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Abstract—There is a trend towards providing stronger isolation
between mutually untrusted processes running on the same
computer system. For example, Intel SGX, AMD SEV, and Arm
CCA use access control to protect programs from hostile peer
and higher privileged software. Some of these technologies
include cryptographic memory protection, such as encryption
and integrity checks, to protect against physical attacks.

We review the main technologies that ensure confidentiality
and integrity of main memory. Our review covers both
academic proposals and deployed technology. We classify these
technologies according to models of adversaries with varying
capabilities and group them according to their protection levels.
To understand the best and worst case overhead, we evaluate
these technologies on a system where the benchmark suite is
running in isolation and on a heavily loaded system.

We additionally propose new solutions to further reduce
the performance and memory overheads of such protection.
For example, we show that advanced counter compression
techniques make it viable to store counters used for replay pro-
tection in a physically protected memory. This memory is just
1:256 of the total off-chip memory. By repurposing some ECC
bits to store integrity tags, we can achieve hitherto unattained
performance while providing full confidentiality, integrity, and
replay protection. In a representative server system running the
industry-standard SPEC 2017 benchmark suite, we achieve a
1.96% performance overhead if the benchmarks run in isolation
and 3.28% when the memory system is fully saturated.

1. Introduction

Cloud computing promises to increase efficiency and
drive down cost for users. Such services co-locate multiple
mutually untrusted tenants in the same data center and
sometimes even the same physical machines. Compared to
traditional on-premises solutions, users of cloud computing
face two additional threats. First, hostile tenants may try to
exploit bugs in the hypervisor or access control mechanisms
to impact the confidentiality, integrity, or availability of co-
located virtual machines. Second, the service provider or its
contractors may try to gain access to customer data.

Similar threats exist in client devices such as phones,
which have evolved into smart terminals and identity

providers. Like in a data center, adversaries may use co-
located untrusted code or even have physical access to the
device. Use cases such as secure payments, secure identifica-
tion, and software anti-piracy rely on strong confidentiality
and integrity guarantees, which are often provided in separate
components, e.g. SIM cards, USB tokens, or TPMs. Consol-
idating their functionality onto the main System-on-a-Chip
(SoC) enables new use cases while reducing total costs.

Solutions such as AMD SEV [1], Arm CCA [2], and
Intel SGX [3] and TDX [4] move towards this goal by
providing architectural mechanisms to reduce the impact
of hypervisor exploits and malicious operators. Some even
include protection against adversaries with physical access
to the system. For instance, Intel SGX implements a Memory
Encryption Engine (MEE) [3] that provides confidentiality,
as well as integrity and replay protection using an integrity
tree. Such strong confidentiality and integrity guarantees
can be very costly in terms of performance and storage.
Other technologies such as AMD SEV and Intel TDX opt to
provide weaker confidentiality and integrity guarantees to
offer improved performance.

In this paper, we review the state of the art techniques
used to provide confidentiality and integrity guarantees in
hardware. We cover the techniques used to protect off-chip
memories (e.g., DRAM) from an adversary with physical
access to the system. We then propose new solutions to
further reduce performance and memory overheads while
maintaining the highest level of integrity and confidentiality.

In order to systematically classify and compare existing
techniques, we define different protection levels based on a
taxonomy of adversaries with varying technical capabilities.
Suitable technical mitigations are then deployed to implement
each protection level. This lets us reason about the trade-off
between security guarantees and performance.

The evaluation uses the industry-standard SPEC 2017 [5]
benchmark suite running on the gem5 simulator [6], [7]. We
use the entire benchmark suite and do not pick just a few
benchmarks. The most striking result is that advanced counter
compression makes it viable to store counters in a physically
secure memory that is relatively small with respect to the
total RAM, i.e. 1:128 or 1:256. This enables implementations
of memory replay protection with very low performance
penalties, especially if some ECC bits are repurposed to
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store integrity tags: Performance penalties smaller than 5%
can be attained even under heavy bus contention.

To our knowledge, this is also the first evaluation with
various degrees of memory bus loading and with randomiza-
tion of the internal state state to simulate the more realistic
performance of a not-freshly booted system.

2. Systematization of the problem

2.1. Definitions

The software-accessible volatile memory attached to a
memory controller is viewed as an array of blocks. The size
of these blocks corresponds to the cache line size of the last
level cache, which is usually a system cache. Due to their
direct correspondence to cache lines, we call these blocks
cache lines even when stored in off-chip memory.

If a scheme provides integrity, it associates an integrity
tag with one or more cache lines. Commonly, the integrity
tag is a Message Authentication Code (MAC).

An encryption or authentication function is said to
provide spatial uniqueness if, when computed on equal inputs,
but written to different locations, it results in different outputs.
This is achieved by including the Physical Address (PA) of
the encrypted or authenticated cache line in the computation.

An encryption or authentication function provides tempo-
ral uniqueness (freshness) when repeated writes of the same
plaintext to the same location result in different outputs. This
can be achieved by associating a counter with each cache line
and including it in the computation of the function.

Here, an on-chip component is defined as a physically
secure block in the same package as the processing elements.

2.2. Problem statement and protection levels

The question that we answer in this study is: What
technologies are available to protect the contents of data-
in-use in RAM against an adversary, and what are their
memory overheads and performance costs?

To properly answer this question we need to group the
technologies according to the adversaries they are meant
to defend against, avoiding artificial distinctions between
adversaries, for instance between adversaries capable of
running software on the target device and adversaries that
can mount RowHammer attacks [8]. Classifying adversaries
primarily on how they access the target devices and their
resources (i.e. budget) results in the cleanest classification.
Complexity and cost of the attack are a secondary concern.

2.2.1. Level 1: Basic memory encryption. This level
provides only memory confidentiality. This level provides
spatial uniqueness, but neither temporal uniqueness nor
integrity verification.

It uses a direct memory encryption method, i.e. the
plaintext is passed directly through the encryption function
to compute the ciphertext. No metadata is stored.

This level is meant to defeat adversaries that can only
run software on the target and manipulate external interfaces.

Beside software exploitation, the adversaries can also mount
RowHammer attacks. However, in general integrity violations
are only a partial concern, as they can arguably be made
less effective by deploying memory encryption. We exclude
access pattern and ciphertext side channels as these variants
require more sophisticated techniques.

This basic Protection Level is deployed in many com-
mercial systems, a notable example being AMD’s SEV [1].

It can be argued that careful access memory allocation
and alignment that physically separates mutually untrusted
components could be used to prevent RowHammer attacks.
This approach works in theory, but it would require extensive
re-engineering of existing system software and would not be
practical in most real-world scenarios.

We assume that appropriate access control policies are
in place to stop unauthorized agents within the SoC, but not
to prevent RowHammer attacks.

2.2.2. Level 2: Encryption and integrity verification.
This level extends Level 1 with integrity tags, in order to
detect memory corruption. but does not provide any temporal
uniqueness. Adversaries can still mount replay attacks.

Level 2 targets adversaries with physical access to the
complete system containing the protected components. The
adversaries have access to exposed interfaces and com-
munication buses but they do not have the capabilities
to access on-chip communication interfaces. They mainly
perform passive attacks, e,g,: physical side-channel analysis
in close proximity, contact or connection to the target device;
eavesdropping the content of external RAM, either at run-
time via memory bus probing, chip or module interposition;
abuse of DMA channels; or cold-boot attacks.

