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University of Primorska, Faculty of Mathematics, Natural Sciences and Informatics, Glagoljaška ulica 8,
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Abstract

Some recent research articles [23, 24] addressed an explicit specification of indicators
that specify bent functions in the so-called C and D classes, derived from the Maiorana-
McFarland (M) class by C. Carlet in 1994 [5]. Many of these bent functions that belong
to C or D are provably outside the completedM class. Nevertheless, these modifications
are performed on affine subspaces, whereas modifying bent functions on suitable subsets
may provide us with further classes of bent functions. In this article, we exactly specify
new families of bent functions obtained by adding together indicators typical for the C
and D class, thus essentially modifying bent functions in M on suitable subsets instead
of subspaces. It is shown that the modification of certain bent functions in M gives rise
to new bent functions which are provably outside the completed M class. Moreover, we
consider the so-called 4-bent concatenation (using four different bent functions on the
same variable space) of the (non)modified bent functions in M and show that we can
generate new bent functions in this way which do not belong to the completed M class
either. This result is obtained by specifying explicitly the duals of four constituent bent
functions used in the concatenation. The question whether these bent functions are also
excluded from the completed versions of PS, C or D remains open and is considered
difficult due to the lack of membership indicators for these classes.

Keywords: C class, D class, Completed Maiorana-McFarland class M#, CD class,
Weakly normal bent functions, Bent duals, 4-bent decomposition

1. Introduction

An important class of Boolean functions was introduced by Rothaus [20] in 1976,
which are defined in even number of variables having the maximum possible Hamming
distance to the set of all affine functions. These functions are called bent functions.
Bent functions have been exhaustively studied in the past four decades because of their
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applications in cryptography, coding theory, graph theory, association schemes, etc. For
more details on bent functions, their characterizations and design methods we refer to
the textbooks [6, 18, 22].

When considering classes of bent functions, there are two primary classes referred to
as partial spread (PS) class due to Dillon [9] and the Maiorana-McFarland (M) class
[16]. The term primary refers to the design that does not employ known bent functions
to generate new ones (giving rise to the so-called secondary methods), it rather uses a
suitable set of affine functions (typical for the Maiorana-McFarland method [16]) or a
collection of disjoint n/2-dimensional subspaces to construct a bent function on GF (2)n

(typical for the partial spread class introduced by Dillon [9]). Another generic class,
denoted by N , was proposed by Dobbertin [10] and it includes both M and a subclass
of PS commonly denoted PSap. In 1993, Carlet [5] introduced two additional secondary
classes of bent functions, denoted by C and D, which are derived through a suitable
modification of bent functions in the M class. One explicit class derived by Carlet,
containing instances that do not belong to M or PS, is named D0 and its cardinality is
of approximately the same size as of M. This does not substantially help in achieving
a complete classification of bent functions, as the two primary classes stand only for
a portion of ≈ 276 of bent functions on F8

2, whereas their totality is around 2106 [14].
In recent articles [23, 24, 13], the analysis of these two secondary classes has been taken
further towards specifying a sufficient set of conditions so that the resulting bent functions
are also provably outsideM#, where the superscript “#” in general denotes a completed
version of the considered class. Due to the hardness of overall conditions, ensuring that at
the same time the specified bent functions are indeed in C or D and additionally outside
M# (possibly also outside PS#) is a rather difficult task. In [19], the authors extend
the results in [24] to vectorial bent functions and introduce the concept of weakly and
strongly outside a completed (given) primary class (more specifically M#).

In the first part of this article, we further extend the initiative taken in [1], where it
was shown that under certain conditions it is possible to construct a superclass of bent
functions that stems from D0 and C, named as the SC class. This class of functions
uses the addition of indicators typical to D0 and C and therefore their overall effect is a
modification of a bent function on a suitable subset instead on a subspace. We show that,
apart from adding the indicators of D0 and C, the only remaining possibility of ensuring
the bentness of the resulting functions corresponds to the addition of suitable indicators
used in the definition of C and D classes (for instance adding indicators of D0 and D
cannot give bent functions), which results in a superclass CD of bent functions. We then
give sufficient conditions which ensure that bent functions in CD lie outside M# and
provide two generic methods for specifying these objects, see Proposition 2 and 3. We
also partially address the normality of these functions and in this context we further refine
the constraints on functions in CD to be outside the completed PS+ class. This problem
of finding non(weakly)-normal bent functions is intrinsically difficult and it remains open
whether there are instances of bent functions in CD which are non(weakly)-normal.

In the second part of this article, we consider the problem of specifying suitable
selections of four bent functions so that their concatenation is again a bent function.
This approach is closely related to the so-called 4-decomposition [3] of bent functions.
More precisely, there are three possibilities of decomposing bent functions on Fn2 as four
restrictions to the cosets of some (n − 2)-dimensional linear subspace. In general, these
restrictions are either all bent, semi-bent or 5-valued spectra functions [3]. We show
that suitable (n− 2)-variable bent functions in C,D, CD and M can be concatenated to
provide new bent functions in n variables. Most notably, the resulting bent functions are
also provably outside theM# class. The bentness of these functions is established using
the necessary and sufficient condition given in [12] that the duals of its restrictions must
satisfy. This implies that for the first time, we explicitly determine the duals of certain
functions in C and D (implying the exact specification of the duals of bent functions in SC
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and CD), which is in general considered as a difficult problem. Moreover, the fact that the
4-bent concatenation, that employs bent functions stemming from different classes, gives
instances of bent functions provably outside the M# class is quite interesting. More
precisely, we believe that the gap between the total space of bent functions and their
portion that comes from the primary classes (as mentioned above) exactly originates in
the lack of understanding of 4-bent decomposition. In other words, having only three
possibilities of concatenating suitable objects on an (n− 2)-dimensional space to achieve
the bentness on Fn2 , we need to analyze the behaviour and class inclusion of these objects
in more depth.

This article is organized as follows. In Section 2, we recall some relevant notions and
definitions related to Boolean functions and in particular we specify the main primary
and secondary classes of bent functions. A superclass of bent functions which employs
the addition of indicators typical to classes C and D, named CD, is introduced in Section
3. In Section 4, we specify sufficient conditions for bent functions in CD to lie outside the
completedM class and provide two generic methods (Proposition 2 and 3) of constructing
such functions. We then consider the problem of concatenating four suitable (n − 2)-
variable bent functions, taken form different classes, for the purpose of generating new
bent functions in n variables. It is shown that our superclass CD provides such instances
and furthermore the resulting bent functions are again provably outside the completed
M class. This is achieved by specifying explicitly the duals of certain functions in C and
D which also allows us to determine the duals of bent functions in SC and CD. Some
concluding remarks are given in Section 6.

2. Preliminaries

With |S| we denote the cardinality of a finite set S. The vector space Fn2 is the space of
all n-tuples x = (x1, . . . , xn), where xi ∈ F2. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn2
the usual scalar (dot) product over F2 is defined as x · y = x1y1 ⊕ · · · ⊕ xnyn. With Fn∗2
we denote the set Fn2 \ {0n} and with F∗2n we denote the multiplicative cyclic group of a
finite filed F2n which consists of the 2n− 1 nonzero elements of F2n . For convenience, we
will sometimes identify the vector space Fn2 with F2n . Any element x ∈ Fn2 uses a bold
face letter, whereas the standard letters are reserved for finite field elements. Throughout
the paper, if t|m then we treat F2t as a subfield of F2m . A polynomial F (x) ∈ F2n [x] is
called a permutation polynomial, if the induced evaluation {F (x) : x ∈ F2n} permutes the
elements of F2n .

Moreover, any (n, n)-function F can be uniquely expressed as a univariate polynomial
of degree at most 2n − 1:

F (x) =

2n−1∑
i=0

aix
i, ai ∈ F2n .

For the 2-adic expansion i = i0 + i12 + i22
2 + · · ·+ in−12

n−1, the algebraic degree of F is
defined as

deg(F ) = max{wt(i) : ai 6= 0, 0 ≤ i < 2n},

where wt(i) is the Hamming weight of i = (i0, i1, . . . , in−1) (the number of nonzero
coefficients ij∈ F2, j = 0, . . . , n− 1).

For x ∈ F2n the (relative) trace Trnk (x) : F2n → F2k of x over F2k , where k is a divisor
of n, is defined by

Trnk (x) = x+ x2
k

+ · · ·+ x2
k(n/k−1)

.

If k = 1, then Trn1 is called the absolute trace. For an (n,m)-function F = (f1, . . . , fm),
where f1, . . . , fm : F2n → F2 are the coordinate functions of F , all the 2m − 1 nonzero
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linear combinations of the coordinates fi are called component functions of F , i.e. the
functions Fλ(x) = Trm1 (λF (x)), λ ∈ F∗2m . The function WF : F2n × F∗2m → Z defined by

WF (λ, u) := WFλ(u) =
∑
x∈F2n

(−1)Tr
m
1 (λF (x))+Trn1 (ux), u ∈ F2n , λ ∈ F∗2n ,

is called the (extended) Walsh-Hadamard transform of the function F . Specially, ifm = 1,
then F := f is a Boolean function and we denote the Walsh-Hadamard transform of f
with Wf . If Wf (u) = ±2

n
2 for all u ∈ F2n , then f is a bent function and n is necessarily

even. The set of all Boolean functions on Fn2 is denoted by Bn.
When f ∈ Bn is bent, then the Boolean function f∗, defined through Wf (u) =

2
n
2 (−1)f

∗(u) for any u ∈ F2n , is also bent and is called the dual of f . For a Boolean
function f ∈ Bn, the inverse Walsh-Hadamard transform of f at any point u ∈ F2n is
defined by

(−1)f(u) =
∑
x∈F2n

Wf (x)(−1)Tr
n
1 (ux).

