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Abstract. Confidential Computing is the protection of data in use from access or
modification by any unauthorized agent, including privileged software. For example,
in Intel SGX (Client and Scalable versions) and TDX, AMD SEV, Arm CCA, and IBM
Ultravisor this protection is implemented via access control policies. Some of these
architectures also include memory protection schemes relying on cryptography, to
protect against physical attacks. We review and classify such schemes, from academia
and industry, according to protection levels corresponding of adversaries with varying
capabilities, budget, and strategy.

The building blocks of all cryptographic memory protection schemes are encryption
and integrity primitives and modes of operation, as well as anti-replay structures.
‘We review the possible implementation of these building blocks, and discuss their
relative merits. We consider their possible combinations of these alternatives, and
evaluate the performance impact of the resulting schemes.

In order to be able to perform a relatively quick evaluation of hundreds of variations,
we introduce a framework for performance evaluation in a simulated system based on
the SimPoints methodology. To understand the best and worst case overhead, we
also consider systems with varying load levels.

Finally, we propose new solutions to further reduce the performance and memory
overheads of such technologies. Advanced counter compression techniques make it
viable to store counters used for replay protection in a physically protected memory.
By additionally repurposing some ECC bits to store integrity tags, we can provide
the highest levels of confidentiality, integrity, and replay protection at a hitherto
unattained performance penalty, namely 3.32%, even under extreme load and at costs
that make them reasonable in data centers. Combinations of technologies that are
suitable for client devices are also discussed.

Keywords: Security and privacy - Hardware-based security protocols - Memory
Encryption - Memory Integrity - Lightweight ciphers - Integrity Trees
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1 Introduction

Cloud computing promises to increase efficiency and drive down cost for users. Such services
co-locate multiple mutually untrusted tenants in the same data center and sometimes even
on the same physical machines. Compared to traditional on-premises solutions, users of
cloud computing face two additional threats. First, hostile tenants may try to exploit bugs
in the hypervisor or access control mechanisms to impact the confidentiality, integrity, or
availability of co-located virtual machines. Second, compromised insiders at the service
provider or its contractors may try to gain access to customer data.

Similar threats exist in client devices, such as phones, which have evolved into smart
terminals and identity providers. Like in a data center, adversaries may use co-located
untrusted code or even have physical access to the device. Use cases such as secure
payments, secure identification, and software anti-piracy rely on strong confidentiality and
integrity guarantees. These are often provided in separate components, e.g., SIM cards,
USB tokens, or Trusted Platform Modules (TPMs). Consolidating their functionality onto
the main System-on-a-Chip (SoC) enables new use cases while reducing total costs — but
also enables opportunities for the aforementioned adversaries.

AMD SEV [KPW16], Arm CCA [MPS*21], Intel’s Client SGX [Guel6a] and Scalable
SGX [JMSS20], and Intel TDX [Int21] move towards this goal by providing access control
mechanisms. The latter are managed by a HW-supported Trusted Computing Base (TCB).
Some of these technologies even include protection against adversaries with physical
access to the system. For instance, Intel’s Client SGX implements a Memory Encryption
Engine (MEE) [Guel6a] that provides confidentiality, as well as integrity and protection
against replay attacks. Such strong security guarantees can be very costly in terms of
performance and storage. For this reason, AMD SEV, Intel TDX, and Scalable SGX (the
latter two sharing the same memory protection scheme) provide weaker guarantees in
exchange for better performance.

In this study we review what cryptographic technologies are available to
protect the contents of data-in-use in RAM against an adversary with physical
access to the system. We also evaluate the costs associated to the most
meaningful combinations of these technologies.

The starting point is a thorough review of the techniques documented in the scientific
and technical literature. Even though we cite several architectures for implementing
complete Trusted Execution Environments (TEEs), the scope of this paper does not
address aspects such as Operating System (OS) and Hypervisor support, I/0, virtualization,
attestation and IPC mechanisms. We focus on solutions for cryptographic memory
protection that are entirely implemented within the SoC package limits.

For real-world applications, understanding the cost of a solution is crucial. Area and
power constraints limit the viable options, but relaxing them can be justified by strong
market requirements. On the other hand, solutions with high performance penalties and
memory overheads risk being rejected without further consideration of their merits. For
this reason, we compare the costs of several schemes and variations thereof, where we focus
mainly on performance penalty and memory overheads. We also propose new methods to
further reduce these costs.

Our performance evaluation uses the entire industry-standard SPEC 2017 [BLvK18]
benchmark suite running on the gem5 simulator [BBBT11, LAAT20].

This work also fills a gap in the literature, as there are only very few papers surveying
the subject. The 2009 paper [ECGT09] is a survey of memory integrity schemes, intended as
full integrity, i.e., including replay protection. The 2013 paper [HT13] contains a thorough
survey of memory encryption techniques until its publication, but its performance data is
taken from the surveyed papers, which more often than not cannot be properly compared
to each other. Its abstract states “To date, little practical experimentation has been
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Figure 1: Simplified system level view of a SoC with Memory Protection Engine(s).

conducted, and the improvements in security and associated performance degradation has
yet to be quantified.” Ten years later, this sentence still holds true. The more recent
papers [Shw15, MZLS18,SNR*18a,SNR*18b, TSB18, TBC*20,SNOT21,IMO*22] (and
many more) only compare their proposals to few other schemes. We conjecture that one
reason for the limited comparisons is the long-running time of simulations, a serious issue
we address with the use of SimPoints (cf. Section 5.1). The recent survey on HW-supported
TEEs [SMS™22] focuses on the offered features and does not address performance penalties
and memory overheads: We refer the reader to it for information on overall Architecture,
supported types of isolated processes, Attestation, dynamic/static nature of the Root of
Trust (RoT), support for secure I/O and storage, and size of the TCB.

Outline of the paper. We open with a summary of the contributions in Section 2. Section 3
contains background material, such as: the models of the adversaries and a discussion of
the memory protection levels. Section 4 contains a review of the cryptographic primitives
and memory integrity structures; as well as a discussion of cryptographic parameters such
as key and MAC lengths. Section 5 describes the actual benchmarks and discusses how
these support the claims in Section 2. In Section 6 we conclude.

2 Summary of the Results

Cryptographic memory protection relies on:
(i) Encryption,
(ii) Authentication, and
(iii) Replay protection structures.

In the third group we also include the protection of a relatively small amount of RAM, such
as placing it on-chip, or in a tamper-proof or -evident device with a secured communication
channel to the SoC. We exclude applying this approach to the entire RAM, because cost
and thermal considerations would make it impractical for general use.

There are only a few meaningful combinations of these technologies, forming various
Protection Levels, the first one comprising only access control, and three increasingly robust
level based on cryptography, which may or may be not combined with the first:

LO: Access Control only;



Table 1: Selected documented TEEs and cryptographic memory protection schemes.

Scheme or Technology Year Level Encryption Authentication Integrity structure (and other technologies) References
Hall and Jutla’s PAT 2002 — — — Counter Tree [HJ08]
AEGIS 2003 L3 AES-CBC Incremental hash Merkle Tree (MT) [SCGT03a, GSCT03)
AEGIS (alt. design) 2003 L3 “OTP” MD5/SHA-1 Log Hashes [SCGT03b]
Yan et al. 2006 L3 AES-GCM GMAC Split Counter Tree (SCT) [YEP106]
SecureMe 2007 L3 AES-CTR (AISE) SHA-1/HMAC Bonsai MT [RCPS07]
Flicker, resp. SEA 2008 LO — — (TCB-managed Page Tables (PTs)) [MPP"08a], resp. [MPP"08b]
Bastion 2010 L0+ L3 AES-ECB AES-CMAC MT [CL10]
IVEC 2010 — — GMAC SCT [HS10]
SecureBlue++ 2011 L3 Undocumented Undocumented “Integrity tree” [WB11]
H-SVM, resp. SICE 2011 LO — — (TCB-managed PTs) [JACHI11], resp. [ANZ11]
Hyperwall 2011 LO (TCB-verified PTs) [SL12]
HyperCoffer 2013 L3 (Same as SecureMe) (Same as SecureMe) (Same as SecureMe) [XLC13]
Intel's Client SGX1/SGX2 2013 L0413 AES-CTR Encrypted UHF e B ey et e Cache PO piaB 3]
Iso-X, resp. EqualVisor 2014 LO — Optional Optional [EEO™14], resp. [DZWL14]
PodArch 2015 LO+L3 AES-GCM GMAC On-demand secure encryption [Shw15]
AMD-SEV {-SNP} 2016 L1 AES-XEX — (TCB-managed Nested PTs in SNP) [KPW16,AMD20]
VAULT 2018 L3 Unspecified Unspecified Variable arity tree, encrypted MAC-less leaves [TSB18]
Delta-Encoding 2018 L3 AES-CTR Encrypted UHF Delta Encoded SCT [YA18]
Morphable Counters 2018 L3 AES-CTR Encrypted UHF Morphable Counters SCT [SNR'18a]
SYNERGY 2018 L3 AES-GCM GMAC Bonsai MT, MACs in ECC bits [SNRT18b]
TIMBER-V 2019 LO — — (Tagged Memory) [WWBT19]
Apple’s Secure Enclave 2020 LO+ L3 AES-XEX AES-based CMAC Bonsai “Integrity tree” [App20]
Intel TDX, Scalable SGX 2020 LO+L2 AES-XEX Reduced SHA-3 MACs in ECC bits [JMSS20, Int21]
Keystone 2020 LO++  AES-128, unspecified mode Unspecified Secure on-chip <> external RAM paging [LKS™20]
Arm CCA 2021 LO — — (TCB-managed page ownership table) [MPS™21]
IBM Ultravisor 2021 LO None on Power9 None on Power9 (Tagged memory addresses) [HPL*21]
PENGLAI 2021 LO+ L3 Unspecified Unspecified Dynamically allocated MT [FLD™21]
ELM 2022 L0+ L3 Flat-OCB (OCB) Flat-OCB and PXOR-MAC  Counter Tree [IMO™22]
CSI:RowHammer 2023 — Optional PMAC MACs in ECC bits [JLK'23]

IOURBIUOIA PUR [[BUDS “BIO[RYIN ‘SIoqpPURG ‘1ZURAY



6 SoK: HW-Supported Cryptographic Protection of RAM

L1: Memory encryption;
L2: Memory encryption and integrity; and
L3: Memory encryption, integrity, and protection against replay attacks.

