
Parallel Isogeny Path Finding
with Limited Memory

Emanuele Bellini1 , Jorge Chavez-Saab1,3, Jesús-Javier Chi-Domı́nguez1 ,
Andre Esser1 , Sorina Ionica2 , Luis Rivera-Zamarripa1 ,

Francisco Rodŕıguez-Henŕıquez1,3, Monika Trimoska4, and Floyd Zweydinger5

1 Technology Innovation Institute, UAE
{emanuele.bellini,jorge.saab,jesus.dominguez,andre.esser,

luis.zamarripa,francisco.rodriguez}@tii.ae
2 Université de Picardie Jules Verne, France sorina.ionica@u-picardie.fr

3 CINVESTAV-IPN, Mexico francisco@cs.cinvestav.mx
4 Radboud University, The Netherlands monika.trimoska@ru.nl
5 Ruhr University Bochum, Germany floyd.zweydinger@rub.de

Abstract. The security guarantees of most isogeny-based protocols rely
on the computational hardness of finding an isogeny between two super-
singular isogenous curves defined over a prime field Fq with q a power
of a large prime p. In most scenarios, the isogeny is known to be of
degree `e for some small prime `. We call this problem the Supersingu-
lar Fixed-Degree Isogeny Path (SIPFD) problem. It is believed that the
most general version of SIPFD is not solvable faster than in exponential
time by classical as well as quantum attackers.

In a classical setting, a meet-in-the-middle algorithm is the fastest known
strategy for solving the SIPFD . However, due to its stringent memory re-
quirements, it quickly becomes infeasible for moderately large SIPFD in-
stances. In a practical setting, one has therefore to resort to time-memory
trade-offs to instantiate attacks on the SIPFD . This is particularly true
for GPU platforms, which are inherently more memory-constrained than
CPU architectures. In such a setting, a van Oorschot-Wiener-based colli-
sion finding algorithm offers a better asymptotic scaling. Finding the best
algorithmic choice for solving instances under a fixed prime size, memory
budget and computational platform remains so far an open problem.

To answer this question, we present a precise estimation of the costs of
both strategies considering most recent algorithmic improvements. As a
second main contribution, we substantiate our estimations via optimized
software implementations of both algorithms. In this context, we provide
the first optimized GPU implementation of the van Oorschot-Wiener ap-
proach for solving the SIPFD . Based on practical measurements we ex-
trapolate the running times for solving different-sized instances. Finally,
we give estimates of the costs of computing a degree-288 isogeny using
our CUDA software library running on an NVIDIA A100 GPU server.

Keywords: isogenies · cryptanalysis · GPU · golden collision search ·
Meet-in-the-Middle · time-memory trade-offs · efficient implementation

https://orcid.org/0000-0002-2349-0247
https://orcid.org/0000-0002-9753-7263
https://orcid.org/0000-0001-5806-3600
https://orcid.org/0000-0003-4038-454X
https://orcid.org/0000-0002-1779-421X

2 Bellini et al.

1 Introduction

Let E0 and E1 be two supersingular isogenous elliptic curves defined over a finite
field Fq, with q a power of a large prime p. Computing an isogeny φ : E0 → E1 is
believed to be hard in the classical as well as the quantum setting and is known
as the Supersingular Isogeny Path (SIP) problem. In many scenarios, the isogeny
is of known degree `e for some small prime ` and we refer to this variant as the
Supersingular Fixed-Degree Isogeny Path (SIPFD) problem. Investigating the
concrete computational hardness of SIPFD and the best approaches to tackle
it in multi- and many-core CPU and GPU platforms, is the main focus of this
work.

In the context of cryptographic protocols, SIP was first studied by Charles,
Goren and Lauter [6]. They reduced the collision resistance of a provably secure
hash function to the problem of finding two isogenies of equal degree `n for a
small prime ` and n ∈ Z between any two supersingular elliptic curves. This in
turn may also be tackled as a SIPFD problem.

Variants of the SIPFD problem form the basis of several isogeny-based signa-
tures [17,33]. Further, SIPFD has been used as foundation of recently proposed
cryptographic primitives such as Verifiable Delay Functions [11,7]. Based on the
intractability of the SIPFD problem, Jao and De Feo proposed the Supersingu-
lar Isogeny-based Diffie-Hellman key exchange protocol (SIDH) [18,10]. Apart
from revealing the isogeny degree, SIDH also reveals the evaluation of its secret
isogenies at a large torsion subgroup. This weaker variant of SIPFD was dubbed
as the Computational Supersingular Isogeny (CSSI) problem [10]. SIKE [2], a
variant of SIDH equipped with a key encapsulation mechanism, was one of the
few schemes that made it to the fourth round of the NIST standardization effort
as a KEM candidate [25]. Until recently, the best-known algorithms for break-
ing SIDH or SIKE had an exponential time complexity in both, classical and
quantum settings.

However, in July 2022, Castryck and Decru [5] proposed a surprising attack
that (heuristically) solves the CSSI problem in polynomial-time. This attack
relies on the knowledge of three crucial pieces of information, namely, (i) the
degree of the isogeny φ; (ii) the endomorphism ring of the starting curve E0;
and (iii) the images φ(P0), φ(Q0) of Alice’s generator points 〈P0, Q0〉 = E[2a],
where the prime p = 2a3b − 1 is the underlying prime used by SIKE instantia-
tions. Recall that (ii) and (iii) are only known in the specific case of the CSSI
problem, but not in the more general case of the SIPFD problem. Furthermore,
another attack by Maino and Martindale [21] and yet another one by Robert [27]
quickly followed. Maino and Martindale’s attack relies on several crucial steps
used in [5], but does not require knowledge of the endomorphism ring associated
to the base curve. Robert’s attack can also break SIDH for any random starting
supersingular elliptic curve.

Despite the short time elapsed since the publication of Castryck and Decru’s
attack, several countermeasures have already been proposed by trying to hide
the degree of the isogeny [24], the endomorphism ring of the base curve [4], or the
images of the torsion points [15]. At this point, only time will tell if SIDH/SIKE

Parallel Isogeny Path Finding with Limited Memory 3

will ever recover from the attacks on the CSSI problem. But even if this never
happens, the theoretical and practical importance of the SIPFD problem still
stands. For instance, the constructions from [17, Section 4], [7], and [20, Section
5.3] do not append images of auxiliary points to their public keys. In turn the
Castryck-Decru family of attacks does not apply, making the security of those
applications entirely based on the SIPFD problem.

