
I want to ride my BICYCL:
BICYCL Implements CryptographY in CLass groups

Cyril Bouvier1, Guilhem Castagnos2, Laurent Imbert1, and Fabien
Laguillaumie1

1 Université de Montpellier, CNRS, LIRMM, Montpellier, France.
{cyril.bouvier,laurent.imbert,fabien.laguillaumie}@lirmm.fr

2 Université de Bordeaux, CNRS, INRIA, IMB, UMR 5251, F-33400 Talence, France.
guilhem.castagnos@math.u-bordeaux.fr

Abstract. We introduce BICYCL an Open Source C++ library that im-
plements arithmetic in the ideal class groups of imaginary quadratic
fields, together with a set of cryptographic primitives based on class
groups. It is available at https://gite.lirmm.fr/crypto/bicycl un-
der GNU General Public License version 3 or any later version. BICYCL
provides significant speed-ups on the implementation of the arithmetic
of class groups. Concerning cryptographic applications, BICYCL is orders
of magnitude faster than any previous pilot implementation of the CL
linearly encryption scheme, making it faster than Paillier’s encryption
scheme at any security level. Linearly homomorphic encryption is the
core of many multi-party computation protocols, sometimes involving a
huge number of encryptions and homomorphic evaluations: class group-
based protocols become the best solution in terms of bandwidth and
computational efficiency to rely upon.

Keywords: class group cryptography, quadratic form arithmetic, implementa-
tion library, linearly homomorphic encryption, multi-party computation

1 Introduction

Class group cryptography was introduced in the late 80s by Buchmann and
Williams [10,11] and concurrently by McCurley [45] through variants of the
Diffie-Hellman key agreement [29] and their extensions to public-key cryptosys-
tems using constructions similar to that of Elgamal [31]. More specifically, Buch-
mann and Williams [10] suggested that the class group of ideals of maximal
orders of imaginary quadratic fields may offer a better security than the mul-
tiplicative group of finite fields. Indeed, at the time, the best algorithms for
computing discrete logarithms in class groups were exponential in the group
order, whereas index calculus methods with subexponential complexity already
existed for the equivalent problem in (multiplicative subgroups of) finite fields.
The current best algorithms for computing the structure of the class group of a
quadratic imaginary number field [39,5,41] are all improvements of Hafner and

https://gite.lirmm.fr/crypto/bicycl

McCurley’s algorithm [34]. The costs of these algorithms increase with ∆, the
discriminant of the number field. The current largest computation involved a
512 bits discriminant [4].

With a subexponential complexity of L1/2(∆), computing class groups is
still asymptotically slower than factoring integers, whose complexity is L1/3(N),
where N is the integer to be factored. From a cryptographic perspective, it essen-
tially means that any given security level may be achieved with shorter keys than
those required by schemes based on integer factorization. Nevertheless, the arith-
metic of class groups is quite intricate. Therefore, the associated cryptographic
protocols are potentially slower than cryptosystems based on elliptic curves or
those involving arithmetic modulo a prime number or an RSA modulus.

A nice attempt to improve the efficiency of cryptosystem based on class group
was achieved by Hühnlein, Jacobson, Paulus and Takagi [37]. Unfortunately, a
critical attack [18,17] against this family of cryptosystems consigned class group
cryptography to oblivion. Over the last decade, class groups have regained a lot
of interest thanks to their usefulness in designing advanced cryptosystems and
secure multi-party computation protocols. In particular, ideas from the original
attack [18] were positively turned into the Castagnos-Laguillaumie (CL) linearly
homomorphic encryption scheme (LHE) [19] which involves a subgroup of a
class group where discrete logarithms are easy to compute. CL is at the heart
of a construction of projective hash functions, which in turn allows to design
efficient inner-product functional encryption [20], two-party and fully-threshold
ECDSA signatures [14,15,56,28], as well as coin mixing protocols [32].

A crucial advantage of class group cryptography is that it is well-suited when
multi-party protocols require a one-time transparent (or public-coin) setup with
minimal interaction among parties. In addition, it is also interesting for time-
released cryptography since protocols can take advantage of an exponentiation
over a group of unknown order. For instance, [53] presented secure timed commit-
ments and a scalable distributed randomness generation with enhanced security,
transparent setup, that relies on a variant of the CL encryption scheme. Besides,
class group cryptography have recently led to many advanced protocols such
as verifiable random functions without trusted setup [55], accumulators [44,7],
encryption switching protocols [16], efficient designated-verifier non-interactive
zero-knowledge proofs of knowledge [22], succinct non-interactive argument of
knowledge [12,43], homomorphic secret sharing and pseudorandom correlation
functions for generating oblivious transfer [1], range proofs [25,24] or vector com-
mitments [3].

When available, the timings reported in these contributions come from vanilla
implementations of the protocols, mainly relying on PARI/GP [48] functions for
the arithmetic of class group. Very few dedicated libraries exist for class group
cryptography: we can cite ZenGo-X’s Class library written in Rust [57] (used
to benchmark threshold ECDSA signatures), which makes calls to PARI/GP,
Sayles’ libqform library [49], which is an optimized C library for ideal arith-
metic in imaginary quadratic number fields but which does not implement any
cryptographic protocols, and the implementation that won the Chia VDF compe-

tition [23] whose goal was to evaluate a VDF by performing successive squarings
as fast as possible3.

In this paper, we introduce BICYCL, an optimized open source library that
implements arithmetic in ideal class groups of imaginary quadratic fields to-
gether with class group-based cryptographic primitives and protocols. We show
that our library outperforms any implementation that we were aware of, and
demonstrate that class group cryptography can be more efficient than classical
cryptography in certain cases, particularly for linearly homomorphic encryption.
This is interesting for applications to multi-party computation as LHEs based
on class groups offer at the same time: transparent setup, low bandwidth, effi-
cient thresholdization due to their Elgamal structure, and now computational
efficiency.

Our main contributions:

– From a theoretical point of view, we unify several frameworks to construct
linearly homomorphic encryption schemes from [19,21], as well as compact
(i.e., with shorter ciphertexts) and large message variants of these cryptosys-
tems and provide the security proofs.

– We optimize the implementation of the arithmetic of binary quadratic forms
at a low level, namely the squaring (NUDUPL) and the composition (NU-
COMP) of quadratic forms, by carefully implementing partial extended GCD
variants. At a higher level, we also improve exponentiation in the class group
arising from practical cryptographic applications, such as CL encryption
which requires two fixed-basis exponentiations.

– We explicit some isomorphisms involving some subgroups of the class groups
(in particular those where computing discrete logarithms is easily) that allow
very fast exponentiations and discrete logarithm computations needed by the
CL framework. More precisely, these explicit isomorphisms make it possible
to avoid quadratic form arithmetic in these subgroups, allowing instead the
use of more efficient arithmetic of quadratic integers.

– We provide a suite of cryptographic protocols: not only we have implemented
the CL encryption and its variants, but we also provide an implementation
of Paillier and Camenisch-Shoup, that take benefit, when possible, from our
improvements for CL, as well as a zero-knowledge proof of well-formedness
of a CL ciphertext.

BICYCL is orders of magnitude faster than any previous pilot implementa-
tion of the CL protocol. At the lower level, these significant speed-ups come
from our implementation of the arithmetic of binary quadratic forms, namely
the NUDUPL and NUCOMP algorithms. As an illustration, for 6000-bit dis-
criminant, our version of NUDUPL is 15% faster than libqform [49], which was
the fastest implementation available that we were aware of, and 68% faster than
PARI/GP that is probably the most widely used. The cryptographic schemes
that we have implemented also benefit from tailored exponentiations in the class

3 https://github.com/Chia-Network/vdftrack1results

https://github.com/Chia-Network/vdftrack1results

group, in particular when the base if fixed. In Section 6, we present more exten-
sive comparisons with other libraries for the low level arithmetic primitives, as
well as timings and comparisons with various LHE schemes. In particular, we
show that for common applications, CL’s encryption is faster than Paillier’s at
any security level. In addition, in multi-party computation protocols or when
data are encrypted, homomorphic arithmetic modulo an RSA number is not
well-suited if the message space is of order a prime q, and requires subtleties to
deal with potential wraparounds or to hide the number of modular reductions
modulo q during the process. On top of that, to reach adaptive security, range
proofs must be added. CL provides a solution which is simpler and more efficient.

Our library will be augmented with other flavors of CL (like the DDH-f
based variants, threshold decryption or Gaussian distributions for randomness
sampling), as well as more complex cryptographic protocols that rely on class
groups. It has been widely tested and can be used to implement class group cryp-
tography, and more generally for computations in ideal class groups of imaginary
binary quadratic fields.

Detailed Roadmap and Results: In Section 2, we give some background on class
groups of imaginary quadratic fields. In Section 3 we present an unified view of
the CL framework for designing linearly homomorphic encryption schemes from
groups of unknown order that contain a subgroup where the discrete logarithm
problem is easy. We provide generic schemes and their security, in particular
a generic compact variant that was previously only described in a particular
case. In Section 4, we review instantiations of the CL framework within class
groups with some improvements compared to previous works. In particular, we
simplify the handling of large messages and apply the compact variant to more
cases as implemented in our library. We also give a guide to select the best
variant of CL if one wants a linearly encryption scheme modulo an integer M of
a certain bitsize without any particular property on the form ofM . Then, we give
specific theorems that explicit the representation of elements of the subgroups
where discrete logarithms are easy, giving the mathematical foundations of some
optimizations of our implementation. In Section 5, we focus on specific points of
the implementation. First, the speed up of the arithmetic of class groups, then
we show how to combine some known exponentiation methods from the context
of elliptic curves in order to obtain the highest speed-ups for the instantiations
of CL in class groups. Finally, we give algorithms specific to the subgroup where
discrete logarithms are easy, in particular we give important improvements when
the order of this group is a power of a prime, and more generally when the order
is large by showing that we can work with quadratic integers instead of quadratic
forms. In the last section, Section 6, we give benchmarks of the implementation
of several linearly homomorphic encryption schemes: two from the CL framework
for class groups, homomorphic modulo a prime q and 2k, and the Paillier and
Camenisch-Shoup encryption, homomorphic modulo an RSA integer N . These
benchmarks highlight the improvements previously mentioned.

2 Class Group and Cryptography

We give here a high level overview of class groups of imaginary quadratic fields.
See for instance [9,26] for a comprehensive treatment.

2.1 Quadratic Fields, Orders and Class Groups

Imaginary quadratic fields are extensions of degree 2 of Q that can be written
as K = Q(

√
D) where D < 0 is a square free integer. To such a field is attached

an integer, called fundamental discriminant and denoted ∆K , that is defined as
∆K := D if D ≡ 1 (mod 4) and ∆K := 4D otherwise.