While one can imagine use cases for various degrees of integrity protection only without
encryption, we are not aware of any such scheme.

We implement Protection Levels L1 to L3 in the Memory Protection Engine (MPE),
an IP block sometimes known as Memory Encryption Engine (MEE), e.g., in SGX. As
depicted in Fig. 1, in a typical SoC the MPE sits between the main interconnect (or a
system cache) and a memory controller. It can optionally have its own caches, and even
access to a physically secure private DRAM to store metadata.

As a starting point for choosing the components used to implement each Protection
Level, we first review the state-of-the-art. Table 1 outlines cryptographic memory protection
in various TEEs. While the TEE list is not exhaustive (a more complete list is given
in [SMS*22]), the list of primitives and structures is comprehensive, except for some
deprecated methods and some exclusions as explained in Section 4.2.2. (These technologies
are detailed in Sections 4.1 and 4.2.)

We obtain the following groups of alternatives:

1. The AES vs. a lightweight cipher suitable for memory encryption. The selected
lightweight cipher is QARMA-128 [Aval7], as explained in Section 4.1.1.

2. Direct encryption, where a plaintext block is input to the cipher to compute the
corresponding ciphertext, vs. CounTeR mode (CTR) encryption, where the encryp-
tion of successive counter values results in a keystream which is then XOR-ed to the
plaintext to obtain the ciphertext (cf. Section 4.1.3 for more details).

3. Various MAC algorithms for memory integrity, such as Carter-Wegman Universal
Hash Functions (UHFs) [CWT79] (for instance, encrypted linear functions of the
message), encrypted checksums of the plaintext, or Parallel MAC (PMAC) [Rog04]
(see Section 4.1.2 for a discussion of the options).

4. The choice of 32-bit vs. 64-bit MACs for the integrity tags.

5. Different sizes of the caches used by the MPE, as well as on-chip memory to store
MACs or counters.

6. Optionally repurposing some ECC bits to store MACs.

7. Different sizes of the memory regions protected by one MAC. This is obtained both
varying the CL size and letting a single MACs cover multiple CLs.

8. Synchronous vs. asynchronous integrity verification.

9. Integrity counter trees with increasing arity. Their nodes, which in this paper always
fit in one CL, contain from 8 to 256 highly compressed counters, one for each child.
To achieve such high arities, the operations on the tree are designed to guarantee
that the most significant bits (e.g., 56 bits) of all counters in a node are equal. This
common part is stored once in the node, and the least significant bits of each counter
are stored individually (cf. Section 4.2.) We also study counters split into three parts.

We simulate various combinations of the above alternatives in the gem5 simulator, and
run the benchmark suite in these simulated systems with different loads on the memory
subsystem. To our knowledge, this is the first evaluation of this type. We also randomize
the internal state of the system structures to simulate the more realistic performance
characteristics of a not-freshly booted system.
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The main two results are:

R1

R2

Nearly-transparent strong memory protection is possible with current technology,
for both client and server systems and in most conditions (cf. Section 5.3 for L1 and
L2, and Sections 5.8 and 5.11 for L3. See also Section 6).

Lightweight ciphers clearly outperform the AES in area and power (cf. Section 5.12),
but their impact on performance is major only in L1 and L2 schemes (cf. Sections 5.3,
5.7 and 5.8). For L3 schemes that use counter based encryption, the primary influence
on system performance is the organization of the data integrity structures, and the
choice of cipher is secondary.

More detailed results and other observations follow:

R3

R4

R5

R6

R7

RS

R9

R10

R11

R12

The performance of schemes based on direct encryption methods, such as L1 and
L2 schemes, is very sensitive to the latency of the cipher. Moving from the AES to
QARMA brings a significant reduction in performance loss. (Cf. Section 5.3.)

Regarding the previous result, the performance penalty depends much more on the
additional decryption latency on memory reads than on the additional latency induced
by encryption on memory writes Also, linear interpolation based on the encryption
cipher’s latency provides a good approximation of the performance penalties, with
our measurements and cipher latency smaller than the AES-256’s. (Cf. Section 5.10.)

Using 32-bit in place of 64-bit MACs halves MAC memory requirements, which is
significant. However, MAC memory accesses have poor spatial locality, and the
impact on performance is marginal (cf. Section 5.3).

Similarly, the MAC caches are not a major performance factor. Counter caches are
more effective. The relative improvements due to caching increase with the load of
the system. (Cf. Section 5.4.)

Using longer CLs (i.e., 128 B instead of 64 B) does not necessarily improve overall
performance significantly. However, it halves the memory used by the MACs and
enables more aggressive metadata packing in the counter trees. (Cf. Section 5.5.)

While asynchronous integrity verification improves performance, it is a security risk
as the system may speculate on potentially corrupted data (cf. Section 5.6).

If MACs [are stored] in repurposed ECC bits (short: MirE) or in an internal memory,
the L2 and L3 performance has a major improvement (cf. Sections 5.7 and 5.8).

We find that incremental MACs covering multiple CLs, while significantly decreasing
the memory overhead, adversely impact performance. The degradation is in part due
to the fact that we do not implement an optimization that exploits the compressibility
of the plaintext to reduce memory accesses. This optimization may compromise
plaintext confidentiality, hence it represents a severe security risk (cf. Section 5.9).

Increasingly higher arity counter trees offer major and progressive reduction in both
memory overhead (cf. Table 2) and performance penalties. However, as the arity of
such integrity trees increases, with the counter group size staying constant, the system
must re-encrypt memory or regenerate integrity nodes increasingly often. The use of
3-way split counters substantially reduces the cost of these RMWs operations. (Cf.
Sections 5.3, 5.8 and 5.11.) The resulting scheme is more effective than techniques
such as Morphable Counters, which are very complex to implement (cf. § 4.2.2.2).

In this paper for the first time we show the advantages of counters split into three
parts. The leaf level of our 3-way, high arity split counter trees is just 1:128 or 1:256
of the total RAM. It is small enough to be stored in a physically secure, on-chip or
in-package memory. No other tree levels need to be maintained. This enables L3
schemes with very good performance. Combined with MirE, the performance penalty
under extreme bus contention is just 3.32%. (Cf. Sections 5.7, 5.8, 5.10 and 5.11.)
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3 Definitions and Background Material

3.1 Definitions

Following the Arm terminology [MPS™21], a Realm is a process domain that is isolated from
other process domains through policies enforced by a small TCB. This term encompasses
both small Enclaves as well as processes and larger virtual machines.

The SW-accessible volatile, external memory, connected to a memory controller, is seen
as an array of blocks. These blocks match the Last Level Cache (LLC)’s Cache Line (CL)
size and are thus also called CLs.

An encryption or authentication function is said to provide spatial uniqueness if, when
computed on equal inputs, but written to different locations, it results in different outputs.
This is achieved by including the Physical Address (PA) of the encrypted or authenticated
CL in the computation.

An encryption or authentication function provides temporal uniqueness (freshness)
when repeated writes of the same plaintext to the same location result in different outputs.
This is achieved by including a counter in its computation.

In what follows a mode (of operation) is a general purpose encryption mode of operation.
A Memory Encryption (ME) mode is understood to be an encryption mode of operation
with plaintext and ciphertext having the size as a CL, and no associated data.

An on-chip component is defined as a physically secure block in the same package as
the processing elements. In this case the package shall be tamper-averting, i.e., a package
that is either tamper-proof/resistant, or tamper-evident/detecting.

3.2 Adversaries

To adequately answer the question posed in the Introduction, we categorize technologies
based on the considered adversaries. The latter are distinguished according to their
access to the target, and their resourcefulness. Before doing this, however, we must make
a few critical remarks. Cryptographic memory protection cannot completely address
most side channels, including those that exploit physical effects, hence these are out of
scope. The exclusion applies to the access-pattern side channel as well: Adversaries can
reverse engineer software properties or elicit secrets from access patterns. The only generic
and provably effective mitigation would be Oblivious RAMs (ORAM) [Gol87], which
carry prohibitive performance penalties. The same applies to SW exploitation, timing
attacks and micro-architectural side-channels. For all these threats, mitigations should
be applied to SW as needed. User-space services can always deny resources to Realms,
including scheduled time, hence Denial-of-Service attacks cannot be completely mitigated.
In particular, availability of memory cannot be guaranteed by cryptographic means once
an adversary has access to the HW.
We can now define the following Adversaries:

o ASW can run SW on the target, and provide inputs to it, including through external
interfaces.

. Agavs\;ve has physical access to the system that contains the target, including its
internals, but does not have the capabilities to access on-chip communication in-
terfaces. They can interpose chips and modules for the sole purpose of monitoring

transactions.

o AUW also performs active attacks, e.g., blocking, corrupting, replaying or injecting
transactions on the memory bus [KLR'20] or other interfaces.

o AHW . can mount highly invasive attacks at the chip or package level. Examples

invasive

range from micro-probing attacks [Skol7] to actual chip reverse engineering and
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editing using a Focused Ion Beam Microscope [TJ09]. AW .~

paper as the proper defenses require HW countermeasures.

is out of scope in this

SW and HW-capable adversaries are independent. The HW adversaries form a hierarchy

passive = Y tactive = Y ‘invasive*

3.3 Protection Levels

We provide detailed definitions of the Protection Levels. Table 1 shows how some docu-
mented solutions map to them. The technologies used to implement each level are listed.
They are taken from options described in Section 2, Table 1. For more details about these
technologies, cf. Section 4.1.

