
A Cipher-Agnostic Neural Training Pipeline with
Automated Finding of Good Input Differences∗

Emanuele Bellini1, David Gerault1, Anna Hambitzer1 and Matteo Rossi2

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
name.lastname@tii.ae

2 Politecnico di Torino, Torino, Italy
matteo.rossi@polito.it

Abstract. Neural cryptanalysis is the study of cryptographic primitives through machine
learning techniques. Following Gohr’s seminal paper at CRYPTO 2019, a focus has been placed
on improving the accuracy of such distinguishers against specific primitives, using dedicated
training schemes, in order to obtain better key recovery attacks based on machine learning.
These distinguishers are highly specialized and not trivially applicable to other primitives.
In this paper, we focus on the opposite problem: building a generic pipeline for neural
cryptanalysis. Our tool is composed of two parts. The first part is an evolutionary algorithm
for the search of good input differences for neural distinguishers. The second part is DBitNet,
a neural distinguisher architecture agnostic to the structure of the cipher. We show that
this fully automated pipeline is competitive with a highly specialized approach, in particular
for SPECK32, and SIMON32. We provide new neural distinguishers for several primitives
(XTEA, LEA, HIGHT, SIMON128, SPECK128) and improve over the state-of-the-art for
PRESENT, KATAN, TEA and GIMLI.
Keywords: Neural Cryptanalysis · Differential Cryptanalysis · Evaluation Tools · Block
Cipher · Distinguisher · Neural Networks

1 Introduction
The security of most modern applications is related to the security of the underlying symmetric
encryption primitive. Since the foundations of modern cryptography through the Data Encryption
Standard (DES), the security needs and applications have considerably evolved, so that a variety of
new designs have appeared over the years: candidates for the Advanced Encryption Standard (AES),
the eSTREAM portfolio, the CAESAR competition, and many more. The building of new primitive
goes hand-in-hand with the discovery of new attack techniques, such as differential and linear
cryptanalysis [BS91], impossible differential cryptanalysis [Knu98], or integral attacks [KW02].
The joint growth of the number of ciphers to analyze, and the number of techniques to analyze
them against, has created a strong need for automation. The analysis of a cipher against newly
found techniques is not straightforward, as the process usually starts as a specialized, human-
input-heavy task, until research progress makes more and more steps automatic. For instance,
differential cryptanalysis requires finding long high-probability propagation patterns through
the cipher. This highly combinatorial problem was initially tackled by manually implementing
Matsui’s branch-and-bound algorithm [Mat94] for the cipher under study, a time-consuming and
error-prone process. In 2012, after almost 2 decades, Mouha et al. [MWGP12] proposed the use of
Mixed Integer Linear Programming for this problem, making it significantly easier and faster to
solve. In this declarative approach, the cryptographer focuses on the description of the problem,
while the search algorithm itself is delegated to a specialized solver. Declarative approaches (MILP,
SAT, SMT, CP...) have since then become the de facto standard for differential cryptanalysis.
More recently, open-source cryptographic libraries such as Tagada [LDLS21], Cascada [RR22] or

∗Currently under review.
Code available under https://github.com/Crypto-TII/AutoND

mailto:name.lastname@tii.ae
mailto:matteo.rossi@polito.it
https://github.com/Crypto-TII/AutoND

2 A Cipher-Agnostic Neural Training Pipeline

CLAASP [BGG+23] have made the process fully automated: from the description of a cipher, these
libraries build and solve the declarative models for the search of optimal differential characteristics,
without human intervention. A similar slow automation process was followed for other techniques,
such as linear or impossible differential cryptanalysis, which are implemented within these libraries
as well. Incidentally, as cryptographers become able to run these search problems more efficiently,
the corresponding cryptanalysis techniques become more and more refined, as the time investment
shifts from finding a distinguisher to exploiting it.

Recently, a new cryptanalysis technique emerged, based on deep learning: neural cryptanalysis.
Proposed by Gohr at CRYPTO’19 [Goh19b], it exploits the ability of deep learning algorithms
to recognize complex patterns to identify relations between sets of ciphertext that distinguishes
them from random data. In the seminal work [Goh19b], this relation is differential in nature;
given pairs of ciphertexts (C0 = EK(P0), C1 = EK(P1)) (with EK(X) denoting the encryption
of X with the key K through a number of rounds of a block cipher), the neural distinguisher is
trained to determine whether P0 ⊕ P1

?= δ. Gohr’s neural distinguishers on 5, 6, 7 and 8 rounds of
SPECK32, using δ = 0x400000, enabled key recovery attacks for 11 and 12 rounds with better
complexity than the state of the art. The approach taken by subsequent work has often been to
optimize a neural distinguisher for a given cipher, by carefully tuning its parameters, to build the
best key recovery attacks. For instance, techniques based on staged training improve the accuracy
of the neural classifier, by exploiting information obtained through differential cryptanalysis.
Similarly, the manual transformation of the ciphertext pairs, for instance by reversing some
operations in the last round, has been used to obtain better accuracies. In comparison with other
cryptanalysis techniques, the field is still in the specialized, human-input-heavy phase, and it often
requires significant effort to obtain good neural distinguishers for a specific cipher. At AICrypt’23
Gohr et al. address the question of the potential of neural distinguishers as a generic tool for
cryptanalysis, i.e., "...how generic this approach is and to which extent it can complement the work
of a cryptanalyst. In other words, can we see machine learning as a tool assisting cryptanalysis,
similar to how SAT and MILP solvers, among others, are seen by now?".

In this paper, we propose a step forward towards the fully automated route, through a generic
pipeline: suitable input difference δ candidates are obtained through an evolutionary algorithm, and
are used to train DBitNet, a fully generic neural network that requires no tuning nor human input.
The neural distinguishers obtained through our pipeline are competitive with, and sometimes
better than, specialized approaches on the ciphers for which they were designed. With this work,
we hope to provide a basis on which other researchers can improve neural cryptanalysis, and apply
it to more ciphers, without the burden of optimizing the neural distinguisher itself.

Contributions

1. We propose a fully automated framework to perform neural cryptanalysis of ciphers; our tool
is composed of (i) a scalable and explainable input-difference finding algorithm (ii) DBitNet,
a neural distinguisher architecture agnostic to the structure of the cipher (iii) an automatic
and simple training pipeline, which generically replaces informed techniques of staged training

2. Using our tool we propose competitive neural distinguishers with the following advan-
tages: we can replace the elaborate training pipelines for SPECK32 [Goh19b] and SI-
MON32 [BGL+22], provide distinguishers for several new primitives (XTEA, LEA, HIGHT,
SIMON128, SPECK128) and improve over the state-of-the-art for PRESENT, KATAN,
TEA and GIMLI.

In Table 1, we present a comparison summary of the neural distinguishers obtained in this
work with the state of the art.

E. Bellini D. Gerault A. Hambitzer M. Rossi 3

Table 1: Summary of the state-of-the-art of published neural distinguishers for selected primitives,
with the highest achieved Round and Accuracy. To give the context of the values, we show the
architecture (Arch.), the number of training, validation samples (Trn., Val.), and the Setting
in which the neural distinguisher was characterized –the gray highlighted setting is not directly
comparable to the standard setting in which each sample is built by two ciphertexts. AutoND
indicates if the neural distinguisher was automatically generated (X) or is the result of an elaborate,
manually designed training procedure (-). In the table, / means unknown.

Primitive Arch. SettingS Trn. Val. AutoND Rounds Acc. Ref.
SPECK32 MLP 2-1-δ-R 227.64 226.64 - 3* 0.79 [YK21]

ResNet 20-1-A-R 223.25 219.93 - 5 1 [BGPT21]
ResNet 100-1-A-R 223.25 219.93 - 6 1 [BGPT21]
ResNet 64-1-CT-R 223.25 219.93 - 8 0.939 [CSYY22]
ResNet 2-1-CT-R 231.49 219.93 - 8 0.514 [Goh19b]
DBitNet 2-1-CT-R 231.49 219.93 X 8 0.514 This work
ResNet 64-1-δ-R 228.25 / - 8 0.564 [HRCF21]

SPECK64 DBitNet 2-1-CT-R 223.25 219.93 X 8 0.537 This work
ResNet 128-1-δ-R 229.25 / - 8 0.632 [HRCF21]

SPECK128 DBitNet 2-1-CT-R 223.25 219.93 X 10 0.593 This work
SIMON32 MLP 2-1-δ-R 224 227.64 - 5* 0.570 [YK21]

ResNet 4-3-CT-R 223.25 219.93 - 9 0.637 [SZM20]
ResNet 2-1-CT-R 223.25 219.93 X 9 0.661 [GLN23]
ResNet 64-1-δ-R 228.25 / - 10 0.611 [HRCF21]
SENet 2-1-A-R 231.17 229.17 - 11 0.517 [BGL+22]
DBitNet 2-1-CT-R 231.49 219.93 X 11 0.518 This work
ResNet 2-1-CT-R 227.58 223.25 - 11 0.520 [GLN23]
SE-ResNet 16-1-A-R 224.25 220.90 - 12 0.514 [LLS+23]

SIMON64 ResNet 128-1-δ-R 229.25 / - 12 0.695 [HRCF21]
DBitNet 2-1-CT-R 223.25 219.93 X 13 0.518 This work
SE-ResNet 16-1-A-R 224.25 220.90 - 14 0.519 [LLS+23]

SIMON128 DBitNet 2-1-CT-R 223.25 219.93 X 20 0.507 This work
GIMLI MLP 2-2-δ-D 217.6 214.3 - 8 0.510 [BBCD21]

DBitNet 2-1-CT-R 223.25 219.93 X 11 0.524 This work
HIGHT DBitNet 2-1-CT-R 223.25 219.93 X 10 0.751 This work
HIGHTRK DBitNet 2-1-CT-R 223.25 219.93 X 14 0.563 This work
KATAN ResNet 2-1-δ-R 223.25 219.93 - 51 0.533 [LCLH22]
KATAN ResNet 64-1-δ-R 223.25 219.93 - 59 0.575 [LCLH22]
KATAN ResNet 2-1-CT-R 223.25 219.93 X 66 0.505 [GLN23]

DBitNet 2-1-CT-R 223.25 219.93 X 69 0.505 This work
PRESENT ResNet 2-1-CT-R 223.25 219.93 X 7 0.563 [GLN23]

ResNet 8-1-CT-R 223.25 219.93 - 7 0.585 [CSYY22]
DBitNet 2-1-CT-R 223.25 219.93 X 8 0.512 This work

TEA MLP 2-1-CT-R+ 219.93 213.28 - 8 0.545 [BR21]
TEA DBitNet 2-1-CT-R 223.25 219.93 X 10 0.563 This work
XTEA DBitNet 2-1-CT-R 223.25 219.93 X 10 0.598 This work
LEA DBitNet 2-1-CT-R 223.25 219.93 X 11 0.512 This work

S The parameters n-m-T -E of the settings column respectively denote the number of ciphertexts per sample n, of
input differences m, the feature engineering type (T : CT for ciphertexts, δ for the difference, A for advanced
techniques), and the type of experiment (E: R when the labels correspond to random or real, D when the label
depends on the index of the input difference), as detailed in Section 3.

