
Quantum security of subset cover problems∗

Samuel Bouaziz–Ermann†, Alex B. Grilo‡ and Damien Vergnaud §

LIP6, Sorbonne Université, CNRS

Abstract

The subset cover problem for k ≥ 1 hash functions, which can be seen as an extension of
the collision problem, was introduced in 2002 by Reyzin and Reyzin to analyse the security of
their hash-function based signature scheme HORS. The security of many hash-based signature
schemes relies on this problem or a variant of this problem (e.g. HORS, SPHINCS, SPHINCS+,
. . . ).

Recently, Yuan, Tibouchi and Abe (2022) introduced a variant to the subset cover problem,
called restricted subset cover, and proposed a quantum algorithm for this problem. In this work,

we prove that any quantum algorithm needs to make Ω

(
(k + 1)

− 2k

2k+1−1 ·N
2k−1

2k+1−1

)
queries to

the underlying hash functions with codomain size N to solve the restricted subset cover problem,
which essentially matches the query complexity of the algorithm proposed by Yuan, Tibouchi
and Abe.

We also analyze the security of the general (r, k)–subset cover problem, which is the under-
lying problem that implies the unforgeability of HORS under a r-chosen message attack (for
r ≥ 1). We prove that a generic quantum algorithm needs to make Ω

(
Nk/5

)
queries to the

underlying hash functions to find a (1, k)–subset cover. We also propose a quantum algorithm
that finds a (r, k)–subset cover making O

(
Nk/(2+2r)

)
queries to the k hash functions.

1 Introduction

Cryptographic hash functions are functions mapping arbitrary-length inputs to fixed-length outputs
and are one of the central primitives in cryptography. They serve as building blocks for numerous
cryptographic primitives such as key-establishment, authentication, encryption, or digital signa-
tures. In particular, one-time signatures – i.e. in which the signing key can be used only once –
based only on hash functions were proposed by Lamport as soon as in 1979 [9]. The basic idea is
to evaluate a cryptographic hash function on secret values to generate the public verification key
and to authenticate a single message by revealing a subset of those secret pre-images.

With the development of quantum technologies, which may bring drastic attacks against widely
deployed cryptographic schemes based on the hardness of integer factorization or the discrete loga-
rithm [12], hash-based signatures have regained interest within the realm of ”post-quantum” cryp-
tography and the recent NIST standardization process. In particular, the SPHINCS+ candidate [3]
has been selected in 2022 for standardization by NIST and other constructions are standardized
by IETF/IRTF. The SPHINCS+ signature scheme and its predecessor SPHINCS [2] make use of a
Merkle-hash tree and of HORST, a variant of a hash-based scheme called HORS [11]. HORS (for
“Hash to Obtain Random Subset”) uses a hash function to select the subset of secret pre-images
to reveal in a signature and the knowledge of these secrets for several subsets may not be enough
to produce a forgery, a property that makes HORS a few-time signature scheme.

∗This work was partially funded by PEPR integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030.
†samuel.bouaziz@ens-rennes.fr
‡Alex.Bredariol-Grilo@lip6.fr
§damien.vergnaud@lip6.fr

1



More concretely, the security of HORS (and HORST) relies on the hardness of finding a subset
cover (SC) for the underlying hash function. More formally, to define the (r, k)–SC problem, we
consider the hash function as the concatenation of k ≥ 1 hash functions h1, . . . , hk (with smaller
outputs) and the problem is to find, for some integer r ≥ 1, r+1 elements x0, x1 . . . , xr in the hash
function domain such that x0 /∈ {x1, . . . , xr}, and

{hi(x0)|1 ≤ i ≤ k} ⊆
r⋃

j=1

{hi(xj)|1 ≤ i ≤ k} .