Two (n,m)-functions F and G are called extended affine equivalent (EA-equivalent)
if there exist some affine permutation L1 on F2n , some affine permutation L2 on F2m

and some affine function A : F2n → F2m such that F = L2 ◦ G ◦ L1 + A. They are
called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) (introduced in [7] and later
named CCZ-equivalence in [2]) if there exists some affine automorphism L = (L1, L2)
of F2n × F2m , where L1 : F2n × F2m → F2n and L2 : F2n × F2m → F2m are affine
functions, such that y = G(x) if and only if L2(x, y) = F ◦L1(x, y). It is well known that
EA-equivalence is a special case of CCZ-equivalence [2]. In the Boolean case, the CCZ-
equivalence coincides with EA-equivalence which is given as follows. Given an arbitrary
Boolean function f ∈ Bn, its affine equivalence class includes a set of functions {g}
obtained by

g(x) = f(Ax⊕ b)⊕ c · x⊕ d,
where A ∈ GL(n,F2) (the group of invertible matrices under composition), b, c ∈ Fn2 and
d ∈ F2.

Definition 1. A class of bent functions {f} ∈ Bn is complete if it is globally invariant
under the action of the general affine group (the group of all invertible affine transfor-
mations over F2) and under the addition of affine functions. The completed class is the
smallest possible class that properly includes the class under consideration.

The following theorem will be useful when considering the inclusion/exclusion of bent
Boolean functions in the completed class M#.

Theorem 1. [9] An n-variable bent function f , n = 2m, belongs to M# if and only
if there exists an m-dimensional linear subspace V of Fn2 such that the second order
derivatives

DaDbf(x) = f(x)⊕ f(x⊕ a)⊕ f(x⊕ b)⊕ f(x⊕ a⊕ b)

vanish for any a,b ∈ V .

2.1. Bent functions in C and D
The Maiorana-McFarland classM is the set of n-variable (n = 2m) Boolean functions

of the form
f(x,y) = x · π(y)⊕ g(y), for all x,y ∈ Fm2 , (M)

where π is a permutation on Fm2 , and g is an arbitrary Boolean function on Fm2 . From
this class, Carlet [5] derived the C class of bent functions that contains all functions of
the form

f(x,y) = x · π(y)⊕ 1L⊥(x), (C), (1)

where L is any linear subspace of Fm2 , 1L⊥ is the indicator function of the space L⊥ =
{x ∈ Fm2 : x · y = 0, ∀y ∈ L}, and π is any permutation on Fm2 such that:
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(C) φ(a⊕ L) is a flat (affine subspace), for all a ∈ Fm2 , where φ := π−1.

The permutation φ and the subspace L are then said to satisfy the (C) property, or for
short (π−1, L) has property (C).

Another class introduced by Carlet [5], called D, is defined similarly as

f(x,y) = x · π(y)⊕ 1E1(x)1E2(y), (D), (2)

where π is a permutation on Fm2 and E1, E2 two linear subspaces of Fm2 such that π(E2) =
E⊥1 . Quite recently, a set of sufficient conditions for bent functions in C and D to lie
outside the completed M class was derived in [24, 23]. These conditions involve the
concept of linear structures which is defined below.

Definition 2. An n-variable Boolean function f is said to have a linear structure if there
exists a nonzero a ∈ Fn2 such that f(x⊕ a)⊕ f(x) is a constant function.

Theorem 2. [24, Theorem 1] Let n = 2m ≥ 8 be an even integer and let f(x,y) =
π(y) · x ⊕ 1L⊥(x), where L is any linear subspace of Fm2 and π is a permutation on Fm2
such that (π−1, L) has property (C). If (π−1, L) satisfies:

(C1) dim(L) ≥ 2;

(C2) u · π has no nonzero linear structure for all u ∈ Fm∗2 ,

then f is a bent function in C outside M#.

Similar conditions concerning class D were deduced in [24]:

Theorem 3. [24, Theorem 2] Let n = 2m ≥ 8 be an even integer and let f(x,y) =
π(y) · x ⊕ 1E1(x)1E2(y), where π is a permutation on Fm2 , and E1, E2 are two linear
subspaces of Fm2 such that π(E2) = E⊥1 . If (π,E1, E2) satisfies:

(D1) dim(E1) ≥ 2 and dim(E2) ≥ 2;

(D2) u · π has no nonzero linear structure for all u ∈ Fm∗2 ;

(D3) deg(π) ≤ m− dim(E2),

then f is a bent function in D outside M#.

3. New classes of Boolean bent functions

In this section, we recall the definition of the class SC introduced in [1] and investigate
the possibility of defining similar classes via suitable mixtures of indicators typical for C
and D. Nevertheless, any choice of these indicators must preserve the bent property of the
resulting functions which consequently leads to only one new superclass of bent functions
called CD. We again emphasize that using the addition of two indicators (corresponding
to subspaces) essentially implies a modification of bent functions inM on subsets rather
than affine subspaces.

3.1. Bent functions in SC
Let g : F2m × F2m → F2 be a bent Boolean function in M defined by g(x, y) =

Trm1 (xπ(y)), where π is a permutation on F2m . Furthermore, let

δ0(x) = x2
m−1 + 1

be the Dirac symbol, that is, δ0(x) = 1 if x = 0 and 0 otherwise, which is essentially the
indicator of the m-dimensional subspace {0} × F2m . Then, (x, y) 7→ g(x, y) + δ0(x) is a
bent function in the class D0, which is outside M# provided that π is not affine on any
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hyperplane of F2m [5, Proposition 2]. Notice that when L is a linear subspace of F2m ,
then

1L⊥(x) =
∏

ω∈b(L)

(Trm1 (ωx) + 1),

where b(L) is the basis of L, is the indicator function of L⊥ in finite field notation.
In [1], the authors introduced a new superclass of bent functions constructed from the

classes C and D0, and it is defined as follows.

Definition 3. [1] Let π be a permutation on F2m and let L ⊂ F2m be a linear subspace
of F2m such that (π−1, L) satisfies the (C) property. Then, the class of bent functions
f : F2m × F2m → F2 containing all functions of the form

f(x, y) = Trm1 (xπ(y)) + a01L⊥(x) + a1δ0(x), ai ∈ F2, (SC), (3)

is called SC and is a superclass of D0 and C.

Furthermore, it was shown that (under certain conditions) the functions in SC are
outside the class M#.

Theorem 4. [1, Theorem 5] Let π be a permutation on F2m, L ⊂ F2m be a linear subspace
of F2m such that (π−1, L) satisfies the (C) property, dim(L) ≥ 2 and Trm1 (µπ) has no
non-zero linear structures for all µ ∈ F∗2m. Then, the function f : F2m×F2m → F2 defined
by

f(x, y) = Trm1 (xπ(y)) + 1S(x), x, y ∈ F2m ,

where 1S(x) = 1L⊥(x) + δ0(x), is a bent function in SC outside M#.

Motivated by this construction, we will consider the existence of other superclasses:
SD (superclass of D and D0), CD (superclass of C and D) and SCD (superclass of C, D
and D0). It turns out that only the class CD contains bent functions, whereas the other
classes do not.

3.2. Bentness of Boolean functions in the class SD
As before, we consider g : F2m×F2m → F2 defined as g(x, y) = Trm1 (xπ(y)), where π is

a permutation on F2m , which is a bent function inM. We now show that if E1, E2 6= {0}
are two linear subspaces of F2m such that π(E2) = E⊥1 (we do not consider the possibilities
E1×E2 = {0}×F2m or F2m ×{0}), then Boolean functions of the form, constituting the
SD class,

f(x, y) = g(x, y) + 1E1(x)1E2(y) + δ0(x), x, y ∈ F2m , (SD), (4)

cannot be bent.

Theorem 5. Let π be a permutation on F2m and E1, E2 ⊂ F2m be two linear subspace of
F2m such that π(E2) = E⊥1 . Then, the function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xπ(y)) + 1E1(x)1E2(y) + δ0(x)

is not bent.

Proof. Let us first compute Wf (0, 0) as:

Wf (0, 0) =
∑
x∈F∗2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) +

∑
y∈F2m

(−1)1E2
(y)+1

=
∑
x∈F∗2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) −

∑
y∈F2m

(−1)1E2
(y)
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=
∑
x∈F2m

∑
y∈F2m

(−1)Tr
m
1 (xπ(y))+1E1

(x)1E2
(y) − 2

∑
y∈F2m

(−1)1E2
(y)

= Wg(0, 0)− 2 · (2m − |E2|).

Since g(x, y) = Trm1 (xπ(y)) + 1E1(x)1E2(y) is a bent function in D, we have that either
Wg(0, 0) = 2m or −2m.

Assuming that Wg(0, 0) = 2m, then

Wf (0, 0) = 2m − 2 · 2m + 2|E2| = −2m + 2|E2|.

The requirement that Wf (0, 0) = ±2m implies that |E2| = 0 or 2m. However, E2 6= ∅ and
obviously dimE2 < m, thus this case is not possible.

On the other hand, if Wg(0, 0) = −2m then we necessarily have

Wf (0, 0) = −2m − 2 · 2m + 2|E2| = −3 · 2m + 2|E2|.

Requiring that Wf (0, 0) = ±2m, implies that |E2| = 2m+1 or 2m, both of which are again
not possible. Hence, Wf (0, 0) 6= ±2m, that is, f is not a bent function.

Remark 1. Similarly, using the ideas as in the proof of Theorem 5, one can show that
functions of the form (constituting the SCD class)

f(x, y) = g(x, y) + 1L⊥(x) + 1E1(x)1E2(y) + δ0(x) (SCD),

cannot be bent.

