A Cipher-Agnostic Neural Training Pipeline with
Automated Finding of Good Input Differences

Emanuele Bellini!, David Gerault!, Anna Hambitzer! and Matteo Rossi?

! Technology Innovation Institute, Abu Dhabi, UAE {name.lastname}@tii.ac
2 Politecnico di Torino, Torino, Italy matteo.rossi@polito.it

Abstract. Neural cryptanalysis is the study of cryptographic primitives through
machine learning techniques. Following Gohr’s seminal paper at CRYPTO 2019, a
focus has been placed on improving the accuracy of such distinguishers against specific
primitives, using dedicated training schemes, in order to obtain better key recovery
attacks based on machine learning. These distinguishers are highly specialized and
not trivially applicable to other primitives. In this paper, we focus on the opposite
problem: building a generic pipeline for neural cryptanalysis. Our tool is composed
of two parts. The first part is an evolutionary algorithm for the search of good
input differences for neural distinguishers. The second part is DBitNet, a neural
distinguisher architecture agnostic to the structure of the cipher. We show that
this fully automated pipeline is competitive with a highly specialized approach, in
particular for SPECK32, and SIMON32. We provide new neural distinguishers for
several primitives (XTEA, LEA, HIGHT, SIMON128, SPECK128) and improve over
the state-of-the-art for PRESENT, KATAN, TEA and GIMLI.

Keywords: Neural Cryptanalysis - Differential Cryptanalysis - Evaluation Tools -
Block Cipher - Distinguisher - Neural Networks

1 Introduction

The security of most modern applications is related to the security of the underlying
symmetric encryption primitive. Since the foundations of modern cryptography through
the Data Encryption Standard (DES), the security needs and applications have considerably
evolved, so that a variety of new designs have appeared over the years: candidates for the
Advanced Encryption Standard (AES), the eSTREAM portfolio, the CAESAR competition,
and many more. The building of new primitive goes hand-in-hand with the discovery of
new attack techniques, such as differential and linear cryptanalysis [BS91], impossible
differential cryptanalysis [Knu98], or integral attacks [KWO02]. The joint growth of the
number of ciphers to analyze, and the number of techniques to analyze them against,
has created a strong need for automation. The analysis of a cipher against newly found
techniques is not straightforward, as the process usually starts as a specialized, human-
input-heavy task, until research progress makes more and more steps automatic. For
instance, differential cryptanalysis requires finding long high-probability propagation
patterns through the cipher. This highly combinatorial problem was initially tackled
by manually implementing Matsui’s branch-and-bound algorithm [Mat94] for the cipher
under study, a time-consuming and error-prone process. In 2012, after almost 2 decades,
Moubha et al. [MWGP12] proposed the use of Mixed Integer Linear Programming for this
problem, making it significantly easier and faster to solve. In this declarative approach,
the cryptographer focuses on the description of the problem, while the search algorithm
itself is delegated to a specialized solver. Declarative approaches (MILP, SAT, SMT,
CP...) have since then become the de facto standard for differential cryptanalysis. More

mailto:{name.lastname}@tii.ae
mailto:matteo.rossi@polito.it

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 1

recently, open-source cryptographic libraries such as Tagada [LDLS21], Cascada [RR22]
or CLAASP [BGG™23] have made the process fully automated: from the description of
a cipher, these libraries build and solve the declarative models for the search of optimal
differential characteristics, without human intervention. A similar slow automation process
was followed for other techniques, such as linear or impossible differential cryptanalysis,
which are implemented within these libraries as well. Incidentally, as cryptographers
become able to run these search problems more efficiently, the corresponding cryptanalysis
techniques become more and more refined, as the time investment shifts from finding a
distinguisher to exploiting it.

Recently, a new cryptanalysis technique emerged, based on deep learning: neural
cryptanalysis. Proposed by Gohr at CRYPTO’19 [Goh19b], it exploits the ability of deep
learning algorithms to recognize complex patterns to identify relations between sets of
ciphertext that distinguishes them from random data. In the seminal work [Goh19b], this
relation is differential in nature; given pairs of ciphertexts (Co = Ex (Fy),C1 = Ex(P1))
(with EFx(X) denoting the encryption of X with the key K through a number of rounds

of a block cipher), the neural distinguisher is trained to determine whether Py & Py 5.
Gohr’s neural distinguishers on 5, 6, 7 and 8 rounds of SPECK32, using § = 02400000,
enabled key recovery attacks for 11 and 12 rounds with better complexity than the state
of the art. The approach taken by subsequent work has often been to optimize a neural
distinguisher for a given cipher, by carefully tuning its parameters, to build the best key
recovery attacks. For instance, techniques based on staged training improve the accuracy of
the neural classifier, by exploiting information obtained through differential cryptanalysis.
Similarly, the manual transformation of the ciphertext pairs, for instance by reversing some
operations in the last round, has been used to obtain better accuracies. In comparison
with other cryptanalysis techniques, the field is still in the specialized, human-input-heavy
phase, and it often requires significant effort to obtain good neural distinguishers for a
specific cipher. At AICrypt’23 [GLN23] Gohr et al. address the question of the potential of
neural distinguishers as a generic tool for cryptanalysis, i.e., “..how generic this approach
is and to which extent it can complement the work of a cryptanalyst. In other words, can
we see machine learning as a tool assisting cryptanalysis, similar to how SAT and MILP
solvers, among others, are seen by now?”.

In this paper, we propose a step forward towards the fully automated route, through a
generic pipeline: suitable input difference § candidates are obtained through an evolutionary
algorithm, and are used to train DBitNet, a fully generic neural network that requires
no tuning nor human input. The neural distinguishers obtained through our pipeline are
competitive with, and sometimes better than, specialized approaches on the ciphers for
which they were designed. With this work, we hope to provide a basis on which other
researchers can improve neural cryptanalysis, and apply it to more ciphers, without the
burden of optimizing the neural distinguisher itself.

Contributions

1. We propose a fully automated framework to perform neural cryptanalysis of ciphers;
our tool is publicly available on Github (https://github.com/Crypto-TII/AutoND)
is composed of (i) a scalable input-difference finding algorithm (ii) DBitNet, a neural
distinguisher architecture agnostic to the structure of the cipher (iii) an automatic
and simple training pipeline, which generically replaces informed techniques of staged
training

2. Using our tool we propose competitive neural distinguishers with the following
advantages: we can replace the elaborate training pipelines for SPECK32 [Goh19b)]
and SIMON32 [BGL™22], provide distinguishers for several new primitives (XTEA,

https://github.com/Crypto-TII/AutoND

2 A Cipher-Agnostic Neural Training Pipeline

LEA, HIGHT, SIMON128, SPECK128) and improve over the state-of-the-art for
PRESENT, KATAN, TEA and GIMLI.

In Table 1, we present a comparison summary of the neural distinguishers obtained in
this work with the state of the art.

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 3

Table 1: Summary of the state-of-the-art of published neural distinguishers for selected
primitives, with the highest achieved Round and Accuracy. To give the context of the
values, we show the architecture (Arch.), the number of training, validation samples
(Trn., Val.), and the Setting in which the neural distinguisher was characterized —

is not directly comparable to the standard setting in which each sample
is built by two ciphertexts. We also highlight the highest achieved round in the standard
setting. AutoND indicates if the neural distinguisher was automatically generated (v') or
is the result of an elaborate, manually designed training procedure (-). In the table, /
means unknown.

Primitive Arch. Setting® Trn. Val. AutoND Rounds Acc. Ref.
SPECK32 MLP 2-1-6-R 227:64 926.64 - 3" 0.79 [YK21]
BGPT21
BGPT21
r [[CSYY22]
ResNet 2-1-CT-R 23449 219.98 - 8 0.514 [Goh19b]
DBitNet 2-1-CT-R 23149 219.93 v 8 0.514 This work
[HRCF21]
SPECK64 DBitNet 2-1-CT-R 22325 219.93 v 8 0.587 This work
HRCF21
SPECK128 DBitNet 2-1-CT-R 22325 219.93 v 10 0.592 This work
SIMON32 MLP 2-1-6-R 224 22764 - 5" 0.570 [YK21]
, ‘ [SZM20]
ResNet 2-1-CT-R 22325 219.93 v 9 0.661 [GLN23|
HRCF21
SENet 2-1-A-R 23117 929.17 - 11 0.517 [BGL*22]
DBitNet 2-1-CT-R 231.49 919.93 v 11 0.518 This work
ResNet 2-1-CT-R 22758 228.25 - 11 0.520 [GLN23]
[LLS*23]
SIMONG64 HRCF21
DBitNet 2-1-CT-R 22325 219.93 v 13 0.518 This work
LLST23
SIMON128 DBitNet 2-1-CT-R 22325 219.98 v 20 0.506 _ This work
GIMLI MLP 2-2-6-D 2176 gl4s - 8 0.510 [BBCD21]
DDBitNet 2-1-CT-R 223.25 919.93 v 11 0.527 This work
HIGHT DBitNet 2-1-CT-R 2225 919.93 v 10 0.751 This work
HIGHTRX DBijtNet 2-1-CT-R 22325 219.98 v 14 0.563 This work
KATAN ResNet 2-1-6-R 223:25 919.93 - 51 0.533 [LCLH22]
, ‘ [LCLH22]
ResNet 2-1-CT-R 22325 210.93 v 66 0.505 [GLN23]
DBitNet 2-1-CT-R 22325 219.93 v 69 0.505 _ This work
PRESENT ResNet 2-1-CT-R 22325 219.93 v 7 0.563 [GLN23]
‘ [CSYY22]
DBitNet 2-1-CT-R 223.25 919.93 v 9 0.509 This work
TEA™ ™ MLP 2-1-CT-R* 21998 9l3.28 - 4 0.545 [BR21]
. DBitNet 2-1-CT-R 2225 21993 v 5 0.563 This work
XTEA™ DBitNet 2-1-CT-R 22325 219.93 v 5 0.598 This work
LEA DBitNet 2-1-CT-R 22325 219.98 v 11 0.511 _ This work

S The parameters n-m-T-E of the settings column respectively denote the number of ciphertexts per
sample n, of input differences m, the feature engineering type (T: CT for ciphertexts, ¢ for the
difference, A for advanced techniques), and the type of experiment (E: R when the labels correspond
to random or real, D when the label depends on the index of the input difference), as detailed in
Section 3.

RK Related key setting.

* [YK21] prepends probabilistic rounds to reach 9 (12) round distinguishers for SPECK32 (SIMON32),
using 220 (222) pairs.

*2 For TEA and XTEA, we report the number of full 2-round cycles rather than the number of individual
rounds.

3 2-1-CT-R denotes modular addition rather than XOR to inject the difference (as defined in Section 3).

4 A Cipher-Agnostic Neural Training Pipeline

Organization. The remainder of this work is organized as follows. We first give a short
introduction to the ciphers analyzed in this work, as well as to machine learning and
Gohr’s distinguisher in our preliminaries (Section 2). We then discuss related work in
Section 3, and obstacles to the automatic application of neural distinguishers to new
ciphers in Section 4. We present our solutions to I) the automated finding of a good input
difference (Section 5), as well as II) a cipher-agnostic neural training pipeline (Section 6).
We present our best distinguishers in Section 7, discuss them in Section 8 and conclude in
Section 9.

2 Preliminaries

In this section, we summarize the basic terminology used throughout the paper, including
the concept of differential cryptanalysis (Section 2.1). We provide the list of ciphers
analyzed in this work (Section 2.2), as well as a short, general introduction to machine
learning and neural networks (Section 2.3), and Gohr’s basic scheme (Section 2.4).

2.1 Differential Cryptanalysis

Differential cryptanalysis, introduced in [BS91], is a cryptanalysis technique, which focuses
on the propagation of an input difference between the inputs of a cryptographic function
to its outputs. In this work, we focus on iterated symmetric ciphers Ex (P), which apply
a simple round function iteratively to a plaintext P € P and a key K € K to obtain a
ciphertext C' € P. In the differential cryptanalysis of block ciphers, the cryptographer is
interested in the probability that, for a random key K and plaintext P, the differential
§ — 7 holds with probability #{Ex(P) = Ex(P®d) &~ : P € P,K € K}/(|P| + |K|).
Sometimes, truncated differentials, where not all bits of are considered, are of interest.

