In the rest of the paper, we use different gadget decompositions for RGSW,
RLEV ciphertexts and uni-encryption respectively, each of which contains the
corresponding gadget vector. We write {gsw, lev, uni} by subscript to distinguish
the gadget decompositions, i.e., hgsw is the gadget decomposition corresponding
to the gadget vector ggsw of dimension dgsw. The scheme using different gadget
decompositions is provided in Appendix A.

5 Performance Analysis

5.1 Time and Space Complexity

We remark that the hybrid product of CCS19 and our novel hybrid product
require 4(k + 1) and 2k + 4 uni-gadget products, respectively. Furthermore, the
external product performs k + 1 T -RLEV multiplications and one novel hybrid
product to require 2(k + 1) lev-gadget and 2k + 4 uni-gadget products. As the
previous blind rotation in Alg. 1 performs nk hybrid products of CCS19, it takes
4nk(k + 1) uni-gadget products. In our novel blind rotation Alg. 2, it performs
nk RLEV-RGSW multiplications and k external products to have 2nkdlev gsw-
gadget, 2k(k+1) lev-gadget, and k(2k+4) uni-gadget decompositions. Since the
gadget decomposition takes by a factor of its degree, we have the complexity of
about O(nkdlevdgsw + k2dlev + k2duni). As the time complexity almost depends
on dlevdgsw, we minimize dlevdgsw when setting parameters in Sec. 6.

18 H. Kwak et al.

In the blind rotation, previous algorithm Alg. 1 takes the blind rotation keys
brki for 1 ≤ i ≤ k as input where brki consists of n uni-encryptions. However,
our algorithm Alg. 2 takes the blind rotation keys brki and the relinearization
keys rlki for 1 ≤ i ≤ k, where brki consists of n RGSW encryptions and rlki is a
uni-encryption. Since a uni-encryption is in T d×3 and an RGSW encryption is
in T 2d×2, the size of the key used in our blind rotation is about 4

3
times bigger

than the previous one.
We remark that the blind rotation key size of our scheme can be reduced using

key-compression methods for the TFHE scheme. For example, we can halve the
size of the blind rotation key using the key compression method proposed by
Kim et al. [16]. Or, we can replace the RGSW keys with uni-encryptions since
the hybrid product is exact for a single party as well. However, there is a trade-
off between the size of the key and the execution time for key-compression tricks
in general.

5.2 Noise Growth

In this section, we provide an average-case noise analysis of homomorphic op-
erations and analyze the noise growth from our gate bootstrapping procedure.
We focus on the new blind rotation algorithm since other algorithms such as
key-switching have been studied already in CCS19.

We start from introducing several assumptions and terminologies which we
use in our analysis.

– For an RLEV encryption C of µ under secret s, the error of C is defined as
Err(C) = φs(C) − µ ⋅ glev ∈ T dlev .

– For an RGSW encryption C of µ under secret s, the error of C is defined as

Err(C) = φs(C) − µ ⋅ [
g 0
0 g
] ∈ T 2dgsw .

– In our scheme, all entries of the error vector of an RLEV (RGSW) ciphertext
have the same variance. Therefore, we use VarErr(⋅) to denote the common
variance of error components.

– For the gadget decomposition h with the gadget base B (a power-of-two)
and the degree d, we define ϵ2 = 1/(12B2d), the variance of uniform dis-
tribution over (− 1

2
B−d, 1

2
B−d], and V = 1

12
(B2 + 2), the mean square of a

uniform distribution over ZB = Z ∩ (−B/2,B/2]. We use {gsw, lev, uni} as
subscript to distinguish the variance and the mean square of specific gadget
decompostions, e.g., we write ϵgsw, Vgsw for the gadget decomposition hgsw.

– We assume that each component of an RLWE, RLEV, or RGSW ciphertext
behaves as if it is a uniform random variable on T . Hence, the entries of the
gadget decompositions are uniformly distributed over the set of polynomials
of coefficients in ZB .

