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Abstract. Confidential Computing is the protection of data in use from access or
modification by any unauthorized agent, including privileged software. For example,
in Intel SGX and TDX, AMD SEV, and Arm CCA this protection is implemented via
access control policies. Some of these architectures also include memory protection
schemes relying on cryptography, to protect against physical attacks.
We review and classify such schemes, from academia and industry, according to
the offered protection levels. The protection levels in turn depend on models of
adversaries with varying capabilities, budget, and strategy.
The building blocks of all memory protection schemes are encryption and integrity
primitives, and anti-replay structures. We review these building blocks, consider
their possible combinations, and evaluate the performance impact of the resulting
schemes.
We present a framework for the performance evaluation in a simulated system. To
understand the best and worst case overhead, systems with varying load levels are
considered.
We propose new solutions to further reduce the performance and memory overheads
of such technologies. We show that advanced counter compression techniques make it
viable to store counters used for replay protection in a physically protected memory.
By repurposing some ECC bits to store integrity tags, we achieve hitherto unattained
performance while providing confidentiality, integrity, and replay protection.
Keywords: Security and privacy · Hardware-based security protocols · Memory
Encryption · Memory Integrity · Lightweight ciphers · Integrity Trees

1 Introduction
Cloud computing promises to increase efficiency and drive down cost for users. Such
services co-locate multiple mutually untrusted tenants in the same data center and some-
times even on the same physical machines. Compared to traditional on-premises solutions,
users of cloud computing face two additional threats. First, hostile tenants may try to
exploit bugs in the hypervisor or access control mechanisms to impact the confidentiality,
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integrity, or availability of co-located virtual machines. Second, compromised insiders at
the service provider or its contractors may try to gain access to customer data.

Similar threats exist in client devices, such as phones, which have evolved into smart
terminals and identity providers. Like in a data center, adversaries may use co-located
untrusted code or even have physical access to the device. Use cases such as secure
payments, secure identification, and software anti-piracy rely on strong confidentiality and
integrity guarantees. These are often provided in separate components, e.g., SIM cards,
USB tokens, or Trusted Platform Modules (TPMs). Consolidating their functionality onto
the main System-on-a-Chip (SoC) enables new use cases while reducing total costs — but
also enables opportunities for the aforementioned adversaries.

AMD SEV [KPW16], Arm CCA [MPS+21], Intel’s Client SGX [Gue16a] and Scalable
SGX [JMSS20], and Intel TDX [Int21] move towards this goal by providing access control
mechanisms. The latter are managed by a HW-supported Trusted Computing Base (TCB).
Some of these technologies even include protection against adversaries with physical access
to the system. For instance, Intel’s Client SGX implements a Memory Encryption Engine
(MEE) [Gue16a] that provides confidentiality, as well as integrity and protection against
replay attacks. Such strong security guarantees can be very costly in terms of performance
and storage. For this reason, AMD SEV, Intel TDX, and Scalable SGX (the latter two
sharing the same memory protection scheme) provide weaker guarantees in exchange for
better performance.

The question that we answer in this study is: What cryptographic tech-
nologies are available to protect the contents of data-in-use in RAM against
an adversary with physical access to the system, and what are their memory
overheads and performance costs?

The starting point is a thorough review of the techniques documented in the scientific
and technical literature. Even though we cite several architectures for implementing com-
plete Trusted Execution Environments (TEEs), the scope of this paper does not address
aspects such as Operating System (OS) and Hypervisor support, I/O, virtualization, attes-
tation and IPC mechanisms. We focus on solutions for cryptographic memory protection
that are entirely implemented within the SoC package limits.

In real-world applications, understanding the cost of a solution is crucial. Area and
power constraints limit the viable options, but relaxing them can be justified by strong
market requirements. On the other hand, solutions with high performance penalties and
memory overheads risk being rejected without further consideration of their merits. For
this reason, we compare the costs of several schemes and variations thereof, where we focus
mainly on performance penalty and memory overheads. We also propose new methods to
further reduce these costs.

Our performance evaluation uses the entire industry-standard SPEC 2017 [BLvK18]
benchmark suite running on the gem5 simulator [BBB+11,LAA+20].

This work also fills a gap in the literature, as there are only very few papers surveying
the subject. The 2009 paper [ECG+09] is a survey of memory integrity schemes, intended
as full integrity, i.e., including replay protection. The 2013 paper [HT13] contains a thor-
ough survey of memory encryption techniques until its publication, but its performance
data is taken from the surveyed papers, which more often than not cannot be properly
compared to each other. Its abstract states “To date, little practical experimentation has
been conducted, and the improvements in security and associated performance degradation
has yet to be quantified.” Ten years later, this sentence still holds true. The more recent
papers [Shw15, MZLS18, SNR+18a, TSB18, TBC+20, SNOT21, SA21, IMO+22] compare
only very few schemes to each other.

Outline of the paper. We start with a summary of the contributions in Section 2. Fol-
lowing this, Section 3 contains background material, such as: the models of the adver-
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Figure 1: Simplified system level view of a SoC with Memory Protection Engine(s).

saries and a discussion of the memory protection levels. Section 4 contains a review of
the cryptographic primitives and memory integrity structures; as well as a discussion of
cryptographic parameters such as key and MAC lengths. Section 5 describes the actual
benchmarks and discusses how these support the claims in Section 2. In Section 6 we
conclude.

2 Summary of the Results
Cryptographic memory protection relies on:

(i) Encryption,

(ii) Authentication, and

(iii) Replay protection structures.

In the third group we also include the protection of a relatively small amount of
RAM, such as placing it on-chip, or in a tamper-proof or -evident device with a secured
communication channel to the SoC. We exclude applying this approach to the entire
RAM, because cost and thermal considerations would make it impractical for general use.

There are only a few meaningful combinations of these technologies. They are added
sequentially to access control, forming four increasingly robust Protection Levels:

L0: Access Control only;

L1: L0 + Memory encryption;

L2: L1 + Memory integrity; and

L3: L2 + Protection against replay attacks.

While one can imagine use cases for various degrees of integrity protection only without
encryption, we are not aware of any such scheme.

We implement Protection Levels L1 to L3 in the Memory Protection Engine (MPE),
an IP block sometimes known as Memory Encryption Engine (MEE), e.g., in SGX. As
depicted in Fig. 1, in a typical SoC the MPE sits between the main interconnect (or a
system cache) and a memory controller. It can optionally have its own caches, and even
access to a physically secure private DRAM to store metadata.



4 SoK: Cryptographic Protection of Random Access Memory

T
able

1:
Selected

docum
ented

T
E

E
s

and
cryptographic

m
em

ory
protection

schem
es.

System
Y

ear
Level

A
C

E
ncryption

A
uthentication

Structure
R

eferences

H
alland

Jutla’s
PA

T
2002

L3
N

U
nspecified

U
nspecified

C
ounter

Tree
[H

J08]
A

E
G

IS
2003

L3
N

AES-C
B

C
Increm

entalhash
M

erkle
Tree

(M
T

)
[SC

G
+03a,G

SC
+03]

A
E

G
IS

(alt.design)
2003

L3
N

“O
T

P
”

M
D

5/SH
A

-1
Log

H
ashes

[SC
G

+03b]
Y

an
et

al.
2006

L3
N

AES-G
C

M
G

M
A

C
Split

C
ounter

Tree
[Y

E
P

+06]
SecureM

e
2007

L3
N

AES-C
T

R
SH

A
-1/H

M
A

C
B

onsaiM
T

[R
C

P
S07]

B
astion

2010
L3

Y
AES-E

C
B

AES-C
M

A
C

M
T

[C
L10]

IV
E

C
2010

L3
N

/A
AES-G

C
M

G
M

A
C

Split
C

ounter
Tree,M

A
C

s
in

E
C

C
bits

[H
S10]

SecureB
lue+

+
2011

L3
N

U
nspecified

U
nspecified

“Integrity
tree”

[W
B

11]
H

-SV
M

2011
L0

Y
N

one
N

one
M

anaged
page

tables
[JA

C
H

11]
H

yperw
all

2011
L0

Y
N

one
N

one
V

erified
page

tables
[SL12]

B
loom

Filters
2012

L3
N

/A
N

/A
B

loom
Filter

H
ash

Tree
[N

H
SQ

12]
Intel’s

C
lient

SG
X

1/SG
X

2
2013

L3
Y

AES-C
T

R
E

ncrypted
U

H
F

C
ounter

Tree
[M

A
B

+13]
Iso-X

2014
L0

Y
O

ptional
O

ptional
O

ptional
[E

E
O

+14]
PodA

rch
2015

L3
Y

AES-G
C

M
G

M
A

C
O

n-dem
and

secure
encryption

[Shw
15]

A
M

D
-SE

V
-SN

P
2016

L1
Y

AES-X
E

X
N

one
N

one
[ A

M
D

20b,K
P

W
16,A

M
D

20a]
SY

N
E

R
G

Y
2018

L3
N

/A
AES-G

C
M

G
M

A
C

B
onsaiM

T
,M

A
C

s
in

E
C

C
bits

[SN
R

+18b]
VA

U
LT

2018
L3

N
/A

U
nspecified

U
nspecified

V
ariable-arity

tree,w
ith

encrypted
leaves

w
ithout

M
A

C
s

[T
SB

18]

T
IM

B
E

R
-V

2019
L0

Y
N

one
N

one
N

one
[W

W
B

+19]
A

pple’s
Secure

E
nclave

2020
L3

Y
AES-X

E
X

AES-based
C

M
A

C
B

onsai“Integrity
tree”

