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Abstract. We introduce BICYCL an Open Source C++ library that im-
plements arithmetic in the ideal class groups of imaginary quadratic
fields, together with a set of cryptographic primitives based on class
groups. It is available at https://gite.lirmm.fr/crypto/bicycl un-
der GNU General Public License version 3 or any later version. BICYCL
provides significant speed-ups on the implementation of the arithmetic
of class groups. Concerning cryptographic applications, BICYCL is orders
of magnitude faster than any previous pilot implementation of the CL
linearly encryption scheme, making it faster than Paillier’s encryption
scheme at any security level. Linearly homomorphic encryption is the
core of many multi-party computation protocols, sometimes involving a
huge number of encryptions and homomorphic evaluations: class group-
based protocols become the best solution in terms of bandwidth and
computational efficiency to rely upon.
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1 Introduction

Class group cryptography was introduced in the late 80s by Buchmann and
Williams [BW88IBW90] and concurrently by McCurley [McC89] through vari-
ants of the Diffie-Hellman key agreement [DHT76] and their extensions to public-
key cryptosystems using constructions similar to that of Elgamal [EIG84]. More
specifically, Buchmann and Williams [BW88] suggested that the class group of
ideals of maximal orders of imaginary quadratic fields may offer a better secu-
rity than the multiplicative group of finite fields. Indeed, at the time, the best
algorithms for computing discrete logarithms in class groups were exponential
in the group order, whereas index calculus methods with subexponential com-
plexity already existed for the equivalent problem in (multiplicative subgroups
of) finite fields. The current best algorithms for computing the structure of the
class group of a quadratic imaginary number field [JacO0/Bial0/Klel6] are all
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improvements of Hafner and McCurley’s algorithm [HMS89]. The costs of these
algorithms increase with A, the discriminant of the number field. The current
largest computation involved a 512 bits discriminant [BKV19].

With a subexponential complexity of L;/5(|4A[), computing class groups is
still asymptotically slower than factoring integers, whose complexity is Ly 3(V),
where N is the integer to be factored. From a cryptographic perspective, it essen-
tially means that any given security level may be achieved with shorter keys than
those required by schemes based on integer factorization. Nevertheless, the arith-
metic of class groups is quite intricate. Therefore, the associated cryptographic
protocols are potentially slower than cryptosystems based on elliptic curves or
those involving arithmetic modulo a prime number or an RSA modulus.

A nice attempt to improve the efficiency of cryptosystems based on class
group was achieved by Hiihnlein, Jacobson, Paulus and Takagi [HJPT98]. Un-
fortunately, a critical attack |[CLO9ICJLNOQ9| against this family of cryptosys-
tems consigned class group cryptography to oblivion. Over the last decade,
class groups have regained a lot of interest thanks to their usefulness in de-
signing advanced cryptosystems and secure multi-party computation protocols.
In particular, ideas from the original attack [CL09] were positively turned into
the Castagnos - Laguillaumie (CL) linearly homomorphic encryption scheme
(LHE) [CL15] which involves a subgroup of a class group where discrete log-
arithms are easy to compute. CL is at the heart of a construction of pro-
jective hash functions, which in turn allows to design efficient inner-product
functional encryption [CLT18|, two-party and fully-threshold ECDSA signa-
tures |[CCLT19/CCL™20/YCX2IIDMZ™ 21|, as well as protocols for coin mixing
IGMM™22].

A crucial advantage of class group cryptography is that it is well-suited
when multi-party protocols require a one-time transparent (or public-coin) setup
with minimal interaction among parties. In addition, it is also interesting for
time-released cryptography since protocols can take advantage of an exponenti-
ation over a group of unknown order. For instance, [TCLM21] presented secure
timed commitments and a scalable distributed randomness generation with en-
hanced security, transparent setup, that relies on a variant of the CL encryption
scheme. Besides, class group cryptography has recently led to many advanced
protocols such as verifiable random functions without trusted setup [Wes20],
accumulators [Lip12[BBFT9], encryption switching protocols [CILIT], efficient
designated-verifier non-interactive zero-knowledge proofs of knowledge [CCIS],
succinet non-interactive argument of knowledge [BFS20/LM19], homomorphic
secret sharing and pseudorandom correlation functions for generating obliv-
ious transfer [ADOS22], range proofs [CKLR2IICGKR22] or vector commit-
ments |[ACCT22].

When available, the timings reported in these contributions come from vanilla
implementations of the protocols, mainly relying on PARI/GP [PAR22] functions
for the arithmetic of class group. Very few dedicated libraries exist for class group
cryptography: we can cite ZenGo-X’s Class library written in Rust [Zen| (used
to benchmark threshold ECDSA signatures), which makes calls to PARI/GP,



Sayles’ 1libgform library [Say14], which is an optimized C library for ideal arith-
metic in imaginary quadratic number fields but which does not implement any
cryptographic protocols, and the implementation that won the Chia VDF com-
petition [CHIIR] whose goal was to evaluate a VDF by performing successive
squarings as fast as possibleﬂ

In this paper, we introduce BICYCL, an optimized open source library that
implements arithmetic in ideal class groups of imaginary quadratic fields to-
gether with class group-based cryptographic primitives and protocols. We show
that our library outperforms any implementation that we were aware of, and
demonstrate that class group cryptography can be more efficient than classical
cryptography in certain cases, particularly for linearly homomorphic encryption.
This is interesting for applications to multi-party computation as LHEs based
on class groups offer at the same time: transparent setup, low bandwidth, effi-
cient thresholdization due to their Elgamal structure, and now computational
efficiency.

Our main contributions:

— From a theoretical point of view, we unify several frameworks to construct
linearly homomorphic encryption schemes from [CLISICLT22|, as well as
compact (i.e., with shorter ciphertexts) and large message variants of these
cryptosystems and provide the security proofs.

— We optimize the implementation of the arithmetic of binary quadratic forms
at a low level, namely the squaring (NUDUPL) and the composition (NU-
COMP) of quadratic forms, by carefully implementing partial extended GCD
variants. At a higher level, we also improve exponentiation in the class group
arising from practical cryptographic applications, such as CL encryption
which requires two fixed-basis exponentiations.

— We explicit some isomorphisms involving some subgroups of the class groups
(in particular those where computing discrete logarithms is easily ) that allow
very fast exponentiations and discrete logarithm computations needed by the
CL framework. More precisely, these explicit isomorphisms make it possible
to avoid quadratic form arithmetic in these subgroups, allowing instead the
use of more efficient arithmetic of quadratic integers.

— We provide a suite of cryptographic protocols: not only we have implemented
the CL encryption and its variants, but we also provide an implementation
of Paillier and Camenisch-Shoup, that take benefit, when possible, from our
improvements for CL, as well as a zero-knowledge proof of well-formedness
of a CL ciphertext.

BICYCL is significantly faster than any previous pilot implementation of the
CL protocol, improving encryption time by a factor 20, and decryption by a
factor 5 compared to the first implementation [CLI5]. At the lower level, these
significant speed-ups come from our implementation of the arithmetic of binary
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quadratic forms, namely the NUDUPL and NUCOMP algorithms. As an illus-
tration, for 6000-bit discriminant, our version of NUDUPL is 15% faster than
libgform [Say14], which was the fastest implementation available that we were
aware of, and 68% faster than PARI/GP that is probably the most widely used.
The cryptographic schemes that we have implemented also benefit from tailored
exponentiations in the class group, in particular when the base is fixed. In Sec-
tion [6] we present more extensive comparisons with other libraries for the low
level arithmetic primitives, as well as timings and comparisons with various LHE
schemes. In particular, we show that for common applications, CL’s encryption
is faster than Paillier’s at any security level. In addition, in multi-party compu-
tation protocols or when data are encrypted, homomorphic arithmetic modulo
an RSA number is not well-suited if the message space is of order a prime ¢, and
requires subtleties to deal with potential wraparounds or to hide the number
of modular reductions modulo ¢ during the process. On top of that, to reach
adaptive security, range proofs must be added. CL provides a solution which is
simpler and more efficient.

It is our intention to augment our library with other flavors of CL (like the
DDH-f based variants, threshold decryption or Gaussian distributions for ran-
domness sampling), as well as more complex cryptographic protocols that rely
on class groups. It has been widely tested and can be used to implement class
group cryptography, and more generally for computations in ideal class groups
of imaginary binary quadratic fields.

