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Abstract—At the early stage of the design process, many se-
curity vulnerability assessment solutions require fast and precise
extraction of the finite state machines (FSMs) present in the
register-transfer level (RTL) description of the design. FSMs
should be accurately extracted for watermark insertion, fault
injection assessment of control paths in a system-on-chip (SoC),
information leakage assessment, control-flow reverse engineering
in RTL abstraction, logic obfuscation, etc. However, it is quite
unfortunate that, as of today, existing state-of-the-art synthesis
tools cannot provide accurate and reliable extraction of all FSMs
from the provided high-level RTL code. Precise identification
of all FSM state registers and the pure combinational state
transition logic described in the RTL code with numerous
registers and other combinational logic makes it quite challenging
to develop such a solution. In this paper, we propose a framework
named RTL-FSMx to extract FSMs from high-level RTL codes
written in Verilog HDL. RTL-FSMx utilizes node-based analysis
on the abstract syntax tree (AST) representation of the RTL
code to isolate FSM state registers from other registers. RTL-
FSMx automatically extracts state transition graphs (STGs)
for each of the detected FSM state registers and additional
information of the extracted FSMs. Experimental results on a
large number of benchmark circuits demonstrate that RTL-
FSMx accurately recovers all control FSMs from RTL codes
with various complexity and size within just a few seconds.

Index Terms—Register Transfer Level, FSM Extraction, HDL
Code Analysis, Security Assessment, FSM Automata Theory

I. INTRODUCTION

Today, it is impossible to build modern System-on-Chips
(SoCs) from scratch due to their complex functionality and
design reuse. IC designers license high-level intellectual prop-
erty (IP) blocks for their SoCs in the form of soft (RTL codes)
or hard (GDSII) IPs. The growth in consumer electronics and
the cost of maintaining a cutting-edge semiconductor facility
has forced fabless semiconductor companies to outsource
their fabrication and testing to offshore foundries. With more
and more high-level design being outsourced and fabrication
often taking place at offshore foundries, third-party IP cores
and commercial off-the-shelf ICs have become the norm in
hardware and system development. This globalized business
model increased growth, lowered costs, and decreased time-to-
market. With many potentially untrusted parties involved in the
supply chain, multiple security vulnerabilities emerge, such as
IP theft/piracy, tampering, counterfeiting, reverse engineering
(RE), and IC overproduction, to name a few [1], [38].

The horizontal business model in the semiconductor in-
dustry has introduced ICs with several vulnerabilities, among
which unauthorized modifications or inclusions, a.k.a. hard-
ware Trojans, received considerable attention. Generally, a
hardware Trojan is an intentionally modified circuit design
causing undesired behavior (e.g., information leakage, de-
nial of service, reliability concern, etc.) when deployed [2].
While researchers primarily focus on protecting the data path
circuitry of security-critical components, too little attention
has been given to the design’s control machine. Typically,

FSMs are used as controllers in digital circuits and, therefore,
have a significant impact on the behavior and performance
of the system, especially when working with control-intensive
microprocessors. An FSM is a generalized form of sequential
logic in which a machine’s next state is presented as a function
of its current state and the information it receives from its
input signals. Researchers have shown that by using the don’t-
care states and transitions introduced by the synthesis process
of the FSM, an attacker can implant hardware Trojans into
the design [35]. Moreover, researchers demonstrated that even
if the data path is adequately protected, the key to RSA
encryption can be leaked [35] by injecting faults into the FSM
of the cryptographic device by leveraging the Montgomery
ladder algorithm. To protect against fault-injection attacks
and hardware Trojans, FSMs must be detected at the earliest
possible stage of the design to establish trust among different
entities in the supply chain. As modern SoCs include IPs from
various entities worldwide, accurate extraction of the FSMs at
the higher abstraction level of the design is crucial.

IP watermarking and hardware obfuscation [3] have
emerged as promising solutions to IP piracy. One of the stan-
dard IP watermarking techniques is FSM-based watermarking,
where don’t care states or unused transitions in the FSM are
utilized to embed the ownership signature [5]. Hardware
obfuscation focuses on concealing the functionality of IP/IC
by inserting additional gates, which can be divided into
two categories, namely combinational and sequential. While
combinational obfuscation techniques concentrate on the com-
binational parts, sequential obfuscation techniques target the
state transition characteristics of the circuits. Precise extraction
of the available FSMs in the design [4] is the first step to
embedding watermarking or inserting sequential obfuscation.
Moreover, hardware RE can help create a better understanding
of an unknown circuit to facilitate the identification of any
malicious inclusion and/or tampering by untrusted entities. In
order to prepare a meaningful defense, one must understand
the attacker’s methods. RE can be utilized by persuading
potential countermeasures to prevent design functionality from
being extracted. Insights into the RE process can help with
obfuscation or other defenses to combat future vulnerabilities.

Aside from the security applications mentioned earlier,
numerous hardware verification and design optimization al-
gorithms require fast and precise identification and extraction
of all the control FSMs. In the optimization algorithm of
a typical VLSI logic synthesis process, the state space and
output load of the extracted control FSMs are analyzed [6].
Different state encoding schemes can yield a highly optimized
implementation of control FSMs based on each state’s state
transition pattern and the associated output load. Furthermore,
control FSMs also need to be analyzed in the hardware
verification arena. With the shrinking of device geometry, the
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size of an SoC increases significantly, eventually leading to
the exponential growth of the state space of control FSMs
[7]. As a consequence, verification of the entire SoC becomes
exceptionally complicated. A quick solution to this problem
is verifying the control logic portion of the SoC separately.