RK Related key setting.
* [YK21] prepends probabilistic rounds to reach 9 (12) round distinguishers for SPECK32 (SIMON32), using 220

(222) pairs.

4 A Cipher-Agnostic Neural Training Pipeline

Organization. The remainder of this work is organized as follows. We first give a short introduc-
tion to the ciphers analyzed in this work, as well as to machine learning and Gohr’s distinguisher
in our preliminaries (Section 2). We then discuss related work Section 3, and obstacles to the
automatic application of neural distinguishers to new ciphers in Section 4. We present our solutions
to I) the automated finding of a good input difference (Section 5), as well as II) a cipher-agnostic
neural training pipeline (Section 6). We present our best distinguishers in Section 7, discuss them
in Section 8 and conclude in Section 9.

2 Preliminaries
In this section, we summarize the basic terminology used throughout the paper, including the
concept of differential cryptanalysis (Section 2.1). We provide the list of ciphers analyzed in
this work (Section 2.2), as well as a short, general introduction to machine learning and neural
networks (Section 2.3), and Gohr’s basic scheme (Section 2.4).

2.1 Differential Cryptanalysis
Differential cryptanalysis, introduced in [BS91], is a cryptanalysis technique, which focuses on
the propagation of an input difference between the inputs of a cryptographic function to its
outputs. In this work, we focus on iterated symmetric ciphers EK(P), which apply a simple
round function iteratively to a plaintext P ∈ P and a key K ∈ K to obtain a ciphertext
C ∈ P. In the differential cryptanalysis of block ciphers, the cryptographer is interested in the
probability that, for a random key K and plaintext P , the differential δ → γ holds with probability
#{EK(P) = EK(P ⊕ δ) ⊕ γ : P ∈ P,K ∈ K}/(|P| + |K|) . Sometimes, truncated differentials,
where not all bits of γ are considered, are of interest.

2.2 Analyzed ciphers
The following ciphers have been considered in this work, for their variety of structures, block and
key sizes. Several have been studied in the differential-neural setting, providing a baseline for
comparison.

SPECK and SIMON [BTCS+15] are lightweight block ciphers with block sizes ranging from
32 to 128 bits and key sizes from 64 to 256. SPECK has a classical ARX (Addition, Rotation,
XOR) design, while SIMON is a Feistel structure, with the bitwise-and function as the non-linear
operation. LEA [HLK+14] is an ARX-based lightweight block cipher that encrypts 128-bit blocks,
with 128 or 256-bit keys. TEA [WN95] is a Feistel-based ARX cipher with a block size of 64-bit
and a key size of 128-bit. In TEA round keys are injected through modular addition, rather than
XOR. XTEA [WN97] is TEA’s successor, fixing some of its weaknesses, and reverting to key
injection by the XOR operation. GIMLI [BKL+17] is a permutation with a state size of 384
bits arranged in a 3× 4 matrix of 32-bit words. From this permutation, the authors proposed a
hashing algorithm and an authenticated encryption algorithm, respectively GIMLI-HASH and
GIMLI-CIPHER. Its round function combines an SP-box with a linear layer, and it is iterated 24
times. GIMLI-HASH is built from it with a sponge construction, while GIMLI-CIPHER uses the
monkeyDuplex one. HIGHT [HSH+06] is a generalized Feistel-based ARX block cipher, with a
64-bit block size and 128-bit key size. KATAN [DCDK09] is a family of hardware-oriented block
cipher, working with 80-bit keys and 32, 48, or 64-bit block sizes. PRESENT [BKL+07] is a
lightweight block cipher with an SPN structure, a block size of 64 bits and two possible key sizes:
80 and 128 bits.

2.3 Machine Learning and Neural Networks
Machine learning (ML) is a subfield of Artificial Intelligence (AI) investigating algorithms that
“give computers the ability to learn without explicitly being programmed” [Sam59]. Deep learning
is a subfield of ML that uses deep neural networks. The following short introduction to neural
networks is based on [GBC17].

E. Bellini D. Gerault A. Hambitzer M. Rossi 5

A deep neural network f is a machine learning algorithm, dependent on a set of parameters
θ, that uses multiple stacked layers of artificial neurons to map an input x to an output y, i.e.,
y = fθ(x). During the neural network training, the values of the network parameters θ are
"learned", i.e., deduced. In a feedforward neural network, the inputs x are passed through the
different layers of the neural network. For example, the three-layer network y = f (3)(f (2)(f (1)(x)))
has one output layer (3), one hidden layer (2), and one input layer (1). To train the neural network,
the current network output ypred is compared to a ground truth ytrue by means of a scalar cost
function J(θ), e.g., the mean squared error MSE. The scalar cost J(θ) is back-propagated to the
neural network parameters θ, resulting in the gradient of the cost function with respect to the
parameters ∇θJ(θ).
An optimizer, such as ADAM, adjusts the θ based on the gradient value, and parameters such as
the learning rate. Training of the neural network is performed in three phases, acting on three
datasets structured as a list of input/output values: training, validation and test data. The goal
of machine learning, in general, is not to optimize the algorithm f on a known dataset but to
make the algorithm able to generalize from seen to unseen data. Therefore, evaluation of the
training progress is done on previously unseen validation data. At some point during the training,
the network may start to get worse at generalization and learn the training dataset “by heart”.
This phenomenon is known as overfitting. Many regularization techniques can be used to avoid
overfitting, among them the L2 regularization that penalizes overly large weight values.
The training of a neural network is done in batches and epochs. One epoch means the neural network
has been optimized on the full training dataset. Within each epoch, the network parameters are
adjusted after each batch of training data. Batch sizes vary between 1 and the full training dataset
size, and influence the learning outcome immensely.
The design of a neural network involves choosing the number of layers, i.e., the depth, and the
types of layers. The type of each layer is determined by the way in which the neurons of the layers
are connected to each other: For example, a layer can be dense –here, every neuron is connected
to all neurons in the previous layer– or convolutional –here, every neuron is connected only to
a subset of neurons in the previous layer, inspired by the mammalian visual cortex. The layers
present in the neural network determine its type: a CNN (convolutional neural network) or MLP
(a densely connected multi-layer network). The architecture of a neural network refers to its overall
structure, i.e., how many neurons are connected, in which way, and in how many layers.
A hyperparameter is a parameter that is set before beginning the model training. A hyperparameter
affects the behavior of the deep neural network, for example, its generalization error or the cost of
training the algorithm. Hyperparameters include the architecture parameters (number of neurons,
etc.), as well as the training parameters (learning rate, batch size, etc.).
One problem in training deep neural networks can be that one layer stops learning. This will also
prevent the gradient information from successfully back-propagating to previous layers. This is
circumvented by introducing residual or skip connections. Often, neural networks in which such
residual connections are present are referred to as a ResNet.
One of the most fundamental design choices is the choice nonlinearities applied after each neuron,
with typical choices being ReLU, sigmoid, and tanh. The sigmoid activation outputs a value
between 0 and 1, which can be interpreted as a confidence score.

2.4 Gohr’s Basic Scheme
In his seminal paper, published at CRYPTO’19, Aron Gohr [Goh19b] proposes to use a neural
network to distinguish whether pairs of SPECK32/64 ciphertexts correspond to the encryption
of pairs of messages with a fixed difference (0x0040, 0x0000)–labeled as “non-random” (1)– or
random input differences –labeled as “random” (0). The resulting neural distinguisher, a residual
neural network preceded by a size 1 1D-convolution, results in respectively 92.9, 78.8, 61.6 and
51.4% accuracy for 5, 6, 7, and 8 rounds of SPECK32/64, and is used to mount practical key
recovery attacks on 11 rounds. Gohr also proposes a neural difference search algorithm, based on
transfer learning, to search for input differences that function well with neural distinguishers.

Gohr’s neural distinguisher is a ResNet with four main parts, the first three of which are
visualized in Fig. 1. At the input, a 64-bit ciphertext pair of SPECK32/64 is reshaped and
permuted into a 16-bit wide tensor with 4 channels. From a cryptographic perspective, the input

6 A Cipher-Agnostic Neural Training Pipeline

Figure 1: Visualization of three main parts of Gohr’s neural distinguisher.

reshaping reflects the knowledge of the particular 16-bit word structure of SPECK32/64. In
the second part, a 1-dimensional convolution (Conv1D(k = 1, f = 32)) is used to slice through
the 4 channel bits. The “slicing” is reflected by the kernel size of k = 1. The output channel
for each filter is produced by scanning the corresponding filter over the input in one dimension,
hence Conv1D. The learnable parameters are four filter weights, as well as one bias parameter
for each of the f = 32 filters, resulting in a total of 32 × 4 + 32 = 160 learnable parameters
for this Conv1D-layer. The output tensor of the bit-slicing convolution is 16 bits wide and 32
channels deep. Throughout the network, each convolutional layer is followed by conventionally
used BatchNormalization and ReLU nonlinearity. The third part is the residual blocks. Each
residual block consists of two convolutional layers Conv1D(k = 3, f = 32). In Gohr’s publication,
the number of residual blocks denotes a depth-1 neural distinguisher, respectively a depth-10
neural distinguisher1. The fourth part of the network is a densely connected prediction head with
ReLU activations and an output layer with a single neuron with sigmoid activation. Throughout
Gohr’s network, each convolutional, and each dense layer is regularized by an L2 = 10−5 parameter.
The full Python TensorFlow implementation is available on GitHub [Goh19a].

Gohr additionally proposes an algorithm to derive good input differences for neural distin-
guishers without prior human knowledge. This algorithm is based on few-shot learning, where the
features learned by a network are used as input to a simpler machine learning algorithm, trained
on fewer samples. In practice, a one-block residual network is trained with a random (but fixed)
input difference δ on 3 rounds of Speck with 107 ciphertext pairs; the output of the penultimate
layer of this network is then used as input to train a ridge regression classifier on small numbers
of samples for new differences δ′. A greedy algorithm2 with exploration bias is used to suggest
new candidates δ′.

3 Related Work
Following the introduction of Gohr’s neural distinguisher, subsequent work has mostly followed
two trends: the exploration of new settings for the neural distinguisher experiments (Section 3.1)
and the explainability of neural distinguishers (Section 3.2). Finally, a line of research focuses on
automatically building good neural distinguishers for new primitives, i.e., the fully automated
route described in the introduction. We discuss these in more detail in the next section (Section 4).

3.1 Extensions of Gohr’s Basic Scheme
Neural distinguisher research, following the seminal paper [Goh19b], has often focused on modi-
fications of either the neural network architecture or the setting in which the experiments take
place. These modifications to the experimental setting have been along 4 dimensions: the number

1It is not conventional to refer to the number of residual blocks as depth. For example in the original publication
of the first residual network ResNet [HZRS15], ResNet34 consists of 34 weighted layers, including a fully connected
dense layer, while it has only 16 residual blocks.

2This algorithm is summarized in the appendix as Algorithm 2.

https://github.com/agohr/deep_speck/blob/master/train_nets.py

E. Bellini D. Gerault A. Hambitzer M. Rossi 7

of plaintexts per sample n, the number of input differences m, the feature engineering type T , and
the experiment setting E. The neural distinguishers on the primitives we studied are classified in
terms of their setting (n,m, T,E), along with their architecture, in Table 1, and we discuss each
setting parameter in the following.