The hardness of this problem for concrete popular hash functions has not been studied in depth
but Aumasson and Endignoux [1] proved in 2017 a lower bound on the number of queries to hash
functions for the SC problem in the Random Oracle Model (ROM). However, the exact security of
HORS (and more generally HORST, SPHINCS and SPHINCS+) with respect to quantum attacks
is still not clear. Since quantum computing provides speedups for many problems (e.g. Grover’s
search algorithm [8] and Brassard, Høyer, and Tapp [6] collision search algorithm), it is important
to provide lower bounds in a quantum world.

1.1 Our results

In this paper, we explore the difficulty of finding subset cover for idealized hash functions for
quantum algorithms. We also consider a variant called the k-restricted subset cover (k–RSC)
problem where, given k functions h1, . . . , hk : X → Y such that N = |Y|, one has to find k + 1
elements x0, x1 . . . , xk such that:

∀1 ≤ i ≤ k, hi(x0) = hi(xi)

and x0 /∈ {x1, . . . , xk}. This variant was defined recently by Yuan, Tibouchi and Abe [14], who
showed a quantum algorithm to solve it. The main contributions of this work are:

1. Lower bound on k–RSC: we prove that Ω

(
(k + 1)

− 2k

2k+1−1 ·N
2k−1

2k+1−1

)
quantum queries to

the idealized hash functions are needed to find a k–RSC with constant probability.
(Theorem 17)

2. Lower bound on (1, k)–SC: we prove that Ω
(
(k!)−1/5 ·Nk/5

)
quantum queries to the ide-

alized hash functions are needed to find a (1, k)–SC with constant probability.
(Theorem 24)

3. Upper bound on (r, k)–SC: we present a quantum algorithm that finds a (r, k)–SC with
constant probability with O

(
Nk/(2+2r)

)
queries to the hash functions when k is divisible by

r + 1, and O
(
Nk/(2+2r)+1/2

)
otherwise.

(Theorem 33)

1.2 Technical Overview

To prove our lower bounds on the query complexity, we use the technique called compressed random
oracle model introduced by Zhandry in [15]. Its goal is to record information about the queries of an
adversary A in the quantum random oracle model and it permits “on-the-fly” simulation of random
oracles (or lazy sampling) by considering the uniform superposition of all possible random oracles
instead of picking a single random oracle at the beginning of the computation. The technique uses

2



a register to keep a record of a so-called database of the random oracle and this register is updated
whenever A makes a query to the random oracle. At the end of A’s computation, the reduction
can measure the register of the database, and the distribution of the outputs is uniformly random,
as if we had chosen a random oracle at the beginning of its computation. This new register that
contains the database is at the gist of our lower bounds.

In Section 3, we prove the lower bound on the query complexity to solve the RSC problem. We
consider an algorithm A after i quantum queries to the random oracle and call its state at this
moment |ψi⟩. Our goal is to compute an upper bound for the value |PRSC

k |ψi⟩ |2, where PRSC
k is

the projection onto the databases that contain a k–RSC. Computing such a bound leads to a lower
bound on the number of queries needed for solving k–RSC with constant probability. To prove
our bound, we proceed by induction: assuming we proved a bound for the k′–RSC problem for all
k′ < k, we prove a bound for the k–RSC problem. The analysis is naturally divided into two parts:
whenever A finds a k–RSC after i quantum queries, it means that either:

1. A finds it after i− 1 quantum queries;

2. or A finds it with the ith quantum query.

The first case is recursive and it remains to bound |PRSC
k |ψi⟩ | in the second case. Here, the

database (after i−1 quantum queries) must contain a certain number of k′–RSC (for some k′ < k),
in order for A to find k–RSC with the ith query. Using this strategy, we obtain a recursive formula
from which we can deduce the bound on |PRSC

k |ψi⟩ |.
In Section 4.1, we prove a lower bound for the (1, k)–SC problem. The idea of the proof is

similar to the proof for the lower bound of the k–RSC problem but we have to compute a bound
for another problem that we define: the j–repetition problem.