3.3. Bentness of Boolean functions in the class CD
In this section, we consider the remaining case which corresponds to the mixture of

indicators stemming from C and D. Let g : F2m × F2m → F2 , defined by g(x, y) =
Trm1 (xπ(y)) ∈ M, be a bent Boolean function, where π is a permutation on F2m . Let
L ⊂ F2m be a linear subspace of F2m such that (π−1, L) satisfies the (C) property, and
let E1, E2 6= {0} be two linear subspaces of F2m such that π(E2) = E⊥1 . We consider
the bentness of Boolean functions f in 2m variables, being members of the class CD (see
Definition 4), of the form

f(x, y) = g(x, y) + 1L⊥(x) + 1E1(x)1E2(y), x, y ∈ F2m . (5)

Then, the primary task is to find conditions which ensure that the function f given
by (5) is bent. Let us consider the Walsh coefficient Wf (a, b) for arbitrary but fixed
(a, b) ∈ F2m × F2m . Furthermore, we denote with C(x, y) := Trm1 (xπ(y)) + 1L⊥(x) and
M(a, b) = C(x, y) + Trm1 (ax+ by). Then,

Wf (a, b) =
∑

x,y∈F2m

(−1)M(a,b)+1E1
(x)1E2

(y)

=
∑
x∈E1

∑
y∈F2m

(−1)M(a,b)+1E2
(y) +

∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

= −
∑
x∈E1

∑
y∈E2

(−1)M(a,b) +
∑
x∈E1

∑
y/∈E2

(−1)M(a,b) +
∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

= −2
∑
x∈E1

∑
y∈E2

(−1)M(a,b) +
∑
x∈E1

∑
y∈F2m

(−1)M(a,b) +
∑
x/∈E1

∑
y∈F2m

(−1)M(a,b)

=
∑

x,y∈F2m

(−1)M(a,b) − 2
∑
x∈E1

∑
y∈E2

(−1)M(a,b) = WC(a, b)− 2
∑
x∈E1

∑
y∈E2

(−1)M(a,b)

= WC(a, b)− 2
∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (xπ(y))+1

L⊥ (x)+Tr
m
1 (ax+by).
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Since E⊥1 = π(E2), we have that Trm1 (xπ(y)) = 0 for (x, y) ∈ E1 × E2. It follows now
that

Wf (a, b) = WC(a, b)− 2 ·

∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by) − 2

∑
x∈E1∩L⊥

∑
y∈E2

(−1)Tr(ax+by)

 .

(6)

Furthermore, if we denote K = E1 ∩ L⊥, it is easy to see that∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
2ε1+ε2 , (a, b) ∈ E⊥1 × E⊥2

0, otherwise
, (7)

∑
x∈K

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
2κ+ε2 , (a, b) ∈ K⊥ × E⊥2

0, otherwise
, (8)

where εi = dim(Ei) and κ = dim(K). Since K ⊂ E1, it follows that E⊥1 ⊂ K⊥, and
therefore E⊥1 × E⊥2 ⊂ K⊥ × E⊥2 . Obviously, when (a, b) /∈ K⊥ × E⊥2 , we have that
Wf (a, b) = WC(a, b). Let us now consider the following cases:

Case 1: Suppose that (a, b) ∈ E⊥1 × E⊥2 . Since we want that f is a bent function,
we have the following situations:

(I) If Wf (a, b) = WC(a, b), then

WC(a, b) = WC(a, b)− 2ε1+ε2+1 + 2κ+ε2+2 ⇔ 2ε1+ε2+1 = 2κ+ε2+2 ⇔ κ = ε1 − 1.

(II) If Wf (a, b) = −WC(a, b), then −2WC(a, b) = −2m+1 + 2κ+ε2+2. Since WC(a, b) =
±2m, we have

−2m+1 = −2m+1 + 2κ+ε2+2 or 2m+1 = −2m+1 + 2κ+ε2+2.

The first case is not possible since a power of two is strictly larger than zero, and
the second one leads to κ = ε1.

Case 2: Suppose that (a, b) ∈ (K⊥ \E⊥1 )×E⊥2 . Again, requiring that f is bent leads to
the following cases:

(I) If Wf (a, b) = WC(a, b), then

WC(a, b) = WC(a, b) + 2κ+ε2+2 ⇔ 2κ+ε2+2 = 0,

which is not possible.

(II) If Wf (a, b) = −WC(a, b), then −2WC(a, b) = 2κ+ε2+2. Since the right-hand side of
the equality is positive, so must be the left-hand side. Thus, we must have that
WC(a, b) = −2m and in this case κ = ε− 1.

From Case 1 and 2, we obtain bent Walsh coefficients only when κ = ε1 or κ = ε1−1.
These observations are summarized below, where Theorem 6 corresponds to the case
κ = ε1 − 1 and Theorem 7 refers to the case κ = ε1.

Theorem 6. Let π be a permutation on F2m, L ⊂ F2m be a linear subspace of F2m such
that (π−1, L) satisfies the (C) property, and let E1, E2 6= {0} be two linear subspaces
of F2m such that π(E2) = E⊥1 and dim(E1 ∩ L⊥) = dim(E1) − 1. Then, the function
f : F2m × F2m → F2 defined by

f(x, y) = C(x, y) + 1E1(x)1E2(y),

where C(x, y) = Trm1 (xπ(y)) + 1L⊥(x), is bent. Moreover, it holds that

Wf (a, b) =

{
−WC(a, b), (a, b) ∈ ((E1 ∩ L)⊥ \ E⊥1 )× E⊥2
WC(a, b), otherwise

.
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Proof. Suppose that (a, b) /∈ (E1∩L)⊥×E⊥2 . From (6)-(8), it is easy to see thatWf (a, b) =
WC(a, b). Suppose that (a, b) ∈ E⊥1 × E⊥2 . Again, (6)-(8) implies that

Wf (a, b) = WC(a, b)− 2 · (2ε1+ε2 − 2 · 2ε1−1+ε2) = WC(a, b).

Lastly, if (a, b) ∈ ((E1 ∩L)⊥ \E⊥1 )×E⊥2 , the sum (7) is equal to zero, and thus from (6)
and (8) it follows that

Wf (a, b) = WC(a, b)− 2 · 2ε1+ε2 = WC(a, b)− 2m+1.

Using Parseval’s equation, it is straightforward to show that WC(a, b) = 2m, for all
(a, b) ∈ (E1 ∩ L)⊥ × E⊥2 . Thus,

Wf (a, b) = 2m − 2m+1 = −2m = −WC(a, b).

In other words, the function f is bent.

Theorem 7. Let π be a permutation on F2m, E1, E2 6= {0} be two linear subspaces of
F2m such that π(E2) = E⊥1 and (π−1, E⊥1 ) satisfies the (C) property. Then the function
f : F2m × F2m → F2 defined by

f(x, y) = C(x, y) + 1E1(x)1E2(y),

where C(x, y) = Trm1 (xπ(y)) + 1E1(x), is bent. Moreover, it holds that

Wf (a, b) =

{
−WC(a, b), (a, b) ∈ E⊥1 × E⊥2
WC(a, b), otherwise

.

Proof. We note that (6) becomes

Wf (a, b) = WC(a, b)+2
∑
x∈E1

∑
y∈E2

(−1)Tr
m
1 (ax+by) =

{
WC(a, b) + 2m+1, (a, b) ∈ E⊥1 × E⊥2

WC(a, b), otherwise
.

Using Parseval’s equation, it is straightforward to show that WC(a, b) = −2m for all
(a, b) ∈ E⊥1 × E⊥2 . Thus,

Wf (a, b) = −2m + 2m+1 = 2m = −WC(a, b).

In other words, the function f is bent.

Definition 4. Let π be a permutation on F2m, L ⊂ F2m be a linear subspace of F2m such
that (π−1, L) satisfies the (C) property, and let E1, E2 6= {0} be two linear subspaces of
F2m such that π(E2) = E⊥1 . If dim(E1 ∩ L⊥) = dim(E1)− 1 or E1 = L⊥, then the class
of bent functions f : F2m × F2m → F2 containing all functions of the form

f(x, y) = Trm1 (xπ(y)) + a01L⊥(x) + a11E1(x)1E2(y), ai ∈ F2, (CD), (9)

is called CD and is a superclass of C and D.

Remark 2. Let us consider the sum of the indicators 1L⊥(x) + 1E1(x)1E2(y) defined
above. We note that

1L⊥(x) + 1E1(x)1E2(y) = 1

⇔(x, y) ∈ (L⊥ × F2m) \ (E1 × E2) ∨ (x, y) ∈ (E1 × E2) \ (L⊥ × F2m)

⇔(x, y) ∈ (L⊥ × F2m)4(E1 × E2) := S,

where ∆ denotes the symmetric difference. Moreover, the cardinality of S is equal to

|S| = 2m+λ + 2ε1+ε2 − 2ε2+1 · |L⊥ ∩ E1|, (10)

where dim(L⊥) = λ and dim(Ei) = εi, i = 1, 2. It is easy to verify that S is neither a
linear nor an affine subspace of F2n, rather a set of elements in F2n.
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3.4. Modifying bent functions on subsets

For convenience of the reader, we know provide certain explanations related to the
modification of bent functions in the Maiorana-McFarland class which appears to be
highly suitable for specifying instances outside the completed class M#. These modifi-
cations efficiently destroy the structure of bent functions in M, which allows us to show
that modified bent functions cannot be viewed as a concatenation of linear functions (up
to EA-equivalence).

It is well-known that theM class can be viewed as a concatenation of affine functions
when f is given as f(x,y) = π(y) ·x + g(y), for x,y ∈ Fm2 . In particular, when f(x,y) =
π(y) · x then f is a concatenation of all linear functions on Fm2 (there are exactly 2m

linear functions on Fm2 ). More specifically, for any fixed y∗ ∈ Fm2 the restriction of f to
the affine subspace Fm2 × {y∗} becomes a∗ · x where a∗ = π(y∗). This also implies that
the weight of such bent functions is 22m−1 − 2m−1 since the linear function l(x) = 0 is
used.