The ring O∆K
of algebraic integers in K, also called the maximal order,

can be written as Z[ωK] where ωK = (∆K +
√
∆K)/2. One can define special

subrings of O∆K
, called orders, associated to a non fundamental discriminant

∆ℓ := ℓ2∆K where ℓ is called a conductor. The order O∆ℓ
of conductor ℓ is the

ring Z[ℓωK], it has index ℓ in O∆K
.

To each discriminant ∆ (fundamental or not), one can associate a finite
abelian group, called the ideal class group and denoted Cl(∆) defined as the
quotient of the group of (invertible fractional) ideals of O∆ by the subgroup of
principal ideals. The order of this group is called the class number and denoted
h(∆).

One has h(∆) ≈
√
|∆| in general and one can compute its number of bits in

polynomial time using the analytic class number formula (cf [45]). However, the
full value of h(∆) is only known to be computable from∆ in sub-exponential time
L1/2(∆). As a result, these groups have been extensively used in the past decade
to implement cryptographic protocols based on groups of unknown order, as they
can be generated with a public coin setup: It is sufficient to generate the integer
∆ to use these groups. This is in contrast to the group of invertible elements of
Z/NZ for which one needs a trusted setup to generate an RSA integer N , in
order to keep its factorization secret, and thus the order of the group unknown.
Another feature used by cryptographic applications is that discrete logarithms
in Cl(∆) are also hard to compute (again only sub-exponential time algorithms
with complexity L1/2(∆) are known, see [6] for instance).

2.2 Elements and Group Law

Elements of Cl(∆) can be represented in a compact form. One can define a
system of representatives of the classes with the notion of reduced ideals. Ideals

are of the form aZ+ −b+
√
∆

2 Z, where a, b ∈ N and a and b are smaller than
√
|∆|

when the ideal is reduced. As a result, one needs log2(|∆|) bits to represent an
element of the class group and this can be reduced to 3/4 log2(|∆|) using a recent
technique proposed in [30]. Combined with the fact that the best known attacks
against cryptographic problems in class groups are of complexity L1/2(∆) instead
of L1/3(N) for factoring based schemes, this leads to bandwidth improvement
for cryptographic applications.

The group law corresponds to product of ideals followed by a reduction op-
eration to find the unique reduced ideal of the class. In practice, the group law
is computed using the language of positive definite binary quadratic forms. Let
a, b, c be three relatively prime integers such that a > 0 and ∆ = b2 − 4ac, we
will denote f := (a, b, c) the primitive positive definite binary quadratic form
over the integers, f(X,Y) = aX2 + bXY + cY 2 of discriminant ∆. One can de-
fine an equivalence relation on forms from the action of SL2(Z). The class group
Cl(∆) is actually isomorphic to the set of forms modulo this equivalence relation.
Moreover there is an explicit correspondence between ideals and forms: the class

of the form (a, b, c) corresponds to the ideal aZ+ −b+
√
∆

2 Z. The definition of the
unique representative of the class is more natural when working with forms: it
is the reduced form (a, b, c), which satisfies −a < b ⩽ a, a ⩽ c and if a = c then
b ⩾ 0.

The group law is implemented using Gauss’ composition of forms and a re-
duction algorithm for forms devised by Lagrange. More efficient algorithms have
been proposed by Shanks to compute the group law, NUCOMP and NUDUPL,
where a partial reduction if applied during composition ([50]). Our library rep-
resents elements of the class group Cl(∆) as triplets of integers corresponding
to reduced binary quadratic forms and implements Shank’s algorithms (see Sec-
tion 5).

2.3 Maps between Class Groups

We have seen that from a fundamental (square free) discriminant ∆K , one can
define a class group Cl(∆K) associated with the ring of integers O∆K

. Moreover,
from ∆K one can define a non fundamental discriminant ∆ℓ := ℓ2∆K and a class
group Cl(∆ℓ) associated with the suborder O∆ℓ

⊂ O∆K
. This inclusion of the

orders actually translates into a relation on the class groups Cl(∆f) and Cl(∆K).
First one defines a map on the level of the ideals. A nonzero ideal I of O∆ℓ

is said
to be prime to ℓ if I+fO∆ℓ

= O∆ℓ
. Then the map I 7→ IO∆K

is an isomorphism
from the group of ideals of O∆ℓ

prime to ℓ to the group of ideals of O∆K
prime

to ℓ. This map and the inverse map are explicit and can be computed efficiently
knowing the conductor ℓ (see [37, Algo. 2,3]). By passing to the quotient, we
obtain a surjection φℓ : Cl(∆ℓ) ↠ Cl(∆K). Studying the kernel of this map, one
obtains, for ∆K < −4, ([26, Theorem 7.24]) the formula

h(O∆ℓ
) = h(O∆K

) · ℓ ·
∏
p|ℓ

(
1−

(
∆K

p

)
1

p

)
.

The instantiation of the CL framework to design linearly homomorphic en-
cryption schemes in class groups heavily relies on this formula and on the fact
that the discrete logarithm problem can be easy in kerφℓ for appropriate choices
of ∆K and ℓ. We will see this in more details in Section 4 with a precise charac-
terization of the elements of this kernel.

2.4 Squares and Square Roots

A last important property of class groups for cryptography concerns squares
and square root computations. Knowing the factorization of the discriminant
∆, it is possible to determine in polynomial time if an element of Cl(∆) is a
square and compute its square roots ([42]). The situation is somewhat similar
to Z/NZ for an RSA integer N = pq where one can compute the values of the
Legendre symbol relative to p and q to determine if an element is a square. For
class groups, genus theory defines various characters that play the role of these
symbols, depending on the specific form of the discriminant. Genus theory is
of crucial importance in the instantiation of the CL framework modulo 2k. We
refer the interested reader to [21, Subsection 2.3] for more details.

3 The CL Framework

In this section, we present the generic framework introduced in [19] and refined
in [54] to design linearly homomorphic encryption schemes.

Let M be an integer. In the CL framework, a setup generates a large cyclic
group of unknown order that contains a subgroup of order M where the discrete
logarithm problem is easy. The index of that subgroup in the larger group is
dictated by the security level. This construction makes it possible to instantiate
various linearly homomorphic variants of the Elgamal cryptosystem where the
plaintexts space is the additive group (Z/MZ,+).

Compared to previous works which restricts the generic presentation to prime
order groups for the plaintexts space, we expose at the same time the CL frame-
work, the design of a generic linearly homomorphic encryption scheme and its
security, with minimal hypotheses on the integer M .

This allows to capture many more concrete instantiations based on class
groups: for instance the CL-HSMq scheme introduced in [20], homomorphic mod-
ulo an odd prime q, but also variants modulo qk as analysed in [27], and the
recent scheme of [21] homomorphic modulo 2k. As we shall see, this generalized
framework is not limited to class groups. It also encompasses derivatives of the
Paillier cryptosystem such as the Camenisch and Shoup’s encryption scheme,
homomorphic modulo an RSA integer N (see Remark 1 below).

Compare to the original exposition of the framework of [19] based solely on
the DDH assumption, we take advantage of the HSM assumption from [20] which
provides more efficient and versatile schemes (notably, these schemes are related
to hash proof systems as exposed in [54]). Moreover, in the last subsection,
we generalized to any message space, the so-called compact variant introduced
in [19] and analyzed in [53] that produces more compact ciphertexts.

3.1 Generic definition and properties

Let us now introduce the algebraic structure and the properties required to build
a CL scheme.

Definition 1 (SetupCL – Adapted from Def. 3.1 of [54]). Let λ be a security

parameter and M be a positive integer. Let Ĝ a group of unknown order M · ŝ,
for some ŝ that depends on λ, and which admits a cyclic subgroup F = ⟨f⟩ of
order M . We require gcd(M, ŝ) = 1, although the index [Ĝ : F] = ŝ should be
hard to compute. Yet, we need to know an upper bound s̃ ≥ ŝ. Let h = xM for
some random element x ∈ Ĝ.

A setup for the CL framework for M is a pair of algorithms (GenCL,SolveDL)
such that:

– GenCL takes as input 1λ and outputs public parameters pp := (s̃, f, h, extra)

where extra encodes necessary information to efficiently compute in Ĝ,
– SolveDL is a deterministic polynomial time algorithm for computing discrete

logarithms in F .

The following proposition clarifies the structure of the group used for cryp-
tographic purposes.

Proposition 1. Let g = f · h, and let G be the cyclic subgroup of Ĝ generated
by g. Then, denoting H = {xM ;x ∈ G}, we have ⟨h⟩ = H and G ≃ F ×H.

Proof. Let y ∈ H. We have y = (gα)M = fαM · hαM = hαM since f has order
M . Thus H ⊂ ⟨h⟩. Conversely, denoting s the order of h, β :≡ M−1 (mod s)
and x := gβ , one as xM = gβM = hβM = h, so h ∈ H and ⟨h⟩ = H. Finally,
since the orders of f and h are coprime, we have G ≃ F ×H. ⊓⊔

The encryption schemes that we present in the following sections exploit the
cyclic subgroup G by hiding with a random element of H the plaintext messages
encoded in F , using a technique à la Elgamal. However, contrary to the standard
Elgamal scheme defined in a group of known prime order, in the instantiations
of our framework the order of G will remain unknown (to anyone), and there
will be no way to efficiently recognize valid encodings of elements of this cyclic
group. This can be problematic for applications involving malicious participants
(like CCA secure encryption schemes, zero knowledge proofs and multi-party

computation). However, in general, elements of the group Ĝ will be easy to
recognize, which will be sufficient for applications.

3.2 Assumption

The generic encryption scheme that follows the framework from Def. 1 relies
on the hard subgroup membership assumption related to the direct product of
Proposition 1. We next give the definition of this generic assumption for any
integer M . Note that this generalizes the HSM assumption from [20], which was

made forM = q, an odd prime (we take u
$←− (Z/qZ)× instead of u

$←− (Z/qZ) in
[20], but it infers a negligible difference 1/q as the bitsize of q is larger than the
security parameter to ensures that q is prime to ŝ in concrete instantiations).
This generic assumption also generalises the HSM2k assumption from [21] made
for M = 2k. This is also a generalisation of the DCR assumption (see Remark 1
below).

Notation 1 (Distribution DH) In the following, given a generator h of a
cyclic group H, we will denote DH a distribution over the integers such that
the distribution {hx, x←↩ DH} is at distance less than δDH

(λ) from the uniform
distribution in H for some negligible function δDH

.

Knowing an upper bound s̃ on the order of H, this distribution can be in-
stantiated efficiently from a folded uniform distribution or from a folded discrete
Gaussian distribution (see [54, Subsection 2.7.1]).

