
Cryptographic Protection of Random Access Memory:

How Inconspicuous can Hardening Against the most

Powerful Adversaries be?

Roberto Avanzi1, Ionut, Mihalcea2, David Schall3, Héctor Montaner4, and Andreas Sandberg2

1Arm Germany, GmbH — roberto.avanzi@arm.com, roberto.avanzi@gmail.com
2Arm Limited, UK — ionut.mihalcea@arm.com, andreas.sandberg@arm.com

3School of Informatics, University of Edinburgh, United Kingdom — david.schall@ed.ac.uk
4Graphcore, Cambridge UK — hector.montaner@outlook.com

November 11, 2022

Abstract

For both cloud and client applications, the protection of the confidentiality and integrity
of remotely processed information is an increasingly common feature request. To achieve this
goal with reasonable costs in terms of memory overhead and performance penalty is also a very
challenging endeavour. In turn, this usually leads to security posture compromises in products.

In this paper we review and evaluate the main technologies that have been proposed so far to
address this problem, as well as some new techniques and combinations thereof. We systematise
the treatment of protecting data in use by starting with models of the adversaries, thus allowing
us to define different, yet consistent protection levels. As far as we are aware, for the first time we
compare the impact on performance when the measured benchmark is the only running process
or when it is just one task in an environment with heavy additional traffic, thus simulating a
cloud server under full load.

To make just one example of our results: Using advanced techniques to compress counters
can make it viable to store them on-chip – for instance by adding on-chip RAM that can be as
small as to 1/256th of the off-chip RAM. This allows for implementations of memory protection
providing full confidentiality, integrity and anti-replay protection with hitherto unattained
penalties, especially in combination with the repurposing of ECC bits to store integrity tags.
The performance penalty on a server with a saturated memory subsystem can thus be contained
under 2% with a memory overhead of 1/256 and even under 1% with an overhead of 1/128.

Additionally, we discuss various cost/performance tradeoffs for less loaded use cases, such as
for protected software modules on client devices.

CCS Concepts: Security and privacy → Hardware-based security protocols.

Keywords: Memory Encryption, Memory Integrity.

1

mailto:roberto.avanzi@arm.com
mailto:roberto.avanzi@gmail.com
mailto:ionut.mihalcea@arm.com
mailto:andreas.sandberg@arm.com
mailto:david.schall@ed.ac.uk
mailto:hector.montaner@outlook.com

2 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

Contents

1 Introduction 3

2 Systematisation of the problem 4
2.1 Definitions . 4
2.2 Problem statement and adversarial models . 5
2.3 System level view of the technical solution . 6
2.4 Protection levels . 6
2.5 Cost indicators . 8

3 Background 8

4 Setup and parameters of the study 10
4.1 Scope of the comparisons . 10
4.2 Technologies used for each level . 11
4.3 Choice of the cryptographic parameters . 12
4.4 Benchmarking environment and methodology . 13
4.5 Description of the plan of simulations . 13
4.6 Unloaded vs. loaded systems . 15

5 Results and discussion 16
5.1 Unloaded system . 16
5.2 Loaded system . 19

6 Conclusions 22

References 23

A Selected full benchmark results 30

Cryptographic Protection of Random Access Memory 3

1 Introduction

With the ever growing availability and use of Computing as a Service (i.e. Cloud Computing)
comes also an increased need for guarantees of confidentiality and integrity of remotely processed
information. The first mechanism to protect information from unauthorised access is Access

Control (AC).
Cloud tenants are becoming increasingly aware that their data can be compromised by attackers

that can circumvent basic defenses. The most common class of adversaries consists in other tenants
running unprivileged malicious software on the same hardware. These can mount attacks based on
software exploitation, and side channels ranging from cache contention [Hu92, Koc96, Ber05, OST06]
to micro-architectural features such as speculative execution. (Regarding the latter class of attacks,
after the discovery of Meltdown [LSG+18] and Spectre [KHF+19] too many papers followed to
reasonably cite, so we refer the reader to the surveys [CBS+19, XS21].) Insider operators running
privileged software represent another serious threat. Tenant data may be targeted by actors with
access to the actual computing hardware with the capability to perform physical side-channel attacks
(see for instance the surveys [FGM+10, CA16, LGG+21]), or to directly compromise the memory
contents by means of cold-boot attacks [HSH+09, YADA17, WCJ+21] or even at run-time by chip
interposition [Kuh98, LJF+20].

Hardening the system software to prevent privilege escalation attacks is no longer considered
sufficient, especially in light of the extreme complexity of modern system software stacks, for which
one cannot have absolute reliance on countermeasures against software exploitation.

The same threats apply to client devices, where the compromised party may be the provider of
banking, digital IDs, or gaming services. For these use cases, a compromise can lead to economic
losses for the device owner or service providers. In the case of gaming, adversaries may be device
owners involved in cheating or piracy. Banking applications and digital IDs need to be protected
also against adversaries with temporary access to a device (that may have been left unattended).

This implies that steps that go beyond AC need to be put in place to isolate processes, services,
or virtual machines from each other and the host environment, including the physical environment.
Apart from putting processing elements and memory in the same tamper-proof package, these
technologies rely on cryptography. Depending on the adversaries that are considered during their
development, these technologies range from memory encryption [Bes80, LTM+00, KFM05] to
techniques to guarantee memory integrity [MVS00, SCG+03, GSC+03, SLGL04, YGZ05, YEP+06,
SOD07, RCPS07, CL10, HS10, CRSP11, Gue16a, WUS+17, SNR+18, JLK+23]. The latter range
from tables of hashes of memory regions, to integrity trees that can detect any memory manipulation.
These structures can be roughly described as variations on the theme of Merkle trees [Mer87], with
the root node protected on-chip.

During the last four decades these technologies have been steadily improved to the point that
their performance and memory overheads have become sufficiently acceptable to justify commercial
deployment. Still, some more expensive proposals such as SGX [MAB+13] ended up being deprecated
on client CPUs because the above mentioned penalties quickly degenerated when used to protect
large processes Indeed, after Bastion [CL10], the development of cryptographic isolation methods
nearly halted, ushering an era of research in AC based mechanisms, starting with H-SVM [JAS+15]
and Hyperwall [SL12] – until the announcement of the cryptographic mechanisms to protect the

4 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

SGX enclave page cache [Gue16a] set the research in motion once again.
Even restricting ourselves to cryptographic techniques, it is often hard to compare different

technologies since any two papers on the subject will almost never use the same benchmarking suite,
memory subsystem, and cache sizes. Also, most benchmarks are performed on systems without
memory bus contention. This is not realistic, as the main application for these technologies is cloud
computing, servers with hundreds of concurrent processes that contend for shared resources.

We systematise the comparison between various techniques and their combinations, including
also some new ideas. We consider different models of the adversaries, thus allowing us to define
multiple, yet consistent protection levels. We focus solely on technologies that only require the
implementation of components inside the security perimeter of the System-on-a-Chip (SoC), using
external untrusted memory. Our tests consider both unloaded and fully loaded memory subsystems,
by running traffic generators alongside the chosen benchmarks.

The most striking result is that advanced counter compression makes it viable to store counters

on-chip. This allows for implementations of memory protection with anti-replay (i.e. full integrity)

with extremely low performance penalties, especially in combination with the repurposing of ECC bits

to store integrity tags. Performance penalties smaller than 1%, resp. 2%, with a memory overhead

of 1/128, resp. 1/256 can be attained even under heavy bus contention. We conjecture that similar
performance penalties are attained if a large system cache can be deployed instead.

We also detail various trade-offs of performance penalty vs. resources if ECC memory is not
available or including RAM in the SoC is not feasible.

The structure of the paper is as follows: In Section 2 we model the types of adversaries that
want to compromise memory contents, and accordingly we define the levels of protection required
to thwart these adversaries. Section 3 on page 8 contains background material. In Section 4 on
page 10 we describe the new technologies that we add to the state to the art, the benchmarking
environment, how we select the techniques we test in order to produce a clearly represented and
understandable comparison. The results are reported and discussed in Section 5 on page 16. In
Section 6 on page 22 we make practical recommendations for cloud and client use cases.

2 Systematisation of the problem

2.1 Definitions

The software-accessible volatile memory attached to a memory controller is viewed as an array of
Cache Lines (CLs), i.e. equally sized and contiguous memory ranges adjacent to each other. A CL
is the smallest unit that will be encrypted and possibly authenticated by the systems we consider in
this study. By CL length we only consider that of a CL in the Last Level Cache (LLC), usually a
System Cache. If upstream caches have shorter line lengths, these lengths are ignored.

The integrity information associated with CL is called an integrity tag. It is a Message Authenti-

cation Code (MAC).
If a scheme provides integrity it is understood that it simply associates an integrity tag to each

CL. A scheme provides full integrity if it also prevents any form of replay attack.
An encryption or authentication function is said to provide spatial uniqueness when, if computed

on equal inputs, but written to different locations, it results in different outputs. This is achieved

Cryptographic Protection of Random Access Memory 5

by including the Physical Address (PA) of the encrypted or authenticated CL in the computation.
An encryption or authentication function provides temporal uniqueness (or: freshness) when

repeated writes of the same plaintext to the same location result in different outputs. This can be
achieved by associating a counter with each CL and including it in the computation of the function.

In what follows a mode (of operation) is a general purpose encryption mode of operation. A
Memory Encryption (ME) mode is understood to be an encryption mode of operation that has fixed
input lengths, plaintext and ciphertext having the same size as a CL, and no associated data.

On-chip components are defined to be either part of the same die as the processing cores, or
in/on the same package with tamper detection or prevention hardening.

2.2 Problem statement and adversarial models

We aim at rigorously defining what we mean by memory protection, getting beyond the hype that is
marketing ME as the apparent solution to all security issues – even if they have not been formalised.
First, we assume that appropriate AC policies are in place to stop unauthorised agents within the
SoC. We then observe that we cannot define what we mean by protection of an asset without
first establishing the adversaries against which we intend to defend the asset. We characterise the
adversaries is by defining Adversarial Models (AMs) that depend on their type of access to the
target devices and their resources, i.e. essentially budget, as follows:

AM0 The adversary is capable of accessing data that is outside the security perimeter of the complete
system that contains the target components and on commonly accessible channels, such as
messages in transit or data in storage. This includes network access.

AM1 In addition to the capabilities of AM0, this adversary can only run software on the target
and manipulate external interfaces. Beside the exploitation of software vulnerabilities, this
adversary can mount Rowhammer attacks [KDK+14, Mut19, MK20]. Integrity violation is
only a partial concern, as it can be arguably made less effective by deploying ME.

AM2 This adversary has physical access to the complete system that contains the target components,
including its internals. They have access to exposed interfaces and communication buses
but they do not have the capabilities to access on-chip communication interfaces. They will
only perform passive attacks, for instance: side-channel analysis that requires close proximity,
contact or connection with the target device, and eavesdropping the content of external RAM,
either at run-time via memory bus probing, chip or module interposition [Kuh98, LJF+20],
abuse of DMA channels [Fri16] or via cold-boot attacks [HSH+09, YADA17, WCJ+21].

AM3 This adversary has the same level of access as AM2, but they will also perform active attacks,
such as blocking, corrupting or replaying memory transactions, or injecting new ones [KLR+20].
Because of the similarity of the involved technologies, the required expertise beyond AM2 is
minor, whereas resources may need higher precision.
The difference in complexity and cost and of the countermeasures is a key factor in distinguishing
the two models. We note that active attacks are more easily detectable, as they may trigger
repeated failures, so adversaries may just choose not to mount them, even if capable. Examples
of threats mounted by this adversary are [BBKN12, BR12, ZDC+12].

6 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

Within AM3, we distinguish two cases:

AM3.(i) Adversaries limit themselves to corrupt individual memory locations; and
AM3.(ii) Adversaries replace memory contents together with any associated Metadata (MD).

AM4 This adversary, in addition to all of the above capabilities, can mount highly invasive attacks at
the chip or package level that require considerable experience, resources, and time to succeed.
The attacks this adversary can mount range from micro-probing attacks [Sko17] to actual
chip reverse engineering and editing using a Focused Ion Beam Microscope [TJ09, SAFT16,
HTLW21]. This adversary is out of scope for the research described in this paper.

The question that we answer in this study is: What technologies are available to protect
the contents of data-in-use in RAM against the adversaries defined above, and what
are their memory overhead and performance costs?

Remark 2.1 Against adversaries of type AM0 the usual consensus is that no memory protection

is necessary, even though attacks like Nethammer [LSR+20] can corrupt the memory of a target

system without a single attacker-controlled line of code on it. Therefore, it can be argued that this

model should be subsumed into AM1, and we accordingly shall not consider AM0 separately.

2.3 System level view of the technical solution

To answer the above question we introduce a set of HW components, which we call the Memory

Protection Engine (MPE). This is not a new concept: all cryptographic memory protection designs
cited so far use such a block, usually called a Memory Encryption Engine (MEE).