Detailed Roadmap and Results: In Section [2] we give some background on class
groups of imaginary quadratic fields. In Section [3] we present a unified view of
the CL framework for designing linearly homomorphic encryption schemes from
groups of unknown order that contain a subgroup where the discrete logarithm
problem is easy. We provide generic schemes and their security, in particular a
generic compact variant that was previously only described in a particular case.
In Section [4] we review instantiations of the CL framework within class groups
with some improvements compared to previous works. In particular, we simplify
the handling of large messages and apply the compact variant to more cases as
implemented in our library. We also give a guide to select the best variant of
CL if one wants a linearly encryption scheme homomorphic modulo an integer
M of a certain bitsize without any particular property on the form of M. Then,
we give specific theorems that explicitly describe the representation of elements
of the subgroups where discrete logarithms are easy, giving the mathematical
foundations of some optimizations of our implementation. In Section [5] we focus
on specific points of the implementation. First, the speed up of the arithmetic of
class groups, then we show how to combine some known exponentiation meth-
ods from the context of elliptic curves in order to obtain the highest speed-ups
for the instantiations of CL in class groups. Finally, we give algorithms spe-
cific to the subgroup where discrete logarithms are easy, in particular we give
important improvements when the order of this group is a power of a prime,
and more generally when the order is large by showing that we can work with
quadratic integers instead of quadratic forms. In the last section, Section [6] we



give benchmarks of the implementation of several linearly homomorphic encryp-
tion schemes: two from the CL framework for class groups, homomorphic modulo
a prime ¢ and 2%, and the Paillier and Camenisch-Shoup encryption, homomor-
phic modulo an RSA integer N. These benchmarks highlight the improvements
previously mentioned.

2 Class Group and Cryptography

We give here a high level overview of class groups of imaginary quadratic fields.
See for instance [BVOT|Cox14] for a comprehensive treatment.

2.1 Quadratic Fields, Orders and Class Groups

Imaginary quadratic fields are extensions of degree 2 of Q that can be written
as K = Q(\/ﬁ) where D < 0 is a square free integer. To such a field is attached
an integer, called fundamental discriminant and denoted Ay, that is defined as
Ag =D if D=1 (mod 4) and Ak := 4D otherwise.

The ring Oa, of algebraic integers in K, also called the maximal order,
can be written as Z[wg] where wix = (Ax + /Ak)/2. One can define special
subrings of Oa,, called orders, associated to a non fundamental discriminant
Ay = 2 Ag where £ is called a conductor. The order O 4, of conductor £ is the
ring Z[{wk], it has index £ in Oa,.

To each discriminant A (fundamental or not), one can associate a finite
abelian group, called the ideal class group and denoted Cl(A) defined as the
quotient of the group of (invertible fractional) ideals of O by the subgroup of
principal ideals. The order of this group is called the class number and denoted
h(A).
One has h(A) close to y/|A] in general and one can compute its number of
bits in polynomial time using the analytic class number formula (cf [McC89)).
However, the full value of h(A) is only known to be computable from A in
sub-exponential time L;/5(|A|). As a result, these groups have been extensively
used in the past decade to implement cryptographic protocols based on groups of
unknown order, as they can be generated with a public coin setup: It is sufficient
to generate the integer A to use these groups. This is in contrast to the group
of invertible elements of Z/NZ for which one needs a trusted setup to generate
an RSA integer N, in order to keep its factorization secret, and thus the order
of the group unknown. Another feature used by cryptographic applications is
that discrete logarithms in Cl(A) are also hard to compute (again only sub-
exponential time algorithms with complexity L;,5(|4[) are known, see [BJS10]
for instance).

2.2 Elements and Group Law

Elements of CI(A) can be represented in a compact form. One can define a sys-
tem of representatives of the classes with the notion of reduced ideals. Ideals



are of the form aZ + %Z, where a,b € N and a and b are smaller than
V/]A] when the ideal is reduced. As a result, one needs log,(|A|) bits to rep-
resent an element of the class group and this can be reduced to 3/4log,(|A|)
using a recent technique proposed in [DGS21]. Combined with the fact that the
best known attacks against cryptographic problems in class groups are of com-
plexity L;/5(|A]) instead of L;,3(NN) for factoring based schemes, this leads to
bandwidth improvement for cryptographic applications.

The group law corresponds to product of ideals followed by a reduction op-
eration to find the unique reduced ideal of the class. In practice, the group law
is computed using the language of positive definite binary quadratic forms. Let
a,b,c be three relatively prime integers such that a > 0 and A = b? — 4ac, we
will denote f := (a,b,c) the primitive positive definite binary quadratic form
over the integers, f(X,Y) = aX? + bXY + ¢Y? of discriminant A. One can de-
fine an equivalence relation on forms from the action of SLs(Z). The class group
Cl(A) is actually isomorphic to the set of forms modulo this equivalence relation.
Moreover there is an explicit correspondence between ideals and forms: the class
of the form (a, b, ¢) corresponds to the ideal aZ + %Z. The definition of the
unique representative of the class is more natural when working with forms: it
is the reduced form (a, b, ¢), which satisfies —a < b < a, a < ¢ and if a = ¢ then
b > 0.

The group law is implemented using Gauss’ composition of forms and a re-
duction algorithm for forms devised by Lagrange. More efficient algorithms have
been proposed by Shanks to compute the group law, NUCOMP and NUDUPL,
where a partial reduction is applied during composition ([Sha89]). Our library
represents elements of the class group CI(A) as triplets of integers correspond-
ing to reduced binary quadratic forms and implements Shank’s algorithms (see

Section [f)).

2.3 Maps between Class Groups

We have seen that from a fundamental (square free) discriminant Ag, one can
define a class group Cl(Ag) associated with the ring of integers O 4 ,.. Moreover,
from Ak one can define a non fundamental discriminant Ay := 2Ak and a class
group Cl(4Ay) associated with the suborder O, C O, . This inclusion of the
orders actually translates into a relation on the class groups Cl(Ay) and Cl(Ak).
First one defines a map on the level of the ideals. A nonzero ideal I of O 4, is said
to be prime to £ if I+ fOA, = Oa,. Then the map I — IO, is an isomorphism
from the group of ideals of O, prime to £ to the group of ideals of O 4, prime
to £. This map and the inverse map are explicit and can be computed efficiently
knowing the conductor ¢ (see [HIPT98| Algo. 2,3]). By passing to the quotient,
we obtain a surjection @y : Cl(4,) - Cl(Ak). Studying the kernel of this map,
one obtains, for Ax < —4, ([Cox14, Theorem 7.24]) the formula

h(Oa,) = h(Ouag) £ ][ <1 - <AK) 1> .

pl¢ b /P



The instantiation of the CL framework to design linearly homomorphic en-
cryption schemes in class groups heavily relies on this formula and on the fact
that the discrete logarithm problem can be easy in ker ¢, for appropriate choices
of A and ¢. We will see this in more details in Section [4] with a precise charac-
terization of the elements of this kernel.

2.4 Squares and Square Roots

A last important property of class groups for cryptography concerns squares and
square root computations. Knowing the factorization of the discriminant A, it
is possible to determine in polynomial time if an element of Cl(A) is a square
and compute its square roots (|[Lag80]). The situation is somewhat similar to
Z/NZ for an RSA integer N = pg where one can compute the values of the
Legendre symbol relative to p and ¢ to determine if an element is a square. For
class groups, genus theory defines various characters that play the role of these
symbols, depending on the specific form of the discriminant. Genus theory is
of crucial importance in the instantiation of the CL framework modulo 2*. We
refer the interested reader to [CLT22, Subsection 2.3] for more details.

3 The CL Framework

In this section, we present the generic framework introduced in [CL15] and re-
fined in [Tuc20] to design linearly homomorphic encryption schemes.

Let M be an integer. In a nutshell, in the CL framework, a setup generates a
large cyclic group G of unknown order that contains a subgroup F' of order M
where the discrete logarithm problem is easy. The index of that subgroup in the
larger group is dictated by the security level. Moreover, G will be isomorphic to
F x H where H is the subgroup of G of M —th powers.

This construction makes it possible to instantiate various linearly homomor-
phic variants of the Elgamal cryptosystem where the plaintexts space is the
additive group (Z/MZ,+). A public key is of the form pk = h* where h is a
generator of H and a ciphertext of a plaintext m is of the form (A", f™pk")
where f is a generator of F'. As the discrete logarithm problem is easy in F,
decryption ¢ la Elgamal in the exponent can recover m without restriction on
its size. The second component of the ciphertext uses the decomposition F' x H:
the plaintext is encoded as an element of F' and masked by an element of H.
As we shall see, the security of this scheme is based on the difficulty of an Hard
Subgroup Membership problem: deciding if a random element of G is an element
of H.

In previous works that expose a generic presentation of the CL framework,
the plaintexts space was restricted to prime order groups. In this work, we expose
the CL framework together with the design of a generic linearly homomorphic
encryption scheme and its security, with minimal hypotheses on the integer M.

This allows to capture many more concrete instantiations based on class
groups: for instance the CL-HSM scheme introduced in [CLT1§|, homomorphic



modulo an odd prime ¢, but also variants modulo ¢* and modulo a product of
primes as analyzed in [DJS19], and the recent scheme of [CLT22] homomorphic
modulo 2*. As we shall see, this generalized framework is not limited to class
groups. It also encompasses derivatives of the Paillier cryptosystem such as the
Camenisch and Shoup’s encryption scheme, homomorphic modulo an RSA in-
teger N. In this case, G is a subgroup of (Z/N?2Z)*, and the hard subgroup
membership problem correspond to recognizing N-th powers, the problem de-
fined by Paillier’s Decisional Composite Residuosity assumption (DCR) from
[Paif9] (see Remark [1| below for details).