Because of the similarity of the involved techniques,
these countermeasures are also effective against limited active
adversaries, which may only be able to corrupt individual
memory locations. In order to defeat targeted replay of the
memory together with the integrity tags, more sophisticated
countermeasures are required (see Level 3 below). It can
be argued that this distinction is arbitrary, but in reality
it is made necessary by the difference in complexity and
cost of both attacks and countermeasures. In other words,
the system designer and integrator will decide whether to
accept risks arising from specific adversaries following a
proper risk assessment. That is, this ends up being a business
decision and as such is outside the scope of this paper. Still,
an adversary capable of active HW attacks may choose to
perform passive attacks instead, at least initially, for reasons
of detectability. A passive attack has the advantage of being
less likely to trigger errors that may betray the perpetrator.

The Intel TDX Multi-Key Total Memory Engine with
Integrity (MKTMEi) [4] is a L2/MirE solution, where MirE
means MACs in repurposed ECC bits. We found no docu-
mentation on error correction in a TDX system, but the 28b
MAC field size suggests the following: Four instances of a
(255,247) Hamming code are used, truncated to (143,135)
to cover 128 bits and 7 bits of the MAC each –– with the
remaining 4 bits of the effective 576 bits in each cache line
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used for parity. This very configuration is proposed in [9].
CSI:Rowhammer [10] is a L2/MirE solution as well.

2.2.3. Level 3: Encryption and replay protection. This
level includes Replay protection, which is any form of
integrity protection that is capable of detecting not only
memory corruption, but also replay of memory contents
including associated metadata.

In addition to the capabilities of the previous adversaries,
the adversaries addressed in this Level also perform active
attacks, e.g.: blocking, corrupting, replaying memory trans-
actions, or even injecting new ones [11]. See also [12]–[14].

The Intel SGX Memory Encryption Engine [3], ELM [15],
and the memory protection mechanism of Apple’s Secure
Enclave [16] (starting with the A11 and S4 SoCs) are L3
solutions. SYNERGY [17] is a L3/MirE solution.

2.2.4. Out of scope adversaries. Out of scope for the
research described in this paper are adversaries that can
mount highly invasive attacks at the chip or package level
that require considerable experience, resources, and time to
succeed. Examples of such attacks range from micro-probing
attacks [18] to actual chip reverse engineering and editing
using a Focused Ion Beam Microscope [19]–[21].

Address scrambling has been deployed to thwart adver-
saries that reverse engineer software properties from access
patterns. Such schemes however provide a static scrambling
per boot session, and an attacker can still detect address reuse:
if the program is known, this is all they need to mount the
attack. It can be argued that address scrambling can make
RowHammer attacks more difficult, but so does also data
scrambling. Therefore we do not consider these adversaries.

2.3. System level view of the technical solution

To implement the above Protection Levels, we introduce
a Memory Protection Engine (MPE). This is not a new idea:
all cryptographic memory protection designs use such a HW
block, sometimes known as a Memory Encryption Engine
(MEE). As depicted in Fig. 1, the MPE sits between the
main interconnect (or a system cache) on one side and a
memory controller on the other side in a typical SoC. It can
optionally have caches, internal buffers (not depicted), and
even access to a physically secure DRAM (e.g., on-chip or in
the same package) to store metadata. The memory protection
schemes studied in this paper are implemented in a MPE.

The fact that we functionally represent the MPE as a
separate block sitting between system cache and memory con-
troller does not preclude other designs. For example, a MPE
could be part of the memory controller or a wrapper around
the system cache. A MPE would normally be associated
either with each memory channel, and thus reside between
on-chip interconnect and external memory, or with each core
cluster (or core) that needs memory protection, and thus
reside between those cores and the on-chip interconnect. We
do not consider the latter design because it is uncommon in
the literature and it becomes a bottleneck when the associated
core or core cluster is generating considerable traffic. In

such a design, data is already encrypted when stored in
the system cache; integrity and anti-replay information may
be generated either by the core-private MPE or only upon
eviction from the system cache. Unlike core-private MPEs,
MPEs associated with each memory channel benefit from
large system caches and memory interleaving to reduce
bandwidth saturation risks. This said, we acknowledge that
some secure cores may need a private MEE.

General purpose software solutions can be envisioned as
well. For instance, memory management could be delegated
to a trusted piece of software which pages encrypted memory
in and out of a dedicated, on-chip, scratch-pad memory. In
these cases, however, performance is usually not a strong
requirement, and is expected to be poor.

It is likely that the full design space is not knowable,
and there may be further meaningful realizations of memory
protection that are unknown to us.

2.4. Building blocks

The following types of technologies are used to imple-
ment the various protection levels: (i) Memory encryption
primitives and modes; (ii) Authentication primitives; (iii) In-
tegrity and replay protection structures; and (iv) Physical
mechanisms to protect a relatively small amount of memory
from tampering, such as including it in a tamper-proof
package. The first groups are reviewed in Section 3.

Note that we exclusively consider solutions that need the
security perimeter to be no larger than the physical package
of the SoC. Hence, “smart memory” [22] is out of scope.

2.5. Cost indicators

For real-world applications it is very important to know
how expensive a solution to a problem is. The two principal
cost indicators are the performance penalty and the memory
overhead. Area and power constraints restrict which solutions
can be considered for viability, but relaxing these constraints
can sometimes be justified in the presence of a strong market
requirement. On the other hand, a solution that impacts
performance or memory availability too heavily will face
major acceptance hurdles. For this reason, we focus mainly
on performance penalty and memory overhead.

Since power consumption of a circuit is roughly linear
in both its area and the time it is active, the MPE’s area
(including caches and on-chip memory) and the performance
penalty are the main factors determining its energy cost.

3. Background

We summarize the main technologies used in this paper.

Memory encryption primitives. Block ciphers are the
most commonly used primitives for memory encryption.
Stream ciphers have a long initial latency which makes
them unsuitable in this context.

In direct encryption, the block cipher is applied block-
wise to the plaintext to generate the ciphertext. In CounTeR
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Figure 1: Simplified system level view of a SoC with Memory Protection Engine(s) (DMC is the Dynamic Memory Controller

mode (CTR) encryption, the encryption of successive values
of a counter is used to generate a keystream, which is then
XOR-ed with the plaintext to obtain the ciphertext.

We only consider block ciphers with a block size of 128
bits. The selected block ciphers are the AES [23] and the
Tweakable Block Cipher (TBC) QARMA [24]. In addition to
the secret key and a text, TBCs accept a third input known
as a tweak. The tweak is used together with the key to select
the permutation computed by the cipher. Unlike the key, the
tweak may be assumed to be controlled by an adversary.
TBCs simplify the design of modes of operation. One of
their first applications has been in memory encryption [25]
where they perform better than non-tweakable ciphers.

Other candidates (e.g. PRINCE [26]) either have similar
latencies, are not tweakable, or have a shorter block size.

Authentication primitives. Standard hash functions such as
SHA-2 [27] or SHA-3 [28] can be turned into MACs but the
resulting schemes are very slow and not parallelizable.

Encrypted Universal Hash Functions (UHFs) [29] are a
better choice. UHFs admit fully parallelizable constructions,
such as multi-linear functions of the input computed over a
binary Galois field, as used in SGX [30]. We note that if a
cache is available for UHF-based MACs, the cached values
need not be encrypted: The universal hashes are encrypted
only when evicted from the cache, and the cached hashes
can be verified more efficiently.

Apple’s Secure Enclave [16] uses a CMAC [31] to
compute integrity tags. This method is not parallelizable
and has a high latency but the use case does not need very
high throughput. This approach is however unsuitable for
general purpose use cases that require high bandwidth and
low latency. Instead, we evaluate TBC-based Parallel MACs
(PMACs) [32]. PMACs are more expensive than encrypted
UHFs because the text is first processed by encryption instead
of Galois multiplications, but they they can be used for error
detection and correction beside integrity, cf. [10], [17], [33].

