Casting out Primes:
 Bignum Arithmetic for Zero-Knowledge Proofs

Daniel Lubarov
daniel.1@polygon.technology

Jordi Baylina
jordi@polygon.technology

October 26, 2022

Abstract

We describe a nondeterministic method for bignum arithmetic. It is inspired by the "casting out nines" technique, where some identity is checked modulo 9 , providing a probabilistic result.

More generally, we might check that some identity holds under a set of moduli, i.e. $f(\vec{x})=0 \bmod m_{i}$ for each $m_{i} \in M$. Then $f(\vec{x})=0$ $\bmod \operatorname{lcm}(M)$, and if we know $|f(\vec{x})|<\operatorname{lcm}(M)$, it follows that $f(\vec{x})=0$.

We show how to perform such small-modulus checks efficiently, for certain $f(\vec{x})$ such as bignum multiplication. We focus on the cost model of zeroknowledge proof systems, which support field arithmetic and range checks as native operations.

Contents

1 Preliminaries 2
1.1 Partially reduced summations 2
1.2 Notation 2
$2 \quad$ Widening multiplication 3
2.1 Congruence mod m_{i} 3
2.2 Avoiding wrap-around 3
3 Modular multiplication 4
3.1 Congruence mod m_{i} 4
3.2 Avoiding wrap-around 5
3.3 Example parameters 5
4 Probabilistic method 5
4.1 Example parameters 6

1 Preliminaries

Let $[b]$ denote the set $\{0, \ldots, b-1\}$. A bignum consisting of n limbs in base b can be represented by a tuple in $[b]^{n}$.

There exists a canonical isomorphism between $[b]^{n}$ and $\left[b^{n}\right]$, that is, between a tuple of limbs and the integer they encode. Its forward map $[b]^{n} \rightarrow\left[b^{n}\right]$ is simply

$$
\sigma_{b}(x)=\sum_{i=0}^{n-1} b^{i} x_{i}
$$

Given a pair of bignums, $x, y \in[b]^{n}$, the product $\sigma_{b}(x) \sigma_{b}(y)$ can be written as a function $\left([b]^{n},[b]^{n}\right) \rightarrow\left[b^{2 n}\right]$, namely

$$
\pi_{b}(x, y)=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} b^{i+j} x_{i} y_{i}
$$

1.1 Partially reduced summations

When checking an identity $\bmod m$, it can be useful to partially reduce $\sigma_{b}(x) \bmod m$ by reducing each b^{i} expression. Let

$$
\sigma_{b}^{(m)}(x)=\sum_{i=0}^{n-1}\left(b^{i} \bmod m\right) x_{i}
$$

Similarly, we can partially reduce $\pi_{b}(x, y) \bmod m$ as

$$
\pi_{b}^{(m)}(x, y)=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(b^{i+j} \bmod m\right) x_{i} y_{i}
$$

Note that $\sigma_{b}(x)=\sigma_{b}^{(m)}(x) \bmod m$, and likewise $\pi_{b}(x, y)=\pi_{b}^{(m)}(x, y) \bmod m$.
From the summations above, one can trivially deduce the following bounds:
Theorem 1. Given $x \in[b]^{n}, \sigma_{b}^{(m)}(x)<n m b$. Given $x, y \in[b]^{n}, \pi_{b}^{(m)}(x, y)<$ $n^{2} m b^{2}$.

1.2 Notation

Given $x \in[b]^{n}$, we sometimes use x and $\sigma_{b}(x)$ interchangeably when the meaning is clear from context. For example, $x<b^{n}$ is shorthand for $\sigma_{b}(x)<b^{n}$.

2 Widening multiplication

We first consider the problem of multiplying two bignums, $x, y \in[b]^{n}$. Instead of computing $x y$ deterministically, we will witness their product $z \in[b]^{2 n}$, then check that $x y=z$.

Rather than verifying this identity directly, we will check that it holds under a set of moduli, $M=\left\{m_{0}, \ldots, m_{k-1}\right\}$. Suppose that for each $m_{i}, x y=z \bmod m_{i}$, or equivalently, $m_{i} \mid(x y-z)$. Then $\operatorname{lcm}(M) \mid(x y-z)$, where lcm denotes the least common multiple function.