We provide the lemmas, corollaries and theorem on the error of the operations
and algorithms used in CCS19 and our scheme. The proofs for the following
lemmas, corollaries and theorem are given in Appendix B.

Title Suppressed Due to Excessive Length 19

Lemma 1 (T -RLEV Multiplication). Let c be a torus polynomial and C be
an RLEV encryption of µ under secret s. Then c← c⊙C is an RLWE ciphertext
such that φs(c) = µ ⋅ c + e (mod 1) for some error e ∈ R whose variance is

Var(e) = ∥µ∥22ϵ2lev + dlevNVlevVarErr(C).

Lemma 2 (RLWE-RGSW Multiplication). Let c be an RLWE ciphertext
and C an RGSW encryption of µ under secret s. Then c′ ← c⊗C is an RLWE
ciphertext such that φs(c′) = µ ⋅ φs(c) + e (mod 1) for some error e ∈ R whose
variance is

Var(e) = (1 +N/2)∥µ∥22ϵ2gsw + 2dgswNVgswVarErr(C).

Corollary 1 (RLEV-RGSW Multiplication). Let C be an RLEV ciphertext
and C be an RGSW encryption of µ under secret s. Then C′ ← C ⍟C is an

RLEV ciphertext with φs(C′) = µ ⋅ φs(C) + e for some error e =
⎡⎢⎢⎢⎢⎢⎣

e1
⋮

edlev

⎤⎥⎥⎥⎥⎥⎦
∈ T dlev

with

Var(ei) = (1 +N/2)∥µ∥22ϵ2gsw + 2dgswNVgswVarErr(C)(1 ≤ i ≤ dlev).

We provide a noise analysis on the hybrid product and blind rotation algo-
rithms in CCS19.

Lemma 3 (Hybrid Product). Let ct be an MK-RLWE ciphertext and (di,Fi)
be a uni-encryption of µ of party i. Then ct

′ ← HbProd({bj}j∈[k]; ct, (di,Fi)) is
an MK-RLWE ciphertext such that φs(ct′) = µ ⋅ φs(ct) + e (mod 1) for some
error e ∈ R with

Var(e) ≈ k
2
∥µ∥22N2ϵ2uni + kduniN2Vuniβ

2.

Corollary 2 (Blind Rotation of CCS19). Let ACC be the resulting MK-

RLWE ciphertext from the blind rotate algorithm 1. Then φs(ACC) =X∑
k
i=1⟨ãi,zi⟩+b̃⋅

v + e (mod 1) for some error e ∈ T with

Var(e) ≈ k(k + 1)
8

nN2(ϵ2uni + 4duniVuniβ2).

Now, we provide a noise analysis of our new hybrid product and generalized
external product and the blind rotation.

Lemma 4 (New Hybrid Product). Let ct be an MK-RLWE ciphertext and
(di,Fi) be a uni-encryption of µ of party i. Then ct

′ ← NewHbProd({bj}j∈[k]; ct, (di,Fi))
is an MK-RLWE ciphertext such that φs(ct′) = µ ⋅ φs(ct) + e (mod 1) for some
error e ∈ R with

Var(e) ≈ k
2
∥µ∥22N2ϵ2uni + kduniN2Vuniβ

2.

20 H. Kwak et al.

Lemma 5 (Generalized External Product). Let ct be an MK-RLWE ci-
phertext, Ci be a single-key RLEV encryption of µ under secret key t and rlki =
(di,Fi) be a uni-encryption of t of party i. Then ct

′ ← ExtProd({bj}j∈[k], rlki; ct,Ci)
is an MK-RLWE ciphertext such that φs(ct′) = µ ⋅ φs(ct) + e (mod 1) for some
error e ∈ T with

Var(e) ≈ (1+kN/2) [∥µ∥22ϵ2lev + dlevNVlevVarErr(Ci)]+
k

4
N3ϵ2uni+kduniN2Vuniβ

2.