Known attacks on the SIPFD problem. Even before the publication of
the attack in [5], it was wildly believed that the best approaches for solving
the CSSI problem are classical and not quantum [19]. Here we present a brief
summary of the different assumptions made across the last decade about the
cost of solving the SIPFD problem. We stress that while all these advances were
made with SIKE as main motivation, the fact that they did not make use of
the torsion point images means that they still represent the state-of-the-art for
attacks against the general SIPFD problem. The fastest known algorithm for
solving SIP has computational complexity Õ(

√
p) [16,13,22]. However, if the

secret isogeny is of known degree `e, there might exist more efficient algorithms
for solving the SIPFD . Indeed, in their NIST first round submission, the SIKE
team [2] argued that the best classical attack against the CSSI problem was
to treat it as an SIPFD problem and use a MitM approach with a time and
memory cost of O(`

e
2), which is more efficient for SIKE and all instantiations of

the SIPFD where `e ≤ p.
By assuming an unlimited memory budget and memory queries with zero

time cost, the MitM attack is indeed the best attack against the SIPFD
problem.̧ Nevertheless, in [1], the authors argued that the van Oorschot-Wiener
(vOW) golden collision search, which yields a better time-memory trade-off
curve, is the best classical approach for large instances. The rationale used is
that the O(`

e
2) memory requirement for launching the MitM attack is infeasi-

ble for the cryptographic parameter sizes. Since the best known generic attacks
against AES use a negligible amount of memory, it is just natural to set an up-
per bound on the available classical memory when evaluating the cost of solving
SIPFD instantiations in the context of NIST security levels 1 to 5.

To increase interest in studying the CSSI problem Costello published in [8]
two Microsoft $IKE challenges, a small and a large one using a 182- and a 217-bit
prime number, respectively. These two CSSI instances are known as $IKEp182
and $IKEp217 challenges.6 A few months later, the solution of $IKEp182 was
announced by Udovenko and Vitto in [30]. The authors treated this challenge
as an instance of SIPFD , and then used a MitM approach largely following
the description given in [9] along with several clever sorting and sieving tricks
for optimizing data queries for their disk-based storage solution. The authors
reported that their attack had a timing cost of less than 10 core-years, but at
the price of using 256 TiB of high-performance network storage memory.

6 The precise specifications can be found in https://github.com/microsoft/

SIKE-challenges.

https://github.com/microsoft/SIKE-challenges
https://github.com/microsoft/SIKE-challenges

4 Bellini et al.

It is obvious that this memory requirements quickly render the strategy un-
feasible for larger non-toy instances. As mentioned in [1], there exists a time-
memory trade-off variant of the MitM algorithm (cf. Section 2.2), which was
adopted by Udovenko and Vitto to bring the storage requirements of their at-
tack down to about 70 TiB.

However, determining the best algorithmic choice for solving instances of
given size under a certain memory budget and computational platform remains
so far an open problem. In this work we present a framework predicting that
both MitM variants are outperformed by the vOW golden collision approach
even for moderately large SIPFD instances. We then substantiate our claims
by extrapolating results of our implementations, accounting for practical effects
such as memory access costs.

Our contributions In [1] it was found that vOW is a better approach than
MitM to tackle large SIPFD instances. However, the small Microsoft challenge
$IKEp182 was broken, before the Castryck-Decru attack was known, using a
MitM strategy [30]. As discussed in [30], it remains unclear for which instance
sizes and memory availability, vOW outperforms MitM. In this work we an-
swer this question from a theoretical and practical perspective. Theoretically,
we give a precise estimation of the costs of both strategies including most re-
cent algorithmic improvements. Practically we substantiate our estimations via
optimized implementations and extensive benchmarking performed in CPU and
GPU platforms.

Moreover, in the case of CPU platforms, we present a detailed framework that
for a fixed memory budget and prime size, predicts when a pure MitM approach,
batched (limited memory) MitM or vOW approach becomes the optimal design
choice for attacking SIPFD (see Section 3 and Figure 2). The predictions of our
model are backed up by practical experiments on small SIPFD instances and
extrapolations based on the obtained practical timings of our implementations.

We additionally provide the first optimized GPU implementation of the vOW
attack on SIPFD , outperforming a CPU based implementation by a factor of
almost two magnitudes. We provide medium sized experimental data points us-
ing our GPU implementation including extrapolations to larger instances. More
concretely, our implementation solves SIPFD instances with isogeny degree 288

with primes of bit size 180 (comparable to the instance solved in [30]) using 16
GPUs each equipped with only 80 GiB of memory in about 4 months. Based on
our experimental results we conclude that vOW is the preferred choice for any
larger SIPFD instances on reasonable hardware.

Our CPU and GPU software libraries are open-source and available at https:
//github.com/TheSIPFDTeam/SIPFD.

Outline. The remainder of this work is organized as follows. In Section 2 we
present a formal definition of SIPFD and relevant mathematical background. We
also give a detailed explanation of the MitM and vOW strategies. In Section 3
we present a careful estimation of the cost of the MitM and vOW strategies

https://github.com/TheSIPFDTeam/SIPFD
https://github.com/TheSIPFDTeam/SIPFD

Parallel Isogeny Path Finding with Limited Memory 5

and their corresponding trade-offs in the context of the SIPFD . In Section 4
we present our implementation of the CPU-based MitM attack and the vOW
strategy on a multi-core GPU platform.

2 Preliminaries

2.1 Elliptic curves and isogenies

Let Fp be the prime field with p elements and let E be a supersingular elliptic
curve defined over Fp2 . A common choice, convenient for implementations, is to
choose p such that p ≡ 3 mod 4, and take Fp2 = Fp[i]/(i2 + 1) the quadratic
extension of Fp. Moreover, we will assume that E is given by a Montgomery
equation:

E : y2 = x3 +Ax2 + x, A ∈ Fp2 \ {±2}.

The set of points satisfying this equation along with a point at infinity OE

form an abelian group. The point OE plays the role of the neutral element. In
general, we write the sum of d copies of P as [d]P and if k is the smallest scalar
such that [k]P = OE , we say that P is an order-k elliptic curve point. The d-
torsion subgroup, denoted by E[d], is the set of points {P ∈ E(Fp) | [d]P = OE}.
If gcd(p, d) = 1, then E[d], as a subgroup of E, is isomorphic to Z/nZ× Z/nZ.

The j-invariant of the curve E is given by j(E) := 256(A2−3)3

A2−4 . It has the useful
property that two curves are isomorphic if and only if they have the same j-
invariant.

An isogeny φ : E → E′ is a rational map (roughly speaking a pair of quo-
tient of polynomials) such that φ(OE) = OE′ . This implies that φ is a group
homomorphism (see for instance [32]). By a theorem of Tate [28], an isogeny
defined over Fp2 exists if and only if #E(Fp2) = #E′(Fp2). If there is an isogeny
φ between E and E′, then we say that the two curves are isogenous. The kernel
kerφ is the set of points in the domain curve E which are mapped to the iden-
tity point OE′ . If we restrict to separable maps only, any isogeny φ is uniquely
determined by its kernel up to an isomorphism. We say φ is a d-isogeny or an
isogeny of degree d whenever # kerφ = d. Any isogeny can be written as a com-
position of prime-degree isogenies and the degree is multiplicative, in the sense
that deg(φ1 ◦ φ2) = deg(φ1) deg(φ2).