Definition 2 (HSMCL,M assumption). Let λ be a security parameter, M be a
positive integer and SetupCL = (GenCL,SolveDL) be a setup for the CL framework
for M . Let A be a PPT algorithm, its advantage for the HSMCL,M problem is
defined as:

Adv
HSMCL,M

A (λ) :=
∣∣∣Pr[b = b∗ : pp = (s̃, f, h, extra)← GenCL(1

λ),

x←↩ DH , u
$←− (Z/MZ)×, b

$←− {0, 1}, z0 := fuhx, z1 := hx,

b∗ ← A(pp, zb,SolveDL(·))
]
− 1/2

∣∣∣
For a positive integer M , The HSMCL,M problem is δHSMCL,M

−hard for SetupCL
if for all PPT algorithm A, its advantage Adv

HSMCL,M

A (λ) ⩽ δHSMCL,M
(λ). The

HSMCL,M assumption holds for SetupCL if the HSMCL,M problem for SetupCL is
δHSMCL,M

−hard and δHSMCL,M
is negligible.

3.3 LHE under HSMCL,M

We describe in Figure 1 the generic linearly homomorphic encryption scheme
modulo M that follows from the CL framework, and prove its security in Theo-
rem 2.

Theorem 2. Let SetupCL = (GenCL,SolveDL) be a setup for the CL framework
for an integerM . The resulting linearly homomorphic encryption scheme modulo
M of Figure 1 is ind− cpa under the HSMCL,M assumption for SetupCL.

Proof. Let A be an adversary against the indistinguishability of the scheme. We
describe a sequence of indistinguishable games which starts from the ind-cpa
experiment Game 0 and finishes with a game where the ciphertext statistically
hides the challenge bit b⋆. In the following, we denote by Si the event “adversary
A outputs b = b⋆ in Game i”.

In the first game Game 1, the only modification is the distribution of secret
key sk: It is sampled according to the distribution DG instead of DH .

The difference from A’s view is therefore the distribution of pk = hsk. With
the notation of Proposition 1, DG is a distribution over the integers such that the
distribution {x mod Ms : x← DG} is δDG

−close to the uniform distribution in
{1, . . . ,Ms}, where s is the order ofH. Since s dividesMs, sampling sk according

Algorithm 1: KeyGen

Input: pp = (s̃, f, h, extra)
generated by GenCL

Result: (pk, sk)
—

1 sample sk
$←− DH

2 pk := hsk

3 return (pk, sk)

Algorithm 2: Encrypt

Input: pp, pk,m ∈ Z/MZ
Result: ciphertext (c1, c2)
—

1 sample r
$←− DH

2 c1 := hr

3 c2 := fmpkr

4 return (c1, c2)

Algorithm 3: Decrypt

Input: pp, sk, (c1, c2)
Result: m ∈ Z/MZ
—

1 a := c2 · c−sk
1

2 return SolveDL(pp, a)

Algorithm 4: EvalAdd

Input: pp, pk, (c1, c2), (c
′
1, c

′
2)

Result: ciphertext (c′′1 , c
′′
2)

—
1 c′′1 := c1 · c′1
2 c′′2 := c2 · c′2
3 sample r

$←− DH

4 return (c′′1 · hr, c′′2 · pkr)

Algorithm 5: EvalScal

Input: pp, pk, (c1, c2), α
Result: ciphertext (c′1, c

′
2)

—
1 c′1 := cα1
2 c′2 := cα2

3 sample r
$←− DH

4 return (c′1 · hr, c′2 · pkr)

Fig. 1. Generic linearly homomorphic encryption scheme modulo M

to DG yields also a distribution δDG
−close to the uniform in {1, . . . , s}, and by

the triangular inequality, we have∣∣Pr[S1]− Pr[S0]
∣∣ ≤ 2δDG

.

In the second game Game 2, the challenge ciphertext is computed using the
secret key. Namely, c1 := hr and c2 := fmb⋆ csk1 where r ← DH . Though the
challenge ciphertext is computed differently, its distribution is in fact unchanged
as csk1 = hrsk = pkr. Hence,

Pr[S1] = Pr[S2].

In the third game Game 3, an integer u is sampled uniformly at random
in (Z/MZ)× and c1 is computed as c1 = fuhr. By reduction to the HSMCL,M

assumption, we have ∣∣Pr[S3]− Pr[S2]
∣∣ ≤ δHSMCL,M

.

In Game 3, we have c2 = fmb⋆ csk1 = fmb⋆+u·skpkr. From an information
theoretic point of view, using the direct product of Proposition 1, the adversary
learns mb⋆ + u · sk mod M from c2. Moreover, it gets u mod M from c1, but
only sk mod s from pk. Since sk is close to uniform modulo Ms, and M and s
are coprime, sk mod M is uniform and independent from sk mod s. Therefore,
as u is invertible modulo M , u · sk acts as a perfect one time pad for the message
mb⋆ and we get

Pr[S3] =
1

2
·

Combining the above probability equations concludes the proof. ⊓⊔

Remark 1. This generic construction of a linearly homomorphic encryption in-
troduced to cover the CL family of cryptosystems actually also captures Ca-
menisch and Shoup’s encryption scheme from [13] (a linearly homomorphic en-
cryption can be obtained from their encryption protocol by removing the last
component of the ciphertext, which brings non-malleability). It involves an RSA
modulus N = pq, for two safe primes p and q, and the message space is Z/NZ

(M = N with our notations). The group Ĝ is the subgroup of (Z/N2Z)× of
squares, H is the subgroup of the N -th powers, and F is the subgroup of order
N generated by 1+N . In this case the HSMCL,M assumption corresponds to the
Paillier’s DCR assumption from [47]. We provide in our library an implemen-
tation of this encryption scheme (CamenischShoup class) and give comparison
in Section 6. Our implementation benefits from all improvements of Section 5.2
that also apply to this setting.

3.4 A compact variant

The ciphertexts of the generic linearly homomorphic encryption scheme of Fig-
ure 1 use two elements of the group Ĝ. The element c2 = fmpkr needs to be in
G ⊂ Ĝ in order to use the direct product G ≃ F ×H of Proposition 1. However,
c1 is an element of the subgroup H, and H is isomorphic to the quotient group
G/F . Moreover, in all known implementations of the CL framework, this quo-
tient group is isomorphic to a group whose elements can be represented with a
more compact representation than the elements of Ĝ.

In this subsection, we present a compact variant of the scheme of Figure 1
that benefits from this observation. To this end, we first enrich the setup of
Definition 1 in order to add some properties: We consider a group Γ̂ and a
surjection Ĝ → Γ̂ of kernel F . These objects always exist by taking Γ̂ = Ĝ/F

and the canonical surjection, be we further require that Γ̂ has an explicit and
compact representation of elements.

These extra properties and this variant was originally proposed in [19] for the
specific M = q an odd prime, and presented as a fast variant. The security of
this variant was then analyzed in [53], still presented as a fast variant. However,
if this variant used to be fast compared to an encryption scheme that follows
the original CL framework based on the DDH assumption, it is no longer the
case compared to optimized implementation of schemes based on the HSMCL,M

assumptions, as suggested by our benchmarks of Section 6. But this variant is still
interesting for applications where the bandwidth is a critical issue as it leads to
schemes with only a slight computational overhead due to the exponentiation to
the power M and significantly reduces the size of ciphertexts. As a consequence
we prefer the term compact variant in this work.

Definition 3 (SetupCLC
). Let λ be a security parameter and M be a positive

integer and SetupCL = (GenCL,SolveDL) a setup for the CL framework for M . Let

Γ̂ be a group and π : Ĝ→ Γ̂ be a surjective map with kernel F .
We say that SetupCLC

is a setup for the compact CL framework, if we have
the following additional properties:

– one can compute in Γ̂ in deterministic polynomial time;
– the representation of elements of Γ̂ is more compact than the representation

of elements of Ĝ;
– one can evaluate π in polynomial time;
– given an element ω ∈ Γ̂ , one can efficiently lift it in Ĝ, i.e., compute an

element ωℓ ∈ π−1(ω).

The algorithm GenCLC
still outputs pp := (s̃, f, h, extra), where extra encodes

both the necessary information to efficiently compute in Ĝ and Γ̂ .

Proposition 2. With the notation of Definitions 1 and 3, the map ψ : Γ̂ → Ĝ
s.t. ω 7→ ωM

ℓ , where ωℓ ∈ π−1(ω), is an injective morphism, computable in poly-
nomial time. Let γ = π(h)M and Γ := ⟨γ⟩. With the notation of Proposition 1,
ψ gives an isomorphism Γ ≃ H.

Proof. This is a generalization of the proof of [19, Lemma 3] that we include

for completeness. First ψ is well defined: if ω
(1)
ℓ , ω

(2)
ℓ ∈ π−1(ω) are two distinct

pre-images of ω then there exists an element x ∈ F such that ω
(1)
ℓ = xω

(2)
ℓ , and

(ω
(1)
ℓ)M = (ω

(2)
ℓ)M as F is of order M . Moreover it is easy to see that ψ is a

morphism. Consider ω in Γ̂ such that ψ(ω) = ωM
ℓ = 1 in Ĝ, with ωℓ ∈ π−1(ω).

Applying π gives π(ωℓ)
M = ωM = 1 in Γ̂ . Now observe that Γ̂ is of order ŝ (as

Ĝ has order M · ŝ and π is a surjection with kernel of order M). Moreover, ŝ is

prime to M so ω = 1 ∈ Γ̂ , so the map is injective. Eventually, ψ is computable
in polynomial time as composition of operations computable in polynomial time.
Concerning the map ψ : Γ ≃ H: firstly the restriction of π to H is injective.
Moreover, denoting s the order of h, s is prime to M so γ = π(h)M = π(hM)

generates a group Γ of the same order s. Moreover, as ψ(γ) = hM
2 ∈ H and ψ

is injective, we get that ψ : Γ ≃ H. ⊓⊔

We describe in Figure 2 the compact variant of the scheme of Figure 1. The
public key and the first element of the ciphertext are now elements of Γ instead
of Ĝ. We then use the map ψ of Proposition 2 in order to generate the element of
H that hides fm in the second element of the ciphertext. The unnatural choice
of γ = π(h)M instead of π(h) is a generalisation of a trick introduced in [53] that
makes the security proof goes trough.

