
SoK: Cryptographic Protection of Random Access Memory —
How Inconspicuous can Hardening Against the most Powerful Adversaries be?

Roberto Avanzi1, Ionut, Mihalcea2, David Schall3, Héctor Montaner4, and Andreas Sandberg2

1Arm Germany, GmbH, roberto.avanzi@arm.com and Caesarea Rothschild Institute, University of Haifa, Israel, roberto.avanzi@gmail.com
2Arm Limited, UK, ionut.mihalcea@arm.com, andreas.sandberg@arm.com

3School of Informatics, University of Edinburgh, United Kingdom, david.schall@ed.ac.uk
4Graphcore, Cambridge UK, hector.montaner@outlook.com

Abstract—Confidential Computing is the protection of data in
use from access or modification by any unauthorized agent,
including privileged software. For example, in Intel SGX and
TDX, AMD SEV, and Arm CCA this protection is implemented
via access control policies. Some of these architectures also
include memory protection schemes relying on cryptography,
to protect against physical attacks.

We review and classify such schemes, from academia and
industry, according to models of adversaries with varying ca-
pabilities, necessitating different protection levels. The building
blocks are encryption, integrity, and anti-replay primitives. We
discuss these primitives, consider their possible combinations,
and evaluate the performance impact of the resulting schemes.
We present a framework for the performance evaluation in
a simulated system. To understand the best and worst case
overhead, systems with varying load levels are considered.

We propose new solutions to further reduce the performance
and memory overheads of such technologies. We show that
advanced counter compression techniques make it viable to store
counters used for replay protection in a physically protected
memory. By repurposing some ECC bits to store integrity tags,
we achieve hitherto unattained performance while providing
confidentiality, integrity, and replay protection.

1. Introduction

Cloud computing promises to increase efficiency and
drive down cost for users. Such services co-locate multiple
mutually untrusted tenants in the same data center and
sometimes even the same physical machines. Compared to
traditional on-premises solutions, users of cloud computing
face two additional threats. First, hostile tenants may try to
exploit bugs in the hypervisor or access control mechanisms
to impact the confidentiality, integrity, or availability of co-
located virtual machines. Second, the service provider or its
contractors may try to gain access to customer data.

Similar threats exist in client devices, such as phones,
which have evolved into smart terminals and identity
providers. Like in a data center, adversaries may use co-
located untrusted code or even have physical access to the
device. Use cases such as secure payments, secure identifica-
tion, and software anti-piracy rely on strong confidentiality

and integrity guarantees. These are often provided in separate
components, e.g., SIM cards, USB tokens, or TPMs. Consol-
idating their functionality onto the main System-on-a-Chip
(SoC) enables new use cases while reducing total costs.

AMD SEV [1], Arm CCA [2], Intel’s Client [3] and
Scalable SGX [4], and Intel TDX [5] move towards this goal
by providing managed access control mechanisms. Some
even include protection against adversaries with physical
access to the system. For instance, Intel’s Client SGX
implements a Memory Encryption Engine (MEE) [3] that
provides confidentiality, as well as integrity and protection
against replay attacks. Such strong security guarantees can
be very costly in terms of performance and storage. For this
reason, AMD SEV, Intel TDX, and Scalable SGX (the latter
two sharing the same memory protection scheme) provide
weaker guarantees in exchange for better performance.

The question that we answer in this study is: What
cryptographic technologies are available to protect the
contents of data-in-use in RAM against an adversary with
physical access to the system, and what are their memory
overheads and performance costs?

The starting point is a review of the techniques doc-
umented in the scientific and technical literature. Even
though we cite several architectures for implementing Trusted
Execution Environments (TEEs), the scope of this paper does
not address aspects such as OS and Hypervisor support, I/O,
virtualization, attestation and IPC mechanisms. We focus
on solutions for cryptographic memory protection that are
entirely implemented within the SoC package limits.

In real-world applications, understanding the cost of a
solution is crucial. Area and power constraints limit the
viable options, but relaxing them can be justified by strong
market requirements. On the other hand, solutions with high
performance penalties and memory overheads risk being
rejected without further consideration of their merits. For
this reason, we focus mainly on performance penalty and
memory overheads. We also propose new methods to further
reduce these costs.

Our performance evaluation uses the industry-standard
SPEC 2017 [6] benchmark suite running on the gem5
simulator [7], [8]. We use the entire benchmark suite and
do not pick just a few benchmarks.

1

mailto:roberto.avanzi@arm.com
mailto:roberto.avanzi@gmail.com
mailto:ionut.mihalcea@arm.com
mailto:andreas.sandberg@arm.com
mailto:david.schall@ed.ac.uk
mailto:hector.montaner@outlook.com


This work also fills a gap in the literature, as there are
only very few papers surveying the subject. The paper [9],
published in 2013, contains a thorough survey of memory
encryption techniques until its publication, but its perfor-
mance data is taken from the surveyed papers. Its abstract,
states “To date, little practical experimentation has been
conducted, and the improvements in security and associated
performance degradation has yet to be quantified.” Ten years
later, this sentence still holds true. For instance, the papers
[10] and [11] are more recent, but the comparisons are very
limited. In the papers [12], [13] and [14] the performance
evaluation is performed on a large set of benchmarks, but
the comparisons are only performed against the baseline
methods they improve upon, and not in general.

Outline. In Section 2 we provide a summary of our results.
Section 3 contains background material, such as: the models
of the adversaries; a discussion of the memory protection
levels; cryptographic parameters; and a treatment of memory
integrity structures. The latter is where we obtain the largest
performance improvements. (The cryptographic primitives
are described instead in Appendix B.) Section 4 describes
the actual benchmarks and discusses how these support the
claims in Section 2. In Section 5 we conclude.

Acknowledgments. Parts of Ionut, Mihalcea’s work for this
paper was performed in fulfillment of the requirements for
an M.Sc. degree [15]. Ionut, wishes to thank his academic
supervisor Prof. Konstantinos Markantonakis, and his line
manager at Arm, Paul Howard, for their steady support.

David Schall’s work was done during two internships
at Arm Research and Arm’s Architecture and Technology
Group, respectively. Part of the work performed during the
first internship is documented in his Master’s Thesis [16].

The authors wish to thank Matthias Boettcher, Mike
Campbell, Yuval Elad, Wendy Elsasser, Charles Garçia-Tobin,
Alexander Klimov, Kazuhiko Minematsu, Jason Parker,
Prakash Ramrakhyani, Gururaj Saileshwar, Andrew Swaine,
Peter Williams and Nicholas Wood for many interesting
discussions on the subject of this paper.

2. Summary

Cryptographic memory protection relies on the following
technologies: (i) Encryption; (ii) Authentication; and (iii) Re-
play protection structures. Among the replay protection
structures we consider also the physical protection of a
relatively small amount of memory, such as including it
in the SoC. We exclude the application of this approach
to the entire physical memory, because cost and thermal
considerations make it impractical for general purpose client
and server SoCs.

There are only a few meaningful combinations of these
technologies. They are added sequentially to access control,
forming four increasingly robust Protection Levels:
L0: Access Control only;
L1: L0 + Memory encryption;
L2: L1 + Memory integrity; and

L3: L2 + Protection against replay attacks.

While one can imagine use cases for integrity only
without encryption, we are not aware of any such scheme.

We implement Protection Levels L1 to L3 in the Memory
Protection Engine (MPE), an IP block sometimes known as
Memory Encryption Engine (MEE), e.g., in SGX. As depicted
in Fig. 1, in a typical SoC the MPE sits between the main
interconnect (or a system cache) and a memory controller.
It can optionally have its own caches, and even access to a
physically secure private DRAM to store metadata.

As a starting point for choosing the components used to
implement each Protection Level, we first review the state-
of-the-art. Table 1 outlines cryptographic memory protection
in various Trusted Execution Environments (TEEs). While
the TEE list is not exhaustive (a more complete list is given
in [17]), the list of primitives and structures is comprehensive,
except for some deprecated methods. (These technologies
are detailed in Section 3.4 and Appendix B.)

We obtain the following groups of alternatives:

1. The AES vs. a lightweight cipher suitable for mem-
ory encryption. We use QARMA-128, cf. Appendix B.1.
QARMA [18] is a Tweakable Block Cipher (TBC): Beside
the secret key and a text, a TBC accepts a third
input known as a tweak, which is used together with
the key to select the permutation computed by the
cipher. Unlike the key, the tweak may be controlled by
an adversary. TBCs simplify the design of modes of
operation. One of their first applications has been to
memory encryption [9].

2. Direct encryption, where a plaintext block is input to
the cipher to compute its ciphertext, vs. CounTeR mode
(CTR) encryption, where the encryption of successive
counter values results in a keystream which is XOR-ed
to the plaintext (Cf. Appendix B.3 for more details).

3. Various MAC algorithms for memory integrity, such as
Carter-Wegman Universal Hash Functions (UHFs) [19]
(for instance, encrypted linear functions of the message),
encrypted checksums of the plaintext, or PMAC [20]
(see Appendix B.2 for a discussion of the options).

4. The choice of 32 b vs. 64 b MACs for the integrity tags.
5. Different the sizes of the caches used by the MPE, as

well as on-chip memory to store MACs or counters.
6. Optionally repurposing some ECC bits to store MACs.
7. Different sizes of the memory regions protected by one

MAC. This is obtained both varying the cache line size
and letting a single MACs cover multiple cache lines.

8. Synchronous vs. asynchronous integrity verification.
9. Integrity counter trees with increasing arity. The nodes,

which in this paper always fit in one cache line, may
contain from 8 to 256 highly compressed counters,
corresponding to their children. To achieve this, the
operations on the tree guarantee that the most significant
bits of all counters in any given node are equal. This
common part is stored only once in the node, while
the least significant bits of each counter are stored
individually. (See Section 3.4 for more details.) In this
paper for the first time we show the advantages of

2



Core

I-L1$ D-L1$

L2$

Core

I-L1$ D-L1$

Other requester

Other requester

C
oh

er
en

t
In

te
rc

on
ne

ct

(Boot) ROM

Provisioned
secrets

SRAM

System Cache MPE

Counter
Cache

Hash
Cache

DRAM

Memory
Controller DRAM

System Cache MPE Memory
Controller DRAM

· · · · · ·

System Cache MPE Memory
Controller

· · ·

· · · · · ·

New components
(some optional)

SoC perimeter Hic sunt dracones!

Figure 1: Simplified system level view of a SoC with Memory Protection Engine(s). DMC is the Dynamic Memory Controller.

Table 1: Selected documented TEEs and cryptographic memory protection schemes (the heading AC means Access Control).

System Year Level AC Encryption Authentication Structure References

Hall and Jutla’s PAT 2002 L3 N Unspecified Unspecified Counter Tree [21]
AEGIS 2003 L3 N AES-CBC Incremental hash Merkle Tree (MT) [22], [23]
AEGIS (alt. design) 2003 L3 N “OTP” MD5/SHA-1 Log Hashes [24]
Yan et al. 2006 L3 N AES-GCM GMAC Split Counter Tree [25]
SecureMe 2007 L3 N AES-CTR SHA-1/HMAC Bonsai MT [26]
Bastion 2010 L3 Y AES-ECB AES-CMAC MT [27]
Intel’s Client SGX1/SGX2 2013 L3 Y AES-CTR Encrypted UHF Counter Tree [28]
AMD-SEV-SNP 2016 L1 Y AES-XEX None None [1], [29], [30]
SYNERGY 2018 L3 N/A AES-GCM GMAC Bonsai MT, Message Authentication Codes (MACs) in ECC bits [31]
Apple’s Secure Enclave 2020 L3 Y AES-XEX AES-based CMAC Bonsai “Integrity tree” [32]
Intel TDX, Scalable SGX 2020 L2 Y AES-XEX Reduced SHA-3 MACs in ECC bits [4], [5]
Keystone 2020 L1–L3 Y AES128, in an

unspecified mode
Unspecified Secure paging of on-chip

memory to external RAM
[33]

Arm CCA 2021 L0 Y Optional Optional Optional [2]
PENGLAI 2021 L3 Y Unspecified Unspecified Dynamically allocated MT [34]
ELM 2022 L3 Y Flat-ΘCB (OCB) Flat-ΘCB and PXOR-MAC Counter Tree [35]
CSI:RowHammer 2023 — N/A Optional Parallel MAC (PMAC) MACs in ECC bits [36]

counters split into three parts.
We run the benchmarks with different loads on the

memory subsystem. To our knowledge, this is the first
evaluation of this type. We also randomize the internal
state of the system structures to simulate the more realistic
performance characteristics of a not-freshly booted system.

The main two results are the following ones:
R1 Nearly-transparent strong memory protection is possible

with current technology, for both client and server
systems and in most conditions.

R2 Data structures and the organization of integrity trees
play a first-order concern when considering overall
performance. Cryptographic primitives significantly af-
fect area and power where light-weight block ciphers
significantly outperform the AES, but their impact on
performance is major only in L1 and L2 schemes,
whereas in L3 schemes it is minor.

More results and observations follow:
R3 The performance of encryption methods that are based

on direct encryption methods, such as L1 and L2
schemes, is very sensitive to the latency of the cipher.

Moving from the AES to QARMA brings a significant
reduction in performance loss. (Cf. Section 4.3.)

R4 Regards to the previous claim, the additional read
latency due to encryption has a greater impact on
performance than the write latency. (Cf. Section 4.10.)

R5 Lightweight ciphers can reduce area and thus power
usage (cf. Section 4.12). This makes ciphers like QARMA
suitable for CTR encryption, even if overall performance
is barely affected by cipher latency.

R6 Using 32 b MACs in place of 64 b halves their memory
requirements, which is significant. However, MAC
memory accesses have poor spatial locality, and the
impact on performance is marginal (Cf. Section 4.3.)

R7 Small MAC caches have a minor effect on performance.
In general, MAC caches are not major performance
factors. Counter caches are more effective than the
hash caches. The relative improvements due to caching
increase with the load of the system. (Cf. Section 4.4.)

R8 Similarly, using longer cache lines (i.e., 128 B instead of
64 B) does not necessarily improve overall performance
significantly. However, it halves the memory used by the
MACs and enables more aggressive metadata packing
in the counter trees. (Cf. Section 4.5.)

3



R9 While asynchronous integrity verification improves per-
formance, it is security risk as the system may speculate
on potentially corrupted data. (Cf. Section 4.6.)