Since $x y<b^{2 n}$ and $z<b^{2 n},|x y-z|<b^{2 n}$. If we select M such that $\operatorname{lcm}(M) \geq$ $b^{2 n}$, then $|x y-z|<\operatorname{lcm}(M)$, so $x y-z=0$ is the only solution to $\operatorname{lcm}(M) \mid(x y-z)$. Hence, $x y=z$.

Remark 1. Pairwise coprime sets are natural choices for M, since they have the property that $\operatorname{lcm}(M)=\prod_{i=0}^{k-1} m_{i}$.

2.1 Congruence mod m_{i}

It remains to check $x y=z \bmod m_{i}$, or more precisely, $\pi_{b}(x, y)=\sigma_{b}(z) \bmod m_{i}$. By partially reducing both sides, we can reduce the problem to

$$
\pi_{b}^{\left(m_{i}\right)}(x, y)=\sigma_{b}^{\left(m_{i}\right)}(z) \quad \bmod m_{i} .
$$

Rather than deterministically reducing both sides, we can witness $s \in \mathbb{Z}$ such that

$$
\begin{equation*}
\pi_{b}^{\left(m_{i}\right)}(x, y)-\sigma_{b}^{\left(m_{i}\right)}(z)=s m_{i} \tag{1}
\end{equation*}
$$

The following bound on $|s|$ trivially follows from Theorem 1:
Theorem 2. If s is a valid solution to Equation 1, $|s|<n^{2} b^{2}$.

2.2 Avoiding wrap-around

With a computation model based on prime field arithmetic, we cannot check Equation 1 directly. We can only check that it holds $\bmod p$, or equivalently, that there exists some t such that

$$
\pi_{b}^{\left(m_{i}\right)}(x, y)-\sigma_{b}^{\left(m_{i}\right)}(z)-s m_{i}=t p
$$

To prevent invalid solutions involving wrap-around, we must bound the left-hand side such that $t=0$ is the only possible solution. In particular, we must ensure that

$$
\left|\pi_{b}^{\left(m_{i}\right)}(x, y)-\sigma_{b}^{\left(m_{i}\right)}(z)-s m_{i}\right|<p .
$$

Applying the triangle inequality, and leveraging the fact that $\pi_{b}^{\left(m_{i}\right)}(x, y)$ and $-\sigma_{b}^{\left(m_{i}\right)}(z)$ have opposite signs, it suffices to ensure that

$$
\max \left\{\pi_{b}^{\left(m_{i}\right)}(x, y), \sigma_{b}^{\left(m_{i}\right)}(z)\right\}+\left|s m_{i}\right|<p
$$

or, applying Theorem 1 and Theorem 2, that

$$
2 n^{2} m_{i} b^{2} \leq p
$$

We will pick a set of parameters for which this holds.
Remark 2. It is natural to include p itself in M, since we can check an identity mod p "natively." Clearly p itself need not satisfy the bound above, since wraparound is not an issue when we are checking an identity $\bmod p$.

3 Modular multiplication

Suppose we wish to compute modular multiplication with a fixed modulus, $q<b^{n}$. As before, we are given $x, y \in[b]^{n}$ as inputs, and we will witness $z \in[b]^{n}$. But instead of checking $x y=z$, our goal now is to check $x y=z \bmod q$.

To do so, we could witness r such that $\pi_{b}(x, y)-\sigma_{b}(z)=r q$. However, we can reduce the problem size by instead witnessing r such that $\pi_{b}^{(q)}(x, y)-\sigma_{b}^{(q)}(z)=r q$. Theorem 1 then implies $|r|<n^{2} b^{2}$, which we would enforce with a range check.

As before, we test this under a set of moduli M. From Theorem 1 and the triangle inequality, we know

$$
\left|\pi_{b}^{(q)}(x, y)-\sigma_{b}^{(q)}(z)-r q\right|<2 n^{2} q b^{2}
$$

so we select M such that $\operatorname{lcm}(M) \geq 2 n^{2} q b^{2}$. Note that we would have needed a larger $\operatorname{lcm}(M)$ had we not performed the partial reduction $\bmod q$.