3.3.1 LO: Access control

Access control policies to implement reverse sanbdboring are the first line of defense
against ASW. However, RowHammer attacks (and micro-architectural side channels) have
significantly increased the power of ASW  enabling them to bypass reverse sandboxing.

Physically separating memory rows of different process domains through access control
and precise memory allocation policies could theoretically prevent RowHammer attacks.
However, this approach requires complex system software changes and is impractical in
real-world scenarios.

We do not discuss the implementation of LO.

From here on, we assume that appropriate access control policies are in place to stop
unauthorized agents within the SoC, but not to prevent RowHammer attacks.

3.3.2 L1: Memory encryption

This level provides spatial uniqueness, but not temporal uniqueness.

Interest in L1 is driven by confidentiality requirements and to make attacks that depend
on memory corruption (for instance RowHammer) more difficult. For this reason, L1 must
use direct encryption with a cipher that enjoys a strong diffusion property, i.e., any input
change induces a flip of each output bit with likelihood 1/2.

In general, protection against ASW is very limited, as is against Agavs\give since the latter
can detect ciphertext repeats. Also, note that attacks on the integrity of a system may still
cause SW to reveal its contents, therefore this scheme alone does guarantee confidentiality.
Only full replay protection (L3) thwarts the particular attack just mentioned. Warm-boot
and cold-boot attacks [HSH'09] are properly mitigated. Note that the same arguments
apply also to L2.

A common requirement for L1 (and L2) system is the cryptographic separation of
Realms, which serves to thwart combined SW/HW attacks based on the replay of memory
from a target Realm into an adversary-controlled one. This can be achieved by per-Realm
unique encryption differentiators. (Replay attacks into the same Realm, to reset it to
a previously known state, require L3 protection.) The differentiators can be encryption
keys or, if a single global encryption key is used, bit-strings to be used in a designated
bit-field of the tweaks. Differentiators must be discarded upon Realm termination. They
should not repeat. If they are tweak contributions, they can be implemented by, say, a
TCB-managed 64-bit counter.

Address scrambling (a very lightweight encryption mechanism of the PA to permute
the memory layout) may also be somewhat effective against RowHammer. It is deployed
in some devices like smart cards for the purpose of mitigating side channel attacks. Note
that since these schemes are usually static per boot session, address reuse can be detected:
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this is often all an adversary needs to mount an attack. Hence, it should be considered
only as an additional defense-in-depth measure and not as a complete mitigation per se.

3.3.2.1 Implementation aspects. With the AES, a CL is encrypted in XOR, Encrypt,
and XOR (XEX) mode [Rog04], as in AMD SEV, TDX, and Apple’s Secure Enclave.

The chosen low-latency block cipher for memory encryption is QARMA-128 (as explained
in Section 4.1.1). QARMA-128 is used in a Tweaked Electronic Codebook (ECB) mode as in
Fig. 2a. In both cases the tweak is the address.

3.3.3 L2: Encryption and integrity verification

This level extends L1 with integrity tags, to detect memory corruption. It does not provide
any temporal uniqueness, hence it must rely on a direct encryption method. An integrity
tag is usually a MAC. Adversaries can still mount replay attacks.

L2 targets ADW, .. It is also partly effective against ALY, ., if they only corrupt
individual memory locations or have a limited time budget. To defeat targeted replay of
memory including its integrity tags, stronger countermeasures are required (see Level L3).

This distinction within ALY | though seemingly arbitrary, is necessary due to varying
complexities and costs not only of the attacks but also of the countermeasures. System
designers can assess threats and make business decisions about accepting specific risks.
Similarly, active Adversaries might opt for keeping their attacks passive at least initially,

to avoid detection and to collect data for cryptanalysis.

3.3.3.1 MirE: MAGCGs in repurposed ECC bits. If ECC memory is available, storing
the MACs in (possibly some of) the ECC bits eliminates the need to reserve a RAM
carve-out for the MACs, and significantly reduces memory traffic. Note that MACs are
still accessible to AHW.

The Intel TDX MKTME; is such a solution. We found no documentation on error
correction in a TDX system, but the 28-bit MAC field size suggests that a Single-Error
Correction and Double-Error Detection (SECDED) (255, 247) Hamming code is used. This
code is truncated to (143, 135) to cover 128 bits and 7 bits of the MAC each. The remaining
4 bits of the effective 576 bits in each CL are used for parity.

A different configuration is presented in [YA18], where a 56-bit MAC is used for integrity
and error correction and a 7-bit ECC provides SECDED to the MAC.

Remark 1. MirE raises the question of the performance impact of using ECC memory.
Reported penalties are smaller than 0.5% [Bac14], stemming from increased traffic and
additional processing in the DRAM controller: the impact is so small that we do not
evaluate it as a separate configuration.

Remark 2. Beside SECDED codes for 9-chip RAMs, there are several memory-specific
Reliability, Availability, and Serviceability (RAS) designs, with varying levels of redundancy,
starting with Chipkill [[BM99]. These are capable of handling also multiple errors. MirE
can be easily implemented in these systems using suitable codes.

3.3.3.2 Implementation aspects. The same encryption techniques are used as for L1.
For Intel TDX the MAC is computed using truncated SHA-3, with the latency assumed
to be comparable to AES-128. In any other MirE scheme, following [JLK™ 23], the tag is
computed using QARMA5-64-0¢. Note that not all the ECC' bits need to be repurposed for
a MAC: these bits may contain both a shorter ECC and a MAC. If the MACs are not
stored in repurposed ECC bits, hashing is done by a multilinear UHF [CW79] at 32 or
64 bits. Note that these MACs are actually kept as unencrypted hashes while on-chip,
which speeds up verification, and we encrypt them block-wise when they are evicted from
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the hash cache groups. For instance, four 32-bit hashes are encrypted as a single 128-bit
block. This enhances system robustness and security against corruption and replay attacks.
In schemes with freshness (i.e., L3), the freshness data of the hashes that are encrypted
together must be joined to form the common tweak for the hash block encryption.

3.3.4 L3: Encryption, integrity, and replay protection

This level is capable of detecting not only memory corruption, but also replay of memory
contents including associated metadata.

With respect to L2, this level fully mitigates also against AW . In order to replay a

CL together with its counter and MACs the adversary either must successfully perform
cryptanalysis or wait for a counter repeat. Note that in some variants, the counters
themselves may be hidden to the adversary. More information about these data structures
is found in Section 4.2.

Remark 3. In a L3 system, a single system-wide key is sufficient for authentication, since
nodes closer to the root need to cover memory across Realms. In any case, this is not a
security issue. Encryption differentiators are also not required, but they may be a hard
customer requirement. Computing integrity tags on the ciphertext ensures that orphaned
memory can still be verified, which is essential for secure erasure.

3.3.4.1 Implementation aspects. The same freshness information is included in the
encryption and in the tag computation. A CounTeR mode (CTR) encryption mode is
used with both AES (following AEGIS, the method by Yan et al., and SGX) and QARMA,
except with Encryption for Large Memory (ELM), which uses Flat-©OCB. The anti-replay
technologies are described in Section 4.2.

4 Review of the Building Blocks

4.1 Cryptographic Primitives
4.1.1 Memory encryption primitives

RAM is commonly encrypted using a block cipher: the long initial latency of stream
ciphers makes them unsuitable for the purpose.

For simplicity, we only consider block ciphers with a block size of 128 bits: smaller
block sizes are used only for smart cards and small embedded devices, and longer blocks
are uncommon. The selected block ciphers are the AES [DR02] and QARMA [Aval7], where
the second is chosen as a representative of lightweight ciphers.

QARMA is a Tweakable Block Cipher (TBC): Beside the secret key and a text, a TBC
accepts a third input known as a tweak, which is used together with the key to select the
permutation computed by the cipher. Unlike the key, the tweak may be controlled by an
adversary. TBCs simplify the design of modes of operation, with an early application to
memory encryption [HT13].

The latencies of most suitable lightweight ciphers are similar (e.g., PRINCE [BCG112])
or worse (for instance SKINNY [BJKT16]). To estimate performance penalties for these
ciphers, readers can interpolate between our AES and QARMA results. A revised version of
QARMA, QARMAvV2 [ABD™23], has been introduced. Its latency is nearly equal to QARMA’s, so
we do not consider it as a separate configuration option.

Beside the AES, we do not consider other non twekable block ciphers. The reason is
that as they would require constructions that lead to increased latency anyway. We also do
not consider ciphers with block sizes that make them less suitable for memory encryption:
For instance SPEEDY [LMMR21] has a block size of 192 bits, and ASCON [DEMS21] in a
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Figure 2: Encryption and authentication methods designed around a Tweakable Block Cipher (TBC).
They show how freshness can lead to shorter critical paths. Notation: E is a TBC, the two inputs on the
left side of the block being the key (above) and the tweak; P = Py| - - || Pr—1, resp. C = Co|| - - - [|Cr—1 is
the partition of a plaintext, resp. ciphertext in blocks of equal size; «; is the Physical Address (PA) of the
i-th block; and v a nonce. If freshness is available, both encryption and authentication algorithms use it,
and they share the same nonce. The TBC used for authentication may have a smaller block size than the
encryption TBC, in which case r # r/.

tweaked mode such as Masked Even-Mansour (MEM) [GIMN16] has a block size of 320
bits. (For completeness’ sake, given a public permutation 7 : F§ — FJ, we describe an
example of a MEM construction: Given a key K, a tweak T', and a plaintext P, all n bits
long, the ciphertext C' is computed as C = M & w(P @ M), where M = K @ n(T @ K).)