For each isogeny φ : E → E′ there also exists a dual d-isogeny φ̂ : E′ → E
satisfying φ ◦ φ̂ = [d] and φ̂ ◦ φ = [d], where [d] is the isogeny P → [d]P on E
and E′ respectively. Isogenies of degree d are computed in time O(d) by using
Vélu’s formulas, or for sufficiently large d in O(

√
d), using the more recent

√
élu’s

formulas [3]. In practice, if the degree is de with d small, one splits a de-isogeny
as the composition of e d-isogenies each computed with Vélu’s formula.

We are now ready to state a formal definition of the SIPFD problem.

Definition 1 (SIPFD problem). Let p, ` be two prime numbers. Consider E
and E′ two supersingular elliptic curves defined over Fp2 such that #E(Fp2) =
#E′(Fp2). Given e ∈ N find an isogeny of degree `e from E to E′, if it exists.

6 Bellini et al.

Concretely, in the remainder of this work we assume that the secret isogeny
is of degree 2e i.e., we fix ` = 2, and define it over Fp2 . Moreover, we assume
p = f ·2e−1 for some odd cofactor f and that #E(Fp2) = (p+ 1)2. This allows us
to have the 2e-torsion subgroup defined over Fp2 . Finally, we work with instances
where e is half the bitlength of the prime p. While all these conditions are more
specific than the general SIPFD problem, they are efficiency-oriented decisions
that are common practice in isogeny-based protocols and we do not exploit them
beyond that.

Let P,Q be a basis of E[2e]. Then the kernel of any 2e-isogeny can be written
as either 〈P + [sk]Q〉, with sk ∈ {0, . . . , 2e − 1} or 〈[sk][2]P + Q〉, with sk ∈
{0, . . . , 2e−1 − 1}. For simplicity, in our implementation we work with isogeny
kernels are always of the form 〈P + [sk]Q〉. There is little loss of generality, since
attacking the remaining kernels would only require re-labelling the basis and
re-running the algorithm.

An isogeny φ : E0 → E1 of degree `e can be written as a composition
φ = φ1 ◦ φ0 of two isogenies of degree `e/2 (assuming an even e for simplicity),
where φ0 : E0 → Em and φ1 : Em → E1 for some middle curve Em. Since there
exists a dual isogeny φ̂1 : E1 → Em, one can conduct a Meet in the Middle
(MitM) attack by exploring all the possible `e/2-isogenies emanating from E0

and E1, and finding the pair of isogenies that arrive to the same curve Em (up
to isomorphism). The largest attack recorded on the SIPFD problem, conducted
by Udovenko and Vitto7 [30], used this strategy to break an instance with ` = 2
and e = 88.

2.2 Meet in the Middle (MitM)

Let us briefly recall the MitM procedure to solve the SIPFD for ` = 2. We first
compute and store all 2e/2-isogenous curves to E0 in a table T (identified via
their j-invariants). Then we proceed by computing each 2e/2-isogenous curve to
E1 and check if its j-invariant is present in table T . Any matching pair then
allows to recover the secret isogeny as outlined in the previous section.

Complexity. Let N := 2e/2. The worst-case time complexity of the MitM attack
is 2N evaluations of degree-2e/2 isogenies, while in the average case 1.5N such
evaluations are necessary. The space complexity is dominated by the size of the
table to store the N j-invariants and scalars.

In a memory restricted setting, where the table size is limited to W entries,
the MitM attack is performed in batches. In each batch, we compute and store
the output of W isogenies from E0, then compute and compare against each
of the N isogenies from E1 without storing them. The number of batches is
N/W where each batch performs W isogenies from E0 and N isogenies from E1,
yielding a total of N

W (N +W) evaluations of 2e/2-isogenies.

7 This work was realized as an attack on SIKE, but does not exploit the torsion point
images and can be regarded as an attack on SIPFD in general.

Parallel Isogeny Path Finding with Limited Memory 7

Depth-First Search methodology. In 2018, Adj et al. [1, §3.2] showed that
computing the isogenies from each side in a depth-first tree fashion yields perfor-
mance improvements. The improvement stems from the iterative construction of
the 2e/2-isogenies as e/2 degree-2 isogenies. Here, whenever two isogenies share
the same initial path, the depth-first approach avoids re-computation of those
steps.

In order to adapt to the limited-memory scenario, let us assume that the
available memory can hold W = 2ω entries. Then each batch of isogenies from
E0 can be obtained by following a fixed path for the first e/2−ω steps, and then
computing the whole subtree of depth ω from this node.

Also, the attack is easy to parallelize. Assuming 2c threads are used, all trees
can be branched sequentially for c steps to obtain 2c subtrees, each of which is
assigned to a different core. This methodology for evaluating trees in batches
and with multiple cores is summarized in Figure 1.

E0 E1

Batch 1

Batch 2

Batch 3

Batch 4

Core 1

Core 2

Core 3

Core 4

Core 1

Core 2
Core 3

Core 4

e/2 − ω c ω − c e/2 − c c

S
ize

2
ω

Fig. 1: The batched Meet-in-the-Middle depth-first approach: finding a 2e-
isogeny between E0 and E1 with 2c cores and 2ω memory. In this example,
e = 12, c = 2, and ω = 4.

Since a binary tree of depth ω has 2ω+1 − 2 edges, each batch is computing
e/2 − ω + 2ω+1 − 2 isogenies of degree 2 for the side corresponding to E0, and
the whole tree with 2e/2+1 − 2 isogenies for the side corresponding to E1. The

8 Bellini et al.

expected cost corresponding to half of the batches is then

1

2
2e/2−ω

(
2e/2+1 + 2ω+1 + e/2− ω − 4

)
≈ 2e−ω

computations of 2-isogenies.

2.3 Parallel Collision Search

Given a random function f : S → S, van Oorschot and Wiener’s method [26]
is a parallel procedure to find collisions in f . The main idea of the algorithm
is to construct in parallel several chains of evaluations xi = f(xi−1), starting
from random seeds x0. Further, a small fraction of the points in S is called
distinguished based on an arbitrary criterion (e.g. that the binary representation
of x ∈ S ends with a certain number of zeros). A chain continues until it reaches
a distinguished point. Then this point is compared against a hash table including
all previously found distinguished points. Further, to avoid infinite loops, chains
are aborted after their length exceeds a specified threshold.