Now, let us consider the class D0 of Carlet [5] given by f ′(x,y) = π(y) · x + δ0(x),
where δ0(x) is the indicator of the m-dimensional subspace {0m} × Fm2 . It is obvious
that the effect of adding δ0(x) to f(x,y) = π(y) · x is essentially a modification of any
linear function li (representing f as a concatenation of linear functions so that f =
l1||l2|| · · · ||l2m) so that for f ′ instead of having li(0m) = 0 we have li(0m) = 1. Since this
modification is performed on each linear function li, we conclude that the bent functions
in D0 are of weight 22m−1 +2m−1 and can be viewed as a concatenation of these modified
linear functions (at zero) which are now of algebraic degree m. This appears to be
the main reason behind the fact that certain instances in D0 are provably outside the
completed classes M# and PS# [5], for a suitably chosen permutation π over Fm2 .

On the other hand, the class SC given as f(x,y) = π(y)·x+1L⊥(x)+δ0(x) corresponds
to the modification performed on f(x,y) = π(y) · x + δ0(x) ∈ D0 through addition
of the indicator 1L⊥(x). In other words, we are now affecting already modified linear
functions (as explained above) further. It can be easily verified, similarly to Remark
2, that 1L⊥(x) + δ(x) forms a subset in Fm2 × Fm2 and cannot be an affine subspace.
Assuming that dim(L⊥) = d, the indicator 1L⊥(x) further modifies the values (of already
modified linear functions at zero) at exactly 2d points. Since this modification is again
performed at value x = 0m, the overall effect of having both indicators is essentially the
modification of (original) linear functions at 2d−1 points. As such a modification applies
to all y ∈ Fm2 , we have performed a modification at exactly 2m(2d − 1) points. A similar
reasoning applies to the class CD given in Definition 4, which will be shown to contain
members outside M# in the next section.

Finally, we remark that the conditions in Theorem 2 and 3 (referring to the exclusion
from M#) are only sufficient and not necessary. In certain cases, even permutations
whose components admit linear structures may give rise to bent functions outsideM#, see
for instance [24, Theorem 12]. It appears natural that the above described modifications
efficiently destroy the concatenation structure of bent functions inM so that the resulting
functions cannot belong to the completed PS class but this remains an open problem.

4. Sufficient conditions for functions in CD to be outside M#

In this section, we present sufficient conditions for functions in the CD class to be
provably outside M#. We also partially address the normality of these functions and
the main conclusion is that the choice of indicators must be further refined in order to
possibly identify instances within CD class which are weakly non-normal. Consequently,
this would imply that such functions lie outside the completed PS+ class.

The following proposition is proved useful for our main result.
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Proposition 1. Let V be a subspace of Fn2 . Then, we have

deg(DaDb(1V (x))) =

{
n− dim(V )− 2, if a,b,a⊕ b /∈ V
0, otherwise

.

Proof. We know that deg(1V (x)) = n− dim(V ). Further, if a,b,a⊕ b /∈ V , then

DaDb(1V (x))) = 1V (x)⊕ 1V (x⊕ a)
⊕1V (x⊕ b)⊕ 1V (x⊕ a⊕ b)

= 1V ∪(V⊕a)∪(V⊕b)∪(V⊕a⊕b)(x),

that is, deg(DaDb(1V (x))) = n− dim(V )− 2. If either a ∈ V , b ∈ V , or a⊕b ∈ V then

DaDb(1V (x))) = 0.

We are now able to prove that, under certain conditions, functions in CD are provably
outside M#.

Theorem 8. Let π be a permutation on Fm2 , L ⊂ Fm2 be a linear subspace of Fm2 such that
(π−1, L) satisfies the (C) property, and let E1, E2 6= {0m} be two linear subspaces of Fm2
such that π(E2) = E⊥1 . Furthermore, we assume that either dim(E1∩L⊥) = dim(E1)− 1
or E1 = L⊥. Let f : Fm2 × Fm2 → F2 be defined by

f(x,y) = x · π(y)⊕ 1L⊥(x)⊕ 1E1(x)1E2(y).

If (π−1, L) and (π,E1, E2) satisfy the properties (C1) and (D1)− (D3), respectively, then
f is a bent function in CD outside M#.

Proof. From Theorems 6-7, it follows that f is bent. From Theorem 1, it suffices to show
that there is no m-dimensional subspace V = V1 × V2 of Fm2 × Fm2 := Fn2 on which the
second-order derivative DaDb(f) vanishes, for any nonzero a,b ∈ V .

The second-order derivative of f with respect to a = (a1,a2) and b = (b1,b2),
ai,bi ∈ Vi for i = 1, 2, can be written as

DaDbf(x,y) = x · (Da2Db2π(y))⊕ a1 ·Db2π(y ⊕ a2)
⊕b1 ·Da2π(y ⊕ b2)⊕Da1Db11L⊥(x)⊕DaDb1E1(x)1E2(y).

(11)

We know that E1 × E2 is a subspace of Fn2 and therefore Fn2 =
⋃

ui∈U
(E1 × E2) ⊕ ui,

where U is a set of (disjoint) coset representatives w.r.t. E1 × E2 and consequently
(ui ⊕ (E1 × E2)) ∩ (uj ⊕ (E1 × E2)) = ∅ for any ui 6= uj ∈ U . Any a ∈ Fn2 can then be
written as a = a[1] ⊕ a[2], where a[1] ∈ E1 × E2 and a[2] ∈ U . Thus, we have

DaDb1E1(x)1E2(y) = Da[2]Db[2]1E1(x)1E2(y). (12)

If |{a[2] ∈ U : (a[1]⊕a[2]) ∈ V }| > 2, then we select two nonzero vectors a,b ∈ V such
that a[2],b[2] ∈ U , where a = a[1]⊕a[2] and b = b[1]⊕b[2]. Thus, we have a[2]⊕b[2] ∈ U ,
that is, a[2] ⊕ b[2] /∈ E1 × E2. From Proposition 1 and (12), we have that

deg (DaDb1E1(x)1E2(y)) = m− 2.

Since the properties (D1) and (D3) are satisfied, we have that deg (DaDb(π(y) · x)) <
m− 2 and deg (Da1Db11L⊥(x)) ≤ dim(L)− 2 < m− 2. From (11), it follows that

DaDbf 6≡ 0.
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If |{a[2] ∈ U : (a[1] ⊕ a[2]) ∈ V }| ≤ 2, then |V ∩ (E1 × E2)| ≥ 2m−1 (since |V | = 2m).
From property (D1) and π(E2) = E⊥1 , we have

|V ∩ (E1 × E2)| ≥ 2m−1 > |E1| and |V ∩ (E1 × E2)| ≥ 2m−1 > |E2|.

Moreover, we have that

|V ∩ (E1 × 0m)| ≥ 2 and |V ∩ (0m × E2)| ≥ 2,

which can be justified as follows. For instance, assuming that |V ∩ (E1 × 0m)| < 2
then |V ∩ (E1×E2)|≤|E2|, which is in contradiction with |V ∩ (E1×E2)| ≥ 2m−1 > |E2|.
Hence, we can select two nonzero vectors a,b ∈ V ∩(E1×E2) such that a = (a1,0m),b =
(0m,b2).

From (11), we have that

DaDbf(x,y) = a1 ·Db2π(y)⊕DaDb1E1(x)1E2(y)
= a1 ·Db2π(y),

since a,b ∈ V ∩ (E1 × E2) and therefore DaDb1E1(x)1E2 ≡ 0. As the property (D2)
is satisfied, it holds that a1 ·Db2π 6≡ const. Thus, for any m-dimensional subspace V of
Fm2 × Fm2 we can find nonzero a,b ∈ V such that DaDbf 6≡ 0.

As an immediate consequence of the previous result, we present the following explicit
family of bent functions in CD outsideM#. We will define it using a finite field notation.

Proposition 2. Let n = 2m, m even, and s be a positive divisor of m such that m/s
is odd. Let π(y) = yd be a permutation on F2m such that d(2s + 1) ≡ 1 (mod 2m − 1)
and wt(d) ≥ 3. Let L = 〈1, α, . . . , αs−1〉, where α is a primitive element of F2s, E2 =

〈α
2s−1

3 , α
2(2s−1)

3 〉 and E1 = E⊥2 . Then, the function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xyd) + 1L⊥(x) + 1E1(x)1E2(y), x, y ∈ F2m ,

is a bent function in CD outside M#.

Proof. From [24, Theorem 9] we know that (π−1, L) satisfies the (C) property. Since m is
even and m/s is odd, we must have that s is even. Thus, 22−1 = 3|2s−1 and furthermore

E2 is not only a vector space but also corresponds to a subfield {0, 1, α
2s−1

3 , α
2(2s−1)

3 } of
F2s . Since π is a monomial permutation, it must map every subfield to itself, thus π(E2) =
E2 = E⊥1 . Since wt(d) ≥ 3, from [24, Proposition 5], we have that Trm1 (uπ(y)) admits no
linear structures, for any u ∈ F∗2m . Since dim(E2) = 2, we have that dim(E1) = m − 2.
Hence, the conditions (C1) and (D1) − (D3) of Theorems 2 and 3, respectively, are
satisfied. From Theorem 8, it follows that f is a bent function in CD outside M#.

Example 1. Let m = 6, s = 2 and d = 38. One can easily verify that d(2s + 1) ≡
1 (mod 2m−1). With respect to the notation in Proposition 2, we have that for E2 = F22

and E1 = E⊥2 the function f : F26 × F26 → F2 defined by

f(x, y) = Tr61(xy38) + 1E1(x)(1 + 1E2(y)), x, y ∈ F26 ,

is a bent function in CD and is outside M#.

Remark 3. Especially, for m = 6, we inspected all possible choices for L,E1 and E2

such that either dim(L) = dim(E2) = 2 or 3, (π−1, L) satisfies the (C) property and
π(E2) = E⊥1 , where π(y) = y38 is a fixed permutation on F26. Using the mathematical
software Sage, we were able to construct 500 functions f ∈ CD of the form (9) for
the fixed permutation π given above. Furthermore, all of them are outside M#. With
the same notation as in the example above, we could also confirm that the function f
is pairwise EA-inequivalent to the functions f1(x, y) = Tr61(xy38) + 1E1(x) ∈ C and
f2(x, y) = Tr61(xy38) + 1E1(x)1E2 ∈ D. The question whether (some of) these functions
induce distinct EA-equivalent classes is left open.
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We now provide one more example of bent functions in CD outsideM#, for larger n.