The automated extraction of control FSMs has been re-
searched for a while. Despite this, there is no good solution
that can extract FSMs quickly and accurately in a complex
SoC involving multiple FSMs and clock domains. In this
paper, we propose a framework named Register Transfer Level
Finite State Machine Extractor (RTL-FSMx) to extract control
FSMs from designs specified in register-transfer level (RTL)
abstraction systematically with a short computational time
and 100% accuracy. RTL-FSMx utilizes node-based analysis
on the abstract syntax tree (AST) representation of the RTL
code to extract all control FSMs of the designs with varying
complexity and size. Specifically, our contributions in this
paper are as follows-

• Developing RTL-FSMx, an automated framework for fast
and accurate FSM extraction from RTL codes written in
Verilog HDL;

• Extracting human-readable STGs for each of the detected
control FSMs present in the design;

• Demonstrating the efficacy of RTL-FSMx on extracting
control FSMs of a memory controller, Z80 core, and
many benchmark designs.

The rest of the paper is organized as follows. In Section
II, we present definitions of the terminologies used in the
paper. In Section III, we discuss the underlying motivation
of this work. Section IV describes our proposed RTL-FSMx
framework in detail. We present experimental results with
algorithmic complexity and effectiveness analysis of RTL-
FSMx in Section V. Applications of RTL-FSMx are presented
in Section VI. Finally, Section VII concludes the paper.

II. PRELIMINARIES AND BACKGROUND

Finite State Machine (FSM): A Finite State Machine can
be represented as a 6-tuple entity (S, I, O, s0, ϕ, λ) from
mathematical perspective. Here, S is a finite set of states, I is a
finite set of inputs, O is a finite set of outputs, s0 is the reset (or
initial) state of the FSM, ϕ : S × I → S is the state transition
function that determines the next-state of the FSM and λ is
the output logic function. The general architecture of a typical
FSM has been illustrated in Fig. 1. The high-level structure of
an FSM is comprised of three major components: (i) the State
Register that stores the current state of the FSM (sometimes
also referred as State Memory) and implements S, (ii) the pure
combinational State Transition Logic that implements ϕ, and
(iii) the Output Logic of the FSM which implements λ.

Fig. 1: Generic architecture of a typical FSM. The dashed line
is present only in the general architecture of Mealy FSM.

Mealy FSM and Moore FSM: Depending on the nature
of the output logic function, FSMs can be classified into two
main categories: Mealy FSM [8] and Moore FSM [9]. If the
output logic of an FSM depends entirely on the present state

of the FSM, then the FSM is defined as a Moore FSM, and
the output logic can be expressed mathematically as λ : S →
O. On the contrary, if the output logic function of the FSM
depends not only on the current state of the FSM but also
on the inputs, mathematically λ : S × I → O, then the FSM
is termed as a Mealy FSM. As shown in Fig. 1, the output
logic of a Moore FSM is driven by the current state of the
FSM, which is provided by the FSM state register. However,
the output logic function of a Mealy FSM is determined by
both the present state and the inputs of the FSM (represented
by the dashed line in Fig. 1).

State Transition Graph: State Transition Graph (STG) of
an FSM is mathematically defined as a directed graph where
each node (or vertex) of the graph represents a particular
state s ∈ S and each edge of the graph represents a certain
transition between two states, t = T (si, sj) from the current
state si to its next state sj [35]. The current state si and
the next state sj can also be termed as source state and
destination state respectively for that particular transition T
(si, sj). In Fig. 2, the state transition graph of the control
FSM of NIST SHA-512 design [10] is presented which was
extracted using Intel Quartus Prime tool. As evident from the
figure, the STG has 3 nodes implying a total of 3 states in
the FSM: CTRL IDLE, CTRL ROUNDS, and CTRL DONE.
It is also obvious from the figure that there is a total of 6
edges, i.e., state transitions in the FSM. For example, the
state transition T (CTRL DONE, CTRL IDLE) implies that
the control FSM switches to the destination state CTRL IDLE
from the source state CTRL DONE due to single or multiple
transition conditions specified in the state transition logic.

CTRL_IDLE CTRL_ROUNDS CTRL_DONE

shas12_ctrl_reg

Fig. 2: State transition graph of SHA-512 control FSM. The
nodes and the edges of the directed graph represent the states
of the FSM and the transitions between two states.

Reset State: The Reset State of an FSM is defined as the
entrance state to the other states existing in an FSM according
to FSM automata theory [11]. As the name implies, the reset
state of an FSM represents a particular state to which an FSM
switches when the reset condition is applied to the FSM. The
reset condition can be applied to a certain FSM by either
applying a logic ‘0’, i.e., Active-Low Reset, or a logic ‘1’, i.e.,
Active-High Reset, on the reset port of the FSM. Moreover,
a particular design can be driven by either global reset (reset
condition is applied to the entire design) or local reset (reset
condition is applied to only a specific region of the entire
design, and the rest operates as expected). However, for both
scenarios, the FSM transits to the Reset State from the current
state instantaneously (if an asynchronous reset mechanism
drives the FSM) or at the next positive or negative edge of
the clock (if the FSM is controlled by synchronous reset
mechanism). For the SHA-512 control FSM depicted in Fig.
2, the CTRL IDLE state is the reset state.

Control FSM and Control Signal: If an FSM acts as the
control logic of a particular design, it is defined as a control
FSM. We provide this definition to distinguish between control
FSMs and counters clearly. More precisely, control FSMs
are responsible for sequencing and controlling operations
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happening inside the datapath of a complex design. However, a
counter is generally used to count sequentially in a pre-defined
manner. If a particular signal is generated by the output logic
function of a control FSM, then it is defined as a control signal
since it can be used to sequence and control the operations of
the datapath of an intricate design. In the general architecture
of a typical control FSM as illustrated in Fig. 1, the output
signals generated from the output logic of the FSM are termed
as control signals in this paper.