Finally in Sections 4.2 and 4.3, we design a family of quantum algorithms for finding a (r, k)-
–SC. These algorithms are inspired by the algorithm from [14] to solve the k–RSC problem and
[10]’s algorithm for finding multi-collisions. These algorithms are recursive and take as input two
parameters t, k′ ∈ N and perform the following:

1. Find t distinct (r − 1, k′)–SC;

2. Find the (r, k)–SC.

The parameters t and k′ are chosen in order to optimize the complexity of the algorithm. The
first step is done by applying r − 1 times the algorithm for the value k′, and the second step uses
Grover’s algorithm.

1.3 Related works, discussion and open problems

Collision-finding. The link between finding a multi-collision and finding a subset cover was
first discussed in [14], since their algorithm is inspired from the one for finding multi-collisions in
[10]. In the latter, they also show a lower bound for finding multi-collisions, and our proof of lower
bounds uses the same technique they used. We make use of the compressed oracle technique, first
introduced by Zhandry in [15], and generalize the proof of the lower bound on multi-collisions to
the RSC and SC problems.

Restricted Subset Cover. There is currently only one quantum algorithm for finding RSC [14].
Our lower bound for finding a RSC matches their upper bound when k, the number of functions,

is constant. However when k is not a constant, their algorithm makes O

(
k ·N

2k−1

2k+1−1

)
queries to

3



h1, . . . , hk, which roughly leaves a k3/2 gap between the best known attack and our lower bound.
To the best of our knowledge, this is the first lower bound on the RSC problem for a quantum
algorithm, and there are no such result for classical algorithms. It would be interesting to see if we
can close this gap further.

Tighter bounds for (1, k)–SC. When k is constant, the lower bound for (1, k)–SC is Ω
(
Nk/5

)
,

while our algorithm for this problem makes O
(
Nk/4

)
queries to the oracle (when k is even). It

would be interesting to tighten this gap, especially since the results for (1, k)–SC are probably
necessary to prove the lower bounds (r, k)–SC for r ≥ 2.

For non-constant k, our lower bound for (1, k)–SC is Ω
(
C

−1/5
k ·Nk/5

)
, where Ck =

∑k
j=2

k!
(j−1)! ≤

k! ·e. Notice that this term cannot be neglected for large values of k. For example with k = log(N),

we have Ck ≥ N . In comparison, our best algorithm for (1, k)–RSC, the factor in k is
(

k
(k+1)/2

)−1/2 ≤
2(k+1)/2

( k+1
2

·π)
1/4 , which is very far from our bound on Ck. It would also be interesting to see if we can

tighten this gap.

Bounds for (r, k)–SC. Unfortunately, expanding our result for the (r, k)–SC problem is much
more complicated than the case r = 1 and actually even proving the case r = 2 is not simple.
To prove such a result, one would need a bound for the problem of finding j distinct (1, k)–SC
problem. While proving such a bound is challenging, it is also unclear what the problem of finding
j distinct (1, k)–SC is. Indeed, an important property for our technique in the first lower bound
proofs is that by making one query to the oracle, the adversary cannot find two or more k–RSC.
The same property must hold for the problem of finding j distinct (1, k)–SC, and this definition
and subsequent analysis remain open.

Security of SPHINCS and SPHINCS+. The signature scheme SPHINCS relies on the
HORST scheme (for “HORS with trees”) which adds a Merkle tree to the HORS scheme to compress
the public key. The security of HORST also relies on the (r, k)–SC problem but the security of
SPHINCS rely on different security notions of the underlying hash functions. In particular, it
depends on a variation of the SC problem classed the target subset cover (TSC) problem [11].
The main difference comes from the fact that the message signed using HORST is an unpredictable
function of the actual message and this prevents an attacker to construct a subset cover beforehand.