Algorithm 6: KeyGen

Input: pp = (s̃, f, h, extra)
generated by GenCLC

Result: (pk, sk)
—

1 γ := π(h)M ; append γ to pp

2 sample sk
$←− DH

3 pk := γsk

4 return (pk, sk)

Algorithm 7: Encrypt

Input: pp, pk,m ∈ Z/MZ
Result: ciphertext (c1, c2)
—

1 sample r
$←− DH

2 c1 := γr

3 c2 := fmψ(pkr)
4 return (c1, c2)

Algorithm 8: Decrypt

Input: pp, sk, (c1, c2)
Result: m ∈ Z/MZ
—

1 a := c2 · ψ(c−sk
1)

2 return SolveDL(pp, a)

Algorithm 9: EvalAdd

Input: pp, pk, (c1, c2), (c
′
1, c

′
2)

Result: ciphertext (c′′1 , c
′′
2)

—
1 c′′1 := c1 · c′1
2 c′′2 := c2 · c′2
3 sample r

$←− DH

4 return (c′′1 · γr, c′′2 · ψ(pkr))

Algorithm 10: EvalScal

Input: pp, pk, (c1, c2), α
Result: ciphertext (c′1, c

′
2)

—
1 c′1 := cα1
2 c′2 := cα2

3 sample r
$←− DH

4 return (c′1 · γr, c′2 · ψ(pkr))

Fig. 2. Generic compact linearly homomorphic encryption scheme modulo M

Theorem 3. Let SetupCLC
= (GenCLC

,SolveDL) be a setup for the compact CL
framework for an integer M . The resulting linearly homomorphic encryption
scheme modulo M of Figure 2 is ind − cpa under the HSMCL,M assumption for
SetupCLC

.

Proof. We proceed with a sequence of games as in the proof of Theorem 2,
starting with the ind-cpa experiment in Game 0.

In Game 1, the public key is computed as follows: first sample sk′
$←− DH and

set pk = π(h)sk
′
.

We still have pk = π(h)Msk = γsk for some sk defined modulo s, the order of
h, since gcd(s,M) = 1. Moreover, sk and sk′ follow the same distribution modulo
s. Therefore, the distribution of the public key is unchanged,

Pr[S0] = Pr[S1].

In Game 2, we change the distribution of sk′: it is sampled from DG instead
of DH . As in the first step of the proof of Theorem 2, one has∣∣Pr[S2]− Pr[S1]

∣∣ ≤ 2δDG
.

In Game 3, we set z := hr
′
for r′

$←− DH and compute the challenge ciphertext
as follows: c1 = π(z) and c2 = fmb⋆ zsk

′
.

Again, there exists r such that c1 = π(h)r
′
= π(h)Mr = γr. Moreover,

c2 = fmb⋆hsk
′r′ . But ψ(pkr) = ψ(π(h)sk

′r) = hsk
′Mr = hsk

′r′ = zsk
′
as Mr ≡ r′

(mod s). Therefore, c = (γr, fmb⋆ψ(pkr)) is a genuine ciphertext of mb⋆ for the
public key pk with the correct distribution:

Pr[S3] = Pr[S2].

In Game 4, we now set z := fuhr
′
with u sampled uniformly at random in

(Z/MZ)×. By reduction to the HSMCL,M assumption, we have∣∣Pr[S4]− Pr[S3]
∣∣ ≤ δHSMCL,M

.

In Game 4, we have c2 = fmb⋆ zsk
′
= fmb⋆+u·sk′hsk

′r′ and the only information
on sk′ known by the adversary is sk′ modulo s (from pk). As in the last step of the
proof of Theorem 2, one has sk′ mod M uniform and as u is invertible modulo
M , u · sk acts as a perfect one time pad for the message mb⋆ and we get

Pr[S4] =
1

2
·

Combining the above probability equations concludes the proof. ⊓⊔

4 Instantiation in Class Groups

In this section, we present instantiations of the CL framework in class groups, for
plaintexts spaces Z/MZ where M = 2k and M = qk where q is an odd prime, of
bitsize larger than the security parameter. The case 2k was recently proposed in
[21]. For the case qk, the generator for k = 1 was originally proposed in [19] and a
generalization for k > 1 was only suggested in that work. This generalization was
then developed in [27]. These two works where focused on the DDH version of
the CL framework, whereas we are interested in schemes based on the HSMCL,M

assumption. Moreover [27] also consider the case of small odd primes q and
product of different odd primes.

We do not consider the case of small primes, as it is required that q is large
in order to have q prime to the class number with overwhelming probability for
the ind-cpa proof to go through when working with the HSMCL,M assumption.
Note that this property is also needed in many security proofs of applications of
the DDH variant. Products of odd primes could also be obtained in our setting,
by using Chinese remaindering during the computation of the discrete logarithm
for decryption. It may also be possible to consider cases of even numbers such as

2kq but the generation process would be very technical for limited application
interest.

In the next subsection we describe the generators for M = 2k and M = qk

already given in [19,27,21] with some changes in order to follow the framework
of the previous section. Moreover we unify the presentation of several variants.
Firstly we show that these generators are all compatible with the compact vari-
ant of Subsection 3.4. This variant was previously only known to be compatible
with message space M = q. Secondly, we simplify the exposition by present-
ing generators independent of the size of M , where as previous works imposed
condition on the size of M or treated differently the case of large M ’s.

Then, in Subsections 4.2 and 4.3, we show that it is possible to optimize
computations of exponentiations and discrete logarithms in the subgroup F .
As we will see in Section 5, this gives speedup, particularly in the context of
plaintexts spaces of orders qk and 2k with large k’s. This will also improve
dramatically the computation of discrete logarithms in the case of large M ’s.

4.1 Generators for the CL framework in class groups

Case M = qk Algorithm 11 implements the generator GenCL for SetupCL for
M = qk where q is an odd prime, of bitsize larger than the security parameter.
We denote η(λ) the bitsize of a fundamental discriminant ∆K such that the
computation of the class number h(∆K) and computation of discrete logarithms
in Cl(∆K) takes at least 2λ operations (see Table 2 for concrete sizes). A bound
B such that B ⩽ h(∆K) < 2B can be computed in polynomial time using the
analytic class number formula (cf [45]). The bitsize of B is expected to be η(λ)/2.

Algorithm 11: GenCL-HSM
qk

Input: 1λ, k, q a µ bits prime with µ ⩾ λ
Result: pp
—

1 if µ ≥ η(λ) then
2 p := 1 if q ≡ 3 (mod 4) or else take the smallest prime p

such that pq ≡ 3 (mod 4) and
(
q
p

)
= −1

3 else
4 sample p a random η(λ)− µ bits prime such that
5 pq ≡ 3 (mod 4) and

(
q
p

)
= −1

6 end

7 ∆K := −pq, ∆qk := q2k∆K and Ĝ := Cl(∆qk)
2

8 compute s̃ an upper bound on the order of Γ̂ := Cl(∆K)2

9 sample t in Ĝ and set h := tq
k

10 f := (q2k, qk, 1−∆K
4

) in Ĝ
11 return pp := (s̃, f, h, extra := (∆K , q, k))

The algorithm first computes a fundamental discriminant ∆K = −q or ∆K =
−pq where p is another prime, with ∆K ≡ 1 (mod 4) and ∆K of bitsize at
least η(λ). The additional requirement on the Legendre symbol ensures that

the group of squares Γ̂ := Cl(∆K)2 has odd order ŝ, where ŝ = h(∆K) or
h(∆K)/2 depending if ∆K = −q or ∆K = −pq (see [19]). From the Cohen-
Lenstra heuristics, gcd(q, ŝ) = 1 with overwhelming probability as q is a µ-bit
prime with µ ⩾ λ.

This computation of ∆K is done in order to have ∆K of the minimal size
with the constraints that q|∆K and ∆K is large enough to meet the security
level. Moreover, we do not set an upper bound on the plaintexts space size: For
instance, for k = 1, [19] supposed that q was not to large to ensure an easy
computation of discrete logarithms in F , and proposed another process, called
the “large message variant”, for large q’s. We here proposed a unified view of
these two settings (see Subsection 4.3 for the consequences on the computation
of discrete logarithms in F).

We then denote Ĝ = Cl(∆qk)
2 the group of squares of Cl(∆qk). It has order

ŝqk and gcd(qk, ŝ) = 1 with overwhelming probability. The subgroup F generated
by f := (q2k, qk, 1−∆K

4) has order qk (we prove this in Theorem 5 as this does not
seem to have been formally proven elsewhere). This subgroup is the kernel of the
surjection φqk from Cl(∆qk) to Cl(∆K). Note that F is contained in Cl(∆qk)

2

as F has odd order.
The description of the polynomial time algorithm that computes discrete

logarithms in F is deferred in Subsection 5.4: Algorithm 13. It contains several
new optimizations to compute in F , introduced in the next subsections.

One can recognize elements of Ĝ as it is possible to recognize squares given
the factorization of the discriminant. Note that Algorithm 11 is a public coin
algorithm: we can publish the randomness used to generate the parameters.

Algorithm 11 also implements a generator for SetupCLC
by setting Γ̂ :=

Cl(∆K)2. Indeed, elements of Cl(∆K)2 have shorter representations than those
of Cl(∆qk)

2: this saves 3/2 · k log2(q) bits using the compression of [30]. The
homomorphism φqk between the two class groups can be restricted from Cl(∆qk)

2

to Cl(∆K)2 and its kernel is still F , so it plays the role of the map π in SetupCLC
.

If ω ∈ Cl(∆K)2, one can find a pre-image by φqk by computing [I ∩O∆
qk
] for I

an ideal prime to q in the class ω. This can be done efficiently using [37, Algo. 2].

Case M = 2k Algorithm 12 implements a generator for SetupCL for M = 2k.
This is the original algorithm proposed in [21], with a restriction on the choice
of the primes p and q to ease both exposition and implementation. The overall
idea of the generator is similar to the case qk with the notable change that the
factorisation of ∆K must be kept secret in order to prevent an adversary from
computing square roots and recognizing squares, which would break the ind-cpa
security of the encryption scheme. We thus choose primes p and q of bitsize η′(λ)
where η′(λ) denotes the bitsize of N such that the best algorithms for factoring
N := pq take 2λ operations (again, see Table 2 for concrete sizes). As a result

the coins of the algorithm can not be given to an adversary. The algorithm that
computes discrete logarithms in F is similar to the qk case, as we will see in
Subsection 5.4.

Algorithm 12: GenCL-HSM
2k

Input: 1λ, k ⩾ 1
Result: pp
—

1 sample two random distinct η′(λ) bits primes p, q such that
(p mod 8, q mod 8) ∈ {(3, 5), (5, 3)}

2 N := pq

3 ∆K := −8N , ∆2k+1 := 22k+2∆K and Ĝ := Cl(∆2k+1)2

4 compute s̃ an upper bound on the order Γ̂ := Cl(∆K)2

5 sample t in Ĝ and set h := t2
k

6 f := (22k, 2k+1, 1−∆K) ∈ Ĝ
7 return pp := (s̃, f, h, extra := (∆K , k))

We now prove that this algorithm also implements a generator for SetupCLC
,

which was not shown in [21]. The situation is however a little bit intricate
compared to the case qk. We still consider for π the restriction of φ2k+1 from
Ĝ := Cl(∆2k+1)2 to Γ̂ := Cl(∆K)2. However the kernel of φ2k+1 is now larger

than F , it is of order 2k+1 and kerφ2k+1 ̸⊂ Ĝ. Actually, F = kerφ2k+1 ∩ Ĝ. If
ω ∈ Cl(∆K)2, computing a pre-image ρ by φ2k+1 : ρ := [I ∩O∆

qk
] for I an ideal

prime to 2 may give an element which is not in Ĝ, as φ−1
2k+1({ω}) = x · kerφ2k+1

where x ∈ Ĝ.
This can be checked and solved thanks to genus theory (we refer the reader

to [21] for background on genus theory for this specific class group). As in the
proof of [21, Theorem 1], one can prove that the f̃ = (22k+2, 2k+2, 4−∆K

4) is in

kerφ2k+1 \F (actually, this is a generator of kerφ2k+1). This element f̃ has genus
(1, 1,−1, 1) for the respective characters (χp, χq, χ−4, χ8). Moreover, elements of
kerφ2k+1 \F are in the same genus. Elements of F are squares, so their genus is
(1, 1, 1, 1).