State Encoding Schemes: States of a certain FSM can be
encoded using three primary techniques: Binary, Gray, and
One-Hot. Using a particular state encoding scheme in the
design relies on the design’s optimization goal, such as speed,
area, or power consumption. In the binary state encoding
scheme, all states of the FSM are enumerated serially initiating
from 0 in order of their appearance and can be represented
using a state register having a width of | log2(|S|)| bits, where
|S| is the number of states of the FSM. In a one-hot state
encoding approach, the FSM states are encoded so that all
state encoding bits except one are equal to 0 at any point.
Consequently, each state of the FSM can be presented with a
state register having a width of |S| bits. Finally, in the Gray
state encoding technique, the states of the FSM are encoded
so that the bit difference between the binary represented state
encoding values of two consecutive states is 1. Like the binary
state encoding method, the Gray encoding of the states of an
FSM results in implementing a state register with a bit width of
| log2(|S|)| bits. The three states of the SHA-512 control FSM:
CTRL IDLE, CTRL ROUNDS, and CTRL DONE, shown in
Fig. 2, can be encoded as 2-bit vectors: ‘00’, ‘01’ and ‘10’
respectively if the binary encoding is applied. The same states
can be encoded as ‘00’, ‘01’, and ‘11’ if Gray encoding is
employed, and finally, if the one-hot encoding is utilized, then
the states need to be encoded with 3-bit vectors: ‘001’, ‘010’
and ‘100’ respectively. The power, performance, and area of an
FSM are affected by the choice of the state encoding scheme.
The state encoding choice of the control FSMs influences
the overall hardware implementation of a particular design
significantly [12]–[14].

III. RELATED WORK AND MOTIVATION

The FSM detection schemes proposed in existing literature
can be broadly classified into two major categories: template
matching of standard HDL coding practices and slicing of
program source code. Contemporary state-of-the-art commer-
cial synthesis tools [31], [32] are good examples of matching
templates of particular HDL coding styles to detect FSMs. Tra-
ditionally, control FSMs are described in the standard template
of a single or two ‘always’ blocks if written using Verilog HDL
[27]–[29]. However, these commercial tools cannot always
extract all the control FSMs present in a complex design
100% accurately due to some strict restrictions on the HDL
coding style and few requirements on the design. For example,
Design Compiler tool from Synopsys fails to extract control
FSM if there are multiple control FSMs in the design or
clock domain of the control FSM differs from the rest of the
fabric. This scenario often leaves a significant portion of the
control circuitry of the design sub-optimized [30]. Although
some of these issues seem to be resolved in Quartus Prime
tool from Intel, there still exists some inaccuracy in the FSM
extraction results, which has been illustrated in Section V via
experimental results on two large-scale benchmarks from [16].

The slicing of program source code is another potential
candidate for extracting control FSMs. However, some initial
conditions need to be satisfied for applying this methodology:
the names of the control FSMs of interest are previously
known, and the input program is not compiled. This tech-
nique directly works on the program source code instead
of an intermediate representation. A typical program slicing
algorithm yields all the codes related to a particular set of
signals, given that the programmer specifies the set of signals
through a line-by-line inspection of the program source code.
The extraction result from such an algorithm is a truncated
program source code containing only the lines correlated to
the provided signals. This scheme was first introduced in the
software engineering domain to extract necessary segments of
the program code [19]. Eventually, this approach was adopted
in hardware description languages to extract control FSMs
from large-scale designs [20]. The sub-circuit implementing
and utilizing certain control FSMs are the outputs of the
program slicing algorithm, given that the associated signals of
the control FSMs are provided. Nevertheless, there are some
drawbacks to this technique. First, the slicing algorithm’s line-
by-line scanning process creates scalability issues for SoC-
level designs since such designs may contain thousands of
lines of code. Secondly, the approach is semi-automated since
it requires the users to have a priori-knowledge of the names
of the control FSMs. Finally, as appeared from the underlying
principles, the algorithm functions similar to an extractor of
program codes instead of an FSM recognizer.

Aside from the two techniques discussed above, a method
based on heuristics has been proposed recently in the control-
flow analyzer of the open-source Pyverilog tool [21]. The
control-flow analyzer incorporates a state machine pattern
matcher subsystem, which is used to implement string-based
pattern matching schemes for searching signals with an antic-
ipated name, for example, state [22]. The main shortcoming
of this heuristic-based approach is that the pattern matching
scheme fails if the signals controlling the FSM are named
differently, and clearly, it does not guarantee precise extrac-
tion of all control FSMs always. Moreover, the control-flow
analyzer requires a tremendous amount of time to analyze a
medium-sized design. The proposed RTL-FSMx framework
addresses the aforementioned fundamental limitations of the
existing open-source and commercial tools. Currently, RTL-
FSMx focuses on analyzing the hardware designs described
using Verilog HDL. However, the framework can be easily ex-
tended to support the associated constructs of other languages
(VHDL and SystemVerilog).

IV. RTL-FSMX FRAMEWORK

The high-level overview of the proposed RTL-FSMx frame-
work is presented in Fig. 3. As appeared from the framework,
RTL-FSMx incorporates the Abstract Syntax Tree Generator
of Pyverilog toolkit [21] in the flow. Pyverilog is an open-
source, comprehensive software toolkit for analyzing hard-
ware designs written using a popular hardware description
language named Verilog HDL. Verilog HDL is a widespread
language to generate high-level representations of a particular
hardware design in register-transfer level (RTL) abstraction.
Moreover, Pyverilog is the only widespread open-source tool
that supports code analysis and generation as a single software
package. Pyverilog offers designers and analysts four impor-
tant libraries for analyzing hardware designs: (1) Abstract
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Syntax Tree Generator, (2) Data-flow Analyzer, (3) Control-
flow Analyzer, and (4) Verilog HDL Code Generator [22].
However, RTL-FSMx requires only the Abstract Syntax Tree
Generator of Pyverilog to generate the abstract syntax tree
(AST) representation of the input register-transfer level design
written in Verilog HDL.

Fig. 3: Overview of the RTL-FSMx framework. The frame-
work embeds the Abstract Syntax Tree (AST) Generator of
Pyverilog for generating the AST of the provided RTL written
in Verilog HDL. The FSM recognizer & STG extractor module
yields an FSM extraction report by analyzing the AST.
A. Abstract Syntax Tree Generation

The Verilog HDL code compiler of Pyverilog, as shown in
Fig. 4 is a vital tool for analyzing a Verilog HDL-based source
code. The code compiler contains an Abstract Syntax Tree
Generator to generate an AST presentation of the input HDL
code for later use or external tools. Icarus Verilog [23] acts as
the pre-processor for Pyverilog and this external tool is called
via -E option. After the pre-processing phase, all macros, for
instance ifdef and define, are extracted. The modified source
code gets available in text format, and then the compiler of
Pyverilog reads the updated source code, and the AST is
built. In this manner, the AST gets ready for further analysis.
Pyverilog utilizes Python Lex-Yacc (PLY) as the compiler-
compiler, lightweight implementation of lexical analyzer, and
LR-parser that functions as the syntax analyzer [22].