[A
pp20]

IntelT
D

X
,Scalable

SG
X

2020
L2

Y
AES-X

E
X

R
educed

SH
A

-3
M

A
C

s
in

E
C

C
bits

[Int21,JM
SS20]

K
eystone

2020
L1–L3

Y
AES-128,in

an
unspecified

m
ode

U
nspecified

Secure
paging

ofon-chip
m

em
ory

to
externalR

A
M

[LK
S

+20]

A
rm

C
C

A
2021

L0
Y

O
ptional

O
ptional

O
ptional

[M
P

S
+21]

P
E

N
G

LA
I

2021
L3

Y
U

nspecified
U

nspecified
D

ynam
ically

allocated
M

T
[FLD

+21]
C

uckoO
nsai

2021
L3

N
/A

AES-C
T

R
C

uckoo
Filter

H
ash

Tree
[SA

21]
E

LM
2022

L3
Y

Flat-Θ
C

B
(O

C
B

)
Flat-Θ

C
B

and
P

X
O

R
-M

A
C

C
ounter

Tree
[IM

O
+22]

C
SI:R

ow
H

am
m

er
2023

—
N

/A
O

ptional
P

M
A

C
M

A
C

s
in

E
C

C
bits

[JLK
+23]



Avanzi, Sandberg, Mihalcea, Schall and Montaner 5

As a starting point for choosing the components used to implement each Protection
Level, we first review the state-of-the-art. Table 1 outlines cryptographic memory pro-
tection in various Trusted Execution Environments (TEEs). While the TEE list is not
exhaustive (a more complete list is given in [SMS+22]), the list of primitives and structures
is comprehensive, except for some deprecated methods. (These technologies are detailed
in Section 4.2 and Section 4.1.)

We obtain the following groups of alternatives:

1. The AES vs. a lightweight cipher suitable for memory encryption. We use QARMA-128,
cf. Section 4.1.1. QARMA [Ava17] is a Tweakable Block Cipher (TBC): Beside the
secret key and a text, a TBC accepts a third input known as a tweak, which is used
together with the key to select the permutation computed by the cipher. Unlike
the key, the tweak may be controlled by an adversary. TBCs simplify the design of
modes of operation, with an early application to memory encryption [HT13].

2. Direct encryption, where a plaintext block is input to the cipher to compute the
corresponding ciphertext, vs. CounTeR mode (CTR) encryption, where the encryp-
tion of successive counter values results in a keystream which is then XOR-ed to the
plaintext to obtain the ciphertext (cf. Section 4.1.3 for more details).

3. Various Message Authentication Code (MAC) algorithms for memory integrity, such
as Carter-Wegman Universal Hash Functions (UHFs) [CW79] (for instance, en-
crypted linear functions of the message), encrypted checksums of the plaintext, or
Parallel MAC (PMAC) [Rog04] (see Section 4.1.2 for a discussion of the options).

4. The choice of 32 b vs. 64 b MACs for the integrity tags.

5. Different the sizes of the caches used by the MPE, as well as on-chip memory to
store MACs or counters.

6. Optionally repurposing some ECC bits to store MACs.

7. Different sizes of the memory regions protected by one MAC. This is obtained both
varying the CL size and letting a single MACs cover multiple CLs.

8. Synchronous vs. asynchronous integrity verification.

9. Integrity counter trees with increasing arity. Their nodes, which in this paper always
fit in one CL, contain from 8 to 256 highly compressed counters, one for each child.
To achieve this, the operations on the tree guarantee that the most significant bits
(for instance 56 bits) of all counters in a node are equal. This common part is stored
once in the node, the least significant bits of each counter are stored individually.
(See Section 4.2 for more details.) In this paper for the first time we show the
advantages of counters split into three parts.

We simulate various combinations of the above alternatives in the gem5 simulator, and
run the benchmark suite in these simulated systems with different loads on the memory
subsystem. To our knowledge, this is the first evaluation of this type. We also randomize
the internal state of the system structures to simulate the more realistic performance
characteristics of a not-freshly booted system.

The main two results are the following ones:

R1 Nearly-transparent strong memory protection is possible with current technology,
for client and server systems and in most conditions (cf. Section 5.3 for L1 and L2,
and Sections 5.8 and 5.11 for L3. See also Section 6).
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R2 The organization of data structures has the largest influence on system performance.
Lightweight ciphers clearly outperform the AES in area and power (cf. Section 5.12),
but their impact on performance is major only in L1 and L2 schemes (cf. Sections 5.3,
5.7 and 5.8).

More detailed results and observations follow:

R3 The performance of encryption methods that are based on direct encryption methods,
such as L1 and L2 schemes, is very sensitive to the latency of the cipher. Moving from
the AES to QARMA brings a significant reduction in performance loss. (Cf. Section 5.3.)

R4 Regarding the previous claim, the performance penalty depends much more on the
additional decryption latency on memory reads than on the additional latency in-
duced by encryption on memory writes (cf. Section 5.10).

R5 Using 32 b MACs in place of 64 b ones halves MAC memory requirements, which
is significant. However, MAC memory accesses have poor spatial locality, and the
impact on performance is marginal (cf. Section 5.3).

R6 Small MAC caches have a minor effect on performance. In general, MAC caches
are not major performance factors. Counter caches are more effective than the hash
caches. The relative improvements due to caching increase with the load of the
system. (Cf. Section 5.4.)

R7 Similarly, using longer CLs (i.e., 128 B instead of 64 B) does not necessarily improve
overall performance significantly. However, it halves the memory used by the MACs
and enables more aggressive metadata packing in the counter trees. (Cf. Section 5.5.)

R8 While asynchronous integrity verification improves performance, it is security risk
as the system may speculate on potentially corrupted data (cf. Section 5.6).

R9 If we store MACs in repurposed ECC bits (short: MirE) the performance of L2 and
L3 schemes has a major improvement — the same applies if the MACs are stored
in an internal memory (cf. Section 5.8).

R10 Incremental MACs, each covering multiple CLs, have a detrimental effect on per-
formance. The optimization of compressing the plaintext to store MACs, whenever
possible, together with the payload [TSB18], which serves to reduce the number of
memory accesses, cannot be used: Compressibility is a side-channel revealing proper-
ties of the data, defeating the purpose of confidentiality protection [Kel02,SBS+21].
(Cf. Section 5.9.)

R11 Increasingly higher arity counter trees offer major and progressive reduction in both
memory overhead and performance penalties, despite the complexity of their struc-
ture and implementation. (See Table 2 for the memory overheads.) However, as the
arity of such integrity trees increases, with the counter group size staying constant,
the system must re-encrypt memory or regenerate integrity nodes increasingly often.
The use of 3-way split counters substantially reduces the cost of these Read-Modify-
Writes (RMWs) operations. (Cf. Sections 5.3, 5.8 and 5.11.)

R12 The most striking finding is that the smaller trees, in fact just their leaf level, are
compact enough to be stored in a physically secure, on-chip of in-package memory,
that is relatively small with respect to the total RAM, i.e., 1:128 or 1:256. This
enables L3 schemes with very low performance penalties. Combined with MirE, they
lead to a performance hit of just 3.32% even under extreme bus contention. (Cf.
Sections 5.7, 5.8, 5.10 and 5.11.)
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3 Background
3.1 Definitions
Following the Arm terminology [MPS+21], a Realm is a process domain that is isolated
from other process domains through policies enforced by a small TCB. This term encom-
passes both small Enclaves as well as larger Virtual Machines.

The SW-accessible volatile, external memory, connected to a memory controller, is
seen as an array of blocks. These blocks match the Last Level Cache’s Cache Line (CL)
size and are thus also called CLs.

An encryption or authentication function is said to provide spatial uniqueness if, when
computed on equal inputs, but written to different locations, it results in different outputs.
This is achieved by including the Physical Address (PA) of the encrypted or authenticated
CL in the computation.

An encryption or authentication function provides temporal uniqueness (freshness)
when repeated writes of the same plaintext to the same location result in different outputs.
This is achieved by including a counter in its computation.

In what follows a mode (of operation) is a general purpose encryption mode of op-
eration. A Memory Encryption (ME) mode is understood to be an encryption mode of
operation with plaintext and ciphertext having the size as a CL, and no associated data.

An on-chip component is defined as a physically secure block in the same package as
the processing elements. In this case the package shall be tamper-averting, i.e., a package
that is either tamper-proof/resistant, or tamper-evident/detecting.

3.2 Adversaries
To adequately answer the question posed in the Introduction, we categorize technologies
based on the adversaries they defend against. The adversaries are distinguished according
to their access to the target, and their resourcefulness. Before doing this, however, we
must make a few critical remarks. Cryptographic memory protection cannot address most
side channels, including those that exploit physical effects: These are thus out of scope.
The exclusion applies to the access-pattern side channel as well: Adversaries can reverse
engineer software properties or elicit secrets from access patterns. The only generic and
provably effective mitigation would be Oblivious RAMs (ORAM) [Gol87], which carry
prohibitive performance penalties. The same applies to SW exploitation, timing attacks
and micro-architectural side-channels. For all these threats, mitigations should be applied
to SW as needed.

User-space services can always deny resources to Realms, including scheduled time,
hence Denial-of-Service attacks must be accepted.

We can now define the following Adversaries:

• ASW can run SW on the target, and provide inputs to it, including through external
interfaces.

• AHW
passive has physical access to the system that contains the target, including its

internals, but does not have the capabilities to access on-chip communication in-
terfaces. They can interpose chips and modules for the sole purpose of monitoring
transactions.