Theorem 1 (Our Blind Rotation). Let ACC be the resulting MK-RLWE ci-

phertext from our new blind rotation algorithm [2]. Then φs(ACC) =X∑
k
i=1⟨ãi,zi⟩+b̃⋅

v + e (mod 1) for some error e ∈ T with

Var(e) ≈ k(k + 1)
8

[2dlevnN3Vlev ⋅ (2dgswVgswβ2 + ϵ2gsw) +N3ϵ2uni + 4duniN2Vuniβ
2] .

6 Implementation

We provide a proof-of-concept of our MK-TFHE scheme and the previous
work [5]. Note that in the implementation of CCS19, the underpinning algorithms
for the original TFHE [9] such as external product are optimized, however the
algorithms for the multi-key variant are not fully optimized. Since our algorithm
exploits the algorithms from original TFHE, we implemented our scheme and
CCS19 based on the TFHE implementation written in Julia [23] for a fair com-
parison. All experiments were performed on a machine with Intel(R) Xeon(R)
Platinum 8268 @ 2.90GHz CPU and 192GB RAM running Ubuntu 20.04.2 LTS.
Our source code is available at https://github.com/SNUPrivacy/MKTFHE.

Table 1 and Table 2 describe candidate parameter sets for our MK-TFHE
scheme and CCS19, respectively. They achieve at least 110-bit of security level
according to LWE-estimator [20] with the same LWE parameters in both schemes.
However, we use different RLWE parameters as our scheme introduces high noise
variance due to an additional level consumption in the generalized external prod-
uct, which is intolerable by the conventional ring dimension N = 1024 and the
standard deviation 3.72 ⋅ 10−9 of TFHE. Using a larger ring dimension N = 2048
in our scheme, we then have smaller β = 4.63 ⋅ 10−18 and accordingly implement
high-precision torus arithmetic (64-bit). The five parameters sets from I to V in
Table 1 supports up to 2, 4, 8, 16, and 32 parties. In Table 2, the first three pa-
rameter sets I′, II′, and III′ of CCS19 are the same sets introduced in the original
paper [5] that support at most 2, 4, and 8 parties, respectively. To compare the
performance under more parties, we additionally use the parameter set IV′ to
evaluate the scheme on 16 parties, but could not find an appropriate parameter
set that handles 32 parties in ring dimension N = 1024 of CCS19.

We make use of a well-known optimization technique with space-time tradeoff
used in [12, 9]. In the key-switching key generation step of party i, we publish
LWE encryptions of b ⋅ s∗i,j ⋅ g′ for 0 ≤ j < n and b ∈ Z ∩ (−B′/2,B′/2], instead
of s∗i,j ⋅ g′. With this technique, we do not need to perform any multiplication
during the key-switching phase with B′ − 1 times bigger key-switching key size.

Title Suppressed Due to Excessive Length 21

Set
LWE RLWE RGSW RLEV UniEnc

n α B′ d′ N β B d B d B d

I

560 3.05 ⋅ 10−5 22 8 2048 4.63 ⋅ 10−18

213 3 27
2

210 3

II 28 5 28 26 7

III 211 4
26

3
24

8

IV 29 5 9

V 28 6 27 22 16
Table 1. Recommended parameter settings for our scheme. n, α and N, β denote the
dimension and the standard deviations for LWE and RLWE ciphertexts, respectively.
Bksk and dksk are the gadget decomposition parameter for key-switching key.