R10 If we store MACs in repurposed ECC bits (short: MirE)
the performance of L2 and L3 schemes has a major
improvement — the same applies if the MACs are
stored in an internal memory. (Cf. Section 4.8.)

R11 Incremental MACs, each covering multiple cache lines,
have a detrimental effect on performance. The opti-
mization of compressing the plaintext to store MACs,
whenever possible, together with the payload [13],
which serves to reduce the number of memory accesses,
cannot be used: Compressibility is a side-channel re-
vealing properties of the data, defeating the purpose of
confidentiality protection [37], [38]. (Cf. Section 4.9.)

R12 Increasingly higher arity counter trees offer major and
progressive reduction in both memory overhead and
performance penalties, despite the complexity of their
structure and implementation. (See Table 2 for the
memory overheads.) However, as the arity of such
integrity trees increases, with the counter group size
staying constant, the system must re-encrypt memory
or regenerate integrity nodes increasingly often. The
use of 3-way split counters substantially reduces the
cost of these Read-Modify-Writes (RMWs) operations.
(Cf. Sections 4.3, 4.8 and 4.11.)

R13 The most striking finding is that the smaller trees, in fact
just their leaf level, are compact enough to be stored in
a physically secure, on-chip of in-package memory, that
is relatively small with respect to the total RAM, i.e.,
1:128 or 1:256. This enables L3 schemes with very low
performance penalties. Combined with MirE, they lead
to a performance hit of just 3.32% even under extreme
bus contention. (Cf. Sections 4.7, 4.8, 4.10 and 4.11.)

3. Background

3.1. Definitions

Following the Arm terminology [2], a Realm is a process
domain that is isolated from other process domains through
policies enforced by a small Trusted Computing Base (TCB).

The Software (SW)-accessible volatile, external memory,
connected to a memory controller, is seen as an array of
blocks. These blocks match the Last Level Cache’s cache line
size and are thus also called Cache Line (cache line).

An encryption or authentication function is said to
provide spatial uniqueness if, when computed on equal inputs,
but written to different locations, it results in different outputs.
This is achieved by including the Physical Address (PA) of
the encrypted or authenticated cache line in the computation.

An encryption or authentication function provides tempo-
ral uniqueness (freshness) when repeated writes of the same
plaintext to the same location result in different outputs. This
is achieved by including a counter in its computation.

In what follows a mode (of operation) is a general purpose
encryption mode of operation. A Memory Encryption (ME)

mode is understood to be an encryption mode of operation
with plaintext and ciphertext having the size as a cache line,
and no associated data.

An on-chip component is defined as a physically secure
block in the same package as the processing elements. In this
case the package shall be tamper-averting, i.e., a package that
is either tamper-proof/resistant, or tamper-evident/detecting,
where issues are handled by the TCB.

3.2. Adversaries

To adequately answer the question posed in the Introduc-
tion, we categorize technologies based on the adversaries they
defend against. The adversaries are distinguished according
to their access to the target, and their resourcefulness.

Before defining the adversaries, a few critical remarks
need to be done. Cryptographic memory protection cannot
address most side channels, including all those that exploit
physical effects: These are thus out of scope. The exclusion
applies to the access-pattern side channel as well: Adversaries
can reverse engineer software properties or elicit secrets from
access patterns, but the only generic and provably effective
mitigation would involve Oblivious RAMs (ORAM) [39].
However, ORAMs carry prohibitive performance penalties.
The same applies to SW exploitation, timing attacks and
micro-architectural side-channels. For all these threats, miti-
gations should be applied to SW as needed.

Denial-of-Service attacks on Realms must in general be
accepted, since user-space services can, for instance, always
deny resources, including scheduling, to Realms.

We can now define the following Adversaries:
• Adversary A SW can run SW on the target, and provide

inputs to it, including through external interfaces.
• The Adversary A HW

passive has physical access to the system
that contains the target, including its internals, but does
not have the capabilities to access on-chip communica-
tion interfaces. A HW

passive can interpose chips and modules
for the sole purpose of monitoring transactions.

• A HW
active, also performs active attacks, e.g., blocking,

corrupting, replaying or injecting transactions on the
memory bus [40] or other interfaces.

• A HW
invasive can mount highly invasive attacks at the chip

or package level. Examples range from micro-probing
attacks [41] to actual chip reverse engineering and
editing using a Focused Ion Beam Microscope [42].
Note that A HW

invasive is out of scope for the research
described in this paper, as the proper defenses are
HW countermeasures.

SW and HW-capable adversaries are independent. The HW
adversaries form a hierarchy A HW

passive ⊊ A HW
active ⊊ A HW

invasive.

3.3. Protection Levels

We provide detailed definitions of the Protection Levels.
Table 1 shows how some documented solutions map to them.

For each protection level we also list the technologies
used to implement it, which are taken from options described

4



in Section 2, Table 1. For more details about these technolo-
gies, we refer the reader to Appendix B.

We also assume that all algorithms are parallelized
wherever possible.

3.3.1. L0: Access control. Access control policies to im-
plement reverse sanbdboxing are the first line of defense
against A SW. However, RowHammer attacks (and micro-
architectural side channels) have significantly increased the
power of A SW, enabling them to bypass reverse sandboxing.

Physically separating memory rows of different process
domains through access control and precise memory alloca-
tion policies could theoretically prevent RowHammer attacks.
However, this approach requires complex system software
changes and is impractical in real-world scenarios.

We do not discuss the implementation of L0.
From here on, we assume that appropriate access control

policies are in place to stop unauthorized agents within the
SoC, but not to prevent RowHammer attacks.

3.3.2. L1: Memory encryption. This level provides spatial
uniqueness, but not temporal uniqueness.

Interest in L1 is driven by confidentiality requirements
and to make attacks that depend on memory corruption (for
instance RowHammer) more difficult. For this reason, L1
must use direct encryption with a cipher that enjoys a strong
diffusion property, i.e., any input change induces a flip of
each output bit with likelihood 1/2.

In general, protection against A SW is very limited, as is
against A HW

passive since the latter can detect ciphertext repeats.
Also, note that attacks on the integrity of a system may still
cause SW to reveal its contents, therefore this scheme alone
does guarantee confidentiality. Only full replay protection
(L3) thwarts the particular attack just mentioned. Warm-boot
and cold-boot attacks [43] are properly mitigated. Note that
the same arguments apply also to L2.

Address scrambling (a very lightweight encryption mech-
anism of the PA to permute the memory layout) may also be
somewhat effective against RowHammer. It is deployed in
some devices like smart cards for the purpose of mitigating
side channel attacks. Note that since these schemes are
usually static per boot session, address reuse can be detected:
this is often all an adversary needs to mount an attack. Hence,
it should be considered only as an additional defense-in-depth
measure and not as a complete mitigation per se.

Implementation aspects. If AES is the chosen primitive, a
cache line is encrypted using the XOR, Encrypt, and XOR
(XEX) construction [20], with the PA as the tweak, as in
AMD SEV, TDX, and Apple’s secure enclave. The chosen
low-latency block cipher for memory encryption is QARMA-
128 (as explained in Appendix B.1). QARMA-128 is used in a
Tweaked Electronic Codebook (ECB) mode as in Fig. 14a,
with the PA as tweak.

3.3.3. L2: Encryption and integrity verification. This level
extends L1 with integrity tags, to detect memory corruption.

It does not provide any temporal uniqueness, hence it must
rely on a direct encryption method. An integrity tag is usually
a MAC. Adversaries can still mount replay attacks.

L2 targets A HW
passive. It is also partly effective against

A HW
active, if they only corrupt individual memory locations

or have a limited time budget. To defeat targeted replay of
the memory together with the integrity tags, more counter-
measures are required (see Level L3 below).

This distinction within A HW
active, though seemingly arbitrary,

is necessary due to varying complexities and costs not only
of the attacks but also of the countermeasures. System
designers can assess threats and make business decisions
about accepting specific risks. Similarly, active Adversaries
might opt for keeping their attacks passive at least initially,
to avoid detection and to collect data for cryptanalysis.

MirE: MACs in repurposed ECC bits. If ECC memory
is available, storing the MACs in (part of) the ECC bits
eliminates the need to reserve normal memory for the MACs,
and significantly reduces memory traffic. It is an important
part of the Intel TDX design. Note that MACs are still
accessible to a HW capable adversary.

MirE raises the question of the performance impact of
using ECC memory. Reported penalties are smaller than
0.5% [44], stemming from increased traffic and additional
processing in the DRAM controller. On servers, ECC bits, if
not repurposed, are used for error detection, hence memory
access times are not affected. In other cases, ECC memory
impact is negligible compared to the baseline, so we do not
evaluate it as a separate configuration.

Implementation aspects. The same encryption techniques
are used as for L1. For Intel TDX the MAC is computed using
truncated SHA-3, with the latency assumed to be comparable
to AES-128. In any other MirE scheme, following [36], the
tag is computed using QARMA5-64-σ0. Note that not all the
ECC bits need to be repurposed for a MAC: these bits may
contain both a shorter ECC and a MAC.

If the MACs are not stored in repurposed ECC bits,
hashing is done by a multilinear UHF [19] at 32 or 64
bits. Note that these MACs are actually kept as unencrypted
hashes while on-chip, which speeds up verification, and we
encrypt them block-wise when they are evicted from the hash
cache groups. For instance, four 32 b hashes are encrypted as
a single 128 b block. This enhances system robustness and
security against corruption and replay attacks. In schemes
with freshness (i.e., L3), the freshness data of the hashes that
are encrypted together must be joined to form the common
tweak for the hash block encryption.

3.3.4. L3: Encryption, integrity, and replay protection.
With respect to L2, this level fully mitigates also against
A HW

active, by providing replay protection: In order to replay a
cache line together with its counter and MACs the adversary
either must successfully perform cryptanalysis or wait for
a counter repeat. Note that in some variants, the counters
themselves may be hidden to the adversary. More information
about these data structures is found in Section 3.4.

5



Implementation aspects. The same freshness information
is included in the encryption and in the tag computation.
A CounTeR mode (CTR) encryption mode is used with
both AES (following AEGIS, the method by Yan et al., and
SGX) and QARMA, except with Encryption for Large Memory
(ELM), which uses Flat-ΘCB. The anti-replay technologies
are described in the next subsection.

3.4. Memory integrity structures

A table of hashes or MACs protects against memory
corruption, but it is not sufficient against replay attacks,
unless the table is itself protected. This can be achieved by
storing it in a tamper-averting memory or by covering it
with a structure such as a Merkle Tree (MT) [45]. MT nodes
can be cached [23] to speed up verification.

If freshness-based encryption is used, we can protect
the memory by just protecting the counters, for instance
with a Bonsai Merkle Tree, i.e., a MT protecting the counter
table [26]. A different method in the counter tree (a refac-
toring of Hall and Jutla’s Parallelisable Authentication Tree
(PAT) [46]) also used in SGX [3]. A node of the counter
tree is called a Counter Group (CG). A CG contains a
counters, which correspond to the a children of the node.
The counters in a leaf, resp. non-leaf CG are one-to-one
with a cache lines, resp. children CGs, A MAC is computed
on every node and it is either stored dedicated table, along
with the MACs of the data cache lines. or in the node’s
cache line along with the counters. Since the latter approach
has better performance, for simplicity we consider only it.
The MAC of a CG is computed on the a counters in the
node and the parent counter. Before a node is evicted, its
parent counter is first incremented and the node’s MAC is
recomputed.

The split counters optimization [25] replaces a group of
a counters with a group consisting of a single major counter
and a′ > a smaller, minor counters, associated with that
major counter. A logical counter in this scheme is defined as
the concatenation of a minor counter and its associated major
counter. Each node (a data cache line or a CG) is associated
with a logical counter. The increased arity (for instance,
from a = 8 to a′ = 64) reduces both storage overhead for
counters and tree depth. When a minor counter overflows,
the common major counter is ticked to ensure that values do
not repeat. Since this changes the values of all the logical
counters associated with that major counter, all the sibling
nodes need to be refreshed. For data cache lines this means
that they are re-encrypted, and for both types of nodes the
MACs need to be recomputed. All minor counters in the
group are reset to zero at this point to reduce the frequency
of minor counter overflows.

Despite these RMWs, split counter trees bring a major
performance improvement over monolithic counters. We
introduce here 3-way split counters (with major, middle, and
minor counters) to both increase arity and reduce RMWs.

Instead of using full trees, two optimizations can be done.
[LoC] One option is storing the data cache line counters in an

in-package tamper-averting DRAM (an SRAM would

be too large) which is MPE private (i.e., invisible to
the rest of the system and outside adversarial control).
We call this solution LoC which stands for Leaves-on-
Chip. In fact, if we store the leaf nodes in a physically
protected memory, such as on-chip, then we do not
need to compute any other nodes from the original tree.
LoC is sometimes mentioned in the literature only to be
dismissed as unviable because of the large overhead.

[BoC] A less expensive version of the LoC solution consists
of keeping the leaf nodes in external memory and store
the level immediately above on chip. We call this tree
arrangement BoC for Branches-on-Chip. Similarly to
LoC, the system needs no further levels of the tree to
ensure the integrity of the tree. This idea seems new.

3.4.1. Memory overhead comparison. In Table 2 we
compare the memory overheads of various integrity tree
implementations, including the new very high arity trees
introduced in this paper. We assume that a MAC can cover
up to 4 cache lines. When multi-cache line MACs are used,
each cache line is encrypted individually and is associated
with its own counter. Evicting a cache line from the last
level cache will not require the re-encryption of adjacent
cache lines. For completeness, we also include the Tamper-
Evident Counter (TEC) tree [47] in the table. It has a large
memory overhead, and requires a wide encryption mechanism
with a very high latency. This makes it unattractive for
practical deployment.

3.4.2. Additional structures. We do not evaluate the Iso-
lated Tree with Embedded Shared Parity (ITESP) [14]
separately. One of its configurations packs 32 counters in a
64 B cache line where the size of minor counters is 4b, and
the freed 128 bits are used to store two 64 b parity/integrity
fields, each covering 16 cache lines. We speculate that its
performance for a single Realm should be just slightly worse
than a 64-ary 64 B split counter groups L3 scheme with MirE,
since no MAC table is kept. The closest benchmark that we
perform is L3 with 128-ary 128 B split counter groups with
3b minors and MirE. The main benefits of ITESP emerge
when multiple Realms run concurrently, a configuration not
supported by our setup, because each Realm would have its
own integrity tree and metadata cache.