Now let us see how to finish our lift. We have similarly half the elements of
φ−1
2k+1({ω}) in Ĝ, and half of genus (1, 1,−1, 1). Back to our element ρ, one can

check the value of χ−4 efficiently without knowing the factorization of N . If this
gives 1, ρ is a square and we are done. Otherwise, we multiply it by f̃ in order
to get a square. In both case, we have obtained an element of φ−1

2k+1({ω}) which
is a square, so an element of π−1({ω}).

Note that one can not recognize elements of Ĝ nor of Γ̂ . The situation is
similar to elements of Jacobi symbol 1 and squares of Z/NZ. Here we can only
recognize if elements have genus (1, 1, 1, 1) or (−1,−1, 1, 1).

Concrete linearly homomorphic encryption schemes When using the
generator GenCL-HSM

qk
with the generic constructions of Figure 1 (resp. Figure 2),

one gets an encryption scheme linearly homomorphic modulo qk for an odd
prime q, denoted CL-HSMqk (resp. CLC-HSMqk for the compact variant). Likewise,
the generator GenCL-HSM

2k
gives a scheme homomorphic modulo 2k, denoted

CL-HSM2k (resp. CLC-HSM2k for the compact variant).

On the selection of the plaintext space size In most of the cases, the
choice of the generator will be guided by the application, as a specific form
of M will be needed. However, it might be the case that one needs a linearly
encryption scheme modulo an integer M of a certain bitsize ν, without any
particular property on M .

We discuss here on the best choice of the generator in this context in or-
der to optimize ciphertexts size. First, we summarize in Table 1, the bitsize of
the ciphertexts for these schemes using the compression technique of [30]. The
different sizes of ciphertexts for the qk variants comes from the fact that when
log(q) ⩽ η(λ), Algorithm 11 chooses a fundamental discriminant ∆K of mini-
mal size η(λ) to ensure security, where as when log(q) > η(λ), ∆K will have
approximately the same bitsize as q.

Scheme Size of plaintexts Size of ciphertexts Condition

CL-HSMqk k log q 3
2
η(λ) + 3k log(q) λ ⩽ log(q) ⩽ η(λ)

CLC-HSMqk k log q 3
2
η(λ) + 3

2
k log(q) λ ⩽ log(q) ⩽ η(λ)

CL-HSMqk k log q (3k + 3
2
) log(q) η(λ) < log(q)

CLC-HSMqk k log q 3
2
(k + 1) log(q) η(λ) < log(q)

CL-HSM2k k 3
2
η′(λ) + 3k + 15

2
-

CLC-HSM2k k 3
2
η′(λ) + 3

2
k + 6 -

Table 1. Ciphertext sizes of class groups based schemes

To optimize ciphertext expansion, for plaintexts of bitsize ν < λ, only the 2k

setting is possible. With CLC-HSM2k using k = ν, the expansion is:

3

2

η′(λ)

ν
+

6

ν
+

3

2
·

For plaintexts of bitsize ν with λ ⩽ ν, CLC-HSMqk is the best choice. One
can get a ciphertext expansion of

3

2

η(λ)

ν
+

3

2
·

This tends to 3/2 when the bitsize of messages tends to infinity, for a fixed level
of security. The choice of q and k to meet this expansion depends on the value

of ν. For λ ⩽ ν ⩽ η(λ), one can use any combination of the prime q and power
k such that ν = k log q and log q > λ. Using k = 1 and a prime q of bitsize ν is
thus the simplest choice in this case. For plaintexts of bitsize ν > η(λ), one has
to choose the prime q and the integer k such that log q = ν/k ⩽ η(λ).

Note that as η′(λ) > η(λ), the 2k setting is less interesting for large messages,
in terms of compactness.

4.2 Explicit isomorphisms for kerφ

For CL-HSMqk , the cyclic group F of sizeM = qk in which the discrete logarithm
should be easy is exactly the kernel of the surjective homomorphism φqk from
Cl(∆qk) to Cl(∆K). For CL-HSM2k , the cyclic group F is of size M = 2k and is
a subgroup of index 2 of the kernel of the surjective homomorphism φ2k+1 . To
be able to compute discrete logarithms in F , we will show how to represent its
elements in a manner that allows very fast computations. The main tool used in
previous works to analyse these kernels is the fact that there exists an effective
isomorphism with some quotient of the ring of integers. This is summarize in
the following theorem.

Theorem 4. Let ∆K < −4 be a fundamental negative discriminant, ℓ be a pos-
itive integer and ∆ℓ = ℓ2∆K . Then, the kernel of the surjective homomorphism
φℓ : Cl(∆ℓ) ↠ Cl(∆K) is isomorphic to

Gℓ := (O∆K
/ℓO∆K

)
×
/ (Z/ℓZ)

×
.

Moreover, let α represents an equivalence class in Gℓ. Denote by (a, b, c) a form
corresponding to the ideal αO∆K

, where a is coprime to ℓ. Then the class of
kerφℓ corresponding to α is the class of the (non-necessarily reduced) form
(a, bℓ, cℓ2).

Proof. See [26, Prop. 7.20, Prop. 7.22, Th. 7.24] for the theoretical side. See [36,
Prop. 2], [37, Algo. 1–3] and [8, Prop 2.9] for the computational side. ⊓⊔

We then apply this theorem to get a correspondence between the represen-
tation of elements of F in the qk setting with quadratic integers.

Theorem 5. Let k, q, ∆K , ∆qk , f and F be generated as in Algorithm 11.
Then, the set {1 + t

√
∆K | t = 0 or t odd in −qk < t < qk} has size qk and

is a complete set of representatives of Gqk . The explicit group isomorphism of
Theorem 4 is given by

Gqk → F

1 + t
√
∆K 7→

(
q2j , uqj ,

u2 − q2(k−j)∆K

4

)
,

where j = 0 and u = 1 for t = 0 and j = k − valq t and u =
(

t
qk−j

)−1

mod 2qj

with centered remainder otherwise.
The generator f of F corresponds to 1+

√
∆K , its order is qk. Moreover, all

the forms are reduced if and only if q2k ≤ 1−∆K

4 .

Proof. The proof is similar to [19, Proposition 1] that proves the case k = 1.
For t = 0, the ideal generated by 1 is the maximal order O∆K

. When lifted

in O∆
qk

using [37, Algo. 2], it corresponds to the ideal Z +
qk+
√

∆
qk

2 Z. This

ideal corresponds to the form (1,−qk, c) with c such that its discriminant is
∆qk , which is equivalent to the reduced form (1, 1, (1−∆qk)/4).

Let t be an odd integer in −qk < t < qk. Using [8, Prop 2.9], we obtain that

the ideal generated by 1+t
√
∆K

2 , an element equivalent to 1+t
√
∆K inGqk , is aZ+

b+
√

∆
qk

2 Z by setting a = 1−t2∆K

4 and b = t∆K mod 2a with centered remainder.
As a is coprime with q, we can use [37, Algo. 2] to lift it inO∆

qk
and we obtain the

ideal aZ+
bqk+
√

∆
qk

2 Z. It corresponds to the form (1−t2∆K

4 ,−t∆Kq
k,−q2k∆K).

Let u and v be the Bézout coefficients of the two coprime integers t
qk−j and 2qj :

t
qk−j u+ 2qjv = 1. We can always choose u such that −qj < u < qj . Finally, we
apply the transformation matrix (

2qj u

− t
qk−j v

)

of determinant 1 to the form and obtain (q2j , qju, u
2−q2(k−j)∆K

4).

The fact that the form f = (q2k, qk, 1−∆K

4) corresponds to 1 +
√
∆K comes

from the case t = 1. We then prove that f is a generator of F . As the order of

F is qk, it is sufficient to prove that
(
1 +
√
∆K

)qk−1

̸= 1.
We prove this by induction by showing that for i ⩾ 2,(

1 +
√
∆K

)qi−1

≡ 1 + qi−1
√
∆K (mod qi).

For i = 2,
(
1 +
√
∆K

)q
=
∑q

j=0

(
q
j

)√
∆K

j
. As q|∆K and q|

(
q
j

)
for j = 1, . . . , q−1,

we get
(
1 +
√
∆K

)q ≡ 1 + q
√
∆K (mod q2). Now suppose that there exists a

quadratic integer α such that
(
1 +
√
∆K

)qi−1

= 1 + qi−1
√
∆K + αqi = 1 +

qi−1(
√
∆K + αq). We then rise this equality to the power q, and using again

binomial expansion, one obtains
(
1 +
√
∆K

)qi ≡ 1 + qi
√
∆K (mod qi+1) as for

j ⩾ 2, qj(i−1) ≡ 0 (mod qi+1) as i ⩾ 2. ⊓⊔
Now we use Theorem 4 to get a correspondence between the representation

of elements of F in the 2k setting with quadratic integers.

Theorem 6. Let k, ∆K , ∆2k+1 , f and F be generated as in Algorithm 12.
Then, the set {1 + τ

√
−2N | 0 ≤ τ < 2k+1} has size 2k+1 and is a complete set

of representatives of G2k+1 . We will consider the subset {1 + τ
√
−2N | 0 ≤ τ <

2k+1, τ even} = {1 + t
√
∆K | 0 ≤ t < 2k}. The explicit group isomorphism of

Theorem 4 restricted to this subset of representatives is given by

G2k+1 → F

1 + t
√
∆K 7→

(
22j , u2j+1, u2 − 22(k−j)∆K

)
,

where j = 0 and u = 0 for t = 0 and j = k − val2 t and u =
(

t
2k−j

)−1
mod 2j

with centered remainder for 0 < t < 2k.
The generator f of F corresponds to 1 +

√
∆K , its order is 2k and it is a

square. Note that all the forms are reduced if and only if 22k ≤ 1−∆K .