Number of ciphertexts per sample: n A natural way to amplify the accuracy of a
neural distinguisher is to group multiple pairs sharing the same label and combine their scores. In
this approach, the distinguisher may be trained on single pairs, and evaluated on multiple pairs
sharing the same label, as in [Goh19b] (key recovery part), [BGPT21]. Gohr et al. [GLN23] give a
formula to compute multiple-pair accuracy from a single-pair distinguisher. Sometimes, the samples
used by the neural network themselves are the concatenation of multiple ciphertexts; this is the case
in [BGPT21] (n = 20, 100), [CSYY22] (n = 8), [HRCF21] (n = 64, 128) and [LLS+23] (n = 16).

Number of input differences: m Baksi et al. [BBCD21] explore a setting where a set
of m input differences are considered. This setting was applied to various permutations: KNOT,
ASCON, CHASKEY and GIMLI, with m = 2 for GIMLI. Su et al. [SZM20] introduced a model
called polytope differential neural network distinguisher. In this model multiple differences are
used, keeping one plaintext fixed among the differences and changing the other.

Feature engineering type: T Feature engineering is often used in machine learning,
to derive advanced features from the raw dataset,e.g., [GBC17]. A natural feature to use for
differential neural cryptanalysis is to replace the ciphertext pairs (T = CT) by their XOR
difference (T = δ). This approach, used by Baksi et al. [BBCD21], Zezhou et al. [HRCF21], and
Yadav et al. [YK21], simplifies the training process, at the cost of losing some information.

Advanced types of feature engineering (T = A) include, e.g., partial decryption of the
ciphertexts. For instance, in the case of SPECK32, the right half of the previous round state
can be computed without the key, by XORing the two halves and rotating. This type of feature
engineering was used in [BGPT21]. A similar technique permits to retrieve the difference in
the previous round for SIMON-like ciphers; [BGL+22] showed that this transformation could
significantly improve the accuracies of neural distinguishers, and [LLS+23] exhibited even better
distinguishers on SIMON by exploiting inferred information from two rounds ahead.

Type of distinguishing experiment: E In the initial setting [Goh19b] (E = R), the
samples are EK(P0)||EK(P0 ⊕ x), and the label is x ?= δ. Gohr additionally defines the real
ciphertext experiment (E = RM), where the samples are EK(P0) ⊕ x||EK(P0 ⊕ δ) ⊕ x, and the
label is x ?= 0, i.e., the distinguisher determines whether the ciphertext pair has been XORed with
a random mask. The success of neural distinguishers in this experiment shows that information
beyond a simple XOR difference is learned.

In [BBCD21]’s model 1, the samples are formed as (EK(P)⊕EK(P ⊕ δi)), i ∈ [0;m− 1], and
the label is i (E = D).

In [BR21], the samples are built using modular addition difference, rather than XOR, to
analyze the ciphers TEA and RAIDEN (E = R+).

3.2 Explainability of Neural Distinguishers
Neural distinguishers enabling new attacks, potentially better than manual cryptanalysis, motivated
researchers to try to understand what made these attacks so powerful, and to learn new properties
from these.

In [BGPT21], Benamira et al. studied the properties of pairs that were correctly classified,
and proposed that Gohr’s neural distinguishers learn differential-linear features. In particular,
they observe that the pairs for which the score of the neural distinguisher follow similar truncated
differential patterns a few rounds ahead. The authors further modified the neural network to use a
Heaviside activation function, which forces its output to be 0 or 1, to study the boolean functions
learned on SPECK. From these, they derived advanced features that could be used to replace the
initial 1D convolutions of Gohr’s network.

In [BBP22], Bacuieti et al. further investigate the structure of the neural network itself. In
particular, they use the lottery ticket hypothesis to prune Gohr’s neural network to a minimal
working version, on which they use feature visualization techniques to obtain a visual representation

8 A Cipher-Agnostic Neural Training Pipeline

of the neural network’s behavior. They additionally show that, for the case of SPECK32, there is
no significant accuracy difference between the depth 1 neural network, and the depth 10 version.

4 Obstacles for Applying Neural Distinguishers Automatically
At AICrypt’23, Gohr, Leander, and Neumann presented an assessment of differential-neural
distinguishers. In this work, they investigate whether “machine learning [can be seen] as a tool
assisting cryptanalysis, similar to how SAT and MILP solvers, among others, are seen by now”.
To successfully complement the work of a cryptanalyst, the approach needs to be generic, i.e., it
must not add significant workload for the cryptographer and reliably yield useful results.
Here, we identify the obstacles to such an automatic application of neural distinguishers to new
primitives. Namely, there are obstacles in the architecture and hyperparameter choices of the
neural distinguisher itself (Section 4.1), as well as obstacles in the identification of good input
differences for new ciphers (Section 4.2). In Sections 5 and 6 we present our solutions to these
obstacles.

4.1 Obstacle I: The Hyperparameters of Neural Distinguishers
The field of neural distinguishers being in its infancy, it is still unclear what machine learning
architecture works best. Many peer-reviewed works [BBCD21, LLS+23, BGL+22, GLN23] have
used (variations of) Gohr’s network [Goh19b], from MLPs and CNNs [BBCD21] to significantly
larger networks such as SENet [BGL+22], or combinations of hand-built features with non-neural
classifiers in [BGPT21].
In the following, we first discuss to what extent automated hyperparameter tuning, as presented at
AICrypt’23 can be used to obtain distinguishers for new primitives (Automated Hyperparameter
Tuning). Then we discuss two particularly difficult to automatize steps (The Reshaping of the
Input and The Training Pipelines) in more detail. We finalize our identified obstacles by discussing
The Application to Large-state Ciphers.

Automated Hyperparameter Tuning. In their assessment of neural distinguishers the authors
of [GLN23] conclude, that while the general idea of differential-neural cryptanalysis can be applied
to a wide variety of ciphers, it is not clear that Gohr’s network [Goh19b] is suitable for all ciphers.
For the automated application of Gohr’s network to other ciphers [GLN23] suggest automated
hyperparameter tuning as one possibility. Out of twenty-two considered hyperparameters, they
find that eight significantly impact the accuracy of the neural distinguisher for SPECK32/64 and
SIMON32/64. These eight hyperparameters are automatically tuned to specialize Gohr’s network
[Goh19b] for other ciphers such as PRESENT. The obtained distinguishers using only automated
hyperparameter tuning are presented in [GLN23, Table 5].
In addition to the automated hyperparameter tuning, [GLN23] points out two potential manual
optimizations to improve the distinguisher: On one hand the cryptographers may find better input
differences. On the other hand, they can choose a more elaborate training procedure such as
staged training, see The Training Pipelines. The obtained distinguishers using additional manual
optimization are presented in [GLN23, Table 1].

Table 2 compares the results of our work with the automated hyperparameter tuning and
the additional manual optimizations of [GLN23]. Note, that our distinguishers (right) are most
comparable to the automated hyperparameter tuning (left), in the sense that they don’t require
any manual intervention from the cryptographer. However, our distinguishers achieve with a
simple, fully automated training procedure comparable accuracies to the ones obtained by [GLN23,
Table 1] with additional manual optimization (center).
Our interpretation is that while optimizing Gohr’s network for a new primitive using automated
hyperparameter tuning is possible, our work achieves a higher degree of generalization and
applicability to new primitives.

The Reshaping of the Input. Gohr’s neural distinguisher’s structure follows the division of
SPECK into 2 words. However, when applying such a reshaping to different ciphers, the question

E. Bellini D. Gerault A. Hambitzer M. Rossi 9

Table 2: Comparison of the best distinguishers for SIMON32/64, SPECK32/64, PRESENT,
KATAN32, and CHACHA presented at AICrypt’23 [GLN23] using only automated hyperparameter
tuning (left), additional manual optimization (center) and our work (right). The distinguishers
are characterized by the highest round (Max. Rounds) in which their Accuracy is significantly
above a random guess. The highest achieved number of rounds is highlighted.

Automated
hyperparameter tuning

[GLN23, Table 5]

Elaborate
training procedure
[GLN23, Table 1]

Our work
(w/o manual
optimizations)

Cipher Max. Rounds Accuracy Max. Rounds Accuracy Max. Rounds Accuracy
SIMON32/64 9 0.661 11 0.520† 11 0.517 (0.518a)
SPECK32/64 7 0.617 8 0.514† 8 0.511 (0.514a)
PRESENT 7 0.563 N/A N/A 8 0.512
KATAN32 66 0.505 N/A N/A 69 0.505

† [GLN23, Table 1] points out that these “results need a more elaborate training procedure; there is no known
way to obtain them by simple variations of direct training.”

a We can improve our results using a simple polishing pipeline as discussed in Section 6.1.

arises of what data shape to adapt. For instance, for the AES cipher, a decomposition into 2 · 16
8-bit words may be beaten by a 2 · 4 32-bit columns, due to the column-oriented MixColumns
operation of the cipher. Furthermore, the chosen shape has a direct influence on the complexity,
and therefore learning power, of the network. This becomes clear when looking at Table 5, where
ciphers with similar sizes, such as HIGHT, PRESENT, and SPECK64, result in neural classifiers
with widely different complexities depending on their number of words (2 for SPECK64, 8 for
HIGHT, 16 for PRESENT). For a higher number of words the Conv1D operation slices through a
higher number of bits, compare Fig. 1 (center). This in turn means less necessary kernel shifts,
and accordingly less multiply-accumulate operations, i.e., FLOPs. While it is possible to try out
many different input reshapings (manually or automated), we remove this potential obstacle by
using a different rationale for the neural network design as presented in Section 6.2.

The Training Pipelines. When training a neural distinguisher, the highest achievable round
may fail to be trained using straightforward techniques. For instance, to obtain an 8-round
distinguisher for SPECK32, Gohr [Goh19b] needed to use a staged training scheme, where the
best 5-round distinguisher is retrained on the input difference (0x8000, 0x840a), which is the
most likely to appear after 3 rounds. This distinguisher is then retrained for 8 rounds, with 100
times more data than the other distinguishers, to finally reach 0.514 validation accuracy. Bao et
al. [BGL+22], and [GLN23] use similar staged training procedures for their 10-round SIMON32
distinguisher. These elaborated training schemes are not easily automated, as they require looking
at the differential characteristics of the studied cipher. We tackle this obstacle using our simple
training pipeline presented in Section 6.1.

The Application to Large-state Ciphers. The network used in Gohr’s paper uses 32 filters for
each convolution layer, and 64 neurons for the first dense layer. These parameters incidentally
match the size of the difference and of the input, respectively, for SPECK32. In order to generalize
neural distinguishers to larger primitives, a logical first step is to upscale these parameters.
Interestingly, [GLN23] does either not attempt to, or was not successful in the application of
Gohr’s original network to a larger state version of SPECK or SIMON. We manually –and
unsuccessfully 3– attempted the adaption of Gohr’s network to SPECK128 and instead chose a
more generic approach, resulting in the DBitNet network, presented in Section 6.2.