Compared to the original exposition of the framework of [CLI5] based solely
on the DDH assumption, we take advantage of the HSM assumption from [CLT1§]
which provides more efficient and versatile schemes (notably, these schemes are
related to hash proof systems as exposed in [Tuc20]). Moreover, in the last
subsection, we generalized to any message space, the so-called compact variant
introduced in [CL15] and analyzed in [TCLM2I] that produces more compact
ciphertexts.

3.1 Generic definition and properties

Let us now introduce the algebraic structure and the properties required to build
a CL scheme.

Definition 1 (Setupc, — Adapted from Def. 3.1 of [Tuc20]). Let A be a
security parameter and M be a positive integer. Let G be a commutative group
of unknown order M-S, for some s that depends on A, and which admits a cyclic
subgroup F = (f) of order M. We require gcd(M,s) = 1, although the index
[CA? : F] = § should be hard to compute. Yet, we need to know an upper bound
§>735. Let h=a™ for some random element x € G.

A setup for the CL framework for M is a pair of algorithms (Genci, Solvepy )
such that:

— Gency takes as input 1* and outputs public parameters pp := (3, f, h, extra)
where extra encodes necessary information to efficiently compute in @,

— Solvepy is a deterministic polynomial time algorithm for computing discrete
logarithms in F.

The following proposition clarifies the structure of the group used for cryp-
tographic purposes.

Proposition 1. Let g = f - h, and let G be the cyclic subgroup of G generated
by g. Then, denoting H = {xM;x € G}, we have (h) = H and G ~ F x H.

Proof. Let y € H. We have y = (¢g*)M = foM . poM = poM gince f has order
M. Thus H C (h). Conversely, denoting s the order of h, 8 := M~ (mod s)
and z := ¢”, one as 2™ = ¢?M = WM = h so h € H and (h) = H. Finally,
since the orders of f and h are coprime, we have G >~ F' x H. a



As said above, the encryption schemes that we present in the following sec-
tions exploit the cyclic subgroup G by hiding with a random element of H the
plaintext messages encoded in F', using a technique d la Elgamal. However, con-
trary to the standard Elgamal scheme defined in a group of known prime order,
in the instantiations of our framework the order of G will remain unknown (to
anyone), and there will be no way to efficiently recognize valid encodings of
elements of this cyclic group. This can be problematic for applications involv-
ing malicious participants (like CCA secure encryption schemes, zero knowledge
proofs and multi-party computation). However, in general, elements of the group
G will be easy to recognize, which will be sufficient for applications. For exam-
ple, this permits to design an efficient zero knowledge argument of knowledge
for ciphertexts well-formedness: the verifier will begin by checking that elements
are in G, and it will then be possible to link the soundness of the argument with
a computational assumption in G (cf. [CCLT20, Subsection 3.1]).

3.2 Assumption

The generic encryption scheme that follows the framework from Def. [1] relies
on the hard subgroup membership assumption related to the direct product of
Proposition[} distinguishing between elements of H and arbitrary elements of G.
In Definition [2, we give the formal definition of this generic assumption, called
HSMcim, for any integer M. Note that this generalizes the HSM assumption
from [CLT18], which was made for M = ¢, an odd prime (we take u <~ (Z/qZ)*
instead of u < (Z/qZ) in [CLTI8], but it infers a negligible difference 1/¢ as
the bitsize of ¢ is larger than the security parameter to ensure that ¢ is prime
to § in concrete instantiations). This generic assumption also generalises the
HSM,« assumption from [CLT22] made for M = 2%, As said above, this is also
a generalization of the DCR assumption (see Remark [1| below).

Notation 1 (Distribution Dg) In the following, given a generator h of a
cyclic group H, we will denote Dy a distribution over the integers such that
the distribution {h*, x <> Dy} is at distance less than ép,, (\) from the uniform
distribution in H for some negligible function ép,, .

Knowing an upper bound § on the order of H, this distribution can be in-
stantiated efficiently from a folded uniform distribution or from a folded discrete
Gaussian distribution (see [Tuc20, Subsection 2.7.1]).

Definition 2 (HSMc_ m assumption). Let A be a security parameter, M be a
positive integer and Setupc, = (Gency, Solvep) be a setup for the CL framework
for M. Let A be a PPT algorithm, its advantage for the HSMc m problem is
defined as:

AdviEMeem 3y = ‘Pr [b=1b" : pp = (3, f, h,extra) < Gency (1%),

& Dy, u & (Z/MZ)* b < {0,1}, 20 := f“h", 2z, := h®,
b* < A(pp, 2, Solvepy ()] — 1/2‘



Algorithm 1: KeyGen

Input: pp = (5, f, h, extra)
generated by Gencp
Result: (pk,sk)

1 sample sk & Dy
2 pk:= h*
3 return (pk,sk)

Algorithm 2: Encrypt
Input: pp, pk,m € Z/MZ Algorithm 3: Decrypt
Result: ciphertext (c1,c2) Input: pp,sk, (c1,c2)
— Result: m € Z/MZ
sample r <i Dy —

1

2 ¢y :=h" 1 a::02~cl_Sk

3 co:= fMpk” 2 return Solvep (pp, a)
4 return (c1,c2)

Algorithm 4: EvalAdd Algorithm 5: EvalScal
Tnput: pp, ok, (o1, c2), (4, %) Tnput: pp.pk, (c1,c2).0
Result: ciphertext (cf,c5) Result: ciphertext (cf,c5)

1l =ca-q 1) :=c§

2 cfi=co-ch 2 chi=cY

3 sample r & Dy 3 sample r & Dy

4 return (cf - A", cq - pk”) 4 return (c} - A", c5 - pk")

Fig. 1. Generic linearly homomorphic encryption scheme modulo M

For a positive integer M, The HSMcLm problem is dusmc,  —hard for Setupc,

if for all PPT algorithm A, its advantage Adv:SMCL'M()\) < OHsMe (). The

HSMcim assumption holds for Setupc, if the HSMc m problem for Setupc is
SHsMey —hard and Susmc, ,, is negligible.

3.3 LHE under HSMc m

We describe in Figure [1| the generic linearly homomorphic encryption scheme
modulo M that follows from the CL framework, and prove its security in Theo-
rem

Theorem 2. Let Setupc, = (Genci, Solvep ) be a setup for the CL framework

for an integer M. The resulting linearly homomorphic encryption scheme modulo
M of Figure[d] is ind — cpa under the HSMcm assumption for Setupc, .
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Proof. Let A be an adversary against the indistinguishability of the scheme. We
describe a sequence of indistinguishable games which starts from the ind-cpa
experiment Game 0 and finishes with a game where the ciphertext statistically
hides the challenge bit b*. In the following, we denote by S; the event “adversary
A outputs b = b* in Game 7”.

In the first game Game 1, the only modification is the distribution of secret
key sk: It is sampled according to the distribution D¢ instead of Dy .

The difference from A’s view is therefore the distribution of pk = A%k. With
the notation of Proposition[I] D¢ is a distribution over the integers such that the
distribution {z mod Ms : x < D¢} is dp,—close to the uniform distribution in
{1,..., Ms}, where s is the order of H. Since s divides M s, sampling sk according
to D¢ yields also a distribution dp,—close to the uniform in {1,...,s}, and by
the triangular inequality, we have

|PI‘[51] - PI‘[S()H S 26DG.

In the second game Game 2, the challenge ciphertext is computed using the
secret key. Namely, ¢; := A" and cp = f™* cslk where r <— Dp. Though the
challenge ciphertext is computed differently, its distribution is in fact unchanged
as ¢ = hsk = pk”. Hence,

PI‘[Sl] = PI‘[SQ]

In the third game Game 3, an integer u is sampled uniformly at random
in (Z/MZ)* and c; is computed as ¢; = f“h". By reduction to the HSMc| m
assumption, we have
|PI‘[53] - PI‘[SQH S 6HSMCL,M'

In Game 3, we have ¢y = f"* cik = fmertuskpk” From an information
theoretic point of view, using the direct product of Proposition |1} the adversary
learns mp» + u - sk mod M from co. Moreover, it gets © mod M from ¢y, but
only sk mod s from pk. Since sk is close to uniform modulo Ms, and M and s
are coprime, sk mod M is uniform and independent from sk mod s. Therefore,
as u is invertible modulo M, u-sk acts as a perfect one time pad for the message
mp+ and we get

1
PI'[S?,] = 5
Combining the above probability equations concludes the proof. a

Remark 1. This generic construction of a linearly homomorphic encryption in-
troduced to cover the CL family of cryptosystems actually also captures Ca-
menisch and Shoup’s encryption scheme from [CSO03| (a linearly homomorphic
encryption can be obtained from their encryption protocol by removing the last
component of the ciphertext, which brings non-malleability). It involves an RSA
modulus N = pq, for two safe primes p and ¢, and the message space is Z/NZ
(M = N with our notations). The group G is the subgroup of (Z/N?Z)* of
squares, H is the subgroup of the N-th powers, and F' is the subgroup of order
N generated by 1+ N. In this case the HSM¢_ m assumption corresponds to the
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Paillier’s DCR assumption from [Pai99]. We provide in our library an implemen-
tation of this encryption scheme (CamenischShoup class) and give comparison
in Section [6] Our implementation benefits from all improvements of Section
that also apply to this setting.