Its placement in a SoC system level view is depicted in Fig. 1 on the next page. A MPE sits
between the interconnect or a System Cache that branches off the interconnect on one side, and a
memory controller on the other side, which in turn is connected to RAM. The MPE can optionally
have: caches, namely a Counter Group (CG) and a Data Hash (DH) cache; internal buffers (not
depicted); and it may have access to a certain amount of on-chip RAM.

The memory protection technologies that we study in this paper are implemented in the MPE.

2.4 Protection levels

In light of the adversarial models defined above, we define the following protection levels:

L1 The memory is encrypted to defeat adversaries AM1 and AM2, except for adversaries that
exploit memory access patterns, and ciphertexts, as a side channel. The encryption function
provides spatial uniqueness to reduce detection of data patterns. Temporal uniqueness and
integrity verification are not provided.

L2 To thwart adversaries of type AM3.(i), CLs are encrypted and augmented with integrity tags.
No freshness is provided. This is not sufficient against Adversary AM3.(ii).

L2+ CLs are encrypted and authenticated. Freshness information is provided and included in the
encryption function.

Cryptographic Protection of Random Access Memory 7

Core

I-L1$ D-L1$

L2$

Core

I-L1$ D-L1$

Other requester

Other requester

C
oh

er
en

t
In

te
rc

on
ne

ct

(Boot) ROM

Provisioned
secrets

SRAM

System Cache MPE

CG$ DH$

On-chip RAM

DMC RAM

System Cache MPE DMC RAM
· · · · · ·

System Cache MPE DMC · · ·

· · · · · ·

New components
(some optional)

SoC perimeter Hic sunt dracones!

Figure 1: Simplified system level view of a SoC with Memory Protection Engine(s)

L3 Additionally, full integrity is provided against AM3.(ii) adversaries.

We combine the following types of technologies to implement the above protection levels: (i) ME
primitives and modes; (ii) Authentication primitives; (iii) Integrity and anti-replay structures; and
(iv) Physical mechanisms to protect memory from tampering, such as including memory on-chip –
however we do not consider putting all the RAM on-chip.

The last solution would in principle work if applied to the entire RAM and without any
performance penalty, but it is impractical: for instance, for server applications it is not reasonable
to put, say, 512GiB of RAM in the SoC package, for both space and thermal reasons.

Remark 2.2 We only consider solutions that need the security perimeter to be no larger than

the physical package of the SoC. Hence, “smart memory” technologies [AN17] are out of scope.

These have cryptographic logic in the memory chips to attest themselves to the memory controller –

allowing them to communicate on a secured channel only with that memory controller, such as the

CXL.memory Integrity and Data Encryption (IDE) scheme [CXL19]. In order to properly address the

threats they are meant to defend against, smart memories are very expensive. They must implement

mutual attestation with the memory controllers, and include cryptographic engines in each memory

chip, as putting the engines only on an on-board controller of the DIMM would not completely

remove the risk of interposition. The countermeasures which are the subject of this paper require

cryptographic engines only in the SoC.

However, smart memories are suitable for physically remote memories, to implement the

communication between the local SoC and the remote storage. This way, the protected address space

can be expanded beyond what the local MD would allow.

We now discuss the protection levels in some state of the art solutions. The MEE in Intel’s
SGX [Gue16a] is a L3 solution. The Multi-Key Total Memory Engine with Integrity (MKTMEi)

[Int21, Section 2.A] in Intel’s TDX is a L2/MirE solution, where MirE means MACs in repurposed

8 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

ECC bits. Amd’s SEV [KPW16] is a L1 solution. SYNERGY [SNR+18] is a L3/MirE solution.
CSI:Rowhammer [JLK+23] is a L2/MirE solution.

2.5 Cost indicators

It is not only important to know whether we have a solution to a problem: For real-world applications
it is critical to know how expensive is the solution.

The two principal cost indicators are the performance penalty and the memory overhead. Area
and power constraints restrict which solutions can be considered for viability, but relaxing these
constraints can sometimes be justified in the presence of a strong market requirement. On the
other hand, a solution that impacts performance or memory availability too heavily will face major
acceptance hurdles. For this reason, we focus mainly on performance penalty and memory overhead.

3 Background

We present here a brief summary of the technologies we considered in the development of this paper.

Memory encryption primitives. We use block ciphers for memory encryption – the long initial
latency of stream ciphers making them unsuitable. In direct encryption, the block cipher is applied
block-wise to the plaintext to generate the ciphertext. In One-Time Pad (OTP) encryption, the
encryptions of successive values of a counter are XOR-ed block-wise to the plaintext.

We only use block ciphers with a block size of 128 bits. The selected block ciphers are the
AES [DR02] and the Tweakable Block Cipher (TBC) QARMA [Ava17]. Other candicates have either
similar latencies or, in the case of PRINCE [BCG+12], are not tweakable or have a shorter block size.

Authentication primitives. Standard hash functions such as SHA-2 [NIS12] or SHA-3 [NIS15] can
be turned into MACs but the resulting schemes are very slow and not parallelisable.

Encrypted Universal Hash Functions (UHFs) [CW77, CW79] are a better choice. UHFs admit
fully parallelisable constructions, such as multi-linear functions of the input computed over a binary
Galois field, as used in SGX [Gue16b]. We note that if a cache is available for UHF-based MACs,
then the cached values need not be encrypted: The universal hashes are encrypted only when evicted
from the cache, and the cached hashes can be verified more efficiently.

TBC-based Parallel MACs (PMACs) [Rog04] can also be used. PMACs are more expensive than
encrypted UHFs because the text is first processed by encryptions instead of Galois multiplications,
but they they can be used for error detection and correction beside integrity, cf. [HS10, SNR+18,
JLK+23]. The computation of PMACs is depicted in Figs. 2 and 3 on the facing page.

We do not consider encrypted plaintext checksums as in Rogaway’s Offset Codebook mode (OCB)

mode [Rog04]. OCB requires freshness, and if the latter is available we use instead OTP encryption
to reduce read latencies. To avoid OTP ciphertext malleability, we must then use a MAC.

Modes of operation. For direct encryption, spatial uniqueness is achieved by using the PA as the
cipher’s tweak. To achieve this with the AES, a non-tweakable block cipher, we use it in Rogaway’s
XOR, Encrypt, and XOR (XEX) construction [Rog04]. XEX is defined as Ci = EK(Pi ⊕ Mi) ⊕ Mi.

Cryptographic Protection of Random Access Memory 9

C0 C1 C2 · · · Cr−1

K

α0
E α1

E α2
E · · ·αr−1

E

tag

C0 C1 C2 · · · Cr−1 ν

K
1∥α0

E

0∥α0
E

0∥α1
E

0∥α2
E · · ·

0∥αr−1
E

tag

Figure 2: PMAC computed with a TBC for the
cases where freshness is not implemented

Figure 3: PMAC computed with a TBC for the
cases where freshness information is available

P0 P1 P2 · · · Pr−1

K

ν∥α∥0
E

ν∥α∥1
E

ν∥α∥2
E

ν∥α∥r − 1
E

C0 C1 C2 · · · Cr−1

P0 P1 P2 · · · Pr−1

α0 α0 α0 · · · α0

K

ν∥0
E

ν∥1
E

ν∥2
E

ν∥r − 1
E

C0 C1 C2 · · · Cr−1

Figure 4: Tweaked Electronic Codebook (ECB)

mode
Figure 5: CounTeR in Tweak mode

In other words, a tweak-derived mask is added to the input and the output of the cipher. The first
mask M0 is derived by encrypting the tweak, and the successive masks Mi for i ≥ 1 are obtained by
multiplying the first mask by a fixed sequence of values. Using a single finite field element γ we can
put Mi = γi · M0. This results in a variant of Rogaway’s OCB mode [Rog04].

With a TBC, the PA of each block is instead used directly as the tweak in the block cipher.
In OTP encryption, with a non-tweakable block cipher counter and PA are concatenated before

encryption. With a TBC, counter and PA are used as tweak and text, respectively.

Memory integrity structures. A table of hashes or MACs suffices against memory corruption,
but against replay one needs either to protect the table in on-chip memory or with a tree structure
such as a Merkle Tree (MT) [Mer80]. MT nodes can be cached [GSC+03] to speed up verification.

With OTP encryption, we can recursively protect the freshness counters as follows: a set of a of
counters and an embedded MAC form a node called a Counter Group (CG), which has the same size
as a CL. Each CG has a children, which can be either CLs of data in use, or childred CGs. Each
counter in a CG is associated with one child. The embedded MAC is computed on the a counters
and the parent counter. For data (leaf) nodes, the MAC is not embedded, and is stored in a table.
Before a CG, or a data CL is evicted, its parent counter is first incremented and the CG’s or CL’s
MAC is recomputed. Such a Counter Tree (CT) is used for instance in Intel’s SGX [Gue16a].

With the split counters optimisation [YEP+06] a group of a counters is replaced by a group
with one major counter and a′ > a smaller, minor counters, so that the two types of Counter

Groups (CGs) have the same size. Each node (a data CL or a CG) is associated with a minor counter,

10 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

Table 1: Memory Overhead of Various Types of Integrity Trees at 32b and 64b security levels

Overhead
Type of Tree CL size: 64B 128B

Merkle Tree with a = 4, resp. 8 33.3 % 16.7 %
Monolithic CT with embedded MAC

• ℓH = 64; n = 1; a = 8, resp. 16 26.8 % 12.9 %
• ℓH = 32; n = 1; a = 8, resp. 16 20.5 % 9.79 %
• ℓH = 32; n = 2; a = 8, resp. 16 17.4 % 8.23 %
• ℓH = 32; n = 4; a = 8, resp. 16 15.8 % 7.45 %

Split CT with embedded MAC
• ℓH = 64; n = 1; ℓ′

c = 6, resp. 7 14.1 % 7.04 %
• ℓH = 32; n = 1; ℓ′

c = 6, resp. 7 7.84 % 3.91 %
• ℓH = 32; n = 2; ℓ′

c = 6, resp. 7 4.71 % 2.34 %
• ℓH = 32; n = 4; ℓ′

c = 6, resp. 7 3.15 % 1.57 %
• ℓH = 32; n = 1; ℓ′

c = 3 7.04 % 3.52 %
• ℓH = 32; n = 2; ℓ′

c = 3 3.91 % 1.95 %
• ℓH = 32; n = 4; ℓ′

c = 3 2.35 % 1.17 %

Legend: LCL, ℓH , ℓh, ℓc, and ℓ′
c are the bit lengths of a CL; a DH or MAC;

of a hash value or MAC embedded in a CG; of a monolithic or major counter;

and a minor counter, respectively. a is the arity of a CG, i.e. the number of its

monolithic or minor counters; and n is the number of CLs a MAC covers.

and a′ sibling nodes share a major counter. A node’s freshness is the concatenation of the associated
major and minor counters. The increased arity (for instance, from a = 8 to a′ = 64) reduces both
storage overhead for counters and tree depth. When a minor counter overflows, the common major
counter is ticked, all minor counters in the group reset to zero, and all the sibling nodes refreshed:
For data CL this means that they are re-encrypted, and for both types of nodes the MACs need
to be recomputed. These Read-Modify-Write (RMW) operations may affect performance, but in
general split counter trees represent a major performance improvement with respect to non-split, i.e.
monolithic, counters.

In Table 1 we compare the memory overheads of various integrity trees. We assume that the size
of a CG is a CL, also if tags are embedded, and a MAC can cover 1, 2, or 4 CLs. When multi-CL
MACs are used, each CL is still encrypted individually and is associated with a monolithic or major
counter. Hence, evicting a CL from the LLC will not require the re-encryption of any adjacent CL.

4 Setup and parameters of the study

4.1 Scope of the comparisons

Depending on the level, several variants of the involved technologies may be combined, which are
summarized in the following list. The entries marked with † contain new contributions in this paper.

Cryptographic Protection of Random Access Memory 11

Those marked with ⋆ describe variations not hitherto compared to each other.

• Use of the AES or QARMA ciphers;
• Size of the MACs (32b or 64b);⋆

• Counter trees: monolithic, 2-way split or 3-way split;†

• Various choices for the size of CG$ and DH$.
• Use of on-chip memory for hashes and/or counters;†

• Repurposing of ECC bits for data MAC storage;
• Synchronous or asynchronous integrity checking;
• Use of single MACs covering multiple CLs, with cached incremental hashing;†

• Arity variations in the CGs;
• We consider both 64B and 128B CLs;⋆ and, finally
• We consider systems where only the benchmarking suite is running; and systems with a

saturated memory subsystem.⋆

Remark 4.1 A new idea we adopt in our implementations applies to the cases where UHF-based

MACs that are stored in normal RAM. They are kept as DHs in their cache, and are evicted in

groups, which are encrypted directly. We use this technique only if the MACs are 32 bits long. In

this case, four DHs are actually encrypted directly as a single 128b block. Any attempt to corrupt

one DH will corrupt all four with high probability, vastly increasingly the likelihood of detection. By

doing this we increase both security and the robustness of the system, and also speed up integrity

verification of CLs that are fetched from memory when the hash is already in the DH$, because the

latter does not have to be decrypted.