3We focused on SPECK128, with input difference (0x80, 0x0), which propagates to (0b100 · · · 0, 0b100 · · · 0) with
probability 1 after 1 round. We varied the number of filters (32, 64 and 128) and neurons (64, 128, 256) of Gohr’s
RESNet, and obtained around 65% accuracy for 9 rounds with all the settings we tried. We conclude that scaling
the parameters seems to have only had a limited impact on the final accuracy. At this point, we could either
attempt to fine-tune the structure of the network further, or go with a more generic approach;

10 A Cipher-Agnostic Neural Training Pipeline

4.2 Obstacle II: Finding a Good Input Difference for a New Cipher
It has been shown in previous work [BGPT21] that the input difference to the best differential
characteristic is, at least for SPECK, not a good choice for neural distinguishers.

In [Goh19b], a neural difference search algorithm is proposed4, which successfully finds the
input difference used in the SPECK32 distinguishers. However, adapting it to different ciphers
is non-trivial5. From our experiments, it appears that with larger ciphers, such as SPECK128,
Gohr’s initial optimizer hits a limit. It is possible to modify it to force the use of low hamming
weight starting points, but the resulting optimizer fails at returning the best input difference for
SPECK128, as we show in later sections. Furthermore, the evaluation speed for each difference
prevents scaling for an efficient evaluation of a large number of differences. These observations
motivate us to propose a more cryptographically inspired optimizer, rather than attempting to
improve on Gohr’s; this optimizer is presented in Subsection 5.2.

5 Solution Part I: Automated Finding of Good Input Differences
In the previous section, we identified generalization issues with the neural difference search
algorithm. In this section, we propose a different, non-neural approach. Our solution consists
of a bias score for fast ranking of input differences (Section 5.1), as well as an evolutionary
optimizer (Section 5.2) which uses this new ranking scheme. The obtained results are presented
in Section 5.3.

5.1 Bias Score for Ranking Input Differences
The input difference to the best n-round trail is not the one that gives the best results for neural
distinguishers. For instance, for 5 rounds of speck, the input difference leading to the best trail is
(0x2400, 0x0020), which leads to a trail with probability 2−9; Gohr’s network, trained with this
input difference, reaches 61% accuracy. On the other hand, the input difference (0x0040, 0x0000)
used in Gohr’s paper does not have better 5 rounds trails than 2−13, and yet, the neural network
obtains 92% accuracy when trained with it. This disparity between the probability of the best
trail and neural network accuracy becomes higher as the number of rounds increase: for 6 rounds,
the neural network’s accuracy does not go above 51% for the optimal input difference ((0x0211,
0xa040), 2−13 trail), but Gohr’s input difference (2−20 for the best trail) reaches 78% accuracy.

We adopt the hypothesis proposed by [BGPT21] that this disparity is related to truncated
differentials. In addition to the truncated differences TD3 and TD4, we observe that the input
difference (0x0040, 0x0000) fixes the 2 bits of the left part to 0 after 3 rounds. Furthermore, high
biases persist in higher rounds; for instance, bit 14 at round 5, is set to 1 with probability 88%.
Such strong biases are likely to lead to high probability differential-linear properties.

We focus on the problem of finding the optimal input difference (for neural distinguishers)
cryptographically, under the assumption that this input difference maximizes the bias of intermedi-
ate difference bits. More formally, we assume that a good input difference for neural distinguishers
is one that maximizes a bias score, defined as:

Definition 1 (Bias score). Let E : Fn2 × Fk2 → Fn2 be a block cipher, and δ ∈ Fn2 be an input
difference. The bias score for δ, b(δ) is the sum of the biases of each bit position j in the output
difference, i.e.,

b(δ) =
n−1∑
j=0

∣∣∣∣∣∣∣2 ·
∑

X∈Fn
2 ,K∈Fk

2−1
(EK(X)⊕ EK(X ⊕ δ))j

2n+k − 1

∣∣∣∣∣∣∣
4Replicated as algorithm 2 in the appendix
5The starting round (3), number of iterations (2000), alpha parameter, the preprocessor’s input reshaping,

and learning rate schedule may need to be tuned. In order to minimize such tuning parameters, we focus on
SPECK128, simply adapting the word size in Gohr’s code. We studied 3 cases: base, low hamming weight
preprocessor, and low hamming weight preprocessor and optimizer starting-difference, each for 10 runs per
starting round (from 1 to 7). The first two cases yielded random input differences, but the third case returned 3
input differences ((0x200000, 0x2000), (0x800000000, 0x80000000), (0x1000000000, 0x100000000)) that resulted in
10-rounds distinguishers when retrained from scratch.

E. Bellini D. Gerault A. Hambitzer M. Rossi 11

The Bias Score cannot be computed for practical ciphers, as it requires enumerating all keys
and plaintexts. On the other hand, we can use an approximation, obtained from a limited number
of samples t:

Definition 2 (Approximate bias score). Let E : Fn2 × Fk2 → Fn2 be a block cipher, and δ ∈ Fn2 be
an input difference. The approximate bias score for δ, b̃t(δ) is the sum of the biases of each bit
position j in the output difference, computed for t samples i.e.,

b̃t(δ) =
n−1∑
j=0

∣∣∣∣∣∣∣∣2 ·
t∑
i=0

(EKi
(Xi)⊕ EKi

(Xi ⊕ δ))j

t
− 1

∣∣∣∣∣∣∣∣
Conjecture 1. Input differences δ that reach the most rounds with a neural distinguisher have a
high bias score b(δ). We further assume that b̃t(δ) is a good estimation of b(δ).

To test our conjecture, we compute b̃t(δ) for all 232 possible SPECK32 input differences, for a
small t; δ = (0x0040, 0x0000) does indeed maximize b̃t(δ) for 5 rounds.

As a further test, we compute an approximate bias score b̃2000(δ) for low Hamming weight (1
and 2) input differences on SPECK-128, and obtain (0x80, 0x8000000000000000) as the optimal on
7, 8, 9 rounds. This input difference obtains vastly superior scores through the neural distinguisher,
compared to the ones found by the neural difference search: 0.9861, 0.8252, and 0.5898 for 8, 9
and 10 rounds respectively.

These results convinced us to perform a search based not on the results of a linear classifier,
but on the significantly faster to compute bias score, which allows us to explore more candidate
input differences. To exploit the speed gain of our approach, we propose a new evolutionary-based
search algorithm.

5.2 Evolutionary Optimizer
Algorithm In our algorithm, each individual in the population represents an input difference.
Starting from an initial population of 1024 random input differences, we rank them by approximate
bias score and keep the 32 best ones. At each generation, new individuals are derived from the pool,
as described in Algorithm 1. After 50 generations, the algorithm returns the 32 highest-scoring
input differences. Our optimizer uses a mutation probability M = 1, t = 104 samples for bias
score approximation, and a relevance threshold Tb of 0.01.

Algorithm 1: Evolutionary optimizer
starting_population← [RandomInt(0, 2n − 1) for 1024 times];
Sort starting_population by b̃t(·) (descending order);
current_population← first 32 elements of starting_population;
for iterations← 0 to 50 do

candidates← [];
for i← 0 to 32 do

for j← i+ 1 to 32 do
if RandomFloat(0, 1) < M then

m← 1
else

m← 0
end
Add current_populationi ⊕ current_populationj ⊕ (m� RandomInt(0, n− 1)) to candidates

end
end
Sort candidates by b̃t(·) (descending order);
current_population← first 32 elements of candidates;

end
return candidates;

12 A Cipher-Agnostic Neural Training Pipeline

Accounting for the Starting Round The quality of the solutions is linked to the round for which
the bias scores are computed. For instance, in the related model, SPECK has probability 1
difference patterns over the first few rounds, which do not always translate to high bias scores for
later rounds. To account for such effects, we start with 1 round, and repeat it for one more round
as long as the best-returned solution scores above the threshold Tb. In the end, we have R lists of
32 differences, corresponding to the R rounds for which a bias score greater than Tb was returned.
These are then ranked using a weighted cumulative bias score, representing the sum of bias scores
weighted by the round number.

5.3 Optimizer Results
Our optimizer returned a large number of solutions (Table 3). While most of these solutions are
good, identifying the best one is difficult, as fully training a neural distinguisher for each would be
prohibitively time-consuming. In some cases, such as SPECK128, one input difference is clearly
dominating the others, and proves to result in the best neural distinguisher. On the other hand,
in the case of SIMON32, 64, and 128, we respectively have 16, 32, and 64 input differences that
obtain virtually identical scores (within 1% of each other), which is consistent with the observation
of [KLT15] on the rotational equivalence of differentials. We therefore chose to use distance to the
highest score as a metric to choose which differences to investigate: we define an input difference as
ε-close to another if their score is within ε of each other. With ε = 0.1, i.e., looking only at input
differences that obtained scores within 10% of the optimal, we had over 800 neural distinguishers
to train.

Table 3: The total number of differences returned by our optimizer for each cipher, and the
number of ε-close solutions for ε ∈ {0.01, 0.1, 0.25}, where ε-close denotes differences for which the
score differ at most by a factor ε to the optimal score.

Primitive Total 0.01-close 0.1-close 0.25-close
SIMON32 135 16 16 16
SIMON64 145 32 32 32
SIMON128 266 64 64 64
SPECK32 81 1 2 2
SPECK64 69 1 2 2
SPECK128 156 1 1 1
LEA 156 1 2 2
HIGHT 140 3 27 27
TEA 73 1 3 3
XTEA 48 1 3 3
PRESENT 102 4 31 31
KATAN 334 1 2 10

6 Solution Part II: A Cipher-Agnostic Neural Training Pipeline
Based on the identified obstacles discussed in Section 4, we aim to overcome them by employing
a streamlined training pipeline (Section 6.1) and creating a versatile neural network referred to
as DBitNet (Section 6.2). We evaluate DBitNet’s computational and memory requirements and
compare them to the original ResNet proposed by Gohr and SENet.

6.1 Our Simple Training Pipeline
We propose a simplified pipeline to train a neural distinguisher for rounds Rs to Rf . The same
network of Rs is retrained for round Rf + 1 until round Rf is reached. In SPECK32’s case, one
would train network N5 for 5 rounds, retrain N5 on the 6-round dataset to obtain N6, retrain N6
on 7 rounds to obtain N7, and finally retrain N7 on 8 rounds to obtain N8. This technique is
referred to as our simple training pipeline in this paper.

E. Bellini D. Gerault A. Hambitzer M. Rossi 13

The Learning Rate Schedule. For the training of Gohr’s neural distinguisher in [Goh19b] the
Adam optimizer is used with a cyclic learning rate that varies over 10 epochs between limits
of 0.002 and 0.0001. In [GLN23] these limits of the learning rate are optimized for each cipher
in the automated hyperparameter tuning. In our simple pipeline for DBitNet, we will avoid a
learning rate schedule, as well as any manual variation of the standard optimizer settings as follows:
Adam is known as one of the most advanced optimizers, however, it has been observed to fail
to converge to an optimal solution [RKK19]. Such convergence failure may make it necessary to
find an optimal learning rate schedule manually. For our purposes of a generic application to a
range of new target ciphers, such a manual choice should be avoided. As an alternative to either
the manual mitigation of the convergence issue or an automated hyperparameter tuning of the
learning rate, Reddi et al. introduce the AMSGrad algorithm in “On the Convergence of Adam
and Beyond” [RKK19] at ICLR 2018.

