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Abstract
We describe a nondeterministic method for bignum arithmetic. It is

inspired by the “casting out nines” technique, where some identity is checked
modulo 9, providing a probabilistic result.

More generally, we might check that some identity holds under a set
of moduli, i.e. f(~x) = 0 mod mi for each mi ∈ M . Then f(~x) = 0
mod lcm(M), and if we know |f(~x)| < lcm(M), it follows that f(~x) = 0.

We show how to perform such small-modulus checks efficiently, for cer-
tain f(~x) such as bignum multiplication. We focus on the cost model of zero-
knowledge proof systems, which support field arithmetic and range checks
as native operations.
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1 Preliminaries

Let [b] denote the set {0, . . . , b− 1}. A bignum consisting of n limbs in base b can
be represented by a tuple in [b]n.

There exists a canonical isomorphism between [b]n and [bn], that is, between a
tuple of limbs and the integer they encode. Its forward map [b]n → [bn] is simply

σb(x) =
n−1∑
i=0

bixi.

Given a pair of bignums, x, y ∈ [b]n, the product σb(x)σb(y) can be written as
a function ([b]n, [b]n)→ [b2n], namely

πb(x, y) =
n−1∑
i=0

n−1∑
j=0

bi+jxiyi.

1.1 Partially reduced summations

When checking an identity mod m, it can be useful to partially reduce σb(x) mod m
by reducing each bi expression. Let

σ
(m)
b (x) =

n−1∑
i=0

(bi mod m)xi.

Similarly, we can partially reduce πb(x, y) mod m as

π
(m)
b (x, y) =

n−1∑
i=0

n−1∑
j=0

(bi+j mod m)xiyi.

Note that σb(x) = σ
(m)
b (x) mod m, and likewise πb(x, y) = π

(m)
b (x, y) mod m.

From the summations above, one can trivially deduce the following bounds:

Theorem 1. Given x ∈ [b]n, σ
(m)
b (x) < nmb. Given x, y ∈ [b]n, π

(m)
b (x, y) <

n2mb2.

1.2 Notation

Given x ∈ [b]n, we sometimes use x and σb(x) interchangeably when the meaning
is clear from context. For example, x < bn is shorthand for σb(x) < bn.
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2 Widening multiplication

We first consider the problem of multiplying two bignums, x, y ∈ [b]n. Instead of
computing xy deterministically, we will witness their product z ∈ [b]2n, then check
that xy = z.

Rather than verifying this identity directly, we will check that it holds under a
set of moduli, M = {m0, . . . ,mk−1}. Suppose that for each mi, xy = z mod mi,
or equivalently, mi | (xy − z). Then lcm(M) | (xy − z), where lcm denotes the
least common multiple function.

Since xy < b2n and z < b2n, |xy− z| < b2n. If we select M such that lcm(M) ≥
b2n, then |xy−z| < lcm(M), so xy−z = 0 is the only solution to lcm(M) | (xy−z).
Hence, xy = z.

Remark 1. Pairwise coprime sets are natural choices for M , since they have the
property that lcm(M) =

∏k−1
i=0 mi.

2.1 Congruence mod mi

It remains to check xy = z mod mi, or more precisely, πb(x, y) = σb(z) mod mi.
By partially reducing both sides, we can reduce the problem to

π
(mi)
b (x, y) = σ

(mi)
b (z) mod mi.

Rather than deterministically reducing both sides, we can witness s ∈ Z such that

π
(mi)
b (x, y)− σ(mi)

b (z) = smi. (1)

The following bound on |s| trivially follows from Theorem 1:

Theorem 2. If s is a valid solution to Equation 1, |s| < n2b2.

2.2 Avoiding wrap-around

With a computation model based on prime field arithmetic, we cannot check Equa-
tion 1 directly. We can only check that it holds mod p, or equivalently, that there
exists some t such that

π
(mi)
b (x, y)− σ(mi)

b (z)− smi = tp.

To prevent invalid solutions involving wrap-around, we must bound the left-hand
side such that t = 0 is the only possible solution. In particular, we must ensure
that ∣∣∣π(mi)

b (x, y)− σ(mi)
b (z)− smi

∣∣∣ < p.
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Applying the triangle inequality, and leveraging the fact that π
(mi)
b (x, y) and−σ(mi)

b (z)
have opposite signs, it suffices to ensure that

max
{
π
(mi)
b (x, y), σ

(mi)
b (z)

}
+ |smi| < p,

or, applying Theorem 1 and Theorem 2, that

2n2mib
2 ≤ p.