4.1.2 Authentication primitives

Standard hash functions such as SHA-2 [NIS12] or SHA-3 [NIS15] can be turned into MACs,
but the resulting schemes are very slow and not parallelizable.

Carter-Wegman Hashes [CW79], i.e., encrypted UHFs, are a better choice. UHFs admit
fully parallelizable constructions, such as multilinear functions of the input computed over
a binary Galois field, as used in SGX [Guel6b]. If there is a MAC cache, it is actually the
not-yet-encrypted UHF values that are cached, which are thus verified more efficiently.

Apple’s Secure Enclave [App20] uses a Cipher-based MAC (CMAC) [IKO03] to compute
integrity tags. CMAC, being a block-wise chained construction, can not be made parallel
and has a high latency, but Apple’s use case does not need very high throughput. It is
however unsuitable for general usage requiring high bandwidth and low latency. Instead, we
evaluate TBC-based PMACs [Rog04]. PMACs are more expensive than encrypted UHFs,
but they can be used for error detection and correction beside integrity, cf. [HS10,SNRT18b,
JLK™23]. The computation of PMACs is depicted in Figs. 2¢ and 2d. Such constructions
can easily be made incremental where, upon a write, only the part of the message that
has changed needs to be recomputed. A variant for non-TBCs, called PXOR-MAC is
described in [IMO™22].

Encrypted checksums of the plaintext as in Rogaway’s Offset Codebook mode (OCB)
mode [Rog04] are an inexpensive method to compute integrity tags, but they suffer from
two drawbacks. First, they need to be verified after decryption, potentially worsening
overall latency. Second, since they require freshness, a CTR encryption should be used
which has lower latency than direct encryption. With CTR encryption, using checksums
of the plaintext as the basis for integrity would make the ciphertext malleable, whence a
UHF-based MACs should be used instead.
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Figure 3: Merkle tree. H is a hash function.

4.1.3 Modes of operation

For memory encryption, many (authenticated encryption) modes of operation can be
simplified somewhat because the length of the payload is a fixed multiple of the underlying
cipher’s block length.

Some older schemes, such as Bastion [CL10], use the block cipher in Electronic Codebook
(ECB) mode, but the lack of spatial uniqueness keeps plaintext patterns in the ciphertext,
therefore modes that provide spatial uniqueness are necessary.

For direct encryption, spatial uniqueness is achieved by using the PA as the tweak. With
a non twekable block ciphers, the latter is used in the XOR, Encrypt, and XOR (XEX)
construction [Rog04], which is just the XTS mode of operation [TEE19] for a message
whose length is a multiple of the block size. XEX is defined as C; = Ex(P; & M;) & M;.
In other words, a tweak-derived mask is added to the input and the output of the cipher.
The first mask My is derived by encrypting the tweak, and the successive masks M; for
i > 1 are obtained by multiplying the first mask by a fixed sequence of values. Using a
single finite field element v we can put M; = v? - My. Inoue et al. introduce a Flat-©CB
mode [IMO™22] which is similar to OCB [Rog04]. They define the L3 scheme ELM using
Flat-©CB mode for data and PXOR-MAC to authenticate counter groups.

With a TBC, the PA (concatenated with freshness if provided) of each block is used
directly as a tweak, cf. Fig. 2a, and a XEX construction is not needed.

In CTR encryption with a TBC, the counter and PA are used as tweak and text
respectively (cf. Fig. 2b) to generate the keystream. When not using a TBC, the counter
and PA are concatenated and then encrypted.

4.2 Memory integrity structures

A table of hashes or MACs protects against memory corruption, but it is not sufficient
against replay attacks, unless the table is itself protected. This can be achieved by
storing it in a tamper-averting memory or by covering it with a structure such as a Merkle
Tree (MT) [Mer80] (cf. Fig. 3). MT nodes can be cached [GSCT03] to speed up verification.

With freshness-based encryption, we can protect the memory by just protecting the
counters, for instance with a Bonsai Merkle Tree, i.e., a MT protecting the counter
table [RCPS07]. A different method in the counter tree, of which examples are Hall and
Jutla’s Parallelizable Authentication Tree (PAT) [HJ05] and the integrity tree used in
SGX [Guel6a]. A node of the counter tree is called a Counter Group (CG). A CG contains
a counters, which correspond to the a children of the node. The counters in a leaf, resp.
non-leaf CG are one-to-one with a CLs, resp. children CGs, A MAC is computed on every
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Figure 5: Split counters. The *" logical counter is the concatenation of a major counter C (resp. C’)
and of the i*" minor counter c; (resp. c}). This is then used in the function to compute the hash of the ith
data block (resp. counter group).

node and it is either stored dedicated table, along with the MACs of the data CLs or in
the node’s CL along with the counters. Since the latter approach has better performance,
for simplicity we consider only it. The MAC of a CG is computed on the a counters in
the node and the parent counter. Before a node is evicted, its parent counter is first
incremented and the node’s MAC is recomputed.

The split counters optimization [YEP'06] replaces a group of a counters with a group
consisting of a single major counter and a’ > a smaller, minor counters, associated
with that major counter (cf. Fig. 5). A logical counter in this scheme is defined as the
concatenation of a minor counter and its associated major counter. Each node (a data CL
or a CQ) is associated with a logical counter. The increased arity (for instance, from a = 8
to @’ = 64) reduces both counter storage overhead and tree depth. When a minor counter
overflows, the common major counter is ticked to ensure that values do not repeat. Since
this changes the values of all the logical counters associated with that major counter, all
the sibling nodes need to be refreshed. For data CLs this means that they are re-encrypted,
and for both types of nodes the MACs need to be recomputed. All minor counters in the
group are reset to zero at this point to reduce the rate of minor counter overflows.

Delta encoding [YA18] works by representing a logical counter as the sum of the major
counter and of a minor counter, instead of their concatenation. When a minor counter is
about to overflow, the minimum of all minor counters m is computed, and if m # 0 then it
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is subtracted from all minor counters and added to the major counter to delay the RMWs.
This operation is also called rebasing.

Despite the RMWs, split counter trees bring a major performance improvement over
monolithic counters. We introduce here 3-way split counters (with major, middle, and
minor counters) to both increase arity and reduce RMWs.

Instead of using full trees, two optimizations can be done.

LoC One option is storing the data cache line counters in an in-package tamper-averting
DRAM (a SRAM would be too large) which is MPE private (i.e., invisible to the
rest of the system and outside adversarial control). We call this solution LoC which
stands for Leaves-on-Chip. In fact, if we store the leaf nodes in a physically protected
memory, such as on-chip, then we do not need to compute any other nodes from the
original tree. LoC is sometimes mentioned in the literature only to be dismissed as
unviable because of the large overhead.

BoC A less expensive version of the LoC solution consists of keeping the leaf nodes in
external memory and store the level immediately above on chip. We call this tree
arrangement BoC for Branches-on-Chip. Similarly to LoC, the system needs no
further levels of the tree to ensure memory integrity. This idea seems new.

4.2.1 Memory overhead comparison

In Table 2, we compare memory overheads of different integrity trees, including the
new very high arity trees introduced in this paper. Multi-CL. MACs encrypt each CL
individually with its own counter, whence the eviction of a CL from the last level cache
does not require re-encryption of adjacent CLs. The table also includes the Tamper-
Evident Counter (TEC) tree [ECLT07], which has high memory overhead and requires
wide encryption with substantial latency, making it impractical for deployment.

4.2.2 Methods Excluded from Performance Evaluations

4.2.2.1 Log Hashes. Log Hashes [SCGT03b] are an interesting option because they do
not employ a tree structure and have a negligible memory overhead. Log Hashes maintain
an incremental hash of a Realm’s entire memory by adding the hashes of all cache lines
in it. The hash of a cache line is computed on the concatenation of the contents of the
line, its address, and a secret key. The Log Hash is updated with each memory write,
by subtracting the contribution of the old contents, and adding that of new contents.
Verification of the memory occurs only when the Realm interacts externally, but the
Realm’s entire protected memory region needs to be verified. Log Hashes are well-suited
only for long-running tasks with minimal I/O, where their performance impact can be
negligible. They are unsuitable for general applications and remain undeployed in practice.

4.2.2.2 Morphable Counters. In the Morphable Counters paper [SNR'18a] various
optimizations are presented to reduce the amount of RMWs associated to minor counter
overflow. The first optimization builds on the observation that, for most tasks, either only
a few counters in a group are incremented regularly, or all counters are. A counter group
can have two representations, both intended as delta encoding. For a 64 B CL length, all
CGs contain a 64-bit embedded MAC, and a 57-bit major counter, a 1-bit format flag F’
and a 6-bit Non-Zero Counters (NZC) field. Then:

1. The first representation has F' = “Zero Counter Compression” and stores the number
of non-zero counters in NZC. A 128-bit bitmap is used to mark which counters are
non-zero, and the remaining 256 bits are partitioned in equal fields of size |256/NZC|
each to store these counters.
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Table 2: Memory Overhead of Various Types of Integrity Trees.
Legend: ¢y, {., and ¢, are the bit lengths of a hash or MAC; of a monolithic or major counter; and a
minor counter, respectively. a is a counter group’s arity, and n is the number of CLs a MAC covers.