Nevertheless, the authors of [2] stated an existential unforgeability result for SPHINCS [2,
Theorem 1] under qs-adaptive chosen message attacks. The success probability in such attacks is
roughly upper-bounded by:

∞∑
r=1

min
(
2r(log qs−h)+h, 1

)
· SuccA((r, k)− SC),

where h is the height of the tree used in SPHINCS, and SuccA((r, k) − SC) denotes the success
probability of an adversary A to find a (r, k)–SC. The authors made the assumption that this term
is negligible for any probabilistic adversary A and our quantum lower bound on the query number
to find a (1, k)–SC can be seen as a first step towards proving this assumption (for idealized hash
functions). To assess the security of SPHINCS from [2, Theorem 1] for concrete parameters such
as those proposed in [2] (namely h = 60, qs = 230), it would also be necessary to upper-bound the
success probabilities SuccA((2, k) − SC) and SuccA((3, k) − SC), which we leave for future work.
For example, one could try to apply [13, Theorem 4.12] to get a lower bound for (r, k)–SC more
easily, but the obtained bound will most likely not be tight.

4



SPHINCS+ is an enhancement of SPHINCS, which makes the scheme more efficient and its
security relies on another variant of the SC problem, namely the interleaved target subset cover
(ITSC) problem. It would also be interesting to see if our methods can be used to prove similar
bounds for the TSC and ITSC problems. At last, one could also try to design algorithms for these
two problems, as no quantum algorithms for them exist yet to the best of our knowledge.

2 Preliminaries

We assume the reader is familiar with the theory of quantum information and for completeness, we
recall Grover’s algorithm and Quantum Fourier Transform (QFT) in Appendix A. We denote the
concatenation by ||.

2.1 Compressed oracle technique

We now present the key ingredients of Zhandry’s compressed oracle technique, first defined in [15]
and refined in [7]. As mentioned in the introduction, the technique uses a register to keep a record
of a so-called database of the random oracle and this register is updated whenever an adversary A
makes a query to the random oracle. This new register that contains the database is at the gist of
our lower bounds.

We consider the Quantum Random Oracle Model, first defined in [4]. In this model, we are
given black-box access to a random function H : X → Y. For our model, the adversary will work
on three different registers |x, y, z⟩. The first register is the query register, the second register is
the answer register and the third register is the work register. The first two registers are used for
queries and answers to the oracle, while the last register is for the adversary’s other computations.
We first define the unitary StO that represents the Standard Oracle and that computes as follows:

StO
∑
x,y,z

αx,y,z |x, y, z⟩ →
∑
x,y,z

αx,y,z |x, y +H(x), z⟩

This unitary corresponds to a query to H.
Now, we define Zhandry’s compressed oracle. In this model, instead of starting with a random

function H, we start with the uniform superposition of all random functions |H⟩, where |H⟩ encodes
the truth table of the function H. In this model, there is a register for each x ∈ X , and the value
of this register in the state |H⟩ corresponds to H(x). That is, we have that |H⟩ =

⊗
x∈X |H(x)⟩x

Let H = {H : X → Y} be the set of all possible functions H. We define a new register, the
database register |H⟩, that starts in the uniform superposition 1

|H|
∑

H∈H |H⟩. This register starts
in product state with the other registers, and Zhandry’s idea is that instead of modifying the
adversary’s register when querying the oracle, we will modify the database register instead. To do
so, we simply consider the Fourier basis for the y and the H register before querying the Standard
Oracle.

We write this unitary O and it works as follows:

O
∑
x,ŷ,z

αx,ŷ,z |x, ŷ, z⟩ ⊗
∑
Ĥ∈H

αĤ

∣∣∣Ĥ〉→
∑
x,ŷ,z

αx,ŷ,z |x, ŷ, z⟩ ⊗
∑
Ĥ∈H

αĤ

∣∣∣Ĥ ⊖ (x, ŷ)
〉
,

where, for any fixed x ∈ X and z ∈ Y, H ⊖ (x, z) : X → Y is defined as:

H ⊖ (x, z)(x′) =

{
H(x′) if x′ ̸= x

H(x)− z if x′ = x.