If freshness is available, the four minor counters corresponding to the DHs that are encrypted

together and their common major (and possibly middle) counter(s) are concatenated together. This

is used to create a tweak for QARMA-128.

4.2 Technologies used for each level

We list the technologies used to implement the protection levels defined in Section 2.4 on page 6.

L1 If AES-128 is the chosen encryption primitive, a CL is encrypted using the XEX construction,
with the PA as the tweak. If QARMA-128 is chosen, it is used in Tweaked ECB mode as in
Fig. 4 on page 9, with the PA as tweak.

L2 The same encryption modes are used for L1. Hashing is done by a multi-linear (ML) UHF at
32 or 64 bits. The hashes are encrypted block-wise when they are evicted from the DH$ in CL
worth groups. This approach has good security and reliability implications, cf. Remark 4.1.

L2+ This level provides freshness over L2. A counter based OTP encryption mode is used with both
AES and QARMA. We recall that this level does not offer protection against active adversaries
with access to the memory bus if both counters or MACs are in off-chip memory. Thus, we do
not feed the freshness to the MAC computation function.

12 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

L3 CLs are encrypted as in L2+. Full integrity is achieved by including the counters in the tag
computation and preventing the adversary from tampering with the CGs. Thus, an adversary
may still be able to replace a CL and its MAC, but not its counter(s). This is achieved by
either using an integrity tree, or by storing the CGs on-chip.

oCC on-Chip Counters. Applied to L2+ it gives an L3 level of protection, provided that the
freshness be included in the tag computation. This is due to the fact that we assume counter
on-chip memory to be non-interposable and MPE private, hence outside adversarial control.

MirE MACs in repurposed ECC bits. This eliminates the need to reserve memory for the MACs, and
only memory for counters needs to be allocated (which, with oCC, is on-chip), at the price of a
slightly higher latency for writes to reach the memory controller (but less writes overall) and
for processing reads. MACs are still accessible to a HW capable adversary. Hence freshness
information, if available, must enter the MAC computation, otherwise birthday bound replay
attacks apply. Following [JLK+23], the tag is computed using QARMA5-64-σ0.

The MirE technology raises the question of the performance impact of using ECC vs non-ECC
memory. ECC memory needs to store and retrieve 9/8 of the data with respect to non-ECC memory,
newer DDR5 memories even 5/4. This is performed in a single burst within a transaction, so the
performance loss is much smaller than the overhead. In fact, usual penalties are reported as less
than 2%, and in actual benchmarks they are usually smaller than 0.5% [Bac14]. We also note that
on servers, schemes that do not repurpose the ECC bits are assumed to be still using them for error
detection and correction; and for all the methods that do not repurpose the ECC bits, we assume
that the relative performance losses should be similar regardless of whether they run on non-ECC
or on ECC memory. Hence, we do not take into account ECC memory as a separate configuration.

4.3 Choice of the cryptographic parameters

In the choice of parameters such as lengths of keys and MAC, the fundamental difference between
encryption and authentication is that the encryption parameters must provide long term confiden-
tiality, whereas authentication needs only to deter an adversary, since a system that can monitor
unrecoverable integrity violations may detect unusual activity.

As a result, the following parameters are recommended:

1. Encryption keys should be at least 128 bits long. A single key may be used for the AES in
the XEX construction. We note that even on a quantum computer, the complexity for a key
search attack on AES-128 given as the product of total number of decomposed gates and full
depth required is around 2160 [BNS19, JBS+22]. The block size must also be at least 128 bits.
For this reason from the QARMA family we choose QARMA-128 over QARMA-64 for encryption.

2. For a MT the required hash length is 128b to practically prevent replay attacks.
3. The recommended length for authentication keys is 128b.
4. Data MACs should be at least 32b long.
5. Monolithic counters must be at least 64b long. The minimal aggregated length of a major and

a minor counter (or major plus middle plus minor) is also 64b.

Cryptographic Protection of Random Access Memory 13

With the above parameters, a successful replay attack on the memory of a L3 system would require
both the counter and the MAC to be repeated, with complexity 264 × O(264/2) = O(296).

4.4 Benchmarking environment and methodology

To provide a comparison of potentially thousands of combinations of techniques, it would be
impractical to implement each variant in silicon. A solution to this problem lies in prototyping,
i.e. the creation of an approximate implementation of the desired features that can thus be tested,
and benchmarked. Very accurate models can be created even without implementing all details. For
instance, the latencies of cryptographic primitives are derived from actual implementations, and
they are inserted as delays into the simulation.

The prototypes used in this paper are built in the gem5 simulator [BBB+11, LAA+20]. gem5

allows engineers to build software versions of hardware components typically included in computer
systems. The framework also helps abstract away the interfaces between components. The
components can thus be combined programmatically and configured at run-time. It includes very
precise models for several common CPU cores.

The prototypes used in this paper are built in gem5 [BBB+11]. The simulated CPU is modelled
around an Arm Cortex A72 core, with a 2GHz CPU frequency and a 1GHz system frequency. The
CPU cache hierarchy includes L1-I (48KiB, LRU replacement policy, 3-way set associative, 1 cycle
latency) and L1-D (32KiB, LRU replacement policy, 2-way, 1 cycle latency) caches, and a L2 unified
cache (1MiB, tree-PLRU replacement policy, 16-way, 5 cycles latency). The memory is 16GiB
DRAM as dual-rank DDR4 DIMMs. The MPE-private caches are 4-way set associative with a LRU
replacement policy.

We also assume that the SoC is implemented in a 7nm process, in order to re-use the information
about latencies from [Ava17], for instance a latency of 15.76ns for a pipelined implementation of
AES-128, of 4.8ns for QARMA11-128-σ1 and 2.2ns for QARMA5-64-σ0. The latter two implementations are
also pipelined, and are included in the Qameleon NIST Lightweight Cryptography Standardization
Process submission [ABB+19]. This latency of QARMA5-64-σ0 is also used in [JLK+23].

We benchmark using the SPEC2006 suite [Hen06]. Simulations of hardware systems via software
models such as gem5 have lengthy execution times even for short workloads. As shown in [San14], a
typical SPEC benchmark could take around a month to run, making it infeasible for rapid prototyping
and analysis. We rely, instead, on previously characterised SPECint 2006 workloads [SPHC02], with
each benchmark distilled to a set of 10 workloads of roughly 30 million instructions each, which are
then weighted and combined.

4.5 Description of the plan of simulations

Comparing thousands of different configurations is not only unfeasible in HW, but it would take too
long also in a simulated environment, not to speak of the difficulties of properly presenting the data.
For this reason as have planned a tour through the jungle of combinations, in various stages, each
stage resulting in a selection of cases to be compared in the successive ones with added variability
in only a few parameters. Stage number n is abbreviated as Sn.

We use shorthands to describe the various configurations. They have the following form:

14 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

Level / {additional technologies} / Cipher / CL length / MAC length

where the optional field additional technologies may include mono (for monolithic counters), split

(counters), oCC, or MirE. The default CL length is 64B, except when indicated or when the CGs are
on chip, in which case it is always 128B. The default MAC length is 56–64b. Furthermore, “{Intel}
TDX” is equivalent to L2/AES/MirE, “{Intel} SGX” to L2/AES/mono, and “{AMD} SME” to L1.
oCC always implies split. The shorthand L3/oCC is used to denote the combination of L2+ with
oCC. We understand L3 without oCC as a full integrity capable scheme based an on integrity tree
and neither counters nor hashes on-chip, unless specified otherwise.

S1 We initially focus on the state of the art and our most basic technologies.
We compare AMD SME (i.e. L1/AES), L1/QARMA, L2/AES, Intel TDX (i.e. L2/AES/MirE),
L2/QARMA, L2/QARMA/MirE, L2+/QARMA with both monolithic and split counters, SGX, L3/QARMA

with split counters – all with and without a DH$ if it is not fixed by the manufacturer’s
architecture. We also compare 32b vs. 64b MACs in selected cases.
For SGX, hash encryption is OTP as described by intel. We use this method also for SGX’s split
counters variant (L3/AES/split), and in any case where counters are monolithic or MACs are 64
bits long, such as L2/QARMA/64b MACs, L2+/QARMA/split/64b MACs, and L3/QARMA/split/64b
MACs. In all other cases counters are split, MACs are 32b long, and directly encrypted in
groups.
For schemes with freshness, the CG$ is 64KiB as in SGX, to level the comparisons.
These principles apply to every successive stage as well, except where explicitly indicated.

From now on, MACs are 32 bits long, directly encrypted in groups of four, except where SGX is

benchmarked, the MirE technology is used, or where explicitly indicated.

S2 For L2, L2+, and L3 only, we study the impact of the sizes of the two MPE caches. The
possible sizes of the DH$ are 4KiB, 16KiB, and 64KiB. The possible sizes of the CG$ are 16KiB,
64KiB, 256KiB, and 1MiB. This simulation set is restricted to QARMA only for encryption, as
the AES results would show similar relative performances.

Starting with Stage 3, the MPE has a 16KiB DH$ and a 256KiB CG$. Also, levels L2+ and L3 will

use split counters, except when explicitly indicated otherwise, or with SGX.

S3 Consider 64B and 128B CLs for L2, L2+, and L3. A CG and a CL have the same size.

S4 We compare synchronous to asynchronous verification for for L2, L2+, and L3.

S5 We analyse the use of on-chip memory in full integrity schemes. As the MAC memory overhead
is larger than that of the CGs, we do not consider the case where the MACs (actually, the
data hashes) are on-chip and the counters off-chip.
Since these variants together with the ones in the next stage are amongst the most promising
ones in terms of performance, we run them with both AES and QARMA.

Cryptographic Protection of Random Access Memory 15

S6 We consider here the impact that repurposing the ECC bits for tags bears on performance. We
compare L2, L2+, L3, and L3/oCC schemes with and without MirE. We measure the impact
for both 64B and 128B CLs if counters are off-chip, and only 128B CLs with oCC. If MACs
are stored in the ECC tag bits, we need no DH$, and the MACs are computed as PMACs.
The types of high-arity CGs on-chip we consider are:

– 128B CLs and CGs with: 128 7b minor, 8 8b middle, and 1 64b (49b) major counters;
This results in a memory overhead of 1/128.

– 128B CLs and CGs with: 256 3b minor, 32 6b middle, and 1 64b (55b) major counters;
This results in a memory overhead of 1/256.

The last three stages are some off-path branching to verify missing and corner cases.

S7 We want to show what can be optimised storage-wise when when cannot store MACs in the
ECC bits or on-chip. MACs are thus stored off-chip, but MACs computed incrementally over
multiple CL can be used to reduce their memory footprint [ASC+19]. This makes sense only
when we have already chosen to use 128B CLs, as these already halve MD storage requirements.
We test L2, L2+, L3, and L3/oCC, with a MAC covering 1, 2, or 4 CLs. These runs are
performed only with QARMA-128 as the encryption cipher, since the performance differences are
caused only by the increased memory traffic, and therefore we can expect that AES performance
will follow the same pattern.

S8 We select some combinations from the above and show all individual benchmarks in the suite:
– AMD SEV (L1/AES), and L1/QARMA, with 64B CLs;
– Intel TDX/64B CLs (i.e. L2/AES/MirE);
– L2/QARMA/64B CLs/64b MACs and L2/QARMA/64B CLs/MirE;
– Intel SGX (i.e. L3/AES/56b MACs);
– L3/QARMA/split/128B CLs/32b MACs;
– L3/QARMA/oCC/32b MACs, with 128- and 256-ary CGs;
– and L3/QARMA/oCC/MirE, with 128- and 256-ary CGs.

S9 In this stage we compare the performance of an MPE with a hypothetical one where the
RMW operations have zero costs, i.e. they are instantaneous. This is achieved by simply
skipping them. Such an experiment is possible because the simulated MPE does not actually
perform the cryptographic operations on any data passing through, simulating instead the
timing delays involved in the processing steps. This gives an upper bound on the actual time
spent performing RMW operations. The selected combinations are the last five of S8, which
are L3 schemes with split counters, i.e. the only ones in S8 with RMWs.

4.6 Unloaded vs. loaded systems

All stages described above are first run on an unloaded system, where benchmarking is the only
running task. The results are reported and discussed in Section 5.1 on the next page.