Example 2. Let m = 9 and d = 284. We note that d(23+1) mod (29−1) = 1, wt(d) = 4
and d mod (23 − 1) = 4. Let L = 〈1, α, α2〉 and E2 = 〈α, α2〉, where α is a primitive
element of F23 such that α3 + α + 1 = 0. From [24, Theorem 9], we know that (π−1, L)
satisfies the (C) property. We further observe that E2 is a 2-dimensional subspace of F26.
Let us show that π(E2) = E2. From α3 = α+ 1 we have that α4 = α+ α2. Because α is
an element in the small field F23, we consider its exponent modulo 23− 1. Thus, we have
that:

0d = 0,

αd = α4 = α+ α2,

(α2)d = (α2)4 = α8 = α,

(α+ α2)d = (α4)d = α16 = (α8)2 = α2.

In other words, π(E2) = E2 = E⊥1 . Since wt(d) ≥ 3, from [24, Proposition 5], we have
that Trm1 (uπ) does not admit linear structures, for any u ∈ F∗2m. Since dim(E2) = 2, we
have that dim(E1) = m − 2. Hence the conditions (C1) and (D1) − (D3) of Theorems
2 and 3, respectively, are satisfied. From Theorem 8, it follows that the function f :
F29 × F29 → F2 defined by

f(x, y) = Tr91(xyd) + 1S(x, y), x, y ∈ F29 ,

is a bent function in CD outside M#, where 1S(x, y) = 1 if and only if (x, y) ∈ S and
S = (L⊥ × F2m)4(E1 × E2) (see Remark 2), and equals 0 otherwise. From (10), it is
clear that 1S modifies the truth table of g(x, y) at 29+6 = 215 positions. Furthermore, S
is neither a linear nor an affine subspace.

With the same notation as in Example 2, Table 1 illustrates the bentness and algebraic
degree of the Boolean function f : F29 × F29 → F2 defined as

f(x, y) = Tr91(xyd) + a01L⊥(x) + a11E1(x)1E2(y) + a2δ0(x), (13)

for all possible values a0, a1, a2 ∈ F2 .

(a0, a1, a2) ∈ F3
2 Algebraic degree Bent Class

(0, 0, 0) 5 yes M
(0, 0, 1) 9 yes D0 \M#

(0, 1, 0) 9 yes D \M#

(0, 1, 1) 9 no -

(1, 0, 0) 5 yes C \M#

(1, 0, 1) 9 yes SC \M#

(1, 1, 0) 9 yes CD \M#

(1, 1, 1) 9 no -

Table 1: Class inclusion in M# of the Boolean function f defined by (13)

As a generalization of Example 2, we give the following result which regards the case
n = 2m where m is odd.

Proposition 3. Let n = 2m, m = 3l is odd and r be a positive integer such that
gcd(r, 3l) = 3 and d(2r + 1) ≡ 1 (mod 2m − 1) with wt(d) ≥ 3. Let L = 〈1, α, α2〉 and
E2 = 〈α, α2〉 and E1 = E⊥2 , where α is a primitive element of F23 such that α3+α+1 = 0.
Then the function f : F2m × F2m → F2 defined by

f(x, y) = Trm1 (xyd) + 1L⊥(x) + 1E1(x)1E2(y), x, y ∈ F2m ,

is a bent function in CD outside M#.
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Proof. Because gcd(r, 3l) = 3 and m/3 = l is odd, by [24, Theorem 9], we have that (φ,L)
satisfies the (C) property, where φ(x) = x2

r+1 is a permutation of F2m and L = 〈1, α, α2〉.
Furthermore, since π(x) = xd is the inverse of φ and wt(d) ≥ 3, we know that Trm1 (uπ)
has no nonzero linear structures for any u ∈ F∗2m . Now, we prove that d mod (23−1) = 4.
It is well-known that gcd(2a−1, 2b−1) = 2gcd(a,b)−1. Thus, gcd(23l−1, 23−1) = 23−1.
Furthermore, if a ≡ b (mod N) and M |N , then a ≡ b (mod M). Hence, we have that
d(2r + 1) ≡ 1 (mod 23 − 1). Since (23 − 1)|(2r − 1) = (2r + 1 − 2), we have that
2r+1 ≡ 2 (mod 23−1). From the last two congruences, we conclude that 2d ≡ 1 (mod 7)
and it is easy to compute that d ≡ 4 (mod 7). From α3 = α+1 we have that α4 = α+α2.
Because α is an element in the small field F23 , we consider its exponent modulo 23 − 1.
Thus, we have that:

0d = 0,

αd = α4 = α+ α2,

(α2)d = (α2)4 = α8 = α,

(α+ α2)d = (α4)d = α16 = (α8)2 = α2.

In other words, π(E2) = E2 = E⊥1 . Since dim(E2) = 2, we have that dim(E1) = m − 2.
Hence, the conditions (C1) and (D1) − (D3) of Theorems 2 and 3, respectively, are
satisfied. From Theorem 8, it follows that the function f : F29 × F29 → F2 defined by

f(x, y) = Trm1 (xyd) + 1L⊥(x) + 1E1(x)1E2(y), x, y ∈ F2m ,

is a bent function in CD outside M#.

Using the software Wolfram Mathematica, we could confirm this result, and addi-
tionally some suitable values of r and d for different m are listed below.

m r d

9 3 284

9 6 228

15 3 18204

15 6 18652

15 9 14116

15 12 14564

21 3 1165084

21 6 935652

21 9 1197788

21 12 899364

21 15 1161500

21 18 932068

4.1. Addressing the normality of functions in CD
In [4], it has been shown that if a Boolean function f in 2m variables is in the

completed PS+ class, then it is weakly normal. In other words, if a function is weakly non-
normal then it lies outside the completed PS+ class. Recall that a function f : F2m

2 → F2

is called normal (weakly normal) if there exists a flat of dimension m in F2m
2 such that

f is constant (affine) on this flat. In this section, we discuss the weak normality of the
functions in CD and propose an interesting research problem regarding them.

Remark 4. Depending on the choice of L,E1 and E2, the functions in CD are weakly
normal in the majority of cases when π(E2) = E2 = E⊥1 .

If dim(E1 ∩ L⊥) = dim(E1) − 1 or E1 = L⊥, we can have four possible situations
E1 = L⊥, L⊥ ⊂ E1, E1 ⊂ L⊥ and dim(E1) = dim(L⊥) ∧ dim(E1 ∩ L⊥) = dim(E1) − 1.
We will consider these cases depending if π(E2) = E2 or π(E2) 6= E2.
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1. Suppose that π(E2) = E2 = E⊥1 .

(a) L⊥ = E1. If we consider an m-dimensional subspace E1×E2 of F2m×F2m , we
have that 1 + 1E2(y) = 0 for all y ∈ E2. Thus, 1E1(x)(1 + 1E2(y)) is always
equal to 0. On the other hand, because of the choice of E1 and E2, we have
that Trm1 (xπ(y)) = 0 because x ∈ E1 and π(E2) = E⊥1 . Thus, f |E1×E2 ≡ 0.

(b) L⊥ ⊂ E1. If we take α ∈ F2m \ E1, we have that 1L⊥(x) = 1E1(x) = 0 for all
x ∈ α+E1. Thus, 1L⊥(x) + 1E1(x)1E2(y) vanishes on the m-dimensional flat
(α+E1)×E2. Furthermore, for (x, y) ∈ (α+E1)×E2 (w.l.o.g. say x = α+e1)
we have:

Trm1 (xπ(y)) = Trm1 ((α+e1)π(y)) = Trm1 (απ(y))+ Trm1 (e1π(y))︸ ︷︷ ︸
=0 (same as in 1.)

= Trm1 (απ(y)).

Since π(E2) = E2 we have that {Trm1 (απ(y)) : y ∈ E2} = {Trm1 (αy) : y ∈ E2},
which is obviously the truth table of an affine function. Thus, f |(α+E1)×E2

is
affine.

(c) E1 ⊂ L⊥. If we take λ ∈ L⊥ \ E1, we have that 1L⊥(x) = 1 and 1E1(x) = 0
for all x ∈ λ + E1. Thus, 1L⊥(x) + 1E1(x)1E2(y) = 1 on the m-dimensional
flat (λ+ E1)× E2. Similarly as in 2., Trm1 (xπ(y)) is affine on this flat. Thus,
f |(λ+E1)×E2

is affine.

(d) dim(E1) = dim(L⊥) = m− µ, dim(E1 ∩ L⊥) = m− µ− 1. Let U = E1 + L⊥

be the direct sum of E1 and L⊥. It holds that dim(U) = dim(E1)+dim(L⊥)−
dim(E1 ∩ L⊥) = m− µ+ 1. On the other hand, dim(E2) = µ.

i. If µ = 2 (all of the known constructions of functions in D outside M#

have dim(E2) = 2), then dim(U) = m − 1. Let α ∈ F2m \ U . If we
consider the flat A = (α + U) × {0, β}, where β ∈ E2, we have that
1L⊥(x) + 1E1(x)1E2(y) = 0 and Trm1 (xπ(y)) is affine for all (x, y) ∈ A.
Thus, f |A is affine.

ii. Suppose µ > 2. Again, we have that dim(U) = m− µ+ 1 and dim(E2) =
µ. Let W be any (µ − 1)-dimensional subspace of E2. Then, 1L⊥(x) +
1E1(x)1E2(y) vanishes on A = (α, 0) + (U ×W ), where α /∈ U . Let us
consider the function Trm1 (xπ(y)). If x ∈ α+U , then w.l.o.g. x = α+ xu
for some xu ∈ U . We have that:

Trm1 ((α+ xu)π(y))) = Trm1 (απ(y)) + Trm1 (xuπ(y)).