Two chains ending in the same distinguished point indicate a collision be-
tween those chains. This collision can be efficiently reconstructed if the seeds
x0, x

′
0 and the lengths d, d′ of the colliding chains are known. Therefore, assum-

ing d > d′ we take d−d′ steps on the longer chain (starting from x0). From there
on we take simultaneous steps on both chains, checking after each step if the
collision has occurred. Hence, the hash table stores for each found distinguished
point the triplet (x0, xd, d) indexed by xd.

Complexity. Let N be the size of the set S, θ the proportion of points that are
distinguished, and W the amount of distinguished triplets that we can store.
Since each chain has an average length of 1/θ, the chains represented by the
stored triplets (once the hash table is completely filled) include an average of
W/θ points. Therefore the probability that a given evaluation of f collides with
any of these points is W/Nθ. After a collision takes place, the chain needs to
continue for an additional 1/θ steps on average before it reaches a distinguished
point and the collision is detected. At this point, the two involved chains must be
reconstructed from the start to find the exact step at which the collision occurred,
yielding a total of Nθ/W + 3/θ evaluations of f to find a collision. The optimal
choice for θ is

√
3W/N yielding a cost of 2

√
3N/W per collision. Note, however

that this analysis assumes a table that already contains W triplets. To capture
the transition effect of the table filling up, van Oorschot and Wiener [26] model
θ = α

√
W/N for a parameter α that is experimentally measured to be optimal

at α = 2.25. The resulting cost per collision is found to be linear in
√
N/W as

long as 210 < W < N/210.
Note that any random function from S to itself is expected to have N/2

collisions, however, many applications, including the SIPFD , require looking for
one specific collision that we refer to as the “golden collision” [31,12,14,23]. This
means that the attack has to find N/4 different collisions on average before
stumbling upon the golden collision, bringing the total cost to O(

√
N3/W)

function evaluations.

Parallel Isogeny Path Finding with Limited Memory 9

Application to the SIPFD problem To attack the SIPFD problem and find
the kernel of a degree-2e isogeny between E0 and E1, we assume for simplicity
that e is even and define S = {0, 1} × {0, . . . , 2e/2 − 1} so that N = 2e/2+1. We
also define the map g : S → Fp2 , (c, k) 7→ j(Ec/〈Pc + [k]Qc〉), where (Pc, Qc)

are a predefined basis of the 2e/2-torsion on either side as before. As explained
in Section 2.1, the function g yields a bijection between S and the set of 2e/2-
isogenies with kernel 〈Pc + [k]Qc〉 from the curves on either side. A collision
g(c, k) = g(c′, k′) with c 6= c′ implies two isogenous curves starting on opposite
sides and meeting at a middle curve (up to isomorphism).

To apply the parallel collision search, we need a function f that maps S back
to itself. Hence, we have to work with the composition f = h ◦ g where h is an
arbitrary function mapping j-invariants back to S. This composition introduces
several fake collisions that are produced by the underlying hash function while
there is still only one (golden) collision that leads to the secret isogeny.

Note that for a certain (unlucky) choice of hash function h the golden collision
might not be detectable.8 Therefore, we have to periodically switch the hash
function h. More precisely, we switch the function whenever we found a certain
amount C of distinguished points. If we model C = β ·W for some constant
β, then each hash function will have a probability of 2βW/N for finding the
golden collision. Experimentally, van Oorschot and Wiener [26] found β = 10
to perform best, and the average running time of the attack is measured to
be (2.5

√
N3/W)/m, where m is the number of processors computing paths in

parallel.

3 Accurate formulas for vOW and MitM

So far, we have provided theoretical cost functions for the golden collision search
in terms of the number of evaluations of the function f , and for the batched
depth-first MitM in terms of the number of 2-isogeny evaluations. We now pro-
vide a more detailed cost model in terms of elliptic curve operations to make
these costs directly comparable. These formulas give a first indication of which
memory regime favors which algorithm and, further, they form the starting point
for parameter selection in our implementation.

3.1 Meet in the Middle

For the depth-first MitM, we have counted only the 2-isogeny evaluations but
the total cost involves also obtaining the kernel points of each isogeny and push-
ing the basis points through the isogeny. As described in [1], the total cost of
processing a node at depth d can be summarized as:

– 2e/2−d point doublings to compute the kernel points
– 2 isogeny constructions to compute the children nodes

8 For instance, one of the points that leads to the golden collision might be part of a
cycle that does not reach a distinguished point.

10 Bellini et al.

– 1 point doubling, 1 point addition, and 6 isogeny evaluations to push the
basis through the isogenies.

Nodes at the second-to-last level represent an exception since once we obtain the
leaves, we no longer require pushing the bases and instead we need to compute
the j-invariant.

Let us refer by ADD, DBL, ISOG, EVAL, JINV to the cost of a point addition,
point doubling, 2-isogeny construction, 2-isogeny evaluation at a point, and j-
invariant computation, respectively. The total cost of computing a tree of depth
e/2 is then

DFS(e/2) =

e/2−2∑
d=0

2d
(

(2e/2−d + 1)DBL + 2ISOG + 1ADD + 6EVAL
)

+ 2e/2−1 (2DBL + 2ISOG + 2JINV)

= 2e/2−1 ((e+ 1)DBL + 4ISOG + 1ADD + 6EVAL + 2JINV) +O(1).

The expected time of the whole MitM attack using 2ω memory entries, which
computes a tree of depth ω on one side and a tree of depth e/2 on the other side
for each batch, is then

MitM(e, ω) =
2e/2

2 · 2ω
(DFS(ω) +DFS(e/2))

≈ (2e−ω−2 + 2e/2−2) (DBL + 4ISOG + 1ADD + 6EVAL + 2JINV)

+ (2e−ω−2e/2 + 2e/2−2ω)DBL.

3.2 Golden Collision Search

For the golden collision search, the cost of an evaluation of the random function,
given a scalar k ∈ Z2e/2 and a bit c ∈ {0, 1}, consists of

– computing the kernel point Pi + [k]Qi,

– constructing a single 2e/2-isogeny with said kernel and

– computing the j-invariant of the output curve.

The first step is usually done with a three-point Montgomery ladder which
has an average cost of e

2 (DBL+ADD). For the second step, it is shown in [10] that

a “balanced” strategy for computing a 2e/2-isogeny costs about e
4 log(e/2)DBL+

e
4 log(e/2)EVAL+ e

2ISOG. Hence, the total expected sequential time of the golden
collision search is

GCS(e, ω) = 2.5 · 23(e/2+1)/2−ω/2

×
(e

4
log(e/2)(DBL + EVAL) +

e

2
ISOG + JINV +

e

2
(DBL + ADD)

)
.