Fig. 4: Overview of the Verilog HDL code compiler of Pyver-
ilog [22]. Pyverilog uses Python Lex-Yacc to implement the
lexical analyzer and LR-parser of the Verilog HDL compiler.

The AST generated by Pyverilog acts as an intermediate
representation of the input high-level RTL code. The AST rep-
resentation of the Verilog HDL-based source code is somewhat
construct-independent, and it does not include unnecessary
punctuation and delimiters present in the source code, for
instance, braces, parentheses, semicolons, etc. Moreover, the
AST may contain additional information about the program
being compiled for subsequent usage by the compiler. For
example, the AST generated by Pyverilog stores the line
number associated with each element present in the source
code. This feature allows Pyverilog to print error messages
while compiling a particular Verilog HDL-based RTL. The
AST representation of a particular blocking substitution ex-
pression used in Verilog HDL has been illustrated in Fig.
5. The expression gets fragmented into numerous nodes and

forms a hierarchical tree-like structure. Each node of the AST
possesses unique identifiers (IDs), which can be utilized for
further processing. Moreover, each node contains a single child
node or multiple child nodes in the hierarchy of the AST.

Fig. 5: The AST representation of a sample blocking sub-
stitution expression generated by the Abstract Syntax Tree
Generator of Pyverilog. The expression gets decomposed into
nodes with unique identifiers (IDs), which makes it suitable
for further processing.

There are numerous advantages of utilizing AST for ana-
lyzing a source code written in a particular language. First
of all, programming languages are inherently ambiguous by
nature [24], which is also valid for Verilog HDL. As a
result, a context-free and construct-independent intermediate
representation of the source code written in Verilog HDL is
required for analysis and further processing. Secondly, the
AST presents the complex RTL source code in a tree-like
structure that is easier to analyze than directly analyzing the
high-level RTL code. Finally, the provision of AST of RTL
source code facilitates node-based analysis. The node-based
analysis approach bypasses unnecessary line-by-line searching
for a particular object of interest in the input RTL source code
since a particular node can be accepted or discarded based on
the node’s ID. Consequently, this feature helps to improve
run-time. RTL-FSMx utilizes AST-based analysis of the input
Verilog HDL-based RTL code for such advantages. The AST
presentation of a block of RTL code written in Verilog HDL
representing the state register of an FSM has been illustrated
in Fig. 6. Similarly, any block of RTL codes can be treated as
a group of nodes preserving hierarchy inside the AST.

Fig. 6: The AST representation of an example block of
RTL code representing the state register of an FSM yielded
by Pyverilog. The block of the RTL code gets split into a
collection of nodes with unique IDs. Pyverilog also reports the
line numbers associated with a particular node of the AST.
B. Control FSM Recognition and STG Extraction

After the generation of AST of the input Verilog HDL-based
RTL code is completed by Pyverilog, the FSM Recognizer &
STG Extractor module of the RTL-FSMx framework comes
into the picture. The high-level overview of the algorithmic
flow of this module is presented in Fig. 7, which acts as the
central part of the RTL-FSMx framework.

1) Identification of Sequential Blocks: The first stage is
identifying all the sequential blocks in the high-level RTL
design description. The sequential blocks of the RTL code
represent either flip-flops or registers of the design specified
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Fig. 7: Algorithmic flow of the FSM Recognizer & STG
Extractor module of RTL-FSMx. It is the core part of the
RTL-FSMx framework that implements a precise and fast FSM
extraction technique from high-level RTL codes.

by the designer. More precisely, all ‘always’ blocks having
sensitivity to edge-triggered signals are identified. The reason
emerges directly from the Verilog HDL coding guidelines for
writing good RTL codes targeted for synthesis [27], [28],
which designers follow widely. In a Verilog HDL-based RTL
code, ‘always’ blocks with edge-triggered signals represent
registers, and blocks without any edge-triggered signal rep-
resent either combinational logic blocks or latch units of the
design. As shown in Fig. 1, the sequential part of an FSM is
known as the State Register of the FSM. For this reason, we
are primarily interested in identifying all the registers present
in the RTL design since a portion represents state registers.
Perfect identification of all FSM state registers is a prerequisite
for successfully identifying all control FSMs of the design.

Fig. 8: Example Verilog HDL code snippets for describing a
single register with asynchronous reset and multiple registers
driven by synchronous reset signals [26]. Edge sensitivity type
of the signals specified in the sensitivity list of the ‘always’
blocks must be mentioned to be compatible with existing state-
of-the-art commercial synthesis tools [30], [32].

In Fig. 8, sample Verilog HDL code snippets for implement-
ing a register with asynchronous reset and multiple registers
driven by synchronous reset have been illustrated. When both
clock and reset signals are present in the sensitivity list of
the ‘always’ block of a register, the register is said to have
asynchronous reset capability because driving the reset signal
with either logic ‘1’ or logic ‘0’ causes the register to be reset.
It happens suddenly without depending on the status of the
clock signal. On the contrary, if the clock signal is present in
the sensitivity list of the ‘always’ block of a particular register
only, the register gets driven by synchronous reset since the
register does not get reset until the next active edge (either
positive or negative) of the clock appears. An example code
snippet to implement a typical combinational logic block using
Verilog HDL has been illustrated in Fig. 9. The ‘always’ block
representing a combinational logic depends on all the level-

triggered inputs. Such nodes of the AST (‘always’ blocks to
describe combinational logic) are discarded by RTL-FSMx.
However, a typical ‘always’ block implementing a register
depends on both clock and reset signals (register having
asynchronous reset ability) or only on the clock signal (register
with synchronous reset capability). RTL-FSMx accepts nodes
of the AST with such characteristics for further analysis to
distinguish FSM state registers from the non-state ones.