• AHW
active, also performs active attacks, e.g., blocking, corrupting, replaying or injecting

transactions on the memory bus [KLR+20] or other interfaces.

• AHW
invasive can mount highly invasive attacks at the chip or package level. Examples

range from micro-probing attacks [Sko17] to actual chip reverse engineering and
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editing using a Focused Ion Beam Microscope [TJ09]. AHW
invasive is out of scope in

this paper as the proper defenses require HW countermeasures.

SW and HW-capable adversaries are independent. The HW adversaries form a hierarchy
AHW

passive ⊊ AHW
active ⊊ AHW

invasive.

3.3 Protection Levels
We provide detailed definitions of the Protection Levels. Table 1 shows how some docu-
mented solutions map to them. The technologies used to implement each level are listed.
They are taken from options described in Section 2, Table 1. For more details about these
technologies, cf. Section 4.1.

3.3.1 L0: Access control

Access control policies to implement reverse sanbdboxing are the first line of defense against
ASW. However, RowHammer attacks (and micro-architectural side channels) have signif-
icantly increased the power of ASW, enabling them to bypass reverse sandboxing.

Physically separating memory rows of different process domains through access control
and precise memory allocation policies could theoretically prevent RowHammer attacks.
However, this approach requires complex system software changes and is impractical in
real-world scenarios.

We do not discuss the implementation of L0.
From here on, we assume that appropriate access control policies are in place to stop

unauthorized agents within the SoC, but not to prevent RowHammer attacks.

3.3.2 L1: Memory encryption

This level provides spatial uniqueness, but not temporal uniqueness.
Interest in L1 is driven by confidentiality requirements and to make attacks that depend

on memory corruption (for instance RowHammer) more difficult. For this reason, L1 must
use direct encryption with a cipher that enjoys a strong diffusion property, i.e., any input
change induces a flip of each output bit with likelihood 1/2.

In general, protection against ASW is very limited, as is against AHW
passive since the latter

can detect ciphertext repeats. Also, note that attacks on the integrity of a system may still
cause SW to reveal its contents, therefore this scheme alone does guarantee confidentiality.
Only full replay protection (L3) thwarts the particular attack just mentioned. Warm-boot
and cold-boot attacks [HSH+09] are properly mitigated. Note that the same arguments
apply also to L2.

A common requirement for L1 (and L2) system is the cryptographic separation of
Realms, which serves to thwart combined SW/HW attacks based on the replay of memory
from a target Realm into an adversary-controlled one. This can be achieved by per-Realm
unique encryption differentiators. (Replay attacks into the same Realm, to reset it to a
previously known state, require L3 protection.) The differentiators can be encryption
keys or, if a single global encryption key is used, bit-strings to be used in a designated
bit-field of the tweaks. Differentiators must be discarded upon Realm termination. They
should not repeat. If they are tweak contributions, they can be implemented by, say, a
TCB-managed 64-bit counter.

Address scrambling (a very lightweight encryption mechanism of the PA to permute
the memory layout) may also be somewhat effective against RowHammer. It is deployed
in some devices like smart cards for the purpose of mitigating side channel attacks. Note
that since these schemes are usually static per boot session, address reuse can be detected:
this is often all an adversary needs to mount an attack. Hence, it should be considered
only as an additional defense-in-depth measure and not as a complete mitigation per se.
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3.3.2.1 Implementation aspects. With the AES, a CL is encrypted in XOR, Encrypt,
and XOR (XEX) mode [Rog04], as in AMD SEV, TDX, and Apple’s Secure Enclave.

The chosen low-latency block cipher for memory encryption is QARMA-128 (as explained
in Section 4.1.1). QARMA-128 is used in a Tweaked Electronic Codebook (ECB) mode as in
Fig. 2a. In both cases the tweak is the address.

3.3.3 L2: Encryption and integrity verification

This level extends L1 with integrity tags, to detect memory corruption. It does not provide
any temporal uniqueness, hence it must rely on a direct encryption method. An integrity
tag is usually a MAC. Adversaries can still mount replay attacks.

L2 targets AHW
passive. It is also partly effective against AHW

active, if they only corrupt
individual memory locations or have a limited time budget. To defeat targeted replay
of the memory together with the integrity tags, more countermeasures are required (see
Level L3 below).

This distinction within AHW
active, though seemingly arbitrary, is necessary due to varying

complexities and costs not only of the attacks but also of the countermeasures. System
designers can assess threats and make business decisions about accepting specific risks.
Similarly, active Adversaries might opt for keeping their attacks passive at least initially,
to avoid detection and to collect data for cryptanalysis.

3.3.3.1 MirE: MACs in repurposed ECC bits If ECC memory is available, storing the
MACs in (part of) the ECC bits eliminates the need to reserve normal memory for the
MACs, and significantly reduces memory traffic. Note that MACs are still accessible to a
HW capable adversary.

The Intel TDX MKTMEi is such a solution. We found no documentation on error
correction in a TDX system, but the 28 b MAC field size suggests that a Single-Error Cor-
rection and Double-Error Detection (SECDED) (255, 247) Hamming code is used. This
code is truncated to (143, 135) to cover 128 bits and 7 bits of the MAC each. The re-
maining 4 bits of the effective 576 bits in each CL are used for parity. This very same
configuration is proposed in [YA18].

MirE raises the question of the performance impact of using ECC memory. Reported
penalties are smaller than 0.5% [Bac14]. On servers, ECC bits, if not repurposed, are
used for error detection, hence memory access times are not affected. In other cases,
ECC memory impact is negligible compared to the baseline, so we do not evaluate it as a
separate configuration.

3.3.3.2 Implementation aspects. The same encryption techniques are used as for L1.
For Intel TDX the MAC is computed using truncated SHA-3, with the latency assumed
to be comparable to AES-128. In any other MirE scheme, following [JLK+23], the tag is
computed using QARMA5-64-σ0. Note that not all the ECC bits need to be repurposed for
a MAC: these bits may contain both a shorter ECC and a MAC. If the MACs are not
stored in repurposed ECC bits, hashing is done by a multilinear UHF [CW79] at 32 or 64
bits. Note that these MACs are actually kept as unencrypted hashes while on-chip, which
speeds up verification, and we encrypt them block-wise when they are evicted from the
hash cache groups. For instance, four 32 b hashes are encrypted as a single 128 b block.
This enhances system robustness and security against corruption and replay attacks. In
schemes with freshness (i.e., L3), the freshness data of the hashes that are encrypted
together must be joined to form the common tweak for the hash block encryption.
Remark 1. Beside SECDED codes, there are several memory-specific Reliability, Avail-
ability and Serviceability (RAS) features, with varying levels of redundancy, starting with
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Chipkill [IBM99]. These are capable of handling also multiple errors. MirE can be easily
implemented in these systems using suitable codes.

3.3.4 L3: Encryption, integrity, and replay protection

With respect to L2, this level fully mitigates also against AHW
active, by providing replay

protection: In order to replay a CL together with its counter and MACs the adversary
either must successfully perform cryptanalysis or wait for a counter repeat. Note that in
some variants, the counters themselves may be hidden to the adversary. More information
about these data structures is found in Section 4.2.

In a L3 system, a single system-wide key is sufficient for authentication, since nodes
closer to the root need to cover memory across Realms In any case, this is not a security
issue. Encryption differentiators are also not required, but they may be a hard customer
requirement. Computing integrity tags on the ciphertext ensures that orphaned memory
can still be verified, which is essential for secure erasure.

3.3.4.1 Implementation aspects. The same freshness information is included in the
encryption and in the tag computation. A CounTeR mode (CTR) encryption mode is
used with both AES (following AEGIS, the method by Yan et al., and SGX) and QARMA,
except with Encryption for Large Memory (ELM), which uses Flat-ΘCB. The anti-replay
technologies are described in the next subsection.

4 Review of the Building Blocks
4.1 Cryptographic Primitives
4.1.1 Memory encryption primitives

RAM is commonly encrypted using a block cipher: the long initial latency of stream
ciphers makes them unsuitable for the purpose.

For simplicity, we only consider block ciphers with a block size of 128 bits: smaller
block sizes are used only for smart cards and small embedded devices, and longer blocks
are uncommon. The selected block ciphers are the AES [DR02] and QARMA [Ava17], where
the second is chosen as a representative of lightweight ciphers. The latencies of most
suitable lightweight ciphers are similar (e.g., PRINCE [BCG+12]) or worse (for instance
SKINNY [BJK+16]). To estimate performance penalties for these ciphers, readers can inter-
polate between our AES and QARMA results. A revised version of QARMA, QARMAv2 [ABD+23],
has been introduced. Its latency is nearly equal to QARMA’s, so we do not consider it as a
separate configuration option.

Beside the AES, we do not consider other non twekable block ciphers. The reason is
that as they would require constructions that lead to increased latency anyway. We also do
not consider ciphers with block sizes that make them less suitable for memory encryption:
For instance SPEEDY [LMMR21] has a block size of 192 bits, and ASCON [DEMS21] in a
tweaked mode such as Masked Even-Mansour (MEM) [GJMN16] has a block size of 320
bits. (For completeness’ sake, given a public permutation π : Fn

2 → Fn
2 , we describe an

example of a MEM construction: Given a key K, a tweak T , and a plaintext P , all n bits
long, the ciphertext C is computed as C = M ⊕ π(P ⊕ M), where M = K ⊕ π(T ⊕ K).)