2.2 Analyzed ciphers

The following ciphers have been considered in this work, for their variety of structures,
block and key sizes. Several have been studied in the differential-neural setting, providing
a baseline for comparison.

SPECK and SIMON [BTCS*15] are lightweight block ciphers with block sizes
ranging from 32 to 128 bits and key sizes from 64 to 256. SPECK has a classical ARX
(Addition, Rotation, XOR) design, while SIMON is a Feistel structure, with the bitwise-
and function as the non-linear operation. LEA [HLK™14] is an ARX-based lightweight
block cipher that encrypts 128-bit blocks, with 128 or 256-bit keys. TEA [WN95] is a
Feistel-based ARX cipher with a block size of 64-bit and a key size of 128-bit. In TEA
round keys are injected through modular addition, rather than XOR. XTEA [WN97] is
TEA’s successor, fixing some of its weaknesses, and reverting to key injection by the XOR
operation. GIMLI [BKL'17] is a permutation with a state size of 384 bits arranged in
a 3 x 4 matrix of 32-bit words. From this permutation, the authors proposed a hashing
algorithm and an authenticated encryption algorithm, respectively GIMLI-HASH and
GIMLI-CIPHER. Its round function combines an SP-box with a linear layer, and it is
iterated 24 times. GIMLI-HASH is built from it with a sponge construction, while GIMLI-
CIPHER uses the monkeyDuplex one. HIGHT [HSH'06] is a generalized Feistel-based
ARX block cipher, with a 64-bit block size and 128-bit key size. KATAN [DCDKO09] is a
family of hardware-oriented block cipher, working with 80-bit keys and 32, 48, or 64-bit
block sizes. PRESENT [BKL™T07] is a lightweight block cipher with an SPN structure, a
block size of 64 bits and two possible key sizes: 80 and 128 bits.

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 5

2.3 Machine Learning and Neural Networks

Machine learning (ML) is a subfield of Artificial Intelligence (Al) investigating algorithms
that “give computers the ability to learn without explicitly being programmed” [Sam59].
Deep learning is a subfield of ML that uses deep neural networks. The following short
introduction to neural networks is based on [GBC17].

A deep neural network f is a machine learning algorithm, dependent on a set of
parameters 6, that uses multiple stacked layers of artificial neurons to map an input x to
an output y, i.e., y = fp(x). During the neural network training, the values of the network
parameters 6 are “learned”, i.e., deduced. In a feedforward neural network, the inputs x
are passed through the different layers of the neural network. For example, the three-layer
network y = f&) (f@ (1) (x))) has one output layer (3), one hidden layer (2), and one
input layer (1). To train the neural network, the current network output ypreq is compared
to a ground truth yi,.e by means of a scalar cost function J(0), e.g., the mean squared
error MSE. The scalar cost J(6) is back-propagated to the neural network parameters 6,
resulting in the gradient of the cost function with respect to the parameters VyJ(6).

An optimizer, such as ADAM, adjusts the 0 based on the gradient value, and parameters
such as the learning rate. Training of the neural network is performed in three phases,
acting on three datasets structured as a list of input/output values: training, validation
and test data. The goal of machine learning, in general, is not to optimize the algorithm f
on a known dataset but to make the algorithm able to generalize from seen to unseen data.
Therefore, evaluation of the training progress is done on previously unseen validation data.
At some point during the training, the network may start to get worse at generalization
and learn the training dataset “by heart”. This phenomenon is known as overfitting. Many
reqularization techniques can be used to avoid overfitting, among them the L2 regularization
that penalizes overly large weight values.

The training of a neural network is done in batches and epochs. One epoch means
the neural network has been optimized on the full training dataset. Within each epoch,
the network parameters are adjusted after each batch of training data. Batch sizes vary
between 1 and the full training dataset size, and influence the learning outcome immensely.

The design of a neural network involves choosing the number of layers, i.e., the depth,
and the types of layers. The type of each layer is determined by the way in which the
neurons of the layers are connected to each other: For example, a layer can be dense —here,
every neuron is connected to all neurons in the previous layer— or convolutional —here,
every neuron is connected only to a subset of neurons in the previous layer, inspired by
the mammalian visual cortex. The layers present in the neural network determine its type:
a CNN (convolutional neural network) or MLP (a densely connected multi-layer network).
The architecture of a neural network refers to its overall structure, i.e., how many neurons
are connected, in which way, and in how many layers.

A hyperparameter is a parameter that is set before beginning the model training.
A hyperparameter affects the behavior of the deep neural network, for example, its
generalization error or the cost of training the algorithm. Hyperparameters include the
architecture parameters (number of neurons, etc.), as well as the training parameters
(learning rate, batch size, etc.).

One problem in training deep neural networks can be that one layer stops learning.
This will also prevent the gradient information from successfully back-propagating to
previous layers. This is circumvented by introducing residual or skip connections. Often,
neural networks in which such residual connections are present are referred to as a ResNet.

One of the most fundamental design choices is the choice nonlinearities applied after
each neuron, with typical choices being ReLU, sigmoid, and tanh. The sigmoid activation
outputs a value between 0 and 1, which can be interpreted as a confidence score.

6 A Cipher-Agnostic Neural Training Pipeline

2.4 Gohr’s Basic Scheme

In his seminal paper, published at CRYPTO’19, Aron Gohr [Goh19b] proposes to use a
neural network to distinguish whether pairs of SPECK32/64 ciphertexts correspond to
the encryption of pairs of messages with a fixed difference (020040, 020000)—labeled as
“non-random” (1)— or random input differences —labeled as “random” (0). The resulting
neural distinguisher, a residual neural network preceded by a size 1 1D-convolution, results
in respectively 92.9,78.8,61.6 and 51.4% accuracy for 5, 6, 7, and 8 rounds of SPECK32/64,
and is used to mount practical key recovery attacks on 11 rounds. Gohr also proposes a
neural difference search algorithm, based on transfer learning, to search for input differences
that function well with neural distinguishers.

Gohr’s neural distinguisher is a ResNet with four main parts, the first three of which
are visualized in Fig. 1. At the input, a 64-bit ciphertext pair of SPECK32/64 is reshaped

Input reshaping Bit slicing convolution Residual blocks

Conv1D with kernel size 1 and 32 filters Two ConvlD with kernel size 3 and 32 filters

Reshape X

Permute

Residual Connection
64 input bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits
x x "

x x x x x x
4 channels 4 channels 32 channels 32 channels 32 channels 32 channels

Figure 1: Visualization of three main parts of Gohr’s neural distinguisher.

and permuted into a 16-bit wide tensor with 4 channels. From a cryptographic perspective,
the input reshaping reflects the knowledge of the particular 16-bit word structure of
SPECK32/64. In the second part, a 1-dimensional convolution (ConvlD(k = 1, f = 32))
is used to slice through the 4 channel bits. The “slicing” is reflected by the kernel size
of k = 1. The output channel for each filter is produced by scanning the corresponding
filter over the input in one dimension, hence Conv1lD. The learnable parameters are four
filter weights, as well as one bias parameter for each of the f = 32 filters, resulting in
a total of 32 x 4 4+ 32 = 160 learnable parameters for this ConvlD-layer. The output
tensor of the bit-slicing convolution is 16 bits wide and 32 channels deep. Throughout the
network, each convolutional layer is followed by conventionally used BatchNormalization
and ReLU nonlinearity. The third part is the residual blocks. Each residual block consists
of two convolutional layers ConvlD(k = 3, f = 32). In Gohr’s publication, the number
of residual blocks denotes a depth-1 neural distinguisher, respectively a depth-10 neural
distinguisher'. The fourth part of the network is a densely connected prediction head
with ReLLU activations and an output layer with a single neuron with sigmoid activation.
Throughout Gohr’s network, each convolutional, and each dense layer is regularized by
an L2 = 107° parameter. The full Python TensorFlow implementation is available on
GitHub [Goh19a].

Gohr additionally proposes an algorithm to derive good input differences for neural
distinguishers without prior human knowledge. This algorithm is based on few-shot
learning, where the features learned by a network are used as input to a simpler machine
learning algorithm, trained on fewer samples. In practice, a one-block residual network
is trained with a random (but fixed) input difference § on 3 rounds of Speck with 107
ciphertext pairs; the output of the penultimate layer of this network is then used as input

11t is not conventional to refer to the number of residual blocks as depth. For example in the original
publication of the first residual network ResNet [HZRS15], ResNet34 consists of 34 weighted layers,
including a fully connected dense layer, while it has only 16 residual blocks.

https://github.com/agohr/deep_speck/blob/master/train_nets.py

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 7

to train a ridge regression classifier on small numbers of samples for new differences §’. A
greedy algorithm? with exploration bias is used to suggest new candidates §’.

3 Related Work

Following the introduction of Gohr’s neural distinguisher, subsequent work has mostly
followed two trends: the exploration of new settings for the neural distinguisher experiments
(Section 6.2) and the explainability of neural distinguishers (Section 3.2). Finally, a line of
research focuses on automatically building good neural distinguishers for new primitives,
i.e., the fully automated route described in the introduction. We discuss these in more
detail in the next section (Section 4).

3.1 Extensions of Gohr’s Basic Scheme

Neural distinguisher research, following the seminal paper [Goh19b], has often focused
on modifications of either the neural network architecture or the setting in which the
experiments take place. These modifications to the experimental setting have been along 4
dimensions: the number of plaintexts per sample n, the number of input differences m,
the feature engineering type T', and the experiment setting E. The neural distinguishers
on the primitives we studied are classified in terms of their setting (n, m, T, F), along with
their architecture, in Table 1, and we discuss each setting parameter in the following.

Number of plaintexts per sample: n A natural way to amplify the accuracy of a neural
distinguisher is to group multiple pairs sharing the same label and combine their scores.
In this approach, the distinguisher may be trained on single pairs, and evaluated on
multiple pairs sharing the same label, as in [Goh19b] (key recovery part), [BGPT21].
Gohr et al. [GLN23] give a formula to compute multiple-pair accuracy from a single-
pair distinguisher. Sometimes, the samples used by the neural network themselves are
the concatenation of multiple ciphertexts; this is the case in [BGPT21] (n = 20, 100),
[CSYY22] (n =8), [HRCF21] (n = 64,128) and [LLS*23] (n = 16).

Number of input differences: m Baksi et al. [BBCD21] explore a setting where a set
of m input differences are considered. This setting was applied to various permutations:
KNOT, ASCON, CHASKEY and GIMLI, with m = 2 for GIMLI. Su et al. [SZM20]
introduced a model called polytope differential neural network distinguisher. In this
model multiple differences are used, keeping one plaintext fixed among the differences and
changing the other.

Feature engineering type: T Feature engineering is often used in machine learning,
to derive advanced features from the raw dataset,e.g., [GBC17]. A natural feature to
use for differential neural cryptanalysis is to replace the ciphertext pairs (T' = CT) by
their XOR difference (T = ¢). This approach, used by Baksi et al. [BBCD21], Hou et
al. [HRCF21], and Yadav et al. [YK21], simplifies the training process, at the cost of losing
some information.

Advanced types of feature engineering (7' = A) include, e.g., partial decryption of
the ciphertexts. For instance, in the case of SPECK32, the right half of the previous
round state can be computed without the key, by XORing the two halves and rotating.
This type of feature engineering was used in [BGPT21]. A similar technique permits to
retrieve the difference in the previous round for SIMON-like ciphers; [BGLT22] showed
that this transformation could significantly improve the accuracies of neural distinguishers,

2This algorithm is summarized in the appendix as Algorithm 2.

8 A Cipher-Agnostic Neural Training Pipeline

and [LLS'23] exhibited even better distinguishers on SIMON by exploiting inferred
information from two rounds ahead.