Parallel Isogeny Path Finding with Limited Memory 11

3.3 Simplified Cost Models for Montgomery Curves

Assuming that we use Montgomery curve arithmetic, then the cost of curve
operations can be expressed in terms of field additions, multiplications, squares
and inverses (A, M, S, I, respectively) as follows (compare to [2])

DBL = 4A + 4M + 2S, ADD = 6A + 4M + 2S, ISOG = A + 2S and

EVAL = 6A + 4M, JINV = 8A + 3M + 4S + I.

Moreover, we assume M = 1.5S = 100A = 0.02I which we have obtained exper-
imentally from our quadratic field arithmetic implementation. The cost models
can then be written in units of M as

MitM(e, ω)/M ≈ 22799

600

(
2e−ω + 2e/2

)
+

403

300

(
2e−ω · e/2 + 2e/2 · ω

)
(1)

and

GCS(e, ω)/M ≈ 2.5 · 23(e/2+1)/2−ω/2

(
4181

75
+

1211

200
e+

283

120
e log(e/2)

)
(2)

For a given value of e and a memory budget ω, we can now determine which
algorithm is favorable. Figure 2 visualizes three different regions. For ω ≥ e/2
the full MitM attack without batching can be applied. The batched MitM attack
is found to have a narrow area of application at the border of the region where
the golden collision search is optimal, which dominates the largest part of the
limited-memory area.

40 60 80 100 120 140 160 180 200 220 240
10

20

30

40

50

60

70

O
ne

-s
ho

t
M

it
M

B
at

ch
ed

M
it
M

G
ol

de
n

C
ol

lis
io

n
Se

ar
ch

Exponent (e)

M
em

o
ry

(ω
)

Fig. 2: Regions in the (e, ω) space where each attack is optimal for solving a
SIPFD problem of size 2e with memory limited to 2w entries.

We would like to stress, that this comparison is based on idealized models
involving only underlying field arithmetic operations. They do not take into

12 Bellini et al.

account any practical effects, as e.g. memory access timings or parallelization
issues. Nevertheless, it gives a first indication of the superiority of the golden
collision search in the limited memory setting.

4 Practical Results on solving the SIPFD

In this section we present our experimental results with a focus on our GPU
implementation of the van Oorschot and Wiener golden collision search. But
first, let us start with an experimental validation of our theoretical estimates of
the MitM algorithm and its batched version from Section 3.1.

4.1 Practical Results of our MitM CPU Implementation

We have implemented the batched depth-first MitM attack and run experiments
on an AMD EPYC 7763 64-Core processor at 2.45 GHz, running 32 threads in
parallel.

The j-invariants in each batch are stored in RAM, along with the correspond-
ing scalar sk. Each processor maintains an array with j-invariants that have been
calculated and sort lexicographically, to reduce the number of memory accesses
when searching for the collision.

For measuring the performance of the batched depth-first MitM with the
memory parameter ω, we fix a small instance with exponent e = 50 and bench-
mark the attack for ω with 18 ≤ ω ≤ 25. These timings are compared to
Equation 1, using a separate benchmark for the cost of M, i.e. a multiplica-
tion operation of our implementation. As shown in Figure 3, the experimental
measurements are found to adhere to the model up to an overhead factor of
about 2, which is explained by the memory access times and sorting overheads
that are not accounted for in Equation 1.

18 19 20 21 22 23 24 25

24

25

26

27

28

29

210

Memory (ω)

T
im

e
(s

ec
o
n
d
s)

estimate via whole algorithm

estimate via multiplications

Fig. 3: Completion time of the MitM attack for an exponent e = 50 using 32
physical processors and different memory bounds compared to the prediction in
Equation 1.

Parallel Isogeny Path Finding with Limited Memory 13

We then tested the attack for increasing values of e while limiting the memory
to ω ≤ 28. For e > 56, the batched MitM must be used and we have estimated
the complexity of the whole attack by completing a single batch. As expected,
Figure 4 shows that the slope of the cost changes drastically once we enter the
limited-memory region. The overhead factor between the experimental results
and the theoretical model is always found to be less than 2.6. We conclude that
Equation 1 can be used to estimate the cost of the attack for larger parameters
without significant overhead.

32 40 48 56 64 72
2−9

20

29

218

227

o
n

e-
sh

o
t b

a
tch

ed

Exponent (e)

T
im

e
(s

ec
o
n

d
s)

estimate via whole algorithm

estimate via multiplications

Fig. 4: Completion time of the MitM attack for various exponent sizes.

For comparison, the instance solved by Udovenko and Vitto in [30] was in
the unlimited-memory setting using e = 88 and ω = 44. Based on our model
and adjusting to their clock frequency, we obtain an estimate of 9.47 core-years
for the attack. This is close to Udovenko and Vitto’s experimental result of 8.5
core-years, despite the fact that they used network storage.

4.2 Practical considerations for our vOW GPU implementation

Let us give a brief explanation of the GPU architecture we used, followed by a
summary of practical features of our implementation.

GPU architecture. An NVIDIA CUDA device allows to execute thousands of
threads in parallel. Following the Single Instructions Multiple Thread (SIMT)
paradigm, a collection of 32 threads is bundled in warps that can only perform
the same instruction on different data. One of the main challenges when pro-
gramming CUDA devices is to decrease the memory latency, i.e., the time the
threads are waiting for the data to be loaded into the corresponding registers.
Therefore all CUDA devices have a multiple-level memory hierarchy incorporat-
ing memory and caches of different size and speed.

The NVIDIA A100 has an 80GB sized main memory, connected to other
GPUs in the same cluster via a high throughput bus called NVLINK. However,
for performing computations, data must be propagated through the two levels of

14 Bellini et al.

caches down to the registers. Each thread has only a very limited amount of these
registers. Whenever more registers are addressed than physically available, the
memory must be outsourced to other memory levels, causing latency and stalls.
Further, whenever more threads are requested than the hardware can handle con-
currently, a scheduling is performed, by swapping active threads against queued
ones. As a consequence, caches must be invalided, which leads to further memory
latency. However, there is usually an optimal number of concurrent threads such
that memory latency can be minimized by an optimal scheduling.

GPU potential of vOW. Note that the major task performed inside the vOW
algorithm is the computation of chains of evaluations of the given function on
different inputs. Therefore, it fits into the SIMT paradigm and can effectively
be parallelized on the GPU. Further, since the devices are inherently memory-
constrained, they profit from the good asymptotic trade-off curve of the vOW
collision search.

Practical features

Hash function. For performance improvements, we heuristically model hash
functions with `-bit output as the projection to the first ` bits of the input.
To obtain a randomized version we xor a fixed random nonce to the output.
That is, for a given nonce r ∈ F`

2 the hash function hr : F∗2 7→ F`
2 is defined as

hr(x) := (x1, . . . , x`) + r. This is justified by the fact that the inputs usually
inherit already enough randomness, which is confirmed in our experiments.