4.1.2 Authentication primitives

Standard hash functions such as SHA-2 [NIS12] or SHA-3 [NIS15] can be turned into MACs,
but the resulting schemes are very slow and not parallelizable.
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(d) PMAC for authentication computed with a TBC
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Figure 2: Encryption and authentication methods designed around a Tweakable Block Cipher
(TBC).They show how freshness can lead to shorter critical paths. Notation: E is a TBC, the two
inputs on the left side of the block being the key (above) and the tweak; P = P0∥ · · · ∥Pr−1, resp.
C = C0∥ · · · ∥Cr−1 is the partition of a plaintext, resp. ciphertext in blocks of equal size; αi is the
Physical Address (PA) of the i-th block; and ν a nonce. If freshness is available, both encryption and
authentication algorithms use it, and they share the same nonce. The TBC used for authentication may
have a smaller block size than the encryption TBC, in which case r ̸= r′.

Carter-Wegman Hashes [CW79], i.e., encrypted UHFs, are a better choice. UHFs ad-
mit fully parallelizable constructions, such as multilinear functions of the input computed
over a binary Galois field, as used in SGX [Gue16b]. If there is a MAC cache, it is actually
the not-yet-encrypted UHF values that are cached, which are thus verified more efficiently.

Apple’s Secure Enclave [App20] uses a Cipher-based MAC (CMAC) [IK03] to compute
integrity tags. CMAC, being a block-wise chained construction, can not be made parallel
and has a high latency, but Apple’s use case does not need very high throughput. It is
however unsuitable for general usage requiring high bandwidth and low latency. Instead,
we evaluate TBC-based PMACs [Rog04]. PMACs are more expensive than encrypted
UHFs, but they can be used for error detection and correction beside integrity, cf. [HS10,
SNR+18b, JLK+23]. The computation of PMACs is depicted in Figs. 2c and 2d. Such
constructions can easily be made incremental where, upon a write, only the part of the
message that has changed needs to be recomputed. A variant for non-TBCs, called PXOR-
MAC is described in [IMO+22].

Encrypted checksums of the plaintext as in Rogaway’s Offset Codebook mode (OCB)
mode [Rog04] are an inexpensive method to compute integrity tags, but they suffer from
two drawbacks. First, they need to be verified after decryption, potentially worsening
overall latency. Second, since they require freshness, a CTR encryption should be used
which has lower latency than direct encryption. With CTR encryption, using checksums
of the plaintext as the basis for integrity would make the ciphertext malleable, whence a
UHF-based MACs should be used instead.

4.1.3 Modes of operation

For memory encryption, many (authenticated encryption) modes of operation can be
simplified somewhat because the length of the payload is a fixed multiple of the underlying
cipher’s block length.

Some older schemes, such as Bastion [CL10], use the block cipher in Electronic Code-
book (ECB) mode, but the lack of spatial uniqueness keeps plaintext patterns in the
ciphertext, therefore modes that provide spatial uniqueness are necessary.



12 SoK: Cryptographic Protection of Random Access Memory

Top Hash

H

Hash 0

H

Hash
0-0

H

Mem
Block

0-0

Hash
0-1

H

Mem
Block

0-1

Hash
0-2

H

Mem
Block

0-2

Hash
0-3

H

Mem
Block

0-3

Hash 1

H

Hash
1-0

H

Mem
Block

1-0

Hash
1-1

H

Mem
Block

1-1

Hash
1-2

H

Mem
Block

1-2

Hash
1-3

H

Mem
Block

1-3

Hash 2

H

Hash
2-0

H

Mem
Block

2-0

Hash
2-1

H

Mem
Block

2-1

Hash
2-2

H

Mem
Block

2-2

Hash
2-3

H

Mem
Block

2-3

Hash 3

H

Hash
3-0

H

Mem
Block

3-0

Hash
3-1

H

Mem
Block

3-1

Hash
3-2

H

Mem
Block

3-2

Hash
3-3

H

Mem
Block

3-3

Figure 3: Merkle tree. H is a hash function.

For direct encryption, spatial uniqueness is achieved by using the PA as the tweak.
With a non twekable block ciphers, the latter is used in the XOR, Encrypt, and XOR
(XEX) construction [Rog04], which is just the XTS mode of operation [IEE19] for a
message whose length is a multiple of the block size. XEX is defined as Ci = EK(Pi ⊕
Mi) ⊕ Mi. In other words, a tweak-derived mask is added to the input and the output
of the cipher. The first mask M0 is derived by encrypting the tweak, and the successive
masks Mi for i ≥ 1 are obtained by multiplying the first mask by a fixed sequence of values.
Using a single finite field element γ we can put Mi = γ i · M0. Inoue et al. introduce a
Flat-ΘCB mode [IMO+22] which is similar to OCB [Rog04]. They define the L3 scheme
ELM using Flat-ΘCB mode for data and PXOR-MAC to authenticate counter groups.

With a TBC, the PA (concatenated with freshness if provided) of each block is used
directly as a tweak, cf. Fig. 2a, and a XEX construction is not needed.

In CTR encryption with a TBC, the counter and PA are used as tweak and text
respectively (cf. Fig. 2b) to generate the keystream. When not using a TBC, the counter
and PA are concatenated and then encrypted.

4.2 Memory integrity structures
A table of hashes or MACs protects against memory corruption, but it is not sufficient
against replay attacks, unless the table is itself protected. This can be achieved by storing
it in a tamper-averting memory or by covering it with a structure such as a Merkle Tree
(MT) [Mer80] (cf. Fig. 3). MT nodes can be cached [GSC+03] to speed up verification.

With freshness-based encryption, we can protect the memory by just protecting the
counters, for instance with a Bonsai Merkle Tree, i.e., a MT protecting the counter ta-
ble [RCPS07]. A different method in the counter tree (a refactoring of Hall and Jutla’s
Parallelisable Authentication Tree (PAT) [HJ05]) also used in SGX [Gue16a]. A node
of the counter tree is called a Counter Group (CG). A CG contains a counters, which
correspond to the a children of the node. The counters in a leaf, resp. non-leaf CG are
one-to-one with a CLs, resp. children CGs, A MAC is computed on every node and it is
either stored dedicated table, along with the MACs of the data CLs. or in the node’s CL
along with the counters. Since the latter approach has better performance, for simplicity
we consider only it. The MAC of a CG is computed on the a counters in the node and
the parent counter. Before a node is evicted, its parent counter is first incremented and
the node’s MAC is recomputed.

The split counters optimization [YEP+06] replaces a group of a counters with a group
consisting of a single major counter and a′ > a smaller, minor counters, associated with
that major counter (cf. Fig. 5). A logical counter in this scheme is defined as the con-
catenation of a minor counter and its associated major counter. Each node (a data CL
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or a CG) is associated with a logical counter. The increased arity (for instance, from
a = 8 to a′ = 64) reduces both storage overhead for counters and tree depth. When a
minor counter overflows, the common major counter is ticked to ensure that values do
not repeat. Since this changes the values of all the logical counters associated with that
major counter, all the sibling nodes need to be refreshed. For data CLs this means that
they are re-encrypted, and for both types of nodes the MACs need to be recomputed. All
minor counters in the group are reset to zero at this point to reduce the frequency of
minor counter overflows.

Despite these RMWs, split counter trees bring a major performance improvement over
monolithic counters. We introduce here 3-way split counters (with major, middle, and
minor counters) to both increase arity and reduce RMWs.

Instead of using full trees, two optimizations can be done.

LoC One option is storing the data cache line counters in an in-package tamper-averting
DRAM (an SRAM would be too large) which is MPE private (i.e., invisible to the
rest of the system and outside adversarial control). We call this solution LoC which
stands for Leaves-on-Chip. In fact, if we store the leaf nodes in a physically protected
memory, such as on-chip, then we do not need to compute any other nodes from the
original tree. LoC is sometimes mentioned in the literature only to be dismissed as
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Table 2: Memory Overhead of Various Types of Integrity Trees.
Legend: ℓH , ℓc, and ℓ′

c are the bit lengths of a hash or MAC; of a monolithic or major counter; and a
minor counter, respectively. a is a counter group’s arity, and n is the number of CLs a MAC covers.

CL Length

Type of Tree 64 B 128 B

Merkle Tree with a = 4, resp. 8 33.3% 16.7%

Monolithic Counter Tree with embedded MAC, ℓc = 56
• ℓH = 64; n = 1; a = 8, resp. 16 26.8% 12.9%
• ℓH = 32; n = 1; a = 8, resp. 16 20.5% 9.79%
• ℓH = 32; n = 2; a = 8, resp. 16 17.4% 8.23%
• ℓH = 32; n = 4; a = 8, resp. 16 15.8% 7.45%

Split Counter Tree with embedded MAC, ℓc = 64
• ℓH = 64; n = 1; ℓ′

c = 6, resp. 7 14.1% 7.04%
• ℓH = 32; n = 1; ℓ′

c = 6, resp. 7 7.84% 3.91%
• ℓH = 32; n = 2; ℓ′

c = 6, resp. 7 4.71% 2.34%
• ℓH = 32; n = 4; ℓ′

c = 6, resp. 7 3.15% 1.57%
• ℓH = 32; n = 1; ℓ′

c = 3 7.04% 3.52%
• ℓH = 32; n = 2; ℓ′

c = 3 3.91% 1.95%
• ℓH = 32; n = 4; ℓ′

c = 3 2.35% 1.17%

PAT with a = 8, resp. a = 16 28.6% 13.3%

TEC tree with a = 8, resp. a = 16 42.9% 20.0%

128-ary 3-way Split Counter Tree, ℓH = 32 — 3.91%
256-ary 3-way Split Counter Tree, ℓH = 32 — 3.52%

128-ary 3-way Split Counter Tree with MirE, ℓH = 32 — 0.78%
256-ary 3-way Split Counter Tree with MirE, ℓH = 32 — 0.39%

unviable because of the large overhead.