M0 M1 M2 · · · Mr−1

K

α0
E α1

E α2
E · · · αr−1

E

tag

Figure 2: PMAC computed with a TBC for the
cases where freshness is not implemented

M0 M1 M2 · · · Mr−1 ν

K
1∥α0

E

0∥α0
E 0∥α1

E 0∥α2
E · · ·

0∥αr−1
E

tag

Figure 3: PMAC computed with a TBC for the
cases where freshness information is available

The computation of PMACs is depicted in Figs. 2 and 3.
Such constructions can easily be made incremental where,
upon a write, only the part of the message that has changed
needs to be recomputed. A variant for non-TBCs, called
PXOR-MAC is described in [15].

We do not consider encrypted checksums of the plaintext
despite being used in Rogaway’s Offset Codebook mode
(OCB) [32]. OCB requires freshness to be provided and
all practical systems we are aware of use CTR encryption
instead in this case. The main reason for using CTR mode
is usually the reduced read latency since the block cipher
latency can be hidden behind the off-chip memory access.
Due to the one-to-one correspondence between ciphertext
and plaintext bits, data encrypted using CTR is malleable.
Such systems must therefore include a MAC for integrity.
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Figure 5: CounTeR in Tweak mode

Modes of operation. For memory encryption, many au-
thenticated encryption modes of operation can be simplified
somewhat because the payloads are of fixed length and
usually a multiple of the underlying cipher’s block length.

For direct encryption, spatial uniqueness is achieved by
using the PA as the tweak. With a non-TBC, the latter is
used in the XOR, Encrypt, and XOR (XEX) construction [32].
XEX is defined as Ci = EK(Pi ⊕Mi)⊕Mi. In other words, a
tweak-derived mask is added to the input and the output of
the cipher. The first mask M0 is derived by encrypting the
tweak, and the successive masks Mi for i ≥ 1 are obtained
by multiplying the first mask by a fixed sequence of values.
Using a single finite field element γ we can put Mi = γ i ·M0.
Inoue et al. introduce a Flat-ΘCB mode [15] which is similar
to OCB [32]. In Flat-ΘCB mode, a truncated CTR-encrypted
checksum of the plaintext is used to define an Authenticated
Encryption mode. They define the L3 scheme Encryption for
Large Memory (ELM) using Flat-ΘCB mode for data and
PXOR-MAC to authenticate counter groups.

With a TBC, the PA (concatenated with freshness if
provided) of each block is used directly as a tweak, cf.
Fig. 4, and an XEX construction is not needed.

In CTR encryption with a TBC, the counter and PA are
used as tweak and text respectively (cf. Fig. 5) to generate
the keystream. When not using a TBC, the counter and PA
are concatenated and then encrypted.

Memory integrity structures. A table of hashes or MACs
is sufficient to protect against memory corruption.

Protection against replay attacks requires that the table
is either physically protected in an on-chip memory or with
a tree structure such as a Merkle Tree [34]. Merkle Tree
nodes can be cached [35] to speed up verification.

If counter-based encryption is used, we can protect
memory by recursively protecting just the counters as follows:
a set of a of counters and an embedded MAC form a

node called a counter group, which has the same size as
a cache line. Each counter group has a children, which can
be either cache lines of data or child counter groups. Each
counter in a counter group is associated with one child. The
embedded MAC is computed on the a counters in the same
node and the parent counter. For data (leaf) nodes, the MAC
is not embedded. It is instead stored in a separate table.
Before a counter group, or a data cache line is evicted, its
parent counter is first incremented and the counter group’s
or cache line’s MAC is recomputed. Such a counter tree is
for instance used in Intel’s SGX [3]. Counter trees are in
fact just an in-memory reorganization of Hall and Jutla’s
Parallelisable Authentication Tree (PAT) [36].

With the split counters optimization [37] a group of
a counters is replaced by a group consisting of a single
major counter and a′ > a smaller, minor counters, associated
with that major counter. A logical counter in this scheme
is defined as the concatenation of a minor counter and its
associated major counter. Each node (a data cache line or
a counter group) is associated with a logical counter. The
increased arity (for instance, from a = 8 to a′ = 64) reduces
both storage overhead for counters and tree depth. When
a minor counter overflows, the common major counter is
ticked to ensure that values do not repeat. Since this changes
the value of all of the logical counters associated with that
major counter, all the sibling nodes need to be refreshed. For
data cache lines this means that they are re-encrypted, and
for both types of nodes the MACs need to be recomputed.
All minor counters in the group are reset to zero at this point
to reduce the frequency of minor counter overflows.

Despite these Read-Modify-Write (RMW) operations, split
counter trees bring a major performance improvement over
monolithic counters. As a further optimization, we introduce
3-way split counters (with major, middle, and minor counters)
to increase arity and reduce RMWs at the same time.

In Table 1 we compare the memory overheads of various
integrity tree implementations. We assume that a MAC
can cover 1, 2, or 4 cache lines. When multi-cache line
MACs are used, each cache line is still encrypted individually
and is associated with its own counter. Hence, evicting a
cache line from the last level cache will not require the re-
encryption of adjacent cache lines. For completeness, we
also include the Tamper-Evident Counter (TEC) tree [38] in
the table. It has a large memory overhead, and requires a
wide encryption mechanism with a very high latency. This
makes it unattractive for practical deployment.

Cryptographic parameters. In the choice of parameters
such as key and MAC lengths, the fundamental difference
between encryption and authentication is that the encryption
parameters must provide long term confidentiality whereas
authentication only needs to deter an adversary. A system can
monitor unrecoverable integrity violations and take corrective
actions (e.g., destroy sensitive state and shut down) if such
events are detected. Hence, we recommended that:

• Encryption keys should be at least 128b long. We note
that a proper complexity analysis of quantum-computer-
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Table 1: Memory Overhead of Various Types of Integrity Trees
at 32b and 64b security levels

Overhead

Type of Tree cache line size: 64B 128B

Merkle Tree with a = 4, resp. 8 33.3 % 16.7 %

Monolithic Counter Tree with embedded MAC, ℓc = ℓh = 56
• ℓH = 64; n = 1; a = 8, resp. 16 26.8 % 12.9 %
• ℓH = 32; n = 1; a = 8, resp. 16 20.5 % 9.79 %
• ℓH = 32; n = 2; a = 8, resp. 16 17.4 % 8.23 %
• ℓH = 32; n = 4; a = 8, resp. 16 15.8 % 7.45 %

Split Counter Tree with embedded MAC, ℓc = ℓh = 56
• ℓH = 64; n = 1; ℓ′c = 6, resp. 7 14.1 % 7.04 %
• ℓH = 32; n = 1; ℓ′c = 6, resp. 7 7.84 % 3.91 %
• ℓH = 32; n = 2; ℓ′c = 6, resp. 7 4.71 % 2.34 %
• ℓH = 32; n = 4; ℓ′c = 6, resp. 7 3.15 % 1.57 %
• ℓH = 32; n = 1; ℓ′c = 3 7.04 % 3.52 %
• ℓH = 32; n = 2; ℓ′c = 3 3.91 % 1.95 %
• ℓH = 32; n = 4; ℓ′c = 3 2.35 % 1.17 %

PAT with a = 8, resp. a = 16 28.6 % 13.3 %

TEC tree with a = 8, resp. a = 16 42.9 % 20.0 %

Legend: LCL, ℓH , ℓh, ℓc, and ℓ′c are the bit lengths of a
cache line; a data hash or MAC; of a embedded hash value or
MAC; of a monolithic or major counter; and a minor counter,
respectively. a is the arity of a counter group, i.e. the number
of its monolithic or minor counters; and n is the number of
cache lines a MAC covers.

assisted key search against AES-128 proves AES-128
post-quantum secure [39]. Deployed technologies such
as Intel’s SGX and TDX, and AMD’s SEV use AES-128
in modes that need two independent 128-bit keys.