We then want an upper bound for the performance degradation in a fully loaded system, with
up to hundreds of processes running on dozens of processing elements, all sharing the bandwidth of

16 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

100

200

300

400

500

25 ×
1.8 ×

16 %

Linear MPE Linear MPE Linear (async.) Random MPE Random MPE Random (async.)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1000

3000

5000

7000

9000

0.65 GiB/s, 1.7µs

0.6 GiB/s, 8.5µs

5 × reduction

Bandwidth (GiB/sec)
La

te
nc

y
(n

s)

T
he

or
et

ic
al

m
ax

im
um

ba
nd

w
id

th

Figure 6: Bandwidth/latency plot with and without MPE, for linear or random synthetic traffic, and with
synchronous and asynchronous integrity verification

the memory subsystem, such as in a cloud server. It is very lengthy to run that many processes
in a simulation. We instead inject synthetic traffic upstream of the MPE, but after the L2 cache.
The amount of traffic injected is 8GiB/s. This corresponds to the point where the latency of the
memory subsystem starts to diverge for a SGX-like L3 MPE covering the entire memory, with mostly
linear synthetic traffic, and synchronous MAC verification. We assume that MAC verification is
synchronous because, following the discussion of the benchmark runs, this will be the most likely
implementation. The bandwidth of 8GiB/s is derived from the measurements reported in Fig. 6.
The simulated traffic is a mix of linear and random accesses. We do not add a L3 cache to the
system, in order to simulate the extreme situation where the latter has been completely swamped by
the additional traffic. The results of these runs are reported and discussed in Section 5.2 on page 19.

5 Results and discussion

We now analyse the results of the selected test runs.

5.1 Unloaded system

Changing CL length from 64B to 128B in our simulated system slows down the system by 1% on
our benchmarks. Each run is compared to the baseline with the same CL length.

For S1 on an unloaded system (see Fig. 7 on the facing page) we note that:
• If implemented in a plain way, the performance penalty of lower levels of protection is smaller

than the performance penalty of the higher ones.

Cryptographic Protection of Random Access Memory 17

AMD SME (L1/AES)

L1/QARMA
L2/AES

Intel
TDX (L2/AES/MirE

)

L2/QARMA

L2/QARMA/MirE

L2+/AES/mono

L2+/AES/split

L2+/QARMA/mono

L2+/QARMA/split

Intel
SGX (L3/AES/mono)

L3/AES/split

L3/QARMA/mono

L3/QARMA/split

L2/QARMA/64b MAC

L2+/QARMA/split/
64b MAC

L3/QARMA/split/
64b MAC

0

5

10

15

20

5.37

2.18

7.44

5.38

2.16

4.97

11.2

4.77

11

4.73

17.5

4.93

11

4.884.85

10.9

4.63

10.6

4.6

17.4

4.79

10.9

4.7

7.17

4.95 5.17

O
ve

rh
ea

d
%

No DH Cache With DH Cache (4KiB)

Figure 7: S1/unloaded: Comparison of base levels and state of the art; MACs are 32 bits long except for TDX

(28 bits), SGX (56 bits) and 64 bits where indicated; The CG$ is 64KiB as in SGX

L2/no DH$

L2/4KiB DH$

L2/16KiB DH$

L2/64KiB DH$

L2+/no DH$

L2+/4KiB DH$

L2+/16KiB DH$

L2+/64KiB DH$

L3/no DH$

L3/4KiB DH$

L3/16KiB DH$

L3/64KiB DH$

2

4

6

4.97
4.84

4.51

3.93

5
.7

2

5
.6

5
.2

3

4
.5

2

6
.4

1

6
.2

8

5
.9

1

5
.2

1

4
.7

3

4
.5

9

4
.2

3

3
.6

3

4
.8

8

4
.7

3

4
.3

7

3
.7

7

4
.5

1

4
.3

7

4
.0

1

3
.4

2

4
.5

6

4
.4

2

4
.0

6

3
.4

6

4
.2

6

4
.1

3

3
.7

7

3
.1

7

4
.2

8

4
.1

7

3
.7

9

3
.1

9

O
ve

rh
ea

d
%

No CG$ 16KiB CG$ 64KiB CG$ 256KiB CG$ 1024KiB CG$

Figure 8: S2/unloaded: Impact of MPE cache sizes; ME cipher is QARMA-128; CLs are 64B

• L1 and L2 schemes have worse performance with the AES w.r.t. QARMA because of the higher
latency of the former cipher. This holds also for L3 because the OTP generation, while it can
be performed in parallel with a memory fetch, still increases write latency to the point that
its effect becomes noticeable.

• Split counter trees are superior to monolithic trees in memory overhead (see Table 1 on
page 10) and performance.

• A small DH$ does not significantly affect performance.
• As expected, using 64b MACs results in slightly worse performance than using 32b MACs.

S2 results (see Fig. 8) confirm the expected significant performance gains with larger MPE
caches. The CG$ cache having a higher effect than the DH$.

S3 (the results are combined with those of S4 in Fig. 9 on the next page) proves that the impact
of memory protection is comparable across systems with 64B CLs and systems with 128B CLs.

18 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

L2/sync

L2/async

L2+/sync

L2+/async
L3/sync

L3/async

0

2

4

6

4.51

4.13
4.01

3.5

4.06

3.56

4.04

3.7 3.68

3.28
3.46

3.34

O
ve

rh
ea

d
%

64B CLs 128B CLs

All MD off-chip

CGs on-chip/64B CL

CGs on-chip/128B CL

All MD on-chip/64B CL

All MD on-chip/128B CL

0

2

4

6

3.81
3.61

4.03

1.54

0.95

3.71
3.55

3.76

1.37

0.78

O
ve

rh
ea

d
%

AES-128 QARMA-128

Figure 9: S3 and S4/unloaded: Impact of CL size and
asynchronous MAC verification; ME cipher is QARMA-128

Figure 10: S5/unloaded: L3;
Impact of storing MD on-chip

L2/MirE
/64B CL

L2/MirE
/128B CL

L2+/MirE
/64B CL

L2+/MirE
/128B CL

L3/MirE
/64B CL

L3/MirE
/128B CL

L3/oCC/MirE
/128-ary CGs/128B CL

L3/oCC/MirE
/256-ary CGs/128B CL

0

2

4

6

2.89

1.91

2.29

1.35

2.35

1.35

0.96 0.98

2.52

1.71

2.03

1.27

2.08

1.29

0.89 0.94

O
ve

rh
ea

d
%

AES-128 QARMA-128

L2/128B CL

L2+/128B CL

L3/128B CL

0

2

4

6

8

10

4.05
3.69 3.7

5.37
5.08 5.09

6.1

6.62 6.7

O
ve

rh
ea

d
%

n = 1 n = 2 n = 4

Figure 11: S6/unloaded: Impact of
repurposing ECC bits for MACs

Figure 12: S7/unloaded: Impact of using multiple-CL
MACs (128B CL)

Note that taking into account the effect of 128B CLs, the performance of a memory protected 128B
CL system is slightly slower than that of a memory protected 64B CL system. However, switching
to 128B CLs halves the footprint of MD (cf. Table 1 on page 10).

S4 results (see Fig. 9) suggest that asynchronous MAC verification does not significantly improve
performance.

S5 results (see Fig. 10) show, as expected, that relieving the contention on the memory bus
between data and MD reduces performance penalties.

S6 results (see Fig. 11) prove that combining oCC and MirE provides the highest level of memory
protection at very low performance penalties.

Cryptographic Protection of Random Access Memory 19

The results of S7 (see Fig. 12 on the facing page) show that while multiple-CL MACs effectively
reduce memory overheads, this comes at a significant performance price. L2+ and L3 performance
is virtually identical, due to the fact that data MAC traffic becomes dominant whereas, for L3, the
rest of the tree profits from spatial locality.

Note, however, that we do not implement evicted cache line compression as in [TSB18], which
would have allowed to store a MAC in the CL with the data if the latter can be sufficiently
compressed, reducing the amount of memory accesses. Following the paper, we estimate that
compression may halve the performance penalties.

S8: The performance of the individual SPEC2006 benchmarks (Figs. 19 to 26 on pages 30–
32) shows a few expected results, namely that some programs such as gcc g23, gcc s04, mcf,
libquantum, and xalancbmk suffer significantly more than average under every MPE configuration.
Other programs are affected in a significant way only when there is traffic expansion, such as the
remaining gcc programs, bzip2 chicken, and bzip2 liberty. Increasing integrity tree arity by
split counters is instrumental in reducing the penalties, but it is only with the compressed oCC

and the MirE that all penalties are consistently brought down to less than 5%. For client and edge
applications, L3/QARMA/split/128B CLs/32b MACs provides excellent performance, esp. if the tasks
profit from good spatial locality properties.

S9 (see Figs. 24 to 26 on page 32) shows that the impact of RMWs is small and often negligible.
This signifies that techniques for reducing RMWs, such as snooping the CLs to be re-encrypted
in the LLC in order to skip RMWs for data still in the LLC and marked as dirty, will not give a
significant performance boost. Hence, they could be omitted in order to keep state machines simple,
at least if we only consider unloaded systems.

5.2 Loaded system

Without memory protection, our benchmarks run on a loaded system with 64B CLs 16.5 % slower
than on an unloaded system; If CLs are 128B long, the benchmarks run 12.2 % slower than on the
unloaded system. Changing CL length from 64B to 128B makes the loaded system faster by 2.7 %.

For S1 on a loaded system (see Fig. 13 on the following page) we observe that L1 always performs
better than all other levels, as expected since the expanded traffic will face extreme contention
on the memory bus. Two observations are similar to the unloaded case: The use of split counters
reduces performance penalty by a factor of roughly 3 with respect to monolithic counters; and a
small DH$ offers only a minimal improvement.

S2 (see Fig. 14 on the next page) shows a significant difference between the unloaded and loaded
cases. Whereas in the unloaded case larger MPE caches brought significant improvements, on a
loaded system they are less effective.

S3 results (combined with S4 in Fig. 15 on page 21) indicate that the MPE performance is often
worse with 128B CLs.

S4 (see Fig. 15 on page 21) shows that in the loaded case asynchronous verification brings a
significant speedup. Indeed, as the memory bus approaches saturation, decoupling decryption and
MAC verification logics allows better for scheduling of otherwise idle MPE resources.

20 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

AMD SME (L1/AES)

L1/QARMA
L2/AES

Intel
TDX (L2/AES/MirE

)

L2/QARMA

L2/QARMA/MirE

L2+/AES/mono

L2+/AES/split

L2+/QARMA/mono

L2+/QARMA/split

Intel
SGX (L3/AES/mono)

L3/AES/split

L3/QARMA/mono

L3/QARMA/split

L2/QARMA/64b MAC

L2+/QARMA/split/
64b MAC

L3/QARMA/split/
64b MAC

0

100

200

300

4.15 1.48

74.1

4.15 1.49

72.7

248

100

246

99.4

285

105

247

103

69.5

237

95

236

94.4

278

101

237

101

75.3

103 109O
ve

rh
ea

d
%

No DH Cache With DH Cache (4KiB)

Figure 13: S1/loaded: Comparison of base levels and state of the art; MACs are 32 bits long except for TDX

(28 bits), SGX (56 bits) and 64 bits where indicated; The CG$ is 64KiB as in SGX

L2/no DH$

L2/4KiB DH$

L2/16KiB DH$

L2/64KiB DH$

L2+/no DH$

L2+/4KiB DH$

L2+/16KiB DH$

L2+/64KiB DH$

L3/no DH$

L3/4KiB DH$

L3/16KiB DH$

L3/64KiB DH$

40

60

80

100

120

140

72.7
69.5

67.5
64.9

1
0

0

9
5

.5

9
3

.5

9
2

1
1

3

1
1

1

1
1

0

1
1

0

9
9

.4

9
4

.5

9
2

.1

8
8

.1

1
0

3

1
0

1

1
0

0

1
0

0

9
8

.6

9
3

.7

9
1

.3

8
7

.2 9
3

.7

8
9

.2

8
7

8
3

.5

9
2

.8

8
8

.6

8
6

.3

8
2

.3 8
7

.8

8
5

.3

8
4

.6

8
3

O
ve

rh
ea

d
%

No CG$ 16KiB CG$ 64KiB CG$ 256KiB CG$ 1024KiB CG$

Figure 14: S2/loaded: Impact of MPE cache sizes; ME cipher is QARMA-128; CL are 64B

S5 results (see Fig. 16 on the facing page) are interesting since they go against the intuition
that using longer CLs should perform better because of reduced MD traffic. In fact, the increased
data traffic with 128B CLs is a noticeable penalty. As expected, with all MD on chip performance
is close to the baseline.

S6 results (see Fig. 17 on the next page) finally show that nearly negligible performance penalties
on a loaded system can be achieved by using on-chip memory for the CGs and repurpose ECC
bits for MAC storage. In fact, this has even better performance than with L1 direct encryption –
because the latter places the cipher on the critical path, and the effect of any additional latency is
amplified when the memory subsystem is saturated.

S7 (see Fig. 18 on the facing page) shows that multiple-CL MACs offers increasingly worse
performance also in the loaded case.