BoC A less expensive version of the LoC solution consists of keeping the leaf nodes in
external memory and store the level immediately above on chip. We call this tree
arrangement BoC for Branches-on-Chip. Similarly to LoC, the system needs no
further levels of the tree to ensure the integrity of the tree. This idea seems new.

4.2.1 Memory overhead comparison

In Table 2, we compare memory overheads of different integrity trees, including the new
very high arity trees introduced in this paper. Multi-CL MACs encrypt each CL individ-
ually with its own counter, whence the eviction of a CL from the last level cache does
not require re-encryption of adjacent CLs. The table also includes the Tamper-Evident
Counter (TEC) tree [ECL+07], which has high memory overhead and requires wide en-
cryption with substantial latency, making it impractical for deployment.

4.2.2 Excluded Methods

Log Hashes [SCG+03b] are an interesting option because they do not employ a tree struc-
ture and have a negligible memory overhead. Log Hashes maintain an incremental hash of
a Realm’s entire memory by adding the hashes of all cache lines in it. The hash of a cache
line is computed on the concatenation of the contents of the line, its address, and a secret
key. The Log Hash is updated with each memory write, by subtracting the contribution of
the old contents, and adding that of new contents. Verification of the memory occurs only
when the Realm interacts externally. Log Hashes are well-suited only for long-running
tasks with minimal I/O, where their performance impact can be negligible. They are
unsuitable for general applications and remain unimplemented in practice.
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We do not evaluate the Isolated Tree with Embedded Shared Parity (ITESP) [TBC+20]
separately. One of its configurations packs 32 counters in a 64 B cache line where the size
of minor counters is 4b, and the freed 128 bits are used to store two 64 b parity/integrity
fields, each covering 16 cache lines. We speculate that its performance for a single Realm
should be just slightly worse than a 64-ary 64 B split counter groups L3 scheme with
MirE, since no MAC table is kept. The closest benchmark that we perform is L3 with
128-ary 128 B split counter groups with 3b minors and MirE. The main benefits of ITESP
emerge when multiple Realms run concurrently, a configuration not supported by our
setup, because each Realm would have its own integrity tree and metadata cache.

The CuckoOnsai (sic) scheme in [SA21] is a quite interesting design. It exploits data
compression as [TSB18] to fit a 16-bit counter in a 512 b CL if the contents can fit in 496
bits. We assume that only those 496 bits are encrypted (AES in CTR mode is mentioned)
and then the resulting 512 bits are hashed into keys to be stored in an on-chip Cuckoo
Filter [FAKM14]. If the CL is not sufficiently compressible, then its counter is protected by
a Merkle Tree. Not enough details are provided in the paper to reconstruct the design and
in light of the small size of the in-chip Cuckoo Filter it is also not clear how much memory is
protected. Since the Cuckoo Filter parameters are missing, the false positive rate cannot
be evaluated. In any case, the fact that the counters are just 16 bits long makes the
particular design insecure besides the fact that it is also present a data compressibility side
channel. Similarly, [NHSQ12], based on Bloom Filters [Blo70], has incomplete description
and analysis of the security, while offering only a minor performance advantage with
respect to Bonsai MT — which are themselves inferior to proper Counter Trees (CTs).
Adding this design them would be inferior to [SA21] because for the same coverage and
false positive rate, Cuckoo Filters are more space efficient. We feel that this area of
research deserves more attention, but the current literature has not yet reached a sufficient
level of maturity and the schemes proposed so far fail basic security scrutiny. Therefore,
we do not evaluate these schemes in our study.

4.3 Cryptographic parameters and practices
To ensure long-term confidentiality, encryption keys should be at least 128 b long. Shorter
keys are not used in any currently deployed or recently proposed memory protection
scheme. Sometimes longer keys are an option, for instance 256 b keys for Intel’s TDX, but
we posit that this does not offer increased practical security and only increases latency:
indeed, a proper complexity analysis of quantum-computer-assisted key search against
AES-128 proves it is secure even against adversaries with access to a large-scale quantum
computer [JNRV20]. Deployed technologies such as Intel’s SGX and TDX, and AMD’s
SEV use the AES in modes that need two independent keys, or even AES-256. QARMA-128
and QARMAv2-128 allow the use of 256-bit keys as well.

Encryption block sizes must be at least 128 b, to reduce the likelihood of any attack
that exploits ciphertext collisions.

Authentication keys should be at least 128 b long as well.
Only the TCB and no SW environment may set any key, and SW will only manage

process identities.
We posit that a length of 32 b (or even 28 b) is sufficient for both data and counter

group MACs, to deter Adversaries that simply want to corrupt memory, for instance with
RowHammer attacks. This is, in fact, one of the main reasons to deploy a L2 scheme. The
TCB must destroy (i.e., internally invalidate and overwrite) the key or tweak associated
with the address where an integrity violation occurred — and possibly other internal
information. The target process will no longer be able to execute, and the information
in it will be lost to the adversaries. It is essential that the TCB responds so to integrity
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violations before giving back control to the operating system or the hypervisor. Otherwise,
to make just one example, an AHW

active adversary with the ability to run privileged SW would
be able to brute force a short MACs.

If the chosen authentication primitive produces a longer MAC than needed, the output
is simply truncated.

In L3 schemes, an Adversary may attempt to replace a CL together with its MAC. To
do this without triggering an integrity fault, they wait until the counter associated with
the target CL repeats. If the counters are sufficiently long, the attack cannot succeed. For
this reason, monolithic counters must be at least 64 b long (it can be argued that 56 bits
suffice). The minimal aggregated length of a major and a minor counter (or major plus
middle plus minor) shall also be 64 b. If an Adversary wants to replay a CL together with
its MAC and counter, they will similarly have to either guess the embedded MAC or wait
that the parent counter repeats.

For Merkle Trees the minimal hash length is 128 b, to ensure that attacks have a time
complexity of at least 264.

4.4 On the design space
In Fig. 1 an MPE is associated with a memory channel, benefitting from memory in-
terleaving and thus reducing bandwidth saturation risks. In the figure an MPE is also
represented as a separate block between system cache and memory controller, but this is
far from the only option: it can be implemented as part of the memory controller or a
wrapper around the system cache. A different MPE configuration involves a core-private
MPE, positioned upstream of the on-chip interconnect. In such a design, the MPE can be
a performance bottleneck, but it is suitable for secure cores, like SoC-embedded TPMs.

Pure SW solutions are possible: At boot, a part of a cache is address locked in order to
keep the TCB in it (and effectively reducing its size). All memory reads/writes to external
memory are then trapped to this code to augment them with encryption and integrity
support. Performance is clearly severely impacted, as in [CZG+15,MMS+20]. A different,
less secure, approach [Pet10, GMD+16] keeps most of the RAM encrypted except for a
few recently used pages, which are re-encrypted once they have been idle for some time.

Recall that we only consider solutions contained in the SoC package. This excludes
any form of “smart memory” [AN17] where the protection logic is split betweeb the Re-
quester and the Completer, such as the CXL.memory Integrity and Data Encryption (IDE)
scheme [CXL19]. Such arhcitectures require logic for attestation, secure link setup, and
encryption, involving cryptographic engines in every memory module if not every chip, so
it would be more expensive, hardware-wise, than an MPE-based solution. CXL is however
suitable for disaggregated memory configurations, covering transport between compute
and memory nodes.

The breadth of the subject and constant developments (cf. Table 1) imply that the full
design space is likely not knowable. The present work represents just a snapshot.

5 Benchmarking plan, results, and discussion
5.1 Benchmarking environment and methodology
It would be impractical to implement several thousands of combinations of technologies in
silicon for the purpose of evaluating them. A solution to this problem lies in prototyping,
i.e., the creation of an approximate implementation of the desired features, which can
thus be tested and benchmarked. Very accurate models can be created even without
implementing all details. For instance, the latencies of cryptographic primitives can be
derived from actual implementations and inserted as delays into the simulation.
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The prototypes used in this paper are built in the gem5 simulator [BBB+11,LAA+20].
gem5 allows engineers to build SW versions of HW components typically included in
computer systems. It abstracts the interfaces between components, which can be combined
flexibly. It provides approximate timing models for many processor cores.

The modeled CPU core is an Arm Cortex A72 with a 2 GHz frequency and a 1 GHz
system frequency. The cache hierarchy includes L1-I (48 KiB, LRU replacement policy,
3-way set associative, 1 cycle latency) and L1-D (32 KiB, LRU replacement policy, 2-way,
1 cycle latency) caches, and a unified L2 cache (1MiB, tree-PLRU replacement policy,
16-way, 5 cycles latency). The memory is 16 GiB DRAM in a dual-rank DDR4 DIMMs.
The MPE-private caches are 4-way set associative with an LRU replacement policy.

The simulated SoC is implemented in a 7 nm process. We take the latencies of some
components from [Ava17], for instance 15.76 ns for a pipelined implementation of AES-128,
4.8 ns for QARMA11-128-σ1 and 2.2 ns for QARMA5-64-σ0. Note that implementation, process,
libraries all affect the crypto block’s latency, but system and CPU clocks do not. We
assume we reuse the IP blocks from [Ava17] with their own clocks, thus with the exact
same performance characteristics. This is a reasonable assumption since this is how hard
macros are used in practice. The above latency of QARMA5-64-σ0 is also used in [JLK+23],
and essentially for the same purpose as ours.