• Encryption block sizes must be at least 128b;
• For Merkle Tree the required hash length is 128b;
• Authentication keys should be at least 128b long;
• Data MACs should be at least 32b long (28b in a MirE

configuration); and
• Monolithic counters must be at least 56b long. The

minimal aggregated length of a major and a minor
counter (or major plus middle plus minor) is also 56b.

Intel’s SGX uses 56b MACs and 56b counters. With these
parameters, a successful replay attack on its memory of would
need both the counter and the MAC to be repeated, with
time 256 ×O(256/2) = O(284). Since, however, the purpose
of memory integrity is to deter these attacks, we note that
halving the data MACs memory requirement (and using, say,
28-32b MACs) is sufficient: with 64b worth of counters and
32b data MACs, corruption has likelihood 2−32 and replay
needs time 264 ×O(232/2) = O(280).

4. Setup of the study

4.1. Scope of the comparisons

Depending on the level, several variants of the involved
technologies can be combined. We summarize the variants
we compare in the following list. The entries marked with
† contain new contributions in this paper, while ⋆ denote
variations not hitherto compared to each other.

1) Use of the AES-128 or QARMA-128 ciphers;
2) Size of the MACs (32b or 64b);⋆
3) Counter trees: monolithic, or split;
4) Various choices for the size of counter and hash caches.
5) Use of on-chip memory for hashes and/or counters;†
6) Repurposing of ECC bits for data MAC storage;
7) Synchronous or asynchronous integrity checking;
8) Use of single MACs covering multiple cache lines, with

cached incremental hashing;†
9) Arity variations in the counter groups;

10) We consider both 64B and 128B cache line sizes;⋆ and
11) We run the benchmarks as the only running tasks, i.e.

on an unloaded system, and also under extreme memory
bus contention, i.e. on a loaded system.⋆

We assume that all algorithms are parallelized wherever
possible (i.e., there are sufficient instances of the relevant
building blocks to attain the lowest possible latency of the
whole scheme). This is not a significant restriction in our
study. As we shall see, the fastest L2 and L3 schemes use
CTR encryption and have low sensitivity to the latency of
the encryption and authentication primitives (for instance,
the performances of the variants with AES and QARMA are
quite close). Hence, their performance even on pipelined
implementations would be similar.

4.2. Technologies used for each level

We list the technologies used to implement the protection
levels defined in Section 2.4.

L1 If AES-128 is the chosen encryption primitive, a
cache line is encrypted using the XEX construction,
with the PA as the tweak. If QARMA-128 is chosen, it is
used in Tweaked Electronic Codebook (ECB) mode as
in Fig. 4, with the PA as tweak.

L2 The same encryption modes are used as for L1. Hashing
is done by a multi-linear UHF [29] at 32 or 64 bits. The
hashes are encrypted block-wise when they are evicted
from the hash cache in cache line-sized groups. For the
security and reliability implications, cf. Remark 4.1.

L3 First of all, this level provides freshness over L2. The
freshness information must be included in the tag com-
putation. A CTR encryption mode is used with both AES
and QARMA, except for ELM, which uses FLAT-OCB.
Replay protection is provided as well, by including
the counters in the tag computation and preventing the
adversary from tampering with the counter groups. This
is commonly achieved by using an integrity tree, but
there are other options, as follows:
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LoC One such option is storing the counters in a in-package
tamper proof DRAM (an SRAM would be too large)
which is MPE private (i.e., invisible to the rest of the
system and outside adversarial control). This solution
is denoted by LoC which stands for Leaves-on-Chip.
The names comes from the fact that if we store the leaf
nodes on chip, we do not need to compute any other
nodes from the original tree, since the leaf nodes are
protected by virtue of where they are physically stored.

BoC A less expensive version of the LoC solution consists
of keeping the leaf nodes in external memory and store
the level immediately above on chip. We call this tree
arrangement BoC for Branches-on-Chip. Similarly to
LoC, the system need no further levels of the tree to
ensure the integrity of the tree.

MirE MACs in repurposed ECC bits. This eliminates the
need to reserve normal memory for the MACs. This
significantly reduces memory traffic since it eliminates
the separate memory transactions used to fetch them.
Note that MACs are still accessible to a HW capable
adversary. Hence, freshness information, if available,
must still enter the MAC computation. Following [10],
the tag is computed using QARMA5-64-σ0. Note that not
all the ECC bits need to be repurposed for a MAC:
these bits may contain both a shorter ECC and a MAC.

MirE raises the question of the performance impact of
using ECC memory. Because of expanded traffic and extra
processing in the DRAM controller, there are penalties which
have been reported as smaller than 0.5% [40]. On servers,
schemes that do not repurpose the ECC bits will still be
using them for error detection and correction, so memory
access time will not vary. In all other cases, we consider the
impact of ECC memory to be so small as to not significant
change the performance relative to baseline. Hence, we do
not evaluate ECC memory as a separate configuration.
Remark 4.1. A new idea we introduce in this paper applies

to the cases where UHF-based MACs reside in external
RAM. We keep them as hashes when cached on-chip
which speeds up verification w.r.t. caching MACs. When
a dirty block is evicted from the hash cache, we encrypt
the groups of hashes directly before writing them to
memory. For instance, four 32b hashs are encrypted as a
single 128b block. Corrupting one hash will corrupt all
hashes in the group with high probability, increasing the
detectability of any corruption, and with it both security
and robustness of the system. If freshness is available, the
(middle and) minor counters associated with the hashs
in the same block are grouped and concatenated to their
common major counter to form a tweak.

4.3. Benchmarking environment and methodology

It would be impractical to implement several thousands
of combinations of technologies in silicon for the purpose
of evaluating them. A solution to this problem lies in
prototyping, i.e. the creation of an approximate implemen-
tation of the desired features that can thus be tested, and

benchmarked. Very accurate models can be created even
without implementing all details. For instance, the latencies
of cryptographic primitives can be derived from actual
implementations and inserted as delays into the simulation.

The prototypes used in this paper are built in the
gem5 simulator [6], [7]. gem5 allows engineers to build
software versions of hardware components typically included
in computer systems. gem5 also helps abstract away the
interfaces between components, which can thus be combined
programmatically and configured at run-time. It includes
approximate timing models for several processor cores.

The processor is modeled as an approximated Arm
Cortex A72-like core, with a 2GHz frequency and a 1GHz
system frequency. The cache hierarchy includes L1-I (48KiB,
LRU replacement policy, 3-way set associative, 1 cycle
latency) and L1-D (32KiB, LRU replacement policy, 2-way,
1 cycle latency) caches, and a unified L2 cache (1MiB, tree-
PLRU replacement policy, 16-way, 5 cycles latency). The
memory is 16GiB DRAM in a dual-rank DDR4 DIMMs.
The MPE-private caches are 4-way set associative with an
LRU replacement policy.

We assume that the SoC is implemented in a 7nm process.
Thus, we can re-use the latencies from [24], for instance a
latency of 15.76ns for a pipelined implementation of AES-128,
of 4.8ns for QARMA11-128-σ1 and 2.2ns for QARMA5-64-σ0.
This latency of QARMA5-64-σ0 is also used in [10].