Fig. 9: Sample Verilog HDL-based code snippet to implement
a typical combinational logic block in RTL abstraction [25].
The ‘always’ block has dependence on all the inputs, and no
input is edge-triggered. All of the inputs are level-triggered.

2) Identification of ‘case’ Statement Blocks: The next step
is quite crucial. All the controlling variables of the ‘case’
statement blocks present in the RTL source code are appro-
priately identified at this stage. The underlying reason is that
among these variables, there exist the state ones. From the
Verilog HDL coding guidelines for writing RTL codes for
FSMs presented in [27], [28], it is evident that not all ‘case’
statement block controlling variables are state variables, but all
state variables are variables controlling some ‘case’ statement
blocks. These blocks represent the associated combinational
state transition logic blocks of the control FSMs.

3) Recognition of Clock and Reset Signals: The clock
and reset signals of corresponding registers can be recog-
nized when the register blocks of the RTL code representing
registers have been identified. As illustrated in Fig. 8, the
clock and reset signals are specified in the sensitivity list of
the ‘always’ block describing a register with asynchronous
reset capability in RTL abstraction. In this scenario, RTL-
FSMx can recognize the clock and the reset signal driving
a register by analyzing the sensitivity list of the ‘always’
block. On the contrary, for a register with synchronous reset
ability, the clock signal is specified in the sensitivity list of
the ‘always’ block representing the register only, and RTL-
FSMx identifies that. The reset signal can be identified by
analyzing the ‘if’ statement block containing the reset condi-
tion of a particular register which is also illustrated in Fig.
8. The widely used state-of-the-art commercial tool for design
synthesis, Design Compiler [31] from Synopsys can not extract
FSMs and provide the corresponding FSM extraction report
while using the ‘report fsm’ command in all scenarios since
it requires designs having only a single clock and an optional
synchronous or asynchronous reset signal [30]. Moreover,
this drawback makes the Design Compiler tool incapable of
analyzing designs having multiple clock domains and more
than an FSM in the module. However, RTL-FSMx addresses
this shortcoming of the Design Compiler tool by analyzing all
the identified register blocks and extracting the corresponding
clock and reset signals. This feature of RTL-FSMx makes it
unique since control FSMs can be extracted from designs with
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multiple clock domains and FSMs.

Fig. 10: Example RTL code snippets to illustrate the state
variables of control FSMs. The state register block of the
control FSM can hold multiple state variables, which is shown
in the code snippet on the left side [26]. In the code snippet
shown on the right, the two state variables are defined in two
different state register blocks [64].

4) Detection of FSM State Variables: Next, the state regis-
ter identification stage comes into the picture. All the register
blocks and their corresponding clock and reset signals present
in the RTL have been identified by RTL-FSMx. It is the perfect
time to isolate all the control FSM state registers from the
non-state ones. The state variable of a control FSM register
is the ‘case’ statement block controlling variable that causes
state transition of the FSM, precisely the control variable of
the combinational state transition logic [27]–[29]. A ‘case’
statement block controlling variable should be present inside
a sequential ‘always’ block of the RTL for being considered
as the control FSM state variable. In Fig. 10, two RTL coding
practices for describing state registers and state variables have
been presented. These two coding practices originate from the
good RTL coding guidelines for FSMs presented in [27]–[29].
Multiple state registers can be described in a single or different
register block. The ‘case’ controlling variables are present in
the sequential ‘always’ block implementing registers.

Fig. 11: Identification locations of the reset state and next-
state variable of a control FSM in a sample RTL code
snippet written using Verilog HDL [33]. RTL-FSMx extracts
this important information of an FSM by analyzing the ‘if’
statement block containing the reset information of the FSM.

5) Formation of State Vector: Once the state variable of
the control FSM register has been recognized successfully,
RTL-FSMx extracts the width of the control FSM register.
Identification of the width of the control FSM register is a
prerequisite for yielding the state vector representation of the
control FSM register. For example, the state variable of a
control FSM register named ‘i state’ having width of 4 can
be represented as the state vector as {i state[3] i state[2]
i state[1] i state[0]}. However, an FSM can be described
using two different models in high-level RTL codes written
using Verilog HDL [27]–[29]. The models are known as 1-
process and 2-process models. In the 1-process model, the
combinational state transition logic and state register parts of
the control FSM are described in a single ‘always’ block. The

‘always’ block has a clock and optional reset signals. The
reset signal is present in the sensitivity list when the control
FSM register has asynchronous reset capability; otherwise,
only a clock signal is present for the FSM register with the
synchronous ability. The combinational state transition logic
can be implemented with a ‘case’ statement block containing
information on all the state transitions of the control FSM,
and the state variable acts as the ‘case’ statement controlling
variable. Conversely, the state transition logic and the state
register parts are written in two different ‘always’ blocks. In
this manner, RTL-FSMx localizes the state transition logic
block and state register block of a particular control FSM,
crucial for the subsequent analysis stage.

Fig. 12: Sample RTL code snippets written in Verilog HDL to
illustrate assignments to a control FSM register state variable
and a non-control one [25]. The difference between associated
coding practices aid RTL-FSMx in distinguishing control
FSMs from the non-control ones (counters and accumulators).