3.4 A compact variant

The c1phertexts of the generic linearly homomorphic encryption scheme of Fig-
ure |1 use two elements of the group G. The element co = f™pk” needs to be in
G C G in order to use the direct product G ~ F' x H of Proposition |1 l However,
c1 is an element of the subgroup H, and H is isomorphic to the quotient group
G/F. Moreover, in all known implementations of the CL framework, this quo-
tient group is isomorphic to a group whose elements can be represented with a
more compact representation than the elements of G.

In this subsection, we present a compact variant of the scheme of Figure
that benefits from this observation. To this end, we first enrich the setup of
Definition I in order to add some properties: We consider a group | r and a
surjection G — I’ of kernel F. These objects always exist by taking r=a /F
and the canonical surjection, but we further require that I has an explicit and
compact representation of elements.

These extra properties and this variant were originally proposed in [CL15]
for the specific M = ¢ an odd prime, and presented as a fast variant. The
security of this variant was then analyzed in [TCLMZ21], still presented as a
fast variant. However, if this variant used to be fast compared to an encryption
scheme that follows the original CL framework based on the DDH assumption,
it is no longer the case compared to optimized implementation of schemes based
on the HSM¢ m assumptions, as suggested by our benchmarks of Section @ But
this variant is still interesting for applications where the bandwidth is a critical
issue as it leads to schemes with only a slight computational overhead due to the
exponentiation to the power M and significantly reduces the size of ciphertexts.
As a consequence we prefer the term compact variant in this work.

Definition 3 (Setupc, ). Let A be a security parameter and M be a positive
mteger and Setup¢ = (GenCL, SolvepL) a setup for the CL framework for M. Let
I bea group and T : G-I bea surjective map with kernel F'.

We say that Setupc, ., is a setup for the compact CL framework, if we have
the following additional properties:

— one can compute in I in deterministic polynomial time;

— the representation of elements of I' is more compact than the representation
of elements of G;

— one can evaluate m in polynomial time;

— given an element w € I', one can efficiently lift it in G e., compute an
element wy € 7~ (w).

The algorithm Gency. still outputs pp := (8, f, h,extra), where extra encodes
both the mecessary information to efficiently compute in G and I.
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Proposition 2. With the notation of Deﬁm'tions and@ the map ) : '@
s.t. w wéw, where wy € T (w), is an injective morphism, computable in poly-
nomial time. Let v = w(h)M and I := (v). With the notation of Pmposz’tion
P gives an isomorphism I' ~ H.

Proof. This is a generalization of the proof of [CLI5, Lemma 3] that we include

for completeness. First ¢ is well defined: if wél),wém € 7 1(w) are two distinct

pre-images of w then there exists an element x € I’ such that wél) = xwf), and

(wél))M = (wf))M as F is of order M. Moreover it is easy to see that ¢ is a
morphism. Consider w in I" such that Yp(w)=w) =1in G, with wy € 71 (w).
Applying 7 gives m(we)™ = wM =1 in I'. Now observe that I is of order § (as
G has order M - § and 7 is a surjection with kernel of order M). Moreover, § is
prime to M sow =1 € r , so the map is injective. Eventually, 1 is computable
in polynomial time as composition of operations computable in polynomial time.
Concerning the map ¢ : I' ~ H: firstly the restriction of w to H is injective.
Moreover, denoting s the order of h, s is prime to M so v = w(h)™ = 7(hM)
generates a group I" of the same order s. Moreover, as ¥(y) = hM* € H and P
is injective, we get that ¢ : I' >~ H. a

We describe in Figure [2[ the compact variant of the scheme of Figure [I} The
public key and the first element of the ciphertext are now elements of I" instead
of G. We then use the map 1 of Proposition |2|in order to generate the element of
H that hides f™ in the second element of the ciphertext. The unnatural choice of
v = n(h)™ instead of 7(h) is a generalization of a trick introduced in [TCLM21]
that makes the security proof go trough.

Theorem 3. Let Setupc . = (Gencic,SolvepL) be a setup for the compact CL
framework for an integer M. The resulting linearly homomorphic encryption
scheme modulo M of Figure @ is ind — cpa under the HSMc m assumption for
Setupc, . -

Proof. We proceed with a sequence of games as in the proof of Theorem
starting with the ind-cpa experiment in Game 0.

In Game 1, the public key is computed as follows: first sample sk’ < Dy and
set pk = m(h)*K’.

We still have pk = (k)< = 45 for some sk defined modulo s, the order of
h, since ged(s, M) = 1. Moreover, sk and sk’ follow the same distribution modulo
s. Therefore, the distribution of the public key is unchanged,

PI‘[S()] = PI‘[Sl]

In Game 2, we change the distribution of sk’: it is sampled from D¢ instead
of Dy . As in the first step of the proof of Theorem [2| one has

|PI‘[SQ] - PI‘[SHH S 26DG.
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Algorithm 6: KeyGen

Input: pp = (5, f, h, extra)
generated by Gency.
Result: (pk,sk)

1 v :=x(h)™; append v to pp
2 sample sk & Dy

3 pk =~

4 return (pk,sk)

Algorithm 7: Encrypt
Input: pp, pk,m € Z/MZ Algorithm 8: Decrypt
Result: ciphertext (c1,c2) Input: pp,sk, (c1,c2)
— Result: m € Z/M7Z
sample r <i Dy —

1

2 ¢ :=7" 1 a:=co-(c;™)

3 co:= fM(pk") 2 return Solvep (pp, a)
4 return (c1,c2)

Algorithm 9: EvalAdd Algorithm 10: EvalScal
Tnput: pp, ok, (o1, c2), (0, %) Tnput: pp.pk, (e1,2).0
Result: ciphertext (c,c5) Result: ciphertext (cf,c5)

1c:=c-c 1c)=c}

2 Y i=co-ch 2 chi=cY

3 sample r & Dy 3 sample r & Du

4 return (cf - ", c5 - (pk")) 4 return (c} - ", c5 - ¥ (pk”))

Fig. 2. Generic compact linearly homomorphic encryption scheme modulo M

In Game 3, we set z := R for ' < Dy and compute the challenge ciphertext
as follows: ¢ = m(z) and ¢y = f™* 2%,

Again, there exists r such that ¢; = w(h)” = w(h)M" = ~". Moreover,
e = fm bk But (pk”) = (m(R)KT) = hKMr = psk'r" — oK a5 My =4/
(mod s). Therefore, ¢ = (7", f™*1)(pk")) is a genuine ciphertext of my« for the
public key pk with the correct distribution:

PI‘[Sg] = PI‘[SQ]

Mr

In Game 4, we now set z := f“hrl with u sampled uniformly at random in
(Z/MZ)*. By reduction to the HSM¢| m assumption, we have

|PT[S4] — PY[S3]’ S (SHSMCL,M'
In Game 4, we have co = f* 2K = [ +usk skt and the only information

on sk’ known by the adversary is sk’ modulo s (from pk). As in the last step of the
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proof of Theorem [2| one has sk’ mod M uniform and as u is invertible modulo
M, u - sk acts as a perfect one time pad for the message m;+~ and we get

1
PI‘[S4] == 5
Combining the above probability equations concludes the proof. O

4 Instantiation in Class Groups

In this section, we present instantiations of the CL framework in class groups, for
plaintexts spaces Z/MZ where M = 2¥ and M = ¢* where ¢ is an odd prime,
of bitsize larger than the security parameter. The case 2¥ was recently proposed
in [CLT22]. For the case ¢, the generator for k = 1 was originally proposed in
[CL15] and a generalization for k > 1 was only suggested in that work. This
generalization was then developed in [DJS19]. These two works focused on the
DDH version of the CL framework, whereas we are interested in schemes based
on the HSM¢ m assumption. Moreover [DJS19] also consider the case of small
odd primes ¢ and product of different odd primes.

We do not consider the case of small odd primes, as it is required that ¢ is
large in order to have ¢ prime to the class number with overwhelming probability
for the ind-cpa proof to go through when working with the HSM¢|_ m assumption.
Note that this property is also needed in many security proofs of applications of
the DDH variant. Products of odd primes could also be obtained in our setting,
by using Chinese remaindering during the computation of the discrete logarithm
for decryption. It may also be possible to consider cases of even numbers such as
2% but the generation process would be very technical for limited application
interest.

In the next subsection we describe the generators for M = 2F and M =
¢ already given in [CLI5/DJSIOICLT22] with some changes in order to follow
the framework of the previous section. Moreover we unify the presentation of
several variants. Firstly we show that these generators are all compatible with
the compact variant of Subsection [3.4} This variant was previously only known
to be compatible with size of the message space M = ¢q. Secondly, we simplify
the exposition by presenting generators independent of the size of M, where as
previous works imposed condition on the size of M or treated differently the
case of large M’s.