Lastly, all MPE algorithms are thoroughly parallelized to their maximum extent for
all considered schemes.

Our evaluation uses the SPEC 2017 [BLvK18] benchmark suite. Detailed software
models such as gem5 increase execution time by several orders of magnitude: a typical
SPEC benchmark can take around a month to run [San14]. To facilitate rapid prototyping,
we use the SimPoint [SPHC02] methodology, which is well understood in academia and
industry. It uses clustering to find representative regions that serve as a proxy for the
whole application. The results are finally combined using weighted averages, that reflect
the regions’ importance to the overall application. Up to 10 SimPoints of 30 million
instructions from each benchmark are simulated in place of several billions of instructions.
(Regarding reproducibility, including all details needed to re-generate our SimPoints would
be impractical — for instance, even the choice of compiler affects their offsets.)

An alternative approach would have been to run the entire benchmarks, as opposed
to SimPoints, in parallel on a large distributed cloud. This unfortunately does not work
in practice since the longest running workloads would have taken weeks to months to run
to completion while providing few or no benefits compared to SimPoints. The quicker
turnaround, less than an hour to run all SPEC 2017 on a big-enough cluster, is in fact
instrumental when exploring a vast space of optimizations. Some papers do this because
only very few schemes or benchmarks are run.

A legitimate question is whether we can verify the reliability of our simulations by
porting SPEC2017 to run under Client SGX. This would be a major undertaking, even
with the help of general-purpose wrappers, we would have to avoid the penalties related to
the Enclave Page Cache (EPC). In fact, [Gue16a], only runs 445.gobmk from SPEC2006
with selected data sets. This said, on the trevorc.tst and nngs.tst data sets, [Gue16a]
reports performance penalties of 4.90% and 3.29%, respectively, and on our simulated
SGX-like method we measure 5.31% and 4.65%, which are in line to what one would
expect from a deeper tree.

Regardless of how the simulation is performed, we may ask ourselves about the impact
on systems that include context switches, virtual memory swap, and any type of I/O.
These aspects are very difficult to emulate. In fact, benchmarking in such a context seems
absent from the literature on cryptographic memory protection. However, we can observe
that (i) The additional memory used for metadata is not visible to the operating system
and will be unaffected by paging and similar operations; and (ii) It can be argued that
context switches, paging, and general I/O are affected by the performance penalties on
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memory accesses only in a minor way: context switch code and data can reside in pinned
memory, and the timing of disk, network operations is dominated by media which are
orders of magnitude slower than physical RAM. Speaking in particular of context switches,
consider a CPU-intensive task running on a 128-core shared machine with about 500 active
user sessions. There are 70 unique users on the machine, many of them running a full
GNOME environment, with a 15-min average load level of 65 (which is very high). We
observe less than a handful of context switches per second per core. Any cold start effect
after the context switch would be in the noise since warming all the caches take just a few
million instructions (roughly a few milliseconds).

Therefore, any performance penalty we present here is likely an upper bound to the
real-world one.

5.2 Selection of the benchmarking sets
All MPE configurations span a vast multidimensional space. Exhaustively evaluating
them all is clearly infeasible, not to speak of the difficulties of properly presenting the
data. Hence, we explore the design space in various stages, each consisting of a set of runs
of the benchmark suite. Each set focuses on some previous configurations and expands
the parameter space where we expect that it has some noticeable impact. Some schemes,
such as L1 schemes, do not carry over to the successive sets because they do not have
implementation parameters beyond the encryption primitive.

We use shorthands to describe the various configurations:

Level / Cipher / {additional technologies} / MAC length / CL length .

The optional “additional technologies” may include: counter representation (mono or split)
and arity, Leaves or Branches on Chip (LoC or BoC), or the use of MACs in Repurposed
ECC bits (MirE).

The default CL length is 64 B, unless the counter groups are on chip, in which case it
is 128 B. The default MAC length is 56–64 b.

“{AMD} SME” is equivalent to L1/AES/GFmul/CL64B. Here, GFmul denotes a XEX
scheme where the tweaking mask is computed by multiplication of the tweak by an addi-
tional secret key, whereas when we just write XEX the mask is derived by encryption of
the tweak; “{Intel} TDX” is equivalent to L2/AES/MirE/28b/CL64B, and “{Intel} SGX”
is based on Client SGX, i.e., L3/AES/mono-8/56b/CL64B. LoC always implies counters are
split. L2 implies that a non twekable block ciphers is used in a XEX construction, except
when explicitly stated otherwise. The shorthand L3/LoC denotes a version of L3 that uses
LoC, and thus no integrity tree. Similarly, L3/BoC is a L3 solution with the leaf counters
off chip and the next level on chip, also without a full tree. L3 without BoC or LoC denotes
a replay-protection-capable scheme based on an integrity tree and no counters on-chip.

5.2.1 Simulation of system load

The benchmarks are first run on an unloaded system, where the current benchmark is
the only running task.

We then want an upper bound for the performance degradation in a fully loaded system,
with up to hundreds of processes running on dozens of processing elements, all sharing the
bandwidth of the memory subsystem, such as in a cloud server. Directly simulating such
a system is very complex and impractical. We instead inject synthetic traffic upstream of
the MPE, but after the L2 cache. We do not include a L3 cache in the system to simulate
the extreme situation where the latter has been completely swamped by traffic coming
from other requesters or clusters of requesters.

The question is then, how much extra traffic we must inject.
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Figure 6: Bandwidth/latency plot with various MPEs and without, for linear or random synthetic
traffic.

Therefore, we measure the effective memory latency of the system with various levels
and schemes of memory protection, and we observe that the latency starts to degenerate
catastrophically for most of them between 8 and 10 GiB/s. Fig. 6 shows how latency,
and thus, at least part, also performance penalty depend on the load of the system. For
instance, a SGX-like L3 MPE covering the entire memory starts to degrade if more than
8 GiB/s of traffic is injected. We take this value as the traffic for a fully-loaded system
and halve it, i.e., 4 GiB/s for the partially-loaded system.

The simulated traffic consists of 75% reads and 25% writes of entire cache lines (64 B or
128 B). The access pattern is a mix of cache-line-aligned linear and random accesses. The
linear accesses are sequential, and the random ones are at randomly generated addresses,
both across the whole reserved range. The traffic generator alternates 100 µs of simulated
time of linear accesses with 200 µs of random accesses, for as long as the workload is
running.

Beyond 8 GiB/s (actually, beyond 8 GiB/s per rmemory channel), we expect a cloud
provider to counter performance deterioration by migrating VMs to other machines to
balance load and meet overall performance targets. This would also bring MPE penalties
back under control.

5.2.2 Baseline performance

Without memory protection, our benchmarks run on a loaded system 14.1% slower than
on an unloaded system with 64 B CLs, and 9.5% slower with resp. 128 B CLs. Changing
the CL length from 64 B to 128 B results in an average speedup of 1.4% in an unloaded
system and 5.5% in a loaded system.

The timings of all benchmark runs are always compared to the baseline with the same
load and CL size.

5.2.3 Initialization of short counters

When a piece of software starts to run, in a real-world setting any minor/middle counter
will have assumed, because of previous processes, essentially random values. If all counters
are initialized to zero before running a benchmark, the latter is put at an advantage, since
the non-major counters will take longer to overflow, and the number of RMWs may be
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underestimated. In fact, the use of SimPoints may even amplify this bias. Therefore, to
make our simulations as realistic as possible, in all split counter runs we initialize the non-
major counters to uniformly random values. This magnifies the performance gap between
2-way and 3-way split counters of equal arity, highlighting the superiority of the latter.

We now report and discuss the results of all the runs.

5.3 Set 1: State-of-the-Art, AES vs. Lightweight encryption ciphers,
and 64 b vs. 32 b MACs

We start with the state-of-the-art and some simple variations thereof to get an initial
overview of the relative performance merits of the deployed or proposed technologies.
We compare L1/AES/CL64B (e.g., AMD SME), L1/QARMA/CL64B, L2/AES/32b/CL64B,
L2/AES/MirE/28b/CL64B (corresponding to the Intel TDX and Scalable SGX MKTMEi),
L2/QARMA/32b/CL64B, L2/QARMA/MirE/32b/CL64B, and ELM with both monolithic and
split counters, SGX (i.e., memory protection as in Client SGX, but covering all memory,
L3/QARMA/split-64/32b/CL64B — all with and without a hash cache if not fixed by the
manufacturer’s architecture, since some architectures have a hash/MAC cache while other
ones, such as SGX, avoid it. We also compare 32 b and 64 b MACs in selected cases —
shortened to 28 b, resp. 56 b, in TDX, resp. SGX.

Note that SGX here is not a full implementation of Intel’s Client SGX architecture,
but only of its encryption, integrity, and anti-replay features, the latter expanded to the
whole memory. For SGX, hash encryption is CTR as described by Intel [Gue16a]. We
use this method for the SGX-like variant with AES-256 (L3/AES256/mono-8/56b/CL64B)
as well. In all other cases, data MACs are replaced by 32 b long hashes which are directly
encrypted in groups of four upon eviction.