5



In other words, H ⊖ (x, z) is obtained by replacing the value of H(x) by H(x)− z in H.
This unitary can be implemented by applying the QFT to the registers |y⟩ and |H⟩, applying

the Standard Oracle, then applying the QFT † again on the |y⟩ and |H⟩ registers.
Finally, we define the compression part. The idea behind the compression is that for every x

in the database mapped to
∣∣0̂〉, we remap it to |⊥⟩, where ⊥ is a new value outside of Y. More

formally, the compression part is done by applying:

Comp =
⊗
x

|⊥⟩
〈
0̂
∣∣+ ∑

ŷ:ŷ ̸=0̂

|ŷ⟩ ⟨ŷ|


in the Fourier basis.

Since at the start of the computation, the database will be initiated with the uniform superpo-
sition over all H possible, then after q queries the state of the database can be described with q
vectors. In order to apply the compression as a unitary, we declare that Comp |⊥⟩ = |0⟩.

Now, we can define the Compressed Oracle:

cO = Comp ◦ O ◦ Comp†.

Of course the compression part inevitably creates some losses, compared to only using the
Standard Oracle. The precise characterization of these losses is given in one of Zhandry’s lemma,
and can be stated as follows:

Lemma 1 (Lemma 5 from [15]). Let A be an algorithm that makes queries to a random oracle
H : X → Y, and output (x1, . . . , xk, y1, . . . , yk) ∈ X k ×Yk. Let p be the probability that ∀1 ≤ i ≤ k,
H(xi) = yi. Similarly, consider the algorithm A running with the Compressed Oracle cO, and
output (x′1, . . . , x

′
k, y

′
1, . . . , y

′
k) ∈ X k × Yk. Let p′ be the probability that ∀1 ≤ i ≤ k, H ′(x′i) = y′i,

where H ′ is obtained by measuring the H register at the end of the execution of the algorithm A.
Then:

√
p ≤

√
p′ +

√
k

|Y|

In the rest of the paper, we will have that
√

k
|Y| is negligible, and thus we will neglect this term.

We also have the following lemma from [7] that describes the operator cO(x,ŷ) : H → H, which
is defined as the operator applied on |H⟩ when applying cO to |x⟩ |ŷ⟩ ⊗ |H⟩. More formally, we
have that:

cO |x⟩ |ŷ⟩ ⊗ |H⟩ = |x⟩ |ŷ⟩ ⊗ cO(x,ŷ) |H⟩

Lemma 2 (Lemma 4.3 from [7]). For any ŷ ̸= 0̂, the operator cO(x,ŷ) is represented by the following
matrix:

⊥ r

⊥ 0
ω−ry
N√
|Y|

y′
ωyy′
N√
|Y|


(
1− 2

|Y|

)
ωyy′

N + 1
|Y| if y′ = r

1−ωyy′
N −ωry

N
|Y| if y′ ̸= r

For ŷ = 0̂, we have that cO(x,0̂) is the identity.

6



We also define, for any compressed H : X → Y ∪ {⊥}, for any fixed x ∈ X and z ∈ Y,
H ∪ (x, z) : X → Y as:

H ∪ (x, z)(x′) =

{
H(x′) if x′ ̸= x

z if x′ = x.

In other words, H ∪ (x, z) is obtained by replacing the value of H(x) by z in H.
In the following, we will model the adversary (A) as a series of computation alternating between

unitaries and oracle calls. The adversary’s quantum state will first be initialized to |0⟩⊗N . Then,
his computation will be decomposed as:

A = UkcOUk−1cO . . . cOU2cOU1 (1)

So that, if |ψi⟩ =
∑

x,y,z,D αx,y,z,D |x, y, z,D⟩ is the state of the adversary after i quantum queries
to cO, then Ui+1 operates on the registers x, y and z only. We also define database properties:

Definition 3 (Database property). A database property is a subset of H. Any database property
D can be seen as a projector on H, as follows:∑

d∈D
|d⟩ ⟨d|

We write D = {I|I ⊆ H} the set of all subspaces of H, that also corresponds to the set of all
database properties.