We note that if xu ∈ U \E1, then Trm1 (xuπ(y)) is not necessarily an affine
function and thus we cannot be certain if f is affine on A.

To summarize, we have that f is weakly normal for the situations (a)-(d-i). In the
case (d-ii), the question whether f is weakly normal remains open.

The case when π(E2) 6= E2, seems to be more difficult to analyse which leads to the
following open problem.

Open problem: With the same notation as in Definition 4, suppose that either π(E2) 6=
E2 or π(E2) = E2 with dim(E1) = dim(L⊥) = m − µ, µ > 2. Is the function f defined
by (9) weakly normal?

Remark 5. Apart from the exclusion from the PS class, it would be of interest to in-
vestigate whether bent functions in CD may also lie outside the completed classes C# and
D#. Apparently, by the definition of CD, the members of CD cannot lie in C or D but
due to the lack of indicators for the membership in their completed versions there is no
rigorous conclusion concerning this question. Most likely, only certain instances of func-
tions in CD are outside C# and D#. This however remains to be shown and appears to
be a difficult task.

15



5. Bent duals of functions in SC and CD and their application

In 1993, Carlet determined the bent duals of functions in D0 [5, Corollary 1] and D [5,
Proposition 1]. In this section, we determine explicitly the bent duals of certain instances
of functions in C not covered by Carlet’s result. We also present another approach to
determine the duals of certain functions in D and show that these can be constructed from
the C and M class. The duals of certain functions in SC and CD are also specified and
it is shown that these can be used to construct bent functions in Bn+2 by concatenating
four suitable bent functions in Bn that stem from these classes. Moreover, we show that
the resulting bent functions are outside the M# class.

We recall that, by [5, Corollary 1], the following result gives us the bent duals of
functions in D0.

Proposition 4. [5] Let n = 2m and π be a permutation on F2m. Let f : F2m×F2m → F2

be a bent function in the D0 class defined by

f(x, y) = xπ(y) + δ0(x), x, y ∈ F2m . (14)

Then, its dual f∗ is also a bent function in 2m variables defined by f∗(x, y) = yπ−1(x) +
δ0(y).

Throughout this section we will be using the notion of (PU ) property, which is defined
as follows [21].

Definition 5. Let g ∈ Bn be any Boolean function. We say that g satisfies the property
(PU ) with the defining set U = {u1, . . . , ut} ⊆ F2n if there exists g1, . . . , gt ∈ Bn such that
g
(
x+

∑t
i=1wiui

)
= g(x) +

∑t
i=1wigi(x) for any w = (w1, . . . , wt) ∈ Ft2. Equivalently,

g is said to satisfy the property (PU ) with the defining set U = {u1, . . . , ut} ⊆ F2n if
DuiDujg ≡ 0 for any 1 ≤ i < j ≤ t.

5.1. Bent duals of certain functions in C and D.

In what follows, we determine the bent duals of certain instances of bent functions in
C and D.

Proposition 5. (C instance) Let f : F2m × F2m → F2 be a bent function defined by

f(x, y) = Trm1 (xyd) +
∏
i∈I

(Trm1 (αix) + 1), x, y ∈ F2m , (15)

where α is a primitive element of F2s, I ⊂ {0, . . . , s − 1}, s is a positive divisor of m
such that m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Then, the dual
f∗ : F2m × F2m → F2 of f is defined by

f∗(x, y) = Trm1 (x2
s+1y) +

∏
i∈I

(Trm1 (y(αix+ αix2
s

+ α2i)) + 1), x, y ∈ F2m .

Proof. By [21, Lemma 4.15], it holds that the function (x, y) 7→ Trm1 (x2
s+1y) satisfies

the (PU ) property with the defining set U = {(αi, 0) : i = 0, . . . , s− 1} (we note that the
general condition is that for all (u1, u2), (v1, v2) ∈ U ⊂ F2s×F2s it holds that u1v2+u2v1 =
0 and Trm1 (u21v2 + v21u2) = 0). Thus, by [21, Theorem 4.17], its dual is defined by

f∗(x, y) = Trm1 (x2
s+1y) +

∏
i∈I

(Trm1 (y(αix+ αix2
s

+ α2i)) + 1), x, y ∈ F2m .
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Notice that
∏
i∈I(Tr

m
1 (αix) + 1) corresponds to the indicator function F2m 3 x 7→

1L⊥(x) where L = 〈αi : i ∈ I〉. Furthermore, by [15, Theorem 5.8-(ii)], we can take
L = 〈c1, . . . , cl〉 where ci ∈ F∗2s for i = 1, . . . , l, so that (π−1, L) satisfies the (C) property,
where π is defined as above.

To determine the duals of functions in the D class, we will use a secondary construction
of bent functions in bivariate form introduced in [21]:

Construction 1. [21] Let U = {ui = (u1,i, u2,i) : 1 ≤ i ≤ t} ⊆ F2m × F2m, where
1 ≤ t ≤ m. Let g : F2m × F2m be any bent function function whose dual g∗ satisfies the
(PU ) property with the defining set U . Let F (X1, . . . , Xt) be any reduced polynomial in
F2 [X1, . . . , Xt]. Then the function f : F2m × F2m → F2 defined by

f(x, y) = g(x, y) + F (Trm1 (u1,1x+ u1,2y), . . . , T rm1 (ut,1x+ ut,2y))

is bent and its dual (by [25, Theorem 2.3]) is defined by

f∗(x, y) = g∗(x, y) + F (Du1g
∗(x, y), . . . , Dutg

∗(x, y)). (16)

Let π(y) = yd and E2 be a vector subspace corresponding to a subfield in F2s , where s
is a positive divisor of m such that m/s is odd, d(2s+1) ≡ 1 (mod 2m−1) and wt(d) ≥ 3.
The following lemma shows that the duals g∗ of bent functions g in 2m variables, defined
by g(x, y) = Trm1 (xyd) + 1E2(y), x, y ∈ F2m , satisfy the (PU ) property with the defining
set U = {0} × b(E2), where b(E2) is a basis of E2.

Lemma 1. Let E2 be a vector space in F2m which corresponds to a subfield in F2s, where
s is a positive divisor of m such that m/s is odd, d(2s+1) ≡ 1 (mod 2m−1) and wt(d) ≥ 3.
Let g : F2m × F2m → F2 be a bent function defined by

g(x, y) = Trm1 (xyd) + 1E2(y), x, y ∈ F2m .

Then, its dual is defined by

g∗(x, y) = Trm1 (x2
s+1y) + 1E2(x2

s+1),

and furthermore DaDbg
∗ ≡ 0 for all a, b ∈ U = {0} × b(E2) or b(E2)× {0}.

Proof. Obviously, the function g is a Maiorana-McFarland function of the form g(x, y) =
Trm1 (xπ(y)) + h(y) with π(y) = yd and h(y) = 1E2(y). Thus, its dual is of the form

g∗(x, y) = Trm1 (yπ−1(x)) + h(π−1(x)) = Trm1 (x2
s+1y) + 1E2(x2

s+1), x, y ∈ F2m .

Let a, b ∈ U and x, y ∈ F2m be arbitrary. Clearly,

DaDbg
∗(x, y) = DaDbTr

m
1 (yx2

s+1) +DaDb1E2(x2
s+1).

By [21, Lemma 4.15], it holds that DaDbTr
m
1 (yx2

s+1) = 0. On the other hand,
because 1E2(x2

s+1) depends only on x, it is easy to note that DaDb1E2(x2
s+1) = 0 for

all x ∈ F2m if a, b ∈ {0} ×E2. Hence, g∗ satisfies the (PU ) property with the defining set
U = {0} × b(E2). On the other hand, if U = b(E2)× {0}, then

DaDb1E2(x2
s+1) = 1E2(x2

s+1) + 1E2((x+ a)2
s+1) + 1E2((x+ b)2

s+1) + 1E2((x+ a+ b)2
s+1).

Now if x ∈ E2, then x2
s+1, (x+a)2

s+1, (x+b)2
s+1, (x+a+b)2

s+1 ∈ E2 for all a, b ∈ b(E2)
and thus DaDb1E2(x2

s+1) = 0. If x /∈ E2, as E2 is a field and x 7→ x2
s+1 is a monomial

permutation, the elements of E2 are mapped to itself and thus x2
s+1 /∈ E2. Furthermore,

since a ∈ b(E2), it must hold that x + a /∈ E2 and similarly as before (x + a)2
s+1 /∈ E2.

The same argument holds for (x+ b)2
s+1 and (x+a+ b)2

s+1. Thus, DaDb1E2(x2
s+1) = 0

for all x ∈ F2m .
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Now, as a direct consequence of Construction 1 and Lemma 1, we have the following
result which is used to provide the dual of certain instances of bent functions in D, namely
in Theorem 10.

Proposition 6. With the same notation as in Lemma 1, let f : F2m × F2m → F2 be
defined by

f(x, y) = g(x, y) + 1E1(x), x, y ∈ F2m ,

where g(x, y) = Trm1 (xyd) + 1E2(y) and E1 = E⊥2 . Then, f is bent and its dual is defined
by

f∗(x, y) = g∗(x, y) +
∏

ω∈b(E2)

(Trm1 (y(ωx2
s

+ ωx+ ω2)) + 1), x, y ∈ F2m .

Proof. By Lemma 1, g∗ satisfies the property (PU ) with the defining set b(E2) × {0}.
Thus, by Construction 1, the function f defined by

f(x, y) = g(x, y) +
∏

ω∈b(E2)

(Trm1 (ωx) + 1) = g(x, y) + 1E1(x)

is bent. Let us compute the first order derivative of g∗ in (ω, 0) for ω ∈ b(E2).