Then, in Subsections and we show that it is possible to optimize
computations of exponentiations and discrete logarithms in the subgroup F.
As we will see in Section [5] this gives speedup, particularly in the context of
plaintexts spaces of orders ¢F and 2% with large k’s. This will also improve
dramatically the computation of discrete logarithms in the case of large M'’s.

4.1 Generators for the CL framework in class groups

Case M = ¢* Algorithm [11|implements the generator Genc, for Setupc, for
M = ¢* where ¢ is an odd prime, of bitsize larger than the security param-
eter. We denote 7n(\) the bitsize of a fundamental discriminant Ax such that
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the computation of the class number h(Ag) and computation of discrete loga-
rithms in Cl(Af) takes at least 2* operations (see Table [2| for concrete sizes). A
bound B such that B < h(Ag) < 2B can be computed in polynomial time, un-
der the extended Riemann hypothesis, using the analytic class number formula
(cf [McC89]). The bitsize of B is expected to be n(X)/2.

Algorithm 11: GenCL_HSqu

Input: 1%, k,q a w bits prime with p > A

Result: pp
1 if u > n(A) then

p:=1if ¢ =3 (mod 4) or else take the smallest prime p
such that pg = 3 (mod 4) and (%) =-1
else
sample p a random 7(\) — p bits prime such that

pqg =3 (mod 4) and (%) =-1
end
Ak = —pq, Ak = Ak and G = Cl(Aqk)Q

compute § an upper bound on the order of = Cl(Ax)?

© W N O uotph W

sample ¢ in G and set h = 7"
10 fi=(¢*",¢" =25)in G
11 return pp := (§, f, h,extra := (Axk, ¢, k))

The algorithm first computes a fundamental discriminant Ax = —q or Ax =
—pq where p is another prime, with Ax = 1 (mod 4) and Ak of bitsize at
least n(A). The additional requirement on the Legendre symbol ensures that the
group of squares I= Cl(Ak)? has odd order 3, where § = h(Ag) or h(Ak)/2
depending if Ax = —q or Ax = —pq (see [CL15]). From the Cohen-Lenstra
heuristics, ged(g,§) = 1 with overwhelming probability as ¢ is a p-bit prime
with g > A

This computation of Ak is done in order to have Ag of the minimal size
with the constraints that q|Ax and Ak is large enough to meet the security
level. Moreover, we do not set an upper bound on the plaintexts space size: For
instance, for k = 1, [CL15] supposed that ¢ was not too large to ensure an easy
computation of discrete logarithms in F', and proposed another process, called
the “large message variant”, for large ¢’s. We here proposed a unified view of
these two settings (see Subsection for the consequences on the computation
of discrete logarithms in F').

We then denote G = C1(A,x)? the group of squares of C1(A,x). It has order
3¢" and ged(¢¥, 8) = 1 with overwhelming probability. The subgroup F' generated
by f = (¢?*, ", %) has order ¢* (we prove this in Theorem as this does not
seem to have been formally proven elsewhere). This subgroup is the kernel of the
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surjection ¢ x from Cl(A,x) to Cl(Ag). Note that F' is contained in Cl(A,x)?
as F' has odd order.

The description of the polynomial time algorithm that computes discrete
logarithms in F' is deferred in Subsection Algorithm It contains several
new optimizations to compute in F’, introduced in the next subsections.

One can recognize elements of G as it is possible to recognize squares given
the factorization of the discriminant. Note that Algorithm is a public coin
algorithm: we can publish the randomness used to generate the parameters.

Algorithm also implements a generator for Setupc . by setting I' :=
Cl(Ak)?. Indeed, elements of Cl(Ag)? have shorter representations than those
of Cl(A,x)?: this saves 3/2 - klogy(g) bits using the compression of [DGS21].
The homomorphism ¢y« between the two class groups can be restricted from
Cl(A,x)? to Cl(Ak)? and its kernel is still F, so it plays the role of the map
7 in Setupc .. If w € Cl(Ak)?, one can find a pre-image by ¢, by computing
[N O4,,] for I an ideal prime to ¢ in the class w. This can be done efficiently
using [HIPT98| Algo. 2].

Case M = 2F Algorithm [12| implements a generator for Setup¢, for M = 2*.
This is the original algorithm proposed in [CLT22], with a restriction on the
choice of the primes p and ¢ to ease both exposition and implementation. The
overall idea of the generator is similar to the case ¢* with the notable change
that the factorization of Ax must be kept secret in order to prevent an adversary
from computing square roots and recognizing squares, which would break the
ind-cpa security of the encryption scheme. We thus choose primes p and g of
bitsize n'(A) where n’(A\) denotes the bitsize of N such that the best algorithms
for factoring N := pq take 2* operations (again, see Table [2| for concrete sizes).
As a result the coins of the algorithm can not be given to an adversary. The
algorithm that computes discrete logarithms in F is similar to the ¢* case, as
we will see in Subsection .41

Algorithm 12: Gen(;|__|.|5M2k

Input: 1, k> 1
Result: pp

1 sample two random distinct n'()\) bits primes p, ¢ such that
(p mod 8,¢ mod 8) € {(3,5),(5,3)}

N :=pq R

AK = —SN, A2k+1 = 22k+2AK and G = CI(A2k+1)2

compute § an upper bound on the order I:= Cl(Ak)?

sample ¢ in G and set h = 2"

fi=(2%% 21— Ag)e@

return pp := (§, f, h,extra 1= (Ak, k))

N O ok WoN
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We now prove that this algorithm also implements a generator for Setupc, .,
which was not shown in [CLT22]. The situation is however a little bit intricate
compared to the case_ q*. We still consider for 7 the restriction of (pyrs1 from
G := Cl(Agrs1)? to I' := Cl(Ak)?. However the kernel of port1 is now larger
than F, it is of order 2**! and ker port1 ¢ G. Actually, F' = ker pgr+1 N G. If
w € Cl(Ak)?, computing a pre-image p by port1: p = [I N OAqk] for I an ideal
prime to 2 may give an element which is not in G, as cp;klﬂ ({w}) = x - ker pgr+1
where z € G.

This can be checked and solved thanks to genus theory (we refer the reader to
[CLT22] for background on genus theory for this specific class group). As in the
proof of [CLT22, Theorem 1], one can prove that the f = (22k+2 2k+2, =dx)
is in ker qri1 \ F (actually, this is a generator of ker ggrs1). This element f
has genus (1,1, —1,1) for the respective characters (xp, Xq, X—4, Xs). Moreover,
elements of ker por+1 \ F' are in the same genus. Elements of F' are squares, so
their genus is (1,1,1,1).

Now let us see how to finish our lift. We have similarly half the elements of
gpz_k{rl({w}) in G, and half of genus (1,1, —1,1). Back to our element p, one can
check the value of x_4 efficiently without knowing the factorization of N. If this
gives 1, p is a square and we are done. Otherwise, we multiply it by f in order
to get a square. In both case, we have obtained an element of 90211+1 ({w}) which
is a square, so an element of 7~ ({w}).

Note that one can not recognize elements of G nor of I'. The situation is
similar to elements of Jacobi symbol 1 and squares of Z/NZ. Here we can only
recognize if elements have genus (1,1,1,1) or (—1,—1,1,1).

Concrete linearly homomorphic encryption schemes When using the
generator GenCL_HSqu with the generic constructions of Figure (resp. Figure ,

one gets an encryption scheme linearly homomorphic modulo ¢* for an odd
prime ¢, denoted CL-HSM« (resp. CLc-HSMx for the compact variant). Likewise,
the generator GencL_HSM2k gives a scheme homomorphic modulo 2% denoted
CL-HSMy« (resp. CLc-HSMok for the compact variant).

On the selection of the plaintext space size In most of the cases, the choice
of the generator will be guided by the application, as a specific form of M will
be needed. However, it might be the case that one needs a linearly encryption
scheme homomorphic modulo an integer M of a certain bitsize v, without any
particular property on M.

We discuss here on the best choice of the generator in this context in order
to optimize ciphertexts size. First, we summarize in Table [T} the bitsize of the
ciphertexts for these schemes using the compression technique of [DGS21]. The
different sizes of ciphertexts for the ¢* variants comes from the fact that when
log(q) < n(\), Algorithm |11) chooses a fundamental discriminant Ag of mini-
mal size 7(\) to ensure security, where as when log(q) > n(\), Ax will have
approximately the same bitsize as q.

18



Scheme |Size of plaintexts|Size of ciphertexts Condition
CL-HSM 4 klogq %17()\) + 3klog(q) [A <log(q) < n(N)
CLc-HSM kloggq %17(/\) + %klog(q) A < log(q) <n(N)
CL-HSM klogq (3k + 2)log(q) | m(A) <log(q)
CLc-HSM klogq 3(k+1)log(q) n(A) < log(q)
CL-HSM k 3n'(N) + 3k + 22 -
CLc-HSM k SN+ 3k+6 -

Table 1. Ciphertext sizes of class groups based schemes

To optimize ciphertext expansion, for plaintexts of bitsize v < A, only the 2*
setting is possible. With CLc-HSMok using k& = v, the expansion is:

For plaintexts of bitsize v with A < v, CLc-HSM« is the best choice. One
can get a ciphertext expansion of

This tends to 3/2 when the bitsize of messages tends to infinity, for a fixed level
of security. The choice of ¢ and k to meet this expansion depends on the value
of v. For A < v < n()\), one can use any combination of the prime ¢ and power
k such that v = klogq and logg > A. Using kK = 1 and a prime q of bitsize v is
thus the simplest choice in this case. For plaintexts of bitsize v > n(\), one has
to choose the prime ¢ and the integer k such that logq = v/k < n(X).