As a proof of concept, we ran this training pipeline with AMSGrad on SPECK32, using Gohr’s
neural network and input difference 0x400000. With as little as 10 epochs per round, statistically
significant (over 50.5% validation accuracy on 106 samples) 8 rounds distinguishers were obtained
10 times out of 10, whereas Gohr’s initial experiments showed that no 8 rounds distinguisher
could be learned without a complex training scheme. Removing either the pipeline or AMSGrad
resulted in 8 rounds not being reached. In the remainder of our manuscript, we have used Gohr’s
original learning rate schedule to avoid sub-optimal results by changes on our side.

A Simple Polishing Step. We can generally improve the accuracy of our distinguishers using
our simple polishing pipeline, inspired by [Goh19b], where the final network is retrained 3 times,
for 1 epoch, on 109 new training samples. At a batch size of 10,000, we use the Adam optimizer,
decreasing the (constant) learning rate at each iteration, from 10−4 to 10−5 to 10−6. The
three learning rates, smaller than the Adam optimizer’s default value of 10−3, ensure the final
convergence to an optimal solution for features that are not present in many batches. We have
applied this simple polishing step only in two of the reported accuracies in this manuscript (for
SIMON32 and SPECK32) as the large sample number makes it time-consuming. The basic
pipeline above is sufficient to obtain competitive distinguishers that reach the same round as the
state-of-the-art. The polishing step was only added to show that also some of the most elaborate
and successful training pipelines can be replaced with our automated training pipeline. For the
final accuracy evaluation, a fresh set of 106 samples is generated for which the expected and
observed standard deviation is 0.0005 as explained in the following.

The Random Guess Limit. The predictions of neural distinguishers can be modeled as binomial
experiments with n trials, and two equiprobable outcomes, random or not random; in our case,
n = 107 for training, and 106 for validation. The expected mean and standard deviation of
a distinguisher making random prediction are µ = 0.5 · n, σ =

√
n/4, or, as a percentage,

σ% = 1/(2
√
n). In our case, we consider the validation successful if the validation accuracy

(percentage of correct guesses) exceeds ten standard deviations, i.e., Anot random > 50.5%.

6.2 Description of our Neural Network (DBitNet)

Gohr’s neural distinguisher is immensely successful as a distinguisher for SPECK32. However, we
identified a range of hyperparameters that need tuning for application to new ciphers in Section 4,
the most important among them again being the input reshaping.
The input reshaping serves to investigate dependencies of far-apart as well as neighboring bits in
the 64-bit input: For example, the bit-slicing filter may learn functions between bits (1, 17, 33, 49)
while the following k = 3 filter may learn functions between neighboring bits (1,2,3) (compare
Fig. 1 (center)). In this way, near and long-range dependencies among the bits can be learned.
Therefore, the input reshaping can potentially be avoided, given another, more generic way to
investigate near, as well as long-range dependencies.

14 A Cipher-Agnostic Neural Training Pipeline

Rationale for DBitNet. One way to tackle the problem of investigating near as well as long-range
dependencies is so-called dilated convolutions, as presented in “Multi-Scale Context Aggregation
by Dilated Convolutions” by Yu and Koltun [YK15]. The “Multi-Scale Context” refers to two-
dimensional image data, however, a prominent example that uses dilated convolutions and deals
with long-, as well as short-range dependencies on one-dimensional temporal data is WaveNet of
Google DeepMind [ODZ+16].

Figure 2: a) The concept of dilated convolutions, b) The idea for DBitNet c) The actual design of
DBitNet.

A dilated convolution uses a dilation rate above one, Fig. 2a). Therefore, instead of learning a
filter function between bits 1 and 2, a convolutional layer with dilation rate 3 can learn a filter
function between bits 1 and 4. If we apply such a dilated convolutional layer with dilation d = 8
and kernel size k = 2 to a 16-bit input, we could find a representation with 8 neurons width which
contains the information on the long-range dependencies between the bits of the first and the
second half of the input, Fig. 2b). The next layer is a d = 1 layer to investigate the dependencies
between neighboring bits. To investigate again the long-range dependencies, we next choose d = 4
and so on.
As shown in Fig. 2b) the neuronal width is shrinking with each dilated convolution by a factor of
two. This shrinking of the neuronal width dimensionality is also encountered in popular image
detection networks like ResNet [HZRS15]. As “compensation” the number of channels is increased:
In ResNet34 for example the image size is halved from 224 pixels to 112, to 56, to 28 pixels, and
so on while the number of channels increases from the 3 red-green-blue channels to 64, and 128.
We follow a similar tactic and increase the number of channels with each dilational convolution.
We start with 32 filters, identical to Gohr, in the first convolutional layer. Whenever the neuronal
width is halved, we add 16 filters, resulting in 32 + i× 16 filters in the ith dilated convolution.

Table 4: Settings for Gohr’s neural network and DBitNet.

Gohr settings DBitNet settings

cipher input size num. blocks word size dilation rates

SIMON32 64 2 16 [31, 15, 7, 3]
SPECK32 64 2 16 [31, 15, 7, 3]
KATAN 64 2 32 [31, 15, 7, 3]
HIGHT 128 8 8 [63, 31, 15, 7, 3]
PRESENT 128 16 4 [63, 31, 15, 7, 3]
SIMON64 128 2 32 [63, 31, 15, 7, 3]
SPECK64 128 2 32 [63, 31, 15, 7, 3]
TEA 128 2 32 [63, 31, 15, 7, 3]
XTEA 128 2 32 [63, 31, 15, 7, 3]
LEA 256 4 32 [127, 63, 31, 15, 7, 3]
SIMON128 256 2 64 [127, 63, 31, 15, 7, 3]
SPECK128 256 2 64 [127, 63, 31, 15, 7, 3]
GIMLI 768 12 32 [383, 191, 95, 47, 23, 11, 5]

E. Bellini D. Gerault A. Hambitzer M. Rossi 15

Neural Network Settings for Different Ciphers. When working on a different cipher many
model and training parameters and hyperparameters might need to be adapted. At the minimum,
and common to Gohr’s neural distinguisher and DBitNet, the neural network input size has to be
adapted when changing to a cipher of different sizes. Based on this input size, for DBitNet the
dilation rates are given by dividing the input size by two and subtracting one, until a minimum
value of 3 is reached. Gohr’s network requires manual input for the number of words (Section 4.1).
In principle for Gohr’s network also the number of filters, as well as the cyclic learning rate has
to be adapted. For DBitNet we restrict ourselves to using the ADAM optimizer in its standard
settings, together with the before-mentioned AMSGrad algorithm. The settings for both neural
networks are summarized in Table 4.

Table 5: FLOPs, parameters and runtime per epoch (on our NVidia Ampere A100 GPU) for
Gohr’s neural distinguisher of depth 1 (D1), depth 10 (D10), and DBitNet.

FLOPs Parameter counts Time per epoch
cipher Gohr-D1 DBitNet Gohr-D10 Gohr-D1 DBitNet Gohr-D10 Gohr-D1 DBitNet

SIMON32 0.28M 1.76M 2.09M 44.32k 298.11k 102.50k 10s 36s
SPECK32 0.28M 1.76M 2.09M 44.32k 298.11k 102.50k 10s 36s
HIGHT 0.15M 3.52M 1.06M 28.32k 390.21k 86.50k 9s 68s
PRESENT 0.09M 3.52M 0.54M 20.64k 390.21k 78.82k 9s 68s
SIMON64 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 14s 64s
SPECK64 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 14s 68s
TEA 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 15s 68s
XTEA 0.55M 3.52M 4.16M 77.09k 390.21k 135.26k 14s 68s
LEA 0.56M 7.17M 4.17M 77.22k 503.46k 135.39k 15s 129s
SIMON128 1.10M 7.17M 8.31M 142.62k 503.46k 200.80k 22s 116s
SPECK128 1.10M 7.17M 8.31M 142.62k 503.46k 200.80k 24s 129s
GIMLI 0.59M 20.37M 4.20M 77.73k 705.44k 135.91k 16s 312s

A Comparison of FLOPs and Parameter Counts. The number of multiply-add operations, or
FLOPs, is often used as a proxy for the latency and memory usage of neural network mod-
els [BOFG20]. We use the TensorFlow Keras module keras-flops to evaluate the number of
FLOPs for each model. TensorFlow provides a native routine model.count_params() for the
parameter count. The results are shown in Table 5. For the 32-bit ciphers, the execution time of
DBitNet is in between the one for Gohr-depth1 (10s) and Gohr-depth10 (50s, not shown in the
table). The same holds for the number of FLOPs. The FLOPs and time per epoch for DBitNet
scale linearly with the input size of the cipher. Since the FLOPs represent the operations needed
to investigate a cipher, an increase of the FLOPs with the size of the cipher is reasonable. To
achieve such an increase in the FLOPs, the number of filters of Gohr’s network would have to be
manually adapted, depending on the input size, as well as the chosen number of blocks and word
size. We have also analyzed the neural distinguisher SENet NDSIMON8R

V V provided on the GitHub
repository of [BGL+22] for SIMON32 and find that it has 13.5M FLOPs, and 449.46k parameters.

7 Results: Our Best Distinguishers

For each target cipher in Table 6 we start with the set of differences found by the evolutionary
optimizer presented in Section 5.3. We train a Gohr depth-1 neural network and DBitNet to
distinguish between ciphertext pairs of the chosen plaintext difference, and those of random
plaintext pairs using the training pipeline as presented in Section 6.1. Table 6 summarizes the
highest round achieved (best round), as well as the accuracy (best acc.) of the best distinguisher
(best NN) in this round, once for our simple training pipeline with only 10 epochs in each round,
and once for our simple training pipeline with 40 epochs in each round. The green highlight
indicates an improvement of the 40 epochs over the 10 epochs training pipeline.

https://github.com/differential-neural-cryptanalysis/speck32_simon32/tree/main/simonNDvsDD/SENet
https://github.com/differential-neural-cryptanalysis/speck32_simon32/tree/main/simonNDvsDD/SENet

16 A Cipher-Agnostic Neural Training Pipeline

Table 6: Summary of the best distinguishers for each target cipher for our simple training pipeline
with 10 epochs per round, respectively 40 epochs per round. The detailed round-by-round results
(including the TPR and TNR) for 40 epochs are shown in Table 7.