6) Identification of Reset State and Next State Variable:
Precise identification of all the state variables of the corre-
sponding control FSMs by RTL-FSMx also aids in detecting
the reset states (for both 1-process and 2-process FSM models)
and next-state variable (for the 2-process FSM model only).
RTL-FSMx extracts this valuable information of the control
FSM by analyzing the ‘if’ block specifying the reset condition
of the FSM. In Fig. 11, the extraction points of the reset state
and next-state variable (if applicable) have been demonstrated.
It is also evident from Fig. 11 that the reset state can be
declared using a symbolic variable or numerical entity. The
same is true for the rest of the states of the control FSM.
Conventionally, the states of a control FSM are declared using
‘parameter’ or ‘localparam’ variables or using ‘define’ state-
ments [27]–[29]. In Fig. 12, example code snippets have been
presented to illustrate assignments to a control FSM register
state variable and a non-control one which is a counter. It is
also evident from Fig. 12 that both the state transition logic
blocks of the control FSM and the counter register have been
described using 2-process models in the high-level RTL code.
However, there is a noticeable distinctive feature of the coding
practices for describing a counter and a control FSM. For
the control FSM implemented using the 2-process model, the
control FSM state variable is assigned to a next-state variable,
and that next-state variable is assigned to a single state of the
FSM directly, as evident from Fig. 12 or to multiple states
of the FSM via some combinational branch determination
logic. In contrast, for a counter described using the 2-process
model as illustrated in Fig. 12, the non-control state variable
of the counter is assigned to a next-state variable, and the
next-state variable assignment is written entirely in a different
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style. RTL-FSMx utilizes this difference in coding practices
for implementing control FSMs and counters in the high-
level RTL codes to isolate control FSMs distinctively from the
counters. A similar feature also enables RTL-FSMx to separate
accumulator registers since good RTL designers implement
accumulators in a manner quite similar to the counters. Since
RTL-FSMx is intended to extract all the control FSMs present
in the provided RTL code, counter and accumulator registers
are intentionally discarded.

7) Extraction of the STG: Once the reset state of the
FSM has been detected successfully, the next target of RTL-
FSMx is to extract the State Transition Graph (STG) from
the combinational state transition logic of the control FSM.
The state variable of the control FSM is the ‘case’ statement
block controlling variable describing the state transition logic.
However, sometimes designers specify the ‘case’ statement
controlling variable in a concatenated format with multiple
variables combined. The Design Compiler tool from Synopsys
and Quartus Prime from Intel fail to handle such a scenario
since the practice does not conform to conventional HDL
coding practice to represent control FSMs [27]–[29]. RTL-
FSMx can handle such coding practice, making RTL-FSMx
more promising for detecting control FSMs written using
various coding styles. Moreover, RTL-FSMx can identify the
state transition logic blocks of all the control FSMs. This
feature is missing in the control FSM extraction algorithm
of the Design Compiler tool [30] since the FSM extraction
algorithm only works perfectly when a particular design has
a single FSM inside and the design is driven by a single
clock. In other scenarios, using the ‘report fsm’ command
does not yield any FSM extraction report, which is undesirable
when extracting all the control FSMs present in a design is
crucial. In Fig. 13, such an example code snippet written using
Verilog HDL has been presented, illustrating a coding style for
implementing a control FSM described using the 1-process
FSM model that existing state-of-the-art commercial tools fail
to handle, but RTL-FSMx can handle such scenario.

Fig. 13: RTL code snippet of the control unit of the 32-bit
RISC processor written in Verilog HDL [34]. The control FSM
is described in a non-conventional practice that existing state-
of-the-art synthesis tools [31], [32] fail to handle.

RTL-FSMx constructs the STG of the identified control
FSM, analyzing the block that implements the combinational
state transition logic. All the states of the control FSM with
their associated encoding are recognized by analyzing the
‘parameter’ or ‘localparam’ type variables (when the state
encoding is presented using symbolic format) and getting
all immediate descendent nodes of the ‘case’ statement node
holding the state variable. Occasionally, the states of a control
FSM are encoded directly using numbers with accepted num-
ber bases: binary, decimal, octal, and hexadecimal [27]–[29].

Fig. 14: RTL-FSMx constructs the STG of the control FSM,
analyzing the state transition logic block. For this purpose,
RTL-FSMx analyzes the assignments to the state or next-
state variable, identifies the source and destination states, and
generates the STG as a directed graph. The code snippets are
taken from [26], [64].
However, RTL-FSMx can handle both practices. Moreover,
designers can encode the states of the control FSM using
binary, one-hot, or Gray encoding schemes depending on the
optimization goals for the design. RTL-FSMx can automati-
cally extract the employed state encoding scheme by analyzing
the mathematical relationship between the encoding of the
states of the identified control FSM. Moreover, RTL-FSMx
yields the binary representations of all the encoded states of
the control FSM as the state encoding report as mentioned in
Fig. 3. As illustrated in Fig. 14, RTL-FSMx constructs the STG
of the detected control FSM by analyzing the state transition
logic block. First, RTL-FSMx identifies the nodes assigned to
the state variable (for an FSM written in the 1-process model)
or the next-state variable (for an FSM written in the 2-process
model). Next, the source and destination states are identified
by analyzing the assignments. Finally, the STG is represented
as a directed graph. RTL-FSMx generates the STG both in
textual and graphical format.

Fig. 15: Example RTL code snippet to illustrate assignments
to certain control signals of the RISC controller [34]. RTL-
FSMx analyzes such assignments and extracts control output
signals generated from the FSM to control the datapath.

8) Extraction of FSM Control Input and Output Signals:
Analysis of the state transition logic block of the control FSM
serves another purpose of RTL-FSMx. RTL-FSMx can identify
all the control inputs of the FSM by analyzing the active
state transition conditions. Assignments to the state or next-
state variable are analyzed meticulously to identify the state
transition conditions. The control inputs of the FSM are not
always mentioned in the sensitivity list of the ‘always’ block,
which implements the state transition logic. As mentioned,
the analysis feature of RTL-FSMx comes in quite handy for
such cases. Finally, nodes of the AST assigned to certain
signals influenced by the state variables are identified and
analyzed. These signals act as the control signals generated
from the FSM and control the datapath of a complex design.
An example snippet has been shown in Fig. 15.

V. EXPERIMENTAL RESULTS

The entire RTL-FSMx framework has been implemented
using Python programming language since it embeds the AST
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TABLE I: Worst-case run-time of RTL-FSMx for sample benchmarks obtained from [16]–[18].

Design Name Module Count Line Count ‘always’ Block Count Gate Count Flip-flop Count Control FSM Count State Register Size Run-time (s.)