Our evaluation uses the SPEC 2017 [5] benchmark suite.
Detailed software models such as gem5 increase execu-
tion time by several orders of magnitude: a typical SPEC
benchmark can take around a month to run [41]. To enable
rapid prototyping and analysis, we use the SimPoint [42]
methodology. This technique uses clustering to find a number
of representative regions that serve as a proxy for the whole
application. After simulating these regions, their results are
combined using a set of weights that signify how important a
region is to the application as a whole. Instead of sequentially
simulating several billions of instructions per benchmark, we
simulate 10 SimPoints of 30 million instructions from each
benchmark. This both decreases the number of instructions
we need to simulate and improves parallelism.

An alternative approach would have been to run the
entire benchmarks, as opposed to SimPoints, in parallel on
a large distributed cloud. This unfortunately does not work
in practice since the longest running workloads would have
taken weeks to months to run to completion while providing
few or no benefits compared to SimPoints. The quicker
turnaround, less than an hour to run all of SPEC 2017 on a
big-enough cluster, is in fact instrumental when exploring a
vast space of optimizations.

Regardless of how the simulation is performed, we may
ask ourselves about the impact on systems that include con-
text switches, virtual memory swap, any type of I/O. These
aspects are very difficult to emulate. In fact, benchmarking
in such a context seems absent from the literature. However,
we can observe that (i) The increased memory footprints of
the solution with smallest memory overhead (1:128 and less)
should not have a noticeable effect on paging; and (ii) It can
be argued that context switches, paging, and general I/O are
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affected by the performance penalties on memory accesses
only in a minor way: context switch code and data can reside
in pinned memory, and the timing of disk, network operations
is dominated by media which are orders of magnitude slower
than physical RAM. Therefore, any performance penalty we
present here is likely an upper bound to the real-world one.

5. Benchmarking Plan, Results, and Discussion

All MPE configurations span a vast multi-dimensional
space. Exhaustively evaluating them all is clearly infeasible,
not to speak of the difficulties of properly presenting the data.
For this reason, we have explore the design space in various
stages, each consisting of a set of runs of the benchmark
suite. Each set focuses on some previous configurations and
expands the parameter space (including adding some new
techniques) where we expect that it has some noticeable
impact. Initial sets of runs start with commonly used param-
eters (such as tree arity and cache sizes), and the subsequent
sets explore what happens when they are varied.

We use shorthands to describe the various configurations:

Level / {additional technologies} / Cipher /
/ cache line length / MAC length .

The optional “additional technologies” may include: mono-
lithic counters (mono), split counters (split), Leaves or
Branches on Chip (LoC or BoC), or the use of MACs in
Repurposed ECC bits (MirE).

The default cache line length is 64B, unless the
counter groups are on chip, in which case it is 128B. The
default MAC length is 56–64b.

“{Intel} TDX” is equivalent to L2/AES/MirE, “{Intel} SGX”
to L2/AES/mono, and “{AMD} SME” to L1/AES. LoC always
implies counters are split. The shorthand L3/LoC is used to
denote the version of L3 that uses LoC, and thus no integrity
tree. Similarly, L3/BoC is a L3 solution with the leaf counters
off chip and the next level on chip, also without a full tree.
L3 without BoC or LoC denotes a replay-protection-capable
scheme based on an integrity tree and no counters on-chip.

General Remarks. Without memory protection, our bench-
marks run 14.1%, resp. 9.5% slower on a loaded system with
64B, resp. 128B cache lines than on an unloaded system.
Changing the cache line length from 64B to 128B results in
an average speedup of 1.4% in an unloaded system and 5.5%
in a loaded system. In all cases, runs are always compared
to the baseline (unloaded) with the same cache line.

Unloaded vs. Partially loaded vs. Loaded Systems. All
benchmark runs are first run on an unloaded system, where
the current benchmark is the only running task.

We then want an upper bound for the performance
degradation in a fully loaded system, with up to hundreds
of processes running on dozens of processing elements, all
sharing the bandwidth of the memory subsystem, such as
in a cloud server. Directly simulating such a system is very
complex and impractical. We instead inject synthetic traffic
upstream of the MPE, but after the L2 cache. This traffic

amounts to 8 GiB/s. It is obtained from the measurements
reported in Fig. 6 and it corresponds to the point where the
latency of the memory subsystem just starts to diverge for a
SGX-like L3 MPE covering the entire memory while handling
mostly linear traffic. We assume that MAC verification
is synchronous because, following the discussion of the
benchmark runs in the next section, this will be the most
likely implementation. The simulated traffic is a mix of
linear and random accesses. We do not add a L3 cache to
the system, in order to simulate the extreme situation where
the latter has been completely swamped by traffic coming
from other requesters or clusters of requesters.

Fig. 6 suggests that we can expect the performance
penalty to depend on the load of the system. For this reason,
we evaluate performance for an unloaded, partially loaded,
and unloaded system. Beyond the loaded configuration we
expect a catastrophic deterioration of performance, both with
and without the MPE. At this point a cloud provider would
typically migrate VMs or start new machines in order to
balance load and meet overall performance targets. This
would bring also the MPE penalties back under control.

For this reason, we also consider a partially loaded
system where the injected traffic is 4 GiB/s instead of 8 GiB/s.

A note on short minor counters. In order to make our
simulations as realistic as possible, in all split counter
runs we initialize the counters to random values. This way
the benchmarks will not be advantaged w.r.t. real world
software, or other benchmarks that write less often to the
same locations, by the fact that they start with zero counters
that are not expected to overflow for a longer time. In a
real world setting, the user cannot expect that the integrity
trees will be initialized in a favorable way. In fact, this
configuration choice magnified the performance difference
between 3-way and 2-way split counters of the same arity,
highlighting the advantage of 3-way split counters.

We now report and discuss the results of all the runs.

5.1. Set 1: State of the Art

We start with the state of the art and some simple
variations thereof to get an initial overview of the relative
performance merits of the deployed or proposed technologies.
We compare L1/AES (e.g., AMD SME), L1/QARMA, L2/AES,
L2/AES/MirE (e.g., Intel TDX), L2/QARMA, L2/QARMA/MirE,
and ELM with both monolithic and split counters, SGX,
L3/QARMA/split – all with and without a hash cache if not fixed
by the manufacturer’s architecture, since some architectures
have a hash/MAC cache while other ones, such as SGX,
avoid it. We also compare 32b and 64b MACs in selected
cases – possibly shortened to 28b, resp. 56b, to fit them in
the data structures – as for instance SGX uses 56b MACs
while TDX uses 28b MACs, so choosing this size is a common
question that implementors face.

For SGX, hash encryption is CTR as described by
Intel [3]. We use this method for the SGX split counters
variant (L3/AES/split) as well, and in any L3 scheme where
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Figure 6: Bandwidth/latency plot with various MPEs and without, for linear or random synthetic traffic

the published architecture prescribes its use. In all other
cases, data MACs are replaced by 32b long hashes which
are directly encrypted in groups of four upon eviction.

The ELM method follows [15] except when QARMA is
used, in which case the XOR and Encrypt (XE) constructions
are replaced by simply feeding nonces and separation fields
as the tweak to QARMA, as well as using QARMA5-64-σ0 to
generate the keystream values to encrypt the tags.

For schemes with freshness, the counter cache is 64KiB
as in SGX to level the comparisons.

These principles apply to every successive set as well,
except where explicitly indicated otherwise.