Note that TDX includes also Scalable SGX.
The ELM method follows [IMO+22], i.e. it uses the AES in a XEX construction except

when QARMA is used. With QARMA the XEX constructions are replaced by simply feeding
nonces and separation fields as the tweak to QARMA, as well as using QARMA5-64-σ0 to
generate the One-Time Pads (OTPs) to encrypt the tags.

Note that monolithic counter trees are 8-ary, resp. 16-ary with 64 B, resp. 128 B CLs.
For 2-way split counters, minor counters are always 6, resp. 7 bits long, and the arity is
therefore 64, resp. 128.

For schemes that provide freshness, the counter cache is 64 KiB as in SGX to level the
comparisons.

These principles apply to every successive set as well, except where explicitly indicated
otherwise.

The runs reported in Fig. 7 support Results R2 and R5. Also, ELM has worse
performance than SGX, having the encryption primitive on the critical path.

Recall that the latencies of AES-256, AES-128, and QARMA-128 in our simulation are
21.99 ns, 15.67 ns and 4.80 ns, respectively. They are strongly correlated to the corre-
sponding performance penalties of a L1 scheme on an unloaded system: 7.93%, 6.37%,
and 3.21%. Similar outcomes hold also for varying loads and L2/MirE schemes. For
L2/non-MirE and L3 schemes, the difference becomes less significant as the slowdown due
to traffic contention between data and medatada increases. This proves Results R3.

For the remainder of the evaluation, because of Result R5, for simplicity’s sake we
shall assume that MACs are 32 bits long and directly encrypted in groups of four except
with SGX, MirE, or otherwise explicitly indicated. Similarly, since split counters perform
better than monolithic counters (this goes towards Result R11), we shall assume that L3
configurations will make use of split counters.
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Figure 7: Set 1 (Section 5.3). Comparison of base levels and state-of-the-art.

For brevity, in Sets 2, 3 and 4 we leave out AES from the comparison as it has an
identical memory access pattern and similar results to using QARMA-128.

5.4 Set 2: Impact of MPE cache sizes
The goal here is to understand the impact of the sizes of the two MPE caches, namely the
hash and counter caches.

L1 does not need caches, so we only consider L2 and L3.
The hash cache sizes we evaluate are 4 KiB, 16 KiB, and 64 KiB; and counter cache

sizes are 16 KiB, 64 KiB, 256 KiB, and 1 MiB. We expect these sizes to be within a
reasonable range when implemented as SRAM. The presented results are based on the
L2/QARMA/32b/CL64B and L3/QARMA/split-64/32b/CL64B configurations (i.e., 32 b MACs,
64 B cache lines, and 64-ary split counters for L3).

These results, displayed in Fig. 8 support Result R6. The small benefit of the hash
cache can mostly be attributed to spatial locality (most temporal locality has already
been exploited by normal data caches). Intuitively, the access patterns of the counter and
the hash cache should be similar. However, the reach of the counter cache is bigger since
counters are smaller when using split counters and nodes closer to the root cover a large
amount of address space which makes them more likely to be reused.

Starting with Set 3, the MPE has a 16KiB hash cache and a 256KiB counter cache.
Level L3 uses split counters, unless explicitly indicated otherwise, or with SGX.

5.5 Set 3: Impact of the cache line length
Another fundamental piece of information is how the choices of 64 B and 128 B CLs affects
L2 and L3 performance: Doubling the CL size will halve the memory overheads, but at
least in theory the coarser memory granularity may negatively affect performance.

This set comprises L2/QARMA/32b and L3/QARMA/split/32b with 64 B and 128 B cache
lines. Counter group and CL sizes are always equal which implies that L3 split counter
configurations have arity 64 in the 64 B case and 128 in the 128 B case.

The results of Set 3 are combined with those of Set 4 in Fig. 9. They prove Result
R7. Since we already know that our reference system without an MPE performs 1.4% to
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5.5% better with 128 B CLs, we expect that using to 128 B CLs, at least for the system
cache, is generally beneficial in a system with an MPE.

We acknowledge that changing the cache line size for the coherent cache system
might be a major undertaking. However, there are important cases where it is feasible
and reasonably non-intrusive. For example, inclusive last-level caches (LLCs) could store
and perform writebacks of pairs of 64 B cache lines while still performing coherence on
the individual lines. Similarly, LLCs outside the coherent domain (system caches) may
use 128 B cache lines while the coherent caches use 64 B cache lines. Both options make
the effective cache line size 128 B from the point of the MPE.

5.6 Set 4: Asynchronous MAC verification
So far, we have assumed that integrity tags are verified synchronously. In principle, asyn-
chronous verification can improve performance by releasing data to the CPU before its
MACs has been fetched from memory and verified. Therefore, we assess how synchronous
verification improves overall performance over asynchronous verification.

We test only L2 and L3, as they offer integrity. We reuse the configurations of Set 3.
The results are shown in Fig. 9.

Asynchronous verification comes with a significant drawback. Since the CPU is spec-
ulating on MAC verification being successful, adversaries have a window of opportunity
where the CPU is using data under their control and mount an attack. Mitigating this
issue introduces significant complexity which would be detrimental the integrity of the
system. This is Result R8.

From here, we only use synchronous MAC verification.

5.7 Set 5: Use of on-chip memory for L2 and L3
Going beyond caching as explored in Set 2, we explore the impact of secure MPE-private
on-chip memory.

Since MACs have a larger memory overhead than counters, we do not expect schemes
with on-chip hashes and off-chip counters. Hence, we ignore such a configuration.

Fig. 11 results confirm that relieving the memory bus contention between data and
metadata improves performance.

The BoC configuration only marginally outperforms the schemes that do not rely
on on-chip memory. This is explained by considering a system without on-chip memory:
Temporal locality is poor for leaf nodes, but it improves closer to the root of the tree as each
node corresponds to a large memory space. This makes it likely that integrity verification
encounters a cache hit at the level just below the leaf level. Therefore, performance is
similar to BoC .

With all metadata on chip, the performance is close to the baseline. This may not be
realizable in practice. However, as we shall see in Section 5.8, it can be approximated by
repurposing ECC bits for MAC storage.

For this set of runs we kept the AES to show that for L3 the performance is similar
to QARMA. However, on an unloaded system, AES and QARMA show a slight performance
gap. This gap decreases as the system load increases, due to the fact the cipher latency
becomes proportionally smaller compared to the increasing memory access latency.

5.8 Set 6: Impact of repurposing ECC Bits, 3-way split counters, and
large counter caches

The deployment of Intel TDX’s Multi-Key Total Memory Engine with Integrity (MKTMEi)
[Int21] and [YA18] suggests that using ECC bits for tags may be an acceptable trade-off
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Figure 8: Set 2 (Section 5.4). Impact of MPE
cache sizes on L2/QARMA/32b/CL64B and

L3/QARMA/split-64/32b/CL64B.

Figure 9: Sets 3 and 4
(Sections 5.5 and 5.6). Impact
of CL size and asynchronous

MAC verification.

Figure 10: Set 7
(Section 5.9). Impact
of incremental MACs.

for real-world deployments. This is essentially an approximation of storing MACs on-chip
since the ECC bits are stored out-of-band and fetched in parallel with the data.

We consider both L2 and L3 configurations, with and without MirE. We expect that
MirE implementations are optimized for performance and to reduce storage overhead. For
that reason, except for L1/QARMA/MirE/CL64B, we focus on 128 B CLs which enable denser
counter packing than 64 B CLs. With MirE the MAC algorithm is PMAC, and a hash
cache is not needed since MACs and data are fetched in the same memory transaction.

In addition to classic 2-way Split Counter Groups (CGs), we introduce high-arity 3-way
Split CGs, which we define only in the length of 128 B, with 128 and 256 logical counters
per node. The purpose of this optimization is to keep the amount of RMW operations
under control, with one variant also increasing the density of the CGs. To quantify the
impact of this optimization, we evaluate each configuration with and without middle
counters. We consider the following 3-way split CG types, without embedded MACs:

• 128 × 7 b minor, 8 × 8 b middle, and 1 × 64 b major counters, with a memory
overhead of 1:128; and

• 256 × 3 b minor, 32 × 6 b middle, and 1 × 64 b major counters, with a memory
overhead of 1:256.

If MACs are embedded in the counter group, for a 128-ary tree the lengths of the major
and middle counters would be reduced to 48 and 6 bits, and for a 256-ary tree the middle
counters would 5 bits long – in both cases with 32 b MACs. The memory overheads of
these trees are 1:127 and 1:255.

In [YA18, SNR+18a] “delta encoded” split counters with rebasing are used together
with methods to accommodate a limited number of larger minor counters in a CG to
reduce the amount of RMWs. We skip these optimizations since our 3-way split CGs (cf.
also Section 5.11) perform better, by nearly eliminating any RMW overhead.

The data (Fig. 12) supports Results R9 and R11. Middle counters play a crucial role
in maximizing the performance of high-arity CGs, preventing significant RMWs overheads.
This demonstrates Result R12. Because of this, L3/MirE/LoC designs may even perform
better than L1 schemes, which have the cipher on the critical path to the external RAM.

For a 16 GiB protected memory, the BoC configuration needs 256 KiB of on-chip stor-
age. An alternative to the BoC configuration would be to use that memory for a counter
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Figure 11: Set 5 (Section 5.7). L3:
Impact of storing metadata on-chip.