Type of distinguishing experiment: E In the initial setting [Goh19b] (E = R), the

samples are Ex (P)||Ex(Po @ x), and the label is x 2 5. Gohr additionally defines the
real ciphertext experiment (E = Ryp), where the samples are Fx (Py) @ z||Ex(Py @ d) @ x,

and the label is = — 0, i.e., the distinguisher determines whether the ciphertext pair has
been XORed with a random mask. The success of neural distinguishers in this experiment
shows that information beyond a simple XOR difference is learned.

In [BBCD21]’s model 1, the samples are formed as (Ex (P)® Ex(P®4d;)),i € [0;m—1],
and the label is i (E' = D).

In [BR21], the samples are built using modular addition difference, rather than XOR,
to analyze the ciphers TEA and RAIDEN (E = R™).

3.2 Explainability of Neural Distinguishers

Neural distinguishers enabling new attacks, potentially better than manual cryptanalysis,
motivated researchers to try to understand what made these attacks so powerful, and to
learn new properties from these.

In [BGPT21], Benamira et al. studied the properties of pairs that were correctly
classified, and proposed that Gohr’s neural distinguishers learn differential-linear features.
In particular, they observe that the pairs for which the score of the neural distinguisher
follow similar truncated differential patterns a few rounds ahead. The authors further
modified the neural network to use a Heaviside activation function, which forces its output
to be 0 or 1, to study the Boolean functions learned on SPECK. From these, they derived
advanced features that could be used to replace the initial 1D convolutions of Gohr’s
network.

In [BBP22], Bacuieti et al. further investigate the structure of the neural network itself.
In particular, they use the lottery ticket hypothesis to prune Gohr’s neural network to a
minimal working version, on which they use feature visualization techniques to obtain
a visual representation of the neural network’s behavior. They additionally show that,
for the case of SPECKS32, there is no significant accuracy difference between the depth 1
neural network, and the depth 10 version.

4 Obstacles for Applying Neural Distinguishers Automati-
cally

At AICrypt’23 [GLN23|, Gohr, Leander, and Neumann presented an assessment of
differential-neural distinguishers. In this work, they investigate whether “machine learning
[can be seen] as a tool assisting cryptanalysis, similar to how SAT and MILP solvers,
among others, are seen by now”. To successfully complement the work of a cryptana-
lyst, the approach needs to be generic, i.e., it must not add significant workload for the
cryptographer and reliably yield useful results.

Here, we identify the obstacles to such an automatic application of neural distinguishers
to new primitives. Namely, there are obstacles in the architecture and hyperparameter
choices of the neural distinguisher itself (Section 4.1), as well as obstacles in the identification
of good input differences for new ciphers (Section 4.2). In Sections 5 and 6 we present our
solutions to these obstacles.

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 9

4.1 Obstacle I: The Hyperparameters of Neural Distinguishers

The field of neural distinguishers being in its infancy, it is still unclear what machine learning
architecture works best. Many peer-reviewed works [BBCD21, LLST23, BGL 122, GLN23]
have used (variations of) Gohr’s network [Goh19b], from MLPs and CNNs [BBCD21]
to significantly larger networks such as SENet [BGLT22], or combinations of hand-built
features with non-neural classifiers in [BGPT21]. In the following, we first discuss to what
extent automated hyperparameter tuning, as presented at AICrypt’23 [GLN23] can be
used to obtain distinguishers for new primitives (Automated Hyperparameter Tuning).
Then we discuss two particularly difficult to automatize steps (The Reshaping of the
Input and The Training Pipelines) in more detail. We finalize our identified obstacles by
discussing The Application to Large-state Ciphers.

Automated Hyperparameter Tuning. In their assessment of neural distinguishers the
authors of [GLN23] conclude, that while the general idea of differential-neural cryptanalysis
can be applied to a wide variety of ciphers, it is not clear that Gohr’s network [Goh19b] is
suitable for all ciphers. For the automated application of Gohr’s network to other ciphers
[GLN23] suggest automated hyperparameter tuning as one possibility. Out of twenty-two
considered hyperparameters, they find that eight significantly impact the accuracy of the
neural distinguisher for SPECK32/64 and SIMON32/64. These eight hyperparameters
are automatically tuned to specialize Gohr’s network [Goh19b] for other ciphers such as
PRESENT. The obtained distinguishers using only automated hyperparameter tuning are
presented in [GLN23, Table 5].

In addition to the automated hyperparameter tuning, [GLN23] points out two potential
manual optimizations to improve the distinguisher: On one hand the cryptographers may
find better input differences. On the other hand, they can choose a more elaborate training
procedure such as staged training, see The Training Pipelines. The obtained distinguishers
using additional manual optimization are presented in [GLN23, Table 1].

Table 2 compares the results of our work with the automated hyperparameter tuning
and the additional manual optimizations of [GLN23]. Note, that our distinguishers (right)
are most comparable to the automated hyperparameter tuning (left), in the sense that they
don’t require any manual intervention from the cryptographer. However, our distinguishers
achieve with a simple, fully automated training procedure comparable accuracies to the
ones obtained by [GLN23, Table 1] with additional manual optimization (center).

Our interpretation is that while optimizing Gohr’s network for a new primitive using
automated hyperparameter tuning is possible, our work achieves a higher degree of
generalization and applicability to new primitives.

The Reshaping of the Input. Gohr’s neural distinguisher’s structure follows the division
of SPECK into 2 words. However, when applying such a reshaping to different ciphers,
the question arises of what data shape to adapt. For instance, for the AES cipher, a
decomposition into 2 - 16 8-bit words may be beaten by a 2 -4 32-bit columns, due to the
column-oriented MixColumns operation of the cipher. Furthermore, the chosen shape has
a direct influence on the complexity, and therefore learning power, of the network. This
becomes clear when looking at Table 5, where ciphers with similar sizes, such as HIGHT,
PRESENT, and SPECKG64, result in neural classifiers with widely different complexities
depending on their number of words (2 for SPECK64, 8 for HIGHT, 16 for PRESENT).
For a higher number of words the Conv1D operation slices through a higher number of bits,
compare Fig. 1 (center). This in turn means less necessary kernel shifts, and accordingly
less multiply-accumulate operations, i.e., FLOPs. While it is possible to try out many
different input reshapings (manually or automated), we remove this potential obstacle by
using a different rationale for the neural network design as presented in Section 6.2.

10 A Cipher-Agnostic Neural Training Pipeline

Table 2: Comparison of the best distinguishers for SIMON32/64, SPECK32/64, PRESENT,
KATAN32, and CHACHA presented at AICrypt’23 [GLN23] using only automated hy-
perparameter tuning (left), additional manual optimization (center) and our work (right).
The distinguishers are characterized by the highest round (Max. Rounds) in which their
Accuracy is significantly above a random guess. The highest achieved number of rounds is
highlighted.

Automated Elaborate Our work
hyperparameter tuning training procedure (w/o manual
[GLN23, Table 5] [GLN23, Table 1] optimizations)

Cipher Max. Rounds Accuracy Max. Rounds Accuracy | Max. Rounds Accuracy
SIMON32/64 9 0.661 11 0.5207 11 0.516 (0.518%)
SPECK32/64 7 0.617 8 0.514F 8 0.511 (0.514%)
PRESENT 7 0.563 N/A N/A 9 0.509
KATAN32 66 0.505 N/A N/A 69 0.505

t [GLN23, Table 1] points out that “these results need a more elaborate training procedure; there is no
known way to obtain them by simple variations of direct training.”
2 We can improve our results using a simple polishing pipeline as discussed in Section 6.1.

The Training Pipelines. When training a neural distinguisher, the highest achievable
round may fail to be trained using straightforward techniques. For instance, to obtain an
8-round distinguisher for SPECK32, Gohr [Goh19b] uses a staged training scheme, where
the best 5-round distinguisher is retrained on the input difference (028000, 02840a), (the
most likely to appear after 3 rounds). This distinguisher is then retrained for 8 rounds,
with 100 times more data than the other distinguishers, to finally reach 0.514 validation
accuracy. Bao et al. [BGLT22], and [GLN23] use similar staged training procedures for
their 10-round SIMON32 distinguisher. These elaborated training schemes are not easily
automated, as they require looking at the differential characteristics of the studied cipher.
We tackle this obstacle using our simple training pipeline presented in Section 6.1.

The Application to Large-state Ciphers. Gohr’s neural network uses 32 filters per
convolution layer, and 64 neurons for the first dense layer. These parameters match the
size of the difference and of the input, respectively, for SPECK32. In order to generalize
neural distinguishers to larger primitives, a logical first step is to upscale these parameters.
Interestingly, [GLN23] does either not attempt to, or was not successful in the application
of Gohr’s original network to a larger state version of SPECK or SIMON. We manually
—and unsuccessfully 3- attempted the adaption of Gohr’s network to SPECK128 and instead
chose a more generic approach, resulting in the DBitNet network, presented in Section 6.2.

4.2 Obstacle ll: Finding a Good Input Difference for a New Cipher

It has been shown in previous work [BGPT21] that the input difference to the best
differential characteristic is, at least for SPECK, not a good choice for neural distinguishers.

In [Goh19b], a neural difference search algorithm is proposed*, which successfully finds
the input difference used in the SPECK32 distinguishers. However, adapting it to different
ciphers is non-trivial®>. We experimentally observe that Gohr’s optimizer fails to find the

3We focused on SPECK128, with input difference (0x80,020), which propagates to
(06100 - - 0,00100 - - - 0) with probability 1 after 1 round. We varied the number of filters (32, 64 and 128)
and neurons (64, 128, 256) of Gohr’s RESNet, and obtained around 65% accuracy for 9 rounds with all
the settings we tried. We conclude that scaling the parameters seems to have only had a limited impact
on the final accuracy. At this point, we could either attempt to fine-tune the structure of the network
further, or go with a more generic approach;

4Replicated as algorithm 2 in the appendix

5The starting round (3), number of iterations (2000), alpha parameter, the preprocessor’s input reshaping,
and learning rate schedule may need to be tuned. In order to minimize such tuning parameters, we focus on

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 11

optimal input difference for SPECK128, even after modifying it to encourage low Hamming
weight differences. Furthermore, the evaluation speed for each difference prevents scaling
for an efficient evaluation of a large number of differences. These observations motivate us
to propose a more cryptographically inspired optimizer, rather than attempting to improve
on Gohr’s; this optimizer is presented in Subsection 5.2.

5 Solution Part I: Automated Finding of Good Input Dif-
ferences

In the previous section, we identified generalization issues with the neural difference search
algorithm. In this section, we propose a different, non-neural approach. Our solution
consists of a bias score for fast ranking of input differences (Section 5.1), as well as an
evolutionary optimizer (Section 5.2) which uses this new ranking scheme. The obtained
results are presented in Section 5.3.

5.1 Bias Score for Ranking Input Differences

The input difference to the best n-round trail is not the one that gives the best results for
neural distinguishers. For instance, for 5 rounds of SPECK, the input difference leading
to the best trail is (0x2400, 0x0020), which leads to a trail with probability 27; Gohr’s
network, trained with this input difference, reaches 61% accuracy. On the other hand, the
input difference (0x0040, 0x0000) used in Gohr’s paper does not have better 5 rounds trails
than 2713, and yet, the neural network obtains 92% accuracy when trained with it. This
disparity between the probability of the best trail and neural network accuracy becomes
higher as the number of rounds increase: for 6 rounds, the neural network’s accuracy
does not go above 51% for the optimal input difference ((0x0211, 0xa040), 2713 trail), but
Gohr’s input difference (2720 for the best trail) reaches 78% accuracy.