CL Length
Type of Tree 64 B 128 B
Merkle Tree with a = 4, resp. 8 33.3% 16.7%
Monolithic Counter Tree with embedded MAC, £. = 56
e /y=64;n=1;a=S8, resp. 16 26.8% 12.9%
e /g =32;n=1;a=8, resp. 16 20.5%  9.79%
o /1 =232;n=2;a=8, resp. 16 17.4% 8.23%
o (i =232;n=4;a=8, resp. 16 15.8% 7.45%
Split Counter Tree with embedded MAC, £. = 64
o (g ==64;n=1;(,=6,resp. 7 14.1%  7.04%
o /gy =232;n=1;¢, =6, resp. 7 7.84% 3.91%
o /gy =232;n=2;(, =6, resp. 7 4.71%  2.34%
o /gy =232;n=4; 0, =6, resp. 7 3.15% 1.57%
o ly=3%n=1,¢=3 7.04%  3.52%
o ly=3%n=21/¢ =3 3.91%  1.95%
o ly=23%n=40 =3 2.35% 1.17%
PAT with a = 8, resp. a = 16 28.6% 13.3%
TEC tree with a = 8, resp. a = 16 42.9%  20.0%
128-ary 3-way Split Counter Tree, £ = 32 — 3.91%
256-ary 3-way Split Counter Tree, £g = 32 — 3.52%
128-ary 3-way Split Counter Tree with MirE, £y = 32 — 0.78%
256-ary 3-way Split Counter Tree with MirE, ¢z = 32 — 0.39%

2. If the number of non-zero counters is larger than 63, then the flag F' is set to “Uniform”
and the remaining 384 bits contain 128 3-bit minor counters. Rebasing is used only
in this second representation.

While morphable counters are effective in reducing the number of RMW, we do not
implement them since 3-way counters effectively eliminate the RMW overhead, and are
much easier to implement (cf. Sections 5.8 and 5.11).

4.2.2.3 lIsolated Tree with Embedded Shared Parity. We do not evaluate the Isolated
Tree with Embedded Shared Parity (ITESP) [TBCT20] separately. One of its configurations
packs 32 counters in a 64 B cache line where the size of minor counters is 4 bits, and
the freed 128 bits are used to store two 64-bit parity/integrity fields, each covering 16
cache lines. We speculate that its performance for a single Realm should be just slightly
worse than a 64-ary 64 B split counter groups L3 scheme with MirE, since no MAC table
is kept. The main benefits of ITESP emerge when multiple Realms run concurrently, a
configuration not supported by our setup, because each Realm would have its own integrity
tree and metadata cache.

4.2.2.4 Approximate Set Membership. Attempts have been made to use Bloom Filters
[Blo70] or Cuckoo Filters [FAKM14] for memory integrity schemes. The intention is to store
the MACs of a group or CLs as keys in such probabilistic filters instead of storing them
separately in memory. In order to achieve a false positive rate of at most p, Bloom filters,
resp. Cuckoo filters, need at least 1.44log,(1/p) [PPRO5], resp. log,(1/p) bits of space per
inserted key [FAKM14]. Since we want the false positive rate to approach, if not match, the
claimed security level of the MACs inserted as keys in the filters, which is their bit length,
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these filters cannot occupy less memory than an equivalent table of MACs.! Therefore, all
the proposed schemes that claim a memory overhead reduction [NHSQ12,SA21] fail this
basic security scrutiny.

4.3 Cryptographic parameters and practices

To ensure long-term confidentiality, encryption keys should be at least 128 bits long. Shorter
keys are not used in any currently deployed or recently proposed memory protection scheme.
Sometimes longer keys are an option, for instance 256-bit keys for Intel’s TDX, but we
posit that this does not offer increased practical security and only increases latency:
indeed, a proper complexity analysis of quantum-computer-assisted key search against
AES-128 proves it is secure even against adversaries with access to a large-scale quantum
computer [JNRV20]. Deployed technologies such as Intel’s SGX and TDX, and AMD’s SEV
use the AES in modes that need two independent keys, or even AES-256. QARMA-128 and
QARMAv2-128 allow the use of 256-bit keys as well.

Encryption block sizes must be at least 128 bits, to reduce the likelihood of any attack
that exploits ciphertext collisions.

Authentication keys should be at least 128 bits long as well.

Only the TCB and no SW environment may set any key, and SW will only manage
process identities.

We posit that a length of 32 (or even 28) bits is sufficient for both data and counter
group MACS, to deter Adversaries that simply want to corrupt memory, for instance with
RowHammer attacks. This is, in fact, one of the main reasons to deploy a L2 scheme.
The TCB must destroy (i.e., internally invalidate and overwrite) any differentiator, i.e.,
key or tweak, associated with the address where an integrity violation occurred — and
possibly other internal information. The target process will no longer be able to execute,
and the information in it will be lost to the adversaries. It is essential that the TCB
responds so to integrity violations before giving back control to the operating system or
the hypervisor. Otherwise, to make just one example, an AW adversary with the ability
to run privileged SW would be able to brute force a short MACs.

If the chosen authentication primitive produces a longer MAC than needed, the output
is simply truncated.

In L3 schemes, an Adversary may attempt to replace a CL together with its MAC. To
do this without triggering an integrity fault, they wait until the counter associated with
the target CL repeats. If the counters are sufficiently long, the attack cannot succeed. For
this reason, monolithic counters must be at least 64 bits long (it can be argued that 56 bits
suffice). The minimal aggregated length of a major and a minor counter (or major plus
middle plus minor) shall also be 64 bits. If an Adversary wants to replay a CL together
with its MAC and counter, they will similarly have to either guess the embedded MAC or
wait that the parent counter repeats.

For Merkle Trees the minimal hash length is 128 bits, regardless of whether the hash is
keyed or not, to ensure that attacks have a time complexity of at least 264,

4.4 On the design space

In Fig. 1 an MPE is associated with a memory channel, benefitting from memory interleav-
ing and thus reducing bandwidth saturation risks. In the figure an MPE is also represented
as a separate block between system cache and memory controller, but this is far from the
only option: it can be implemented as part of the memory controller or a wrapper around
the system cache. A different MPE configuration involves a core-private MPE, positioned

1Entropy is a harsh mistress. Attempts to cheat on her are severely punished by mathematics.
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upstream of the on-chip interconnect. In such a design, the MPE can be a performance
bottleneck, but it is suitable for secure cores, like SoC-embedded TPMs.

Pure SW solutions are possible: At boot, a part of a cache is address locked in order to
keep the TCB in it (and effectively reducing its size). All memory reads/writes to external
memory are then trapped to this code to augment them with encryption and integrity
support. Performance is clearly severely impacted, as in [CZG*15, MMS™20]. A different,
less secure, approach [Pet10, GMD™16] keeps most of the RAM encrypted except for a few
recently used pages, which are re-encrypted once they have been idle for some time.

Recall that we only consider solutions contained in the SoC package. This excludes
any form of “smart memory” [AN17] where the protection logic is split between the
Requester and the Completer, such as the CXL.memory Integrity and Data Encryption (IDE)
scheme [CXL19]. Such architectures require logic for attestation, secure link setup, and
encryption, involving cryptographic engines in every memory module if not every chip, so
it would be more expensive, hardware-wise, than an MPE-based solution. CXL is however
suitable for disaggregated memory configurations, covering transport between compute
and memory nodes.

The breadth of the subject and constant developments (cf. Table 1) imply that the full
design space is likely not knowable. The present work represents just a snapshot.

5 Benchmarking plan, results, and discussion

5.1 Benchmarking environment and methodology

It would be impractical to implement several thousands of combinations of technologies in
silicon for the purpose of evaluating them. A solution to this problem lies in prototyping,
i.e., the creation of an approximate implementation of the desired features, which can
thus be tested and benchmarked. Very accurate models can be created even without
implementing all details. For instance, the latencies of cryptographic primitives can be
derived from actual implementations and inserted as delays into the simulation.

The prototypes used in this paper are built in the gem5 simulator [BBB*11, LAA™20].
gemb allows engineers to build SW versions of HW components typically included in
computer systems. It abstracts the interfaces between components, which can be combined
flexibly. It provides approximate timing models for many processor cores.

The modeled CPU core approximated an Arm Cortex A72, with a 2 GHz frequency and
a 1 GHz system frequency. The cache hierarchy includes L1-I (48 KiB, LRU replacement
policy, 3-way set associative, 1 cycle latency) and L1-D (32 KiB, LRU replacement policy,
2-way, 1 cycle latency) caches, and a unified L2 cache (1MiB, tree-PLRU replacement
policy, 16-way, 5 cycles latency). The memory is 16 GiB DRAM in a dual-rank DDR4
DIMMs configuration. The MPE-private caches are 4-way set associative with a LRU
replacement policy.

The simulated SoC is implemented in a 7nm process. We take the latencies of some
components from [Aval7], for instance 15.67 ns for a pipelined implementation of AES-128,
4.8 ns for QARMA1-128-01 and 2.2ns for QARMA5-64-0¢. Note that implementation, process,
libraries all affect the crypto block’s latency, but system and CPU clocks do not. We
assume we reuse the IP blocks from [Aval7] with their own clocks, thus with the exact
same performance characteristics. This is a reasonable assumption since this is how hard
macros are used in practice. The above latency of QARMA5-64-0y is also used in [JLK 23],
and essentially for the same purpose as ours.

Lastly, all MPE algorithms are thoroughly parallelized to their maximum extent for all
considered schemes.

Our evaluation uses the SPEC 2017 [BLvK18] benchmark suite. Detailed software
models such as gemb increase execution time by several orders of magnitude: a typical
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SPEC benchmark can take around a month to run [Sanl4]. To facilitate rapid prototyping,
we use the SimPoint [SPHC02] methodology, which is well understood in academia and
industry. It uses clustering to find representative regions that serve as a proxy for the
whole application. The results are finally combined using weighted averages, that reflect
the regions’ importance to the overall application. Up to 10 SimPoints of 30 million
instructions from each benchmark are simulated in place of several billions of instructions.
Regarding reproducibility, including all details needed to re-generate our SimPoints would
be impractical. We also note that the SPEC consortium themselves encourages the use of
SimPoints [SPE18].