For completeness’ sake we mention Log Hashes [24].
Log Hashes maintain an incremental hash of a Realm’s entire
memory by adding the hashes of all cache lines in it. The
hash of a cache line is computed on the concatenation of the
contents of the line, its address, and a secret key. The Log
Hash is updated with each memory write, by subtracting
the contribution of the old contents, and adding that of
new contents. Verification of the memory occurs only when
the Realm interacts externally. Log Hashes are well-suited
only for long-running tasks with minimal I/O, where their
performance impact can be negligible. They are unsuitable for
general applications and remain unimplemented in practice.

6



Table 2: Memory Overhead of Various Types of Integrity Trees.

Overhead

Type of Tree cache line size: 64 B 128 B

Merkle Tree with a = 4, resp. 8 33.3% 16.7%

Monolithic Counter Tree with embedded MAC, ℓc = 56
• ℓH = 64; n = 1; a = 8, resp. 16 26.8% 12.9%
• ℓH = 32; n = 1; a = 8, resp. 16 20.5% 9.79%
• ℓH = 32; n = 2; a = 8, resp. 16 17.4% 8.23%
• ℓH = 32; n = 4; a = 8, resp. 16 15.8% 7.45%

Split Counter Tree (SCT) with embedded MAC, ℓc = 64
• ℓH = 64; n = 1; ℓ′c = 6, resp. 7 14.1% 7.04%
• ℓH = 32; n = 1; ℓ′c = 6, resp. 7 7.84% 3.91%
• ℓH = 32; n = 2; ℓ′c = 6, resp. 7 4.71% 2.34%
• ℓH = 32; n = 4; ℓ′c = 6, resp. 7 3.15% 1.57%
• ℓH = 32; n = 1; ℓ′c = 3 7.04% 3.52%
• ℓH = 32; n = 2; ℓ′c = 3 3.91% 1.95%
• ℓH = 32; n = 4; ℓ′c = 3 2.35% 1.17%

PAT with a = 8, resp. a = 16 28.6% 13.3%

TEC tree with a = 8, resp. a = 16 42.9% 20.0%

128-ary 3-way SCT / MirE, ℓH = 32 — 0.78%
256-ary 3-way SCT / MirE, ℓH = 32 — 0.39%

Legend: ℓH , ℓc, and ℓ′c are the bit lengths of a hash or
MAC; of a monolithic or major counter; and a minor counter,
respectively. a is a counter group’s arity, i.e., the number of its
monolithic or minor counters; and n is how many cache lines
a MAC covers.

3.5. Cryptographic parameters

To ensure long-term confidentiality, encryption keys
should be at least 128 b long. Shorter keys are not used in any
currently deployed or recently proposed memory protection
scheme. Sometimes longer keys are an option, for instance
256 b keys for Intel’s TDX, but we posit that this does not
offer increased practical security and only increases latency:
Indeed, a proper complexity analysis of quantum-computer-
assisted key search against AES-128 proves it is secure even
against adversaries with access to a large-scale quantum
computer [48]. Deployed technologies such as Intel’s SGX
and TDX, and AMD’s SEV use the AES in modes that need
two independent keys, or even AES-256. QARMA-128 and
QARMAv2-128 allow the use of 256-bit keys as well.

Encryption block sizes must be at least 128 b, to reduce
the likelihood of any attack that exploits ciphertext collisions.

Authentication keys should be at least 128 b long as well.
Note that only the TCB and no SW environment may

set any key, and SW will only manage process identities.
We posit that a length of 32 b (or even 28 b) is sufficient

for both data and counter group MACs, to deter Adversaries
that simply want to corrupt memory, for instance with
RowHammer attacks. This is, in fact, one of the main reasons
to deploy a L2 scheme. The TCB must destroy (i.e., internally
invalidate and overwrite) the key or tweak associated with
the address where an integrity violation occurred — and
possibly other internal information. The target process will

no longer be able to execute, and the information in it will be
lost to the adversaries. It is essential that the TCB responds
so to integrity violations before giving back control to the
operating system or the hypervisor. Otherwise, to make just
one example, an A HW

active adversary with the ability to run
privileged SW would be able to brute force a short MACs.

If the chosen authentication primitive produces a longer
MAC than needed, the output is simply truncated.

In L3 schemes, an Adversary may attempt to replace
a cache line together with its MAC. To do this without
triggering an integrity fault, they wait until the counter
associated with the target cache line repeats. If the counters
are sufficiently long, the attack cannot succeed. For this
reason, monolithic counters must be at least 64 b long (it
can be argued that 56 bits suffice). The minimal aggregated
length of a major and a minor counter (or major plus middle
plus minor) shall also be 64 b. If an Adversary wants to
replay a cache line together with its MAC and counter, they
will similarly have to either guess the embedded MAC or
wait that the parent counter repeats.

For Merkle Trees the minimal hash length is 128 b, to
ensure that attacks have a time complexity of at least 264.

3.6. On the design space

In Fig. 1 we have depicted the MPE as a separate block
between system cache and memory controller, but this is far
from the only option: it can be implemented as part of the
memory controller or a wrapper around the system cache.
Typically, a MPE is linked to a memory channel, but it can
also be private to a core, and thus reside upstream of the on-
chip interconnect. In such a design, the MPE is a bottleneck,
whereas MPEs associated with memory channels benefit
from memory interleaving, reducing bandwidth saturation
risks. However, private MPEs are suitable for secure cores,
like software-defined TPMs.

Some pure SW solutions work as follows: At boot, a part
of a cache is address locked in order to keep the TCB in it
(and effectively reducing its size). All memory reads/writes
to external memory are then trapped to this code to augment
them with encryption and integrity support. Performance is
clearly severely impacted in a such a SW-based solution,
as examples like [49], [50] show. A different, less secure,
approach [51], [52] keeps most of the RAM encrypted except
for a few recently used pages, which are re-encrypted once
they have been idle for a sufficiently long time.

Recall that we only consider solutions contained in
the SoC package. This excludes “smart memory” [53]
or the CXL.memory Integrity and Data Encryption (IDE)
scheme [54]. Such devices require logic for attestation, secure
link setup, and encryption, involving cryptographic engines in
every memory module if not every chip, so it would be more
expensive, hardware-wise, than a MPE-based solution. CXL
is however suitable for disaggregated memory configurations,
covering transport between compute and memory nodes.

The breadth of the subject and constant developments
(cf. Table 1) imply that the full design space is likely not
knowable. The present work represents just a snapshot.

7



4. Benchmarking plan, results, and discussion

4.1. Benchmarking environment and methodology

It would be impractical to implement several thousands
of combinations of technologies in silicon for the purpose
of evaluating them. A solution to this problem lies in
prototyping, i.e., the creation of an approximate implemen-
tation of the desired features, which can thus be tested and
benchmarked. Very accurate models can be created even
without implementing all details. For instance, the latencies
of cryptographic primitives can be derived from actual
implementations and inserted as delays into the simulation.

The prototypes used in this paper are built in the gem5
simulator [7], [8]. gem5 allows engineers to build SW
versions of HW components typically included in computer
systems. It abstracts the interfaces between components,
which can be combined flexibly. It provides approximate
timing models for many processor cores.

The modeled CPU core is an Arm Cortex A72 with a
2 GHz frequency and a 1 GHz system frequency. The cache
hierarchy includes L1-I (48 KiB, LRU replacement policy,
3-way set associative, 1 cycle latency) and L1-D (32 KiB,
LRU replacement policy, 2-way, 1 cycle latency) caches, and
a unified L2 cache (1MiB, tree-PLRU replacement policy,
16-way, 5 cycles latency). The memory is 16 GiB DRAM
in a dual-rank DDR4 DIMMs. The MPE-private caches are
4-way set associative with an LRU replacement policy.

We assume that the SoC is implemented in a 7 nm
process. We take the latencies from [18], for instance
15.76 ns for a pipelined implementation of AES-128, 4.8 ns
for QARMA11-128-σ1 and 2.2 ns for QARMA5-64-σ0. Note that
implementation, process, libraries all affect the crypto block’s
latency, but system and CPU clocks do not. We assume we
reuse the IP blocks from [18] with their own clocks, thus
with the exact same performance characteristics. This is a
reasonable assumption since this is how hard macros are
used in practice. The above latency of QARMA5-64-σ0 is also
used in [36], and essentially for the same purpose as ours.

Our evaluation uses the SPEC 2017 [6] benchmark
suite. Detailed software models such as gem5 increase
execution time by several orders of magnitude: a typical
SPEC benchmark can take around a month to run [55].
To facilitate rapid prototyping, we use the SimPoint [56]
methodology, which is well understood in academia and
industry. It uses clustering to find representative regions that
serve as a proxy for the whole application. The results are
finally combined using weighted averages, that reflect the
regions’ importance to the overall application. Up to 10
SimPoints of 30 million instructions from each benchmark
are simulated in place of several billions of instructions.
(Regarding reproducibility, including all details needed to
re-generate our SimPoints would be impractical.)

An alternative approach would have been to run the
entire benchmarks, as opposed to SimPoints, in parallel on
a large distributed cloud. This unfortunately does not work
in practice since the longest running workloads would have
taken weeks to months to run to completion while providing

few or no benefits compared to SimPoints. The quicker
turnaround, less than an hour to run all SPEC 2017 on a
big-enough cluster, is in fact instrumental when exploring a
vast space of optimizations.

Regardless of how the simulation is performed, we may
ask ourselves about the impact on systems that include
context switches, virtual memory swap, and any type of
I/O. These aspects are very difficult to emulate. In fact,
benchmarking in such a context seems absent from the
literature on cryptographic memory protection. However,
we can observe that (i) The additional memory used for
metadata is not visible to the operating system and will be
unaffected by paging and similar operations; and (ii) It can
be argued that context switches, paging, and general I/O are
affected by the performance penalties on memory accesses
only in a minor way: context switch code and data can reside
in pinned memory, and the timing of disk, network operations
is dominated by media which are orders of magnitude
slower than physical RAM. Speaking in particular of context
switches, consider a CPU-intensive task running on a 128-
core shared machine with about 500 active user sessions.
There are 70 unique users on the machine, many of them
running a full GNOME environment, with a 15-min average
load level of 65 (which is very high). We observe less than
a handful of context switches per second per core. Any
cold start effect after the context switch would be in the
noise since warming all the caches take just a few million
instructions (roughly a few milliseconds).

Therefore, any performance penalty we present here is
likely an upper bound to the real-world one.

4.2. Selection of the benchmarking sets

All MPE configurations span a vast multidimensional
space. Exhaustively evaluating them all is clearly infeasible,
not to speak of the difficulties of properly presenting the
data. Hence, we explore the design space in various stages,
each consisting of a set of runs of the benchmark suite. Each
set focuses on some previous configurations and expands
the parameter space where we expect that it has some
noticeable impact. Some schemes, such as L1 schemes, do
not carry over to the successive sets because they do not have
implementation parameters beyond the encryption primitive.

We use shorthands to describe the various configurations:

Level / Cipher /{additional technologies} /
/ MAC length / cache line length .

The optional “additional technologies” may include: counter
representation (mono or split) and arity, Leaves or Branches
on Chip (LoC or BoC), or the use of MACs in Repurposed
ECC bits (MirE).

The default cache line length is 64 B, unless the counter
groups are on chip, in which case it is 128 B. The default
MAC length is 56–64 b.

“{AMD} SME” is equivalent to L1/AES/GFmul/CL64B,
“{Intel} TDX” to L2/AES/MirE/28b/CL64B, and “{Intel} SGX”
is based on Client SGX, i.e., L3/AES/mono-8/56b/CL64B. LoC
always implies counters are split. The shorthand L3/LoC

8



denotes a version of L3 that uses LoC, and thus no integrity
tree. Similarly, L3/BoC is a L3 solution with the leaf counters
off chip and the next level on chip, also without a full tree.
L3 without BoC or LoC denotes a replay-protection-capable
scheme based on an integrity tree and no counters on-chip.

4.2.1. Simulation of system load.
The benchmarks are first run on an unloaded system,

where the current benchmark is the only running task.
We want an upper bound for the performance degradation

in a fully loaded system, with up to hundreds of processes
running on dozens of processing elements, all sharing the
bandwidth of the memory subsystem, such as in a cloud
server. Directly simulating such a system is very complex
and impractical. We instead inject synthetic traffic upstream
of the MPE, but after the L2 cache. We do not include a L3
cache in the system to simulate the extreme situation where
the latter has been completely swamped by traffic coming
from other requesters or clusters of requesters. The question
is, how much extra traffic we must inject.

Therefore, we measure the effective memory latency of
the system with various levels and schemes of memory pro-
tection, and we observe that the latency starts to degenerate
catastrophically for most of them between 8 and 10 GiB/s.
For instance, a SGX-like L3 MPE covering the entire memory
starts to degrade if more than 8 GiB/s of traffic is injected.
We take this value as the traffic for a fully-loaded system
and halve it, i.e., 4 GiB/s for the partially-loaded system.

The simulated traffic consists of 75% reads and 25%
writes of entire cache lines (64 B or 128 B). The access
pattern is a mix of cache-line-aligned linear and random
accesses. The linear accesses are sequential, and the random
ones are at randomly generated addresses, both across the
whole reserved range. The traffic generator alternates 100 µs
of simulated time of linear accesses with 200 µs of random
accesses, for as long as the workload is running.

Beyond 8 GiB/s, we expect a cloud provider to counter
performance deterioration by migrating VMs to other ma-
chines to balance load and meet overall performance targets.
This would also bring MPE penalties back under control.

4.2.2. Baseline performance. Without memory protection,
our benchmarks run on a loaded system 14.1% slower than on
an unloaded system with 64 B cache lines, and 9.5% slower
with resp. 128 B cache lines. Changing the cache line length
from 64 B to 128 B results in an average speedup of 1.4%
in an unloaded system and 5.5% in a loaded system.

In all cases, runs are always compared to the baseline
(unloaded) with the same cache line size.

4.2.3. Initialization of short minor counters. When a
piece of software starts to run, in a real-world setting any
minor/middle counter will have assumed, because of previous
processes, essentially random values. If all minor/middle
counters are initialized with zero values before running
a benchmark, the latter is put at an advantage, since the
minor/middle counters will take longer to overflow, and
the number of RMWs may be underestimated. The use of

SimPoints may even amplify this bias. Therefore, in order
to make our simulations as realistic as possible, in all split
counter runs we initialize the counters to random values. This
configuration choice magnifies the performance difference
between 2-way and 3-way split counters of the same arity,
highlighting the superiority of the latter.