Note that as 1/(A) > n()), the 2* setting is less interesting for large messages,
in terms of compactness.

4.2 Explicit isomorphisms for ker ¢

For CL-HSM, the cyclic group F of size M = ¢"* in which the discrete logarithm
should be easy is exactly the kernel of the surjective homomorphism ¢gx from
Cl(Agx) to Cl(Ak). For CL-HSMy, the cyclic group F is of size M = 2¥ and is
a subgroup of index 2 of the kernel of the surjective homomorphism @gr+1. To
be able to compute discrete logarithms in F', we will show how to represent its
elements in a manner that allows very fast computations. The main tool used in
previous works to analyse these kernels is the fact that there exists an effective
isomorphism with some quotient of the ring of integers. This is summarized in
the following theorem.
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Theorem 4. Let A < —4 be a fundamental negative discriminant, £ be a pos-
itive integer and Ay = (2Ag . Then, the kernel of the surjective homomorphism
we : Cl(Ag) — Cl(Ak) is isomorphic to

G = (0a, /lOa,)" [ (Z/02)" .

Moreover, let a represent an equivalence class in Gy. Denote by (a,b,c) a form
corresponding to the ideal aOa, , where a is coprime to €. Then the class of
ker ¢y corresponding to « is the class of the (non-necessarily reduced) form

(a,bl,cl?).

Proof. See [Cox14| Prop. 7.20, Prop. 7.22, Th. 7.24] for the theoretical side. See
[Hiih99, Prop. 2], [HJPTI8, Algo. 1-3] and [BTW95, Prop 2.9] for the compu-
tational side. O

We then apply this theorem to get a correspondence between the represen-
tation of elements of F in the ¢* setting with quadratic integers.

Theorem 5. Let k, q, Ax, Ay, f and F be generated as in Algorithm ,
Then, the set {1 +t/Ax | t = 0 ort odd in —¢* < t < ¢*} has size ¢* and
is a complete set of representatives of Gyr. The explicit group isomorphism of
Theorem[]] is given by

qu—>F
2 2p
1+ t/Ax (q2a’uq3’1Lq4K) ’

-1 )
where j =0 andu =1 fort =0 and j = k —valgt and u = (ﬁ) mod 2¢’
with centered remainder otherwise.

The generator f of F corresponds to 1+ /A, its order is ¢*. Moreover, all
the forms are reduced if and only if ¢** < %.

Proof. The proof is similar to [CL15, Proposition 1] that proves the case k = 1.
For t = 0, the ideal generated by 1 is the maximal order O, . When lifted
in 04, using [HIPTI8, Algo. 2], it corresponds to the ideal Z + %Z.
This ideal corresponds to the form (1, —¢*, c) with ¢ such that its discriminant
is Agr, which is equivalent to the reduced form (1,1, (1 — A x)/4).
Let t be an odd integer in —¢* < t < ¢*. Using [BTW95l, Prop 2.9], we
obtain that the ideal generated by %, an element equivalent to 1+ ¢/ Ax

. . b+,/A . _ .
in Gy, is aZ + %Z by setting a = % and b = tAxg mod 2a with

centered remainder. As a is coprime with ¢, we can use [HJPT98| Algo. 2] to lift
bgF+. /A &
itin O A and we obtain the ideal aZ + %Z. It corresponds to the form

(%, —tAq*, —¢** Ak). Let u and v be the Bézout coefficients of the two
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v = 1. We can always choose u such

coprime integers M%J and 2¢’: q,f,J
that —¢/ < u < ¢7. Finally, we apply the transformation matrix

2¢ w
t
=
v gD A

of determinant 1 to the form and obtain (¢%/, ¢/u, T

The fact that the form f = (¢%*, ¢, ﬂ) corresponds to 1 + /A comes
from the case t = 1. We then prove that f is a generator of F. As the order of

F is ¢*, it is sufficient to prove that (1 + \/AK) # 1.
We prove this by induction by showing that for i > 2,

(1+\/AK)'J —14 ¢ "WVAx (mod ¢').

Fori =2, (1+\/AK)q— ()\/ Asq|AKandq|()forj—l Loq—1,
we get (1 + \/AK) =1+ q\/ k (mod ¢ ) Now suppose that there exists a
quadratic integer a such that (1++Ax)? =1+ ¢ 'VAxk +a¢ =1+

¢ '(VAk + aq). We then rise this equality to the power ¢, and using again

binomial expansion, one obtains (1 + \/AK)ql =1+ ¢'v/Ax (mod ¢*1) as for
§>=2, ¢ =0 (mod ¢'t') as i > 2. 0

Now we use Theorem [4] to get a correspondence between the representation
of elements of F' in the 2F setting with quadratic integers.

Theorem 6. Let k, Ax, Agii1, f and F be generated as in Algorithm [13
Then, the set {1 +7v/—2N | 0 < 7 < 2**1} has size 28+ and is a complete set
of representatives of Gor+1. We will consider the subset {1+ 7v/—2N |0 <7 <
281+ even} = {1 +t/Ax | 0 <t < 2F}. The explicit group isomorphism of
Theorem []] restricted to this subset of representatives is given by

G2k+1 — F
14t/ A > (22j,u2j+17u2 _ zz(k—jmK) :

where j =0 and u=0 fort =0 and j =k —valat and u = (#)_1 mod 27
with centered remainder for 0 < t < 2F.

The generator f of F corresponds to 1 + /Ax, its order is 2 and it is a
square. Note that all the forms are reduced if and only if 2°F <1 — Ag.

Proof. Fort = 0, the ideal generated by 1 is the maximal order O »,.. When lifted

k41 /A 1
inOa,,,, using [HIPT98| Algo. 2], it corresponds to the ideal Z—l—“%z.
This ideal corresponds to the form (1, —25*1 ¢) with ¢ such that its discriminant

is Agkt1, which is equivalent to the reduced form (1,0, —#).
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Let t be an integer in 0 < ¢t < 2. Using [BTW95, Prop 2.9], we obtain
that the ideal generated by 1+ t\/Ag is aZ 4 YYA% VQAK with a = 1 — t2Ag and
b =tAg mod 2a with centered remainder. As a is odd, we can use [HIJPT9S,

k+1 /
Algo. 2] to lift it in Oa,, ., and we obtain the ideal aZ + w. It cor-
responds to the form (a, —b2F*1 ¢) with ¢ such that the discriminant is Agkt1.
It is equivalent to (1 — t2Ax, —tAx2F+1 228 A). Let u and v be the Bézout
coefficients of the two coprime integers %%J and 27: 2,w#ﬂu—k 27y = 1. We can al-
ways choose u such that —2/~! < 4 < 2771, Finally, we apply the transformation

matrix
21w
¢
— 55 v

of determinant 1 to the form and obtain (2%, 271y, u? — 22(F=7) Ag).

The fact that the form f = (22¢ 2F+1 1 — Ag) corresponds to 1 + /Ax
comes from the case t = 1. The fact that it is a square of order 2¥ was proven
in [CLT22, Theorem 1]. O

4.3 Computations in F

Theorems [f] and [f] are used to speedup computation in the subgroup F. During
encryption, one need to compute f™, where f is the generator of the group F' and
m in a non-negative integer less than M. This computation can be done without

m
using quadratic forms. Instead one computes (1 + \/Z) in Ggr (resp. Gors1),

then Theorem [5| (resp. Theorem @ is used to get the form corresponding to
this element. It will be the quadratic form corresponding to f™. Implementation
details are given in Subsection [5.3]

During decryption, one need to compute the discrete logarithm of a given
element f; € F' in basis f. For more efficiency, we move the problem into G
or Gyr+1. In these groups, the discrete logarithms can be easily computed with
O(k) operations (see Subsection for implementation details). However, in
order to use this method we need to find the representative of f; as given in
Theorems 5[ and @ This is direct if this representative is reduced (i.e, if ¢* or
2F is small enough compared to |Af| as stated in the theorems). Otherwise, we
use [HJWOI, Algo. 1] to invert the maps of Theorems [f| and [6] This last case
corresponds to the large message variant of |[CL15]. In this work, the form f;
was lifted in another non-maximal order, chosen to make some adaptation of the
representative forms reduced. This involves an exponentiation to the power ¢*
or 2. Our new method in this case is much faster. As a result, the distinction
between the two cases becomes irrelevant from the user’s point of view: the cost
of computing the representative is completely negligible in both cases.
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5 Algorithmic Perspective

In this section, we present some algorithmic aspects of our implementation in
BICYCL of the arithmetic of class groups of imaginary quadratic fields and of the
different cryptosystems described in the previous sections.