Figure 12: Set 6 (Section 5.8). {L2|L3}/QARMA/MirE:
Impact of repurposing ECC bits for MACs and large

counter caches. For arity 128 or 256 the CL is always 128 B.

cache. The 512 KiB configuration in Fig. 12 corresponds to this configuration since the
baseline counter cache size is 256 KiB. In such cases, the larger cache normally performs
on-par with BoC in an unloaded system and slightly better under load. This can be ex-
plained by two effects. First, the cache approximates BoC since the level just above the
leaf level is very likely to be resident in the cache. Second, unused branch nodes can be
replaced by useful leaf nodes which improves efficiency. On a fully loaded system, LoC
performance is reached in practice only when the cache is large enough to cover the tree
working set of the running applications. In the case of SPEC 2017, this typically happens
between 1 MiB and 2 MiB of cache.

5.9 Set 7: Impact of incremental MACs
If we cannot store MACs in the ECC bits or on-chip, there is another option for reducing
their storage overhead: to compute them incrementally over multiple cache lines.

Since the goal here is to reduce storage overhead, we consider only 128 B CLs. We
test both L2 and L3 configurations with a MAC covering 1, 2, or 4 CLs. The runs
are reported in Fig. 10. We use only QARMA-128 for encryption, since the performance
degradation depends only on the increased memory traffic. In fact, AES results follow the
same pattern. These measurements prove Result R10.

5.10 Set 8: Breakdown of selected configurations
To better understand the behavior of the MPE, we select a few interesting configurations
and show all individual benchmarks in the suite:

• AMD SEV (L1/AES/GFmul/CL64B) and L1/QARMA/CL64B;

• Intel TDX (L2/AES/MirE/28b/CL64B);

• L2 with (L2/QARMA/MirE/28b/CL64B) and without (L2/QARMA/64b/CL64B) MirE;

• Intel SGX (L3/AES/mono-8/56b/CL64B);

• 128- and 256-ary 3-way split CGs (L3/QARMA/LoC/3-split-128/MirE/28b/CL128 and
L3/QARMA/LoC/3-split-256/MirE/28b/CL128).
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The SPEC2017 benchmarks (cf. Figs. 13 to 18) exhibit some expected results: certain
tasks, like omnetpp, mcf, and bwaves experience a more significant performance impact
across most MPE configurations.

Fig. 13 supports the claim in Result R4. The two XEX schemes L1/AES/GFmul/CL64B
and L1/AES/XEX/CL64B differ only in the computation of the tweaking mask. In the
first case it is performed via Galois multiplications, which we highly optimize for speed,
resulting in a latency of 0.55 ns in the chosen process. In the second case AES encryption
is used instead. We recall that AES-128 latency is 15.76 ns. Thus, on the write path, the
latency is, roughly one, resp. two AES instances, while on the read path is it always one
AES instance. Despite the significant difference on the write path, the penalties are almost
exactly the same.

5.11 Set 9: Impact of RMW operations
All split counter methods need, as already mentioned, to perform some batches of RMW
operations to re-encrypt data or re-compute some embedded MACs whenever a minor, resp.
middle counter overflows. These are expensive operations and we want to understand their
impact on performance.

We compare the performance of L3 MPEs against hypothetical ones where the RMW
operations have zero cost, i.e., are instantaneous. This is achieved by simply skipping them:
such an experiment is possible because the simulated MPE does not actually perform
cryptographic operations, inserting instead timing delays in their places. This gives an
upper bound on the actual time spent in the RMW operations.

For the 128- and 256-ary split counter schemes, we report the performance with 3-way
split counters, the performance with 2-way split counters by omitting the middle counters,
and the performance with skipped RMWs. The selected combinations are the ones in Set
8 with RMWs.

The results are shown in Figs. 17 and 18. We notice that the impact of RMWs is not
always negligible. Using 2-way split counters with 3b minors (L3/QARMA/LoC/MirE with
256-ary CGs) carries a significant performance penalty, but the use of middle counters
brings the performance close to the ideal case where RMWs are “free”.

The performance penalties and the proportion of time spent doing RMWs increase
with the load.

This set of runs proves Results R1, R11, and R12.

5.12 Remarks on area and power
Power consumption of a circuit is roughly a linear function of both its area and the time it
is active.1 Thus, the MPE’s total area and the performance penalty are the main factors
determining its energy cost.

The area of the MPE mostly consists of arithmetic circuits, caches, and any internal
DRAM (if present). In comparison, the control circuitry has negligible area.

Not only is estimating areas for all configurations impractical, but also implementa-
tions can vary greatly. For direct encryption schemes like L1 and L2, implementing multi-
ple encryption blocks in parallel maximize performance, but area can be saved by sacrific-
ing some of that performance using pipelined designs. An area-optimized implementation
of QARMA-128 (with 256-bit keys) is roughly ≈ 50 KGE for a single pipelined block [Ava17].
Latency-optimized AES implementations exceed 17 KGE per round [UHM+20], hence the
area for a single instance is ≈ 160 KGE and for eight parallel blocks ≈ 1.3 MGE. Note,

1To be more precise, power consumption is the sum of dynamic power, that depends on switching
current, and static power, that depends on leakage current, and thus on power gating.
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Figure 13: Set 8 (Section 5.10). Comparison of AMD SEV (L1/AES/GFmul/CL64B),
L1/AES/XEX/CL64B, and L1/QARMA/CL64B.
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Figure 14: Set 8 (Section 5.10). L2 impact of MirE: L2/AES/32b/CL64B vs. L2/AES/MirE/28b/CL64B
(e.g., Intel TDX).
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Figure 15: Set 8 (Section 5.10). L2 impact of MirE when using QARMA: L2/QARMA/32b/CL64B vs.
L2/QARMA/MirE/28b/CL64B.
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Figure 16: Set 8 (Section 5.10). Impact of split counters: L3/AES/mono-8/56b/CL64B (Intel SGX) vs.
L3/QARMA/split-128/32b/CL128B.
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Figure 17: Sets 8 and 9 (Sections 5.10 and 5.11). L3/QARMA/MirE/split-128/LoC/28b/CL128B with
3-way and 2-way split counters, and without RMWs.
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Figure 18: Sets 8 and 9 (Sections 5.10 and 5.11). L3/QARMA/MirE/split-256/LoC/28b/CL128B with
3-way and 2-way split counters, and without RMWs.
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also, that a pipelined QARMA circuit and a fully parallelized AES circuit would have compa-
rable total latency — and this would deliver similar performance and security to a L1/L2
scheme, while having different areas.

Integrity can be implemented by re-using the encryption blocks, or by using ad-hoc,
smaller ones like QARMA5-64-σ0, as in [JLK+23].
Remark 2. Unlike normal CPU caches, the speed of the MPE caches is not critical: coun-
ters and hashes just need to be available to the MPE before the data from RAM. This
implies that, instead of SRAM, slower DRAM with a much smaller area can be used for
these caches.

A DRAM memory cell uses a capacitor and transistor, or in some cases two transistors.
The area can thus be capped by two transistors per bit, with a minor amount of control
logic. A 4 KiB cache is thus about 64 KGE, and a 256 KiB cache is roughly 4 MGE.

With these numbers at hand, we see that, for modern SoCs with billions of transistors,
a single large MPE per memory channel is a small but not negligible cost. Although
an additional 1:128 or 1:256 of in-package or in-module DRAM might seem a minor
costs, when compared to the total system memory, it cannot be disregarded, especially
considering the added expenses of tamper-averting designs. Architects and implementers
must weigh all the trade-offs.

6 Conclusions
We performed a thorough survey and evaluation of the available technologies for the cryp-
tographic protection of memory contents, together with some previously not considered
variants. The numerous possible configurations have each their performance penalty, mem-
ory overhead, and hardware cost. The lack of an absolute metric to combine these three
costs into one rating makes it very challenging to provide recommendations for each use
case. This said, we have enough data to provide some rough guidance.

If only confidentiality is needed, L1 schemes can perform very efficiently, and we recom-
mend the use of a lightweight, high-security encryption primitive (e.g., QARMA) in a direct
mode. If integrity protection is required, but replay attacks are out of scope, L2 schemes
with a short MAC can be made very efficient by using ECC bits to store the MACs.

Now, let us focus on L3 schemes: nearly-transparent strong memory protection is
possible with current technology, but the hardware costs may be prohibitive.

Server SoCs are expensive, with multiple cores and memory channels. Current systems
can address a few terabytes of physical memory. The high total system costs allow us to
make an argument for counter-based encryption with high arity counter groups stored in
on-chip DRAM. The additional cost for counter group storage would be relatively minor
(1:128 or 1:256 of the external memory). We observe that placing, say, 64 GiB or more
of DRAM in a module close to the main SoC is feasible for client devices today. The
same technology could be used to place a large tamper-averting memory in a server SoC
package, to be used as a large counter cache. When combined with MirE, it would enable
the highest level of memory protection at a lower performance impact than all currently
deployed schemes without replay protection.

It can be argued that the area budget for such a large memory should rather be used for
a system cache, which benefits the whole system and reduces the traffic routed through
the MPE. Such a cache could also be dynamically re-partitioned between system and
MPE. This would rely on an analysis of the traffic and of the impact of the partitioning
that goes beyond the scope of this paper.

If these approaches are not possible, storing the integrity tree off-chip and using MirE
still provides good performance when combined with a large counter cache.

On client devices, memories usually lack ECC, making MirE not applicable. However,
for use cases such as security modules and business oriented containers, memory bus
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saturation is less of a concern. We thus expect performance penalties to be contained,
usually in line with unloaded systems, and we recommend the use of high arity split
counter trees in a dynamically allocated carve-out.

Future work includes contributing our MPE model to the gem5 project which we hope
will stimulate future research and enable studies for specific workloads and configurations.
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