I2C Core [68] 5 1263 22 465 125 2 18, 5 1.09
MC6502 CPU [51] 2 1328 54 970 142 1 6 1.12
NIST SHA-512 [50] 5 1485 16 10763 3666 1 2 1.09
DDR2MC IP [56] 6 1490 24 1699 593 4 3, 2, 4, 3 1.03
GCM AES IP [54] 6 1754 39 17181 1696 1 10 1.49
IBex RISC [57] 7 2122 18 4104 1005 3 4, 1, 3 1.22
HPDMC IP [55] 11 2425 18 1051 351 1 4 1.11
NIST AES-128 [25] 7 2809 22 12976 2987 4 3, 3, 3, 3 1.19
CXD9731 IC [61] 11 2862 19 2835 501 4 6, 5, 5, 4 1.23
MODEXP Core [59] 14 3429 53 154488 57957 3 4, 4, 4 1.18
MC68000 CPU [53] 8 3488 35 9753 1051 1 5 1.23
T2600 SoC [58] 12 3853 22 2093 127 1 5 1.23
MC6809 CPU [52] 2 4233 4 4153 218 1 7 1.44
Z80 Core [62] 28 5489 28 4032 398 1 46 1.26
Memory Controller [60] 14 5719 175 3207 1051 1 66 1.36
JELLY RISC [66] 17 5869 38 9852 1158 2 2, 5 1.29
AMBER25 RISC [63] 20 8288 76 13547 3138 2 4, 4 1.52
openMSP430 Core [64] 21 9164 151 4096 734 4 3, 4, 2, 3 1.44
BIRISCV SoC [65] 33 11953 168 26494 4759 3 2, 4, 4 1.54
OR1200 Core [67] 77 31551 371 201445 69943 4 3, 3, 2, 2 1.81

generator of Pyverilog inside. All the experiments on the
benchmark circuits have been performed using an Intel Core
i7-1065G7 processor clocked at 1.3 GHz with 16GB RAM on
a personal desktop. The high-level RTL codes of the designs
were compiled using Pyverilog first to find potential syntax
errors. After being assured of no syntax errors in the RTL
codes written in Verilog HDL, the RTL-FSMx framework
was examined to verify its effectiveness in recognizing and
thus extracting all control FSMs present in the benchmark
designs. Experimental results on 20 benchmarks obtained from
several open-source repositories [16]–[18] have been provided
in Table I to demonstrate that RTL-FSMx can extract all
control FSMs very fast, varying widely in terms of functional
complexity and size of the RTL designs. The associated gate
count and flip-flop count were obtained from the synthesis
report generated by Design Compiler, and SAED90nm was
used as the target technology library. In addition, case studies
on two benchmarks have been illustrated to prove that RTL-
FSMx can extract all control FSMs more accurately compared
to commercial synthesis tools from Synopsys and Intel.

A. Complexity of RTL-FSMx
The algorithmic complexity of RTL-FSMx can be assessed

in two ways: time complexity analysis and memory (space)
complexity analysis. The worst-case time complexity of the
RTL-FSMx framework depends on the number of ‘always’
blocks present in the input RTL code written in Verilog HDL.
The ‘case’ statement blocks implementing the combinational
state transition logic portions of the control FSMs are also
specified inside ‘always’ blocks. Hence, they are counted in
the total number of ‘always’ blocks present. Mathematically,
the time complexity of the RTL-FSMx framework is O(M)
where M is the total number of ‘always’ blocks present in the
provided high-level RTL code. Additionally, in the worst-case
scenario, the entire AST containing N nodes in total needs
to be stored in the computer memory. Therefore, the worst-
case space complexity of the RTL-FSMx framework is O(N)
where N is the total number of nodes present in the AST
representation of the input RTL design. The linear nature of the
overall algorithmic complexity of the RTL-FSMx framework
considering both time and space complexity, explains why
RTL-FSMx is very fast and memory-efficient for extracting all
control FSMs present in the design. The worst-case run-time
of the RTL-FSMx framework for large-scale benchmark RTL
designs written in Verilog HDL obtained from [16]–[18] has
been presented in Table I. The total number of design modules,
lines, and ‘always’ blocks present in the RTL code, control

FSM count, and corresponding state register size extracted by
RTL-FSMx have also been illustrated.

B. Control FSM Extraction Accuracy of RTL-FSMx
Illustrations of two case studies have demonstrated that the

RTL-FSMx framework can extract all control FSMs perfectly
from RTL designs diversified in size and functional complex-
ity. The first benchmark circuit is the RTL implementation
of Memory Controller IP [60]. The second one is the RTL
design of Z80 Core [62]. The extracted gate-level STGs of
the control FSMs have been compared with the corresponding
RTL descriptions of the FSMs to evaluate the control FSM
extraction accuracy of RTL-FSMx. We define a simple metric
named Control FSM Extraction Accuracy (CFEA) to calculate
the control FSM extraction accuracy as shown in Eq. 1, where
D is the total number of extracted control FSMs and T is the
total number of control FSMs present in the provided RTL
design. Moreover, the extracted STGs of the control FSMs of
the benchmark RTL designs, listed in Table I, by RTL-FSMx
were compared with the STGs extracted by the JasperGold
formal verification tool from Cadence. It was found that
extracted STGs always matched perfectly, manifesting that the
accuracy of RTL-FSMx is 100%.

CFEA =
D

T
× 100% (1)

1) Memory Controller IP: The Memory Controller IP from
[16] is intended for various embedded applications. It sup-
ports SDRAM, SSRAM, FLASH memory, ROM, and several
other devices. It has eight chip selects, and each of them is
programmable. Moreover, it provides default boot sequence
support with other important features [60]. The complex RTL
has 14 design modules and 5,719 lines of codes, as shown
in Table I. 175 ‘always’ blocks are present, and the states
of the control FSM are encoded using the one-hot technique
having 66 control flip-flops forming the corresponding state
register. As the RTL design contains multiple modules, the
‘report fsm’ command did not yield any FSM extraction report
while Design Compiler was used. Moreover, using the state
machine viewer of Quartus Prime, it was found that the control
FSM was detected, and the FSM was shown using a yellow
box. However, the STG of the FSM was not extracted at all
as it displayed a blank window, which indicates the FSM
extraction inaccuracy of Quartus Prime due to the complexity
of the associated combinational state transition logic block
in the RTL code and the STG. We analyzed all the design
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Fig. 16: The STG of the control FSM of the Memory Con-
troller IP extracted by RTL-FSMx. It was not extracted by
Quartus Prime due to the complexity of the state transition
logic and the STG.
modules of this IP using RTL-FSMx, and the extracted STG
of the control FSM is shown in Fig. 16. The run-time of RTL-
FSMx for this IP was only 1.36 s.