As mentioned in Section 5.1, we aim to minimize dgsw ⋅dlev with smallest error
variance possible. Let us recall the error analysis of our blind rotation given in
Section 5.

k(k + 1)
8

[2dlevnN3Vlev ⋅ (2dgswVgswβ2 + ϵ2gsw) +N3ϵ2uni + 4duniN2Vuniβ
2]

We note that the effect of the uni-encryption on both the noise variance and
the performance of the blind rotation is almost negligible, therefore we mainly
focus on the parameters of RGSW and RLEV ciphertexts. As the error variance
is dominated by dlevVlev(dgswVgswβ2 + ϵ2gsw), it follows that the gadget base
and the gadget length of both RGSW and RLEV ciphertexts affect the final
noise variance. However, the decomposition error of RLEV ciphertexts has little
influence whereas that of RGSW ciphertexts has a great influence on the final
noise. Based on this observation, our strategy to find the suitable parameter
set is to set dlev ⋅ dgsw first, and then set the gadget base of RGSW ciphertexts
according to dgsw with small decomposition noise, followed by setting the gadget
base of RLEV ciphertexts with regard to other parameters. Although the effect of
the parameters for uni-encryptions are almost negligible to the time complexity,
the final error variance, and even the space complexity, we chose the parameter
achieving the least space complexity.

Set
LWE RLWE UniEnc

n α B′ d′ N β B d

I′

560 3.05 ⋅ 10−5 22 8 1024 3.72 ⋅ 10−9
29 3

II′ 28 4

III′ 26 5

IV′ 22 12
Table 2. Recommended parameter settings for CCS19 scheme.

22 H. Kwak et al.

We describe the performance of our scheme and of CCS19 in Table 3. Our
scheme is slower when the number of parties is small due to a larger ring dimen-
sion N = 2048. However, our algorithmic improvements overwhelm its disadvan-
tage and outperform the previous scheme. Finally, our experiments verify that
the running time of our NAND algorithm is almost linear with the number of
parties as expected, compared to quadratic growth of CCS19 (see Fig. 2). We
also estimate the execution time in Table 3.

Ours CCS19

Set brk ksk k NAND Parallelized Set brk ksk k NAND

I 106MB 109MB 2 0.72s 0.50s* I′ 40MB 55MB 2 0.52s

II 177MB 109MB
2 1.11s 0.79s*

II′ 53MB 55MB
2 0.74s

4 2.70s 0.79s* 4 2.50s

III 142MB 109MB

2 1.26s 0.93s*

III′ 66MB 55MB

2 0.88s

4 3.21s 0.95s* 4 3.05s

8 6.92s 1.01s* 8 11.14s

IV 177MB 109MB

2 1.46s 1.02s*

IV′ 159MB 55MB

2 1.92s

4 3.72s 1.02s* 4 6.79s

8 7.66s 1.05s* 8 22.96s

16 16.57s 1.16s* 16 87.29s

V 213MB 109MB

2 1.68s 1.20s*

- - - - -

4 4.23s 1.21s*

8 9.08s 1.25s*

16 19.65s 1.42s*

32 39.54s 2.09s*
Table 3. The memory consumed by keys and the elapsed time of NAND algorithms
in our scheme and the CCS19 scheme. (*: estimated time)

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction via
threshold fhe. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 483–501. Springer (2012)

2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: Annual Cryptology Conference. pp. 868–886. Springer (2012)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

Title Suppressed Due to Excessive Length 23

Fig. 2. The time elapsed in NAND algorithms of ours and CCS19 in the parameter set
IV and set IV′, repectively.

4. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key fhe with short ci-
phertexts. In: Annual International Cryptology Conference. pp. 190–213. Springer
(2016)

5. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from tfhe.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 446–472. Springer (2019)

6. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 395–412 (2019)

7. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from Ring-LWE
with compact ciphertext extension. In: Theory of Cryptography Conference. pp.
597–627. Springer (2017)

8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security. pp. 409–437. Springer (2017)

9. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: international conference
on the theory and application of cryptology and information security. pp. 3–33.
Springer (2016)

10. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for tfhe. In: International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 670–699. Springer (2021)

11. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning
with errors. In: Annual Cryptology Conference. pp. 630–656. Springer (2015)

24 H. Kwak et al.

12. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 617–640. Springer (2015)

13. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

15. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Annual
Cryptology Conference. pp. 75–92. Springer (2013)

16. Kim, A., Deryabin, M., Eom, J., Choi, R., Lee, Y., Ghang, W., Yoo, D.: Gen-
eral bootstrapping approach for rlwe-based homomorphic encryption. Cryptology
ePrint Archive (2021)

17. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically faster multi-key
homomorphic encryption from homomorphic gadget decomposition. Cryptology
ePrint Archive (2022)

18. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In: Proceedings of
the forty-fourth annual ACM symposium on Theory of computing. pp. 1219–1234
(2012)

19. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. Journal of the ACM (JACM) 60(6), 1–35 (2013)

20. malb: lattice-estimator. https://github.com/malb/lattice-estimator (2022)
21. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty ho-

momorphic encryption from ring-learning-with-errors. Proceedings on Privacy En-
hancing Technologies 2021(4), 291–311 (2021)

22. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key fhe. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 735–763. Springer (2016)

23. nucypher: Tfhe.jl. https://github.com/nucypher/TFHE.jl (2020)
24. Park, J.: Homomorphic encryption for multiple users with less communications.

IEEE Access 9, 135915–135926 (2021)
25. Peikert, C., Shiehian, S.: Multi-key fhe from lwe, revisited. In: Theory of cryptog-

raphy conference. pp. 217–238. Springer (2016)
26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

A Multi-key TFHE Variant using Different Gadget
Decompositions

We provide the algorithms of our new MK-TFHE scheme with different gadget
decompositions. The encryption and decryption algorithms are the same as given
in Sec. 4.3.

● Setup(1λ): Given the security parameter λ, return the following parameters:

– An LWE dimension n, a key distribution χ′ over Zn, and an error variance
α > 0.

Title Suppressed Due to Excessive Length 25

– An RLWE dimension N , a key distribution χ over R = Z[X]/(XN + 1), and
an error variance β > 0.

– A CRS a← T duni .

– 4 pairs of gadget decompositions and gadget vectors.

● A gadget decomposition hksk of key-switching key and the corresponding
gadget vector gksk with base Bksk and degree dksk.

● A gadget decomposition hgsw of RGSW encryption and the correspond-
ing gadget vector ggsw with base Bgsw and degree dgsw.

● A gadget decomposition hlev of RLEV encryption and the corresponding
gadget vector glev with base Blev and degree dlev.

● A gadget decomposition huni of uni-encryption and the corresponding
gadget vector guni with base Buni and degree duni.

● KeyGen(i): A party i generates its secret and public keys as follows.

– Sample LWE secret key zi = (zi,0, . . . , zi,n−1)← χ.

– Sample RLWE secret key si = si,0 + si,1X + ⋯ + si,N−1XN−1 ← χ′ and error
e← ψduni . Compute bi = −si ⋅a+e (mod 1) and set the public key as pki = bi.

● BootKeyGen(i): A party i generates and publishes a blind rotation key brki, a
relinearization key rlki and a key-switching key kski as follows.

– Sample ti ← χ′ and generate brki,j ← RGSW.Enchgsw(ti; zi,j) for 0 ≤ j < n. Set
the blind rotation key brki = {brki,j}0≤j<n.

– Generate the relinearization key rlki ← UniEnchuni(si; ti).
– Let (s∗i,0, . . . , s∗i,N−1) = (si,0,−si,N−1, . . . ,−si,1). Sample Ai,j ← Tdksk×n and

ei,j ← ψ′dksk for 0 ≤ j < N , and let kski,j = [bi,j ∣Ai,j] where bi,j = −Ai,j ⋅ si +
ei,j + s∗i,j ⋅ gksk. Set the key-switching key kski = {kski,j}0<N .