10 epochs 40 epochs
cipher difference best round best acc. best NN best round best acc. best NN
SIMON32 0x400 11 0.5150 DBitNet 11 0.5166 [0.5179p] DBitNet
SPECK32 0x400000 8 0.5103 DBitNet 8 0.5114 [0.5144p] DBitNet
HIGHT 0x800000000000 10 0.7509 DBitNet 10 0.7509 DBitNet
HIGHTRK 0x800000000...(a) 13 0.9647 DBitNet 14 0.5633 DBitNet
KATAN 0x4000 67 0.5066 DBitNet 69 0.5052 DBitNet
PRESENT 0xd000000 8 0.5122 DBitNet 8 0.5120 DBitNet
SIMON64 0x8000 13 0.5179 DBitNet 13 0.5182 DBitNet
SPECK64 0x8080000000 8 0.5332 Gohr-D1 8 0.5369 DBitNet
TEA 0x4000000000000000 5 0.5562 Gohr-D1 5 0.5629 DBitNet
XTEA 0x4000000000000000 5 0.5302 DBitNet 5 0.5978 DBitNet
LEA 0x800000008...(b) 11 0.5115 DBitNet 11 0.5113 DBitNet
SIMON128 0x8000000 20 0.5074 DBitNet 20 0.5069 DBitNet
SPECK128 0x808000000000000000 10 0.5928 DBitNet 10 0.5913 DBitNet
GIMLI 0x800000000...(c) 11 0.5237 DBitNet 11 0.5238 DBitNet

p Automated pipeline result after our simple polishing pipeline from section Section 6.1
RK Related key setting
(a) 0x80000000000000000000000000000000000000800000
(b) 0x80000000800000008004000080
(c) 0x8000000000000000000000000000400000000000000000000000000000800000000000000000000000

Simon and Speck For SPECK32, we retrieve the optimal input difference used in Gohr’s paper.
DBitNet, trained using our simple training pipeline, reaches 8 rounds with over 51% accuracy,
which was deemed to only be possible with an advanced staged approach [GLN23]. The accuracy
is improved to match [Goh19b] with our simple polishing pipeline. For SPECK64, we reach 8
rounds with accuracy 0.5369, only 10% less than [HRCF21], which uses 128 pairs. For SPECK128,
we obtain the first 10-round neural distinguisher, with accuracy 0.5928. Interestingly, the best
differential characteristic for SPECK128 given in [SHY16] contains one of the differences returned
by our optimizer at round 15: (0x80, 0). When training DBitNet for this input difference, we get
respective accuracies of 0.9057, 0.6507, and 0.5258 for 8, 9 and 10 rounds, therefore obtaining
candidate theoretical distinguishers for 23, 24 and 25 rounds respectively. However, the signal-to-
noise ratio of these distinguishers does not permit direct application: the probability for the front
15 rounds is 2−110, and the evaluation of C · 2−110 produces too many false positives for C true
positives to be distinguishable.

For a key recovery attack similar to [BGL+22], one can prepend the input difference (0x820200, 0x1202),
which propagates to our best neural distinguisher (0x80, 0x8000000000000000) after 2 rounds with
probability 2−6. An additional round can be added at the start, yielding a 13 rounds distinguisher.

For SIMON32, we obtain similar results to [BGL+22], albeit with a significantly simpler
training pipeline, and less computations (Section 6.2). For SIMON64, we reach one more round
than [HRCF21], even though [HRCF21] uses 64 pairs. On the other hand, Lu [LLS+23] reaches
one more round for SIMON32 and SIMON64. It is important to note that their training pipeline
is fully dedicated to SIMON, with advanced feature engineering and 8 pairs per sample, therefore
showing that a specialized method for a given cipher does outperform the generic approach in
some cases. Lu proposes a few input differences for 12 rounds in table 3 of [LLS+23]: interestingly,
these differences appear in our results, but were not investigated. For instance, the input difference
(0x10004) ranks as the 21st in the returned solutions. For SIMON128, we find a new 20 rounds
distinguisher, with an accuracy of 0.507.

GIMLI For the GIMLI permutation, our 11-round accuracy has an accuracy of 0.5238, to be
compared to the 8 rounds neural distinguisher of [BBCD21]. This result highlights the need for an
automatic tool to find good input differences, as we obtained similar results to [BBCD21] when using
the same input differences as them. In comparison, the design document of GIMLI [BKL+17],
mentions at best a differential characteristic with probability 2−188 on 12 rounds, and a 12-

E. Bellini D. Gerault A. Hambitzer M. Rossi 17

round linear distinguisher with complexity 2−198 and 15-round differential-linear distinguisher
with complexity 2−87.4 are presented in [FGLNP+20]. Of course, the full-round symmetry
distinguishers [FGLNP+20] remain much stronger.

HIGHT We obtain the first published neural distinguisher for HIGHT, covering 10 rounds with
accuracy 0.751. In addition, we ran our pipeline in the related-key setting as a proof of concept,
and obtained a 14 rounds related-key distinguisher with accuracy 0.56. In comparison, the paper
presenting HIGHT [HSH+06] mentions a probability 1 10 rounds property: if the input difference
has a given form, then the leftmost byte of the output difference is non-zero. Such a property
would require C · 256 (with C a small constant) to permit a reliable distinguisher. On the other
hand, our neural distinguisher requires a single pair.

Present For PRESENT, we find an 8-round distinguisher with an accuracy of 0.512, which
favorably compares to the 7-round distinguisher of [GLN23], but has lower accuracy than [CSYY22];
this can be explained by the fact that [CSYY22] uses 8 pairs, and we use one only. In comparison,
the best differential characteristic for PRESENT reduced to 8 rounds has probability 2−32 [Wan07].

KATAN For KATAN, our distinguisher reaches statistically significant accuracies up to 69 rounds,
compared with [GLN23]’s 66 rounds, even though [GLN23]’s distinguishers use advanced feature
engineering (inversion of the last 4 rounds). In contrast, [LCLH22] reaches 51 rounds in the
standard setting, and 59 when using 64 pairs. The same paper proposes distinguishers up to 85
rounds in the single key model, using additional conditions on the plaintexts, which is out of the
scope of our study.

TEA and XTEA For both TEA and XTEA, we find distinguishers for 10 rounds, respectively
with accuracies 0.56 and 0.6; interestingly, they share the same input difference. For TEA, we
reach 2 more rounds than [BR21].

LEA For LEA, we propose the first neural distinguisher, reaching 11 rounds with accuracy 0.563.
In comparison, [HLK+14] presents a differential characteristic with probability 2−98 for 11 rounds,
and 2−128 for 12 rounds.

A Sanity Check: The Case of Related-Key TEA The block cipher TEA is known to have
equivalent keys. From an initial key k0, k1, k2, k3, the core of the round function, updating the
two halves of the state v0 and v1, is :

v0 = v0 � ((v1 << 4)� k0)⊕ (v1 � sum)⊕ ((v1 >> 5)� k1) (1)
v1 = v1 � ((v0 << 4)� k2)⊕ (v0 � sum)⊕ ((v0 >> 5)� k3) (2)

Differences in the most significant bits of k0 and k1, and of k2 and k3, cancel out, resulting in
3 equivalent keys for each possible key. In the related key mode, our optimizer finds the property
that differences in the most significant bits of 2 words of the key result in a maximal bias score (as
the ciphertexts are equal). The corresponding input differences are found by the genetic optimizer
within the first few generations.

The ability of our framework to detect such properties reassures us in its ability to support
the block cipher design process, by identifying trivial weaknesses easily.

8 Discussion
Scope of our Work In this paper, we focus on automatically finding basic neural distinguish-
ers. If we consider an analogy with differential cryptanalysis, cryptographers traditionally begin
with an automatic tool to obtain good differential characteristics for as many rounds as possible.
From these characteristics, the cryptographer may then attempt to derive the probability of the

18 A Cipher-Agnostic Neural Training Pipeline

best differentials, or combine them into more advanced attacks such as boomerangs attacks. We
identify this second step to specializing through feature engineering, prepended rounds, neutral
bits, etc... Our focus is on the equivalent of the first step: building blocks that can further be
refined into an attack.

In this respect, the neural distinguishers we propose are competitive with related work using a
comparable setting (2− 1− ∗−R). We even sometimes improve on specialized approaches with
features engineering, e.g., [BGL+22], or multiple pairs [CSYY22], using a fully automatic and
generic pipeline.

Extending the Scope For the sake of completeness, we give the intuition on how to
extend our pipeline to include key recovery considerations.

In order to include prepended rounds, the optimizer can be modified to additionally decrypt
each pair (P0, P1) used to compute the bias score of a difference δ, for i rounds; the number of
occurrences of the most frequent decryption differences gives an approximation of the probability
of the best prepended differential. This estimation, along with i and the bias score, can be
combined into a composite score to obtain a longer differential-ML distinguisher. Preliminary
experiments show that this approach retrieves (0x2110a04), used to prepend 2 rounds in Gohr’s key
recovery [Goh19b]. Alternatively, one may use the fact that our optimizer returns a parametrizable
number of input differences, and, for each of these, compute how many rounds can be prepended
(e.g., through MILP) and how many rounds a neural distinguisher can cover (by training it).
Further improvements, e.g., the use of neutral bits, can be included, for instance by running
the generalized neutral bit search algorithm presented in [BGL+22] to each returned difference.
Advanced feature engineering can also readily be applied, as DBitNet is generic in its input size
and format.

Extending Basic Neural Distinguishers: Comparability Specializing a neural dis-
tinguisher, through prepending probabilistic rounds, using feature engineering, multiple pairs,
or neutral bit-based analysis improves the key recovery abilities, at the cost of comparability.
It may occur that a different neural distinguisher could be plugged into the attack, and yield
better results, but it is challenging to say without the authors giving the baseline results in the
2− 1− ∗ −R setting, to promote comparability.

For instance, [YK21] exhibits a 220 − 1− δ − R 9-round distinguisher for SPECK32, using
a 3-rounds neural distinguisher and 6 probabilistic prepended rounds, and claims to improve
over [Goh19b]. In contrast, [Goh19b] uses a 9-rounds distinguisher, built from a 7-rounds neural
distinguisher and 2 probabilistic rounds, to recover the full key of 11-rounds SPECK with 214.5

ciphertexts, which is significantly better.

Intended Use of our Tool The uses of our tools are twofold. On the one hand, cipher
designers can use it to obtain bounds for a given set of parameters rapidly. On the other hand,
neural cryptanalysis researchers can use our tool to obtain a baseline to compare to any new cipher
they wish to study, without having to fine-tune any parameters, due to its plug-an-play approach.
Furthermore, our tool can be used out-of-the-box to perform neural analysis on any cipher, even
though we limited ourselves to a few, and did not include related-key results besides HIGHT and
TEA (as proofs-of-concept), due to the mere amount of GPU-extensive experiments to run, and
we believe it can match or improve upon other published results without further tuning.

Comparison with Brute Force Search Here, we compare our optimizer with a brute-
force search over low Hamming weight differences, ranked by their bias score. For a cipher
with block size n, and b−bit input differences, this brute-force search would explore

∑b
k=1

(
n
k

)
differences, which is 43744 for PRESENT, and almost 10M for GIMLI, with having HW 3
optimals. Furthermore, enumerating all input differences up to HW 3 says nothing about higher
HW differences; for instance, in the case of LEA, we find a Hamming weight 5 optimal difference.
In comparison, our optimizer explores at most 24800 differences (

∑31
k=1 = 496 per generation,

over 50 generations). We expect this scalability advantage to become even more important as the
search space grows, e.g., for related-key.