We adopt the hypothesis proposed by [BGPT21] that this disparity is related to
truncated differentials at rounds 3 and 4. In addition, we observe that the input difference
(0x0040, 0x0000) fixes the 2 bits of the left part to 0 after 3 rounds. Furthermore, high
biases persist in higher rounds; for instance, bit 14 at round 5, is set to 1 with probability
88%. We conjecture that Benamira et al’s conclusions generalize to other ciphers, and
that high biases in individual bits are a good approximation for the presence of high
probability truncated differentials, which are otherwise difficult to find in a generic way. If
this conjecture is correct, then highly biased difference bits at round r should lead to good
neural distinguishers at round r + 6 through differential-linear properties. Therefore, we
assume a good input difference for neural distinguisher is one for which high biases exist
in the difference bits of the higher rounds. This assumption is verified in our experiments,
as the neural distinguishers we find usually cover several rounds past the highest round
where a bias was detected.

We focus on the problem of finding the optimal input difference (for neural distinguish-
ers) cryptographically, under the assumption that this input difference maximizes the bias
of intermediate difference bits. More formally, we assume that a good input difference for
neural distinguishers is one that maximizes a bias score, defined as:

Definition 1 (Exact bias score). Let E: F§ x F5 — FJ be a block cipher, and § € F} be
an input difference. The exact bias score for 4, b(9) is the sum of the biases of each bit

SPECK128, simply adapting the word size in Gohr’s code. We studied 3 cases: base, low Hamming weight
preprocessor, and low Hamming weight preprocessor and optimizer starting-difference, each for 10 runs per
starting round (from 1 to 7). The first two cases yielded random input differences, but the third case returned
3 input differences ((02200000, 022000), (02800000000, 0280000000), (021000000000, 02100000000)) that
resulted in 10-rounds distinguishers when retrained from scratch.

12 A Cipher-Agnostic Neural Training Pipeline

position j in the output difference, i.e.,

> (Ex(X) ® Ex(X ®9)),

n—1 n E_
b((5) _ . Z 05— XeFy ,KeF; -1
7=0

S|

2n+k:

The exact bias score cannot be computed for practical ciphers, as it requires enumerating
all keys and plaintexts. On the other hand, we can use an approximation, obtained from a
limited number of samples ¢:

Definition 2 (Bias score). Let E: F§ x F5 — F3 be a block cipher, and § € F§ be an
input difference. The bias score for §, b(8) is the sum of the biases of each bit position j
in the output difference, computed for ¢ samples i.e.,

t—1

> (Br, (Xi) © Bk, (X; ©9)),

n—1
> 05— =2
j=0 t

bt (o) =

S|

Conjecture 1. Input differences ¢ that reach the most rounds with a neural distinguisher
have a high bias score b(8). We further assume that bt(8) is a good estimation of b(J).

To test our conjecture, we compute Et(é) for all 232 possible SPECK32 input differences,
for a small ¢; § = (020040, 020000) does indeed maximize b*(d) for 5 rounds.

As a further test, we compute a bias score 52°°°(4) for low Hamming weight (1 and 2)
input differences on SPECK128, and obtain (0280, 028000000000000000) as the optimal
on 7, 8, 9 rounds. This input difference obtains vastly superior scores through the neural
distinguisher, compared to the ones found by the neural difference search: 0.9861, 0.8252,
and 0.5898 for 8, 9 and 10 rounds respectively.

These results convinced us to perform a search based not on the results of a linear
classifier, but on the significantly faster to compute bias score, which allows us to explore
more candidate input differences. To exploit the speed gain of our approach, we propose a
new evolutionary-based search algorithm.

5.2 Evolutionary Optimizer

Algorithm Algorithm 1 starts from an initial population of random input differences, and
improves the population iteratively by deriving new candidates from known ones (using a
mutation probability M), ranking them through their bias score Bt(-), and allowing the
best ones to move to the next generation. The algorithm stops if no input difference scores
higher than a threshold Tj;. In practice, the initial population contains 1024 differences,
the 32 best ones are kept at each generation, and we set M =1, t = 10*, and T}, = 0.01.

Accounting for the Starting Round As mentioned in footnote 5 of Section 4.2, the round
at which a difference is evaluated is an important parameter. As the most relevant round
is not known in advance, we run our optimizer iteratively from round 1 to round R + 1,
where no bias score above the threshold T} is returned, obtaining R lists of 32 differences
A, for r € [1, R]. Since the optimizer is heuristic, some good differences may have been
identified in a subset of the rounds only; we therefore rerun the scoring procedure for the
union of these lists, to obtain, for each difference d;, R bias scores 5“ The final score to
return is subject to two main concerns: (1) the score in the highest round not to be a good
indicator of the quality of the neural distinguisher, and (2) a simple sum of the scores at
each round may favor less interesting differences; for instance, in the related-key case for
SPECK with 4 key words, many differentials with probability 1 exist for the first 3 rounds,

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 13

Algorithm 1: Evolutionary optimizer

starting__population <— [RandomInt(0, 2™ — 1) for 1024 times];
Sort starting_population by bt(-) (descending order);
current__population < first 32 elements of starting_population;
for iterations < 0 to 50 do

candidates < [|;

for i+ 0 to 32 do

for j« i+ 1 to 32 do

if RandomFloat(0,1) < M then
I m<+1

else
I m<+20

end

Add current_population; @ current_population; @& (m < RandomlInt(0,n — 1)) to
candidates

end
end

Sort candidates by b*(-) (descending order);
current__population < first 32 elements of candidates;

end
return candidates;

not all of which are interesting for further rounds. To address these concerns, we use a
R
weighted score S5, = > (b;), providing higher weight to later rounds while considering
r=1
lower round scores. While certainly not optimal, this choice yields good results in practice.

5.3 Optimizer Results

Our optimizer returned a large number of solutions (Table 3). While most of these solutions
are good, identifying the best one is difficult, as fully training a neural distinguisher for
each would be prohibitively time-consuming. In some cases, such as SPECK128, one
input difference is clearly dominating the others, and proves to result in the best neural
distinguisher. On the other hand, in the case of SIMON32, 64, and 128, we respectively
have 16, 32, and 64 input differences that obtain virtually identical scores (within 1%
of each other), which is consistent with the observation of [KLT15] on the rotational
equivalence of differentials. We therefore chose to use distance to the highest score as a
metric to choose which differences to investigate: we define an input difference as e-close
to another if their score is within € of each other. With € = 0.1, 7.e., looking only at input
differences that obtained scores within 10% of the optimal, 185 differences need to be
considered in total; an average of 15 differences per cipher need to be investigated using
the neural distinguisher, with at least 4 rounds of training per difference.

5.4 Optimizer Discussion

The purpose of our tool is to rapidly evaluate a large number of relevant input differences.
We do not claim its optimality, as other options could be chosen, both for the optimizer
itself and the scoring function. In particular, the bound at which an input difference is
considered non-random is not tight, so input differences resulting in small biases could be
missed; this is not an issue here, as we want to capture large biases only.

We experimentally verified that, for random data, the bias score’s average (over
10* samples per experiment, and 1000 experiments) is approximately 0.004. Increasing
(respectively, decreasing) the number of samples moves the average closer to (respectively,
further from) zero. The number of bits per sample only changes the standard deviation,
from 0.00052 (32 bits) to 0.00015 (384 bits). The choice of 0.01 as a threshold value is far

14 A Cipher-Agnostic Neural Training Pipeline

enough from the tail of this distribution that it was never observed for non-relevant input
differences. This choice is empirical, and gives good results in practice. Users wanting to
investigate smaller biases may do so by setting a tighter threshold. Another interesting
possibility is implementing a rigorous hypothesis testing procedure, replacing the bias
score with a test statistic (or even multiple ones) of known distribution. This could be
done, for example, with the “Frequency Test within a Block” of the NIST Statistical Test
Suite [BRST10].

While we did not experiment much around different values for the parameters, we find
that reduced parameters, for instance ¢t = 103, T = 0.05, and 10 generations, provide
faster results despite being slightly less robust. Conversely, one might want to increase
the minimum detectable bias by increasing ¢ to 10° or more; however, we find that the
performance of the optimizer degrades when ¢ becomes too large, with no significant
improvement in return.

Table 3: The total number of differences returned by our optimizer for each cipher, and
the number of e-close solutions for € € {0.01,0.1,0.25}, where e-close denotes differences
for which the score differ at most by a factor € to the optimal score.

Primitive Total 0.01-close 0.1-close 0.25-close

SIMON32 135 16 16 16
SIMONG64 145 32 32 32
SIMON128 266 64 64 64
SPECK32 81 1 2 2
SPECK64 69 1 2 2
SPECK128 156 1 1 1
LEA 156 1 2 2
HIGHT 140 3 27 27
TEA 73 1 3 3
XTEA 48 1 3 3
PRESENT 102 4 31 31
KATAN 334 1 2 10

6 Solution Part II: A Cipher-Agnostic Neural Training Pipeline

Based on the identified obstacles discussed in Section 4, we aim to overcome them by
employing a streamlined training pipeline (Section 6.1) and creating a versatile neural
network referred to as DBitNet (Section 6.2). We evaluate DBitNet’s computational and
memory requirements and compare them to the original ResNet proposed by Gohr and
SENet.

6.1 Our Simple Training Pipeline

We propose a simplified pipeline to train a neural distinguisher for rounds R, to Ry. The
same network of R, is retrained for round Ry +1 until round Ry is reached. In SPECK32’s
case, one would train network N5 for 5 rounds, retrain N5 on the 6-round dataset to obtain
Ng, retrain Ng on 7 rounds to obtain N7, and finally retrain N7 on 8 rounds to obtain Ng.
This technique is referred to as our simple training pipeline in this paper.

The Learning Rate Schedule. For the training of Gohr’s neural distinguisher in [Goh19b)]
the ADAM optimizer is used with a cyclic learning rate that varies over 10 epochs between
limits of 0.002 and 0.0001. In [GLN23] these limits of the learning rate are optimized for
each cipher in the automated hyperparameter tuning. In our simple pipeline for DBitNet,
we will avoid a learning rate schedule, as well as any manual variation of the standard
optimizer settings as follows: ADAM is known as one of the most advanced optimizers,

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 15

however, it has been observed to fail to converge to an optimal solution [RKK19]. Such
convergence failure may make it necessary to find an optimal learning rate schedule
manually. For our purposes of a generic application to a range of new target ciphers, such
a manual choice should be avoided. As an alternative to either the manual mitigation
of the convergence issue or an automated hyperparameter tuning of the learning rate,
Reddi et al. introduce the AMSGRAD algorithm in “On the Convergence of Adam and
Beyond” [RKK19] at ICLR 2018.

As a proof of concept, we ran this training pipeline with AMSGrad on SPECK32, using
Gohr’s neural network and input difference. With as little as 10 epochs per round, statisti-
cally significant (over 50.5% validation accuracy on 10° samples) 8 rounds distinguishers
were obtained 10 times out of 10, whereas Gohr’s initial experiments showed that no 8
rounds distinguisher could be learned without a complex training scheme. Removing either
the pipeline or AMSGrad resulted in 8 rounds not being reached. In the remainder of
our manuscript, we have used Gohr’s original learning rate schedule to avoid sub-optimal
results by changes on our side. For the interested reader, we provide a more detailed
discussion of the fairness of our comparison DBitNet vs Gohr’s ResNet in Appendix B.

A Simple Polishing Step. We can generally improve the accuracy of our distinguishers
using our simple polishing pipeline, inspired by [Gohl19b], where the final network is
retrained 3 times, for 1 epoch, on 10° new training samples. At a batch size of 10,000, we
use the ADAM optimizer, decreasing the (constant) learning rate at each iteration, from
10~ to 107° to 107 5. The three learning rates, smaller than the ADAM optimizer’s default
value of 1073, ensure the final convergence to an optimal solution for features that are
not present in many batches. We have applied this simple polishing step only in two of
the reported accuracies in this manuscript (for SIMON32 and SPECK32) as the large
sample number makes it time-consuming. The basic pipeline above is sufficient to obtain
competitive distinguishers that reach the same round as the state-of-the-art. The polishing
step was only added to show that also some of the most elaborate and successful training
pipelines can be replaced with our automated training pipeline. Five fresh datasets (with
105 samples in each) are generated for the final accuracy evaluation. The expected and
observed standard deviation is 0.0005 as explained in the following.