A first look at the results in Fig. 7 shows that:
• In the basic variants, performance penalties increases

with the protection levels.
• The performance of L1 and L2 schemes improves if

we replace the AES with QARMA because of the latter’s
lower latency. A minor improvement occurs even for L3
because the CTR keystream generation, while it can be
performed in parallel with a memory fetch, still affects
write latency to the point that it bears effect.

• Split counter trees are superior to monolithic trees in
memory overhead (see Table 1) and performance.

• A small hash cache has a minor effect on performance.
This is perhaps the first third-party explanation of the
rationale for not including one in SGX.

• ELM has a higher performance penalty than SGX,
having the encryption primitive on the critical path.

• As expected, using 64b MACs results in slightly worse
performance than using 32b MACs.

For the remainder of the evaluation, we assume that
MACs are 32 bits long and directly encrypted in groups of

four except with SGX, MirE, or otherwise explicitly indicated.

5.2. Set 2: Impact of MPE Cache Size

The goal here is to understand the impact of the sizes of
the two MPE caches, namely the hash and counter caches.

L1 does not need caches, so we only consider L2 and L3.
The hash cache sizes we evaluate are 4KiB, 16KiB, and

64KiB; and counter cache sizes are 16KiB, 64KiB, 256KiB,
and 1MiB. We selected these sizes since we expect this to
be a reasonable range when implemented in SRAM. The
presented results use QARMA for encryption as the AES results
display an identical pattern.

We confirm the expected significant performance gains
with larger MPE caches, the counter cache having a higher
effect than the hash cache. The small benefit of the hash cache
can mostly be attributed to spatial locality (most temporal
locality has already been exploited by normal data caches).
The counter cache would intuitively have an access pattern
that is similar to the hash cache. However, the reach of the
counter cache is bigger since counters tend to be smaller
(this is especially true when using split counters) and nodes
closer to the root cover a large amount of address space
which makes them more likely to be reused.

The improvement gets more significant as the load of
the system increases (see Fig. 9).

Starting with Set 3, the MPE has a 16KiB hash cache
and a 256KiB counter cache. Level L3 uses split counters,
unless explicitly indicated otherwise, or with SGX.
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5.3. Set 3: Impact of the Cache Line Length

Another fundamental piece of information is how perfor-
mance is affected by the choices of 64B and 128B cache lines
for L2 and L3: Doubling the cache line size will halve the
memory overheads, but at least in theory the coarser memory
granularity may negatively affect performance.

It is assumed that counter group and cache line sizes are
equal. The results of Set 3 are combined with those of Set
4 in Fig. 10.

Our results show the relative impact of memory protection
is comparable across systems with 64 B cache lines and
128 B cache lines and depends on factors such as load and
integrity verification strategy. A large benefit of using wider
cache lines is that it effectively cuts the storage overhead of
MACs in half and enables more aggressive metadata packing
in counter groups.

Since we already know that our reference system with-
out an MPE performs 1.4% to 5.5% better with 128 B
cache lines, we expect that that using to 128B cache lines,
at least for the system cache, is generally beneficial in a
system with a MPEs. It is worth noting that having shorter
cache lines in coherent caches closer to the CPU is still
possible and may be beneficial for multi-threaded workloads
but studying this is outside of the scope of this paper.

5.4. Set 4: Asynchronous MAC Verification

So far we have assumed that integrity tags are verified
synchronously. In principle, asynchronous verification can
improve performance by releasing data to the CPU before
its corresponding MACs has been fetched from memory and
verified. Therefore, we assess how synchronous verification
improves overall performance over asynchronous verification.

L1 is out of scope as it does not offer integrity, so we
consider only L2 and L3. The results are displayed in Fig. 10.

Whereas in the unloaded case asynchronous MAC veri-
fication does not significantly improve performance, in the
loaded case the speedup is non-negligible. As the memory
bus approaches saturation, decoupling decryption and MAC
verification significantly reduces the performance penalty by
letting the CPU use data before it has been verified.

The use of asynchronous verification comes with a
significant drawback. Since the CPU is speculating on MAC
verification being successful, adversaries have a window of
opportunity where the CPU is using data under their control
and potentially extract sensitive information. Mitigating this
issue introduces significant complexity which would be
detrimental the integrity of the system. In the following,
we assume synchronous MAC verification since this is the
trade-off we expect in future implementations.

5.5. Set 5: Use of on-Chip Memory for L3

Going beyond caching as explored in Set 2, we explore
how a secure MPE-private on-chip memory affects the
performance the MPE.

As MACs/hashes have a larger memory overhead than
counter groups, we do not expect an implementation with
on-chip hashes and off-chip counter groups. For brevity, we
do not consider the latter case.

The results in Fig. 11 confirm that relieving the contention
on the memory bus between data and metadata reduces
performance penalties in the unloaded and partially loaded
cases. A somewhat surprising result is the LoC configuration
where counter tree leaves are store on-chip is only marginally
better than not using a dedicated on-chip memory. This
can be explained by the effectiveness of the counter cache.
While leaf nodes have poor temporal locality, the temporal
locality increases closer to the root of the tree as each node
corresponds to a large memory space. This makes it likely
that integrity verification encounters a cache hit at the level
just below the leaf level. As a consequence, the behavior
similar to LoC since the cache hit terminates the tree walk.

When storing all metadata on chip, the performance
is close to the baseline. This may not be realizable in
practice. However, as we shall see in Section 5.6, it can
be approximated by repurposing ECC bits for MAC storage.

There is a small performance difference between AES and
QARMA in an unloaded system, that substantially decreases
when the system is under load. The smaller difference in a
loaded system can be explained by the fact that the increased
memory latency effectively hides the cipher latency which
can occur in parallel with the data and metadata accesses.

5.6. Set 6: Impact of Repurposing ECC Bits, 3-way
Split Counters, and Large Counter Caches

The deployment of Intel TDX MKTMEi [4] and [9]
suggests that using ECC bits for tags may be an acceptable
trade-off for real-world deployments. This is essentially an
approximation of storing MACs on-chip since the ECC bits
are stored out-of-band and fetched in parallel with their
corresponding data.

We focus on L3 with and without MirE, since L2/MIRE
schemes are reported in Fig. 7. We expect that MirE implemen-
tations are optimized for performance and to reduce storage
overhead. For that reason, we focus on 128B cache lines
which enable much more efficient counter group packing.
With MirE, a hash cache is not needed since MACs and data
are fetched in the same memory transaction. In this case, we
compute MACs using the PMACs algorithm.

In addition to classic 2-way split counters, we introduce
3-way split high-arity 128B counter groups. The purpose
of this optimization is to pack more minor counters into
the same counter group while keeping the amount of RMW
operations under control. The minor counters in the 256-
ary counter groups cannot be longer than 3 b, and the major
counter does not need to be larger than 64 b, which means that
we can fit 32 × 6 b middle counters. To quantify the impact
of this optimization, we evaluate the configuration with and
without middle counters. The 3-way split counter groups
configurations we evaluate are:
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• 128B cache lines and counter groups with: 128 × 7b
minor, 8 × 8b middle, and 1 × 64b major counters;
This results in a memory overhead of 1:128.

• 128B cache lines and counter groups with: 256 × 3b
minor, 32 × 6b middle, and 1 × 64b major counters;
This results in a memory overhead of 1:256.

In [9], [43] “delta encoded” split counters with rebasing
are used together with methods to accommodate a limited
number of larger minor counters in a counter group to reduce
the amount of RMWs. We skip these optimisations since our
3-way split counter groups (cf. also Section 5.9) perform
better, by nearly eliminating any RMW overhead.