E. Bellini D. Gerault A. Hambitzer M. Rossi 19

9 Conclusion
In this paper, we tackle the problem of generalizing neural distinguishers to different ciphers, and
present a generic framework that can be applied out-of-the-box to new primitives. This framework
relies on a generic neural network structure, powered by dilated convolutional layers, as well as
generic choices of parameters such as the learning rate. In addition, we solve the difficulty of
choosing a good input difference through an evolutionary optimizer, and apply it to a variety of
ciphers.

Through a series of experiments, we show that our framework is often able to match, or beat,
the state-of-the-art for neural distinguishers, as well as to find good ones for primitives that had
not been studied yet, while being completely generic.

Preliminary experiments show that our framework is also able to find good input differences
in the related-key setting, but their exploitation requires significant effort and is left for future
work. This study produced a large number of input differences with good properties for neural
distinguishers, besides the ones presented in this paper; it seems promising to explore how these
can be combined into more powerful multiple-input differences distinguishers, to improve existing
results. It remains challenging to investigate the whole list of returned differences.

References
[BBCD21] Anubhab Baksi, Jakub Breier, Yi Chen, and Xiaoyang Dong. Machine learning

assisted differential distinguishers for lightweight ciphers. In Design, Automation &
Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France, February
1-5, 2021, pages 176–181. IEEE, 2021.

[BBP22] Nicoleta-Norica Bacuieti, Lejla Batina, and Stjepan Picek. Deep neural networks
aiding cryptanalysis: A case study of the speck distinguisher. In Giuseppe Ateniese
and Daniele Venturi, editors, Applied Cryptography and Network Security - 20th
International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceedings,
volume 13269 of Lecture Notes in Computer Science, pages 809–829. Springer, 2022.

[BGG+23] Emanuele Bellini, David Gerault, Juan Grados, Yun Ju Huang, Mohamed Rachidi,
and Sharwan Tiwari. Claasp: a cryptographic library for the automated analysis of
symmetric primitives. Cryptology ePrint Archive, Paper 2023/622, 2023. https:
//eprint.iacr.org/2023/622.

[BGL+22] Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Enhancing differential-
neural cryptanalysis. In Shweta Agrawal and Dongdai Lin, editors, Advances in
Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, December 5-9,
2022, Proceedings, Part I, volume 13791 of Lecture Notes in Computer Science,
pages 318–347. Springer, 2022.

[BGPT21] Adrien Benamira, David Gérault, Thomas Peyrin, and Quan Quan Tan. A deeper
look at machine learning-based cryptanalysis. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696
of Lecture Notes in Computer Science, pages 805–835. Springer, 2021.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In Pascal
Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems - CHES 2007, pages 450–466, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier

https://eprint.iacr.org/2023/622
https://eprint.iacr.org/2023/622

20 A Cipher-Agnostic Neural Training Pipeline

Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform permutation.
In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and
Embedded Systems – CHES 2017, pages 299–320, Cham, 2017. Springer International
Publishing.

[BOFG20] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag.
What is the State of Neural Network Pruning? In Proceedings of the 3rd MLSys
Conference, Austin, TX, USA, mar 2020.

[BR21] Emanuele Bellini and Matteo Rossi. Performance comparison between deep learning-
based and conventional cryptographic distinguishers. In Kohei Arai, editor, Intelli-
gent Computing, pages 681–701, Cham, 2021. Springer International Publishing.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. J.
Cryptology, 4:3–72, 1991.

[BTCS+15] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith,
and Louis Wingers. The simon and speck lightweight block ciphers. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2015.

[CSYY22] Yi Chen, Yantian Shen, Hongbo Yu, and Sitong Yuan. A New Neural Distinguisher
Considering Features Derived From Multiple Ciphertext Pairs. The Computer
Journal, 03 2022. bxac019.

[DCDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. Katan and
ktantan — a family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded
Systems - CHES 2009, pages 272–288, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[FGLNP+20] Antonio Flórez Gutiérrez, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, André
Schrottenloher, and Ferdinand Sibleyras. New results on gimli: Full-permutation
distinguishers and improved collisions. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2020, pages 33–63, Cham, 2020. Springer
International Publishing.

[GBC17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning: The MIT
Press, volume 19. The MIT Press, 2017.

[GLN23] Aron Gohr, Gregor Leander, and Patrick Neumann. An assessment of differential-
neural distinguishers. In AICrypt’23 - 3RD Workshop on Artificial Intelligence and
Cryptography, 2023.

[Goh19a] Aaron Gohr. Deep speck. https://github.com/agohr/deep_speck, 2019.

[Goh19b] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep learning.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, pages 150–179, Cham, 2019. Springer International Publishing.

[HLK+14] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho Ryu,
and Dong-Geon Lee. Lea: A 128-bit block cipher for fast encryption on common
processors. In Yongdae Kim, Heejo Lee, and Adrian Perrig, editors, Information
Security Applications, pages 3–27, Cham, 2014. Springer International Publishing.

[HRCF21] ZeZhou Hou, JiongJiong Ren, ShaoZhen Chen, and AnMin Fu. Improve neural
distinguishers of simon and speck. Sec. and Commun. Netw., 2021, jan 2021.

[HSH+06] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok Koo,
Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim, Jongsung
Kim, and Seongtaek Chee. Hight: A new block cipher suitable for low-resource

https://github.com/agohr/deep_speck

E. Bellini D. Gerault A. Hambitzer M. Rossi 21

device. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and
Embedded Systems - CHES 2006, pages 46–59, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 770–778, dec 2015.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the simon block
cipher family. In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, pages 161–185, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[Knu98] Lars Knudsen. Deal-a 128-bit block cipher. Complexity, 258(2), 1998.

[KW02] Lars Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen and Vin-
cent Rijmen, editors, Fast Software Encryption, pages 112–127, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[LCLH22] Dongdong Lin, Shaozhen Chen, Manman Li, and Zezhou Hou. The construction and
application of (related-key) conditional differential neural distinguishers on katan. In
Alastair R. Beresford, Arpita Patra, and Emanuele Bellini, editors, Cryptology and
Network Security, pages 203–224, Cham, 2022. Springer International Publishing.

[LDLS21] Luc Libralesso, François Delobel, Pascal Lafourcade, and Christine Solnon. Auto-
matic Generation of Declarative Models For Differential Cryptanalysis. In Laurent D.
Michel, editor, 27th International Conference on Principles and Practice of Con-
straint Programming, CP 2021, Montpellier, France (Virtual Conference), October
25-29, 2021, volume 210 of LIPIcs, pages 40:1–40:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[LLS+23] Jinyu Lu, Guoqiang Liu, Bing Sun, Chao Li, and Li Liu. Improved (Related-Key)
Differential-Based Neural Distinguishers for SIMON and SIMECK Block Ciphers.
The Computer Journal, 01 2023. bxac195.

[Mat94] Mitsuru Matsui. On correlation between the order of s-boxes and the strength of
DES. In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT ’94,
Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy,
May 9-12, 1994, Proceedings, volume 950 of Lecture Notes in Computer Science,
pages 366–375. Springer, 1994.

[MWGP12] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear
cryptanalysis using mixed-integer linear programming. In Chuan-Kun Wu, Moti
Yung, and Dongdai Lin, editors, Information Security and Cryptology, pages 57–76,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[ODZ+16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:
A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[RKK19] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam
and beyond. arXiv preprint arXiv:1904.09237, 2019.

[RR22] Adrián Ranea and Vincent Rijmen. Characteristic automated search of cryptographic
algorithms for distinguishing attacks (CASCADA). IET Inf. Secur., 16(6):470–481,
2022.

[Sam59] Arthur L Samuel. Machine learning. The Technology Review, 62(1):42–45, 1959.

22 A Cipher-Agnostic Neural Training Pipeline

[SHY16] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential analysis
of arx block ciphers with application to speck and lea. In Joseph K. Liu and Ron
Steinfeld, editors, Information Security and Privacy, pages 379–394, Cham, 2016.
Springer International Publishing.

[SZM20] Heng-Chuan Su, Xuan-Yong Zhu, and Duan Ming. Polytopic attack on round-
reduced simon32/64 using deep learning. In Information Security and Cryptology:
16th International Conference, Inscrypt 2020, Guangzhou, China, December 11–14,
2020, Revised Selected Papers, page 3–20, Berlin, Heidelberg, 2020. Springer-Verlag.

[Wan07] Meiqin Wang. Differential cryptanalysis of present. IACR Cryptol. ePrint Arch.,
2007:408, 2007.

[WN95] David J. Wheeler and Roger M. Needham. Tea, a tiny encryption algorithm. In
Bart Preneel, editor, Fast Software Encryption, pages 363–366, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[WN97] David J. Wheeler and Roger M. Needham. Tea extensions, 1997.

[YK15] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolu-
tions. arXiv preprint arXiv:1511.07122, 2015.

[YK21] Tarun Yadav and Manoj Kumar. Differential-ml distinguisher: Machine learning
based generic extension for differential cryptanalysis. In Progress in Cryptology –
LATINCRYPT 2021: 7th International Conference on Cryptology and Information
Security in Latin America, Bogotá, Colombia, October 6–8, 2021, Proceedings, page
191–212, Berlin, Heidelberg, 2021. Springer-Verlag.

E. Bellini D. Gerault A. Hambitzer M. Rossi 23

A Pseudocode for Gohr’s optimizer

Algorithm 2: Gohr’s optimizer: given a function F : {0, 1}b → R, greedily optimizes it
to find an input x that maximizes F . Requires in input the number of iterations t and an
exploration factor α.
x← Random(0, 2b − 1);
vbest ← F (x);
xbest ← x;
v ← vbest;
H ← hashtable with default 0;
i← 0;
while i < t do

H(x)← H(x) + 1;
r ← Random(0, b− 1);
xnew ← x⊕ (1� r);
vnew ← F (xnew);
if vnew − α log2(H(xnew)) > v − α log2(H(x)) then

v ← vnew;
x← xnew;

end
if vnew > vbest then

vbest ← v;
xbest ← x;

end
i← i+ 1;

end
return xbest;

B Summary of our results

24 A Cipher-Agnostic Neural Training Pipeline

Table 7: Detailed results for all target ciphers–except KATAN, see Table 8– from Table 6 round
by round. On the left-hand side, the test accuracies for two runs of Gohr’s depth-1 network
and two runs of DBitNet are shown. The best accuracy in each row is highlighted. Accuracies
compatible with a random guess are shown as highlighted in gray. The right-hand side shows the
true positive rate (TPR) and true negative rate (TNR) for each accuracy from the left-hand side.

cipher round Gohr depth-1 DBitNet Gohr TPR|TNR DBitNet TPR|TNR

(1) (2) (1) (2) (1) (2) (1) (2)

SIMON32 8 0.7400 0.7823 0.8335 0.8312 0.70|0.78 0.77|0.79 0.85|0.82 0.84|0.82
9 0.6073 0.6249 0.6560 0.6559 0.48|0.73 0.49|0.76 0.57|0.74 0.57|0.74
10 0.5414 0.5547 0.5599 0.5616 0.49|0.59 0.46|0.65 0.47|0.65 0.47|0.65
11 0.5003 0.5004 0.5164 0.5166 1.00|0.00 1.00|0.00 0.43|0.60 0.59|0.44