Proof. For t = 0, the ideal generated by 1 is the maximal orderO∆K
. When lifted

in O∆
2k+1

using [37, Algo. 2], it corresponds to the ideal Z +
2k+1+

√
∆

2k+1

2 Z.

This ideal corresponds to the form (1,−2k+1, c) with c such that its discriminant

is ∆2k+1 , which is equivalent to the reduced form (1, 0,−∆
2k+1

4).
Let t be an integer in 0 < t < 2k. Using [8, Prop 2.9], we obtain that the ideal

generated by 1+ t
√
∆K is aZ+ b+

√
∆K

2 with a = 1− t2∆K and b = t∆K mod 2a
with centered remainder. As a is odd, we can use [37, Algo. 2] to lift it in

O∆
2k+1

and we obtain the ideal aZ+
b2k+1+

√
∆

2k+1

2 . It corresponds to the form

(a,−b2k+1, c) with c such that the discriminant is ∆2k+1 . It is equivalent to
(1 − t2∆K ,−t∆K2k+1,−22k∆K). Let u and v be the Bézout coefficients of the
two coprime integers t

2k−j and 2j : t
2k−j u+2jv = 1. We can always choose u such

that −2j−1 < u < 2j−1. Finally, we apply the transformation matrix(
2j u

− t
2k−j v

)

of determinant 1 to the form and obtain (22j , 2j+1u, u2 − 22(k−j)∆K).
The fact that the form f = (22k, 2k+1, 1 − ∆K) corresponds to 1 +

√
∆K

comes from the case t = 1. The fact that it is a square of order 2k was proven
in [21, Theorem 1]. ⊓⊔

4.3 Computations in F

Theorems 5 and 6 are used to speedup computation in the subgroup F . During
encryption, one need to compute fm, where f is the generator of the group F and
m in a non-negative integer less thanM . This computation can be done without

using quadratic forms. Instead one computes
(
1 +
√
∆
)m

in Gqk (resp. G2k+1),

then Theorem 5 (resp. Theorem 6) is used to get the form corresponding to
this element. It will be the quadratic form corresponding to fm. Implementation
details are given in Subsection 5.3.

During decryption, one need to compute the discrete logarithm of a given
element ft ∈ F in basis f . For more efficiency, we move the problem into Gqk

or G2k+1 . In these groups, the discrete logarithms can be easily computed with
O(k) operations (see Subsection 5.4 for implementation details). However, in
order to use this method we need to find the representative of ft as given in
Theorems 5 and 6. This is direct if this representative is reduced (i.e, if qk or
2k is small enough compared to |∆K | as stated in the theorems). Otherwise,
we use [38, Algo. 1] to invert the maps of Theorems 5 and 6. This last case
corresponds to the large message variant of [19]. In this work, the form ft was

lifted in another non-maximal order, chosen to make some adaptation of the
representative forms reduced. This involves an exponentiation to the power qk

or 2k. Our new method in this case is much faster. As a result, the distinction
between the two cases becomes irrelevant from the user’s point of view: the cost
of computing the representative is completely negligible in both cases.

5 Algorithmic Perspective

In this section, we present some algorithmic aspects of our implementation in
BICYCL of the arithmetic of class groups of imaginary quadratic fields and of the
different cryptosystems described in the previous sections.

We first give some details of our implementation choices for the composition
of quadratic forms and for exponentiation, from which can benefit any crypto-
graphic protocols based on class groups. This can be found in the classes QFI

and ClassGroup of BICYCL.
We then focus on the exponentiation and discrete logarithm computations in

the subgroup F defined in Section 4 in the context of the CL encryption schemes.

5.1 Composition of quadratic forms

For the composition and reduction of quadratic forms, we implemented Shanks’
NUCOMP algorithm [50] (as well as NUDUPL for the computation of the square
of a form). At the lowest level, our implementation makes extensive use of GMP’s
arithmetic functions [33], with the exception of the partial extended GCD. Par-
tial extended GCD is a core component of NUCOMP. It performs the same
steps as a classical extended GCD but terminates once the computed remain-
ders reach a given bound. In the context of NUCOMP and NUDUPL, a common
choice for this bound is ∆1/4. We implemented this function by modifying one
of the extended GCD algorithm implemented in GMP: Lehmer’s variant4. GMP
implementation of Lehmer’s variant uses the two most-significant words to ap-
proximate the successive quotients appearing in the extended GCD algorithm.
We modify the algorithm to stop it once the remainders were below the targeted
bound. The Flint library [35] also implements the Lehmer’s variant for its func-
tion xgcd partial but only uses the most-significant word to approximate the
quotient. The PARI/GP library [48], in its function parteucl implementing the
partial extended GCD, performs a full euclidean division at each step.

In Figure 3, we compare our implementation of NUDUPL to the implemen-
tation found in Flint (via the add-on Antic library) and PARI/GP. We also
compare our implementation to libqform [49] which is the library used to imple-
ment several CL variants from [27]. Finally, we compare to the implementation
that won the Chia VDF competition [23], whose goal was to perform successive
NUDUPL as fast as possible. Our implementation improves all these libraries,
for all cryptographic sizes of discriminant. Comparisons for NUCOMP gave very
similar timings.

4 For more details on GMP implementation of Lehmer’s variant, see GMP documen-
tation https://gmplib.org/manual/Lehmer_0027s-Algorithm

https://gmplib.org/manual/Lehmer_0027s-Algorithm

0.0 ms

0.2 ms

0.4 ms

0.6 ms

0.8 ms

1.0 ms

1.2 ms

1.4 ms

1.6 ms

1.8 ms

 1000 2000 3000 4000 5000 6000

Ti
m

e
 f

o
r

o
n
e
 N

U
D

U
P
L

(i
n
 m

ill
is

e
co

n
d
s)

Bitlength of the discriminant

this work
Flint 2.9.0/Antic 0.2.5

PARI/GP 2.15.0
Libqform

Chia VDF contest

Fig. 3. Comparison for the NUDUPL operation for different libraries. All timings were
computed using one thread of a Intel i7-8665U CPU at 1.90GHz. For each discriminant
size, NUDUPL is executed 10000 times for 10 different random discriminants.

5.2 Exponentiations in the class group

The Encrypt and Decrypt Algorithms involve exponentiations of quadratic forms.
For Encrypt, both h and pk are known in advance, which opens the door to
various optimization strategies at the cost of some precomputations and extra
storage. For Decrypt, one needs to compute and invert the form csk1 . Since c1 is
not known in advance, the above optimizations do not apply. In class groups,
we note that inverting a form is virtually free5. Thus, one can take advantage
of signed-digit representations and the numerous algorithms developed in the
context of elliptic curves. We detail the algorithms implemented in our library
in the next paragraphs.

Encrypt – fixed-basis exponentiations: Recall that the Encrypt algorithm,
described in Algorithm 2, outputs a pair (c1, c2) with c1 = hr and c2 = fmpkr.
The special, easier case of the computation of fm will be explain in Subsec-
tion 5.3.

Let us focus on the other two exponentiations. Our code evaluates hr and
pkr in parallel using the same algorithm6, which mixes a variant of the width-2
comb method [46] and Solinas’ Joint Sparse Form (JSF) [51].

5 If f = (a, b, c), then the inverse of the class of f is represented by (a,−b, c).
6 There does not seem to be an efficient way to exploit the fact that one raises both
basis to the same power.

Let us assume that r is a 2n-bits integer. In the comb method, the scalar r
is divided into w chunks of 2n/w bits each. The bits of r are then scanned w
at a time. In our implementation, the 2n-bit scalar r is split in half (i.e. w = 2)
so that r = r0 + 2nr1. Hence, we get hr = hr0 × hr1n with hn = h2

n

. Since h
is fixed, and the size of r is bounded, one can precompute hn offline. Hence,
this reduces a 2n-bits exponentiation to an n-bits double-exponentiation which
is implemented using Straus-Shamir’s trick [52]. Using minor extra-storage for
hn, one can thus divide by 2 the number of calls to NUDUPL.

As already observed, one can take advantage of algorithms based on signed-
digit representations. In particular, Solinas’ Joint Sparse Form [51] allows to
jointly rewrite the pair (r0, r1) of n-bit exponents using digits in {−1, 0, 1} so
that the double-exponentiation requires exactly n NUDUPL and n/2 NUCOMP
on average. For computing hr0 × hr1n , each call to NUCOMP involve either h,
hn, h × hn, h × h−1

n or their respective inverse. Note that there is no need to
store both a form and its inverse.

Finally, since the cost of NUDUPL is almost identical to that of NUCOMP,
it is advantageous to adapt to our context the variant of the comb method
presented in [46, Algo 3.45], even for w = 2. This approach further divides the
number of NUDUPL by 2, at the cost of (34−1)/2 = 40 extra precomputed forms
which can be computed with 36 calls to NUCOMP. These precomputed forms

are obtained as products of forms in h±1, h±1
n/2, h

±1
n , h±1

3n/2, where hn/2 = h2
(n/2)

and h3n/2 = h2
3n/2

.

Decrypt – variable basis: The Decrypt algorithm, described in Algorithm 3,
involves one exponentiation c−sk

1 where the exponent is the secret key. Contrary
to the encryption algorithm, the base c1 is not known in advance. Hence, the
above techniques are not advantageous. Our implementation uses a left-to-right
wNAF exponentiation with w = 7 which does not require to scan the bits of the
exponents first for the NAF recoding (cf [40]). Instead of a fixed size, one could
opt for an adaptive strategy for the window width depending on the size of the
discriminant. But we reckon that the gain should be very marginal.

5.3 Exponentiations in F

As described in Subsection 4.3, the computation of an exponentiation in F cor-
responds to computing an exponentiation of 1 +

√
∆K in GM . Efficient expo-

nentiations of quadratic integers can be done using Lucas sequence as(
P +

√
∆K

2

)n

=

(
Vn(P,Q) + Un(P,Q)

√
∆K

2

)n

,

where Un(P,Q) and Vn(P,Q) are the Lucas sequences of the first and second
kind and Q is such that ∆K = P 2− 4Q. Terms of Lucas sequences can be easily
computed using the fact that(

Un(P,Q)

Un+1(P,Q)

)
=

(
0 1

−Q P

)n(
0

1

)
and

(
Vn(P,Q)

Vn+1(P,Q)

)
=

(
0 1

−Q P

)n(
2

P

)
·

Note that we only need to compute

(
0 1

−Q P

)n

modulo M .

For CL-HSMqk , we use P = 1 and Q = 1−∆K

4 . The values Un(P,Q) and
Vn(P,Q) are computed modulo qk by computing the power of the above matrix.

Then, we compute t = Un(P,Q) (Vn(P,Q))
−1

mod qk and obtain the represen-
tative 1+ t

√
∆K (note that Vn(P,Q) is guaranteed to be invertible modulo qk).

Then we can use Theorem 5 to find the corresponding form.

For CL-HSM2k , we use P = 2 and Q = 1 − ∆K . The values Un(P,Q) and
Vn(P,Q) are computed modulo 2k by computing the power of the above matrix.