The results (Fig. 12) show that combining LoC and MirE
provides the highest protection level at very low performance
overhead. In fact, this is the only combination of techniques
that can yield nearly negligible performance penalties on
a loaded or partially loaded system. Middle counters are
instrumental in getting the best performance out of the high-
arity counter groups, which would otherwise incur in very
large RMWs overheads. The resulting schemes perform even
better than L1 direct encryption. This can be explained by
L1 schemes having the cipher latency on the critical path
to external memory, while L3 and variants hide the cipher
latency behind the the off-chip memory latency.

For a 16 GiB protected memory, the BoC configuration
needs 256 KiB of on-chip storage. An alternative to the BoC
configuration would be to use that memory for a counter
cache. The 512 KiB configuration in Fig. 12 corresponds to
this configuration since the baseline counter cache size is
256 KiB. In such cases, the larger cache normally performs
on-par with BoC in an unloaded system and slightly better
under load. This can be explained by two effects. First,
the cache approximates BoC since the level just above the
leaf level is very likely to be resident in the cache. Second,
unused branch nodes can be replaced by useful leaf nodes
which improves efficiency. On a fully loaded system, LoC
performance is reached in practice only when the cache is
large enough to cover the tree working set of the running
applications. In the case of SPEC 2017, this typically happens
between 1 MiB and 2 MiB of cache.

Unlike normal CPU caches, the speed of the MPE caches
is not critical: counters and hashes just need to be available
to the MPE before the data from RAM. This implies that
slow, but dense, DRAM can be used for these caches.

5.7. Set 7: Impact of incremental MACs

If we cannot store MACs in the ECC bits or on-chip,
there is another option for reducing their storage overhead:
to compute them incrementally over multiple cache lines.

Since the goal is to reduce the storage overhead, we
focus this investigation on using 128 B cache lines. This
configuration already reduce metadata storage requirements
by a factor of two compared to 64 B cache lines. We test
both L2 and L3 configurations, L3/LoC, and L3/BoC, with
a MAC covering 1, 2, or 4 cache lines. These runs are
reported only with QARMA-128 as the encryption cipher,

since the performance differences are caused only by the
increased memory traffic, and we can therefore expect
configurations with AES to follow the same pattern. Multiple-
cache line MACs effectively reduce storage overheads, but
at a significant performance cost, as shows in Fig. 8.

An alternative way to store MACs would be to use
plaintext compression to fit a MAC inside together with
the data in the same block. Indeed, the performance of an
incremental hashing scheme may be improved somewhat [44].
However, this approach comes with significant drawbacks.
First, we need a fallback mechanism to store MACs when the
cache line cannot be sufficiently compressed to fit a MAC in
the same block. Second, an attacker capable of monitoring
memory transactions would be able to infer properties of
the data just by observing its compressibility [45], [46]. The
latter completely defeats the purpose of a MPE in the first
place. Thus, we have decided not to consider it.

5.8. Set 8: Detailed Breakdown of the Performance
in Selected Configurations

To better understand the behavior of the MPE, we select
a few interesting configurations and show all individual
benchmarks in the suite:

• AMD SEV and L1/QARMA, with 64B cache lines;
• Intel TDX/64B CLs (i.e. L2/AES/MirE);
• L2/QARMA/64B CLs, with off-chip 64b MACs and MirE;
• Intel SGX (i.e. L3/AES/56b MACs);
• L3/QARMA/LoC/MirE, with 128- and 256-ary 3-way split

counter groups.
The performance of the individual SPEC2017 bench-

marks (cf. Figs. 13 to 18) shows a few expected results,
namely that some applications such as omnetpp, mcf, and
bwaves suffer significantly more than average under most
MPE configurations. Increasing integrity tree arity by means
of split counters is key for an initial reduction of the penalties,
but it is only with 3-way LoC and MirE that L3 penalties can
be pushed to be smaller than 5% for most benchmarks. The
only difference between unloaded and loaded systems is the
degree of amplification of the performance penalties.

5.9. Set 9: Impact of RMW Operations

All split counter methods need, as said before, to perform
some batches of RMW operations to re-encrypt data or re-
compute some embedded MACs whenever a major counter
is incremented. These are expensive operations and we need
to understand their impact on performance.

Hence, we compare the performance of an MPE with a
hypothetical one where the RMW operations have zero cost,
i.e. are instantaneous. This is achieved by simply skipping
them. Such an experiment is possible because the simulated
MPE does not actually perform cryptographic operations,
simulating instead their timing delays.

This gives an upper bound on the actual time spent
performing RMW operations. We select the L3 schemes with
high-arity split counters. For these schemes we report the
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Figure 9: Set 2: Impact of MPE cache sizes;
the memory encryption cipher is QARMA-128; cache lines are 64B

Figure 10: Set 3 and Set 4: Impact of cache
line size and asynchronous MAC verification

performance with 3-way split counters, the performance with
2-way split counters by omitting the middle counters, and
the performance with skipped RMWs.

The results are shown in Figs. 17 and 18. We notice that
the impact of RMWs is not always negligible. Using 2-way
split counters with 3b minors (L3/QARMA/LoC/MirE with 256-
ary counter groups) carries a significant performance penalty,
but the use of middle counters brings the performance close
to the ideal case where RMWs are “free”.

Note that the performance penalties and the proportion
of time spent doing RMWs increase with the load. This
suggests that further research to RMWs may benefit loaded
systems. However, even in this case the penalties with 256-
ary, 3-way split counter groups are smaller than with a direct

encryption L2/AES/64B CLs/MirE scheme as in TDX.

5.10. A remark on area and power

The area of the MPE mostly comprises cryptographic
circuits, caches, and any internal DRAM for counter storage
(if present). The control circuitry, and possibly Galois
multipliers, are small in comparison to the block ciphers
implementations.

There is extreme variability in the parameters. For
instance, in order to squeeze the maximum performance
from schemes based on direct encryption, such as L1 and
L2 schemes, the implementer may use several encryption
blocks in parallel for encryption and for the integrity PMAC.
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Figure 11: Set 5: L3; Impact of storing metadata on-chip Figure 12: Set 6: Impact of repurposing ECC bits for MACs and
of large counter caches on L3/MirE schemes

Sacrificing some latency, pipelined implementations can be
used to save area. As described in [24], the implementations
of AES and of QARMA may vary a lot. For a single MPE we
estimate between ≈50KGE (gate equivalents) for a pipelined
encryption circuit based on QARMA, optimized for area, and
≈ 800K GE for 8 parallel instances if optimized for latency
in order to encrypt a whole 64 B cache line at the same
time. AES implementations are much bigger with optimized
implementations exceeding 17K GE per round [47]. A full
latency-optimized implementation can be ≈ 170KGE, and 8
such blocks in parallel would use an area of ≈ 1.3MGE. A
pipelined QARMA circuit and a fully parallelized AES circuit
would furthermore have comparable total latency.

Integrity tag computation and verification can re-use the
same blocks used for encryption, or much smaller ones based
on QARMA5-64-σ0, as in [10].

We recall from Section 5.6 that the MPE caches can be
built from DRAM, with the area roughly being one transistor
per bit. A 4 KiB cache is about 16 KGE, and a 256 KiB
cache is roughly 1 MGE. We can expect that if resources
are balanced, the caches will be between 1/3 and 1 times
the area of the encryption blocks.