Memory optimizations. The bit-size of every triplet (x0, xd, d) is roughly e +
log(20/θ), since x0, xd encode 2e/2-isogenies and the length of each chain is
d < 20/θ. However, due to our hash function choice, we can omit logW bits of
xd referring to its address in the table, plus another log(1/θ) bits from the fact
that it is a distinguished point, giving a size of roughly e+ log(20)− logW bits
per triplet.

PTX assembly. We provide core functionalities of our GPU implementation in
PTX (Parallel Thread eXecution) assembly, which is the low level instruction set
of NVIDIA CUDA GPUs. This includes our own optimized Fp arithmetic. In this
context, we provide optimized version of both the schoolbook and the Karatsuba
algorithm for integer multiplication, as well as the Montgomery reduction.

Data structure. For storing distinguished points we compare the performance
of a standard hash table against the Packed Radix-Tree-List (PRTL) proposed
in [29]. The PRTL is a hash table that stores a linked list at each address, instead
of single elements. This avoids the need for element replacement in case of hash
collisions. Further it identifies the address of an element via its prefix (radix)
and stores only the prefix-truncated element. The packed property of the PRTL
relates to distinguished point triplets being stored as a single bit-vector, thus,

Parallel Isogeny Path Finding with Limited Memory 15

avoiding the waste of space due to alignment. We ran CPU experiments with
both data structures to identify the optimal choice prior to translating the code
to the GPU setting. Eventually, we adopted the packed property and the use of
prefixes, while we found no improvement in performance from using linked lists.

Precomputation. As discussed in [9], the time Tf required for a function evalu-
ation can be decreased via precomputation. For a depth parameter d, one can
precompute the 2d curves corresponding to all the 2d−isogenies from E0 and
E1. When computing a 2e/2-isogeny, the initial d steps are replaced by a table
lookup and we end up computing only a 2e/2−d-isogeny. Note that the memory
needed for precomputation grows exponentially with d and so asymptotically
it does not play a relevant role. However, for relatively small parameters it can
provide valuable savings and speed up our experiments without affecting metrics
such as the number of calls to f .

4.3 Practical results of our vOW GPU implementation

In the following we use the practical performance of our implementation together
with the known theoretical behavior to extrapolate the time to solve larger
instances. In the original work of van Oorschodt-Wiener the time complexity of
the procedure was found to be well approximated by

1

m
(2.5

√
N3/W) · Tf , (3)

where Tf is the cost per function evaluation. Therefore, we measure the cost Tf
of our implementation which then allows us to derive an estimate for arbitrary
instances. Further, we compare this estimate against the theoretical estimate via
Equation 2 and an estimate based on collecting a certain amount of distinguished
points.

Additionally, we verify that our GPU implementation using the functions
specified in Section 2.3 has a similar behavior as the CPU implementation using
random functions of [26]. This increases the reliability in our estimates, as it
shows that the time complexity of our implementation is still well approximated
by Equation 3. Let us start with this verification.

Verifying the theoretical behavior. In [26] van Oorschot and Wiener find
that on average it takes 0.45N

W randomized versions of the function to find the
solution, which in our case corresponds to random choices of the hash function
(compare to Section 2.3). In their experiments, the function is changed after
β · W distinguished points have been discovered, where a value of β = 10 is
found to be optimal. Further, chains are aborted after they reach a length of
20θ−1, i.e., 20 times their expected length.

Optimal value of β. Let us first verify that an amount of 10 ·W distinguished
points until we abort the collision search for the current version of the function is

16 Bellini et al.

still a suitable choice for our implementation. Table 1 shows the average running
time of our vOW implementation using different values of β. We conclude that
the values around β = 10 give comparable performance, with β = 10 being
optimal in most of the experiments. The results are averaged over 100 (e = 34)
and 50 (e = 36) runs respectively.

e ω β = 5 β = 10 β = 15 β = 20

34
8 405.08 384.74 371.67 335.88
9 244.30 198.86 238.60 285.97
10 173.73 207.37 136.80 179.93

36
9 704.65 567.89 654.15 599.61
10 419.87 373.16 489.71 542.00
11 398.72 365.62 314.26 290.49

Table 1: Running time in seconds for different values of β.

Expected number of randomized versions of the function. Now that we confirmed
the optimal choice of β, we expect that the required amount of random functions
until success also matches the one from [26]. In this case, the number of required
randomizations of the function until the golden collision is found should follow
a geometric distribution with parameter close to W

0.45N .
We confirm this distribution in an experiment for e = 30, in which case we

have N = 2e/2+1 = 216 and use a hash table that can store up to W = 27 dis-
tinguished points. We then solved 1000 such instances and recorded for each the
number of randomized versions of the function until the solution was found. On
average, it took 208.28 versions compared to the approximation of 0.45N

W = 230.4,
despite slightly surpassing the W ≤ N/210 limit where the vOW experiments
took place. In Figure 5 we visualize the obtained frequencies (triangles) and give
as comparison the probabilities of the geometric distribution with parameter

1
208.27 (diamonds). In this figure we accumulated the frequencies in each interval
of size 20 to allow for a better visualization.

Measuring the time per function evaluation. Next we measured the time
per function evaluation that the GPU implementation requires on our hardware
for different values of e. To pick our parameters, we first set W to the largest
power of 2 such that the memory would not surpass our GPU’s 80 GB budget,
then chose the largest precomputation depth that would fit in the remaining
memory. In the smaller instances, the memory and precomputation depth were
additionally subject to a cap of W ≤ N/28 and d ≤ e/4 in the smaller instances.
After performing the precomputation, we measured the time per function evalu-
ation as illustrated in Figure 6. The jumps in the graph indicate that the bitsize
of the used prime, which is roughly 2e, exceeds the next 64-bit boundary. In

Parallel Isogeny Path Finding with Limited Memory 17

0 200 400 600 800 1,000 1,200 1,400

0

0.02

0.04

0.06

0.08

0.1

ranomizations until success

re
la

ti
v
e

fr
eq

u
en

cy

geometric distribution

experimental frequencies

Fig. 5: Number of used randomizations to find the solution for e = 30, W = 27

those cases the prime occupies an additional register, which leads to a slowdown
of the Fp2 -arithmetic.

30 40 50 60 70 80 90 100 110 120 130

0

2

4

6

8

Exponent e

T
im

e
T
f

in
m

s

Fig. 6: Cost per function evaluation using 6912 threads in parallel. Each data
point is averaged over 4096 evaluations.

Performance estimation using a single GPU Now, the measured timings
allow us to estimate the time required by our implementation to solve larger
instances. To compute this estimate we use Equation 3 with the measured value
for Tf and the number of concurrent threads m used on the GPU. The resulting
estimate is shown in Figure 7 (diamonds).