We now state and prove two lemmas adapted from [10] that we will use thoroughly in this
paper. The first lemma will allow us to ignore the unitaries that the adversary A applies on the
first registers of the state.

Lemma 4 (adapted from Lemma 8 from [10]). For any unitary U , any projector P , and any state
|ϕ⟩,

|(I ⊗ P ) · (U ⊗ I) |ϕ⟩| = |(I ⊗ P ) |ϕ⟩|

The second lemma bounds the amplitude of measuring a database that satisfies a property P
at the ith step of the algorithm, i.e. just after the ith query to the oracle. In this bound, the first
term captures the case where we succeed to find a database that satisfies P before the ith query.
The second term captures the case where we did not have it before the ith query, but found it with
the ith one.

Lemma 5 (adapted from Lemma 9 from [10]). Let |ϕi⟩ be the state of an algorithm A just before
the ith quantum query to cO, and |ψi⟩ the state of the same algorithm right after the ith quantum
query to cO. Let P be any projector on D. We have that:

|P |ψi⟩ | ≤ |P |ϕi⟩|+ |P cO(I − P ) |ϕi⟩|

Proof.

|P |ψi⟩| = |P cO |ϕi⟩| = |P cO(P |ϕi⟩+ (I − P ) |ϕi⟩)|
≤ |P |ϕi⟩|+ |P cO(I − P ) |ϕi⟩)| ,

where the inequality comes from the triangle inequality and the fact that P cOP ≤ P .

7



Remark 1. In the next section and in the rest of the paper, we will consider multiple functions
h1, . . . , hk : X → Y for some fixed k. Note that this is equivalent to considering one function
H : X → Yk, such that we interpret, for any x ∈ X , the output H(x) as the concatenation of
values of the functions applied to x, i.e. H(x) = h1(x)||h2(x)|| · · · ||hk(x). Hence, in this setting,
the compressed oracle is used on the function H, and a query to any of the hi is a query to all of the
hi’s. Thus, in our results, we count the number of queries to the function H and thus the number
of queries to all of the hi’s. It may seem that we lose some accuracy in this setting, however this
is with the same method that multiple random functions are implemented in the literature.

2.2 The problem of subset cover and its variants

We define the problem of subset cover.

Definition 6 ((r, k)–SC). Let k, r ∈ N∗. Let h1, · · · , hk : X → Y. A (r, k)–SC for (h1, · · · , hk) is
a set of r + 1 elements x0, x1, x2, · · · , xr in X such that:

{hi(x0)|1 ≤ i ≤ k} ⊆
r⋃

j=1

{hi(xj)|1 ≤ i ≤ k}

In other words, for each 1 ≤ i ≤ k, there exists a 1 ≤ j ≤ r and a 1 ≤ ℓ ≤ k such that
hi(x0) = hℓ(xj).

We notice two facts regarding the parameters of (r, k)–SC. First, we have that the problem
becomes easier when r increases. Secondly, we have that when r > k, a (r, k)–SC contains a (k, k)-
–SC. Thus finding a (r, k)–SC when r > k is the same as when r = k. For simplicity, we use k–SC
as a shorthand of (k, k)–SC.

We also define the database properties PSC
(r,k) of containing a (r, k)–SC, that is the set of databases

that contains a (r, k)–SC. More formally, we have that:

PSC
(r,k) =

{
D ∈ D

∣∣∣∣∣∃x0, x1, . . . , xr,∀i ̸= 0, x0 ̸= xi, H(x0) ⊆
r⋃

i=1

H(xi)

}
,

where for x ∈ X , H(x) = {h1(x), . . . , hk(x)}.
We follow now with the definition of a harder variation of the k–subset cover called the k–

restricted subset cover (k–RSC).

Definition 7 (k–RSC). Let k ∈ N∗. Let h1, . . . , hk : X → Y. A k–restricted subset cover (k–RSC)
for (h1, . . . , hk) is a set of k + 1 elements x0, x1, x2, . . . , xk in X such that:

∀i ∈ {1, . . . , k}, hi(x0) = hi(xi) and x0 ̸= xi.