3.1 Congruence mod m_{i}

Our small-moduli checks now have the form

$$
\pi_{b}^{(q)}(x, y)-\sigma_{b}^{(q)}(z)=r q \quad \bmod m_{i} .
$$

Applying partial reductions mod m_{i} to all constants, we have

$$
\pi_{b}^{(q)\left(m_{i}\right)}(x, y)-\sigma_{b}^{(q)\left(m_{i}\right)}(z)=r\left(q \bmod m_{i}\right) \quad \bmod m_{i},
$$

[^0]where $(q)\left(m_{i}\right)$ denotes a sequence of partial reductions, i.e.,
$$
\sigma_{b}^{(q)\left(m_{i}\right)}=\sum_{i=0}^{n-1}\left(\left(b^{i} \bmod q\right) \bmod m_{i}\right) x_{i}
$$
and similarly for $\pi_{b}^{(q)\left(m_{i}\right)}(x, y)$.
Now, we witness s such that
$$
\pi_{b}^{(q)\left(m_{i}\right)}(x, y)-\sigma_{b}^{(q)\left(m_{i}\right)}(z)-r\left(q \bmod m_{i}\right)=s m_{i} .
$$

Theorem 1 implies $|s|<2 n^{2} b^{2}$, which we enforce with a range check.

3.2 Avoiding wrap-around

Finally, as in Section 2.2, we must choose our parameters such that wrap-around is not possible when the constraint above is checked mod p. Using a similar analysis, it suffices that

$$
4 n^{2} m_{i} b^{2} \leq p
$$

3.3 Example parameters

Suppose our "native" field is \mathbb{F}_{p} where $p=2^{64}-2^{32}+1$. Suppose we would like to perform multiplication over the secp 256 k 1 base field, \mathbb{F}_{q}, where $q=2^{256}-2^{32}-$ $2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1$. Let $n=16$ and $b=2^{16}$.

To avoid wrap-around, we require each m_{i} (except for p itself, as noted in Remark 2) to satisfy

$$
m_{i} \leq \frac{p}{4 n^{2} b^{2}}
$$

which (after rounding down) is 4194303, or roughly 2^{22}.
Additionally, M must satisfy $\operatorname{lcm}(M) \geq 2 n^{2} q b^{2}$, which is roughly 2^{297}. One such M is

$$
\begin{aligned}
M= & (p, 4194272,4194273,4194275,4194277,4194281,4194283 \\
& 4194287,4194289,4194293,4194299,4194301)
\end{aligned}
$$

a pairwise coprime set which satisfies both of these constraints.

4 Probabilistic method

Instead of fixing M, we can sample it as a random subset of some larger pairwise coprime set \mathbb{M}. Given our bound $|x y-z|<b^{2 n}$, we can argue that only a small fraction of \mathbb{M} can divide $x y-z$, so if $x y \neq z$, the identity is unlikely to hold under all $m \in M$. Depending on our security parameter, this may enable us to use a smaller M relative to the previous method.

4.1 Example parameters

Concretely, let \mathbb{M} be a pairwise coprime subset of $\left[2^{15}, \ldots, 2^{16}\right]$. We found such a set containing 3082 integers.

If $x y$ and z both fit within 512 bits, $x y-z$ can be divisible by at most 34 $m_{i} \in \mathbb{M}$; any subset of size 35 or more would have a product exceeding 2^{512}. Thus if $x y \neq z$, the probability that $x y=z \bmod m_{i}$ given a random $m_{i} \in \mathbb{M}$ is at most 34/3069.

If we sample each $m_{i} \in \mathbb{M}$ independently, in which case duplicates are possible, then 20 samples provides 128-bit security: $(34 / 3069)^{20}<2^{-128}$. If our sampling process prevents duplicates, then 19 samples suffices, since

$$
\prod_{i=0}^{18}\left(\frac{34-i}{3069-i}\right)<2^{-128}
$$

[^0]: ${ }^{1}$ To ensure that the result is in the canonical range $[q]$, we would need to additionally enforce $z<q$. In practice, however, a partial reduction to $\left[b^{n}\right]$ suffices for most applications.