We first give some details of our implementation choices for the composition
of quadratic forms and for exponentiation, from which can benefit any crypto-
graphic protocols based on class groups. This can be found in the classes QFI
and ClassGroup of BICYCL.

We then focus on the exponentiation and discrete logarithm computations in
the subgroup F defined in Section[4in the context of the CL encryption schemes.

5.1 Composition of quadratic forms

For the composition and reduction of quadratic forms, we implemented Shanks’
NUCOMP algorithm [Sha89] (as well as NUDUPL for the computation of the
square of a form). At the lowest level, our implementation makes extensive use of
GMP’s arithmetic functions [GMP], with the exception of the partial extended
GCD. Partial extended GCD is a core component of NUCOMP. It performs
the same steps as a classical extended GCD but terminates once the computed
remainders reach a given bound. In the context of NUCOMP and NUDUPL, a
common choice for this bound is A'/4. We implemented this function by modify-
ing one of the extended GCD algorithms implemented in GMP: Lehmer’s vari-
antﬂ GMP implementation of Lehmer’s variant uses the two most-significant
words to approximate the successive quotients appearing in the extended GCD
algorithm. We modify the algorithm to stop it once the remainders were below
the targeted bound. The Flint library [HJP22] also implements the Lehmer’s
variant for its function xgcd_partial but only uses the most-significant word
to approximate the quotient. The PARI/GP library [PAR22], in its function
parteucl implementing the partial extended GCD, performs a full Euclidean
division at each step.

In Figure |3] we compare our implementation of NUDUPL to the implemen-
tation found in Flint (via the add-on Antic library) and PARI/GP. We also
compare our implementation to libgform [Say14] which is the library used to
implement several CL variants from [DJSI19]. Finally, we compare to the im-
plementation that won the Chia VDF competition [CHI1S], whose goal was to
perform successive NUDUPL as fast as possible. Our implementation improves
all these libraries, for all cryptographic sizes of discriminant. Comparisons for
NUCOMP gave very similar timings.

5.2 Exponentiations in the class group

The Encrypt and Decrypt Algorithms involve exponentiations of quadratic forms.
For Encrypt, both h and pk are known in advance, which opens the door to

4 For more details on GMP implementation of Lehmer’s variant, see GMP documen-
tation https://gmplib.org/manual/Lehmer_0027s-Algorithm
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Fig. 3. Comparison for the NUDUPL operation for different libraries. All timings were
computed using one thread of a Intel i7-8665U CPU at 1.90GHz. For each discriminant
size, NUDUPL is executed 10000 times for 10 different random discriminants.

various optimization strategies at the cost of some precomputations and extra
storage. For Decrypt, one needs to compute and invert the form cik. Since ¢y is
not known in advance, the above optimizations do not apply. In class groups,
we note that inverting a form is virtually freeﬂ Thus, one can take advantage
of signed-digit representations and the numerous algorithms developed in the
context of elliptic curves. We detail the algorithms implemented in our library
in the next paragraphs.

Encrypt — fixed-basis exponentiations: Recall that the Encrypt algorithm,
described in Algorithm [2] outputs a pair (¢1,c2) with ¢; = A" and ¢3 = f™pk”.
The special, easier case of the computation of f™ will be explain in Subsec-
tion .3

Let us focus on the other two exponentiations. Our code evaluates h™ and
pk” in parallel using the same algorithnﬂ which mixes a variant of the width-2
comb method [HMVO03] and Solinas’ Joint Sparse Form (JSF) [Sol01].

Let us assume that r is a 2n-bits integer. In the comb method, the scalar r
is divided into w chunks of 2n/w bits each. The bits of r are then scanned w
at a time. In our implementation, the 2n-bit scalar r is split in half (i.e. w = 2)
so that » = r¢g 4+ 2"r;. Hence, we get h™ = h'® x h]! with h, = h2". Since h
is fixed, and the size of r is bounded, one can precompute h,, offline. Hence,

° If f = (a,b,c), then the inverse of the class of f is represented by (a, —b,c).
5 There does not seem to be an efficient way to exploit the fact that one raises both
basis to the same power.
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this reduces a 2n-bits exponentiation to an n-bits double-exponentiation which
is implemented using Straus-Shamir’s trick [Str64]. Using minor extra-storage
for h,, one can thus divide by 2 the number of calls to NUDUPL.

As already observed, one can take advantage of algorithms based on signed-
digit representations. In particular, Solinas’ Joint Sparse Form [Sol01] allows to
jointly rewrite the pair (rg,r1) of n-bit exponents using digits in {—1,0,1} so
that the double-exponentiation requires exactly n NUDUPL and n/2 NUCOMP
on average. For computing h™ x h7!, each call to NUCOMP involve either h,
By, b X hy, h x h;! or their respective inverse. Note that there is no need to
store both a form and its inverse.

Finally, since the cost of NUDUPL is almost identical to that of NUCOMP,
it is advantageous to adapt to our context the variant of the comb method
presented in [HMVO03], Algo 3.45], even for w = 2. This approach further divides
the number of NUDUPL by 2, at the cost of (3% —1)/2 = 40 extra precomputed
forms which can be computed with 36 calls to NUCOMP. These precomputed
forms are obtained as products of forms in A*?!, hf}w hEY h?%nl/w where hy, /5 =

hg(n/2) h23n/2

and hgn/g =

Decrypt — variable basis: The Decrypt algorithm, described in Algorithm
involves one exponentiation cl_Sk where the exponent is the secret key. Contrary
to the encryption algorithm, the base ¢; is not known in advance. Hence, the
above techniques are not advantageous. Our implementation uses a left-to-right
wNAF exponentiation with w = 7 which does not require to scan the bits of the
exponents first for the NAF recoding (cf [Kin08]). Instead of a fixed size, one
could opt for an adaptive strategy for the window width depending on the size
of the discriminant. But we reckon that the gain should be very marginal.

5.3 Exponentiations in F

As described in Subsection the computation of an exponentiation in F cor-
responds to computing an exponentiation of 1 4+ \/Ag in Gy;. Efficient expo-
nentiations of quadratic integers can be done using Lucas sequences as

(P+2¢E>” _ <VH<P,Q> +UZn(P,Q)\/E>"7

where U, (P,Q) and V,,(P,Q) are the Lucas sequences of the first and second
kind and @ is such that Ax = P2 —4Q. Terms of Lucas sequences can be easily
computed using the fact that

() () 0= () () )
Unt1(P, Q) -QP 1 Va1 (P, Q) -QP P
Note that we only need to compute < 0 1) modulo M.

-QP
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For CL-HSMy, we use P = 1 and Q = %. The values U, (P, Q) and
Vo (P, Q) are computed modulo ¢* by computing the power of the above matrix.
Then, we compute ¢t = U, (P, Q) (V,(P, Q)) mod ¢* and obtain the represen-
tative 1+ t\/Ag (note that V,,(P, Q) is guaranteed to be invertible modulo ¢*).
Then we can use Theorem [5| to find the corresponding form.

For CL-HSMy, we use P = 2 and @ = 1 — Ag. The values U,(P,Q) and
V,,(P, Q) are computed modulo 2*¥ by computing the power of the above matrix.

-1
Then, we compute t = U, (P, Q) (W) mod 2% and obtain the represen-

tative 1 + t/Ax (note that w is guaranteed to be odd). Then we can use
Theorem [6] to find the corresponding form.

Note that in the case of CL-HSMy, it is even easier to compute ¢ as we have
(1+ \/ﬂ)n = 1+ nyAgk in G, as ¢ divides Ak, as originally remarked in
[CL15).

5.4 Discrete logarithms in F

The first step to efficiently compute discrete logarithms in F' is to move the
problem into Gy, as described in Section [4.3] It remains to compute the discrete
logarithm of an element 1 + t/Ag in basis 1 + v/Ag in that group.

We first describe the case M = ¢*. Given 1 + t\/Ax we compute the digits
m,; in basis ¢ of the unknown exponent m starting by the least significant one. At
first look, the process is similar to Pohlig-Hellman method. However, contrary
to this method, which would calculate at step ¢ and exponentiation to the power
¢~ fori=1,...,k—1, our algorithm only uses an exponentiation to the power
q at each step.

To obtain this more efficient method, we use the fact, noted at the end of the
previous subsection, that my = ¢ (mod ¢). Then, let i > 0 and assume that the
values of my, for 0 < j < i, were already computed. We will consider 1+4¢;4/Af,
defined as a representative of the element

(1+t\/ﬂ)~(1+r) Zizemat

The discrete logarithm of 1 + t;+/Ax in basis 1 + 1/Ag is then divisible by ¢*.
Then, as

mig' +mip1q T 4
(1 + \/AK> =14+miq'\/A (mod ¢**1),
we can compute m; as t;/q" mod g. This process is formalized in Algorithm

The case M = 2% is similar to the case M = ¢*: the bits of the unknown
exponent m are computed one at a time. It is even simpler to implement as the
exponentiation by m; is trivial to compute as m; can only be 0 or 1.
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Algorithm 13: Solvep, for CL g

Input: pp, f:
Result: m such that f; = f™

1 Compute 1+ to VAK, a representative of f; in qu

2 oo = 1 —+ \/ﬂ

3 fori=0tk—1do

4 m; = ti/qi mod ¢

5 Compute 1 + t;41v/ Ak, a representative of (1 + t;v/Ax) - a; ™
6 Qi1 = of

7 end

8

return Zf:o miq*

6 Benchmarks of LHE Schemes Implemented in BICYCL

We have implemented several linearly homomorphic encryption schemes in our
library BICYCL. First, the different linearly homomorphic encryption schemes
based on class groups, which is the main purpose of this library, namely the
schemes CL-HSMg«, CL-HSMy« and their compact variants (as CL_HSMqk and
CL_HSM2k classes).