We now report and discuss the results of all the runs.

4.3. Set 1: state-of-the-art

We start with the state-of-the-art and some simple varia-
tions thereof to get an initial overview of the relative perfor-
mance merits of the deployed or proposed technologies. We
compare L1/AES/CL64B (e.g., AMD SME), L1/QARMA/CL64B,
L2/AES/32b/CL64B, L2/AES/MirE/28b/CL64B (e.g., Intel TDX),
L2/QARMA/32b/CL64B, L2/QARMA/MirE/32b/CL64B, and ELM
with both monolithic and split counters, SGX, L3/QARMA/split-
64/32b/CL64B — all with and without a hash cache if not fixed
by the manufacturer’s architecture, since some architectures
have a hash/MAC cache while other ones, such as SGX,
avoid it. We also compare 32 b and 64 b MACs in selected
cases — shortened to 28 b, resp. 56 b, in TDX, resp. SGX.

Note that SGX here is not a full implementation of Intel’s
Client SGX architecture, but only of its encryption, integrity,
and anti-replay features, the latter expanded to the whole
memory. For SGX, hash encryption is CTR as described by
Intel [3]. We use this method for the SGX-like variant with
AES-256 (L3/AES256/mono-8/56b/CL64B) as well. In all other
cases, data MACs are replaced by 32 b long hashes which
are directly encrypted in groups of four upon eviction.

Note that TDX includes also Scalable SGX.
The ELM method follows [35] except when QARMA is

used. With QARMA the XEX constructions are replaced by
simply feeding nonces and separation fields as the tweak
to QARMA, as well as using QARMA5-64-σ0 to generate the
One-Time Pads (OTPs) to encrypt the tags.

Note that monolithic counter trees are 8-ary, resp. 16-ary
with 64 B, resp. 128 B cache lines. For 2-way split counters,
minor counters are always 6, resp. 7 bits long, and the arity
is therefore 64, resp. 128.

For schemes with freshness, the counter cache is 64 KiB
as in SGX to level the comparisons.

These principles apply to every successive set as well,
except where explicitly indicated otherwise.

The results, as detailed in Fig. 2, support Results R2, and
R6. Also, ELM has worse performance than SGX, having
the encryption primitive on the critical path.

The latencies of AES-256, AES-128, and QARMA-128 are
21.99 ns, 15.67 ns and 4.80 ns, respectively, and they are
strictly correlated to the corresponding performance penalties
of a L1 scheme on an unloaded system: 7.93%, 6.37%, and
3.21%. This holds also for varying loads and L2/MirE schemes.
For L2/non-MirE and L3 schemes, the difference becomes less
significant as the slowdown due to traffic contention between
data and medatada increases. This proves Results R3.

For the remainder of the evaluation, because of Result R6,
for simplicity’s sake we shall assume that MACs are 32 bits

9



0

10

20

30

6.426.37 7.93
3.21

6.37 7.93
3.21

9.
11 10
.6

6.
19

17 17
.5

7.
85 8.
65 11

.3

6.
48

19

10
.5

16
.7

7.
828.
58 10
.1

5.
57

16
.2

16
.7

7.
02 7.
71 10

.3

5.
8

18
.4

9.
97

16

7.
21

6.4 6.64

No DH$ With DH$ (4KiB)

0

100

200

6.326.26 7.77 3.34 6.26 7.77 3.34
38

.6

40
.2

35
.6

18
5

18
6

96
.4

97
.5

17
1

94
.9

18
8

10
1

18
4

98
.2

38
.1

39
.5

35
.1

18
1

18
2

93
.2

94
.2

16
3

91
.6

18
4

98
.7

18
0

95
.7

38.3

95.2

L1/AES/XEX/CL64B

L1/AES256/XEX/CL64B

SME (L1/AES/GFmul/C
L64B)

L1/QARMA/CL64B

L2/AES/32b/CL64B

L2/AES256/32b/CL64B

TDX (L2/AES/MirE
/28b/CL64B)

TDX256 (L2/AES256/MirE
/28b/CL64B)

L2/QARMA/32b/CL64B

L2/QARMA/MirE
/28b/CL64B

SGX (L3/AES/mono-8/56b/CL64B)

L3/AES256/mono-8/56b/CL64B

L3/AES/split-6
4/32b/CL64B

L3/AES256/split-6
4/32b/CL64B

L3/QARMA/mono-8/32b/CL64B

L3/QARMA/split-6
4/32b/CL64B

L3/AES/ELM/mono-8/64b/CL64B

L3/AES/ELM/split-6
4/64b/CL64B

L3/QARMA/ELM/mono-8/64b/CL64B

L3/QARMA/ELM/split-6
4/64b/CL64B

L2/QARMA/64b/CL64B

L3/QARMA/split-6
4/64b/CL64B

0

100

200

300

7.097.08 8.38 4.51 7.1 8.4 4.52

80
.4

81
.8

77
.5

26
7

26
6

10
4

10
5

23
9

10
3

26
8

11
6

26
6

11
4

74
.4

75
.8

71
.4

25
8

25
8

99
.4

10
0

22
5

98
.1

26
0

11
1

25
8

10
9

79.2
108

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 2: Set 1 (Section 4.3). Comparison of base levels and state-of-the-art.

long and directly encrypted in groups of four except with SGX,
MirE, or otherwise explicitly indicated. Similarly, since split
counters perform better than monolithic counters (this goes
towards Result R12), we shall assume that L3 configurations
will make use of split counters.

For brevity,in Sets 2, 3 and 4 we leave out AES from the
comparison as it has an identical memory access pattern
and similar results to using QARMA-128.

4.4. Set 2: Impact of MPE cache sizes

The goal here is to understand the impact of the sizes of
the two MPE caches, namely the hash and counter caches.

L1 does not need caches, so we only consider L2 and L3.
The hash cache sizes we evaluate are 4 KiB, 16 KiB, and

64 KiB; and counter cache sizes are 16 KiB, 64 KiB, 256 KiB,
and 1 MiB. We expect these sizes to be within a reasonable
range when implemented as SRAM. The presented results
are based on the L2/QARMA/32b/CL64B and L3/QARMA/split-
64/32b/CL64B configurations (i.e., 32 b MACs, 64 B cache
lines, and 64-ary split counters for L3).

These results, displayed in Fig. 3 support Result R7. The
small benefit of the hash cache can mostly be attributed
to spatial locality (most temporal locality has already been
exploited by normal data caches). Intuitively, the access
patterns of the counter and the hash cache should be similar.
However, the reach of the counter cache is bigger since
counters are smaller when using split counters and nodes
closer to the root cover a large amount of address space
which makes them more likely to be reused.

Starting with Set 3, the MPE has a 16KiB hash cache
and a 256KiB counter cache. Level L3 uses split counters,
unless explicitly indicated otherwise, or with SGX.

4.5. Set 3: Impact of the cache line length

Another fundamental piece of information is how the
choices of 64 B and 128 B cache lines affects L2 and L3
performance: Doubling the cache line size will halve the
memory overheads, but at least in theory the coarser memory
granularity may negatively affect performance.

This set comprises L2/QARMA/32b and L3/QARMA/split/32b
with 64 B and 128 B cache lines. Counter group and
cache line sizes are always equal which implies that L3
split counter configurations have arity 64 in the 64 B case
and 128 in the 128 B case.

The results of Set 3 are combined with those of Set 4
in Fig. 4. They prove Result R8. Since we already know
that our reference system without a MPE performs 1.4% to
5.5% better with 128 B cache lines, we expect that using to
128 B cache lines, at least for the system cache, is generally
beneficial in a system with a MPE.

We acknowledge that changing the cache line size for
the coherent cache system might be a major undertaking.
However, there are important cases where it is feasible and
reasonably non-intrusive. For example, inclusive last-level
caches (LLCs) could store and perform writebacks of pairs
of 64 B cache lines while still performing coherence on
the individual lines. Similarly, LLCs outside the coherent
domain (system caches) may use 128 B cache lines while the
coherent caches use 64 B cache lines. Both options make the
effective cache line size 128 B from the point of the MPE.

4.6. Set 4: Asynchronous MAC verification

So far we have assumed that integrity tags are verified
synchronously. In principle, asynchronous verification can
improve performance by releasing data to the CPU before

10



its corresponding MACs has been fetched from memory and
verified. Therefore, we assess how synchronous verification
improves overall performance over asynchronous verification.

We test only L2 and L3, as they offer integrity. We reuse
the configurations of Set 3. The results are shown in Fig. 4.

One would be tempted to implement asynchronous MAC
verification, as it can become quite effective, especially under
increasing memory system load. However, asynchronous
verification comes with a significant drawback. Since the
CPU is speculating on MAC verification being successful,
adversaries have a window of opportunity where the CPU is
using data under their control and mount an attack. Mitigating
this issue introduces significant complexity which would be
detrimental the integrity of the system. This is Result R9.

From here, we only use synchronous MAC verification.

4.7. Set 5: Use of on-chip memory for L2 and L3

Going beyond caching as explored in Set 2, we explore
the impact of secure MPE-private on-chip memory.

Since MACs have a larger memory overhead than coun-
ters, we do not expect schemes with on-chip hashes and
off-chip counters. Hence, we ignore such a configuration.

Fig. 6 results confirm that relieving the memory bus
contention between data and metadata improves performance.

The BoC configuration only marginally outperforms
the schemes that do not rely on on-chip memory. This is
explained by considering a system without on-chip memory:
Temporal locality is poor for leaf nodes, but it improves
closer to the root of the tree as each node corresponds to
a large memory space. This makes it likely that integrity
verification encounters a cache hit at the level just below the
leaf level. Therefore, performance is similar to BoC.

With all metadata on chip, the performance is close to
the baseline. This may not be realizable in practice. However,
as we shall see in Section 4.8, it can be approximated by
repurposing ECC bits for MAC storage.

For this set of runs we kept the AES to show that for
L3 the performance is similar to QARMA. However, on an
unloaded system, AES and QARMA show a slight performance
gap. This gap decreases as the system load increases, due to
the fact the cipher latency becomes proportionally smaller
than the increasing memory access latency.

4.8. Set 6: Impact of repurposing ECC Bits, 3-way
split counters, and large counter caches

The deployment of Intel TDX’s Multi-Key Total Memory
Engine with Integrity (MKTMEi) [5] and [57] suggests that
using ECC bits for tags may be an acceptable trade-off for
real-world deployments. This is essentially an approximation
of storing MACs on-chip since the ECC bits are stored out-
of-band and fetched in parallel with the data.

We consider both L2 and L3 configurations, with and
without MirE. We expect that MirE implementations are
optimized for performance and to reduce storage overhead.
For that reason, except for L1/QARMA/MirE/CL64B, we focus on

128 B cache lines which enable much more efficient counter
packing. With MirE, a hash cache is not needed since MACs
and data are fetched in the same memory transaction, and
the MAC algorithm if PMACs.

In addition to classic 2-way Split Counter Groups (CGs),
we introduce high-arity 3-way Split CGs, which we define
only in the length of 128 B, with 128 and 256 logical counters
per node. The purpose of this optimization is to keep the
amount of RMW operations under control, with one variant
also increasing the density of the CGs. To quantify the impact
of this optimization, we evaluate the configuration with and
without middle counters. We evaluate the following 3-way
split CGs configurations for 128 B cache lines and CGs and
without embedded MACs:

• 128 × 7 b minor, 8 × 8 b middle, and 1 × 64 b major
counters, with a memory overhead of 1:128;

• 256 × 3 b minor, 32 × 6 b middle, and 1 × 64 b major
counters, with a memory overhead of 1:256;

If MACs must be embedded in the counter group, for the
128-ary tree the lengths of the major and middle counters
would be reduced to 48 and 6 bits, and for the 256-ary tree
the middle counters would 5 bits long – in both cases with
32 b embedded MACs.

In [12], [57] “delta encoded” split counters with rebasing
are used together with methods to accommodate a limited
number of larger minor counters in a CG to reduce the
amount of RMWs. We skip these optimizations since our
3-way split CGs (cf. also Section 4.11) perform better, by
nearly eliminating any RMW overhead.

The data (Fig. 7) supports Results R10 and R12. Middle
counters are instrumental in getting the best performance
out of the high arity CGs, which would otherwise incur in
very large RMWs overheads. This demonstrates Result R13.
The resulting schemes perform even better than L1 schemes,
where the cipher is on the critical path to external memory,
while in L3 the cipher is computed in parallel to off-chip
memory accesses.

For a 16 GiB protected memory, the BoC configuration
needs 256 KiB of on-chip storage. An alternative to the BoC
configuration would be to use that memory for a counter
cache. The 512 KiB configuration in Fig. 7 corresponds to
this configuration since the baseline counter cache size is
256 KiB. In such cases, the larger cache normally performs
on-par with BoC in an unloaded system and slightly better
under load. This can be explained by two effects. First,
the cache approximates BoC since the level just above the
leaf level is very likely to be resident in the cache. Second,
unused branch nodes can be replaced by useful leaf nodes
which improves efficiency. On a fully loaded system, LoC
performance is reached in practice only when the cache is
large enough to cover the tree working set of the running
applications. In the case of SPEC 2017, this typically happens
between 1 MiB and 2 MiB of cache.

4.9. Set 7: Impact of incremental MACs

If we cannot store MACs in the ECC bits or on-chip,
there is another option for reducing their storage overhead:

11



0

5

10
6.19 5.57 5.28 4.93

7.
17

6.
45

6.
17

5.
786.

48

5.
8

5.
53

5.
125.

92

5.
25

4.
99

4.
585.

61

4.
96

4.
68

4.
3

No CG$ 16 KiB 64 KiB 256 KiB 1024 KiB

0

50

100

150

35.6 35.1 33.7 32.7
10

4

10
1

10
0

99
.7

94
.8

91
.6

90
.8

90
.4

87
.2

83
.2

82
.4

81
.891
.5

86
.8

83
.2

80
.7

L2: No DH$

L2: 4 KiB DH$

L2: 16 KiB DH$

L2: 64 KiB DH$

L3: No DH$

L3: 4 KiB DH$

L3: 16 KiB DH$

L3: 64 KiB DH$

0

50

100

150

77.6 71.4 67.4 64.8

11
5

11
0

10
9

10
9

10
3

98
.2

97
.2

96
.9

94
.3

88
.7

87
.8

87
.398
.6

91
.4

87 84
.1

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

0

2

4

6

8

5.28 4.95 4.98 4.464.18 3.78 4.05 3.53

64 B CLs 128 B CLs

0

50

100

33.7 30.9

82.4 79.8

18 16.8

95.5

63.1

L2: sync

L2: async

L3: sync

L3: async

0

50

100
67.4

44.1

87.9 83.780

44.1

107

68.8

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

0

5 4.18 4.05
4.99 5.04

6.24 6.42

n = 1 2 4

0

50

100

150

18

95.4

66.9

116119
135

L2: 128B CL

L3: 128B CL

0

50

100

150

80
107113

143132
156

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 3: Set 2 (Section 4.4). Impact of MPE cache sizes on
L2/QARMA/32b/CL64B (32 b MACs,64 B cache lines) and

L3/QARMA/split-64/32b/CL64B (64-ary split counters).