The Random Guess Limit. The predictions of neural distinguishers can be modeled as
binomial experiments with n trials, and two equiprobable outcomes, random or not random,;
in our case, n = 107 for training, and 10% for validation. The expected mean and standard
deviation of a distinguisher making random prediction are u = 0.5-n,c = y/n/4, or, as a
percentage, oo, = 1/(24/n). We consider the validation successful if the validation accuracy
(percentage of correct guesses) exceeds ten standard deviations, i.e., Apot random > 50.5%.

6.2 Description of our Neural Network (DBitNet)

Gohr’s neural distinguisher is immensely successful as a distinguisher for SPECK32.
However, we identified a range of hyperparameters that need tuning for application to new
ciphers in Section 4, the most important among them again being the input reshaping.
The input reshaping serves to investigate dependencies of far-apart as well as neighboring
bits in the 64-bit input: For example, the bit-slicing filter may learn functions between bits
(1, 17, 33, 49) while the following k& = 3 filter may learn functions between neighboring bits
(1,2,3) (compare Fig. 1 (center)). In this way, near and long-range dependencies among
the bits can be learned. Therefore, the input reshaping can potentially be avoided, given
another, more generic way to investigate near, as well as long-range dependencies.

16 A Cipher-Agnostic Neural Training Pipeline

Rationale for DBitNet. One way to tackle the problem of investigating near as well as
long-range dependencies is so-called dilated convolutions, as presented in “Multi-Scale
Context Aggregation by Dilated Convolutions” by Yu and Koltun [YK15]. The “Multi-
Scale Context” refers to two-dimensional image data, however, a prominent example that
uses dilated convolutions and deals with long-, as well as short-range dependencies on
one-dimensional temporal data is WaveNet of Google DeepMind [ODZ*16].

a Dilated convolutions b Idea for DBitNet c DBitNet

k=2 k=2 k=2 k=2
long-range =2 = long-range =5, (-iy

Dilation rate 1 Dilation rate 3

T R

k=2 k=2
short-range short-range o e

Figure 2: a) The concept of dilated convolutions, b) The idea for DBitNet ¢) The actual
design of DBitNet.

A dilated convolution uses a dilation rate above one, Fig. 2a). Therefore, instead of
learning a filter function between bits 1 and 2, a convolutional layer with dilation rate 3 can
learn a filter function between bits 1 and 4. If we apply such a dilated convolutional layer
with dilation d = 8 and kernel size k = 2 to a 16-bit input, we could find a representation
with 8 neurons width which contains the information on the long-range dependencies
between the bits of the first and the second half of the input, Fig. 2b). The next layer is a
d =1 layer to investigate the dependencies between neighboring bits. To investigate again
the long-range dependencies, we next choose d = 4 and so on.

As shown in Fig. 2b) the neuronal width is shrinking with each dilated convolution by
a factor of two. This shrinking of the neuronal width dimensionality is also encountered in
popular image detection networks like ResNet [HZRS15]. As “compensation” the number
of channels is increased: In ResNet34 for example the image size is halved from 224 pixels
to 112, to 56, to 28 pixels, and so on while the number of channels increases from the 3
red-green-blue channels to 64, and 128. We follow a similar tactic and increase the number
of channels with each dilational convolution. We start with 32 filters, identical to Gohr, in
the first convolutional layer. Whenever the neuronal width is halved, we add 16 filters,
resulting in 32 4 ¢ x 16 filters in the ith dilated convolution.

Table 4: Settings for Gohr’s neural network and DBitNet.

Gohr settings DBitNet settings
cipher input size num. blocks word size dilation rates
SIMON32 64 2 16 [31, 15, 7, 3]
SPECK32 64 2 16 [31, 15, 7, 3]
KATAN 64 2 32 [31 15, 7, 3]
HIGHT 128 8 8 [63, 31, 15, 7, 3]
PRESENT 128 16 4 [63 31, 15, 7, 3]
SIMONG64 128 2 32 [63, 31, 15, 7, 3]
SPECK64 128 2 32 [63, 31, 15, 7, 3]
TEA 128 2 32 [63, 31, 15, 7, 3]
XTEA 128 2 32 [63, 31, 15, 7, 3]
LEA 256 4 32 [127, 63, 31, 15, 7, 3]
SIMON128 256 2 64 [127, 63, 31, 15, 7, 3]
SPECK128 256 2 64 [127, 63, 31, 15, 7, 3]

GIMLI 768

—
o]
w
v}

(383, 191, 95, 47, 23, 11, 5]

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 17

Neural Network Settings for Different Ciphers. When working on a different cipher
many model and training parameters and hyperparameters might need to be adapted. At
the minimum, and common to Gohr’s neural distinguisher and DBitNet, the neural network
input size has to be adapted when changing to a cipher of different sizes. Based on this input
size, for DBitNet, the dilation rates are automatically determined by dividing the input
size by two and subtracting one, until a minimum value of 3 is reached. Gohr’s network
requires manual input for the number of words (Section 4.1). Gohr uses a prediction head
with two dense layers (64, 64 neurons in each layer). For DBitNet we have considered
scaling the prediction head with the input size. Finally, however, we have instead chosen a
slightly more powerful prediction head with three dense layers (256, 256, 64 neurons in
each layer), which is the same, regardless of the input size. For Gohr’s neural distinguisher
also the number of filters, as well as the cyclic learning rate, might have to be adapted.
However, in our experiments, we will use the same number of filters and cyclic learning
rate as in Gohr’s original experiments [Goh19b]. For DBitNet we restrict ourselves to
using the ADAM optimizer in its standard settings, together with the before-mentioned
AMSGRAD algorithm. The settings for both neural networks are summarized in Table 4.
For the interested reader, we provide a more detailed discussion of the fairness of our
comparison DBitNet vs Gohr’s ResNet in Appendix B.

Table 5: FLOPs, parameters, and runtime per epoch (on our NVidia Ampere A100 GPU)
for Gohr’s neural distinguisher of depth 1 (D1), depth 10 (D10), and DBitNet.

FLOPs Parameter counts Time per epoch
cipher Gohr-D1 DBitNet Gohr-D10 Gohr-D1 DBitNet Gohr-D10 Gohr-D1 DBitNet
SIMON32 0.28M 1.76M 2.09M 44.32k 298.11k 102.50k 10s 36s
HIGHT 0.15M 3.52M 1.06M 28.32k 390.21k 86.50k 9s 68s
0.09M 0.54M 20.64k 78.82k 9s
0.55M 4.16M 77.09k 135.26k 14s
LEA 0.56M 7.17TM 4.17TM 77.22k 503.46k 135.39k 15s 129s
1.10M 8.31M 142.62k 200.80k 22s
GIMLI 0.59M 20.37TM 4.20M 77.73k 705.44k 135.91k 16s 312s

A Comparison of FLOPs and Parameter Counts. The number of multiply-add op-
erations, or FLOPs, is often used as a proxy for the latency and memory usage of
neural network models [BOFG20]. We use the TensorFlow Keras module keras-flops
to evaluate the number of FLOPs for each model. TensorFlow provides a native routine
model . count_params () for the parameter count. The results are shown in Table 5. For
the 32-bit ciphers, the execution time of DBitNet is in between the one for Gohr-depthl
(10s) and Gohr-depth10 (50s, not shown in the table). The same holds for the number of
FLOPs. The FLOPs and time per epoch for DBitNet scale linearly with the input size
of the cipher. Since the FLOPs represent the operations needed to investigate a cipher,
an increase of the FLOPs with the size of the cipher is reasonable. To achieve such an
increase in the FLOPs, the number of filters of Gohr’s network would have to be manually
adapted, depending on the input size, as well as the chosen number of blocks and word
size. We have also analyzed the neural distinguisher SENet A/ D?}‘l\f ONsr provided on the
GitHub repository of [BGL'22] for SIMON32 and find that it has 13.5M FLOPs, and
449.46k parameters.

https://github.com/differential-neural-cryptanalysis/speck32_simon32/tree/main/simonNDvsDD/SENet

18 A Cipher-Agnostic Neural Training Pipeline

7 Results: Our Best Distinguishers

For each target cipher in Table 6 we start with the set of differences found by the
evolutionary optimizer presented in Section 5.3. We train a Gohr depth-1 neural network
and DBitNet to distinguish between ciphertext pairs of the chosen plaintext difference,
and those of random plaintext pairs using the training pipeline as presented in Section 6.1.
Table 6 summarizes the highest round achieved (best round), as well as the accuracy (best
acc.) of the best distinguisher (best NN) in this round, once for our simple training pipeline
with only 10 epochs in each round, and once for our simple training pipeline with 40 epochs
in each round. The green highlight indicates an improvement of the 40 epochs over the 10
epochs training pipeline.

Table 6: Summary of the best distinguishers for each target cipher for our simple training
pipeline with 10 epochs per round, respectively 40 epochs per round. Shown is the mean
accuracy of five evaluations on freshly generated test datasets, each containing 10 samples.
The detailed round-by-round results (including the TPR and TNR) for 40 epochs are
shown in Table 8.

10 epochs 40 epochs
cipher difference best round best acc. best NN best round best acc. best NN
SIMON32 0x400 11 0.5147 DBitNet 11 0.5160 [0.5179?] DBitNet
SPECK32 0x400000 8 0.5096 DBitNet 8 0.5109 [0.5144P] DBitNet
HIGHT 0x800000000000 10 0.7511 DBitNet 10 0.7511 DBitNet
HIGHTRK 0x800000000. . .®) 13 0.9648 DBitNet 14 0.5627 DBitNet
KATAN 0x4000 67 0.5064 DBitNet 69 0.5046 DBitNet
PRESENT 0xd000000 8 0.5546 DBitNet 9 0.5092 DBitNet
SIMON64 0x8000 13 0.5180 DBitNet 13 0.5179 DBitNet
SPECK64 0x8080000000 8 0.5335 Gohr-D1 8 0.5366 DBitNet
TEA 0x4000000000000000 5 0.5573 Gohr-D1 5 0.5634 DBitNet
XTEA 0x4000000000000000 5 0.5307 DBitNet 5 0.5984 DBitNet
LEA 0x800000008. . . (") 11 0.5104 DBitNet 11 0.5109 DBitNet
SIMON128 0x8000000 20 0.5057 DBitNet 20 0.5055 DBitNet
SPECK128 0x80800000000000000 10 0.5928 DBitNet 10 0.5916 DBitNet
GIMLI 0x800000000. . . () 11 0.5261 DBitNet 11 0.5270 DBitNet

P Automated pipeline result after our simple polishing pipeline from section Section 6.1

*P We note that for KATAN a 71-round distinguisher with 0.5034 + 0.0002 accuracy on five freshly
generated validation datasets can be obtained by using our simple polishing pipeline on the 71-round
distinguisher from Table 8.

RK Related key setting

(2) 0x80000000000000000000000000000000000000800000

() 0x80000000800000008004000080

(¢) 0x8000000000000000000000000000400000000000000000000000000000800000000000000000000000

SIMON and SPECK For SPECK32, we retrieve the optimal input difference used in
Gohr’s paper. DBitNet, trained using our simple training pipeline, reaches 8 rounds
with over 51% accuracy, which was deemed to only be possible with an advanced staged
approach [GLN23]. The accuracy is improved to match [Goh19b] with our simple pol-
ishing pipeline. For SPECK64, we reach 8 rounds with accuracy 0.5366, only 10% less
than [HRCF21], which uses 128 pairs. For SPECK128, we obtain the first 10-round neural
distinguisher, with accuracy 0.5916. Interestingly, the best differential characteristic for
SPECK128 given in [SHY16] contains one of the differences returned by our optimizer at
round 15: (0280,0). When training DBitNet for this input difference, we get respective ac-
curacies of 0.9057, 0.6507, and 0.5258 for 8, 9 and 10 rounds, therefore obtaining candidate
theoretical distinguishers for 23, 24 and 25 rounds respectively. However, the signal-to-noise
ratio of these distinguishers does not permit direct application: the probability for the
front 15 rounds is 27!1°, and the evaluation of C'- 27119 produces too many false positives
for C true positives to be distinguishable.