S8 (see Figs. 27 to 34 on pages 33–35) results are similar to the unloaded case, however the

Cryptographic Protection of Random Access Memory 21

L2/sync

L2/async

L2+/sync

L2+/async
L3/sync

L3/async

0

50

100

67.5

38.7

91.4

56.7

84.6
78.6

86.9

44.4

112

58.4

113

58.5

O
ve

rh
ea

d
%

64B CLs 128B CLs

All MD off-chip/64B CL/sync

All MD off-chip/64B CL/async

All MD off-chip/128B CL/sync

All MD off-chip/128B CL/async

CGs on-chip/64B CL/sync

CGs on-chip/64B CL/async

CGs on-chip/128B CL/sync

CGs on-chip/128B CL/async

All MD on-chip/64B CL

All MD on-chip/128B CL

0

50

100

84.6
78.6

113

58.5

66.8

37.9

86.4

43.7

2.09 1.59

O
ve

rh
ea

d
%

Figure 15: S3 and S4/loaded: Impact of CL size and
asynchronous MAC verification; ME cipher is QARMA-128

Figure 16: S5/loaded: L3; Impact of storing
MD on-chip; AES and QARMA results are identical

L2/MirE
/64B CL

L2/MirE
/128B CL

L2+/MirE
/64B CL

L2+/MirE
/128B CL

L3/MirE
/64B CL

L3/MirE
/128B CL

L3/oCC/MirE
/128-ary CGs/128B CL

L3/oCC/MirE
/256-ary CGs/128B CL

0

20

40

60

4.16 3.68

51.6

63.1

56

63.1

0.95 1.911.48 1.38

51

62.7

55.4

62.7

0.94 1.88

O
ve

rh
ea

d
%

AES-128 QARMA-128

L2/128B CL

L2+/128B CL

L3/128B CL

0

50

100

150

200

87.1

113 113
119

148 148
141

164 164

O
ve

rh
ea

d
%

n = 1 n = 2 n = 4

Figure 17: S6/loaded: Impact of
repurposing ECC bits for MACs

Figure 18: S7/loaded: Impact of using multiple-CL
MACs (128B CL)

penalties are often much larger, because of the significant amount of scattered traffic expansion. It
is only with oCC and MirE that the performance becomes reasonable across the board.

S9 results are given in Figs. 32 to 34 on pages 34–35. Note that Figs. 33 and 34 on page 35 have
bars for 128-ary and 256-ary CGs, but a single bar for overheads while skipping RMWs because
in this case CG arity is uninfluential. We observe that: The impact of RMWs on a loaded system
is still small; if the counters are off-chip or the MACs require their own addressable storage, the
impact of the RMWs is minor, and is negligible with longer (7b) minor counters; with oCC and MirE

the reduced performance of the 256-ary CGs with respect to the 128-ary CGs (which uses twice as
much on-chip memory) due to the larger amount of RMWs becomes noticeable, but even in this

22 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

case the worst penalties with 256-ary CGs are still lower than with a direct encryption L2/AES/64B
CLs/MirE scheme as in TDX.

6 Conclusions

We have performed a very thorough evaluations of techniques for the cryptographic protection
of in-use memory contents. We have considered the state of the art, some new technologies, and
hitherto not considered combinations thereof.

We have also unified the evaluation of different protection levels, selected according to adversarial
models. This results in a vast set of mutually independent choices, for each of which different types
of hardening may be deployed, with correspondingly different prices in term of performance penalty,
memory overhead, and hardware cost. The lack of an absolute metric to combine these three costs
in a single rating makes it challenging to provide recommendations that may be suitable for different
applications. Therefore, the extensive set of benchmarking runs we document should be used as a
guidance for further investigations. This said, we can provide rough indications for some use cases.

For simplicity, let us restrict to L3 memory protection.
Let us start with the use case of cloud computing. There are two possible scenarios.
The first one starts with the observation that SoCs for cloud servers are expensive, may contain

several dozens of cores, have multiple memory channels and can easily address hundreds of GiBs
of physical memory. Because of the very high HW costs, we have a strong argument for using
freshness-based OTP encryption based on AES or QARMA, with oCC in the amount of 1/128 or 1/256
of the off-chip memory, and storing MACs in the ECC bits for both integrity and error correction.
The additional cost for implementing these technologies would be relatively minor. It would be
likely less expensive than basing the protection of local memory on the CXL.memory IDE. This
would enable the highest level of memory protection at a performance cost which is actually lower
than some currently deployed schemes that provide encryption and, optionally also integrity – but
not anti-replay.

However, it can also be argued that the budget for a large amount of memory on-chip should
rather be spent on a large system cache, from which the whole system profits, with CGs getting a

similar cache hit rate as in the unloaded case. The evaluation of this approach is an open question.
For lower end devices the situation is more nuanced. L3/oCC/MirE is not applicable if the

devices lack ECC bits. If the use case considers memory bus saturation as an exceptional event,
which is often the case for edge applications or client applications limited to business oriented virtual
machines and special secure modules, then high arity split counter trees with counters either on-chip
or in a dynamically allocated carveout together with the MACs can be considered. However, as
the results in Fig. 33 on page 35 indicate, performance can quickly deteriorate if extra accesses are
needed for MACs. So, the use of ECC-capable memory should be seriously considered also for client
use cases.

The main takeaway from our study is that nearly-transparent strong memory protection is possible
with current technology, especially if we consider recent developments in 2.5D chip manufacturing.
It is also achievable for use cases where only a few processes need to be protected, such as banking,
content delivery, and software licensing modules, whereas the rest of the traffic bypasses the MPE.

Cryptographic Protection of Random Access Memory 23

Future work includes upstreaming our MPE framework into gem5. This will allow interested
parties to perform simulations tailored to their specific use cases. A further promising research
direction is the development of strategies to reduce the impact of RMWs in some schemes, such as
L3/oCC/MirE with 256-ary CGs, where in corner cases the performance penalty can exceed 5 %, even
thought the weighted average of all benchmarks remains under 2 %. Finally, it should be confirmed
whether the use of very large system caches or MPE private caches could bring performance penalties
on a loaded system down to unloaded system levels.

Acknowledgements

Parts of Ionut, Mihalcea’s work for this paper were performed in partial fulfilment of the requirements for
a MSc degree [Mih22]. Ionut, wishes to thank his academic supervisor Prof. Konstantinos Markantonakis,
and his line manager at Arm, Paul Howard, for their unwavering support. The work by David Schall
described herein was done during two internships at Arm Research and Arm’s Architecture and Technology
Group, respectively. Part of the work performed during the first internship was documented in his Master’s
Thesis [Sch19]. Héctor Montaner’s work was performed while he was an Arm employee.

The authors are grateful to Matthias Boettcher, Mike Campbell, Yuval Elad, Wendy Elsasser, Charles
Garçia-Tobin, Alexander Klimov, Jason Parker, Prakash Ramrakhyani, Gururaj Saileshwar, Andrew Swaine,
Peter Williams and Nicholas Wood for interesting and oftentimes eye opening discussions on memory
protection.

References

[ABB+19] Roberto Avanzi, Subhadeep Banik, Andrey Bogdanov, Orr Dunkelman, Senyang Huang, and
Francesco Regazzoni. Qameleon v.1.0 - A Submission to the NIST Lightweight Cryptography
Standardization Process, 2019. Available from: https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/submissions/qameleon.zip. Cited on page 13.
[AN17] Shaizeen Aga and Satish Narayanasamy. InvisiMem: Smart Memory Defenses for Memory Bus Side

Channel. In Proceedings of the 44th Annual International Symposium on Computer Architecture,

ISCA 2017, Toronto, ON, Canada, June 24-28, 2017, pages 94–106. ACM, 2017. Available from:
http://doi.acm.org/10.1145/3079856, doi:10.1145/3079856.3080232. Cited on page 7.

[ASC+19] Roberto Avanzi, Andreas Sandberg, Michael Andrew Campbell, Matthias Boettcher, and Prakash
Ramrakhyani. Cached Incremental Hashing for Reducing Memory Integrity Overhead, 2019. To appear.
Cited on page 15.

[Ava17] Roberto Avanzi. The QARMA Block Cipher Family – Almost MDS Matrices over Rings with Zero
Divisors, Nearly Symmetric Even-Mansour Constructions with Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes. IACR Transactions on Symmetric Cryptology, 2017(1):4–
44, 2017. Available from: http://ojs.ub.rub.de/index.php/ToSC/article/view/583, doi:10.13154/

tosc.v2017.i1.4-44. Cited on pages 8 and 13.
[Bac14] Matt Bach. ECC and REG ECC Memory Performance, May 2014. Available from: https://www.

pugetsystems.com/labs/articles/ECC-and-REG-ECC-Memory-Performance-560/. Cited on page 12.
[BBB+11] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt, Ali G. Saidi, Arkaprava

Basu, Joel Hestness, Derek Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib Bin Altaf, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, 2011. doi:10.1145/2024716.2024718. Cited on page 13.

[BBKN12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault Injection Attacks on
Cryptographic Devices: Theory, Practice, and Countermeasures. Proc. IEEE, 100(11):3056–3076, 2012.
doi:10.1109/JPROC.2012.2188769. Cited on page 5.

https://csrc.nist.gov/CSRC/media/Projects/Lightweight- Cryptography/documents/round- 1/submissions/qameleon.zip
https://csrc.nist.gov/CSRC/media/Projects/Lightweight- Cryptography/documents/round- 1/submissions/qameleon.zip
http://doi.acm.org/10.1145/3079856
https://doi.org/10.1145/3079856.3080232
http://ojs.ub.rub.de/index.php/ToSC/article/view/583
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://www.pugetsystems.com/labs/articles/ECC-and-REG-ECC-Memory-Performance-560/
https://www.pugetsystems.com/labs/articles/ECC-and-REG-ECC-Memory-Performance-560/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/JPROC.2012.2188769

24 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen,
Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thom-
sen, and Tolga Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications -
Extended Abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of Lec-

ture Notes in Computer Science, pages 208–225. Springer, 2012. doi:10.1007/978-3-642-34961-4_14.
Cited on page 8.

[Ber05] Dan Bernstein. Cache-timing attacks on AES, 2005. Available from: http://cr.yp.to/papers.html#

cachetiming. Cited on page 3.
[Bes80] Robert Best. Preventing software piracy with crypto-microprocessors. In Proceedings of the IEEE Spring

Compcon, pages 466–469, 1980. Cited on page 3.
[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum Security Analysis of AES.

IACR Trans. Symmetric Cryptol., 2019(2):55–93, 2019. doi:10.13154/tosc.v2019.i2.55-93. Cited on
page 12.

[BR12] Erik-Oliver Blass and William Robertson. TRESOR-HUNT: attacking CPU-bound encryption. In
Robert H’obbes’ Zakon, editor, 28th Annual Computer Security Applications Conference, ACSAC 2012,

Orlando, FL, USA, 3-7 December 2012, pages 71–78. ACM, 2012. doi:10.1145/2420950.2420961. Cited
on page 5.

[CA16] Brent Carrara and Carlisle Adams. A Survey and Taxonomy Aimed at the Detection and Measurement of
Covert Channels. In Fernando Pérez-González, Patrick Bas, Tanya Ignatenko, and François Cayre, editors,
Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec 2016,

Vigo, Galicia, Spain, June 20-22, 2016, pages 115–126. ACM, 2016. doi:10.1145/2909827.2930800.
Cited on page 3.

[CBS+19] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Systematic Evaluation of Transient Execution Attacks
and Defenses. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium,

USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 249–266. USENIX Associa-
tion, 2019. Available from: https://www.usenix.org/conference/usenixsecurity19/presentation/

canella. Cited on page 3.
[CL10] David Champagne and Ruby B. Lee. Scalable architectural support for trusted software. In Matthew T.

Jacob, Chita R. Das, and Pradip Bose, editors, 16th International Conference on High-Performance

Computer Architecture (HPCA-16 2010), 9-14 January 2010, Bangalore, India, pages 1–12. IEEE
Computer Society, 2010. Available from: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?

punumber=5410726, doi:10.1109/HPCA.2010.5416657. Cited on page 3.
[CRSP11] Siddhartha Chhabra, Brian Rogers, Yan Solihin, and Milos Prvulovic. SecureME: a hardware-software

approach to full system security. In David K. Lowenthal, Bronis R. de Supinski, and Sally A. McKee,
editors, Proceedings of the 25th International Conference on Supercomputing, 2011, Tucson, AZ, USA,

May 31 - June 04, 2011, pages 108–119. ACM, 2011. Available from: http://doi.acm.org/10.1145/

1995896.1995914, doi:10.1145/1995896.1995914. Cited on page 3.
[CW77] Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions (Extended Abstract). In

John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison, editors, Proceedings of the 9th Annual

ACM Symposium on Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, pages 106–112.
ACM, 1977. doi:10.1145/800105.803400. Cited on page 8.

[CW79] Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions. J. Comput. Syst. Sci.,
18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8. Cited on page 8.