Note that the steeper incline in the estimation for e > 62 stems from the fact
that for e = 62 we reach the maximum number of concurrent threads for our
implementation, which we find to be 27, 648 threads. Further, from e = 80 on-
wards we additionally hit our hash table memory limit of W = 233 elements. We
summarize in Table 2 optimal configurations for the SIPFD instances executed
on our single GPU platform.

We also obtain an alternative estimate based on the time to finish one ver-
sion of the random function in the full implementation of the attack. That is,

18 Bellini et al.

e 30 32 34 36 38 40 42 48 50 52 56 62 68 74 80

d 9 9 10 11 11 12 12 14 14 15 16 17 19 21 22
logW 8 9 10 11 12 13 14 17 18 19 21 24 27 30 33

Table 2: Optimal configurations for vOW on single GPU with 80GB memory.
Configurations for e > 80 match the one of e = 80.

30 40 50 60 70 80 90 100 110 120 130
212

227

242

257

272

Exponent e

T
im

e
in

m
s

estimate via function evaluations

estimate via full algorithm

estimate via multiplications

Fig. 7: Estimated time to solve instances of SIPFD on a single GPU

we measure the time to obtain 10 ·W distinguished points and then multiply
by the average number 0.45N

W of random functions needed. This method should
capture the performance more accurately as it includes practical effects such as
the memory access costs. For e ≤ 62 we averaged 100 experiments of completing
a random function, while for larger instances we decreased the number of exper-
iments and for e ≥ 76 we only computed a 1/210 fraction of the needed points
and scaled the resulting time accordingly. The results of this second estimation
are also shown in Figure 7 (circles) and present an overhead factor of about 8.
This overhead is likely the result of imperfect parallelization speedups in GPUs,
as well as the cost of memory accesses, but it is observed to decrease towards
larger instances.

Finally, we benchmarked the average cost of field multiplications in our GPU
setup to obtain a third estimate based on Equation 2, which is also presented
in Figure 7 (triangles). This estimate closely matches the estimate via the full
algorithm, especially for larger instances where distinguished points are rare and
memory accesses are more sporadic.

Overall, our measurements support the use of any of the three methods de-
scribed to obtain accurate extrapolations of the algorithm’s running time. For a
concrete example, we estimate that a problem with e = 88 which corresponds to
the instance solved by Udovenko and Vitto in [30], would take about 44 years on
a single GPU with 80GB memory limit. While this is not yet very impressive,
compared to the 10 CPU years reported in [30], a single GPU is far less expen-
sive and powerful than the 128TB network storage cluster used for that record.
Therefore in the following section we give an estimate of the attack when scaling
to a multiple GPU architecture.

Parallel Isogeny Path Finding with Limited Memory 19

Multiple GPU estimation. We explored different strategies for parallelizing
the vOW algorithm across multiple GPUs. In the first strategy, every GPU in-
dependently runs its own instantiation of the algorithm. The advantage of this
approach lies its simplicity, which minimizes overhead since no communication
between GPUs is necessary. On the downside, it provides only a linear speedup
in the number of GPUs, since additional memory resources are not shared. In
our second approach, GPUs report distinguished points to the same hash table,
which is stored distributed over the global memory of all GPUs. The advantage
here clearly lies in the increase of the overall memory, which allows to make use
of the good time-memory trade-off behavior inherent to the vOW algorithm.
However, this approach introduces a communication overhead due to the dis-
tributed memory access. On top of that, the data needs to be send over the
slower NVLINK instead of the internal memory bus of the GPU.

We performed an extrapolation of the time to solve different sized instances in
the distributed setting, similar to the extrapolation via the full algorithm in the
single GPU setting. In this experiment, we allocated a hash table able to store up
to W = 234 distinguished triplets, which for large instances corresponds to about
200GB, across the memory of four GPUs connected via an NVLINK bus. We
then measured the time to collect and store a certain amount X of distinguished

points. Multiplying this time by 10·W
X · 0.45 · 2

e/2+1

W = 4.5 · 2e/2+1/X, gives an
extrapolation of the running time of completing the whole attack.

30 40 50 60 70 80 90 100 110 120 130
212

226

240

254

268

Exponent e

T
im

e
in

m
s

estimate via full algorithm

estimate via multiplications

Fig. 8: Estimated time to solve instances of SIPFD on 4 GPUs connected via an
NVLINK bus

Figure 8 visualizes the obtained extrapolations (circles) in comparison to the
estimate via the multiplication benchmark (triangles), i.e., using Equation 2.
We observe, similar to the single GPU case, a slight underestimation by using
Equation 2, which for larger instances vanishes. For the larger instances we
obtain an underestimation by a factor of roughly two, which corresponds to
the performance difference of the NVLINK bus in comparison to the internal
memory bus. However, since for larger instances with fixed memory budget the
time to compute distinguished points dominates, the factor is expected to vanish.

20 Bellini et al.

Hence, we finally conclude that using the distributed memory architecture does
not lead to unexpected performance slowdowns.

Comparing both strategies. Let us determine, which of the parallelization strate-
gies is preferable for a specific amount of GPUs. For large instances, the com-
putational cost of the multi-GPU as well as the single-GPU setting, are well
approximated by Equation 2. Therefore the speedup when parallelizing via dis-
tributed memory using X GPUs is

GCS(e, ω)

GCS(e, ω + logX)/X
= X3/2,

and, hence, preferable over the strategy via independent executions with a
speedup of only X. Also, if comparing the exact numbers obtained from the
estimate via the full algorithm in the distributed memory setting and the sin-
gle GPU setting, we find that the distributed setting offers a better practical
performance already for e ≥ 62.

Extrapolating e = 88 and the way forward. Based on our practical timings we
estimate the time to solve an instance with e = 88 on 4 GPUs to about 32
GPU years in comparison to roughly 44 GPU years in the single GPU setting.
Moreover, if we scale the attack to 16 GPUs, which is the maximum that the
NVLINK bus currently supports, we estimate the time to only 5.6 GPU years,
which means the experiment would finish in about 4 months. We therefore con-
clude from our experiments that for larger instances, with a memory budget
of 128TB in the MitM case and 80GB per device in the GPU case, the vOW
algorithm is the preferred choice.

60 70 80 90 100 110 120 130
24

219

234

249

264

96

Exponent e

T
im

e
in

m
s

MitM estimate CPU

vOW estimate GPU

vOW estimate CPU

Fig. 9: Estimated time to solve instances of SIPFD on 16 NVIDIA Ampere GPUs
with 80GB each connected via an NVLINK bus in comparison to a cluster with
128TB storage and 256 cores.