● HomNAND({(pki,brki, rlki, kski)}i∈[k]; ct1, ct2): Given two LWE ciphertexts ct1,

ct2 and key-quadruple {(pki,brki, rlki, kski)}i∈[k] of associated parties, perform
the following steps:

1. Compute ct← (5
8
,0, . . . ,0) − ct1 − ct2 (mod 1).

2. Compute ct← BlindRotate({(pki,brki, rlki)}i∈[k]; ct) where BlindRotate(⋅)
is the blind rotation algorithm in Alg. 3.

3. Compute ct ← (1
8
,0, . . . ,0) + ct (mod 1) and return ct = (b,a1, . . . ,ak) ∈

TkN+1 where b is the constant term of ct0 and ai is the coefficient vector of
cti for i ∈ [k].

4. Perform the key-switching process: Compute (b′i,a′i) = ∑N−1
j=0 h′(ai,j) ⋅ kski,j

(mod 1) for i ∈ [k] and b′ = b +∑i∈[k] b′i. Return ct′ = (b′,a′1, . . . ,a′k) ∈ Tkn+1.

26 H. Kwak et al.

Algorithm 3 New Blind Rotation using Different Gadget Decompositions

Input: ct = (b,a1, . . . ,ak),{(pki,brki, rlki)}i∈[k]
Output: ACC
1: Let b̃ ∶= ⌊2Nb⌉, ãi,j ∶= ⌊2Nai,j⌉ for 1 ≤ i ≤ k, 0 ≤ j < n
2: and v ∶= − 1

8
⋅ (1 +X +⋯ +XN/2−1 −XN/2 −⋯ −XN−1).

3: ACC← (v ⋅X b̃,0, . . . ,0)
4: for 1 ≤ i ≤ k do
5: ACC′i ← (glev,0)
6: for 0 ≤ j < n do
7: ACC′i ← ACC′i + [(X ãi,j − 1) ⋅ACC′i]⍟hlev

brki,j
8: end for
9: end for

10: for 1 ≤ i ≤ k do
11: ACC← ExtProdhlev,huni({pkℓ}ℓ∈[k], rlki;ACC,ACC′i)
12: end for

B Proofs for the Noise Analysis

First we define GdErrgsw, GdErrlev and GdErruni, the gadget decomposition error
of hgsw, hlev and huni respectively.
Proof of Lemma 1 (T -RLEV Multiplication)

Proof. By definition, we have

φs(c⊙C) = ⟨hlev(c), φs(C)⟩
= ⟨hlev(c), µ ⋅ glev + Err(C)⟩
= µ ⋅ c + µ ⋅GdErrlev(c) + ⟨hlev(c),Err(C)⟩ (mod 1).

Therefore e = µ ⋅ GdErrlev(c) + ⟨hlev(c),Err(C)⟩. Since hlev(c) and err(C) are
vectors of length dlev, we get

Var(e) = ∥µ∥22ϵ2lev + dlevNVlevVarErr(C)

⊓⊔
Proof of Lemma 2 (RLWE-RGSW Multiplication)

Proof. Let c = (b, a) and Err(C) = [e0
e1
] where e0,e1 ∈ T dgsw . Then we can obtain

φs(c⊗C) = ⟨hgsw(c), φs(C)⟩
= ⟨hgsw(b), µ ⋅ ggsw + e0⟩ + ⟨hgsw(a), µ ⋅ s ⋅ ggsw + e1⟩
= µ ⋅ φs(c) + µ ⋅ (GdErrgsw(b) +GdErrgsw(a)s) + ⟨hgsw(c),Err(C)⟩ (mod 1).

Therefore, we can get the following error variance.

Var(e) = (1 +N/2)∥µ∥22ϵ2gsw + 2dgswNVgswVarErr(C).

⊓⊔

Title Suppressed Due to Excessive Length 27

Proof of Corollary 1 (RLEV-RGSW Multiplication)

Proof. An RLEV ciphertext can be seen as a column vector of RLWE cipher-
texts. Therefore, this corollary can be shown directly from the previous lemma.

⊓⊔
For efficiency, we prove Lemma 4 first, and then prove Lemma 3.