Even one large MPE per memory channel represents
a minor, but not negligible, amount of area for a modern
SoC, that can include a few to several billion transistors.
Architects and implementers need to carefully consider the
various trade-offs. The cost of DRAM memory included
in the package or module to store entire counter tables is
minor with respect to the total memory of the whole system,
but it cannot be ignored, especially since a tamper proof or
detecting multi-chiplet design bears its own additional costs.

Besides these considerations, it is infeasible to provide
area estimates for all configurations. In general, the energy
consumption of an MPE seems to be a minor contribution
to the total power envelope. Still, designs like QARMA help

bring the latter further down, as the most energy consuming
components in the MPE are the encryption primitives: a
single pipelined implementation of QARMA-128 can process
eight blocks in the same time as eight parallel AES-128
blocks, and this can make a significant difference in CTR
based systems which are less sensitive to cipher latency.

6. Conclusions

We performed a thorough survey and evaluation of the
available technologies for the cryptographic protection of
memory contents together with some previously not consid-
ered variants. We unified the treatment of different protection
levels according to models of the targeted adversaries.

The large number of possible configurations results in a
vast set of independent choices, corresponding to different
prices in term of performance penalty, memory overhead, and
hardware cost. The lack of an absolute metric to combine
these three costs into one rating makes it challenging to
provide recommendations for each use case. Therefore, the
extensive set of benchmarking runs we present should be
used as a guidance for further investigations. This said, we
can provide some rough guidance.

If only confidentiality is needed, L1 schemes can perform
very efficiently and we recommend the use of a lightweight,
high-security encryption primitive (e.g., QARMA) in a direct
mode. If integrity protection is required, but replay attacks
are out of scope, L2 schemes with short MAC can be made
very efficient by using ECC bits to store the MACs.

In what follows, we only consider L3 memory protection:
nearly-transparent strong memory protection is possible with
current technology, but the hardware costs may be prohibitive.

Server SoCs are expensive, with multiple cores and mem-
ory channels. Current systems can address a few terabytes
of physical memory. The high total system costs allows
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us to makes an argument for CTR encryption with high
arity counter groups in on-chip DRAM. The additional cost
for counter group storage would be relatively minor (1:128
or 1:256 of the external memory). When combined with
MirE, it would enable the highest level of memory protection
at a lower performance impact than all currently deployed
schemes without replay protection. It would likely also less
expensive than basing the protection of local memory on the
CXL.memory Integrity and Data Encryption (IDE).

If there is no budget for a large on-chip counter memory,
a big counter cache may still provide almost the same benefit.
However, it can be argued that such a budget should rather
be spent on the system caches, which benefits the whole
system and reduces the traffic routed through the MPE. This
also suggests the idea of dynamically partitioning a common
cache between system and MPE. Dynamically reconfiguring
it would be straight-forward to implement in hardware, but
it should rely on an analysis of the traffic and of the impact
of the partitioning that goes beyond the scope of this paper.

We observe that placing 64 GiB or more of DRAM in a
module close to the main SoC is feasible for client devices
today. Hence, one can could imagine making such memories
tamper proof and using them as a general purpose cache
in a server system equipped with up to several terabytes of
memory – instead of keeping all counter groups on chip. If
this approach is not possible, storing the integrity tree off-
chip and using MirE still provides good performance when
combined with a large counter cache.

On client devices, memories usually lack ECC, making
MirE not applicable. However, for use cases such as security
modules and business oriented containers, memory bus
saturation is less of a concern. We thus expect performance
penalties to be contained, usually in line with unloaded
systems, and we recommend the use of high arity split
counter trees in a dynamically allocated carve-out.

We finally observe that data structures and the orga-
nization of integrity trees play a first-order concern when
considering overall performance. Cryptographic primitives
only make a small difference for performance but signifi-
cantly affect area and power where light-weight block ciphers
significantly outperform classic block ciphers.

Future work includes contributing our MPE model to the
gem5 project which we hope will stimulate future research
in the area and enable targeted studies for specific workloads
and configurations.
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and É. F. Zulian, “The gem5 Simulator: Version 20.0+,” CoRR, vol.
abs/2007.03152, 2020, doi:10.48550/arXiv.2007.03152

[8] M. Seaborn and T. Dullien, “Exploiting the DRAM RowHammer
bug to gain kernel privileges,” Talk at Black Hat 2015, 2016, https:
//www.blackhat.com/us-15/briefings.html.

[9] S. F. Yitbarek and T. M. Austin, “Reducing the Overhead of Au-
thenticated Memory Encryption Using Delta Encoding and ECC
Memory,” in Proceedings of DAC 2018. ACM, 2018, pp. 1–35,
doi:10.1145/3195970.3196102

[10] J. Juffinger, L. Lamster, A. Kogler, M. Lipp, M. Eichlseder, and
D. Gruss, “CSI:Rowhammer – Cryptographic Security and Integrity
against Rowhammer,” in Proceedings of IEEE S&P ’23, 2023.

[11] M. A. Khelif, J. Lorandel, O. Romain, M. Regnery, D. Ba-
heux, and G. Barbu, “Toward a hardware Man-in-the-Middle at-
tack on PCIe bus,” Microprocess. Microsystems, vol. 77, 2020,
doi:10.1016/j.micpro.2020.103198

[12] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
Injection Attacks on Cryptographic Devices: Theory, Practice, and
Countermeasures,” Proc. IEEE, vol. 100, no. 11, pp. 3056–3076, 2012,
doi:10.1109/JPROC.2012.2188769

[13] E. Blass and W. Robertson, “TRESOR-HUNT: Attacking CPU-
Bound Encryption,” in 28th Annual Computer Security Applications
Conference, ACSAC 2012, R. H. Zakon, Ed. ACM, 2012, pp. 71–78,
doi:10.1145/2420950.2420961

[14] L. Zussa, J.-M. Dutertre, J. Clédiere, B. Robisson, and A. Tria,
“Investigation of timing constraints violation as a fault injection means,”
in 27th Conference on Design of Circuits and Integrated Systems
(DCIS), Avignon, France, November 2012, pp. 1–6.

[15] A. Inoue, K. Minematsu, M. Oda, R. Ueno, and N. Homma,
“ELM: A Low-Latency and Scalable Memory Encryption Scheme,”
IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 2628–2643, 2022,
doi:10.1109/TIFS.2022.3188146

[16] Apple Inc., “Secure Enclave,” 2020. [Online]. Available: https:
//support.apple.com/en-gb/guide/security/sec59b0b31ff/web

[17] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “SYNERGY: Rethinking Secure-Memory Design for Error-
Correcting Memories,” in Proceedings of HPCA 2018. IEEE
Computer Society, 2018, pp. 454–465, doi:10.1109/HPCA.2018.00046

[18] S. Skorobogatov, “How microprobing can attack encrypted mem-
ory,” in Proceedings of DSD 2017, H. Kubátová, M. Novotný, and
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Figure 13: Set 8: AMD SEV (i.e. L1/AES/64B CLs) vs. L1/QARMA/64B CLs
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Figure 14: Set 8: L2/AES with and without MirE (64B cache lines)
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Figure 15: Set 8: L2/QARMA with and without MirE (64B cache lines)
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Figure 16: Set 8: Intel SGX/64B CLs (L3/AES/56b MACs/64B cache lines) vs. L3/QARMA/split/128B cache lines/32b MACs
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Figure 17: Set 8 and Set 9: L3/MirE/QARMA/LoC/128-ary – runs with 3-way and 2-way split counters, and with no RMWs
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Figure 18: Set 8 and Set 9: L3/MirE/QARMA/LoC/256-ary – runs with 3-way and 2-way split counters, and with no RMWs
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