We also define the database properties PRSC
k,ℓ of k distinct ℓ–RSC, that is the set of databases

that contains k distinct ℓ–RSC. More formally, we have that:

PRSC
k,ℓ =


D ∈ D

∣∣∣∣∣∣∣∣∣∣∣

∃x0,1, . . . , xℓ,1,∀i ̸= 0, x0,1 ̸= xi,1, ∀i, hi(x0,1) = hi(xi,1)
∃x0,2, . . . , xℓ,2,∀i ̸= 0, x0,2 ̸= xi,2, ∀i, hi(x0,2) = hi(xi,2)
...
∃x0,ℓ, . . . , xℓ,k, ∀i ̸= 0, x0,k ̸= xi,k, ∀i, hi(x0,k) = hi(xi,k)
∀i ̸= j, (h1(x0,i), . . . , hℓ(x0,i)) ̸= (h1(x0,j), . . . , hℓ(x0,j))


(2)

8



The problem of finding a k–RSC was introduced in [14], in which the authors describe an

algorithm that finds a k–RSC in O

(
kN

1
2

(
1− 1

2k+1−1

))
quantum queries to h1, . . . , hk when the hi’s

are such that |X | ≥ (k + 1)|Y|.
We discuss now the last condition in Equation (2). We remark that while such condition was

not explicitly imposed in [10] for their lower bound for finding multi-collisions, this property is
implicitly and extensively used in their proof. Such a property is needed because when they count
k–collisions (that is, k distinct x1, . . . , xk such that H(x1) = · · · = H(xk)), they are actually
interested in the number of possible images that would be helpful to reach a (k + 1)–collision. In
particular, this is helpful since one query can only transform one k–collision (with such a property)
into a (k + 1)–collision.

In our case, the last line of (2) ensures that the “supporting set” of the k–RSC (i.e. the set of
images of the x0,i by the different random functions h1, . . . , hk) is unique. As in the multi-collision
case, this condition will be crucial to extend a k–RSC to a (k + 1)–RSC, and for this reason we
define it explicitly in PRSC

k,ℓ .
Finally, we state a result from [10], regarding the amplitude of finding j distinct 2–collisions:

Lemma 8 (adapted from [10], Corollary 11). Given a random function h : X → Y where |N | = Y,
let f coli,j be the amplitude of the D containing at least j distinct 2–collisions after i quantum queries.
Then:

f coli,j ≤

(
4e · i3/2

j
√
N

)j

.

For completeness, the proof of Lemma 8 is given in Appendix B.1. The proof closely follows
the proof of Corollary 11 in [10] but we need to consider some negligible factors that incur an extra
constant factor in the statement.

3 Lower bound on the k–restricted subset cover problem

In this section, we prove a lower bound for the k–RSC problem defined in Definition 7. This section
follows closely [10]’s proof of their lower bound on finding multi-collisions. We will first prove a
lower bound for the problem when k = 2. Then, we will prove a lower bound for finding k distinct
2–RSC, which will be necessary in our induction step. Finally, we will prove the induction step in
the last subsection and obtain a lower bound on finding s distinct k–RSC.

3.1 Finding a 2–restricted subset cover

In this section, we will prove that the number of queries necessary to find a 2–RSC is Ω(N3/7),
matching the query complexity of the quantum algorithm proposed in [14], up to a constant factor.

As presented in Definition 7, in the 2–RSC problem, we are given 2 random functions h1, h2
such that for i ∈ {1, 2}, hi : X → Y. The main theorem of this subsection can be stated as follows:

Theorem 9. Given two random functions h1, h2 : X → Y where |N | = Y, a quantum algorithm
needs to make Ω(N3/7) queries to h1 and h2 to find a 2–RSC with a constant probability.

In order to prove this theorem, we first introduce some database properties:

• P ′
ℓ−col−h1

corresponds to the set of databases that contain at least ℓ distinct collisions on
h1.