Figure 4: Sets 3 and 4 (Sections 4.5
and 4.6). Impact of cache line size
and asynchronous MAC verification.

Figure 5: Set 7 (Section 4.9).
Impact of incremental MACs.

0

5

10

6.
12

4.
98 6.

08

4.
91 5.

58

4.
57

2.
18

1.
55

4.
98

4.
05 4.

97

3.
99 4.
4

3.
61

2.
18

1.
6

AES-128 QARMA-128

0

50

100

150

84

97

86
.3 96
.4

36
.9

23
.2

2.
72

3.
37

82
.4 95
.5

84
.8 95
.3

35
.8

22
.5

2.
74

3.
38

64B CL

128B CL

BoC/64B CL

BoC/128B CL

LoC/64B CL

LoC/128B CL

All MD on-chip/64B CL

All MD on-chip/128B CL

0

50

100

150

88
.9 10

8

91
.2 10

8

68
.6 83
.6

4.
9

6.
86

87
.9 10

7

90

10
7

67
.8 83
.1

4.
89

7.
04

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

0

5

10

5.
28

4.
18

3.
21

2.
4

4.
98

4.
05

2.
33

2.
23

2.
17

2.
13

2.
09

2.
08

2.
07

2.
08

2.37 2.31
3.09

2.24 2.03 2.04 2.72 2.1

No MirE, 256KiB Counter Cache – MirE: 256KiB 512KiB 1MiB 2MiB

0

50

100

150

33
.7

18

3.
34

2.
73

82
.4 95
.5

14
.5

16
.9

12
.6

12
.1

9.
98

7.
34

6.
63

3.
3 15.9 14.4

42.1

16.8
3.8 2.38

25.5

2.7

L2/CL64B

L2/CL128B

L2/MirE
/CL64B

L2/MirE
/CL128B

L3/2-sp
lit-6

4/CL64B

L3/2-sp
lit-1

28/CL128B

L3/MirE
/3-sp

lit-1
28

L3/MirE
/3-sp

lit-2
56

L3/MirE
/BoC/2-sp

lit-1
28

L3/MirE
/BoC/3-sp

lit-1
28

L3/MirE
/BoC/2-sp

lit-2
56

L3/MirE
/BoC/3-sp

lit-2
56

L3/MirE
/LoC/2-sp

lit-1
28

L3/MirE
/LoC/3-sp

lit-1
28

L3/MirE
/LoC/2-sp

lit-2
56

L3/MirE
/LoC/3-sp

lit-2
56

0

50

100

150

67
.4 80

4.
52

3.
48

87
.9 10

7

63
.2

6560
.8

62
.3

57
.5 66
.8

57
.8

5.
75

65 62.9

88.3

64.9

7.23 3.32

39.5

4.58

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 6: Set 5 (Section 4.7). L3: Impact of
storing metadata on-chip.

Figure 7: Set 6 (Section 4.8). {L2|L3}/QARMA/MirE. Impact of repurposing ECC bits
for MACs and large counter caches. For arity 128 or 256 the CL is always 128 B.

to compute them incrementally over multiple cache lines.

Since the goal is to reduce storage overhead, we focus
this investigation on 128 B cache lines. These already reduce
metadata storage requirements by a factor of two compared
to 64 B cache lines. We test both L2 and L3 configurations
with a MAC covering 1, 2, or 4 cache lines. These runs are
reported in Fig. 5 only with QARMA-128 encryption, since the
performance differences are caused only by the increased
memory traffic. In fact, AES results follow the same pattern.
These measurements prove Result R11.

4.10. Set 8: Breakdown of selected configurations

To better understand the behavior of the MPE, we select
a few interesting configurations and show all individual
benchmarks in the suite:

• AMD SEV (L1/AES/GFmul/CL64B) and
L1/QARMA/CL64B;

• Intel TDX (L2/AES/MirE/28b/CL64B);
• L2 with (L2/QARMA/MirE/28b/CL64B) and without

(L2/QARMA/64b/CL64B) MirE;
• Intel SGX (L3/AES/mono-8/56b/CL64B);
• 128- and 256-ary 3-way split CGs

12



(L3/QARMA/LoC/3-split-128/MirE/28b/CL128 and
L3/QARMA/LoC/3-split-256/MirE/28b/CL128).

The SPEC2017 benchmarks (cf. Figs. 8 to 13) exhibit
some expected results: certain tasks, like omnetpp, mcf,
and bwaves experience more significant performance impact
across most MPE configurations.

Fig. 8 supports the claim in Result R4. The two XEX
schemes L1/AES/GFmul/CL64B and L1/AES/XEX/CL64B differ
only in the computation of the tweaking mask. In the first
case it is performed via Galois multiplications, which we
highly optimize for speed, resulting in a latency of 0.55 ns
in the chosen process. In the second case AES encryption
is used instead. We recall that AES-128 latency is 15.76 ns.
Thus, on the write path, the latency is, roughly one, resp.
two AES instances, while on the read path is it always one
AES instance. Despite the significant difference on the write
path, the penalties are almost exactly the same.

4.11. Set 9: Impact of RMW operations

All split counter methods need, as already mentioned, to
perform some batches of RMW operations to re-encrypt data
or re-compute some embedded MACs whenever a minor, resp.
middle counter overflows. These are expensive operations
and we want to understand their impact on performance.

We compare the performance of L3 MPEs against hypo-
thetical ones where the RMW operations have zero cost, i.e.,
are instantaneous. This is achieved by simply skipping them:
such an experiment is possible because the simulated MPE
does not actually perform cryptographic operations, inserting
instead timing delays in their places. This gives an upper
bound on the actual time spent in the RMW operations.

For the 128- and 256-ary split counter schemes, we report
the performance with 3-way split counters, the performance
with 2-way split counters by omitting the middle counters,
and the performance with skipped RMWs. The selected
combinations are the ones in Set 8 with RMWs.

The results are shown in Figs. 12 and 13. We notice
that the impact of RMWs is not always negligible. Using
2-way split counters with 3b minors (L3/QARMA/LoC/MirE
with 256-ary CGs) carries a significant performance penalty,
but the use of middle counters brings the performance close
to the ideal case where RMWs are “free”.

The performance penalties and the proportion of time
spent doing RMWs increase with the load. However, even at
full load, the performance penalty with 256-ary, 3-way split
CGs is smaller than with a direct encryption L2/AES/64B
CLs/MirE scheme as in TDX.

This Set of runs proves Results R1, R12, and R13.

4.12. Remarks on area and power

Power consumption of a circuit is roughly a linear
function of both its area and the time it is active.1 Thus, the

1. To be more precise, power consumption is the sum of dynamic power,
that depends on switching current, and static power, that depends on leakage
current, and thus on power gating.

MPE’s total area and the performance penalty are the main
factors determining its energy cost.

The area of the MPE mostly consists of arithmetic
circuits, caches, and any internal DRAM (if present). In
comparison, the control circuitry has negligible area.

Not only is estimating areas for all configurations imprac-
tical, but also implementations can vary greatly. For direct
encryption schemes like L1 and L2, implementing multiple
encryption blocks in parallel maximize performance, but
area can be saved by sacrificing some of that performance
using pipelined designs. An area-optimized implementation
of QARMA-128 (with 256-bit keys) is roughly ≈ 50 KGE
for a single pipelined block [18]. Latency-optimized AES
implementations exceed 17 KGE per round [58], hence the
area for a single instance is ≈ 160 KGE and for eight parallel
blocks ≈ 1.3 MGE. Note, also, that a pipelined QARMA circuit
and a fully parallelized AES circuit would have comparable
total latency — and this would deliver similar performance
and security to a L1/L2 scheme, while having different areas.

Integrity can re-use the encryption blocks, or smaller
ones like QARMA5-64-σ0, as in [36].

Remark 4.1. Unlike normal CPU caches, the speed of the
MPE caches is not critical: counters and hashes just need
to be available to the MPE before the data from RAM.
This implies that, instead of SRAM, slower, bur denser,
DRAM can be used for these caches.

We recall from Remark 4.1 that the MPE caches can be
built from DRAM. A DRAM memory cell uses a capacitor
and transistor, or in some cases two transistors. The area
can thus be capped by two transistors per bit, with a minor
amount of control logic. A 4 KiB cache is thus about 64 KGE,
and a 256 KiB cache is roughly 4 MGE.

With these numbers at hand, we see that, for modern
SoCs with billions of transistors, a single large MPE per
memory channel is a small but not negligible cost. Although
an additional 1:128 or 1:256 of in-package or in-module
DRAM might seem a minor costs, when compared to the
total system memory, it cannot be disregarded, especially
considering the added expenses of tamper-averting designs.
Architects and implementers must weigh all the trade-offs.

5. Conclusions

We performed a thorough survey and evaluation of
the available technologies for the cryptographic protection
of memory contents, together with some previously not
considered variants. The numerous possible configurations
have each their performance penalty, memory overhead, and
hardware cost. The lack of an absolute metric to combine
these three costs into one rating makes it very challenging
to provide recommendations for each use case. This said,
we have enough data to provide some rough guidance.

If only confidentiality is needed, L1 schemes can perform
very efficiently, and we recommend the use of a lightweight,
high-security encryption primitive (e.g., QARMA) in a direct
mode. If integrity protection is required, but replay attacks

13



are out of scope, L2 schemes with a short MAC can be made
very efficient by using ECC bits to store the MACs.

In what follows, we only consider L3 memory protection:
nearly-transparent strong memory protection is possible with
current technology, but the hardware costs may be prohibitive.

Server SoCs are expensive, with multiple cores and mem-
ory channels. Current systems can address a few terabytes
of physical memory. The high total system costs allow us to
make an argument for counter-based encryption with high
arity counter groups stored in on-chip DRAM. The additional
cost for counter group storage would be relatively minor
(1:128 or 1:256 of the external memory). We observe that
placing, say, 64 GiB or more of DRAM in a module close
to the main SoC is feasible for client devices today. The
same technology could be used to place a large tamper-
averting memory in a server SoC package, to be used as a
large counter cache. When combined with MirE, it would
enable the highest level of memory protection at a lower
performance impact than all currently deployed schemes
without replay protection.

It can be argued that the area budget for such a large
memory should rather be used for a system cache, which
benefits the whole system and reduces the traffic routed
through the MPE. Such a cache could also be dynamically
re-partitioned between system and MPE. This would rely on
an analysis of the traffic and of the impact of the partitioning
that goes beyond the scope of this paper.

If these approaches are not possible, storing the integrity
tree off-chip and using MirE still provides good performance
when combined with a large counter cache.

On client devices, memories usually lack ECC, making
MirE not applicable. However, for use cases such as security
modules and business oriented containers, memory bus
saturation is less of a concern. We thus expect performance
penalties to be contained, usually in line with unloaded
systems, and we recommend the use of high arity split
counter trees in a dynamically allocated carve-out.

Future work includes contributing our MPE model to the
gem5 project which we hope will stimulate future research
and enable studies for specific workloads and configurations.

Appendix

1. Additional Results

In Figs. 8 to 13 we collect selected detailed benchmarking
results for the Set 8 and Set 9 runs.

2. Cryptographic Primitives

2.1. Memory encryption primitives. RAM is commonly
encrypted using a block cipher: the long initial latency of
stream ciphers makes them unsuitable for the purpose.

For simplicity, we only consider block ciphers with a
block size of 128 bits: smaller block sizes are used only
for smart cards and small embedded devices, and longer
blocks are uncommon. The selected block ciphers are the

AES [59] and QARMA [18], where the second is chosen as a
representative of lightweight ciphers. The latencies of most
suitable lightweight ciphers are similar (e.g., PRINCE [60]) or
worse (for instance SKINNY [61]). To estimate performance
penalties for these ciphers, readers can interpolate between
our AES and QARMA results. A revised version of QARMA,
QARMAv2 [62], has been introduced. Its latency is nearly
equal to QARMA’s, so we do not consider it as a separate
configuration option.

Apart from the AES, we do not consider non twekable
block ciphers. The reason is that as using such ciphers (even
lightweight examples such as MIDORI-128 [63]) in concrete
modes would require constructions that lead to increased
latency anyway. We also do not consider ciphers with block
sizes that make them less suitable for memory encryption:
For instance SPEEDY, [64] has a block size of 192 bits, and
ASCON [65], which can be used in a tweaked mode such as
Masked Even-Mansour (MEM) [66], 320 bits.

2.2. Authentication primitives. Standard hash functions
such as SHA-2 [67] or SHA-3 [68] can be turned into Message
Authentication Codes (MACs), but the resulting schemes are
very slow and not parallelizable.

Carter-Wegman Hashes [19], i.e., encrypted Universal
Hash Functions (UHFs), are a better choice. UHFs admit
fully parallelizable constructions, such as multilinear func-
tions of the input computed over a binary Galois field, as
used in SGX [69]. We note that if there is a MAC cache, it
is the not-yet-encrypted UHF values that are cached: they
are thus verified more efficiently.

Apple’s Secure Enclave [32] uses a CMAC [70] to
compute integrity tags. CMAC can not be made parallel
and has a high latency, but their use case does not need
very high throughput. It is however unsuitable for general
usage requiring high bandwidth and low latency. Instead,
we evaluate Tweakable Block Cipher (TBC)-based Parallel
MACs (PMACs) [20]. PMACs are more expensive than
encrypted UHFs, but they can be used for error detection
and correction beside integrity, cf. [31], [36], [71]. The
computation of PMACs is depicted in Figs. 14c and 14d.
Such constructions can easily be made incremental where,
upon a write, only the part of the message that has changed
needs to be recomputed. A variant for non-TBCs, called
PXOR-MAC is described in [35].