We will pick a set of parameters for which this holds.

Remark 2. It is natural to include p itself in M , since we can check an identity
mod p “natively.” Clearly p itself need not satisfy the bound above, since wrap-
around is not an issue when we are checking an identity mod p.

3 Modular multiplication

Suppose we wish to compute modular multiplication with a fixed modulus, q < bn.
As before, we are given x, y ∈ [b]n as inputs, and we will witness z ∈ [b]n. But
instead of checking xy = z, our goal now is to check xy = z mod q.1

To do so, we could witness r such that πb(x, y)− σb(z) = rq. However, we can

reduce the problem size by instead witnessing r such that π
(q)
b (x, y)−σ(q)

b (z) = rq.
Theorem 1 then implies |r| < n2b2, which we would enforce with a range check.

As before, we test this under a set of moduli M . From Theorem 1 and the
triangle inequality, we know∣∣∣π(q)

b (x, y)− σ(q)
b (z)− rq

∣∣∣ < 2n2qb2,

so we select M such that lcm(M) ≥ 2n2qb2. Note that we would have needed a
larger lcm(M) had we not performed the partial reduction mod q.

3.1 Congruence mod mi

Our small-moduli checks now have the form

π
(q)
b (x, y)− σ(q)

b (z) = rq mod mi.

Applying partial reductions mod mi to all constants, we have

π
(q)(mi)
b (x, y)− σ(q)(mi)

b (z) = r(q mod mi) mod mi,

1To ensure that the result is in the canonical range [q], we would need to additionally enforce
z < q. In practice, however, a partial reduction to [bn] suffices for most applications.
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where (q)(mi) denotes a sequence of partial reductions, i.e.,

σ
(q)(mi)
b =

n−1∑
i=0

((bi mod q) mod mi)xi,

and similarly for π
(q)(mi)
b (x, y).

Now, we witness s such that

π
(q)(mi)
b (x, y)− σ(q)(mi)

b (z)− r(q mod mi) = smi.

Theorem 1 implies |s| < 2n2b2, which we enforce with a range check.

3.2 Avoiding wrap-around

Finally, as in Section 2.2, we must choose our parameters such that wrap-around is
not possible when the constraint above is checked mod p. Using a similar analysis,
it suffices that

4n2mib
2 ≤ p.

3.3 Example parameters

Suppose our “native” field is Fp where p = 264 − 232 + 1. Suppose we would like
to perform multiplication over the secp256k1 base field, Fq, where q = 2256− 232−
29 − 28 − 27 − 26 − 24 − 1. Let n = 16 and b = 216.

To avoid wrap-around, we require each mi (except for p itself, as noted in
Remark 2) to satisfy

mi ≤
p

4n2b2
,

which (after rounding down) is 4194303, or roughly 222.
Additionally, M must satisfy lcm(M) ≥ 2n2qb2, which is roughly 2297. One

such M is

M = (p, 4194272, 4194273, 4194275, 4194277, 4194281, 4194283,

4194287, 4194289, 4194293, 4194299, 4194301),

a pairwise coprime set which satisfies both of these constraints.

4 Probabilistic method

Instead of fixing M , we can sample it as a random subset of some larger pairwise
coprime set M. Given our bound |xy − z| < b2n, we can argue that only a small
fraction of M can divide xy− z, so if xy 6= z, the identity is unlikely to hold under
all m ∈ M . Depending on our security parameter, this may enable us to use a
smaller M relative to the previous method.
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4.1 Example parameters

Concretely, let M be a pairwise coprime subset of [215, . ., 216]. We found such a
set containing 3082 integers.

If xy and z both fit within 512 bits, xy − z can be divisible by at most 34
mi ∈M; any subset of size 35 or more would have a product exceeding 2512. Thus
if xy 6= z, the probability that xy = z mod mi given a random mi ∈M is at most
34/3069.

If we sample each mi ∈M independently, in which case duplicates are possible,
then 20 samples provides 128-bit security: (34/3069)20 < 2−128. If our sampling
process prevents duplicates, then 19 samples suffices, since

18∏
i=0

(
34− i

3069− i

)
< 2−128.
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