Then, we compute t = Un(P,Q)
(

Vn(P,Q)
2

)−1

mod 2k and obtain the represen-

tative 1 + t
√
∆K (note that Vn(P,Q)

2 is guaranteed to be odd). Then we can use
Theorem 6 to find the corresponding form.

Note that in the case of CL-HSMq, it is even easier to compute t as we have(
1 +
√
∆K

)n ≡ 1+n
√
∆K in Gq as q divides ∆K , as originally remarked in [19].

5.4 Discrete logarithms in F

The first step to efficiently compute discrete logarithms in F is to move the
problem into GM as described in Section 4.3. It remains to compute the discrete
logarithm of an element 1 + t

√
∆K in basis 1 +

√
∆K in that group.

We first describe the case M = qk. Given 1 + t
√
∆K we compute the digits

mi in basis q of the unknown exponentm starting by the least significant one. At
first look, the process is similar to Pohlig–Hellman method. However, contrary
to this method, which would calculate at step i and exponentiation to the power
qk−i for i = 1, . . . , k−1, our algorithm only uses an exponentiation to the power
q at each step.

To obtain this more efficient method, we use the fact, noted at the end of the
previous subsection, that m0 ≡ t (mod q). Then, let i > 0 and assume that the
values of mj , for 0 ≤ j < i, were already computed. We will consider 1+ ti

√
∆K ,

defined as a representative of the element

(1 + t
√
∆K) ·

(
1 +

√
∆K

)−∑i−1
j=0 mjq

j

.

The discrete logarithm of 1 + ti
√
∆K in basis 1 +

√
∆K is then divisible by qi.

Then, as (
1 +

√
∆K

)miq
i+mi+1q

i+1+···
≡ 1 +miq

i
√
∆K (mod qi+1),

we can compute mi as ti/q
i mod q. This process is formalized in Algorithm 13.

The case M = 2k is similar to the case M = qk: the bits of the unknown
exponent m are computed one at a time. It is even simpler to implement as the
exponentiation by mi is trivial to compute as mi can only be 0 or 1.

Algorithm 13: SolveDL for CLqk

Input: pp, ft
Result: m such that ft = fm

—
1 Compute 1 + t0

√
∆K , a representative of ft in Gqk

2 α0 := 1 +
√
∆K

3 for i = 0 to k − 1 do
4 mi := ti/q

i mod q

5 Compute 1 + ti+1

√
∆K , a representative of (1 + ti

√
∆K) · α−mi

i

6 αi+1 := αq
i

7 end

8 return
∑k−1

i=0 miq
i

6 Benchmarks of LHE Schemes Implemented in BICYCL

We have implemented several linearly homomorphic encryption schemes in our
library BICYCL. First, the different linearly homomorphic encryption schemes
based on class groups, which is the main purpose of this library, namely the
schemes CL-HSMqk , CL-HSM2k and their compact variants (as CL HSMqk and
CL HSM2k classes).

For comparisons, we have also implemented Paillier ([47]) which is the most
popular linearly homomorphic encryption scheme (Paillier class). As shown in
Remark 1, the underlying LHE of Camenisch-Shoup encryption ([13]), based on
the same security assumption than Paillier, can be viewed as an instantiation of
our generic construction of Section 3. Moreover, several optimisations detailed
in Subsection 5.2 for computing exponentiations can be applied to Camenisch-
Shoup, as encryption also uses fixed-basis exponentiations, whereas this is not
possible for Paillier. For fair comparison, we have therefore also implemented
this scheme in BICYCL (CamenischShoup class).

In this section, we provide timings for CL-HSMqk , CL-HSM2k and compare to
Paillier and Camenisch-Shoup. All timings are performed on a standard laptop
(Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz). The results are averages over
100 operations.

Parameters sizes Table 2 gives the sizes of fundamental discriminants and
RSA moduli for various security levels that we used in BICYCL (available in the
RSA modulus bitsize and discriminant bitsize methods of the SecLevel

class). These sizes come from the estimations done in [6], commonly used for
implementation of class group based cryptography. Note that in particular, the
discriminant ∆K for CL-HSM2k is defined as −8N with N following the first col-
umn. The discriminants for CL-HSMqk are given by the second column. They are
smaller than RSA moduli as the best algorithms to compute discrete logarithms
in class groups are in L1/2 instead of L1/3 for factoring integers.

Security level, λ Size of RSA modulus N , η′(λ) Size of ∆K for CL-HSMqk , η(λ)

112 2048 bits 1348 bits

128 3072 bits 1827 bits

192 7680 bits 3598 bits

256 15360 bits 5971 bits

Table 2. Size in bits of N and ∆K for each security level.

Comparisons of LHE schemes We then give in Table 3 a comparison between
four cryptosystems. For CL-HSMqk , we choose to give timings for the case k = 1,
therefore denoted CL-HSMq, and q of bitsize twice the security parameter. This
choice is driven by applications where the linearly encryption scheme is used to
encrypt integers modulo the order of an elliptic curve, like in [14]. For CL-HSM2k ,
we use k = 64 independently of the security level, as the main purpose of this
scheme is to provide a threshold LHE homomorphic modulo 2k compatible with
applications to multi-party computations that closely match data manipulated
by a CPU.

This table shows substantial improvements for the schemes based on class
groups compared to previous implementations. Thanks to our many improve-
ments, at the level of group operations and at the level of exponentiations, our
experiments show that the gain we have on the size of the parameters allows
to compensate the additional cost of quadratic forms arithmetic compared to
traditional arithmetic in Z/NZ.

For instance, when comparing CL-HSMq’s encryption with Paillier’s encryp-
tion, CL-HSMq is faster for all security levels. This is in contrast with previous
implementations like [14] whose implementation was only faster than Paillier’s
encryption for large security parameters. In details, CL-HSMq’s encryption is 1.5
times faster for 112-bits security, 2.7 times faster for 128-bits security, 7 times
faster for 192-bits security and 13.8 times faster for 256 bits security. Note that
two threads are used to perform the two exponentiations in parallel during en-
cryption for CL-HSMqk , CL-HSM2k and Camenisch-Shoup’s encryption. This is
useless for Paillier’s encryption. Note that our implementation of Paillier is faster
than the one from Relic [2], essentially because Relic uses a generic exponenti-
ation to perform the exponentiation of 1 + N modulo N2 whereas it is indeed
virtually free.

Decryption of CL-HSMq is faster than Paillier’s starting from 128 bits of
security. Overall this shows that CL-HSMq is highly competitive compared to
Paillier. The optimizations for the exponentiations in Camenisch-Shoup make
also this scheme faster than Paillier. However this is at the cost of very large
ciphertexts (Camenisch-Shoup needs two elements of Z/N2Z against one for
Paillier).

Concerning setup and key generation, once the class group is computed, key
generation in CL-HSMq is the fastest, since it consists of a single exponentiation
in the class group, whereas Paillier’s key generation needs to generate large

Sec. level CL-HSMq Paillier Camenisch–Shoup CL-HSM2k

112

ciphertext 2694 bits 4096 bits 8192 bits 3272 bits

setup 0.300 s - 0.051 s 0.571 s

keygen 0.011 s 0.039 s 0.012 s 0.019 s

encrypt 4.39 ms 6.57 ms 3.00 ms 7.78 ms

decrypt 9.70 ms 6.56 ms 7.17 ms 17.7 ms

128

ciphertext 3509 bits 6144 bits 12288 bits 4808 bits

setup 0.586 s - 0.178 s 1.78 s

keygen 0.019 s 0.121 s 0.036s 0.044 s

encrypt 7.68 ms 20.9 ms 8.62 ms 17.4 ms

decrypt 17.8 ms 20.8 ms 21.8 ms 40.1 ms

192

ciphertext 6549 bits 15360 bits 30720 bits 11720 bits

setup 7.65 s - 5.55 s 27.3 s

keygen 0.072 s 5.63 s 0.374 s 0.319 s

encrypt 28.2 ms 198 ms 108 ms 128 ms

decrypt 67.3 ms 199 ms 205 ms 300 ms

256

ciphertext 10493 bits 30720 bits 61440 bits 23240 bits

setup 72.0 s - 53.4 s 263 s

keygen 0.216 s 79.6 s 2.25 s 1.77 s

encrypt 84.9 ms 1169 ms 624 ms 691 ms

decrypt 202 ms 1168 ms 1262 ms 1600 ms

Table 3. Comparison between CL-HSMq, Paillier and Camenisch-Shoup and CL-HSM2k

where the bitsize of q is twice the security level and k = 64

primes, and Camenisch-Shoup’s consists of an exponentiation in a group that is
significantly larger.

The CL-HSM2k scheme gives encryption timings that are globally intermedi-
ate between Camenisch-Shoup and Paillier and a worse decryption time. This is
due to the fact that security is based on factoring, so we do not benefit from a
small discriminant. However, timings are in the same order of magnitude com-
pared to the other factoring based schemes.

Concerning ciphertext sizes, for 112-bits security and a q of 224 bits, ci-
phertexts for CL-HSMq are 1.5 (resp. 3) times shorter than Paillier’s (resp.
Camenisch-Shoup’s). For 192-bits of security, the difference is of course much
higher: ciphertexts for CL-HSMq are 2.3 (resp. 4.7) times shorter than Pail-
lier’s (resp. Camenisch-Shoup’s). Note that the elements that are transmitted
are compressed using the technique from [30] (see Section 2) and the time of
encryption (resp. decryption) includes compression (resp. decompression) which
corresponds to less than 1% of the time.

Compact variants As shown in Table 1, with the compact variants we gain
3/2 log(q) bits for CL-HSMq and 3/2 k bits for CL-HSM2k on the size of the cipher-
texts. Concretely, for the choices made in Table 3, this means that CLC-HSMq

has ciphertexts of bitsizes 2358, 3125 or 5973 depending of the security level. For
CLC-HSM2k , we get ciphertexts of 3174, 4710 or 11622 bits. This reduction on
the size comes with an additional cost for computing the lift during encryption
and decryption (essentially an exponentiation to the power M). Our benchmark
shows that depending on the security level CLC-HSMq adds 35% to 55% more
time for encryption and 4% to 15% for decryption. So for applications where
bandwidth is crucial but encryption time is less sensitive, this variant is ade-
quate. For CLC-HSM2k the overheads are smaller as M = 2k is also smaller:
around 6% to 9% more time for encryption and 3% to 6% for decryption.

Comparisons with previous implementations for CL We run BICYCL on
the same machine used for the benchmark of [19] (which describe the original
DDH variant of CL). Our experiments shows that the CL-HSMq implementation
of BICYCL improves encryption time by a factor 20, and decryption by a factor 5.
Compared to the timings announced in [27] (still for the original DDH variant
of CL) that were run on a machine with a slightly more powerful CPU, we get
an improvement of factor 7 for encryption and 2 for decryption.