Encrypted checksums of the plaintext as in Rogaway’s
Offset Codebook mode (OCB) [20] are an inexpensive way
to compute integrity tags. However, such schemes suffer
from two drawbacks. First, they require freshness, and with
freshness all practical systems we are aware of use CounTeR
mode (CTR) encryption with a UHF-based MACs: CTR
mode is superior since the block cipher computation is
performed in parallel with a ciphertext fetch from external
memory, thus reducing the decryption critical path to just
one XOR. Second, the encrypted checksum of the plaintext
needs to be verified after decryption, potentially worsening
overall latency.

14



0

10

20
4.

69 5.
95

12
.8

7.
11

2.
36 5.

23

18
.9

0.
02

13
.9

14
.8

7.
87 10

.9

1.
08 3.

77 6.
84

3.
16

0.
03

0.
21

0.
12

0.
05

9.
27

7.
02 8.

56

4.
7 5.
87

12
.6

7.
08

2.
33 4.

98

18
.9

0.
02

14
.3

14
.6

7.
53 10

.9

1.
08 3.

83 6.
62

3.
16

0.
03

0.
19

0.
11

0.
05

9.
12

6.
95 8.

49

2.
17 2.
86 6.

45

3.
36

1.
1 2.

66

9.
07

0.
05

8.
13

7.
02

3.
95 5.
21

0.
56 1.
79 3.

31

1.
52

0.
02

0.
1

0.
05

0.
06

5.
13

3.
79

4.
09

AMD SEV L1/AES/XEX/CL64B L1/QARMA/CL64B

0

10

20

4.
47 5.
91

12

7.
29

2.
6 5.

33

17
.3

0.
08

13
.6

13
.8

8.
28 10
.5

1.
33 3.

87 6.
58

3.
2

0.
05

0.
11

0.
13

0.
28

10
.3

7.
86 8.
39

4.
5 5.
83

11
.9

7.
39

2.
58 5.

21

17

0.
02

14
.2

13
.6

8

10
.5

1.
2 3.

9 6.
31

3.
2

0.
05

0.
16

0.
14

0.
05

10
.2

7.
86

8.
29

2.
35 2.
93 6.

19

3.
69

1.
28 2.

99

8.
75

−
0.

11

8.
7

6.
89

4.
45 5.
34

0.
68 1.
85 3.

39

1.
5

0.
05

0.
04

0.
07

−
0.

02 6.
48

5.
15

4.
14

500.perlbench
502.gcc

503.bwaves
505.mcf

507.cactuBSSN

508.namd

510.parest

511.povray
519.lbm

520.omnetpp
521.wrf

523.xalancbmk

525.x264

526.blender

527.cam4

531.deepsjeng

538.im
agick

541.leela
544.nab

548.exchange2

549.fotonik3d

554.roms
557.xz

0

10

20

4.
97 6.
41

17

8.
6

3.
08 5.

63

16
.9

0.
06

10
.9 14

.2

8.
86 10
.8

1.
56 4.

25 7.
49

3.
77

0.
22

0.
43

0.
2

−
0.

01

9.
93

8.
46

8.
89

4.
89 6.
38

17

8.
6

3.
09 5.

58

16
.9

0.
17

11
.2 14
.2

8.
76 10
.8

1.
59 4.

19 7.
46

3.
83

0.
27

0.
4

0.
19

0

9.
98

8.
5

8.
82

2.
95 3.
69

12
.1

5.
29

1.
75 3.

57

10
.1

0.
11

7.
59

7.
97

5.
52 6.
06

1.
05 2.
32 4.

39

2.
12

0.
2

0.
27

0.
14

−
0.

02

7.
42

6.
1

4.
95

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 8: Set 8 (Section 4.10). Comparison of AMD SEV (L1/AES/GFmul/CL64B), L1/AES/XEX/CL64B, and L1/QARMA/CL64B.

0

10

20

30

5.
38 8.

64

15
.6

10
.3

3.
34 7.

66

22

−
0.

01

19
.1 21
.2

9.
89 12
.8

1.
56 4.

34 10
.1

3.
91

0.
04

0.
2

0.
12

0.
32

15
.9

12
.2

12
.1

4.
7 5.
87

12
.6

7.
08

2.
33 4.

98

18
.9

0.
02

14
.3

14
.6

7.
53 10

.9

1.
08 3.

83 6.
62

3.
16

0.
03

0.
19

0.
11

0.
05

9.
12

6.
95 8.
49

Non-MirE with 64KiB DH$ vs MirE (Intel TDX)

0

50

100

150

20
.3 35
.1

86
.5

47
.9

21
.9 36
.6

76
.6

1.
06

12
4

73

49
.2

40
.8

8.
92 17
.9 44

.8

16
.6

1.
25

1.
59

1.
03

1.
27

11
5

90
.8

47
.1

4.
5

5.
83 11
.9

7.
39

2.
58

5.
21 17

0.
02 14
.2

13
.6

8 10
.5

1.
2

3.
9

6.
31

3.
2

0.
05

0.
16

0.
14

0.
05 10
.2

7.
85

8.
29

500.perlbench
502.gcc

503.bwaves
505.mcf

507.cactuBSSN

508.namd

510.parest

511.povray
519.lbm

520.omnetpp
521.wrf

523.xalancbmk

525.x264

526.blender

527.cam4

531.deepsjeng

538.im
agick

541.leela
544.nab

548.exchange2

549.fotonik3d

554.roms
557.xz

0

100

200

61
.9 82
.1

14
5

96

64
.8

66
.3

12
7

3.
64

16
8

15
6

85
.9

92
.5

30
.9 55
.4 89

.5

63
.3

3.
15

6.
8

4.
4

2.
9

13
6

11
8

11
3

4.
89

6.
4 17
.1

8.
61

3.
08

5.
6 17
.2

0.
17 11
.4

14
.2

8.
81

10
.7

1.
59

4.
19

7.
31

3.
83

0.
27

0.
4

0.
19

0 9.
98

8.
47

8.
84

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 9: Set 8 (Section 4.10). L2 impact of MirE: L2/AES/32b/CL64B vs. L2/AES/MirE/28b/CL64B (e.g., Intel TDX).

0

10

20

2.
97 4.

67

9.
14

5.
89

1.
21 4.

11

11
.2

0.
06

11
.5 13
.7

5.
49 6.

94

0.
61 2.

16 5.
29

2.
2

0.
03

0.
07

0.
07

0.
08

10
.4

6.
98

7.
35

2.
17 2.
86 6.

45

3.
36

1.
1 2.

66

9.
07

0.
05

8.
13

7.
02

3.
95 5.
21

0.
56 1.
79 3.

31

1.
52

0.
02

0.
1

0.
05

0.
06

5.
13

3.
79

4.
09

Non-MirE with 64KiB DH$ MirE

0

50

100

150

16
.4 29
.6

73
.3

40
.9

19
.7 30
.7

64
.1

0.
67

98
.3

62
.7

40
.2

33
.4

8.
03 14
.5 36

.8

14
.7

1.
34

1.
55

1.
04

1.
4

98
.4

79
.1

41
.7

2.
35

2.
92 6.
19

3.
69

1.
28

2.
99 8.
75

−
0.

11

8.
4

6.
89

4.
45

5.
34

0.
68

1.
85

3.
38

1.
5

0.
05

0.
04

0.
07

−
0.

02

6.
57

5.
24

4.
14

500.perlbench
502.gcc

503.bwaves
505.mcf

507.cactuBSSN

508.namd

510.parest

511.povray
519.lbm

520.omnetpp
521.wrf

523.xalancbmk

525.x264

526.blender

527.cam4

531.deepsjeng

538.im
agick

541.leela
544.nab

548.exchange2

549.fotonik3d

554.roms
557.xz

0

50

100

150

49
.9 72

.7

11
4

86
.8

61
.4

54
.5

11
2

3.
44

13
1 14

2

68
.9

76
.1

29

48
.1 77

.2

62
.3

3.
38

6.
85

4.
34

3.
3

11
6

10
5

10
5

2.
95

3.
72 12
.1

5.
38

1.
76

3.
58 10
.2

0.
11 7.
69

7.
96

5.
54

5.
98

1.
07

2.
32

4.
34

2.
12

0.
2

0.
27

0.
14

−
0.

02

7.
43

6.
12

4.
92

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 10: Set 8 (Section 4.10). L2 impact of MirE when using QARMA: L2/QARMA/32b/CL64B vs. L2/QARMA/MirE/28b/CL64B.

15



0

50
8.

86 17
.7 26
.6

23
.4

3.
1 12

.1

31
.7

−
0.

04

28
.8

52
.7

14
.2 19
.6

2.
13 8.

06 18
.1

10
.6

0.
07

0.
3

0.
26

0.
34

33
.7

29
.6

32
.8

2.
1 4.
3

5.
44

6.
41

1.
21

2.
63 5.
73

−
0.

02

5.
24 15

.8

3.
19 5.
33

0.
47

1.
9 3.
86

4.
56

0.
02

0.
11

0.
05

0.
61 6.

7

5.
84 9.
34

Intel SGX L3/QARMA/split/128B CLs/32b MACs

0

200

400

600

14
5 22

1 29
6

25
1

20
4

16
3

30
4

13
.3

43
8

42
4

18
7 22

5

10
3 13
3 22

7

18
3

8.
52 27
.9

18 4.
36

41
4

36
8

31
5

82
.2 12

1 15
5

15
1

91
.3

67
.1 14

1

4.
35

17
2 21

7

82
.5

10
9

48
.3 82 10

6

11
4

5.
39

12
.5

8.
87

3.
81

16
5

14
8

16
6

500.perlbench
502.gcc

503.bwaves
505.mcf

507.cactuBSSN

508.namd

510.parest

511.povray
519.lbm

520.omnetpp
521.wrf

523.xalancbmk

525.x264

526.blender

527.cam4

531.deepsjeng

538.im
agick

541.leela
544.nab

548.exchange2

549.fotonik3d

554.roms
557.xz

0

500

1,000

21
1 32

7 49
0

43
0

27
4

23
0

48
6

13
.9

59
7 73

2

31
2 36
6

12
1 18

9 36
4

24
3

9.
72

29
.4

18
.7

4.
97

49
3

46
2 52

9

87
.8

13
2

17
6

18
0

94
.7

80
.4 15

7

4.
72

20
9 26
1

96
.9

12
2

50
.2

85
.8

12
1

12
2

5.
43

13 8.
97

4.
06

19
2

17
6

20
4

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 11: Set 8 (Section 4.10). Impact of split counters: L3/AES/mono-8/56b/CL64B (Intel SGX) vs. L3/QARMA/split-128/32b/CL128B.

0

5

1.
41 1.

97 3.
35

2.
99

0.
51 1.

39

4.
56

−
0.

04

4

5.
43

2.
28 3.

33

0.
33 1.

37 2.
27

1.
05

0 0.
04

0.
04 0.

6

3.
09

2.
54 3.

27

1.
33 1.

96 3.
35

2.
99

0.
51 1.

41

4.
56

0.
01

4

5.
46

2.
28 3.

29

0.
34 1.

33 2.
27

1.
03

0 0.
04

0.
04 0.

6

3.
09

2.
54 3.

27

1.
29 1.

97 3.
35

2.
95

0.
51 1.

4

4.
55

−
0.

01

4

5.
44

2.
28 3.

3

0.
35 1.

36 2.
28

1.
05

0 0.
04

0.
04 0.

6

3.
08

2.
54 3.

25

3-way split 2-way-split skipped RMWs

0

5

10

1.
63 2.
23

4.
5

3.
64

0.
69 1.

89

5.
18

−
0.

09

5.
17 5.
51

2.
77 3.

65

0.
43 1.

46 2.
7

1.
14

0.
03

0.
05

0.
04

−
0.

55

4.
07

3.
57

3.
39

2.
43 3.

65

7.
37

5.
5

1.
2 2.

99

7.
95

0.
02

7.
57 8.
03

4.
22 5.

05

0.
91 2.

4 3.
99

2.
78

0.
05

0.
17

0.
13

0.
05

6.
71

5.
96

5.
19

1.
48 2.
15

4.
32

3.
51

0.
66 1.

83

5.
14

−
0.

02

4.
57 5.

42

2.
7 3.

51

0.
39 1.

51 2.
71

1.
13

0.
01

0.
07

0.
04

−
0.

55

3.
9

3.
47

3.
28

500.perlbench
502.gcc

503.bwaves
505.mcf

507.cactuBSSN

508.namd

510.parest

511.povray
519.lbm

520.omnetpp
521.wrf

523.xalancbmk

525.x264

526.blender

527.cam4

531.deepsjeng

538.im
agick

541.leela
544.nab

548.exchange2

549.fotonik3d

554.roms
557.xz

0

5

10

15

2.
06 2.
95

7.
67

5.
13

0.
96 2.

48

7.
18

0.
01

4.
99 6.

85

3.
74 4.
57

0.
58 1.

78 3.
42

1.
63

0.
12

0.
14

0.
11

0.
29

5.
67

5.
18

4.
335.
02 7.

17

14
.6

10
.3

2.
66

5.
99

13
.7

0.
17

11
.9 13
.5

7.
82 8.
34

2.
21 4.

75 7.
44

5.
98

0.
23 0.
67

0.
34 0.
73

12
.7

12

9.
59

1.
91 2.
83

7.
27

4.
8

0.
93 2.

31

6.
86

0.
03

4.
11 6.

43

3.
53 4.
45

0.
55 1.

84 3.
11

1.
49

0.
1

0.
17

0.
09 0.
49

5.
04

4.
82

4.
14

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 12: Sets 8 and 9 (Sections 4.10 and 4.11). L3/QARMA/MirE/split-128/LoC/28b/CL128B with 3-way and 2-way split counters, and without RMWs.

0

5

10

15

1.
34 2.
21 3.

35

3.
05

0.
51 1.
41

4.
72

−
0.

02 3.
79 5.

68

2.
29 3.
28

0.
34 1.
34 2.
37

1.
1

0 0.
04

0.
04 0.
6 3.

02

2.
88 3.
45

1.
42 3.

37

3.
35

6.
78

0.
51 1.
41

5.
52

−
0.

24 3.
79

10
.6

2.
31 3.

59

0.
33 1.
32 2.

94

1.
12

0 0.
04

0.
04 0.
6 3.

06

7.
15

4.
34

1.
33 1.
96 3.

35

3.
05

0.
51 1.
41

4.
56

−
0.

21 3.
79 5.

54

2.
3 3.
27

0.
33 1.
39 2.
24

1.
11

0 0.
04

0.
04 0.
6 3.