Remark 4. An alternative approach would have been to run the entire benchmarks, as
opposed to SimPoints, in parallel on a large distributed cloud. This unfortunately does not
work in practice since the longest running workloads would have taken weeks to months
to run to completion, without any expectation that the results would be any different
from the SimPoints methodology. The quicker turnaround, less than an hour to run all
SPEC 2017 on a big-enough cluster, is in fact instrumental when exploring a vast space of
optimizations.

Remark 5. A legitimate question is whether we can verify the reliability of our simulations
by porting SPEC2017 to run under Client SGX. This would be a major undertaking, even
with the help of general-purpose wrappers, we would have to avoid the penalties related to
the EPC. In fact [Guel6a] only runs 445.gobmk from SPEC2006 with selected data sets.
This said, on the trevorc.tst and nngs.tst data sets, [Guel6a] reports slowdowns of
4.90% and 3.29%, respectively, and on our simulated SGX-like method we measure 5.31%
and 4.65%, in line with expectations from a deeper tree.

Remark 6. Regardless of how the simulation is performed, we may ask ourselves about the
impact on systems that include context switches, virtual memory swap, and any type of
I/0. These aspects are very difficult to emulate. In fact, benchmarking in such a context
seems absent from the literature on cryptographic memory protection. However, (i) We
can observe that the additional memory used for metadata is not visible to the operating
system and will be unaffected by paging and similar operations; and (ii) It can be argued
that context switches, paging, and general I/O are affected by the performance penalties on
memory accesses only in a minor way: context switch code and data can reside in pinned
memory, and the timing of disk, network operations is dominated by media which are
orders of magnitude slower than physical RAM. Speaking in particular of context switches,
on a typical many-core system (for instance 128-core) with several users (roughly 50 users
and up to 500 active user sessions), we observe less than a handful of context switches per
second per core. Any cold start effect after the context switch would be in the noise since
warming all the caches take just a few million instructions (roughly a few milliseconds).

Therefore, any performance penalty we present here is likely an upper bound to the
real-world one.

5.2 Selection of the benchmarking sets

All MPE configurations span a vast multidimensional space. Exhaustively evaluating them
all is clearly infeasible, not to speak of the difficulties of properly presenting the data.
Hence, we explore the design space in various stages, each consisting of a set of runs
of the benchmark suite. Each set focuses on some previous configurations and expands
the parameter space where we expect that it has some noticeable impact. Some schemes,
such as L1 schemes, do not carry over to the successive sets because they do not have
implementation parameters beyond the encryption primitive.

We use shorthands to describe the various configurations:

Level / Cipher / {additional technologies} / MAC length / CL length
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The optional “additional technologies” may include: counter representation (mono or split)
and arity, Leaves or Branches on Chip (LoC or BoC), or the use of MACs in Repurposed
ECC bits (MirE).

The default CL length is 64 B, unless the counter groups are on chip, in which case it
is 128 B. The default MAC length is 56 to 64 bits.

“{AMD} SME” is equivalent to L1/AES/GFmul/CL64B. Here, GFmul denotes a XEX
scheme where the tweaking mask is computed by multiplication of the tweak by an
additional secret key, whereas when we just write XEX the mask is derived by encryption
of the tweak; “{Intel} TDX” is equivalent to L2/AES/MirE/28b/CL64B, and “{Intel} SGX”
is based on Client SGX, i.e., L3/AES/mono-8/56b/CL64B. LoC always implies counters are
split. L2 implies that a non twekable block ciphers is used in a XEX construction, except
when explicitly stated otherwise. The shorthand L3/LoC denotes a version of L3 that uses
LoC, and thus no integrity tree. Similarly, L3/BoC is a L3 solution with the leaf counters
off chip and the next level on chip, also without a full tree. L3 without BoC or LoC denotes
a replay-protection-capable scheme based on an integrity tree and no counters on-chip.

5.2.1 Simulation of system load

The benchmarks are first run on an unloaded system, where the current benchmark is the
only running task.

We then want an upper bound for the performance degradation in a fully loaded system,
with up to hundreds of processes running on dozens of processing elements, all sharing the
bandwidth of the memory subsystem, such as in a cloud server. Directly simulating such a
system is very complex and impractical. We instead inject synthetic traffic upstream of
the MPE, but after the L.2 cache. We do not include a L3 cache in the system to simulate
the extreme situation where the latter has been completely swamped by traffic coming
from other requesters or clusters of requesters.

The question is then, how much extra traffic we must inject.

Therefore, we measure the effective memory latency of the system with various levels
and schemes of memory protection, and we observe that the latency starts to degenerate
catastrophically for most of them between 8 and 10 GiB/s. Fig. 6 shows how latency,
and thus, at least part, also performance penalty depend on the load of the system. For
instance, a SGX-like L3 MPE covering the entire memory starts to degrade if more than
8 GiB/s of traffic is injected. We take this value as the traffic for a fully-loaded system
and halve it, i.e., 4 GiB/s for the partially-loaded system.

The simulated traffic consists of 75% reads and 25% writes of entire cache lines (64 B or
128 B). The access pattern is a mix of cache-line-aligned linear and random accesses. The
linear accesses are sequential, and the random ones are at randomly generated addresses,
both across the whole reserved range. The traffic generator alternates 100 ps of simulated
time of linear accesses with 200 ps of random accesses, for as long as the workload is
running.

5.2.2 Baseline performance

Without memory protection, our benchmarks run on a loaded system 14.1% slower than on
an unloaded system with 64 B CLs, and 9.5% slower with resp. 128 B CLs. Changing the
CL length from 64 B to 128 B results in an average speedup of 1.4% in an unloaded system
and 5.5% in a loaded system. The timings of all benchmark runs are always compared to
the baseline with the same load and CL size.

5.2.3 Initialization of short counters

When a piece of software starts to run, in a real-world setting any minor/middle counter
will have assumed, because of previous processes, essentially random values. If all counters
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Figure 6: Bandwidth/latency plot with various MPEs and without, for linear or random synthetic traffic.

are initialized to zero before running a benchmark, the latter is put at an advantage, since
the non-major counters will take longer to overflow, and the number of RMWs may be
underestimated. In fact, SimPoints may even amplify this bias. Therefore, to make our
simulations as realistic as possible, in all split counter runs we initialize the non-major
counters to uniformly random values. This magnifies the performance gap between 2-way
and 3-way split counters of equal arity, highlighting the superiority of the latter.

We now report and discuss the results of all the runs.

5.3 Set 1: State-of-the-Art, AES vs. Lightweight encryption ciphers,
and 64-bit vs. 32-bit MACs

We start with the state-of-the-art and some simple variations thereof to get an initial
overview of the relative performance merits of the deployed or proposed technologies.
We compare L1/AES/CL64B (e.g., AMD SME), L1/QARMA/CL64B, L2/AES/32b/CL64B,
L2/AES/MirE/28b/CL64B (corresponding to the Intel TDX and Scalable SGX MKTME),
L2/QARMA/32b/CL64B, L2/QARMA/MirE/32b/CL64B, and ELM with both monolithic and
split counters, SGX (i.e., memory protection as in Client SGX, but covering all memory,
L3/QARMA/split-64/32b/CL64B — all with and without a hash cache if not fized by the
manufacturer’s architecture, since some architectures have a hash/MAC cache while other
ones, such as SGX, avoid it. We also compare 32-bit and 64-bit MACs in selected cases —
shortened to 28-bit, resp. 56-bit, in TDX, resp. SGX.

Note that SGX here is not a full implementation of Intel’s Client SGX architecture,
but only of its encryption, integrity, and anti-replay features, the latter expanded to the
whole memory. For SGX; hash encryption is CTR as described by Intel [Guel6a]. We use
this method for the SGX-like variant with AES-256 (L3/AES256/mono-8/56b/CL64B) as
well. In all other cases, data MACs are replaced by 32-bit long hashes which are directly
encrypted in groups of four upon eviction.

Note that TDX includes also Scalable SGX.

The ELM method follows [IMO™22], i.e. it uses the AES in a XEX construction except
when QARMA is used. With QARMA the XEX constructions are replaced by simply feeding
nonces and separation fields as the tweak to QARMA, as well as using QARMA5-64-0( to
generate the One-Time Pads (OTPs) to encrypt the tags. We note that Apple’s Secure
Enclave uses a method that is essentially equivalent to ELM’s for encryption, but integrity
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Figure 7: Set 1 (Section 5.3). Comparison of base levels and state-of-the-art.

is computed with CMAC, which is more expensive than encrypted checksums and does
not lead to enhanced security. Since is would probably be just slightly slower than ELM,
we do not need to benchmark it.

Monolithic counter trees are 8-ary, resp. 16-ary with 64 B, resp. 128 B CLs. For 2-way
split counters, minor counters are always 6, resp. 7 bits long, and the arity is 64, resp. 128.

For schemes that provide freshness, the counter cache is 64 KiB as in SGX to level the
comparisons.

These principles apply to every successive set as well, unless otherwise indicated.

The runs reported in Fig. 7 support Results R2 and R5. Also, ELM has worse
performance than SGX, having the encryption primitive on the critical path.

Recall that the latencies of AES-256, AES-128, and QARMA-128 in our simulation are
21.99ns, 15.67 ns and 4.80 ns, respectively. They are strongly correlated to the correspond-
ing performance penalties of a L1 scheme on an unloaded system: 7.93%, 6.37%, and 3.21%.
Similar outcomes hold also for varying loads and L2/MirE schemes. For L2/non-MirE and
L3 schemes, the difference becomes less significant as the slowdown due to traffic contention
between data and medatada increases. This proves Results R3.