D(ω,0)g
∗(x, y) = g∗(x, y) + g∗(x+ ω, y)

= Trm1 (x2
s+1y) + 1E2(x2

s+1) + Trm1 ((x+ ω)2
s+1y) + 1E2((x+ ω)2

s+1)

= Trm1 (y(ωx2
s

+ ωx+ ω2).

Thus, by Construction 1, the dual f∗ of f is defined by

f∗(x, y) = g∗(x, y) +
∏

ω∈b(E2)

(Trm1 (y(ωx2
s

+ ωx+ ω2)) + 1), x, y ∈ F2m .

In [17] the author determines the duals for functions obtained by the following sec-
ondary construction of bent functions.

Theorem 9. [17, Theorem 4] Let n be any positive even integer. Let f1, f2 and f3 be
three bent functions on Fn2 . Denote by f4 the function f1 + f2 + f3 and by σ the function
f1f2 + f1f3 + f2f3. Now, if f4 is bent and if f∗4 = f∗1 + f∗2 + f∗3 , then σ is bent and
σ∗ = f∗1 f

∗
2 + f∗1 f

∗
3 + f∗2 f

∗
3 .

We will now prove that certain functions in D can be expressed in terms of Theorem
9 and as a direct consequence we will be able to determine the duals of the corresponding
functions in SC and CD.

Theorem 10. (D instances) With the same notation as in Theorem 9, let n = 2m,
s be a positive divisor of m such that m/s is odd, and d a positive integer such that
d(2s + 1) ≡ 1 (mod 2m− 1) and wt(d) ≥ 3. Let E2 be a subfield of F2s and E1 = E⊥2 . Let
fi : F2m × F2m → F2, i = 1, 2, 3, 4, be defined by:

f1(x, y) = Trm1 (xyd),

f2(x, y) = Trm1 (xyd) + 1E1(x),

f3(x, y) = Trm1 (xyd) + 1E2(y),

f4(x, y) = f1(x, y) + f2(x, y) + f3(x, y).

Then, using σ = f1f2 + f1f3 + f2f3, the function σ(x, y) = Trm1 (xyd) + 1E1(x)1E2(y) is
bent and its dual is defined by

σ∗(x, y) = Trm1 (x2
s+1y) +

∏
ω∈b(E2)

(Trm1 (ωx2
s+1) + 1)(Trm1 (y(ωx+ ωx2

s
+ ω2)) + 1).

(17)
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Proof. Firstly, by Proposition 6, we have that f4 is bent and its dual f∗4 is defined by

f∗4 = Trm1 (x2
s+1y) +

∏
ω∈b(E2)

(Trm1 (ωx2
s+1) + 1)

︸ ︷︷ ︸
ψ1(x)

+
∏

ω∈b(E2)

(Trm1 (y(ωx+ ωx2
s

+ ω2)) + 1)

︸ ︷︷ ︸
ψ2(x,y)

.

(18)

From Proposition 5 and Lemma 1, it is easy to compute that f∗1 + f∗2 + f∗3 = f∗4 . Thus,
by Theorem 9, the function σ is bent. Furthermore,

σ(x, y) = f1(x, y)f2(x, y) + f1(x, y)f3(x, y) + f2(x, y)f3(x, y)

= Trm1 (xyd) + Trm1 (xyd)1E1(x) + Trm1 (xyd) + Trm1 (xyd)1E2(y)+

+ Trm1 (xyd) + Trm1 (xyd)1E2(y) + Trm1 (xyd)1E1(x) + 1E1(x)1E2(y)

= Trm1 (xyd) + 1E1(x)1E2(y),

that is σ ∈ D, and its dual is defined by:

σ∗(x, y) = f∗1 (x, y)f∗2 (x, y) + f∗1 (x, y)f∗3 (x, y) + f∗2 f
∗
3 (x, y)

= Trm1 (x2
s+1y) + ψ1(x)ψ2(x, y)

= Trm1 (x2
s+1y) +

∏
ω∈b(E2)

(Trm1 (ωx2
s+1) + 1)(Trm1 (y(ωx+ ωx2

s
+ ω2)) + 1).

The above results are used in the next section for specifying the duals of bent functions
in SC and CD.

5.2. Duals of bent functions in SC and CD
Using a similar approach as in Proposition 6, we will show that certain functions

(“parts” of functions in SC and CD) satisfy the (PU ) property with some defining set,
and consequently we will be able to determine the duals of the corresponding functions
in SC and CD.

Proposition 7. (SC case) Let f : F2m × F2m → F2 be a bent function defined by

f(x, y) = Trm1 (xyd) +
∏
i∈I

(
Trm1 (αix) + 1

)
+ δ0(x), x, y ∈ F2m , (19)

where α is a primitive element of F2s, I ⊂ {0, 1, . . . , s − 1}, s is a positive divisor of
m such that m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Then, the dual
f∗ : F2m × F2m → F2 of f is defined by

f∗(x, y) = Trm1 (x2
s+1y) +

∏
i∈I

(
Trm1 (y(αix+ αix2

s
+ α2i)) + 1

)
+ δ0(y), x, y ∈ F2m .

Proof. Let g(x, y) = Trm1 (xyd) + δ0(x). Then, by Proposition 4, we have that g∗(x, y) =
Trm1 (yx2

s+1) + δ0(y). We will prove that g∗ satisfies the (PU ) property with the defining
set U = {αi : i ∈ I} × {0}. Let a, b ∈ U and x, y ∈ F2m be arbitrary. Then,

DaDbg
∗(x, y) = DaDb(Tr

m
1 (x2

s+1y)) +DaDb(δ0(y)) = 0,

because the first summand is equal to zero by [21, Lemma 4.15] and the second summand
is equal to zero since the y-coordinate of a and b is equal to zero. Thus, by [21, Theorem
4.17], the function f is indeed bent and its dual is defined by

f∗(x, y) = Trm1 (x2
s+1y) +

∏
i∈I

(
Trm1 (y(αix+ αix2

s
+ α2i)) + 1

)
+ δ0(y), x, y ∈ F2m .
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Using a similar method, we determine the duals of bent functions in CD.

Theorem 11. (CD case) With the same notation as in Theorem 10, let σ : F2m×F2m →
F2 be defined by σ(x, y) = Trm1 (xyd) + 1E1(x)1E2(y), x, y ∈ F2m. Let L ⊂ E2 be any
subspace of F2m of dimension at least 2. Then, the function f : F2m × F2m → F2 defined
by

f(x, y) = σ(x, y) +
∏

ω∈b(L)

(Trm1 (ωx) + 1), x, y ∈ F2m ,

is bent and its dual is defined by

f∗(x, y) = σ∗(x, y) +
∏

ω∈b(L)

(Trm1 (y(ωx+ ωx2
s

+ ω2)) + 1), x, y ∈ F2m , (20)

where b(L) is the basis of L.

Proof. Let a, b ∈ b(L) × {0} and x, y ∈ F2m be arbitrary. From Theorem 10, we have
that DaDbσ

∗(x, y) = DaDbTr
m
1 (x2

s+1y) + DaDbψ1(x)ψ2(x, y), where ψ1, ψ2 are defined
by (18). By [21, Lemma 4.15], we have that DaDbTr

m
1 (x2

s+1y) = 0. Let λ ∈ b(L) ⊂ E2

be arbitrary. Then,

ψ2(x+ λ, y) =
∏

ω∈b(E2)

(Tr1m(y(ωx2
s

+ ωλ+ ωx+ ωλ+ ω2)) + 1) = ψ2(x, y)

and thus ψ2(x) = ψ2(x+ a) = ψ2(x+ b) = ψ2(x+ a+ b). Hence,

DaDbψ1(x)ψ2(x, y) = ψ1(x)ψ2(x, y) + ψ1(x+ a)ψ2(x+ a, y)

+ ψ1(x+ b)ψ2(x+ b, y) + ψ1(x+ a+ b)ψ2(x+ a+ b, y))

= ψ2(x, y)(ψ1(x) + ψ1(x+ a) + ψ1(x+ b) + ψ1(x+ a+ b)

= ψ2(x, y)(1E2(x2
s+1) + 1E2((x+ a)2

s+1)+

1E2((x+ b)2
s+1) + 1E2((x+ a+ b)2

s+1)).

Because x 7→ x2
s+1 is a monomial permutation and E2 is a field, it holds that (x+λ)2

s+1 ∈
E2 if and only if x + λ ∈ E2, and for λ ∈ E2, it is equivalent to the fact that x ∈ E2.
Thus, as a, b ∈ b(L) ⊂ E2, we have that

DaDbψ1(x)ψ2(x, y) = ψ2(x, y)(1E2(x2
s+1) + 1E2(x2

s+1) + 1E2(x2
s+1) + 1E2(x2

s+1)) = 0,

for all x, y ∈ F2m . Hence, σ∗ satisfies the (PU ) property with the defining set b(L)×{0}.
Consequently, by Construction 1, the function f is bent and its dual is defined by (20).

5.3. Two bent 4-decompositions

In [3], the authors completely describe the 4-decomposition (f1, f2, f3, f4), where fi ∈
Bn−2, of a bent function f ∈ Bn in terms of the second order derivatives. More precisely,
the notation (f1, f2, f3, f4) means that f1, . . . , f4 ∈ Bn−2 are defined on the four cosets of
V = 〈a,b〉⊥, thus fi are defined on 0n⊕V,a⊕V,b⊕V, (a⊕b)⊕V , respectively. Such a
decomposition is called a bent 4-decomposition when all fi (i ∈ [1, 4]), are bent; a semi-
bent 4-decomposition when all fi (i ∈ [1, 4]) are semi-bent; a 5-valued 4-decomposition
when all fi (i ∈ [1, 4]) are 5-valued spectra functions so that Wfi ∈ {0,±2(n−2)/2,±2n/2}
[3]. These are the only possibilities and we strictly have that all the restrictions fi have
the same spectral profile.