For comparisons, we have also implemented Paillier ([Pai99]) which is the
most popular linearly homomorphic encryption scheme (Paillier class). As
shown in Remark the underlying LHE of Camenisch-Shoup encryption ([CS03]),
based on the same security assumption than Paillier, can be viewed as an in-
stantiation of our generic construction of Section |3 Moreover, several optimiza-
tions detailed in Subsection for computing exponentiations can be applied to
Camenisch-Shoup, as encryption also uses fixed-basis exponentiations, whereas
this is not possible for Paillier. For fair comparison, we have therefore also im-
plemented this scheme in BICYCL (CamenischShoup class).

In this section, we provide timings for CL-HSMyx, CL-HSMy« and compare to
Paillier and Camenisch-Shoup. All timings are performed on a standard laptop
(Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz). The results are averages over
100 operations.

Parameters sizes Table [2] gives the sizes of fundamental discriminants and
RSA moduli for various security levels that we used in BICYCL (available in the
RSA modulus_bitsize and discriminant bitsize methods of the SecLevel
class). These sizes come from the estimations done in [BJSI0], commonly used
for implementation of class group based cryptography. Note that in particular,
the discriminant Ax for CL-HSMy is defined as —8N with N following the
first column. The discriminants for CL-HSMg« are given by the second column.
They are smaller than RSA moduli as the best algorithms to compute discrete
logarithms in class groups are in L /o instead of L3 for factoring integers.
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Security level, A|Size of RSA modulus N, n'()\)‘Size of Ak for CL-HSM, n()\)

112 2048 bits 1348 bits
128 3072 bits 1827 bits
192 7680 bits 3598 bits
256 15360 bits 5971 bits

Table 2. Size in bits of N and Ag for each security level.

Comparisons of LHE schemes We then give in Table[3|a comparison between
four cryptosystems. For CL-HSMg«, we choose to give timings for the case k = 1,
therefore denoted CL-HSM,, and ¢ of bitsize twice the security parameter. This
choice is driven by applications where the linearly encryption scheme is used
to encrypt integers modulo the order of an elliptic curve, like in [CCL™19).
For CL-HSM,«, we use k = 64 independently of the security level, as the main
purpose of this scheme is to provide a threshold LHE homomorphic modulo 2%
compatible with applications to multi-party computations that closely match
data manipulated by a CPU.

This table shows substantial improvements for the schemes based on class
groups compared to previous implementations. Thanks to our many improve-
ments, at the level of group operations and at the level of exponentiations, our
experiments show that the gain we have on the size of the parameters allows
to compensate the additional cost of quadratic forms arithmetic compared to
traditional arithmetic in Z/NZ.

For instance, when comparing CL-HSM,’s encryption with Paillier’s encryp-
tion, CL-HSM,, is faster for all security levels. This is in contrast with previous
implementations like [CCL™19] whose implementation was only faster than Pail-
lier’s encryption for large security parameters. In details, CL-HSMy’s encryption
is 1.5 times faster for 112-bits security, 2.7 times faster for 128-bits security, 7
times faster for 192-bits security and 13.8 times faster for 256 bits security. Note
that two threads are used to perform the two exponentiations in parallel during
encryption for CL-HSM«, CL-HSMy« and Camenisch-Shoup’s encryption. This
is useless for Paillier’s encryption. Our implementation of Paillier gives similar
encryption times than the one from Relic [AGMT].

Decryption of CL-HSM, is faster than Paillier’s starting from 128 bits of
security. Overall this shows that CL-HSM is highly competitive compared to
Paillier. The optimizations for the exponentiations in Camenisch-Shoup make
also this scheme faster than Paillier. However this is at the cost of very large
ciphertexts (Camenisch-Shoup needs two elements of Z/N?Z against one for
Paillier).

Concerning setup and key generation, once the class group is computed, key
generation in CL-HSMj is the fastest, since it consists of a single exponentiation
in the class group, whereas Paillier’'s key generation needs to generate large
primes, and Camenisch-Shoup’s consists of an exponentiation in a group that is
significantly larger.
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Sec. level CL-HSMq Paillier Camenisch—Shoup| CL-HSM
ciphertext 2694 bits 4096 bits 8192 bits 3272 bits
setup 0.300 s - 0.051 s 0.571 s
112 keygen 0.011 s 0.039 s 0.012 s 0.019 s
encrypt 4.39 ms 6.57 ms 3.00 ms 7.78 ms
decrypt 9.70 ms 6.56 ms 7.17 ms 17.7 ms
ciphertext 3509 bits 6144 bits 12288 bits 4808 bits
setup 0.586 s - 0.178 s 1.78 s
128 keygen 0.019 s 0.121s 0.036s 0.044 s
encrypt 7.68 ms 20.9 ms 8.62 ms 17.4 ms
decrypt 17.8 ms 20.8 ms 21.8 ms 40.1 ms
ciphertext 6549 bits 15360 bits 30720 bits 11720 bits
setup 7.65 s - 5.55 s 27.3 s
192 keygen 0.072 s 5.63 s 0.374 s 0.319 s
encrypt 28.2 ms 198 ms 108 ms 128 ms
decrypt 67.3 ms 199 ms 205 ms 300 ms
ciphertext 10493 bits 30720 bits 61440 bits 23240 bits
setup 72.0 s - 53.4 s 263 s
256 keygen 0.216 s 79.6 s 2.25s 1.77 s
encrypt 84.9 ms 1169 ms 624 ms 691 ms
decrypt 202 ms 1168 ms 1262 ms 1600 ms

Table 3. Comparison between CL-HSMq, Paillier and Camenisch-Shoup and CL-HSM«
where the bitsize of g is twice the security level and k = 64
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The CL-HSMy« scheme gives encryption timings that are globally intermedi-
ate between Camenisch-Shoup and Paillier and a worse decryption time. This is
due to the fact that security is based on factoring, so we do not benefit from a
small discriminant. However, timings are in the same order of magnitude com-
pared to the other factoring based schemes.

Concerning ciphertext sizes, for 112-bits security and a ¢ of 224 bits, ci-
phertexts for CL-HSMy are 1.5 (resp. 3) times shorter than Paillier’s (resp.
Camenisch-Shoup’s). For 192-bits of security, the difference is of course much
higher: ciphertexts for CL-HSMq are 2.3 (resp. 4.7) times shorter than Paillier’s
(resp. Camenisch-Shoup’s). Note that the elements that are transmitted are
compressed using the technique from [DGS21] (see Section [2) and the time of
encryption (resp. decryption) includes compression (resp. decompression) which
corresponds to less than 1% of the time.

Compact variants As shown in Table [I] with the compact variants we gain
3/2log(q) bits for CL-HSM, and 3/2 k bits for CL-HSMa« on the size of the cipher-
texts. Concretely, for the choices made in Table [3] this means that CLc-HSM,
has ciphertexts of bitsizes 2358, 3125 or 5973 depending of the security level. For
CLc-HSMyi, we get ciphertexts of 3174, 4710 or 11622 bits. This reduction on
the size comes with an additional cost for computing the lift during encryption
and decryption (essentially an exponentiation to the power M). Our benchmark
shows that depending on the security level CLc-HSM,y adds 35% to 55% more
time for encryption and 4% to 15% for decryption. So for applications where
bandwidth is crucial but encryption time is less sensitive, this variant is ade-
quate. For CLc-HSMy« the overheads are smaller as M = 2% is also smaller:
around 6% to 9% more time for encryption and 3% to 6% for decryption.

Comparisons with previous implementations for CL. We run BICYCL on
the same machine used for the benchmark of [CL15] (which describe the original
DDH variant of CL). Our experiments shows that the CL-HSM, implementation
of BICYCL improves encryption time by a factor 20, and decryption by a factor 5.
Compared to the timings announced in [DJS19] (still for the original DDH variant
of CL) that were run on a machine with a slightly more powerful CPU, we get
an improvement of factor 7 for encryption and 2 for decryptiorﬂ

For CL-HSMa«, running BICYCL on the same machine used for the bench-
mark of [CLT22] shows that we improve the encryption time by a factor 9, and
decryption by a factor 4.

Overall, these results show that we obtain improvements not only because of
the improvement of the basic arithmetic has shown in Figure |3} but especially
thanks to our tailored implementation of the exponentiations.
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