02

2.
54 3.
36

3-way split 2-way-split skipped RMWs

0

20

40

60

1.
64

2.
75 5.
08

4.
06

0.
77

2.
06 6.
28

−
0.

33

5.
55

6.
21

3.
06

3.
95

0.
45

1.
66

2.
98

1.
23

0.
02

0.
06

0.
05

−
0.

55

4.
83

4.
56

3.
69

19
.9 28
.3

45
.2

32
.9

10
.5

28
.7 40

.3

1.
31

42
.4

33
.7

21
.3

17
.7

16
.4 23
.3 31
.1

33
.9

2.
07 4.
99

3.
39

1.
65

42
.7

46

33
.3

1.
4

2.
22 4.
41

3.
49

0.
68

1.
86 5.
11

−
0.

02

5.
02

5.
51

2.
71

3.
51

0.
4

1.
45

2.
68

1.
09

0.
03

0.
05

0.
04

−
0.

17

3.
91

3.
41

3.
36

500.perlbench
502.gcc

503.bwaves
505.mcf

507.cactuBSSN

508.namd

510.parest

511.povray
519.lbm

520.omnetpp
521.wrf

523.xalancbmk

525.x264

526.blender

527.cam4

531.deepsjeng

538.im
agick

541.leela
544.nab

548.exchange2

549.fotonik3d

554.roms
557.xz

0

50

2.
54

4.
33 10
.2

6.
69

1.
25 3.
48 10
.3

0.
13 9.

15

8.
67

4.
98

5.
83

0.
76

2.
48 4.
64

2.
01

0.
13

0.
19

0.
14

0.
09 9.

32

9.
02

5.
43

35
.1 43

73

42
.4

15
.6

52
.7 60
.2

2.
85

60
.7

36 32
.5

21
.9 30
.1 38

48
.9 59

5.
14 8.
75

6.
05

3.
73

64
.6 69
.6

51
.5

1.
97

2.
88 7.
29

4.
78

0.
94

2.
3 6.
94

−
0.

05

4.
4 6.
57

3.
54

4.
36

0.
55

1.
82

3.
36

1.
51

0.
11

0.
12

0.
09

0.
07 5.
07

4.
79

4.
14

Unloaded

Partially loaded

Loaded

Pe
rf

or
m

an
ce

ov
er

he
ad

(%
).

L
ow

er
is

be
tte

r.

Figure 13: Sets 8 and 9 (Sections 4.10 and 4.11). L3/QARMA/MirE/split-256/LoC/28b/CL128B with 3-way and 2-way split counters, and without RMWs.

16



P0 P1 P2 · · · Pr−1

K

{ν∥}α0
E {ν∥}α1

E {ν∥}α2
E {ν∥}αr−1

E

C0 C1 C2 · · · Cr−1

(a) Tweaked Electronic Codebook (ECB) mode for encryption,
with optional freshness.

P0 P1 P2 · · · Pr−1

α0 α1 α2 · · · αp−1

K

ν E ν E ν E ν E

C0 C1 C2 · · · Cr−1

(b) CounTeR in Tweak (CTRT) mode for encryption.

C0 C1 C2 · · · Cr′−1

K

α0
E α1

E α2
E · · · αr′−1

E

tag

(c) Parallel MAC (PMAC) for authentication computed with a
TBC for the cases where freshness is not implemented.

C0 C1 C2 · · · Cr′−1 ν

K
1∥α0

E

0∥α0
E 0∥α1

E 0∥α2
E · · ·

0∥αr′−1
E

tag

(d) PMAC for authentication computed with a TBC for
the cases where freshness information is available.

Figure 14: Encryption and authentication methods designed around a Tweakable Block Cipher (TBC).They show how freshness can lead to shorter critical
paths. Notation: E is a TBC, the two inputs on the left side of the block being the key (above) and the tweak; P = P0∥· · ·∥Pr−1, resp. C =C0∥· · ·∥Cr−1
is the partition of a plaintext, resp. ciphertext in blocks of equal size; αi is the Physical Address (PA) of the i-th block; and ν a nonce. If freshness is
available, both encryption and authentication algorithms use it, and they share the same nonce. The TBC used for authentication may have a smaller block
size than the encryption TBC, in which case r ̸= r′.

2.3. Modes of operation. For memory encryption, many
(authenticated encryption) modes of operation can be simpli-
fied somewhat because the length of the payload is a fixed
multiple of the underlying cipher’s block length.

Some older schemes, such as Bastion [27], use the block
cipher in Electronic Codebook (ECB) mode, but the lack of
spatial uniqueness keeps plaintext patterns in the ciphertext,
therefore modes that provide spatial uniqueness are necessary.

For direct encryption, spatial uniqueness is achieved by
using the PA as the tweak. With a non-TBC, the latter is
used in the XOR, Encrypt, and XOR (XEX) construction [20],
which is just the XTS mode of operation [72] for a message
whose length is a multiple of the block size. XEX is defined
as Ci = EK(Pi ⊕Mi)⊕Mi. In other words, a tweak-derived
mask is added to the input and the output of the cipher. The
first mask M0 is derived by encrypting the tweak, and the
successive masks Mi for i ≥ 1 are obtained by multiplying
the first mask by a fixed sequence of values. Using a single
finite field element γ we can put Mi = γ i ·M0. Inoue et
al. introduce a Flat-ΘCB mode [35] which is similar to
OCB [20]. They define the L3 scheme Encryption for Large
Memory (ELM) using Flat-ΘCB mode for data and PXOR-
MAC to authenticate counter groups.

With a TBC, the PA (concatenated with freshness if
provided) of each block is used directly as a tweak, cf.
Fig. 14a, and a XEX construction is not needed.

In CTR encryption with a TBC, the counter and PA are
used as tweak and text respectively (cf. Fig. 14b) to generate
the keystream. When not using a TBC, the counter and PA
are concatenated and then encrypted.

References

[1] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption
White Paper,” April 2016. [Online]. Available: https://www.amd.com/
system/files/TechDocs/memory-encryption-white-paper.pdf

[2] D. P. Mulligan, G. Petri, N. Spinale, G. Stockwell, and H. J. M. Vincent,
“Confidential Computing - a brave new world,” in Proceedings of SEED
2021. IEEE, 2021, pp. 132–138, doi:10.1109/SEED51797.2021.00025

[3] S. Gueron, “A Memory Encryption Engine Suitable for General
Purpose Processors,” IACR Cryptol. ePrint Arch., 2016. [Online].
Available: http://eprint.iacr.org/2016/204

[4] S. Johnson, R. Makaram, A. S. to ni, and V. S. la ta, “Supporting Intel®
SGX on multi-socket platforms,” August 2020, Technical Report.

[5] Intel, “Intel® Trust Domain Extensions White Paper,” August
2021. [Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-trust-domain-extensions.html

[6] J. Bucek, K. Lange, and J. von Kistowski, “SPEC CPU2017:
Next-Generation Compute Benchmark,” in Companion of the
2018 ACM/SPEC ICPE, K. Wolter, W. J. Knottenbelt, A. van
Hoorn, and M. Nambiar, Eds. ACM, 2018, pp. 41–42,
doi:10.1145/3185768.3185771

[7] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood,
“The gem5 Simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2,
pp. 1–7, 2011, doi:10.1145/2024716.2024718

[8] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black,
G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillón, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz, A. F.
Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass,
B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,
M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M.
Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna,
T. Marinelli, C. Menard, A. Mondelli, T. Mück, O. Naji, K. Nathella,
H. Nguyen, N. Nikoleris, L. E. Olson, M. S. Orr, B. Pham, P. Prieto,
T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov,
M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish,

17

https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://www.amd.com/system/files/TechDocs/memory-encryption-white-paper.pdf
https://doi.org/10.1109/SEED51797.2021.00025
http://eprint.iacr.org/2016/204
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/2024716.2024718


I. Vougioukas, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon,
and É. F. Zulian, “The gem5 Simulator: Version 20.0+,” CoRR, vol.
abs/2007.03152, 2020, doi:10.48550/arXiv.2007.03152

[9] M. Henson and S. Taylor, “Memory Encryption: A Survey of Existing
Techniques,” ACM Comput. Surv., vol. 46, no. 4, pp. 53:1–53:26, 2013,
doi:10.1145/2566673

[10] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A comparison study of intel
SGX and AMD memory encryption technology,” in Proceedings of
the 7th International HASP@ISCA 2018 Workshop, Los Angeles, CA,
USA, June 02-02, 2018, J. Szefer, W. Shi, and R. B. Lee, Eds. ACM,
2018, pp. 9:1–9:8, doi:10.1145/3214292.3214301

[11] K. Suzaki, K. Nakajima, T. Oi, and A. Tsukamoto, “TS-Perf: General
Performance Measurement of Trusted Execution Environment and
Rich Execution Environment on Intel SGX, Arm TrustZone, and
RISC-V Keystone,” IEEE Access, vol. 9, pp. 133 520–133 530, 2021,
doi:10.1109/ACCESS.2021.3112202

[12] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and
M. K. Qureshi, “Morphable Counters: Enabling Compact Integrity
Trees For Low-Overhead Secure Memories,” in Proceedings of the
50th IEEE/ACM MICRO, 2018. IEEE Computer Society, 2018, pp.
416–427, doi:10.1109/MICRO.2018.00041

[13] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reduc-
ing Paging Overheads in SGX with Efficient Integrity Verification
Structures,” in Proceedings of ASPLOS 2018, X. Shen, J. Tuck,
R. Bianchini, and V. Sarkar, Eds. ACM, 2018, pp. 665–678,
doi:10.1145/3173162.3177155

[14] M. Taassori, R. Balasubramonian, S. Chhabra, A. R. Alameldeen,
M. Peddireddy, R. Agarwal, and R. Stutsman, “Compact leakage-free
support for integrity and reliability,” in Proceedings of the 47th ISCA.
IEEE, 2020, pp. 735–748, doi:10.1109/ISCA45697.2020.00066

[15] I. Mihalcea, “Prototyping Memory Integrity Tree Algorithms for
Internet of Things Devices,” Master’s thesis, Information Security
Group, Royal Holloway University of London, UK, 2022.

[16] D. H. Schall, “Evaluation and Optimization of Memory Encryption
and Integrity Protection,” Master’s thesis, University of Kaiserslautern,
Department of Electrical Engineering and Information Technology,
Microelectronic Systems Design Research Group, 2019.

[17] M. Schneider, R. J. Masti, S. Shinde, S. Capkun, and R. Perez,
“Sok: Hardware-supported trusted execution environments,” CoRR, vol.
abs/2205.12742, 2022, doi:10.48550/arXiv.2205.12742

[18] R. Avanzi, “The QARMA Block Cipher Family – Almost MDS Matri-
ces over Rings with Zero Divisors, Nearly Symmetric Even-Mansour
Constructions with Non-Involutory Central Rounds, and Search Heuris-
tics for Low-Latency S-Boxes,” IACR Trans. on Symmetric Cryptology,
vol. 2017, no. 1, pp. 4–44, 2017, doi:10.13154/tosc.v2017.i1.4-44

[19] L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” J.
Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, 1979, doi:10.1016/0022-
0000(79)90044-8

[20] P. Rogaway, “Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC,” in ASIACRYPT 2004,
Proceedings, 2004, pp. 16–31, doi:10.1007/978-3-540-30539-2 2

[21] W. E. Hall and C. S. Jutla, “US Patent US US7451310 B2: Paralleliz-
able authentication tree for random access storage, filed Dec. 2,2002,”
http://www.google.com/patents/US7451310, November 2008.

[22] G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“AEGIS: architecture for tamper-evident and tamper-resistant process-
ing,” in Proceedings of the 17th Annual International Conference on
Supercomputing, ICS 2003, U. Banerjee, K. Gallivan, and A. González,
Eds. ACM, 2003, pp. 160–171, doi:10.1145/782814.782838

[23] B. Gassend, G. E. Suh, D. E. Clarke, M. van Dijk, and S. De-
vadas, “Caches and Hash Trees for Efficient Memory Integrity
Verification,” in Proceedings of HPCA’03, 2003, pp. 295–306,
doi:10.1109/HPCA.2003.1183547

[24] G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas, “Efficient Memory Integrity Verification and Encryption
for Secure Processors,” in Proceedings of the 36th Annual In-
ternational Symposium on Microarchitecture, 2003, pp. 339–350,
doi:10.1109/MICRO.2003.1253207

[25] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving Cost, Performance, and Security of Memory Encryption
and Authentication,” in Proceedings of ISCA 2006, 2006, pp. 179–190,
doi:10.1109/ISCA.2006.22

[26] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using Address
Independent Seed Encryption and Bonsai Merkle Trees to Make
Secure Processors OS- and Performance-Friendly,” in Proceedings of
MICRO-40, 2007, 2007, pp. 183–196, doi:10.1109/MICRO.2007.44

[27] D. Champagne and R. B. Lee, “Scalable architectural support for
trusted software,” in Proceedings of HPCA 2010, 2010, pp. 1–12,
doi:10.1109/HPCA.2010.5416657

[28] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of HASP 2013,
2013, p. 10, doi:10.1145/2487726.2488368

[29] AMD, “Secure Encrypted Virtualization API Version 0.24,” April
2020, Technical Report.

[30] ——, “AMD SEV-SNP: Strengthening VM isolation with integrity
protection and more,” January 2020, Technical Report.

[31] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “SYNERGY: Rethinking Secure-Memory Design for Error-
Correcting Memories,” in Proceedings of HPCA 2018. IEEE
Computer Society, 2018, pp. 454–465, doi:10.1109/HPCA.2018.00046

[32] Apple Inc., “Secure Enclave,” 2020. [Online]. Available: https:
//support.apple.com/en-gb/guide/security/sec59b0b31ff/web

[33] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song,
“Keystone: an open framework for architecting trusted execution
environments,” in Proceedings of EuroSys ’20, A. Bilas, K. Magoutis,
E. P. Markatos, D. Kostic, and M. I. Seltzer, Eds. ACM, 2020, pp.
38:1–38:16, doi:10.1145/3342195.3387532

[34] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia, B. Zang, and
H. Chen, “Scalable memory protection in the PENGLAI enclave,” in
15th USENIX OSDI, July 14-16, 2021, A. D. Brown and J. R. Lorch,
Eds. USENIX Association, 2021, pp. 275–294. [Online]. Available:
https://www.usenix.org/conference/osdi21/presentation/feng

[35] A. Inoue, K. Minematsu, M. Oda, R. Ueno, and N. Homma,
“ELM: A Low-Latency and Scalable Memory Encryption Scheme,”
IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 2628–2643, 2022,
doi:10.1109/TIFS.2022.3188146

[36] J. Juffinger, L. Lamster, A. Kogler, M. Lipp, M. Eichlseder, and
D. Gruss, “CSI:Rowhammer – Cryptographic Security and Integrity
against Rowhammer,” in Proceedings of IEEE S&P ’23, 2023.