We observe that the two XEX schemes L1/AES/GFmul/CL64B and L1/AES/XEX/CL64B
have the same overall performance penalty. Indeed, Fig. 13 shows that this is the case for
each individual benchmark. These schemes differ only in the computation of the tweaking
mask. In the first case it is performed via Galois multiplications, which we highly optimize
for speed, resulting in a latency of 0.55ns in the chosen process. In the second case AES
encryption is used instead. We recall that AES-128 latency is 15.67 ns. Thus, on the write
path, the latency is, roughly one, resp. two AES instances, while on the read path is it
always one AES instance. Despite the significant difference on the write path, the penalties
are almost exactly the same. This supports the first claim in Result R4.?

To a first approximation, the relation between performance penalty and additional read
latency should be roughly a linear function of the relative additional latency € = ax /8
where [ is the baseline memory latency, y the additional read latency, and a depends on
the proportion of external memory accesses while the task at hand is being run. While
we can estimate  (cf. 6), « is clearly too variable. Noting that the latencies of AES-256,
AES-128, and QARMA-128 used in our simulation are 21.99ns, 15.67ns and 4.80 ns, and the

2In passing, we mention that this aligns with common lore that the read latency is the dominant factor
on the overall performance impact.
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performance penalties for a L1 scheme on an unloaded system are 7.93%, 6.37%, and 3.21%,
least squares regression shows that the penalties roughly lie on the line 0.2765 5 + 1.922
with errors bounded by 0.11 — note, however, that the middle value is undestimated,
suggesting a positive coefficient for the second order of the approximation. This completes
our arguments for Result R4.

For the remainder of the evaluation, because of Result R5, for simplicity’s sake we
shall assume that MACs are 32 bits long and directly encrypted in groups of four except
with SGX, MirE, or otherwise explicitly indicated.

Similarly, since split counters perform better than monolithic counters (this goes towards
Result R11), we shall assume that L3 configurations will make use of split counters.

For brevity, in Sets 2, 3 and 4 we leave out AES from the comparison as it has an
identical memory access pattern and similar results to using QARMA-128.

5.4 Set 2: Impact of MPE cache sizes

The goal here is to understand the impact of the sizes of the two MPE caches, namely the
hash and counter caches.

L1 does not need caches, so we only consider L2 and L3.

The hash cache sizes we evaluate are 4 KiB, 16 KiB, and 64 KiB; and counter cache
sizes are 16 KiB, 64 KiB, 256 KiB, and 1 MiB. We expect these sizes to be within a
reasonable range when implemented as SRAM. The presented results are based on the
two L2/QARMA/32b/CL64B and L3/QARMA /split-64/32b/CL64B configurations (i.e., 32-bit
MAC s, 64 B cache lines, and 64-ary split counters for L3).

These results, displayed in Fig. 8 support Result R6. The small benefit of the hash
cache can mostly be attributed to spatial locality (most temporal locality has already
been exploited by normal data caches). Intuitively, the access patterns of the counter and
the hash cache should be similar. However, the reach of the counter cache is bigger since
counters are smaller when using split counters and nodes closer to the root cover a large
amount of address space which makes them more likely to be reused.

Starting with Set 3, the MPE has a 16KiB hash cache and a 256KiB counter cache.
Level L3 uses split counters, unless explicitly indicated otherwise, or with SGX.

5.5 Set 3: Impact of the cache line length

Another fundamental piece of information is how the choices of 64 B and 128 B CLs affects
L2 and L3 performance: Doubling the CL size will halve the memory overheads, but at
least in theory the coarser memory granularity may negatively affect performance.

This set comprises L2/QARMA/32b and L3/QARMA/split/32b with 64 B and 128 B cache
lines. Counter group and CL sizes are always equal which implies that the basic L3 split
counter configurations have arity 64 in the 64 B case and 128 in the 128 B case.

The results of Set 3 are combined with those of Set 4 in Fig. 9. They prove Result R7.
Since we already know that our reference system without an MPE performs 1.4% to 5.5%
better with 128 B CLs, we expect that using to 128 B CLs, at least for the system cache,
is generally beneficial in a system with an MPE.

It is worth noting that having shorter CLs in coherent caches closer to the CPU is still
possible and may be beneficial for multithreaded workloads but studying this is outside
the scope of this paper.

Remark 7. Changing the cache line size for the coherent cache system can be a major
undertaking. However, there are important cases where it is not only feasible, but also
reasonably non-intrusive. For example, inclusive Last Level Caches (LLCs) could store
and perform writebacks of pairs of 64 B cache lines while still performing coherence on the
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individual lines. Similarly, LLCs outside the coherent domain (sometime known as system
caches) may use 128 B cache lines while the coherent caches use 64 B cache lines. Both
options make the effective cache line size 128 B from the point of the MPE.

5.6 Set 4: Asynchronous MAC verification

So far, we have assumed that integrity tags are verified synchronously. In principle,
asynchronous verification can improve performance by releasing data to the CPU before its
MACSs has been fetched from memory and verified. Therefore, we assess how synchronous
verification improves overall performance over asynchronous verification.

We test only L2 and L3, as they offer integrity. We reuse the configurations of Set 3.
The results are shown in Fig. 9.

Asynchronous verification comes with a significant drawback. Since the CPU is
speculating on MAC verification being successful, adversaries have a window of opportunity
where the CPU is using data under their control and mount an attack. Mitigating this
issue introduces significant complexity which would be detrimental the integrity of the
system. This is Result R8.

From here, we only use synchronous MAC verification.

5.7 Set 5: Use of on-chip memory for L2 and L3

Going beyond caching as explored in Set 2, we explore the impact of secure MPE-private
on-chip memory.

Since MACs have a larger memory overhead than counters, we do not expect schemes
with on-chip hashes and off-chip counters. Hence, we ignore such a configuration.

Fig. 11 results confirm that relieving the memory bus contention between data and
metadata improves performance already when the memory subystem is partially loaded.

The BoC configuration only marginally outperforms the schemes that do not rely on
on-chip memory. This is explained by considering a system without on-chip memory:
Temporal locality is poor for leaf nodes, but it improves closer to the root of the tree as each
node corresponds to a large memory space. This makes it likely that integrity verification
encounters a cache hit at the level just below the leaf level. Therefore, performance is
similar to BoC.

With all metadata on chip, the performance is close to the baseline. This may not be
realizable in practice. However, as we shall see in Section 5.8, it can be approximated by
repurposing ECC bits for MAC storage.

For this set of runs we kept the AES to show that for L3 the performance is similar to
QARMA. However, on an unloaded system, AES and QARMA show a slight performance gap.
This gap decreases as the system load increases, due to the fact the cipher latency becomes
proportionally smaller compared to the increasing memory access latency.

5.8 Set 6: Impact of repurposing ECC Bits, 3-way split counters, and
large counter caches

The deployment of Intel TDX’s Multi-Key Total Memory Engine with Integrity (MKTME:)
[Int21] and [YA18] suggests that using ECC bits for tags may be an acceptable trade-off
for real-world deployments. This is essentially an approzimation of storing MACs on-chip
since the ECC bits are stored out-of-band and fetched in parallel with the data.

We consider both L2 and L3 configurations, with and without MirE. We expect that
MirE implementations are optimized for performance and to reduce storage overhead. For
that reason, except for L1/QARMA/MirE/CL64B, we focus on 128 B CLs which enable denser
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Figure 8: Set 2 (Section 5.4). Impact of MPE Figure 9: Sets 3 and 4 Figure 10: Set 7
cache sizes on L2/QARMA/32b/CL64B and (Sections 5.5 and 5.6). Impact (Section 5.9). Impact
L3/QARMA/split-64 /32b/CL64B. of CL size and asynchronous of incremental MACs.
MAC verification.

counter packing than 64 B CLs. With MirE the MAC algorithm is PMAC, and a hash
cache is not needed since MACs and data are fetched in the same memory transaction.
In addition to classic 2-way Split Counter Groups (CGs), we introduce high-arity 3-way
Split CGs, which we define only in the length of 128 B, with 128 and 256 logical counters
per node. The purpose of this optimization is to keep the amount of RMW operations
under control, with one variant also increasing the density of the CGs. To quantify the
impact of this optimization, we evaluate each configuration with and without middle
counters. We consider the following 3-way split CG types, without embedded MACs:

e 128 x 7-bit minor, 8 x 8-bit middle, and 1 x 64-bit major counters, with a memory
overhead of 1:128; and

e 256 x 3-bit minor, 32 x 6-bit middle, and 1 x 64-bit major counters, with a memory
overhead of 1:256.

If MACs are embedded in the counter group, for a 128-ary tree the lengths of the major
and middle counters would be reduced to 48 and 6 bits, and for a 256-ary tree the middle
counters would 5 bits long — in both cases with 32-bit MACs. The memory overheads of
these trees are 1:127 and 1:255, respectively.

The data (Fig. 12) supports Results R9 and R11. Middle counters play a crucial role
in maximizing the performance of high arity CGs, preventing significant RMWs overheads.
This demonstrates Result R12. Because of this, L3/MirE/LoC designs may even perform
better than L1 schemes, which have the cipher on the critical path to the external RAM.