2) Z80 Core: The verified Z80 compatible processor core
presented in [62] is an illustration of a complex core, and
the RTL design written in Verilog HDL contains 28 design
modules and 5,489 lines in total. This benchmark analysis
seemed quite challenging since the state transition logic of the
control FSM of the Z80 core is quite complex, with 46 control
flip-flops and the binary state encoding technique employed
to encode the states of the complex control FSM. Due to the
complexity of the state transition logic, the control FSM was
not detected by the Quartus Prime tool even after considering
the design module implementing the control FSM as the top
module of the hierarchy. The Design Compiler tool also failed
to provide an FSM extraction report since the design hierarchy
contains multiple modules to be analyzed. However, in the
worst-case scenario, it took only 1.26 s. for RTL-FSMx to
compile all the design modules and thus extract the control
FSM with the corresponding STG and associated information.
The complex STG of the control FSM extracted by RTL-FSMx
is shown in Fig. 17. Finally, these two case studies and results
presented in Table I demonstrate that the CFEA of RTL-FSMx
is overall 100%, but existing commercial synthesis tools [31],
[32] lack such a level of accuracy, unfortunately.

VI. APPLICATIONS OF RTL-FSMX

The state encoding choice of an FSM significantly affects
reverse engineering of the design in RTL and gate-level netlist
abstractions apart from design optimization [48]. RTL-FSMx
yields state encoding information along with the state variable,
the size of the state register, and the state vector representation
of the control FSM automatically, which may help the reverse
engineers gain insight into the design strategies employed by
the designer. For instance, using RTL-FSMx, if an analyst finds
that Gray encoding of control FSMs is utilized in a particular
design, it can be assumed that minimizing power consumption
has been taken as the design strategy. Similarly, assumptions
can be made for other state encoding schemes. Binary state
encoding minimizes the area, and one-hot encoding is used to
make the design compatible with higher clock frequency [12]–
[15]. Such information obtained after control-flow reverse en-
gineering using RTL-FSMx can help understand the employed
design strategy in an SoC from a competitor in the high-level
abstraction of the design flow.

The RTL-FSMx framework automatically extracts all con-
trol input and output signals of a particular control FSM. This

Fig. 17: The complex STG of the control FSM of Z80 core
extracted by RTL-FSMx. Synthesis tools failed to recognize
the control FSM though HDL coding guideline is followed.

report and the extracted STG in both textual and graphical
formats can be utilized to reverse engineer the control flow of
a complex SoC in high-level RTL abstraction. Additionally,
these reports can be highly efficacious for some other security
applications. Fault-injection assessment of the control flow
of a particular design in gate-level netlist abstraction has
been proposed in [35]–[37]. Similarly, assessment can also
be performed at the early stage of the design, specifically in
RTL abstraction, by analyzing the STG report generated by
RTL-FSMx and identifying the vulnerable state transitions to
thwart fault-injection and hardware Trojan attacks. Existing
state-of-the-art synthesis tools [31], [32] do not provide the
STG of the extracted FSM in textual format. Hence, designers
cannot modify these tools for such assessment due to the
proprietorship of the source codes. Sometimes, the STG of
a control FSM can be quite complex, making it impossible to
construct manually. The STG extraction feature of RTL-FSMx
can be quite beneficial for such a scenario.

Several FSM-based IP watermarking schemes have been
proposed in existing literature [39]–[44]. Besides, numerous
sequential logic locking techniques have been presented in
[45]–[49]. Precise identification and extraction of all control
FSMs and other relevant information present in the RTL
design are essential for such security applications as a pre-
processing task, and RTL-FSMx is a distinctive candidate for
this. Existing commercial synthesis tools [31], [32] cannot
be used due to associated reliability issues in extracting all
control FSMs of a complex design 100% accurately. Apart
from the security applications, RTL-FSMx can be employed
for several non-security applications. For instance, RTL de-
signers can utilize RTL-FSMx to verify the entire control
flow of their IPs and complex SoCs described using Verilog
HDL reliably. Moreover, since ignoring FSMs results in sub-
optimized control circuits [30], the RTL-FSMx framework can
help the Design Compiler tool from Synopsys to optimize
all the control FSMs present in the design, consequently
generating a more optimized gate-level netlist of the entire
design. In addition, if Design Compiler fails to recognize the
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control FSM, manual efforts are required to identify the state
variable of the control FSM and set the state vector with
encoding for optimization [30]. It can be alleviated if RTL-
FSMx is integrated with the optimization flow of the Design
Compiler. The same reasoning goes for Quartus Prime since
it also suffers from reliability issues in the precise extraction
of all control FSMs. Therefore, RTL-FSMx is an outstanding
candidate for all these applications.

VII. CONCLUSION

This paper presents a fast and precise technique mounted
on node-based analysis of the AST representation of the input
RTL source code written in Verilog HDL to automatically
extract all the control FSMs present in the design with as-
sociated relevant information. Experimental results on several
benchmark RTL designs varying in size and complexity have
proved the efficacy of RTL-FSMx, which is absent in some of
the existing commercial CAD tools. We envision incorporating
RTL-FSMx to develop novel sequential logic obfuscation and
control FSM-based watermarking techniques in the future.
We also envision utilizing RTL-FSMx for performing fault-
injection and information-leakage assessments in high-level
RTL abstraction. It may open a new horizon in detecting
potential security vulnerabilities at the early stage of the state-
of-the-art VLSI design and implementation flow.
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