For our purpose, we are only interested in bent 4-decomposition and its characteriza-
tion in terms of the duals of fi. Notice that the canonical decomposition of f corresponds
to the choice of a,b ∈ Fn2 given by a = (0, 0, . . . , 0, 0, 1) and b = (0, 0, . . . , 0, 1, 0) in
which case the restrictions fi are given as: f1(x) = f(x, 0, 0), . . . , f4(x) = f(x, 1, 1),
where x ∈ Fn−22 . In this case, we use a shorthand notation f = f1||f2||f3||f4 to denote
this canonical decomposition of f .
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Theorem 12. [12] Let f ∈ Bn be a bent function, for even n ≥ 4. Let α, β ∈ F∗2n be two
distinct elements and V = 〈α, β〉⊥. If we denote by (f1, . . . , f4) the 4-decomposition of f
with respect to V, then (f1, . . . , f4) is a bent 4-decomposition if and only if f∗1 + f∗2 + f∗3 +
f∗4 = 1.

Using this result, we show that bent functions stemming fromM, C,D0 and SC form a
bent 4-decomposition. To satisfy the conditions of Theorem 12, we note that f1 is defined
by f1(x, y) = Trm1 (xyd)+1 instead of Trm1 (xyd), so that the sum f∗1 +f∗2 +f∗3 +f∗4 equals
1 (otherwise it would be 0).

Theorem 13. Let n = 2m, s be a positive divisor of m such that m/s is odd, and d a
positive integer such that d(2s+1) ≡ 1 (mod 2m−1) and wt(d) ≥ 3. Let f1 : F2m×F2m →
F2 be defined by f1(x, y) = Trm1 (xyd) + 1, and f2, f3 and f4 be defined by (14), (15) and
(19), respectively. Then, f = (f1, . . . , f4) is a bent function in n+ 2 variables.

Proof. Firstly, we note that f∗1 (x, y) = Trm1 (x2
s+1y) + 1, x, y ∈ F2m . From Propositions

5, 4 and 7 it is easy to compute that f∗1 (x, y) + f∗2 (x, y) + f∗3 (x, y) + f∗4 (x, y) = 1 for all
x, y ∈ F2m . Thus, by Theorem 12 it holds that f = (f1, . . . , f4) is a bent 4-decomposition,
i.e., it follows that f is a bent function in n+ 2 variables.

Remark 6. Explicitly, let f = (f1, f2, f3, f4) be defined as in Theorem 12, then by [11,
Corollary 1], we can write f : F2m × F2m × F22 → F2 as

f(x, y, z1, z2) = f1(x, y) + z1(f1 + f3)(x, y) + z2(f1 + f2)(x, y), x, y ∈ F2m , z1, z2 ∈ F2 ,
(21)

which corresponds to the concatenation f = f1||f2||f3||f4. Let f1, f2, f3, f4 and f be
defined as in Theorem 13, then (21) evaluates to:

f(x, y, z1, z2) = Trm1 (xyd) + z11L⊥(x) + z2δ0(x) + z1 + z2 + 1, x, y ∈ F2m , z1, z2 ∈ F2 .

Moreover, it turns out that bent functions described in Theorem 13 do not belong to
the completed M class. For convenience, we use the vector space representation below.

Theorem 14. Let n = 2m be even and f ∈ Bn be given as in Theorem 13 so that

f(x,y, z1, z2) = φ(y) · x⊕z11L⊥(x)⊕z2δ0(x)⊕z1⊕z2⊕1, x,y ∈ Fm2 , z1, z2 ∈ F2. (22)

If c · φ has no nonzero linear structures for any c ∈ Fm2 \ {0m}, then f is outside M#.

Proof. For convenience, we denote a = (a1,a2, a3, a4),b = (b1,b2, b3, b4) ∈ Fm2 × Fm2 ×
F2 × F2. Let V be an arbitrary (m + 1)-dimensional subspace of Fn+2

2 . It is sufficient
to show that for an arbitrary (m + 1)-dimensional subspace V of Fn+2

2 one can always
find two vectors a,b ∈ V such that D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x,y, z1, z2) 6= 0 for some

(x,y, z1, z2) ∈ Fn+2
2 . We have

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x,y, z1, z2) = Da2Db2(φ(y)) · x
⊕ Db2(φ(y⊕a2)) · a1⊕Da2(φ(y⊕b2)) · b1

⊕ z2Da1Db1δ0(x)⊕z1Da1Db11L⊥(x)⊕T (x),
(23)

where T (x) = a3Db11L⊥(x⊕a1)⊕b3Da11L⊥(x⊕b1)⊕a4Db1δ0(x⊕a1)⊕b4Da1δ0(x⊕b1).
There are three cases to be considered.

1. Let |{x ∈ Fm2 : (x,y, z1, z2) ∈ V }| > 2. We can select two vectors a,b ∈ V such
that a1 6= 0m,b1 6= 0m and a1 6= b1. From (23), we have

D(a1,a2,a3,a4)D(b1,b2,b3,b4)f(x,y, z1, z2) = z2Da1Db1δ0(x)⊕M(x, y, z1),

where M(x, y, z1) = Da2Db2(φ(y)) · x⊕Db2(φ(y⊕a2)) · a1⊕Da2(φ(y⊕b2)) · b1⊕
z1Da1Db11L⊥(x)⊕T (x). As Da1Db1δ0 6≡ 0, it must hold that DaDbf 6≡ 0.
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2. Let |{x ∈ Fm2 : (x,y, z1, z2) ∈ V }| = 2. We select a = (a1,a2, a3, a4) ∈ V such
that a1 6= 0m. Since |V | = 2m+1, we can select b = (b1,b2, b3, b4) ∈ V such that
b1 = 0m and b2 6= 0m. Notice that b1 = 0m implies that Da2(φ(y⊕b2)) · b1 = 0.
From (23), we deduce that

D(a1,0m,0,0)D(0m,b2,0,0)f(x,y, z1, z2)
∣∣∣
x=0m,z1=z2=0

= Db2(φ(y)) · a1.

As c · φ has no nonzero linear structures for any c ∈ Fm2 \ {0m}, then Db2φ(y) · a1

is not a constant function. Thus, we have found two elements a,b ∈ V such that
DaDbf 6≡ 0.

3. Let |{x ∈ Fm2 : (x,y, z1, z2) ∈ V }| = 1. We have |{y ∈ Fm2 : (x,y, z1, z2) ∈ V }| ≥
2m−1. For any a = (0m,a2, a3, a4) ∈ V such that a2 6= 0m, we have Da2φi 6≡ const.,
Da2φj 6≡ const. and Da2(φi ⊕ φj) 6≡ const., where 1 ≤ i 6= j ≤ m and φ =
(φ1, . . . , φm), since c · φ has no nonzero linear structure for any c ∈ Fm2 \ {0m}.
Furthermore,

|{b2 ∈ Fm2 : Db2Da2φi = Db2Da2φj ≡ 0m}| < 2m−1,

since the maximum cardinality

|{b2 ∈ Fm2 : Db2Da2φi = Db2Da2φj ≡ 0m}| = 2m−2

is attained if both Da2φi and Da2φj are affine. Hence, we can select two vectors
a,b ∈ V such that Da2Db2φ 6≡ 0m. Since

D(0m,a2,a3,a4)D(0m,b2,b3,b4)f(x,y, z1, z2) = Da2Db2(φ(y)) · x,

we conclude that D(a1,a2,a3,a4)D(b1,b2,b3,b4)f 6≡ 0.

Similarly as in Theorem 13, we will show that certain functions fromM, C,D and CD
can form a bent 4-decomposition.

Theorem 15. Let n = 2m, s be a positive divisor of m such that m/s is odd, and d
a positive integer such that d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3. Let E2 = F2s,
L ⊂ E2 be a subspace of F2m and E1 = E⊥2 . Let f1 : F2m × F2m → F2 be defined by
f1(x, y) = Trm1 (xyd) + 1, and f2, f3 and f4 be defined by:

f2(x, y) = Trm1 (xyd) + 1L⊥(x),

f3(x, y) = Trm1 (xyd) + 1E1(x)1E2(y),

f4(x, y) = Trm1 (xyd) + 1L⊥(x) + 1E1(x)1E2(y).

Then, f = (f1, . . . , f4) is a bent function in n+ 2 variables.

Proof. From Proposition 5, Theorem 10 and Theorem 11, it is easy to compute that
f∗1 (x, y) + f∗2 (x, y) + f∗3 (x, y) + f∗4 (x, y) = 1 for all x, y ∈ F2m . Thus, by Theorem 12,
it holds that f = (f1, . . . , f4) is a bent 4-decomposition, i.e., it follows that f is a bent
function in n+ 2 variables.

Remark 7. Let f1, f2, f3, f4 and f be defined as in Theorem 15, then (21) evaluates to

f(x, y, z1, z2) = Trm1 (xyd)+z11L⊥(x)+z21E1(x)1E2(y)+z1+z2+1, x, y ∈ F2m , z1, z2 ∈ F2 .
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6. Concluding remarks

We have introduced a new superclass of bent functions obtained from C and D which
is shown to be provably outsideM# under certain conditions (see Theorem 8). Further-
more, we strongly believe that these functions may also lie outside C# and D# (due to
the modification performed on subsets), but due to the lack of suitable indicators this
question appears to be difficult to answer. We have provided an explicit class of bent
functions in CD outside M# (see Proposition 2) and two examples which can (possibly)
be generalized. The question whether these bent functions can be simultaneously outside
the completed M and PS+ classes is partially addressed. Furthermore, it is shown that
one can employ different families of n-variable bent functions (whose duals are explicitly
determined) in the so-called 4-bent concatenation for the purpose of generating new bent
functions in n+ 2 variables. Most notably, the resulting bent functions in n+ 2 variables
can also lie outside M# class. Construction methods of vectorial bent functions, based
on this CD class, whose components (possibly not all) are outsideM# are also of interest.
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