SIMON64 9 0.9467 0.9447 0.9619 0.9582 0.97|0.92 0.96|0.92 0.98|0.95 0.97|0.95
10 0.7710 0.7788 0.8096 0.8104 0.73|0.81 0.76|0.80 0.78|0.84 0.78|0.84
11 0.6411 0.6348 0.6578 0.6591 0.57|0.71 0.57|0.70 0.58|0.73 0.58|0.74
12 0.5479 0.5471 0.5623 0.5632 0.45|0.65 0.46|0.63 0.47|0.65 0.48|0.65
13 0.5002 0.5035 0.5154 0.5182 0.00|1.00 0.31|0.70 0.39|0.64 0.46|0.58
14 0.5000 0.5000 0.5003 0.5010 1.00|0.00 1.00|0.00 0.01|0.99 0.00|1.00

SIMON128 14 0.9010 0.9199 0.9267 0.9312 0.87|0.94 0.90|0.94 0.91|0.95 0.91|0.96
15 0.7975 0.7966 0.8384 0.8383 0.71|0.88 0.71|0.88 0.78|0.90 0.77|0.90
16 0.6867 0.6857 0.7249 0.7248 0.57|0.81 0.56|0.81 0.61|0.84 0.61|0.84
17 0.5957 0.5950 0.6259 0.6259 0.45|0.74 0.45|0.74 0.46|0.79 0.46|0.79
18 0.5390 0.5379 0.5582 0.5580 0.40|0.68 0.39|0.68 0.38|0.73 0.37|0.74
19 0.5077 0.5072 0.5222 0.5218 0.30|0.72 0.36|0.66 0.34|0.71 0.31|0.73
20 0.5000 0.5000 0.5060 0.5069 0.00|1.00 0.00|1.00 0.26|0.75 0.29|0.73

SPECK32 5 0.9269 0.9255 0.9280 0.9260 0.90|0.95 0.90|0.95 0.91|0.95 0.90|0.95
6 0.7860 0.7849 0.7873 0.7867 0.72|0.85 0.72|0.85 0.72|0.86 0.71|0.86
7 0.6111 0.6123 0.6152 0.6098 0.54|0.68 0.53|0.69 0.53|0.70 0.55|0.67
8 0.5004 0.5013 0.5107 0.5114 1.00|0.00 0.42|0.58 0.58|0.44 0.55|0.47

SPECK64 4 0.9999 0.9999 0.9998 0.9998 1.00|1.00 1.00|1.00 1.00|1.00 1.00|1.00
5 0.9884 0.9870 0.9939 0.9914 0.98|0.99 0.98|0.99 0.99|1.00 0.99|0.99
6 0.8580 0.8494 0.9229 0.9230 0.82|0.90 0.81|0.89 0.91|0.93 0.91|0.94
7 0.6679 0.6198 0.7182 0.7198 0.64|0.70 0.55|0.69 0.67|0.77 0.67|0.77
8 0.5256 0.5158 0.5357 0.5369 0.51|0.54 0.56|0.47 0.58|0.50 0.51|0.57
9 0.5009 0.5006 0.5016 0.5004 0.55|0.45 0.80|0.20 0.68|0.32 0.97|0.03

SPECK128 7 0.9995 0.9995 0.9994 0.9994 1.00|1.00 1.00|1.00 1.00|1.00 1.00|1.00
8 0.9722 0.9716 0.9860 0.9860 0.96|0.98 0.96|0.98 0.98|0.99 0.98|0.99
9 0.7787 0.7800 0.8296 0.8293 0.75|0.81 0.75|0.81 0.84|0.82 0.83|0.83
10 0.5814 0.5831 0.5913 0.5909 0.58|0.58 0.58|0.58 0.58|0.60 0.58|0.60
11 0.5010 0.5007 0.5006 0.5013 0.65|0.35 1.00|0.00 0.11|0.89 1.00|0.00

HIGHT 8 0.9990 0.9990 0.9990 0.9990 1.00|1.00 1.00|1.00 1.00|1.00 1.00|1.00
9 0.7500 0.8525 0.8598 0.8600 1.00|0.50 0.94|0.76 0.95|0.77 0.95|0.77
10 0.5617 0.5003 0.7509 0.7509 0.25|0.88 0.00|1.00 1.00|0.50 1.00|0.50
11 0.5005 0.5005 0.5007 0.5010 1.00|0.00 1.00|0.00 0.96|0.04 0.13|0.87

HIGHT 12 0.9990 0.9990 0.9990 0.9990 1.00|1.00 1.00|1.00 1.00|1.00 1.00|1.00
13 0.9647 0.7499 0.9647 0.9647 1.00|0.93 1.00|0.50 1.00|0.93 1.00|0.93
14 0.5006 0.5005 0.5010 0.5633 1.00|0.00 1.00|0.00 0.94|0.06 0.58|0.55
15 0.5007 0.5007 0.5010 0.5010 0.00|1.00 1.00|0.00 0.01|0.99 0.98|0.02

PRESENT 5 0.8808 0.8785 0.8828 0.8829 0.84|0.92 0.83|0.92 0.84|0.92 0.84|0.93
6 0.7077 0.7053 0.7093 0.7096 0.59|0.82 0.59|0.82 0.59|0.82 0.59|0.83
7 0.5597 0.5593 0.5613 0.5612 0.43|0.69 0.43|0.69 0.45|0.67 0.43|0.69
8 0.5104 0.5106 0.5106 0.5120 0.40|0.62 0.41|0.61 0.39|0.64 0.37|0.65
9 0.5003 0.5003 0.5012 0.5018 0.00|1.00 0.00|1.00 0.32|0.68 0.46|0.54
10 0.5002 0.5002 0.5003 0.5006 0.00|1.00 0.00|1.00 0.00|1.00 0.00|1.00

TEA 3 1.0000 1.0000 1.0000 1.0000 1.00|1.00 1.00|1.00 1.00|1.00 1.00|1.00
4 0.8864 0.8747 0.9079 0.9079 1.00|0.77 1.00|0.75 1.00|0.82 1.00|0.82
5 0.5562 0.5491 0.5629 0.5619 0.61|0.50 0.60|0.50 0.61|0.52 0.60|0.52
6 0.5010 0.5009 0.5010 0.5011 0.98|0.02 0.00|1.00 0.12|0.88 1.00|0.00

XTEA 3 1.0000 1.0000 1.0000 1.0000 1.00|1.00 1.00|1.00 1.00|1.00 1.00|1.00
4 0.8867 0.8748 0.9700 0.9697 1.00|0.77 1.00|0.75 1.00|0.94 1.00|0.94
5 0.5046 0.5093 0.5978 0.5009 0.13|0.87 0.75|0.27 0.69|0.51 0.69|0.31
6 0.5005 0.5008 0.5008 0.5007 0.00|1.00 0.94|0.06 0.87|0.13 0.00|1.00

LEA 8 0.8475 0.8482 0.8473 0.8477 0.78|0.91 0.79|0.91 0.78|0.91 0.78|0.92
9 0.7209 0.7200 0.7233 0.7231 0.60|0.84 0.59|0.85 0.60|0.85 0.59|0.85
10 0.5952 0.6010 0.5963 0.5957 0.46|0.73 0.47|0.73 0.46|0.74 0.46|0.73
11 0.5111 0.5112 0.5113 0.5113 0.45|0.58 0.47|0.56 0.47|0.55 0.56|0.46

GIMLI 8 0.9995 0.9995 0.9987 0.9988 1.00|1.00 1.00|1.00 1.00|1.00 1.00|1.00
9 0.8735 0.8707 0.8639 0.8735 0.85|0.89 0.85|0.90 0.83|0.90 0.83|0.89
10 0.6129 0.6041 0.6052 0.6037 0.52|0.70 0.52|0.69 0.51|0.70 0.51|0.70
11 0.5014 0.5007 0.5238 0.5236 0.90|0.10 1.00|0.00 0.54|0.51 0.54|0.50
12 0.5012 0.5002 0.5011 0.5010 1.00|0.00 0.00|1.00 0.00|1.00 0.21|0.79

E. Bellini D. Gerault A. Hambitzer M. Rossi 25

Table 8: Detailed results for KATAN.

cipher round Gohr depth-1 DBitNet

(1) (2) (1) (2)

KATAN 40 0.9832 0.9891 0.9953 0.9963
41 0.98 0.9673 0.9925 0.9908
42 0.9623 0.9551 0.9869 0.9856
43 0.9186 0.9081 0.9806 0.9733
44 0.8686 0.8732 0.9691 0.9586
45 0.7523 0.7447 0.9447 0.9217
46 0.7112 0.7058 0.9088 0.8766
47 0.6738 0.6518 0.8545 0.8267
48 0.6697 0.6685 0.834 0.7897
49 0.6029 0.6002 0.7873 0.7526
50 0.6022 0.5943 0.7437 0.7058
51 0.5809 0.5742 0.6991 0.665
52 0.5771 0.5697 0.6657 0.6419
53 0.5659 0.5621 0.6319 0.6231
54 0.5562 0.5516 0.6026 0.5935
55 0.5038 0.5367 0.5859 0.5823
56 0.5036 0.521 0.5697 0.5647
57 0.503 0.5242 0.5617 0.5595
58 0.5033 0.5151 0.5503 0.5497
59 0.5033 0.5032 0.5467 0.5479
60 0.5001 0.5032 0.5427 0.5426
61 ≈ 0.50 0.5031 0.5287 0.5266
62 ≈ 0.50 0.5033 0.5252 0.5248
63 ≈ 0.50 0.5018 0.5178 0.517
64 ≈ 0.50 ≈ 0.50 0.5153 0.5141
65 ≈ 0.50 ≈ 0.50 0.5091 0.5076
66 ≈ 0.50 ≈ 0.50 0.5069 0.5078
67 ≈ 0.50 ≈ 0.50 0.5066 0.5071
68 ≈ 0.50 ≈ 0.50 0.5056 0.5049
69 ≈ 0.50 ≈ 0.50 0.5052 0.5049
70 ≈ 0.50 ≈ 0.50 0.5026 0.5026
71 ≈ 0.50 ≈ 0.50 0.5012 0.5024

	Introduction
	Preliminaries
	Differential Cryptanalysis
	Analyzed ciphers
	Machine Learning and Neural Networks
	Gohr's Basic Scheme

	Related Work
	Extensions of Gohr's Basic Scheme
	Explainability of Neural Distinguishers

	Obstacles for Applying Neural Distinguishers Automatically
	Obstacle I: The Hyperparameters of Neural Distinguishers
	Obstacle II: Finding a Good Input Difference for a New Cipher

	Solution Part I: Automated Finding of Good Input Differences
	Bias Score for Ranking Input Differences
	Evolutionary Optimizer
	Optimizer Results

	Solution Part II: A Cipher-Agnostic Neural Training Pipeline
	Our Simple Training Pipeline
	Description of our Neural Network (DBitNet)

	Results: Our Best Distinguishers
	Discussion
	Conclusion
	Pseudocode for Gohr's optimizer
	Summary of our results