[CXL19] CXL Consortium. Compute Express Link™ Resource Library, 2019. Available from: https://www.

computeexpresslink.org/resource-library. Cited on page 7.
[DR02] Joan Daemen and Vincent Rijmen. AES and the Wide Trail Design Strategy. In Lars R. Knudsen, editor,

EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 108–109. Springer, 2002.
doi:10.1007/3-540-46035-7_7. Cited on page 8.

https://doi.org/10.1007/978-3-642-34961-4_14
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://doi.org/10.13154/tosc.v2019.i2.55-93
https://doi.org/10.1145/2420950.2420961
https://doi.org/10.1145/2909827.2930800
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5410726
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5410726
https://doi.org/10.1109/HPCA.2010.5416657
http://doi.acm.org/10.1145/1995896.1995914
http://doi.acm.org/10.1145/1995896.1995914
https://doi.org/10.1145/1995896.1995914
https://doi.org/10.1145/800105.803400
https://doi.org/10.1016/0022-0000(79)90044-8
https://www.computeexpresslink.org/resource-library
https://www.computeexpresslink.org/resource-library
https://doi.org/10.1007/3-540-46035-7_7

Cryptographic Protection of Random Access Memory 25

[FGM+10] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and Ingrid Verbauwhede. State-
of-the-art of Secure ECC Implementations: A Survey on Known Side-channel Attacks and Countermea-
sures. In Jim Plusquellic and Ken Mai, editors, HOST 2010, Proceedings of the 2010 IEEE International

Symposium on Hardware-Oriented Security and Trust (HOST), 13-14 June 2010, Anaheim Convention

Center, California, USA, pages 76–87. IEEE Computer Society, 2010. doi:10.1109/HST.2010.5513110.
Cited on page 3.

[Fri16] Ulf Frisk. macOS FileVault2 Password Retrieval, 12 2016. Available from: https://blog.frizk.net/

2016/12/filevault-password-retrieval.html. Cited on page 5.
[GSC+03] Blaise Gassend, G. Edward Suh, Dwaine E. Clarke, Marten van Dijk, and Srinivas Devadas. Caches and

Hash Trees for Efficient Memory Integrity Verification. In Proceedings of the Ninth International Sympo-

sium on High-Performance Computer Architecture (HPCA’03), Anaheim, California, USA, February

8-12, 2003, pages 295–306. IEEE Computer Society, 2003. Available from: http://ieeexplore.ieee.

org/xpl/mostRecentIssue.jsp?punumber=8433, doi:10.1109/HPCA.2003.1183547. Cited on pages 3
and 9.

[Gue16a] Shay Gueron. A Memory Encryption Engine Suitable for General Purpose Processors. IACR Cryptol.

ePrint Arch., page 204, 2016. Available from: http://eprint.iacr.org/2016/204. Cited on pages 3, 4,
7, and 9.

[Gue16b] Shay Gueron. Memory Encryption for General-Purpose Processors. IEEE Secur. Priv., 14(6):54–62,
2016. doi:10.1109/MSP.2016.124. Cited on page 8.

[Hen06] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Archit. News, 34(4):1–17,
2006. doi:10.1145/1186736.1186737. Cited on page 13.

[HS10] Ruirui C. Huang and G. Edward Suh. IVEC: off-chip memory integrity protection for both security and
reliability. In André Seznec, Uri C. Weiser, and Ronny Ronen, editors, 37th International Symposium on

Computer Architecture (ISCA 2010), June 19-23, 2010, Saint-Malo, France, pages 395–406. ACM, 2010.
doi:10.1145/1815961.1816015. Cited on pages 3 and 8.

[HSH+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A.
Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM, 52(5):91–98, 2009. doi:10.1145/1506409.1506429. Cited
on pages 3 and 5.

[HTLW21] Steven Herschbein, Shida Tan, Richard Livengood, and Michael Wong. Focused Ion Beam (FIB) for Chip
Circuit Edit and Fault Isolation. In ISTFA 2021: Tutorial Presentations from the 47th International

Symposium for Testing and Failure Analysis, International Symposium for Testing and Failure Analysis,
pages h1–h113, 10 2021. doi:10.31399/asm.cp.istfa2021tph1. Cited on page 6.

[Hu92] Wei-Ming Hu. Lattice scheduling and covert channels. In 1992 IEEE Computer Society Symposium on

Research in Security and Privacy, Oakland, CA, USA, May 4-6, 1992, pages 52–61. IEEE Computer
Society, 1992. doi:10.1109/RISP.1992.213271. Cited on page 3.

[Int21] Intel. Intel® Trust Domain Extensions White Paper, August 2021. Available from: https://www.intel.

com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html.
Cited on page 7.

[JAS+15] Seongwook Jin, Jeongseob Ahn, Jinho Seol, Sanghoon Cha, Jaehyuk Huh, and Seungryoul Maeng.
H-SVM: Hardware-Assisted Secure Virtual Machines under a Vulnerable Hypervisor. IEEE Trans.

Computers, 64(10):2833–2846, 2015. doi:10.1109/TC.2015.2389792. Cited on page 3.
[JBS+22] Kyungbae Jang, Anubhab Baksi, Gyeongju Song, Hyunji Kim, Hwajeong Seo, and Anupam Chat-

topadhyay. Quantum Analysis of AES. IACR Cryptol. ePrint Arch., page 683, 2022. Available from:
https://eprint.iacr.org/2022/683. Cited on page 12.

[JLK+23] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Moritz Lipp, Maria Eichlseder, and Daniel Gruss.
CSI:Rowhammer – Cryptographic Security and Integrity against Rowhammer. In Proceedings of the 44th

IEEE Symposium on Security and Privacy, S&P’23, San Francisco, California, USA, May 22–26, 2023,
2023. Cited on pages 3, 8, 12, and 13.

https://doi.org/10.1109/HST.2010.5513110
https://blog.frizk.net/2016/12/filevault-password-retrieval.html
https://blog.frizk.net/2016/12/filevault-password-retrieval.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8433
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8433
https://doi.org/10.1109/HPCA.2003.1183547
http://eprint.iacr.org/2016/204
https://doi.org/10.1109/MSP.2016.124
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1815961.1816015
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.31399/asm.cp.istfa2021tph1
https://doi.org/10.1109/RISP.1992.213271
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://doi.org/10.1109/TC.2015.2389792
https://eprint.iacr.org/2022/683

26 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental study of
DRAM disturbance errors. In ACM/IEEE 41st International Symposium on Computer Architecture,

ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, pages 361–372. IEEE Computer Society, 2014.
doi:10.1109/ISCA.2014.6853210. Cited on page 5.

[KFM05] Taeho Kgil, Laura Falk, and Trevor N. Mudge. ChipLock: support for secure microarchitectures.
SIGARCH Comput. Archit. News, 33(1):134–143, 2005. doi:10.1145/1055626.1055644. Cited on
page 3.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks:
Exploiting Speculative Execution. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San

Francisco, CA, USA, May 19-23, 2019, pages 1–19. IEEE, 2019. doi:10.1109/SP.2019.00002. Cited
on page 3.

[KLR+20] Mohamed Amine Khelif, Jordane Lorandel, Olivier Romain, Matthieu Regnery, Denis Baheux, and
Guillaume Barbu. Toward a hardware man-in-the-middle attack on PCIe bus. Microprocess. Microsystems,
77:103198, 2020. doi:10.1016/j.micpro.2020.103198. Cited on page 5.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.
In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture

Notes in Computer Science, pages 104–113. Springer, 1996. doi:10.1007/3-540-68697-5_9. Cited on
page 3.

[KPW16] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory Encryption White Paper, April 2016.
Available from: http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_

Encryption_Whitepaper_v7-Public.pdf. Cited on page 8.
[Kuh98] Markus G. Kuhn. Cipher Instruction Search Attack on the Bus-Encryption Security Microcontroller

DS5002FP. IEEE Trans. Computers, 47(10):1153–1157, 1998. doi:10.1109/12.729797. Cited on pages 3
and 5.

[LAA+20] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo
Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R.
Bruce, Daniel Rodrigues Carvalho, Jerónimo Castrillón, Lizhong Chen, Nicolas Derumigny, Stephan
Diestelhorst, Wendy Elsasser, Marjan Fariborz, Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gambord,
Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika
Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc S.
Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg,
Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini,
Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang, Norbert Wehn, Christian Weis, David A.
Wood, Hongil Yoon, and Éder F. Zulian. The gem5 Simulator: Version 20.0+. CoRR, abs/2007.03152,
2020. Available from: https://arxiv.org/abs/2007.03152, arXiv:2007.03152. Cited on page 13.

[LGG+21] Corentin Lavaud, Robin Gerzaguet, Matthieu Gautier, Olivier Berder, Erwan Nogues, and Stéphane
Molton. Whispering Devices: A Survey on How Side-channels Lead to Compromised Information. J.

Hardw. Syst. Secur., 5(2):143–168, 2021. doi:10.1007/s41635-021-00112-6. Cited on page 3.
[LJF+20] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-che Tsai, and Raluca Ada Popa. An Off-Chip Attack on Hard-

ware Enclaves via the Memory Bus. In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX Secu-

rity Symposium, USENIX Security 2020, August 12-14, 2020, pages 487–504. USENIX Association, 2020.
Available from: https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol.
Cited on pages 3 and 5.

https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1145/1055626.1055644
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1016/j.micpro.2020.103198
https://doi.org/10.1007/3-540-68697-5_9
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1109/12.729797
https://arxiv.org/abs/2007.03152
http://arxiv.org/abs/2007.03152
https://doi.org/10.1007/s41635-021-00112-6
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol

Cryptographic Protection of Random Access Memory 27

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading
Kernel Memory from User Space. In William Enck and Adrienne Porter Felt, editors, 27th USENIX

Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 973–990.
USENIX Association, 2018. Available from: https://www.usenix.org/conference/usenixsecurity18/

presentation/lipp. Cited on page 3.
[LSR+20] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga, Clémentine Maurice,

and Daniel Gruss. Nethammer: Inducing Rowhammer Faults through Network Requests. In IEEE

European Symposium on Security and Privacy Workshops, EuroS&P Workshops 2020, Genoa, Italy,

September 7-11, 2020, pages 710–719. IEEE, 2020. doi:10.1109/EuroSPW51379.2020.00102. Cited on
page 6.

[LTM+00] David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John C. Mitchell,
and Mark Horowitz. Architectural Support for Copy and Tamper Resistant Software. In Larry Rudolph
and Anoop Gupta, editors, ASPLOS-IX Proceedings of the 9th International Conference on Architectural

Support for Programming Languages and Operating Systems, Cambridge, MA, USA, November 12-15,

2000., pages 168–177. ACM Press, 2000. Available from: http://doi.acm.org/10.1145/356989.357005,
doi:10.1145/356989.357005. Cited on page 3.

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and software model for isolated execution. In Ruby B.
Lee and Weidong Shi, editors, HASP 2013, The Second Workshop on Hardware and Architectural Support

for Security and Privacy, Tel-Aviv, Israel, June 23-24, 2013, page 10. ACM, 2013. Available from:
http://dl.acm.org/citation.cfm?id=2487726, doi:10.1145/2487726.2488368. Cited on page 3.

[Mer80] Ralph C. Merkle. Protocols for Public Key Cryptosystems. In Proceedings of the 1980 IEEE Symposium

on Security and Privacy, Oakland, California, USA, April 14-16, 1980, pages 122–134. IEEE Computer
Society, 1980. Available from: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=

6233684, doi:10.1109/SP.1980.10006. Cited on page 9.
[Mer87] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In Carl Pomerance,

editor, Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of

Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings, volume 293
of Lecture Notes in Computer Science, pages 369–378. Springer, 1987. doi:10.1007/3-540-48184-2_32.
Cited on page 3.

[Mih22] Ionut, Mihalcea. Prototyping Memory Integrity Tree Algorithms for Internet of Things Devices. Master’s
thesis, Information Security Group, Royal Holloway University of London, Egham, Surrey, UK, 2022.
Cited on page 23.

[MK20] Onur Mutlu and Jeremie S. Kim. RowHammer: A Retrospective. IEEE Trans. Comput. Aided Des.

Integr. Circuits Syst., 39(8):1555–1571, 2020. doi:10.1109/TCAD.2019.2915318. Cited on page 5.
[Mut19] Onur Mutlu. RowHammer and Beyond. In Ilia Polian and Marc Stöttinger, editors, Constructive

Side-Channel Analysis and Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,

Germany, April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in Computer Science, pages 3–12.
Springer, 2019. doi:10.1007/978-3-030-16350-1_1. Cited on page 5.

[MVS00] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to Build a Trusted Database System
on Untrusted Storage. In Michael B. Jones and M. Frans Kaashoek, editors, 4th Symposium on Operating

System Design and Implementation (OSDI 2000), San Diego, California, USA, October 23-25, 2000, pages
135–150. USENIX Association, 2000. Available from: http://dl.acm.org/citation.cfm?id=1251239.
Cited on page 3.

[NIS12] NIST. FIPS PUB 180-4 – Secure Hash Standard. Technical report, National Institute of Standards and
Technology, Gaithersburg, MD, United States, March 2012. Cited on page 8.