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 19

For a key recovery attack similar to [BGLT22], one can prepend the input differ-
ence (0x820200,021202), which propagates to our best neural distinguisher given by
(0280, 0x8000000000000000) after 2 rounds with probability 276. An additional round can
be added at the start, yielding a 13 rounds distinguisher.

For SIMON32, we obtain similar results to [BGL'22|, albeit with a significantly
simpler training pipeline, and less computations (Section 6.2). For SIMONG64, we reach
one more round than [HRCF21], even though [HRCF21] uses 64 pairs. On the other hand,
Lu [LLS™23] reaches one more round for SIMON32 and SIMONG64. It is important to note
that their training pipeline is fully dedicated to SIMON, with advanced feature engineering
and 8 pairs per sample, therefore showing that a specialized method for a given cipher
does outperform the generic approach in some cases. Lu proposes a few input differences
for 12 rounds in table 3 of [LLS™23]: these differences appear in our results, but were not
investigated. For instance, (0210004) ranks 21st in the returned solutions. For SIMON128,
we find a new 20 rounds distinguisher, with an accuracy of 0.5057.

GIMLI For the GIMLI permutation, our 11-round accuracy has an accuracy of 0.527,
to be compared to the 8 rounds neural distinguisher of [BBCD21]. This result highlights
the need for an automatic tool to find good input differences, as we obtained similar
results to [BBCD21] when using the same input differences as them. In comparison,
the design document of GIMLI [BKL"17], mentions at best a differential characteristic
with probability 2788 on 12 rounds, and a 12-round linear distinguisher with complexity
27198 and 15-round differential-linear distinguisher with complexity 27374 are presented
in [FGLNPT20]. The full-round symmetry distinguishers [FGLNP*20] remain stronger.

HIGHT We obtain the first published neural distinguisher for HIGHT, covering 10 rounds
with accuracy 0.751. In addition, we ran our pipeline in the related-key setting as a proof
of concept, and obtained a 14 rounds related-key distinguisher with accuracy 0.562. In
comparison, the paper presenting HIGHT [HSH™06] mentions a probability 1 10 rounds
property: if the input difference has a given form, then the leftmost byte of the output
difference is non-zero. This property would require C - 256 (with C' a small constant) to
distinguish. On the other hand, our neural distinguisher requires a single pair.

PRESENT For PRESENT, we find a 9-round distinguisher with an accuracy of 0.5092,
which favorably compares to the 7-round distinguishers of [GLN23] and [CSYY22], de-
spite [CSYY22] using 8 pairs. In comparison, the best differential characteristic for
PRESENT reduced to 9 rounds has probability 273¢ [Wan07].

KATAN For KATAN, our distinguisher reaches statistically significant accuracies up to
69 rounds, compared with [GLN23]’s 66 rounds, even though [GLN23]’s distinguishers
use advanced feature engineering (inversion of the last 4 rounds). In contrast, [LCLH22]
reaches 51 rounds in the standard setting, and 59 when using 64 pairs. The same paper
proposes distinguishers up to 85 rounds in the single key model, using additional conditions
on the plaintexts, which is out of the scope of our study. We note that we obtain a 71-round
distinguisher with 0.5034 + 0.0002 accuracy using our simple polishing pipeline.

TEA and XTEA For both TEA and XTEA, we find distinguishers for 5 cycles (10
rounds), respectively with accuracies 0.5634 and 0.5984; interestingly, they share the same
input difference. For TEA, we reach 2 more rounds than [BR21].

LEA For LEA, we propose the first neural distinguisher, reaching 11 rounds with accuracy
0.5109. In comparison, [HLK™14] presents a differential characteristic with probability
2798 for 11 rounds, and 27128 for 12 rounds.

20 A Cipher-Agnostic Neural Training Pipeline

A Sanity Check: The Case of Related-Key TEA The block cipher TEA is known to
have equivalent keys. From an initial key ko, k1, ko, k3, the core of the round function,
updating the two halves of the state vg and vy, is:

vo = vo B ((v1 << 4) B ko) & (v1 B sum) & ((vy >>5)B k) (1)
v1 = v B ((vo << 4) B ka) @ (vo B sum) & ((vg >> 5) B k3) (2)

Differences in the most significant bits of ky and ki, and of ko and k3, cancel out,
resulting in 3 equivalent keys for each possible key. In the related key mode, our optimizer
finds the property that differences in the most significant bits of 2 words of the key result
in a maximal bias score (as the ciphertexts are equal). The corresponding input differences
are found by the genetic optimizer within the first few generations.

The ability of our framework to detect such properties reassures us in its ability to
support the block cipher design process, by identifying trivial weaknesses easily.

8 Discussion

Scope of Our Work In this paper, we focus on automatically finding basic neural
distinguishers. If we consider an analogy with differential cryptanalysis, cryptographers
traditionally begin with an automatic tool to obtain good differential characteristics for as
many rounds as possible. From these characteristics, the cryptographer may then attempt
to derive the probability of the best differentials, or combine them into more advanced
attacks such as boomerang attacks. We identify this second step to specializing through
feature engineering, prepended rounds, neutral bits, etc. Our focus is on the equivalent of
the first step: building blocks that can further be refined into an attack.

In this respect, the neural distinguishers we propose are competitive with related work
using a comparable setting (2 — 1 — x—R). We even sometimes improve on specialized
approaches with features engineering, e.g., [BGL™22], or multiple pairs [CSYY22], using a
fully automatic and generic pipeline.

Extending the Scope For the sake of completeness, we give the intuition on how to
extend our pipeline to include key recovery considerations.

In order to include prepended rounds, the optimizer can be modified to additionally
decrypt each pair (Py, P;) used to compute the bias score of a difference 4, for ¢ rounds; the
number of occurrences of the most frequent decryption differences gives an approximation
of the probability of the best prepended differential. This estimation, along with ¢ and
the bias score, can be combined into a composite score to obtain a longer differential-ML
distinguisher. Preliminary experiments show that this approach retrieves (022110a04),
used to prepend 2 rounds in Gohr’s key recovery [Goh19b]. Alternatively, one may use
the fact that our optimizer returns a parametrizable number of input differences, and, for
each of these, compute how many rounds can be prepended (e.g., through MILP) and how
many rounds a neural distinguisher can cover (by training it). Further improvements, e.g.,
the use of neutral bits, can be included, for instance by running the generalized neutral bit
search algorithm presented in [BGL"22] to each returned difference. Advanced feature
engineering can also readily be applied, as DBitNet is generic in its input size and format.

Extending Basic Neural Distinguishers: Comparability Specializing a neural distin-
guisher, through prepending probabilistic rounds, using feature engineering, multiple pairs,
or neutral bit-based analysis improves the key recovery abilities, at the cost of comparability.
It may occur that a different neural distinguisher could be plugged into the attack, and

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 21

yield better results, but it is challenging to say without the authors giving the baseline
results in the 2 — 1 — x — R setting, to promote comparability.

For instance, [YK21] exhibits a 22° — 1 — § — R 9-round distinguisher for SPECK32,
using a 3-rounds neural distinguisher and 6 probabilistic prepended rounds, and claims to
improve over [Goh19b]. In contrast, [Goh19b] uses a 9-rounds distinguisher, built from a
7-rounds neural distinguisher and 2 probabilistic rounds, to recover the full key of 11-rounds
SPECK with 2'45 ciphertexts, which is significantly better.

Intended Use of Our Tool The uses of our tools are twofold. On the one hand, cipher
designers can use it to obtain bounds for a given set of parameters rapidly. On the other
hand, neural cryptanalysis researchers can use our tool to obtain a baseline to compare to
any new cipher they wish to study, without having to fine-tune any parameters, due to
its plug-an-play approach. Furthermore, our tool can be used out-of-the-box to perform
neural analysis on any cipher, even though we limited ourselves to a few, and did not
include related-key results besides HIGHT and TEA (as proofs-of-concept), due to the
mere amount of GPU-extensive experiments to run, and we believe it can match or improve
upon other published results without further tuning.

Estimated Runtime The pipeline for a new cipher is composed of the optimizer (fast)
and the neural network training (slow). The total runtime, between a few hours and a
few days, depends on the number of differences (Table 3), the number of rounds to study,
and the size of the cipher. The most time-consuming part is the neural network training,
the time for which can be estimated from Table 5. We note that the reduced parameters
set used in the repository yields decent result significantly faster; further speedup can be
achieved through pre-filtering, by training all the differences for a small number of epochs
(e.g., 5) to select which ones to investigate further.

Comparison with Brute Force Search Here, we compare our optimizer with a brute-force
search over low Hamming Weight (HW) differences, ranked by their bias score. For a
cipher with block size n, and b—Dbit input differences, this brute-force search would explore
22:1 (2) differences, which is 43744 for PRESENT, and almost 10M for GIMLI, with
having HW 3 optimals. Furthermore, enumerating all input differences up to HW 3
says nothing about higher HW differences; for instance, in the case of LEA, we find a
HW 5 optimal difference. In comparison, our optimizer explores at most 24800 differences
(2121 = 496 per generation, over 50 generations). We expect this scalability advantage to
become even more important as the search space grows, e.g., for related-key.

9 Conclusion

We tackled the problem of generalizing neural distinguishers with a framework that can be
applied out of the box to any cipher. This framework relies on a generic neural network
structure powered by dilated convolutional layers, as well as generic choices of parameters
such as the learning rate. In addition, we resolved the challenge of automatically choosing
a good input difference for a variety of ciphers through an evolutionary optimizer.

We experimentally showed that our framework often matches or beats state-of-the-art
neural distinguishers and finds good ones for not yet studied primitives.

Preliminary experiments show that our framework finds good input differences also in
the related-key setting, but their exploitation requires significant effort and is left for future
work. This study produced a large number of input differences with good properties for
neural distinguishers. It seems promising to explore how these can be combined into more
powerful multiple-input differences distinguishers to improve existing results. It remains
challenging to investigate the whole list of returned differences.

22

A Cipher-Agnostic Neural Training Pipeline

References

[BBCD21]

[BBP22]

[BGG*23]

[BGL+22]

[BGPT21]

[BKL*07]

[BKL+17]

[BOFG20]

[BR21]

Anubhab Baksi, Jakub Breier, Yi Chen, and Xiaoyang Dong. Machine
learning assisted differential distinguishers for lightweight ciphers. In De-
sign, Automation & Test in Europe Conference & Exhibition, DATE 2021,
Grenoble, France, February 1-5, 2021, pages 176-181. IEEE, 2021.

Nicoleta-Norica Bacuieti, Lejla Batina, and Stjepan Picek. Deep neural
networks aiding cryptanalysis: A case study of the speck distinguisher. In
Giuseppe Ateniese and Daniele Venturi, editors, Applied Cryptography and
Network Security - 20th International Conference, ACNS 2022, Rome, Italy,
June 20-23, 2022, Proceedings, volume 13269 of Lecture Notes in Computer
Science, pages 809-829. Springer, 2022.

Emanuele Bellini, David Gerault, Juan Grados, Yun Ju Huang, Mohamed
Rachidi, and Sharwan Tiwari. Claasp: a cryptographic library for the
automated analysis of symmetric primitives. Cryptology ePrint Archive,
Paper 2023/622, 2023. https://eprint.iacr.org/2023/622.

Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Enhancing
differential-neural cryptanalysis. In Shweta Agrawal and Dongdai Lin,
editors, Advances in Cryptology - ASITACRYPT 2022 - 28th International
Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part I, volume
13791 of Lecture Notes in Computer Science, pages 318-347. Springer, 2022.