For CL-HSM2k , running BICYCL on the same machine used for the benchmark
of [21] shows that we improve the encryption time by a factor 9, and decryption
by a factor 4.

Overall, these results show that we obtain improvements not only because of
the improvement of the basic arithmetic has shown in Figure 3, but especially
thanks to our tailored implementation of the exponentiations.

References

1. D. Abram, I. Damg̊ard, C. Orlandi, and P. Scholl. An algebraic framework for
silent preprocessing with trustless setup and active security. In CRYPTO 2022.
Springer-Verlag, 2022.

2. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC
is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/

relic.

3. T. Attema, I. Cascudo, R. Cramer, I. B. Damg̊ard, and D. Escudero. Vector
commitments over rings and compressed σ-protocols. Cryptology ePrint Archive,
Report 2022/181, 2022. https://eprint.iacr.org/2022/181.

4. W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based
signatures through class group computations. In S. D. Galbraith and S. Moriai, ed-
itors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 227–247. Springer,
Heidelberg, Dec. 2019.

5. J.-F. Biasse. Improvements in the computation of ideal class groups of imaginary
quadratic number fields. Advances in Mathematics of Communications, 4(2):141–
154, 2010.

6. J.-F. Biasse, M. J. Jacobson, and A. K. Silvester. Security estimates for quadratic
field based cryptosystems. In R. Steinfeld and P. Hawkes, editors, ACISP 10,
volume 6168 of LNCS, pages 233–247. Springer, Heidelberg, July 2010.

7. D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In A. Boldyreva and D. Micciancio,
editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 561–586. Springer,
Heidelberg, Aug. 2019.

8. J. Buchmann, C. Thiel, and H. Williams. Short representation of quadratic inte-
gers. In W. Bosma and A. van der Poorten, editors, Computational Algebra and
Number Theory, pages 159–185, Dordrecht, 1995. Springer Netherlands.

9. J. Buchmann and U. Vollmer. Binary Quadratic Forms: An Algorithmic Approach.
Algorithms and Computation in Mathematics. Springer Berlin Heidelberg, 2007.

10. J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107–118, June 1988.

11. J. Buchmann and H. C. Williams. A key exchange system based on real quadratic
fields. In G. Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 335–343.
Springer, Heidelberg, Aug. 1990.

12. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers.
In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I, volume 12105
of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

13. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 126–144. Springer, Heidelberg, Aug. 2003.

14. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party
ECDSA from hash proof systems and efficient instantiations. In A. Boldyreva and
D. Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
191–221. Springer, Heidelberg, Aug. 2019.

15. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-
efficient threshold EC-DSA. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
editors, PKC 2020, Part II, volume 12111 of LNCS, pages 266–296. Springer, Hei-
delberg, May 2020.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2022/181

16. G. Castagnos, L. Imbert, and F. Laguillaumie. Encryption switching protocols
revisited: Switching modulo p. In J. Katz and H. Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 255–287. Springer, Heidelberg, Aug. 2017.

17. G. Castagnos, A. Joux, F. Laguillaumie, and P. Q. Nguyen. Factoring pq2 with
quadratic forms: Nice cryptanalyses. In M. Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 469–486. Springer, Heidelberg, Dec. 2009.

18. G. Castagnos and F. Laguillaumie. On the security of cryptosystems with quadratic
decryption: The nicest cryptanalysis. In A. Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 260–277. Springer, Heidelberg, Apr. 2009.

19. G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from DDH.
In K. Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 487–505.
Springer, Heidelberg, Apr. 2015.

20. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted
inner product functional encryption modulo p. In T. Peyrin and S. Galbraith, edi-
tors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 733–764. Springer,
Heidelberg, Dec. 2018.

21. G. Castagnos, F. Laguillaumie, and I. Tucker. Threshold linearly homomorphic
encryption on Z/2kZ. Cryptology ePrint Archive, Paper 2022/1143, 2022. https:
//eprint.iacr.org/2022/1143, to appear at ASIACRYPT 2022.

22. P. Chaidos and G. Couteau. Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In J. B. Nielsen and V. Rijmen, editors, EU-
ROCRYPT 2018, Part III, volume 10822 of LNCS, pages 193–221. Springer, Hei-
delberg, Apr. / May 2018.

23. CHIA. Chia verifiable delay function competition. https://medium.com/@chia.

net/chia-vdf-competition-guide-5382e1f4bd39, 2018.

24. G. Couteau, D. Goudarzi, M. Klooß, and M. Reichle. Sharp: Short relaxed range
proofs. Cryptology ePrint Archive, Paper 2022/1153, 2022. https://eprint.

iacr.org/2022/1153.

25. G. Couteau, M. Klooß, H. Lin, and M. Reichle. Efficient range proofs with transpar-
ent setup from bounded integer commitments. In A. Canteaut and F.-X. Standaert,
editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 247–277.
Springer, Heidelberg, Oct. 2021.

26. D. Cox. Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex
Multiplication. Pure and Applied Mathematics: A Wiley Series of Texts, Mono-
graphs and Tracts. Wiley, 2014.

27. P. Das, M. J. Jacobson Jr., and R. Scheidler. Improved efficiency of a linearly
homomorphic cryptosystem. In Codes, Cryptology and Information Security, pages
349–368. Springer International Publishing, 2019.

28. Y. Deng, S. Ma, X. Zhang, H. Wang, X. Song, and X. Xie. PromiseΣ-protocol: How
to construct efficient threshold ECDSA from encryptions based on class groups. In
M. Tibouchi and H. Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 557–586. Springer, Heidelberg, Dec. 2021.

29. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

30. S. Dobson, S. Galbraith, and B. Smith. Trustless unknown-order groups. Mathe-
matical Cryptology, 1(1):1–15, 2021.

31. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer, Heidelberg, Aug. 1984.

https://eprint.iacr.org/2022/1143
https://eprint.iacr.org/2022/1143
https://medium.com/@chia.net/chia-vdf-competition-guide-5382e1f4bd39
https://medium.com/@chia.net/chia-vdf-competition-guide-5382e1f4bd39
https://eprint.iacr.org/2022/1153
https://eprint.iacr.org/2022/1153

32. N. Glaeser, M. Maffei, G. Malavolta, P. Moreno-Sanchez, E. Tairi, and S. A. Thya-
garajan. Foundations of coin mixing services. Cryptology ePrint Archive, Paper
2022/942, 2022. https://eprint.iacr.org/2022/942.

33. GMP. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/.
34. J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for computa-

tion of class groups. Journal of the American Mathematical Society, 2(4):837–850,
1989.

35. W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory,
2022. Version 2.9.0, http://flintlib.org.

36. D. Hühnlein. Efficient implementation of cryptosystems based on non-maximal
imaginary quadratic orders. In H. M. Heys and C. M. Adams, editors, SAC 1999,
volume 1758 of LNCS, pages 147–162. Springer, Heidelberg, Aug. 1999.

37. D. Hühnlein, M. J. Jacobson Jr., S. Paulus, and T. Takagi. A cryptosystem based
on non-maximal imaginary quadratic orders with fast decryption. In K. Nyberg,
editor, EUROCRYPT’98, volume 1403 of LNCS, pages 294–307. Springer, Heidel-
berg, May / June 1998.

38. D. Hühnlein, M. J. Jacobson Jr., and D. Weber. Towards practical non-interactive
public key cryptosystems using non-maximal imaginary quadratic orders. In D. R.
Stinson and S. E. Tavares, editors, SAC 2000, volume 2012 of LNCS, pages 275–
287. Springer, Heidelberg, Aug. 2001.

39. M. J. Jacobson Jr. Computing discrete logarithms in quadratic orders. Journal of
Cryptology, 13(4):473–492, Sept. 2000.

40. B. King. wNAF*, an efficient left-to-right signed digit recoding algorithm. In S. M.
Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung, editors, ACNS 08, volume
5037 of LNCS, pages 429–445. Springer, Heidelberg, June 2008.

41. T. Kleinjung. Quadratic sieving. Mathematics of Computation, 85(300):1861–1873,
2016.

42. J. Lagarias. Worst-case complexity bounds for algorithms in the theory of integral
quadratic forms. Journal of Algorithms, 1(2):142 – 186, 1980.

43. R. W. F. Lai and G. Malavolta. Subvector commitments with application to
succinct arguments. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 530–560. Springer, Heidelberg, Aug. 2019.

44. H. Lipmaa. Secure accumulators from euclidean rings without trusted setup. In
F. Bao, P. Samarati, and J. Zhou, editors, ACNS 12, volume 7341 of LNCS, pages
224–240. Springer, Heidelberg, June 2012.

45. K. S. McCurley. Cryptographic key distribution and computation in class groups.
In R. A. Molin, editor, Proc. NATO Advanced Study Inst. on Number Theory and
Applications, Banff, 1988, Boston, 1989. Kluwer.

46. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, Florida, 1996.

47. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.
Springer, Heidelberg, May 1999.

48. PARI Group, Univ. Bordeaux. PARI/GP version 2.15.0, 2022. available from
http://pari.math.u-bordeaux.fr/.

49. M. Sayles. libqform. https://github.com/maxwellsayles/libqform, 2014.
50. D. Shanks. On Gauss and composition I, II. In Proc. NATO ASI on Number

Theory and Applications, pages 163–179. Kluwer Academic Press, 1989.
51. J. A. Solinas. Low-weight binary representations for pairs of integers. Research

report CORR 2001-41, Center for Applied Cryptographic Research, University of
Waterloo, Waterloo, ON, Canada, 2001.

https://eprint.iacr.org/2022/942
https://gmplib.org/
http://flintlib.org
http://pari.math.u-bordeaux.fr/
https://github.com/maxwellsayles/libqform

52. E. G. Straus. Addition chains of vectors (problem 5125). American Mathematical
Monthly, 71(7):806–808, 1964.

53. S. A. K. Thyagarajan, G. Castagnos, F. Laguillaumie, and G. Malavolta. Efficient
CCA timed commitments in class groups. In G. Vigna and E. Shi, editors, ACM
CCS 2021, pages 2663–2684. ACM Press, Nov. 2021.

54. I. Tucker. Functional encryption and distributed signatures based on projective hash
functions, the benefit of class groups. PhD thesis, Université de Lyon, 2020.

55. B. Wesolowski. Efficient verifiable delay functions. Journal of Cryptology,
33(4):2113–2147, Oct. 2020.

56. T. H. Yuen, H. Cui, and X. Xie. Compact zero-knowledge proofs for threshold
ECDSA with trustless setup. In J. Garay, editor, PKC 2021, Part I, volume 12710
of LNCS, pages 481–511. Springer, Heidelberg, May 2021.

57. Zengo. Class: Rust library for building iqc. https://github.com/ZenGo-X/class.

https://github.com/ZenGo-X/class

	I want to ride my BICYCL: BICYCL Implements CryptographY in CLass groups