[NIS15] NIST. FIPS PUB 202 – SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Technical report, National Institute of Standards and Technology, Gaithersburg, MD, United States,

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/EuroSPW51379.2020.00102
http://doi.acm.org/10.1145/356989.357005
https://doi.org/10.1145/356989.357005
http://dl.acm.org/citation.cfm?id=2487726
https://doi.org/10.1145/2487726.2488368
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6233684
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6233684
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1007/978-3-030-16350-1_1
http://dl.acm.org/citation.cfm?id=1251239

28 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

August 2015. Available from: https://csrc.nist.gov/publications/detail/fips/202/final. Cited
on page 8.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermeasures: The Case of AES.
In David Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the

RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006, Proceedings, volume 3860 of Lecture

Notes in Computer Science, pages 1–20. Springer, 2006. doi:10.1007/11605805_1. Cited on page 3.
[RCPS07] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using Address Indepen-

dent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-
Friendly. In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-

40 2007), 1-5 December 2007, Chicago, Illinois, USA, pages 183–196. IEEE Computer Society,
2007. Available from: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4408231,
doi:10.1109/MICRO.2007.44. Cited on page 3.

[Rog04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB
and PMAC. In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004, 10th International

Conference on the Theory and Application of Cryptology and Information Security, Jeju Island, Korea,

December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer Science, pages 16–31.
Springer, 2004. doi:10.1007/978-3-540-30539-2_2. Cited on pages 8 and 9.

[SAFT16] Bicky Shakya, Navid Asadizanjani, Domenic Forte, and Mark M. Tehranipoor. Chip editor: leveraging
circuit edit for logic obfuscation and trusted fabrication. In Frank Liu, editor, Proceedings of the 35th

International Conference on Computer-Aided Design, ICCAD 2016, Austin, TX, USA, November 7-10,

2016, page 30. ACM, 2016. doi:10.1145/2966986.2967014. Cited on page 6.
[San14] Andreas Sandberg. Understanding Multicore Performance: Efficient Memory System Modeling andSimu-

lation. PhD thesis, Uppsala University, Disciplinary Domain of Science and Technology, Mathematics
and Computer Science, Department of Information Technology, Division of Computer Systems, Uppsala,
Sweden, 2014. Cited on page 13.

[SCG+03] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas. AEGIS:
architecture for tamper-evident and tamper-resistant processing. In Utpal Banerjee, Kyle Gallivan, and
Antonio González, editors, Proceedings of the 17th Annual International Conference on Supercomputing,

ICS 2003, San Francisco, CA, USA, June 23-26, 2003, pages 160–171. ACM, 2003. doi:10.1145/782814.

782838. Cited on page 3.
[Sch19] David H. Schall. Evaluation and Optimization of Memory Encryption and Integrity Protection. Master’s

thesis, University of Kaiserslautern, Department of Electrical Engineering and Information Technology,
Microelectronic Systems Design Research Group, 2019. Cited on page 23.

[Sko17] Sergei Skorobogatov. How Microprobing Can Attack Encrypted Memory. In Hana Kubátová, Martin
Novotný, and Amund Skavhaug, editors, Euromicro Conference on Digital System Design, DSD 2017,

Vienna, Austria, August 30 - Sept. 1, 2017, pages 244–251. IEEE Computer Society, 2017. doi:

10.1109/DSD.2017.69. Cited on page 6.
[SL12] Jakub Szefer and Ruby B. Lee. Architectural support for hypervisor-secure virtualization. In Tim Harris

and Michael L. Scott, editors, Proceedings of the 17th International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2012, London, UK, March 3-7, 2012,
pages 437–450. ACM, 2012. doi:10.1145/2150976.2151022. Cited on page 3.

[SLGL04] Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, and Chenghuai Lu. Architectural Support for
High Speed Protection of Memory Integrity and Confidentiality in Multiprocessor Systems. In 13th

International Conference on Parallel Architectures and Compilation Techniques (PACT 2004), 29

September - 3 October 2004, Antibes Juan-les-Pins, France, pages 123–134. IEEE Computer Society,
2004. doi:10.1109/PACT.2004.10025. Cited on page 3.

[SNR+18] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser, and Moinuddin K. Qureshi.
SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories. In IEEE International

Symposium on High Performance Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28,

https://csrc.nist.gov/publications/detail/fips/202/final
https://doi.org/10.1007/11605805_1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4408231
https://doi.org/10.1109/MICRO.2007.44
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1145/2966986.2967014
https://doi.org/10.1145/782814.782838
https://doi.org/10.1145/782814.782838
https://doi.org/10.1109/DSD.2017.69
https://doi.org/10.1109/DSD.2017.69
https://doi.org/10.1145/2150976.2151022
https://doi.org/10.1109/PACT.2004.10025

Cryptographic Protection of Random Access Memory 29

2018, pages 454–465. IEEE Computer Society, 2018. doi:10.1109/HPCA.2018.00046. Cited on pages 3
and 8.

[SOD07] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. Aegis: A Single-Chip Secure Processor.
IEEE Des. Test Comput., 24(6):570–580, 2007. doi:10.1109/MDT.2007.179. Cited on page 3.

[SPHC02] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically characterizing large
scale program behavior. In Kourosh Gharachorloo and David A. Wood, editors, ACM SIGPLAN Notices,

vol. 37 (Proceedings of the 10th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-X), San Jose, California, USA, October 5-9, 2002), pages
45–57. ACM Press, 2002. doi:10.1145/605397.605403. Cited on page 13.

[TJ09] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse Engineering. In Christophe Clavier
and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International

Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in

Computer Science, pages 363–381. Springer, 2009. doi:10.1007/978-3-642-04138-9_26. Cited on
page 6.

[TSB18] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. VAULT: Reducing Paging Overheads in
SGX with Efficient Integrity Verification Structures. In Xipeng Shen, James Tuck, Ricardo Bianchini,
and Vivek Sarkar, editors, Proceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA,

March 24-28, 2018, pages 665–678. ACM, 2018. doi:10.1145/3173162.3177155. Cited on page 19.

[WCJ+21] Yoo-Seung Won, Soham Chatterjee, Dirmanto Jap, Arindam Basu, and Shivam Bhasin. DeepFreeze:
Cold Boot Attacks and High Fidelity Model Recovery on Commercial EdgeML Device. In IEEE/ACM

International Conference On Computer Aided Design, ICCAD 2021, Munich, Germany, November 1-4,

2021, pages 1–9. IEEE, 2021. doi:10.1109/ICCAD51958.2021.9643512. Cited on pages 3 and 5.

[WUS+17] Mario Werner, Thomas Unterluggauer, Robert Schilling, David Schaffenrath, and Stefan Mangard.
Transparent memory encryption and authentication. In Marco D. Santambrogio, Diana Göhringer,
Dirk Stroobandt, Nele Mentens, and Jari Nurmi, editors, 27th International Conference on Field

Programmable Logic and Applications, FPL 2017, Ghent, Belgium, September 4-8, 2017, pages 1–6.
IEEE, 2017. doi:10.23919/FPL.2017.8056797. Cited on page 3.

[XS21] Wenjie Xiong and Jakub Szefer. Survey of Transient Execution Attacks and Their Mitigations. ACM

Comput. Surv., 54(3):54:1–54:36, 2021. doi:10.1145/3442479. Cited on page 3.

[YADA17] Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Reetuparna Das, and Todd M. Austin. Cold Boot
Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern Processors. In 2017 IEEE

International Symposium on High Performance Computer Architecture, HPCA 2017, Austin, TX, USA,

February 4-8, 2017, pages 313–324. IEEE Computer Society, 2017. doi:10.1109/HPCA.2017.10. Cited
on pages 3 and 5.

[YEP+06] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin. Improving Cost,
Performance, and Security of Memory Encryption and Authentication. In 33rd International Symposium

on Computer Architecture (ISCA 2006), June 17-21, 2006, Boston, MA, USA, pages 179–190. IEEE
Computer Society, 2006. Available from: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?

punumber=10899, doi:10.1109/ISCA.2006.22. Cited on pages 3 and 9.

[YGZ05] Jun Yang, Lan Gao, and Youtao Zhang. Improving Memory Encryption Performance in Secure Processors.
IEEE Trans. Computers, 54(5):630–640, 2005. doi:10.1109/TC.2005.80. Cited on page 3.

[ZDC+12] Loic Zussa, Jean-Max Dutertre, Jessy Clédiere, Bruno Robisson, and Assia Tria. Investigation of timing
constraints violation as a fault injection means. In 27th Conference on Design of Circuits and Integrated

Systems (DCIS), Avignon, France, pages 1–6, 11 2012. Cited on page 5.

https://doi.org/10.1109/HPCA.2018.00046
https://doi.org/10.1109/MDT.2007.179
https://doi.org/10.1145/605397.605403
https://doi.org/10.1007/978-3-642-04138-9_26
https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1109/ICCAD51958.2021.9643512
https://doi.org/10.23919/FPL.2017.8056797
https://doi.org/10.1145/3442479
https://doi.org/10.1109/HPCA.2017.10
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10899
https://doi.org/10.1109/ISCA.2006.22
https://doi.org/10.1109/TC.2005.80

30 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

A Selected full benchmark results

We collect here the detailed benchmarking results for the unloaded and loaded S8 and S9 runs.

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

5

10

15

20

25

1.171.441.67

6.82

0.96 0.83

22

0.990.84

4.68
5.61

3.95
4.97

2.7

8.85

3.74
4.57

8.53

4.22

11.8

1.76

7.39 7.77

6.1

0.92
1.87

4.96

3.59

6.14

8.51

20.7

O
ve

rh
ea

d
%

Figure 19: S8/unloaded: AMD SEV (i.e. L1/AES/64B CLs)

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

5

10

15

0.310.460.52

2.16

0.27 0.21

11.1

0.540.3

1.531.81 1.47 1.55
0.95

2.82

1.28 1.45

2.67

1.33

3.84

0.63

2.66 2.512.4

0.330.56

1.63
1.17

1.98
2.86

15.5

O
ve

rh
ea

d
%

Figure 20: S8/unloaded: L1/QARMA/64B CLs

Cryptographic Protection of Random Access Memory 31

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

10

20

30

40

1
.6

3

2
.0

9

2

1
1

.1

1
.7

3

0
.9

4

2
7

.1

1
.4

5

1
.2

6
.3

59
.2

4

5
.4

1

6
.3

7

3
.1

5

1
1

.7

5
.7

7

5
.2

9

1
2

.6

6
.6

4

1
8

.4

2
.4

8

1
1

.6

9
.9

5

1
3

.2

1
.2

9

2
.4

8

6
.1

6

5
.3

5 7
.6

4

1
2

.4

3
1

.8

1
.61
.9

9

1
.9

9

1
0

.9

1
.7

0
.9

2
6

.1

1
.4

1

1
.1

6

6
.2

29
.2

6

5
.3

6

6
.2

3
.1

7

1
1

.3

5
.7

4

5
.3

1
2

.2

6
.4

1
7

.9

2
.4

3

1
1

.2

9
.7

21
1

.7

1
.2

7

2
.3

9

6
.0

9

5
.3

3 7
.5

9

1
2

.1

3
0

.3

non-MirE with 64KiB DH$ vs MirE (Intel TDX)

O
ve

rh
ea

d
%

Figure 21: S8/unloaded: L2/AES/28-32b MACs/64B CLs

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

5

10

15

20

25

0
.6

9

0
.8

7

0
.9

2

4
.6

4

0
.9

4

0
.2

5

1
5

.4

0
.8

6

0
.4

82
.4

3
.9

1

2
.1

3

2
.7

6

1
.5

2

5
.8

9

2
.3

2
.3

6

6
.6

3

3
.5

8
.2

6

1
.0

7

5
.8

5

4
.9

6

9
.3

2

0
.5

2

1
.1

12
.5

5

2
.1

5 3
.3

4

6
.8

2
0

.2

0
.3

5

0
.4

5

0
.5

22
.1

6

0
.2

5

0
.2

5

1
1

0
.5

4

0
.3

21
.5

3

1
.8

1

1
.4

7

1
.6

2

0
.9

42
.7

9

1
.2

8

1
.4

42
.7

1

1
.3

3

3
.8

4

0
.6

1

2
.6

9

2
.5

2
.4

0
.30
.5

6

1
.5

7

1
.1

7

1
.9

8

2
.8

6

1
5

.5

non-MirE with 64KiB DH$ MirE

O
ve

rh
ea

d
%

Figure 22: S8/unloaded: L2/QARMA/64B CLs/32b MACs

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

20

40

60

80

3.995.314.65

42.91

4.74
1.9

42.3

2.572.31

12.5

32.1

10.6
13.3

10.2

25.1

14

9.38

29.9

17.5

76.9

5.25

25.4 26.2

39.2

2.63
5.82

1111.3
13.2

24.9

51.5

O
ve

rh
ea

d
%

Figure 23: S8/unloaded: Intel SGX/64B CLs (L3/AES/56b MACs/64B CLs)