Adrien Benamira, David Gérault, Thomas Peyrin, and Quan Quan Tan. A
deeper look at machine learning-based cryptanalysis. In Anne Canteaut and
Frangois-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part I, volume 12696 of Lecture Notes in Computer Science,
pages 805-835. Springer, 2021.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block
cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, pages 450-466, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

Daniel J. Bernstein, Stefan Kolbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, Francois-
Xavier Standaert, Yosuke Todo, and Benoit Viguier. Gimli : A cross-
platform permutation. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems — CHES 2017, pages 299—
320, Cham, 2017. Springer International Publishing.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. What is the State of Neural Network Pruning? In Proceedings of
the 8rd MLSys Conference, Austin, TX, USA, mar 2020.

Emanuele Bellini and Matteo Rossi. Performance comparison between deep
learning-based and conventional cryptographic distinguishers. In Kohei
Arai, editor, Intelligent Computing, pages 681-701, Cham, 2021. Springer
International Publishing.

https://eprint.iacr.org/2023/622

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 23

[BRST10]

[BS91]

[BTCS*15]

[CSYY22]

[DCDKO09)]

[FGLNP+20]

[GBC17]

[GLN23]

[Goh19a]

[Goh19b)]

[HLK*14]

[HRCF21]

Lawrence E. Bassham, Andrew L. Rukhin, Juan Soto, James R. Nechvatal,
Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark
Vangel, David L. Banks, Nathanael Alan Heckert, James F. Dray, and San
Vo. SP 800-22 Rev. 1la. A Statistical Test Suite for Random and Pseudoran-
dom Number Generators for Cryptographic Applications. Technical report,
Gaithersburg, MD, USA, 2010.

Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosys-
tems. J. Cryptology, 4:3-72, 1991.

Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason
Smith, and Louis Wingers. The simon and speck lightweight block ciphers.
In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1-6, 2015.

Yi Chen, Yantian Shen, Hongbo Yu, and Sitong Yuan. A New Neural
Distinguisher Considering Features Derived From Multiple Ciphertext Pairs.
The Computer Journal, 03 2022. bxac019.

Christophe De Canniere, Orr Dunkelman, and Miroslav Knezevi¢. Katan and
ktantan — a family of small and efficient hardware-oriented block ciphers.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and
Embedded Systems - CHES 2009, pages 272288, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

Antonio Florez Gutiérrez, Gaétan Leurent, Maria Naya-Plasencia, Léo
Perrin, André Schrottenloher, and Ferdinand Sibleyras. New results on
gimli: Full-permutation distinguishers and improved collisions. In Shiho
Moriai and Huaxiong Wang, editors, Advances in Cryptology — ASIACRYPT
2020, pages 33—63, Cham, 2020. Springer International Publishing.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning: The
MIT Press, volume 19. The MIT Press, 2017.

Aron Gohr, Gregor Leander, and Patrick Neumann. An assessment of
differential-neural distinguishers. In AICrypt’23 - 3RD Workshop on Artifi-
cial Intelligence and Cryptography, 2023.

Aron Gohr. Deep speck. https://github.com/agohr/deep_ speck, 2019.

Aron Gohr. Improving attacks on round-reduced speck32/64 using deep
learning. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology — CRYPTO 2019, pages 150-179, Cham, 2019. Springer
International Publishing.

Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho
Ryu, and Dong-Geon Lee. Lea: A 128-bit block cipher for fast encryption
on common processors. In Yongdae Kim, Heejo Lee, and Adrian Perrig,
editors, Information Security Applications, pages 3—27, Cham, 2014. Springer
International Publishing.

ZeZhou Hou, JiongJiong Ren, ShaoZhen Chen, and AnMin Fu. Improve
Neural Distinguishers of SIMON and SPECK. Sec. and Commun. Netw.,
2021, jan 2021.

https://github.com/agohr/deep_speck

24

A Cipher-Agnostic Neural Training Pipeline

[HSH*06]

[HZRS15]

[KLT15)

[Knu9s]

[KW02]

[LCLH22]

[LDLS21]

[LLS+23]

[Mat94]

[MWGP12]

[ODZ+16]

Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-
Seok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong,
Hyun Kim, Jongsung Kim, and Seongtaek Chee. Hight: A new block cipher
suitable for low-resource device. In Louis Goubin and Mitsuru Matsui,
editors, Cryptographic Hardware and Embedded Systems - CHES 2006, pages
46-59, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 770778,
dec 2015.

Stefan Kolbl, Gregor Leander, and Tyge Tiessen. Observations on the simon
block cipher family. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology — CRYPTO 2015, pages 161-185, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

Lars Knudsen. Deal-a 128-bit block cipher. Complexity, 258(2), 1998.

Lars Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, Fast Software Encryption, pages 112-127,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

Dongdong Lin, Shaozhen Chen, Manman Li, and Zezhou Hou. The con-
struction and application of (related-key) conditional differential neural dis-
tinguishers on katan. In Alastair R. Beresford, Arpita Patra, and Emanuele
Bellini, editors, Cryptology and Network Security, pages 203-224, Cham,
2022. Springer International Publishing.

Luc Libralesso, Frangois Delobel, Pascal Lafourcade, and Christine Solnon.
Automatic Generation of Declarative Models For Differential Cryptanalysis.
In Laurent D. Michel, editor, 27th International Conference on Principles
and Practice of Constraint Programming, CP 2021, Montpellier, France
(Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages
40:1-40:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Jinyu Lu, Guoqiang Liu, Bing Sun, Chao Li, and Li Liu. Improved (Related-
Key) Differential-Based Neural Distinguishers for SIMON and SIMECK
Block Ciphers. The Computer Journal, 01 2023. bxacl95.

Mitsuru Matsui. On correlation between the order of s-boxes and the strength
of DES. In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT
’94, Workshop on the Theory and Application of Cryptographic Techniques,
Perugia, Italy, May 9-12, 199/, Proceedings, volume 950 of Lecture Notes in
Computer Science, pages 366—-375. Springer, 1994.

Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuan-
Kun Wu, Moti Yung, and Dongdai Lin, editors, Information Security and
Cryptology, pages 57-76, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Ko-
ray Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016.

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 25

[RKK19]

[RR22]

[Sam59]

[SHY16]

[SZM20]

[Wan07]

[WNO5]

[WN97]

[YK15]

[YK21]

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of
adam and beyond. arXiv preprint arXiv:1904.09237, 2019.

Adridn Ranea and Vincent Rijmen. Characteristic automated search of
cryptographic algorithms for distinguishing attacks (CASCADA). IET Inf.
Secur., 16(6):470-481, 2022.

Arthur L Samuel. Machine learning. The Technology Review, 62(1):42-45,
1959.

Ling Song, Zhangjie Huang, and Qianqgian Yang. Automatic differential
analysis of arx block ciphers with application to speck and lea. In Joseph K.
Liu and Ron Steinfeld, editors, Information Security and Privacy, pages
379-394, Cham, 2016. Springer International Publishing.

Heng-Chuan Su, Xuan-Yong Zhu, and Duan Ming. Polytopic attack on
round-reduced simon32/64 using deep learning. In Information Security
and Cryptology: 16th International Conference, Inscrypt 2020, Guangzhou,
China, December 11-14, 2020, Revised Selected Papers, page 3—20, Berlin,
Heidelberg, 2020. Springer-Verlag.

Meiqgin Wang. Differential cryptanalysis of present. TACR Cryptol. ePrint
Arch., 2007:408, 2007.

David J. Wheeler and Roger M. Needham. Tea, a tiny encryption algorithm.
In Bart Preneel, editor, Fast Software Encryption, pages 363—-366, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg.

David J. Wheeler and Roger M. Needham. Tea extensions, 1997.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122, 2015.

Tarun Yadav and Manoj Kumar. Differential-ml distinguisher: Machine
learning based generic extension for differential cryptanalysis. In Progress
in Cryptology — LATINCRYPT 2021: 7th International Conference on
Cryptology and Information Security in Latin America, Bogotd, Colombia,
October 6-8, 2021, Proceedings, page 191-212, Berlin, Heidelberg, 2021.
Springer-Verlag.

26 A Cipher-Agnostic Neural Training Pipeline

A Pseudocode for Gohr’s optimizer

Algorithm 2: Gohr’s optimizer: given a function F : {0,1}* — R, greedily
optimizes it to find an input that maximizes F'. Requires in input the number
of iterations ¢ and an exploration factor «.

x + Random(0,2° — 1);

Ubest < F(:I:)a

Tpest < T

V< Ubest

H <+ hashtable with default 0;
1+ 0;

while ¢ < t do

H(z)«+ H(z)+ 1,

r <— Random(0,b — 1);
Tnew — ¢ @ (1 K 7);

VUnew < F(xnew)§

if Vnew — alogy(H (Znew)) > v — alog,(H(x)) then
V 4 Unew;

T <= Tnew;

end

if Vpew > Vpest then

Vbest < V;

Tpest < T

end
114+ 1;
end

return Tyest;

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi 27

B Discussion of the Comparison of DBitNet and Gohr’s
Neural Distinguisher

It is not obvious how to fairly compare DBitNet and Gohr’s ResNet. Should we compare
our DBitNet to the depth-1 version or to the depth-10 version? Should we use the original
cyclic learning rate schedule, which was optimized for Gohr’s ResNet, but which might
be particular to SPECK32, or should we instead use the AMSGrad learning rate as for
DBitNet? Should we use a larger prediction head, such as in DBitNet (see Neural Network
Settings for Different Ciphers), or leave the prediction head in its original state? Here,
note that adding more parameters can actually decrease the learning performance of a
neural network, since it takes more training epochs to fit all of them. Should we adapt
the number of filters for Gohr’s Neural Distinguisher? Again, we should consider that an
increase in parameters can lead to a decreased learning performance. How many settings
for the number of blocks, and the word size should we try out?

Many of these questions tie into the discussion provided in Obstacle I: The Hyper-
parameters of Neural Distinguishers which motivated us to create DBitNet in the first
place.

Overall, we think that our presented comparison of Gohr’s ResNet with DBitNet is
fair for two reasons:

1. On the one hand, our main table Table 1 compares our generic DBitNet with the
highly optimized versions of Gohr’s ResNet for each cipher.

2. On the other hand, the following preliminary experiments motivate the version of
Gohr’s network we used for our comparisons presented in Table 6 and Table 8.

Table 7: Preliminary experiments with different versions of Gohr’s ResNet and DBitNet.
The highest round with a validation accuracy above 0.505 is highlighted. These experiments
were performed on SIMON32, single-key, 0x400, starting round 8. We have used our Our Simple Training
Pipeline with 40 epochs in each round for various versions of Gohr’s ResNet and our DBitNet. Shown are
two runs for each network to account for potential unfortunate weight initializations at the beginning of
the training.

DBitNet Gohr Cyc. D1~ Gohr Cyc. D10 Gohr AMS D1 Gohr AMS D10 Gohr Big-Prd.
round
8 0.8335/0.8312 0.7585(0.7561 0.7478]0.723 0.748]0.7458 0.7559]0.7505 0.8305/0.8299
9 0.656/0.6559 0.6269|0.6241 0.6085]0.6081 0.6227]0.6211 0.6189/0.6186 0.6466|0.6448
10 0.5599|0.5616 0.5351/0.5009 0.5411]0.5006 0.5547]0.5545 0.5536/0.5413 0.5008]0.5007
11 0.5164/0.5166 0.5004 0.5005 0.5027]0.5014 0.5033]0.5011

The different versions of Gohr’s ResNet and DBitNet have details as follows:

DBitNet: As described in Subsection 6.2.

Gohr Cyc. D1: Gohr’s depth 1 network with the cyclic learning rate schedule of [Goh19b].
Gohr Cyc. D10: Gohr’s depth 10 network with the cyclic learning rate schedule of [Goh19b].
Gohr AMS D1: Gohr’s depth 1 network with AMSGrad.

Gohr AMS D10: Gohr’s depth 10 network with AMSGrad.

Gohr Big-Prd.: Gohr’s network with the larger prediction head of DBitNet and depth 1.

In Table 7 we present preliminary experiments on SIMON32 with various versions
of Gohr’s ResNet and our DBitNet. AMSGrad seems an overall better choice than the
cyclic learning rate schedule. The effect is, however, not large enough to increase the
accuracies to similar values as obtained by DBitNet. There is no benefit to using a more
powerful prediction head for Gohr’s ResNet, actually, it decreases the obtained accuracy.
In conclusion, we do not find an improvement large enough to justify the manipulation of
Gohr’s ResNet (by using AMSGrad or a different prediction head).