Proof of Lemma 4 (New Hybrid Product)

Proof. We shall use e0 = 0 and the same temporary variables as in the algorithm
description for the easier notation. Let u = (u0, . . . , uk) and w = (w0,w1). Then
we have φs(ct′) = φs(u) + φsi(w) (mod 1). The first term is

φs(u) =
k

∑
j=0
⟨huni(cj), r ⋅ a + µ ⋅ guni + ei,1⟩ ⋅ sj

= µ ⋅ φs(ct) + µ ⋅
k

∑
j=0

GdErruni(cj) ⋅ sj + r ⋅
k

∑
j=0
⟨huni(cj), sj ⋅ a⟩

+
k

∑
j=0
⟨huni(cj),ei,1⟩ ⋅ sj (mod 1),

and the second term is

φsi(w) = ⟨huni(v),Fi,0⟩ + ⟨huni(v),Fi,1⟩ ⋅ si
= ⟨huni(v), r ⋅ guni + ei,2⟩
= r ⋅ v + r ⋅GdErruni(v) + ⟨huni(v),ei,2⟩ (mod 1).

Now, from the fact that

v +
k

∑
j=0
⟨huni(cj), sj ⋅ a⟩ =

k

∑
j=0
(⟨huni(cj),bj⟩ + ⟨huni(cj), sj ⋅ a⟩)

=
k

∑
j=1
⟨huni(cj),ej⟩ (mod 1),

it follows that e = φs(ct′) − µ ⋅ φs(ct) is

µ ⋅
k

∑
j=0

GdErruni(cj) ⋅ sj +
k

∑
j=0
⟨huni(cj),ei,1⟩ ⋅ sj+

r⋅GdErruni(v) + ⟨huni(v),ei,2⟩ + r ⋅
k

∑
j=1
⟨huni(cj),ej⟩ .

Therefore, we have

Var(e) = ∥µ∥22(1 + kN/2)Nϵ2uni + (1 + kN/2)duniNVuniβ2

+ (N/2)ϵ2uni + duniNVuniβ2 + kduni(N2/2)Vuniβ2

≈ k
2
∥µ∥22N2ϵ2uni + kduniN2Vuniβ

2.

⊓⊔

28 H. Kwak et al.

Proof of Lemma 3 (Hybrid Product)

Proof. The only difference of the error variance of HbProd to the error variance
NewHbProd is the error from wj,0 and wj,1’s, which is k + 1 times bigger than
NewHbProd. Therefore, we get the error variance of

Var(e) = ∥µ∥22(1 + kN/2)Nϵ2uni + (1 + kN/2)duniNVuniβ2

+ (k + 1)(N/2)ϵ2uni + (k + 1)duniNVuniβ2 + kduni(N2/2)Vuniβ2

≈ k
2
∥µ∥22N2ϵ2uni + kduniN2Vuniβ

2.

⊓⊔

Proof of Corollary 2 (Blind Rotation of CCS19)

Proof. We first analyze the line 6. Let ci,j = HbProd({pkj}j∈[k], (X ãi,j − 1) ⋅
ACC,BKi,j) and ei,j be the error solely from the HbProd. Then,

φs(ACC + ci,j) = φs(ACC) + φs((X ãi,j − 1) ⋅ACC) + ei,j
= φs(X ãi,jzi,j ⋅ACC) + ei,j (mod 1).