32 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

5

10

15

0
.6

1

0
.8

8

0
.8

1

1
4

.1

0
.5

9

0
.4

3

4
.2

1
.1

4

0
.4

5

1
.8

9

1
2

.2

1
.7

8

2
.1

3

2
.2

6

4
.4

5

3
.3

3

1
.7

8

5
.9

9

8
.1

9

1
0

.6

1
.0

3

4
.2

5

8
.3

3

5
.4

7

0
.5

6

0
.9

51
.9

1

2
.3

1

2
.2

1

8
.1

3
.7

2

0
.6

1

0
.8

7

0
.7

7

1
4

0
.5

6

0
.3

5

4
.0

8

1
.1

4

0
.4

2

1
.8

9

1
2

.2

1
.7

8

2
.1

2

2
.2

3

4
.4

1

3
.3

1

1
.6

5
.9

5

8
.1

7

1
0

.5

1
.0

3

4
.2

8
.3

2

5
.4

7

0
.5

4

0
.9

21
.8

5

2
.3

1

2
.2

6

8
.0

3

3
.5

1

with RMWs without RMWs

O
ve

rh
ea

d
%

Figure 24: S8 and S9/unloaded: L3/QARMA/split/128B CLs/32b MACs – runs with and without RMWs

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

5

10

15

0
.5

1

0
.8

0
.7

6

1
5

.6

0
.5

7

0
.3

5
.0

6

1
.0

8

0
.4

1

1
.9

2

1
3

.6

1
.8 2
.0

3

1
.5

5

3
.8

8

3
.5

4

1
.6

5

5
.2

1

1
2

1
0

.2

1

4
.3

8 5
.7

6

5
.2

8

0
.5

2

0
.8

81
.7

6

2
.3

1

2
.0

4

6
.2

8

6
.2

3

0
.50
.7

8

0
.6

9

1
5

.2

0
.5

5

0
.3

2

4
.6

8

1
.0

8

0
.4

3

1
.9

2

1
3

.1

1
.8 2
.0

2

1
.4

5

3
.7

6

3
.4

6

1
.7

1

5
.0

8

9
.7

5

1
0

0
.9

9

4
.2

8

5
.7

4

5
.2

8

0
.5

1

0
.8

41
.7

9

2
.2

8

2
.0

6

6
.0

2

5
.6

4

0
.5

6

0
.7

8

0
.7

4

1
4

0
.5

1

0
.2

3

3
.6

7

1
.0

5

0
.4

3

1
.9

2

1
2

1
.7

9

1
.9

9

1
.5

3

3
.7

9

3
.2

8

1
.6

7

4
.7

8

8
.1

7

9
.7

9

0
.9

7

3
.8

7

5
.7

6

5
.2

8

0
.5

2

0
.8

41
.7

4

2
.2

6

2
.0

3

5
.7

7

3
.4

3

128-ary CG with RMWs 256-ary CG with RMWs skipped RMWs

O
ve

rh
ea

d
%

Figure 25: S8 and S9/unloaded: L3/QARMA/oCC/32b MACs – runs with and without RMWs

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

1

2

3

4

0
.2

2

0
.2

2

0
.3

1
.3

5

0
.1

8

0
.1

6

2
.3

2

0
.7

6

0
.2

1

0
.7

71
.0

4

0
.6

7 0
.9

4

0
.4

4

1
.5

1

0
.7

2

0
.7

7

1
.3

2

0
.9

1

2
.1

3

0
.4

5

1
.2

7

1
.8

2
.3

0
.1

8

0
.3

1

1
.0

1

0
.7

2 1
.0

6

1
.5

5

1
.4

6

0
.2

2

0
.2

9

0
.3

4

1
.4

8

0
.1

7

0
.2

3
.1

7

0
.7

5

0
.2

2

0
.7

7

1
.3

2

0
.6

9 0
.9

8

0
.4

3

1
.5

4

0
.7

5

0
.6

2

1
.6

2

2
.2

4

2
.3

3

0
.4

6

1
.6

6

1
.8

4

2
.2

6

0
.2

1

0
.3

7

1
.0

1

0
.7

8 0
.9

9

1
.8

2

3
.5

4

0
.2

1

0
.2

8

0
.2

6

1
.3

5

0
.1

3

0
.3

2
.2

4

0
.7

5

0
.2

0
.7

71
.0

4

0
.6

7 0
.9

0
.4

6

1
.5

4

0
.7

2

0
.7

8

1
.3

1

0
.9

2

2
.1

3

0
.4

6

1
.2

4

1
.7

9

2
.3

0
.1

9

0
.3

2

0
.9

6

0
.7

2 1
.0

1

1
.5

7

1
.3

3

128-ary CG with RMWs 256-ary CG with RMWs skipped RMWs

O
ve

rh
ea

d
%

Figure 26: S8 and S9/unloaded: L3/QARMA/oCC/MirE – runs with and without RMWs

Cryptographic Protection of Random Access Memory 33

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

2

4

6

8

10

12

1.31.531.54

6.42

1.18 0.89

11.3

10.78

4.41

5.42

3.48

4.6

2.59

7.61

3.58

4.41

7.19

3.85

9.36

1.87

6.01

6.87

1.47

0.82

1.82

4.5

3.45

5.88

7.11
7.38

O
ve

rh
ea

d
%

Figure 27: S8/loaded: AMD SEV (i.e. L1/AES/64B CLs)

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

1

2

3

4

5

0.37
0.510.5

2.14

0.34
0.44

4.58

0.54

0.21

1.5
1.73

1.14

1.66

0.96

2.57

1.14

1.42

2.39

1.22

3.24

0.59

2.05
2.23

0.38
0.25

0.65

1.49

1.21

2.06

2.44

3.89

O
ve

rh
ea

d
%

Figure 28: S8/loaded: L1/QARMA/64B CLs

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

50

100

150

3
2

4
1

3
8

1
3

9

3
5

1
8

1
2

5

2
0

2
8

8
4

1
1

9

7
1 7
3

6
5

1
1

2

8
0

7
1

1
0

5

8
7

1
6

3

5
4

1
0

0

9
4

8
9

3
1

4
5

6
9

7
7

8
6

1
0

7

9
7

1
.3

1

1
.5

4

1
.5

3

6
.4

2

1
.2

2

0
.9

11
1

.3

10
.7

8

4
.4

1

5
.4

2

3
.4

8

4
.6

8

2
.7

2

7
.6

9

3
.5

8

4
.37
.2

3
.8

5

9
.3

6

1
.8

1

6
.0

8

6
.8

9

1
.4

7

0
.8

3

1
.8

2

4
.5

3
.4

5

5
.9

2

7
.1

1

7
.4

2

non-MirE with 64KiB DH$ vs MirE (Intel TDX)

O
ve

rh
ea

d
%

Figure 29: S8/loaded: L2/AES/28-32b MACs/64B CLs

34 Roberto Avanzi, Ionut, Mihalcea, David Schall, Héctor Montaner and Andreas Sandberg

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

50

100

150

3
1

3
8

3
5

1
2

9

3
1

1
7

1
0

1

1
82

4

7
8

1
1

0

6
3 6
4

6
3

9
6

7
2

6
1

9
1

8
1

1
4

6

5
0

8
6

8
58
7

2
7

4
1

5
9

6
9 7
2

9
2

8
2

0
.3

8

0
.4

8

0
.5

2

2
.1

4

0
.3

3

0
.4

4

4
.5

2

0
.5

9

0
.2

4

1
.4

5

1
.8

1
.1

4

1
.6

9

0
.8

7

2
.5

1

1
.1

6

1
.3

7

2
.3

7

1
.2

1

3
.2

2

0
.6

2

2
.0

5

2
.2

3

0
.3

7

0
.3

2

0
.7

4

1
.4

8

1
.2

1

2
.1

1

2
.4

2

3
.8

6

non-MirE with 64KiB DH$ MirE

O
ve

rh
ea

d
%

Figure 30: S8/loaded: L2/QARMA/64B CLs/32b MACs

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

200

400

600

800

1,000

129
162150

598

132

80

500

127
111

338

487

272
299

249

463

306

266

464

351

874

213

406
451

346

120

173

278293
337

448

384

O
ve

rh
ea

d
%

Figure 31: S8/loaded: Intel SGX/64B CLs (L3/AES/56b MACs)

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

50

100

150

200

250

300

5
9

7
4

7
0

2
2

4

5
7

2
8

1
6

0

4
4

4
4

1
1

5

1
9

3

9
8

1
1

4

1
1

7

1
5

5

1
1

4

1
0

0

1
5

01
6

6

2
8

8

8
5

1
4

9

1
8

0

1
4

7

4
9

7
6

1
0

4

1
0

9 1
1

9

1
7

3

1
5

0

5
8

7
4

7
0

2
2

3

5
7

2
8

1
5

9

4
4

4
4

1
1

5

1
9

3

9
8

1
1

2

1
1

7

1
5

5

1
1

4

1
0

1

1
4

91
6

6

2
8

6

8
5

1
5

0

1
7

9

1
4

7

4
9

7
6

1
0

4

1
0

9 1
1

9

1
7

2

1
5

0

with RMWs without RMWs

O
ve

rh
ea

d
%

Figure 32: S8 and S9/loaded: L3/QARMA/split/128B CLs/32b MACs – runs with and without RMWs

Cryptographic Protection of Random Access Memory 35

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

50

100

150

200

250

4
2

5
3

5
0

1
8

2

4
0

2
1

1
3

0

3
0

3
1

9
0

1
5

5

7
5

9
0

8
5

1
2

5

8
9

7
7

1
1

5

1
2

2

1
9

9

6
2

1
1

9

1
3

6

1
1

6

3
6

5
6

8
18
5 9

5

1
3

1

1
1

7

4
3

5
4

5
1

1
9

4

4
2

2
0

1
4

2

3
0

3
1

9
3

1
6

5

7
7

9
0

8
5

1
3

0

9
3

7
9

1
2

31
3

4

2
1

7

6
2

1
2

6

1
4

3

1
2

5

3
6

5
7

8
58
8 9

7

1
3

9

1
3

0

4
2

5
3

5
0

1
8

1

4
1

2
0

1
3

0

3
0

3
1

9
0

1
5

5

7
5

8
9

8
5

1
2

4

8
9

7
7

1
1

5

1
2

2

1
9

8

6
1

1
1

9

1
3

6

1
1

6

3
6

5
6

8
28
5 9

5

1
3

1

1
1

7

128-ary CG with RMWs 256-ary CG with RMWs skipped RMWs

O
ve

rh
ea

d
%

Figure 33: S8 and S9/loaded: L3/QARMA/oCC/32b MACs – runs with and without RMWs

gobmk trev
ord

gobmk trev
orc

gobmk nngs

bzip2 liberty

gobmk sco
re2

perlb
ench diffmail

gcc g23

hmmer nph3

h264ref
forem

an mn

bzip2 tex
t

bzip2 chicken

bzip2 program
gcc 166

sjen
g

gcc cp

bzip2 combined

perlb
ench check

spam
gcc expr2

astar rivers mcf

h264ref
forem

an bs

gcc ctype

xalancbmk

libquantum

h264ref
sss

gobmk 13x13

gcc scil
ab

bzip2 source
gcc 200

gcc expr
gcc s04

0

2

4

6

8

0
.1

7

0
.2

2

0
.3

1
.3

0
.2

8

0
.1

7

2
.5

4

0
.8

5

0
.2

70
.8

51
.2

4

0
.6

5

0
.9

0
.5

3

1
.5

5

0
.6

3

0
.8

61
.2

7

0
.7

7

2
.0

2

0
.4

5

1
.2

8 1
.9

1

0
.5

1

0
.2

4

0
.3

41
.0

4

0
.6

5 1
.2

2

1
.4

3

2
.7

0
.4

0
.3

4

0
.4

2

3
.8

1

0
.5

4

0
.2

7

5
.5

2

0
.8

3

0
.2

6

1
.2

5

3
.4

8

1
.0

2

1
.3

4

0
.6

5

2
.3

8

1
.2

2

1
.1

7

2
.5

3

4
.2

2

3
.5

1

0
.5

5

2
.8

6

2
.7

3

2
.7

5

0
.2

8

0
.5

8

1
.5

5

1
.0

3 1
.5

9

2
.7

5

7
.0

4

0
.1

9

0
.2

8

0
.2

4

1
.3

0
.1

8

0
.2

7

2
.5

0
.8

5

0
.2

30
.8

51
.2

4

0
.6

5

0
.9

3

0
.4

6

1
.5

6

0
.6

3

0
.8

6

1
.2

0
.7

8

1
.9

8

0
.5

1
.2

9 1
.9

0
.5

1

0
.2

4

0
.3

91
.0

9

0
.6

5 1
.1

8

1
.4

4

2
.4

8

128-ary CG with RMWs 256-ary CG with RMWs skipped RMWs

O
ve

rh
ea

d
%

Figure 34: S8 and S9/loaded: L3/QARMA/oCC/MirE – runs with and without RMWs

	Introduction
	Systematisation of the problem
	Definitions
	Problem statement and adversarial models
	System level view of the technical solution
	Protection levels
	Cost indicators

	Background
	Setup and parameters of the study
	Scope of the comparisons
	Technologies used for each level
	Choice of the cryptographic parameters
	Benchmarking environment and methodology
	Description of the plan of simulations
	Unloaded vs. loaded systems

	Results and discussion
	Unloaded system
	Loaded system

	Conclusions
	References
	Selected full benchmark results