[37] J. Kelsey, “Compression and Information Leakage of Plaintext,” in
Proceedings of FSE 2002, ser. Lecture Notes in Computer Science,
J. Daemen and V. Rijmen, Eds., vol. 2365. Springer, 2002, pp.
263–276, doi:10.1007/3-540-45661-9 21

[38] M. Schwarzl, P. Borrello, G. Saileshwar, H. Müller, M. Schwarz,
and D. Gruss, “Practical Timing Side Channel Attacks on
Memory Compression,” CoRR, vol. abs/2111.08404, 2021,
doi:10.48550/arXiv.2111.08404

[39] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in Proceedings of STOC, 1987, A. V. Aho, Ed.
ACM, 1987, pp. 182–194, doi:10.1145/28395.28416

[40] M. A. Khelif, J. Lorandel, O. Romain, M. Regnery, D. Ba-
heux, and G. Barbu, “Toward a hardware Man-in-the-Middle at-
tack on PCIe bus,” Microprocess. Microsystems, vol. 77, 2020,
doi:10.1016/j.micpro.2020.103198

18

https://doi.org/10.48550/arXiv.2007.03152
https://doi.org/10.1145/2566673
https://doi.org/10.1145/3214292.3214301
https://doi.org/10.1109/ACCESS.2021.3112202
https://doi.org/10.1109/MICRO.2018.00041
https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1109/ISCA45697.2020.00066
https://doi.org/10.48550/arXiv.2205.12742
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1007/978-3-540-30539-2_2
http://www.google.com/patents/US7451310
https://doi.org/10.1145/782814.782838
https://doi.org/10.1109/HPCA.2003.1183547
https://doi.org/10.1109/MICRO.2003.1253207
https://doi.org/10.1109/ISCA.2006.22
https://doi.org/10.1109/MICRO.2007.44
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1109/HPCA.2018.00046
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/osdi21/presentation/feng
https://doi.org/10.1109/TIFS.2022.3188146
https://doi.org/10.1007/3-540-45661-9_21
https://doi.org/10.48550/arXiv.2111.08404
https://doi.org/10.1145/28395.28416
https://doi.org/10.1016/j.micpro.2020.103198


[41] S. Skorobogatov, “How microprobing can attack encrypted mem-
ory,” in Proceedings of DSD 2017, H. Kubátová, M. Novotný, and
A. Skavhaug, Eds. IEEE Computer Society, 2017, pp. 244–251,
doi:10.1109/DSD.2017.69

[42] R. Torrance and D. James, “The State-of-the-Art in IC Reverse
Engineering,” in Proceedings of CHES 2009, ser. Lecture Notes in
Computer Science, C. Clavier and K. Gaj, Eds., vol. 5747. Springer,
2009, pp. 363–381, doi:10.1007/978-3-642-04138-9 26

[43] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest we remember: cold-boot attacks on encryption keys,” Commun.
ACM, vol. 52, no. 5, pp. 91–98, 2009, doi:10.1145/1506409.1506429

[44] M. Bach, “ECC and REG ECC Memory Performance,” May
2014. [Online]. Available: https://www.pugetsystems.com/labs/articles/
ECC-and-REG-ECC-Memory-Performance-560/

[45] R. C. Merkle, “Protocols for Public Key Cryptosystems,” in Proceed-
ings of the 1980 IEEE S&P. IEEE Computer Society, 1980, pp.
122–134, doi:10.1109/SP.1980.10006

[46] W. E. Hall and C. S. Jutla, “Parallelizable Authentication Trees,” in
Proceedings of SAC 2005, 2005, pp. 95–109, doi:10.1007/11693383 7

[47] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and
P. Guillemin, “TEC-Tree: A Low-Cost, Parallelizable Tree for Efficient
Defense Against Memory Replay Attacks,” in Proceedings of CHES
2007, 2007, pp. 289–302, doi:10.1007/978-3-540-74735-2 20

[48] S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing
Grover Oracles for Quantum Key Search on AES and LowMC,”
in Proceedings of EUROCRYPT 2020, Part II, ser. Lecture Notes
in Computer Science, A. Canteaut and Y. Ishai, Eds., vol. 12106.
Springer, 2020, pp. 280–310, doi:10.1007/978-3-030-45724-2 10

[49] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj,
S. Saroiu, and A. Wolman, “Protecting data on smartphones and tablets
from memory attacks,” in Proceedings of ASPLOS 2015, Ö. Özturk,
K. Ebcioglu, and S. Dwarkadas, Eds. ACM, 2015, pp. 177–189,
doi:10.1145/2694344.2694380

[50] T. Matsumoto, R. Miyachi, J. Sakamoto, M. Suzuki, D. Watanabe, and
N. Yoshida, “RAM encryption mechanism without hardware support,”
J. Inf. Process., vol. 28, pp. 473–480, 2020. [Online]. Available:
https://doi.org/10.2197/ipsjjip.28.473, doi:10.2197/ipsjjip.28.473

[51] P. A. H. Peterson, “Cryptkeeper: Improving security with encrypted
RAM,” in Proceedings of IEEE HST 2010, 2010, pp. 120–126,
doi:10.1109/THS.2010.5655081

[52] J. Götzfried, T. Müller, G. Drescher, S. Nürnberger, and M. Backes,
“Ramcrypt: Kernel-based address space encryption for user-
mode processes,” in Proceedings of AsiaCCS 2016, X. Chen,
X. Wang, and X. Huang, Eds. ACM, 2016, pp. 919–924,
doi:10.1145/2897845.2897924

[53] S. Aga and S. Narayanasamy, “InvisiMem: Smart Memory Defenses
for Memory Bus Side Channel,” in Proceedings of ISCA 2017, 2017,
pp. 94–106, doi:10.1145/3079856.3080232

[54] CXL Consortium, “Compute express link™ resource library,”
2019. [Online]. Available: https://www.computeexpresslink.org/
resource-library

[55] A. Sandberg, “Understanding Multicore Performance: Efficient Mem-
ory System Modeling and Simulation,” Ph.D. dissertation, Uppsala
University, Disciplinary Domain of Science and Technology, Mathe-
matics and Computer Science, Department of Information Technology,
Division of Computer Systems, Uppsala, Sweden, 2014.

[56] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” in ACM SIGPLAN
Notices, vol. 37 (Proceedings of ASPLOS-X, 2002), K. Ghara-
chorloo and D. A. Wood, Eds. ACM Press, 2002, pp. 45–57,
doi:10.1145/605397.605403

[57] S. F. Yitbarek and T. M. Austin, “Reducing the Overhead of Au-
thenticated Memory Encryption Using Delta Encoding and ECC
Memory,” in Proceedings of DAC 2018. ACM, 2018, pp. 1–35,
doi:10.1145/3195970.3196102

[58] R. Ueno, N. Homma, S. Morioka, N. Miura, K. Matsuda, M. Nagata,
S. Bhasin, Y. Mathieu, T. Graba, and J. Danger, “High Through-
put/Gate AES Hardware Architectures Based on Datapath Compres-
sion,” IEEE Trans. Computers, vol. 69, no. 4, pp. 534–548, 2020,
doi:10.1109/TC.2019.2957355

[59] J. Daemen and V. Rijmen, “AES and the Wide Trail Design Strategy,”
in EUROCRYPT 2002, ser. Lecture Notes in Computer Science, L. R.
Knudsen, Ed., vol. 2332. Springer, 2002, pp. 108–109, doi:10.1007/3-
540-46035-7 7

[60] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin, “PRINCE — A Low-Latency Block
Cipher for Pervasive Computing Applications - Extended Abstract,” in
ASIACRYPT 2012, ser. Lecture Notes in Computer Science, X. Wang
and K. Sako, Eds., vol. 7658. Springer, 2012, pp. 208–225,
doi:10.1007/978-3-642-34961-4 14

[61] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin,
Y. Sasaki, P. Sasdrich, and S. M. Sim, “The SKINNY family of
block ciphers and its low-latency variant MANTIS,” in Proceedings
of CRYPTO 2016, Part II, ser. Lecture Notes in Computer Science,
M. Robshaw and J. Katz, Eds., vol. 9815. Springer, 2016, pp.
123–153, doi:10.1007/978-3-662-53008-5 5

[62] R. Avanzi, S. Banik, O. Dunkelman, M. Eichlseder, S. Ghosh,
M. Nageler, and F. Regazzoni, “The QARMAv2 family of tweakable
block ciphers,” IACR Transactions on Symmetric Cryptology, no. 3,
pp. 25–73, Sep. 2023, doi:10.46586/tosc.v2023.i3.25-73

[63] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita,
and F. Regazzoni, “Midori: A Block Cipher for Low Energy,” in
Proceedings of ASIACRYPT 2015, Part II, ser. Lecture Notes in
Computer Science, T. Iwata and J. H. Cheon, Eds., vol. 9453. Springer,
2015, pp. 411–436, doi:10.1007/978-3-662-48800-3 17

[64] G. Leander, T. Moos, A. Moradi, and S. Rasoolzadeh, “The SPEEDY
family of block ciphers engineering an ultra low-latency cipher
from gate level for secure processor architectures,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 4, pp. 510–545, 2021,
doi:10.46586/tches.v2021.i4.510-545

[65] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon
v1.2: Lightweight authenticated encryption and hashing,” J. Cryptol.,
vol. 34, no. 3, p. 33, 2021, doi:10.1007/s00145-021-09398-9

[66] R. Granger, P. Jovanovic, B. Mennink, and S. Neves, “Improved
masking for tweakable blockciphers with applications to authenticated
encryption,” in Proceedings of EUROCRYPT 2016, Part I, ser. Lecture
Notes in Computer Science, M. Fischlin and J. Coron, Eds., vol. 9665.
Springer, 2016, pp. 263–293, doi:10.1007/978-3-662-49890-3 11

[67] NIST, “FIPS PUB 180-4 – Secure Hash Standard,” National Institute
of Standards and Technology, Gaithersburg, MD, United States, Tech.
Rep., Mar. 2012. [Online]. Available: https://csrc.nist.gov/publications/
detail/fips/180/4/final

[68] ——, “FIPS PUB 202 – SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions,” National Institute of Standards
and Technology, Gaithersburg, MD, United States, Tech. Rep., Aug.
2015. [Online]. Available: https://csrc.nist.gov/publications/detail/fips/
202/final

[69] S. Gueron, “Memory Encryption for General-Purpose Proces-
sors,” IEEE Secur. Priv., vol. 14, no. 6, pp. 54–62, 2016,
doi:10.1109/MSP.2016.124

[70] T. Iwata and K. Kurosawa, “OMAC: One-Key CBC MAC,” in
FSE 2003, Revised Papers, ser. Lecture Notes in Computer Sci-
ence, T. Johansson, Ed., vol. 2887. Springer, 2003, pp. 129–153,
doi:10.1007/978-3-540-39887-5 11

[71] R. C. Huang and G. E. Suh, “IVEC: Off-Chip Memory Integrity
Protection for Both Security and Reliability,” in Proceedings of ISCA
2010, A. Seznec, U. C. Weiser, and R. Ronen, Eds. ACM, 2010, pp.
395–406, doi:10.1145/1815961.1816015

[72] IEEE, “IEEE standard for cryptographic protection of data on
block-oriented storage devices 1619–2018,” January 2019. [Online].
Available: http://ieeexplore.ieee.org/servlet/opac?punumber=4493431

19

https://doi.org/10.1109/DSD.2017.69
https://doi.org/10.1007/978-3-642-04138-9_26
https://doi.org/10.1145/1506409.1506429
https://www.pugetsystems.com/labs/articles/ECC-and-REG-ECC-Memory-Performance-560/
https://www.pugetsystems.com/labs/articles/ECC-and-REG-ECC-Memory-Performance-560/
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1007/11693383_7
https://doi.org/10.1007/978-3-540-74735-2_20
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1145/2694344.2694380
https://doi.org/10.2197/ipsjjip.28.473
https://doi.org/10.2197/ipsjjip.28.473
https://doi.org/10.1109/THS.2010.5655081
https://doi.org/10.1145/2897845.2897924
https://doi.org/10.1145/3079856.3080232
https://www.computeexpresslink.org/resource-library
https://www.computeexpresslink.org/resource-library
https://doi.org/10.1145/605397.605403
https://doi.org/10.1145/3195970.3196102
https://doi.org/10.1109/TC.2019.2957355
https://doi.org/10.1007/3-540-46035-7_7
https://doi.org/10.1007/3-540-46035-7_7
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.46586/tosc.v2023.i3.25-73
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.46586/tches.v2021.i4.510-545
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/978-3-662-49890-3_11
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://csrc.nist.gov/publications/detail/fips/202/final
https://csrc.nist.gov/publications/detail/fips/202/final
https://doi.org/10.1109/MSP.2016.124
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1145/1815961.1816015
http://ieeexplore.ieee.org/servlet/opac?punumber=4493431

	Introduction
	Summary
	Background
	Definitions
	Adversaries
	Protection Levels
	L0: Access control
	L1: Memory encryption
	L2: Encryption and integrity verification
	L3: Encryption, integrity, and replay protection

	Memory integrity structures
	Memory overhead comparison
	Additional structures

	Cryptographic parameters
	On the design space

	Benchmarking plan, results, and discussion
	Benchmarking environment and methodology
	Selection of the benchmarking sets
	Simulation of system load
	Baseline performance
	Initialization of short minor counters

	Set 1: state-of-the-art
	Set 2: Impact of MPE cache sizes
	Set 3: Impact of the cache line length
	Set 4: Asynchronous MAC verification
	Set 5: Use of on-chip memory for L2 and L3
	Set 6: Impact of repurposing ECC Bits, 3-way split counters, and large counter caches
	Set 7: Impact of incremental MACs
	Set 8: Breakdown of selected configurations
	Set 9: Impact of RMW operations
	Remarks on area and power

	Conclusions
	Appendix
	Additional Results
	Cryptographic Primitives
	Memory encryption primitives
	Authentication primitives
	Modes of operation


	References