28 A Cipher-Agnostic Neural Training Pipeline

C Round-by-round Details of our Results

The following Table 8 and Table 9 give the detailed round-by-round validation accuracies,
TPR, and TNR for the results summarized in Table 6.

Emanuele Bellini, David Gerault, Anna Hambitzer and Matteo Rossi

29

Table 8: Detailed round-by-round validation accuracy results, as well as the TPR, and

TNR for all target ciphers

—except KATAN, see Table 9— from Table 6.

cipher round Gohr depth-1 DBitNet Gohr TPR|TNR DBitNet TPR|TNR
) 2 @) 2) @) 2 M (2)
SIMON32 8 0.7400 0.7823 0.8335 0.8312 0.70[0.78 0.77]0.79 0.85[0.82 0.84(0.82
9 0.6073 0.6249 0.6560 0.6559 | 0.48|0.73 0.49/0.76 0.57|0.74 0.57]0.74
10 0.5414 0.5547 0.5599 0.5616 | 0.49/0.59 0.46]0.65 0.47]0.65 0.47/0.65
11 0.5164 0.5166 | 1.00[0.00 1.00/0.00 0.43]|0.60 0.59(0.44
SIMONG64 9 0.9467 0.9447 0.9619 0.9582 | 0.97|0.92 0.96]/0.92 0.98]0.95 0.97]0.95
10 0.7710 0.7788 0.8096 0.8104 | 0.73]0.81 0.76]/0.80 0.78]0.84 0.78/0.84
11 0.6411 0.6348 0.6578 0.6591 | 0.57]0.71 0.57]0.70 0.58|0.73 0.58|0.74
12 0.5479 0.5471 0.5623 0.5632 | 0.45/0.65 0.46]0.63 0.47]0.65 0.48]0.65
13 0.5154 0.5182 | 0.00[1.00 0.31]/0.70 0.39]|0.64 0.46/0.58
14 1.00[0.00 1.00/0.00 0.01/0.99 0.00]1.00
SIMON128 14 0.9010 0.9199 0.9267 0.9312 | 0.87]0.94 0.90/0.94 0.91]0.95 0.91]0.96
15 0.7975 0.7966 ~ 0.8384 0.8383 | 0.71]0.88 0.71/0.88 0.78]0.90 0.77]0.90
16 0.6867 0.6857 0.7249 0.7248 | 0.57/0.81 0.56]/0.81 0.61]0.84 0.61]0.84
17 0.5957 0.5950 0.6259 0.6259 | 0.45/0.74 0.45|0.74 0.46|0.79 0.46(0.79
18 0.5390 0.5379 0.5582 0.5580 | 0.40/0.68 0.39]0.68 0.38]0.73 0.37]0.74
19 0.5077 0.5072 0.5222 0.5218 0.30[0.72 0.36]/0.66 0.34]|0.71 0.31[0.73
20 0.5060 0.5069 | 0.00]1.00 0.00[1.00 0.26/0.75 0.29]0.73
SPECK32 5 0.9269 0.9255 0.9280 0.9260 | 0.90/0.95 0.90/0.95 0.91]0.95 0.90(0.95
6 0.7860 0.7849 0.7873 0.7867 | 0.72/0.85 0.72|0.85 0.72(0.86 0.71]0.86
7 0.6111 0.6123 0.6152 0.6098 | 0.54]/0.68 0.53]0.69 0.53]0.70 0.55(0.67
8 0.5107 0.5114 | 1.00[0.00 0.42]/0.58 0.58|0.44 0.55(0.47
SPECK64 4 0.9999 0.9999 0.9998 0.9998 | 1.00/1.00 1.00{1.00 1.00|1.00 1.00/1.00
5 0.9884 0.9870 0.9939 0.9914 | 0.98/0.99 0.98/0.99 0.99]1.00 0.99/0.99
6 0.8580 0.8494 0.9229 0.9230 | 0.82/0.90 0.81]0.89 0.91|0.93 0.91]0.94
7 0.6679 0.6198 0.7182 0.7198 | 0.64]/0.70 0.55/0.69 0.67]0.77 0.67]0.77
8 0.5256 0.5158 0.5357 0.5369 | 0.51]0.54 0.56]/0.47 0.58]|0.50 0.51[0.57
9 0.55/0.45 0.80]/0.20 0.68]0.32 0.97(0.03
SPECK128 7 0.9995 0.9995 0.9994 0.9994 1.00/1.00 1.00/1.00 1.00]|1.00 1.00/1.00
8 09722 0.9716 0.9860 0.9860 | 0.96]0.98 0.96/0.98 0.98/0.99 0.98]0.99
9 0.7787 0.7800 0.8296 0.8293 | 0.75/0.81 0.75/0.81 0.84[0.82 0.83/0.83
10 0.5814 0.5831 0.5913 0.5909 | 0.58/0.58 0.58]|0.58 0.58|0.60 0.58|0.60
11 0.650.35 1.00[0.00 0.11/0.89 1.00]0.00
HIGHT 8 0.9990 0.9990 0.9990 0.9990 | 1.00/1.00 1.00/1.00 1.00[1.00 1.00|1.00
9 0.7500 0.8525 0.8598 0.8600 | 1.00]0.50 0.94]0.76 0.95/0.77 0.95[0.77
10 0.5617 0.7509 0.7509 0.25/0.88 0.00/1.00 1.00[0.50 1.00|0.50
11 1.00/0.00 1.00[0.00 0.96]0.04 0.13]|0.87
HIGHT 12 0.9990 0.9990 0.9990 0.9990 | 1.00/1.00 1.00{1.00 1.00[1.00 1.00/1.00
13 0.9647 0.7499 0.9647 0.9647 1.00/0.93 1.00/0.50 1.00]0.93 1.000.93
14 0.5633 | 1.00]0.00 1.00]0.00 0.94/0.06 0.58]0.55
15 0.001.00 1.00/0.00 0.01/0.99 0.980.02
PRESENT 5 0.8808 0.8785 0.8828 0.8829 | 0.84[0.92 0.83]0.92 0.84]|0.92 0.84[0.93
6 0.7077 0.7053 0.7093 0.7096 | 0.59]0.82 0.59]0.82 0.59|0.82 0.59|0.83
7 0.5597 0.5593 0.5613 0.5612 0.43/0.69 0.43]0.69 0.45[0.67 0.43/0.69
8 0.5104 0.5106 0.5106 0.5120 | 0.40/0.62 0.41]0.61 0.39|0.64 0.37|0.65
9 0.00]1.00 0.00[1.00 0.32]0.68 0.46]0.54
10 0.00[1.00 0.00[1.00 0.00]1.00 0.00/1.00
TEA 3 1.0000 1.0000 1.0000 1.0000 | 1.00/1.00 1.00]1.00 1.00|1.00 1.00/1.00
4 0.8864 0.8747 0.9079 0.9079 | 1.00/0.77 1.00/0.75 1.00[0.82 1.00|0.82
5 0.5562 0.5491 0.5629 0.5619 | 0.61]0.50 0.60/0.50 0.61|0.52 0.60[0.52
6 0.980.02 0.00[1.00 0.12/0.88 1.00]0.00
XTEA 3 1.0000 1.0000 1.0000 1.0000 | 1.00/1.00 1.00]1.00 1.00|1.00 1.00[1.00
4 0.8867 0.8748 0.9700 0.9697 1.00/0.77 1.00/0.75 1.00]/0.94 1.00/0.94
5 0.5093 0.5978 0.13]0.87 0.75/0.27 0.69]|0.51 0.69(0.31
6 0.00]1.00 0.940.06 0.87/0.13 0.00]1.00
LEA 8 0.8475 0.8482 0.8473 0.8477 | 0.78/0.91 0.790.91 0.78/0.91 0.78(0.92
9 0.7209 0.7200 ~ 0.7233 0.7231 | 0.60/0.84 0.59/0.85 0.60/0.85 0.59/0.85
10 0.5952 0.6010 0.5963 0.5957 | 0.46]0.73 0.47|0.73 0.46/0.74 0.46(0.73
11 0.5111 0.5112 0.5113 0.5113 | 0.45|0.58 0.47]0.56 0.47|0.55 0.56|0.46
GIMLI 8 0.9995 0.9995 0.9987 0.9988 1.00/1.00 1.00/1.00 1.00]|1.00 1.00|1.00
9 0.8735 0.8707 0.8639 0.8735 0.85[0.89 0.85/0.90 0.83]|0.90 0.83(0.89
10 0.6129 0.6041 0.6052 0.6037 | 0.52/0.70 0.52/0.69 0.51/0.70 0.51]|0.70
11 0.5238 0.5236 0.90[0.10 1.00/0.00 0.54]|0.51 0.54(0.50
12 1.00/0.00 0.00[1.00 0.00[1.00 0.21]0.79

Details: The best validation accuracies obtained within 40 epochs for each round are shown on the
left-hand side. We performed two runs for each network, Gohr-Depth 1 and DBitNet, since neural network
training contains probabilistic elements, such as the initial weight initialization. The best distinguisher
(highlighted in green) is then re-evaluated on freshly generated datasets to obtain the final accuracy results

of Table 6. Accuracies compatible with a random guess are shown as

. The right-hand

side shows the true positive rate (TPR) and true negative rate (TNR) for each accuracy from the left-hand

side.

A Cipher-Agnostic Neural Training Pipeline

Table 9: Detailed results for KATAN.

cipher round Gohr depth-1 DBitNet
(1) (2) (1) (2)

KATAN 40 0.9832 0.9891 0.9953 0.9963
41 0.98 0.9673 0.9925 0.9908
42 0.9623 0.9551 0.9869 0.9856
43 0.9186 0.9081 0.9806 0.9733
44 0.8686 0.8732 0.9691 0.9586
45 0.7523 0.7447 0.9447 0.9217
46 0.7112 0.7058 0.9088 0.8766
47 0.6738 0.6518 0.8545 0.8267
48 0.6697 0.6685 0.834 0.7897
49 0.6029 0.6002 0.7873 0.7526
50 0.6022 0.5943 0.7437 0.7058
51 0.5809 0.5742 0.6991 0.665
52 0.5771 0.5697 0.6657 0.6419
53 0.5659 0.5621 0.6319 0.6231
54 0.5562 0.5516 0.6026 0.5935
55 0.5367 0.5859 0.5823
56 0.521 0.5697 0.5647
57 0.5242 0.5617 0.5595
58 0.5151 0.5503 0.5497
59 0.5467 0.5479
60 0.5427 0.5426
61 0.5287 0.5266
62 0.5252 0.5248
63 0.5178 0.517
64 0.5153 0.5141
65 0.5091 0.5076
66 0.5069 0.5078
67 0.5066 0.5071
68 0.5056
69 0.5052
70

71

	Introduction
	Preliminaries
	Differential Cryptanalysis
	Analyzed ciphers
	Machine Learning and Neural Networks
	Gohr's Basic Scheme

	Related Work
	Extensions of Gohr's Basic Scheme
	Explainability of Neural Distinguishers

	Obstacles for Applying Neural Distinguishers Automatically
	Obstacle I: The Hyperparameters of Neural Distinguishers
	Obstacle II: Finding a Good Input Difference for a New Cipher

	Solution Part I: Automated Finding of Good Input Differences
	Bias Score for Ranking Input Differences
	Evolutionary Optimizer
	Optimizer Results
	Optimizer Discussion

	Solution Part II: A Cipher-Agnostic Neural Training Pipeline
	Our Simple Training Pipeline
	Description of our Neural Network (DBitNet)

	Results: Our Best Distinguishers
	Discussion
	Conclusion
	Pseudocode for Gohr's optimizer
	Discussion of the Comparison of DBitNet and Gohr's Neural Distinguisher
	Round-by-round Details of our Results