Note that during the i-th iteration, ACC should be regarded as a multi-key RLWE
ciphertext with i parties since i + 1, . . . , k-th indices remains zero. Therefore,

Var(ei,j) ≈
i

2
∥zi,j∥22N2ϵ2uni + iduniN2Vuniβ

2

= i
4
N2ϵ2uni + iduniN2Vuniβ

2

Since X ãi,jzi,j is a monomial, the variance adds up every iteration in the inner
loop (line 5-7) and therefore an error variance of i

4
nN2ϵ2uni + iduninN2Vuniβ

2 is
added for every iteration in the outer loop (line 4-8). Therefore we get the error
variace of

k(k + 1)
8

nN2(ϵ2uni + 4duniVuniβ2).
⊓⊔

Proof of Lemma 5 (Generalized External Product)

Proof. Let us follow the notations from the algorithm description. First, by
Lemma 1 we obtain

φs(x + y ⋅ t) =
k

∑
j=0
(xj + yj ⋅ t) ⋅ sj

=
k

∑
j=0

φt(cj ⊙Ci) ⋅ sj

= µ ⋅ φs(ct) +
k

∑
j=0

ej ⋅ sj (mod 1).

Title Suppressed Due to Excessive Length 29

where ej = φt(cj ⊙Ci) − µ ⋅ cj(0 ≤ j ≤ k) (mod 1) ∈ T with variance

Var(ej) = ∥µ∥22ϵ2lev + dlevNVlevVarErr(Ci).

Let y′ = NewHbProd({bj}j∈[k], ct, rlki). By Lemma 4, φs(y′) = t ⋅ φs(y) + e′
for some e′ ∈ T with variance

Var(e′) ≈ k
2
Var(∥t∥22)N2ϵ2uni + kduniN2Vuniβ

2

= k
4
N3ϵ2uni + kduniN2Vuniβ

2.

Therefore, we get

φs(ct′) = φs(x) + φs(y′)
= φs(x) + φs(y) ⋅ t + e′

= µ ⋅ φs(ct) +
k

∑
j=0

ej ⋅ sj + e′ (mod 1).

Therefore the variance of error e = ∑k
j=0 ej ⋅ sj + e′ be

Var(e) ≈(1 + kN/2) [∥µ∥22ϵ2lev + dlevNVlevVarErr(Ci)]

+ k
4
N3ϵ2uni + kduniN2Vuniβ

2.

⊓⊔

Proof of Theorem 1 (Our Blind Rotation)

Proof. We start from analyzing line 7 of the algorithm. By Corollary 1,

φti(ACC′i+ [(X ãi,j − 1) ⋅ACC′i]⍟BKi,j)
= φti(ACC′i) + φti([(X ãi,j − 1) ⋅ACC′i]⍟BKi,j)
= φti(X ãi,jzi,j ⋅ACC′i) + ei,j (mod 1)

for some ei,j ∈ T dlev with the common variance of rows (1 +N/2)∥µzi,j∥22ϵ2gsw +
2dgswNVgswVarErr(BKi,j). Therefore, with each iteration within the for loop 6-
8, the error variance increases by VACC = (1 +N)ϵ2gsw + 2dgswNVgswβ2. Hence,

the error variance of the resulting RLEV ciphertext ACC′i of the for loop is
n ⋅ ((1 +N)ϵ2gsw + 2dgswNVgswβ2) with message X∑

n
j=1 ãi,jzi,j .

Note that only 0, . . . , i-th indices of the MK-RLWE ciphertext ACC are non-
zero after the i− th iteration of the for loop 4-10, hence it can be regarded as an
MK-RLWE encryption of i parties. Now we let ACCi be ACC after the ExtProd,
then by the Lemma 5, we have

φs(ACCi) =X⟨ãi,zi⟩ ⋅ φs(ACCi−1) + ei(1 ≤ i ≤ k)

30 H. Kwak et al.

where

Var(ei) ≈ (1 + iN/2) [ϵ2lev + dlevNVlevVACC] +
i

4
N3ϵ2uni + iduniN2Vuniβ

2.

Since X ãi,zi is a monomial, the error variance adds up every iteration and
thus the error variance of the final output of our new blind rotation algorithm is

k(k + 1)
8

[2dlevnN3Vlev ⋅ (2dgswVgswβ2 + ϵ2gsw) +N3ϵ2uni + 4duniN2Vuniβ
2] .

⊓⊔