For a 16 GiB protected memory, the BoC configuration needs 256 KiB of on-chip storage.
An alternative to the BoC configuration would be to use that memory for a counter cache.
The 512 KiB configuration in Fig. 12 corresponds to this configuration since the baseline
counter cache size is 256 KiB. In such cases, the larger cache normally performs on-par
with BoC in an unloaded system and slightly better under load. This can be explained by
two effects. First, the cache approximates BoC since the level just above the leaf level is
very likely to be resident in the cache. Second, unused branch nodes can be replaced by
useful leaf nodes which improves efficiency. On a fully loaded system, LoC performance is
reached in practice only when the cache is large enough to cover the tree working set of
the running applications. In the case of SPEC 2017, this typically happens between 1 MiB
and 2 MiB of cache.
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caches. For arity 128 or 256 the CL is always 128 B.

5.9 Set 7: Impact of incremental MACs

If we cannot store MACs in the ECC bits or on-chip, there is another option for reducing
their storage overhead: to compute them incrementally over multiple cache lines.

Since the goal here is to reduce storage overhead, we consider only 128 B CLs. We test
both L2 and L3 configurations with a MAC covering 1, 2, or 4 CLs. The runs are reported
in Fig. 10. We use only QARMA-128 for encryption, since the performance degradation
depends only on the increased memory traffic. In fact, AES results follow the same pattern.

To improve the performance of an incremental hashing scheme one can use the following
optimization, presented in [TSB18]: Whenever the plaintext is sufficiently compressible,
store the ciphertext along with its MAC in the same CL, and do not include the MAC
in the computation of the incremental MAC of the surrounding CL group. This reduces
the number of memory reads and the amount of operations to update the incremental
MAC. However, this optimization comes with a significant drawback: an Adversary can
infer properties of the data by observing its compressibility, defeating the purpose of
confidentiality protection [Kel02,SBS*21]. Therefore, we do not consider it.

This is Result R10.

5.10 Set 8: Breakdown of selected configurations

To better understand the behavior of the MPE, we select a few interesting configurations
and show all individual benchmarks in the suite:

« AMD SEV (L1/AES/GFmul/CL64B) and L1/QARMA/CL64B;

« Intel TDX (L2/AES/MirE/28b/CL64B);

o L2 with (L2/QARMA/MirE/28b/CL64B) and without (L2/QARMA/64b/CL64B) MirE;
o Intel SGX (L3/AES/mono-8/56b/CL64B);

o 128- and 256-ary 3-way split CGs (L3/QARMA/LoC/3-split-128/MirE/28b/CL128 and
L3/QARMA/LoC/3-split-256/MirE /28b/CL128).

The SPEC2017 benchmarks (cf. Figs. 13 to 18) exhibit some expected results: certain
tasks, like omnetpp, mcf, and bwaves experience a more significant performance impact
across most MPE configurations.
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Figure 13: Set 8 (Section 5.10). Comparison of AMD SEV (L1/AES/GFmul/CL64B),
L1/AES/XEX/CL64B, and L1/QARMA/CL64B.
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Figure 14: Set 8 (Section 5.10). L2 impact of MirE: L2/AES/32b/CL64B vs. L2/AES/MirE/28b/CL64B
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Figure 15: Set 8 (Section 5.10). L2 impact of MirE when using QARMA: L2/QARMA/32b/CL64B vs.
L2/QARMA/MirE/28b/CL64B.
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Figure 16: Set 8 (Section 5.10). Impact of split counters: L3/AES/mono-8/56b/CL64B (Intel SGX) vs.
L3/QARMA /split-128/32b/CL128B.
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Figure 17: Sets 8 and 9 (Sections 5.10 and 5.11). L3/QARMA/MirE/split-128/LoC/28b/CL128B with
3-way and 2-way split counters, and without RMWs.
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Figure 18: Sets 8 and 9 (Sections 5.10 and 5.11). L3/QARMA/MirE/split-256/LoC/28b/CL128B with
3-way and 2-way split counters, and without RMWs.
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5.11 Set 9: Impact of RMW operations

All split counter methods need, as already mentioned, to perform some batches of RMW
operations to re-encrypt data or re-compute some embedded MACs whenever a minor, resp.
middle counter overflows. These are expensive operations and we want to understand their
impact on performance.

We compare the performance of L3 MPEs against hypothetical ones where the RMW
operations have zero cost, i.e., are instantaneous. This is achieved by simply skipping them:
such an experiment is possible because the simulated MPE does not actually perform
cryptographic operations, inserting instead timing delays in their places. This gives an
upper bound on the actual time spent in the RMW operations.

For the 128- and 256-ary split counter schemes, we report the performance with 3-way
split counters, the performance with 2-way split counters by omitting the middle counters,
and the performance with skipped RMWs. The selected combinations are the ones in Set
8 with RMWs.

The results are shown in Figs. 17 and 18. We notice that the impact of RMWs is not
always negligible. Using 2-way split counters with 3b minors (L3/QARMA/LoC/MirE with
256-ary CGs) carries a significant performance penalty, but the use of middle counters
brings the performance close to the ideal case where RMWs are “free”.

The performance penalties and the proportion of time spent doing RMWSs increase
with the load.

This set of runs proves Results R1, R11, and R12.

5.12 Remarks on area and power

Power consumption of a circuit is roughly a linear function of both its area and the time it
is active.? Thus, the MPE’s total area and the performance penalty are the main factors
determining its energy cost.

The area of the MPE mostly consists of arithmetic circuits, caches, and any internal
DRAM (if present). In comparison, the control circuitry has negligible area.

Not only is estimating areas for all configurations impractical, but also implementations
can vary greatly. For direct encryption schemes like L1 and L2, implementing multiple
encryption blocks in parallel maximize performance, but area can be saved by sacrificing
some of that performance using pipelined designs. An area-optimized implementation of
QARMA-128 (with 256-bit keys) is roughly ~ 50 KGE for a single pipelined block [Aval7].
Latency-optimized AES implementations exceed 17 KGE per round [UHM™20], hence the
area for a single instance is &~ 160 KGE and for eight parallel blocks ~ 1.3 MGE. Note, also,
that a pipelined QARMA circuit and a fully parallelized AES circuit would have comparable
total latency — and this would deliver similar performance and security to a L1/L2 scheme,
while having different areas.

Integrity can be implemented by re-using the encryption blocks, or by using ad-hoc,
smaller ones like QARMA5-64-0¢, as in [JLK23].

Remark 8. The speed of the MPE caches is not as critical as the CPU caches’: counters
and hashes just need to be available to the MPE before the data from RAM. Thus, instead
of SRAM, slower DRAM with a much smaller area can be used for these caches.

A DRAM memory cell uses a capacitor and transistor, or in some cases two transistors.
The area can thus be capped by two transistors per bit, with a minor amount of control
logic. A 4KiB cache is thus about 64 KGE, and a 256 KiB cache is roughly 4 MGE.

With these numbers at hand, we see that, for modern SoCs with billions of transistors,
a single large MPE per memory channel is a small but not negligible cost. Although an

3To be more precise, power consumption is the sum of dynamic power, that depends on switching
current, and static power, that depends on leakage current, and thus on power gating.
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additional 1:128 or 1:256 of in-package or in-module DRAM might seem a minor investment
compared to the total system memory, it cannot be disregarded, especially considering the
added expenses of tamper-averting designs.

6 Conclusions and Open Questions

We performed a thorough survey and evaluation of the available technologies for the
cryptographic protection of memory contents, together with some previously not considered
variants. This results in a vast set of independent choices, corresponding to different prices
in terms of have each their performance penalty, memory overhead, and hardware cost.
The lack of an absolute metric to combine these three costs into one rating makes it very
challenging to provide recommendations for each use case. Therefore, the extensive set
of benchmarking runs we present should be used as a guidance for further investigations.
This said, we have enough data to provide some rough guidance.

If only confidentiality is needed, L1 schemes can perform very efficiently, and we
recommend the use of a lightweight, high-security encryption primitive (e.g., QARMA) in a
direct mode. If integrity protection is required, but replay attacks are out of scope, L2
schemes with short MACs can be made very efficient by storing the MACs in ECC bits.

Now, let us focus on L3 schemes: nearly-transparent strong memory protection is
possible with current technology, but the hardware costs may be prohibitive.

Server SoCs are expensive, with multiple cores and memory channels. Current systems
can address a few terabytes of physical memory. The high total system costs allow us to
make an argument for counter-based encryption with high arity counter groups stored
in on-chip DRAM. The additional cost for counter group storage would be relatively
minor, such as 1:128 or 1:256 of the external memory. Let us consider a system capable of
addressig 4 TiB of physical memory. Placing 64 GiB or more of DRAM in a module close
to the main SoC is feasible for client devices today, hence the same technology could be
used to place a large tamper-averting memory in a server SoC package, to be used as a
large counter group table. When combined with MirE, it would enable the highest level of
memory protection at a lower performance impact than all currently deployed schemes
without replay protection.

This said, it can be argued that the area budget for such a large memory should rather
be used for a system cache, which benefits the whole system, and effectively reduces the
traffic routed through the MPE. Such a cache could also be dynamically re-partitioned
between system and MPE. This re-configuration would rely on an analysis of the traffic
and of the impact of the partitioning that goes beyond the scope of this paper.

If these approaches are not possible, storing the integrity tree off-chip and using MirE
still provides good performance when combined with a large counter cache.

Regarding MirE, in § 3.3.3.1 we have recalled only two possible configurations for 9-chip
DRAM. A taxonomy of configuration with suitable codes for these ad other types of RAS
memory, with a security analysis, would help implementors choose the right parameters.

On client devices, RAM usually lacks ECC, making MirE not applicable. However, for
use cases such as security modules and business oriented containers, memory bus saturation
is less of a concern. We thus expect performance penalties to be contained, usually in line
with unloaded systems, and we recommend the use of high arity split counter trees in a
dynamically allocated carve-out.

Future work includes contributing our MPE model to the gem5 project, which we hope
will stimulate future research and enable studies for specific workloads and configurations.
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