In Figure 9 we visualize the result of the estimation via Equation 1 and 2
in both settings assuming 256 cores with 128TB of memory in the CPU case

Parallel Isogeny Path Finding with Limited Memory 21

and 16 NVIDIA A100s connected via an NVLINK bus in the GPU case. This
figure illustrates the estimate for running the MitM on the CPU (solid line)
and the vOW on the GPU system (dashed line). We find that under these fixed
resources, the break-even point from where vOW offers a better performance
lies at e = 96. Additionally, we provide the estimate if we instead execute vOW
on the corresponding CPU system (dash dotted line). Observe, that even under
the unrealistic assumption that the 128TB of memory would allow for efficient
random access (for the vOW hash table), it does not outperform the GPU based
approach for any instance size. Moreover, even under this memory advantage in
case of e = 96, the GPU implementation offers a speedup of almost two magni-
tudes (82x). We conclude that the way forward when tackling larger instances
of the SIPFD clearly favors vOW implementations on GPU platforms.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domı́nguez, J., Menezes, A., Rodŕıguez-
Henŕıquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jr., M.J.J. (eds.) Selected Areas in Cryptography - SAC 2018
- 25th International Conference, Calgary, AB, Canada, August 15-17, 2018, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 11349, pp. 322–343.
Springer (2018)

2. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Pereira, G., Renes,
J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key Encapsulation. Third
Round Candidate of the NIST’s post-quantum cryptography standardization pro-
cess (2020), available at: https://sike.org/

3. Bernstein, D.J., Feo, L.D., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree . ANTS XIV, The Open Book Series 4, 39–55 (2020)

4. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F. (eds.)
Advances in Cryptology - EUROCRYPT 2021, Part I. Lecture Notes in Computer
Science, vol. 12696, pp. 302–326. Springer (2021)

5. Castryck, W., Decru, T.: An efficient key recovery attack on sidh (preliminary
version). Cryptology ePrint Archive, Paper 2022/975 (2022), https://eprint.

iacr.org/2022/975, https://eprint.iacr.org/2022/975
6. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from ex-

pander graphs. J. Cryptol. 22(1), 93–113 (2009)
7. Chávez-Saab, J., Rodŕıguez-Henŕıquez, F., Tibouchi, M.: Verifiable isogeny walks:

Towards an isogeny-based postquantum VDF. In: AlTawy, R., Hülsing, A. (eds.)
Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 13203,
pp. 441–460. Springer (2021)

8. Costello, C.: The case for SIKE: A decade of the supersingular isogeny problem.
IACR Cryptol. ePrint Arch. p. 543 (2021), https://eprint.iacr.org/2021/543

9. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical crypt-
analysis of SIKE in practice. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography - PKC 2020 - 23rd IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May
4-7, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111,
pp. 505–534. Springer (2020)

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2021/543

22 Bellini et al.

10. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

11. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) Advances in
Cryptology - ASIACRYPT 2019, Part I. Lecture Notes in Computer Science, vol.
11921, pp. 248–277. Springer (2019)

12. Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and lpn algo-
rithms via multiple collisions. In: IMA International Conference on Cryptography
and Coding. pp. 178–199. Springer (2019)

13. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016)

14. Esser, A., May, A.: Low weight discrete logarithm and subset sum in 20.65n with
polynomial memory. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 94–122. Springer (2020)

15. Fouotsa, T.B.: SIDH with masked torsion point images. Cryptology ePrint
Archive, Paper 2022/1054 (2022), https://eprint.iacr.org/2022/1054, https:
//eprint.iacr.org/2022/1054

16. Galbraith, S.D.: Constructing isogenies between elliptic curves over finite fields.
LMS J. Comput. Math 2, 118–138 (1999)

17. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) Advances
in Cryptology - ASIACRYPT 2017, Part I. Lecture Notes in Computer Science,
vol. 10624, pp. 3–33. Springer (2017)

18. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B. (ed.) Post-Quantum Cryptography - 4th Inter-
national Workshop, PQCrypto 2011. Lecture Notes in Computer Science, vol. 7071,
pp. 19–34. Springer (2011)

19. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 11692, pp. 32–61. Springer (2019)

20. Luca De Feo and Samuel Dobson and Steven D. Galbraith and Lukas Zobernig:
SIDH proof of knowledge. IACR Cryptol. ePrint Arch. p. 1023 (2021), https:

//eprint.iacr.org/2021/1023, to appear in ASIACRYPT 2022
21. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-

tology ePrint Archive, Paper 2022/1026 (2022), https://eprint.iacr.org/2022/
1026, https://eprint.iacr.org/2022/1026

22. Maria Corte-Real Santos, C.C., Shi, J.: Accelerating the Delfs-Galbraith algorithm
with fast subfield root detection. In: Dodis, Y., Shrimpton, T. (eds.) Advances in
Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 13509, pp. 285–314. Springer (2022)

23. May, A.: How to meet ternary lwe keys. In: Annual International Cryptology Con-
ference. pp. 701–731. Springer (2021)

24. Moriya, T.: Masked-degree sidh. Cryptology ePrint Archive, Paper 2022/1019
(2022), https://eprint.iacr.org/2022/1019, https://eprint.iacr.org/2022/
1019

25. NIST: NIST Post-Quantum Cryptography Standardization Process. Second Round
Candidates (2017), available at: https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2021/1023
https://eprint.iacr.org/2021/1023
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1019
https://eprint.iacr.org/2022/1019
https://eprint.iacr.org/2022/1019

Parallel Isogeny Path Finding with Limited Memory 23

26. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. J. Cryptol. 12(1), 1–28 (1999)

27. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Paper
2022/1038 (2022), https://eprint.iacr.org/2022/1038, https://eprint.iacr.
org/2022/1038

28. TATE, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Math-
ematicae 2, 134–144 (1966), http://eudml.org/doc/141848

29. Trimoska, M., Ionica, S., Dequen, G.: Time-memory analysis of parallel collision
search algorithms. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2), 254–274
(2021)

30. Udovenko, A., Vitto, G.: Breaking the SIKEp182 challenge. Cryptology ePrint
Archive, Paper 2021/1421. Accepted to the SAC 2022 conference. (2021), https:
//eprint.iacr.org/2021/1421, https://eprint.iacr.org/2021/1421

31. van Vredendaal, C.: Reduced memory meet-in-the-middle attack against the ntru
private key. LMS Journal of Computation and Mathematics 19(A), 43–57 (2016)

32. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, Second
Edition. Chapman & Hall/CRC, 2 edn. (2008)

33. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.)
Financial Cryptography and Data Security. Lecture Notes in Computer Science,
vol. 10322, pp. 163–181. Springer (2017)

https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1038
http://eudml.org/doc/141848
https://eprint.iacr.org/2021/1421
https://eprint.iacr.org/2021/1421
https://eprint.iacr.org/2021/1421

	Parallel Isogeny Path Finding with Limited Memory