1 As explained in the previous section, here we will use the fact that we cannot reach a

1We do not define the equivalent property for h2. Since both h1 and h2 are random functions, we can swap them
when considering database property by symmetry, thus we do not need to define more unnecessary properties.

9



database containing ℓ+2 or more collisions from a database containing ℓ collisions by making
a single query:

P ′
ℓ−col−h1

=

D ∈ D

∣∣∣∣∣∣∣
∃x1, . . . , xℓ, y1, . . . , yℓ, ∀i, h1(xi) = h1(yi) ̸= ⊥
∀i, xi ̸= yi

∀i ̸= j, h1(xi) ̸= h1(xj)


• Pℓ−col−h1 corresponds to the set of databases that contain exactly ℓ distinct collisions on h1:

Pℓ−col−h1 = P ′
ℓ−col−h1

∩ ¬P ′
(ℓ+1)−col−h1

• Ppreimage−h1 corresponds to the set of databases that contain a preimage of 0:2

Ppreimage−h1 = {D ∈ D|∃x, h1(x) = 0} .

Finally, for i, ℓ ∈ N, we write:

f̃ coli,ℓ = |Pℓ−col−h1 |ψi⟩| , f coli,ℓ =
∣∣P ′

ℓ−col−h1
|ψi⟩

∣∣ , gi = ∣∣PRSC
1,2 |ψi⟩

∣∣ , (3)

where |ψi⟩ is the state just after the ith query toH = (h1, h2) and P
RSC
1,2 was defined in Equation (2).

For convenience, we write P2 = PRSC
1,2 in this section.

The goal here is to bound the term gi, and to achieve this we first prove a recursive formula

that involves f̃ coli,ℓ as well:

Lemma 10. For every i ∈ N, we have that:

gi ≤ gi−1 +

√√√√2
∑
ℓ≥0

ℓ

N
f̃ coli−1,ℓ

2

+ 4
i− 1

N
. (4)

Proof. Let i ∈ N. Let |ϕi⟩ be the state just before the ith query to H = (h1, h2), namely

|ϕi⟩ =
∑

x,ŷ,z,D

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ ,

where x is the query register, y is the answer register, z is the work register and D is the database
register. Let |ψi⟩ be the state right after the ith query to H, namely

|ψi⟩ =
∑

x,ŷ,z,D
D(x)=⊥

1√
N2

∑
y′

ωyy′

N αx,ŷ,z,D |x, ŷ, z⟩ ⊗
∣∣D ∪ (x, y′)

〉
+ cO

∑
x,ŷ,z,D
D(x) ̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ .

From Lemma 5, we have that:

|P2 |ψi⟩| ≤ |P2 |ϕi⟩|+ |P2cO(I − P2) |ϕi⟩| . (5)

2Note that the amplitude of finding any preimage is the same as the amplitude of finding the preimage of 0.

10



We focus now on bounding the second term:

|P2cO(I − P2) |ϕi⟩| =

∣∣∣∣∣∣∣P2cO
∑
x,ŷ,z

D: no 2–RSC

αx,ŷ,z,D |x, ŷ, z,D⟩

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣
P2

∑
x,ŷ,z

D: no 2–RSC
D(x)=⊥

1√
N2

∑
y′

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,D ∪ (x, y′)
〉
∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣
P2cO

∑
x,ŷ,z

D: no 2–RSC
D(x)̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩

∣∣∣∣∣∣∣∣∣∣
The second term can be bounded by

∣∣∣∣∣∣∣∣∣∣
P2cO

∑
x,ŷ,z

D: no 2–RSC
D(x)̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
P2

∑
x,ŷ,z

D: no 2–RSC
D(x) ̸=⊥

1

N2

∑
y′

(
1− ωyy′

N − ω
D(x)y
N

)
αx,ŷ,z,D |x, ŷ, z⟩ ⊗

∣∣D ∪ (x, y′)
〉
∣∣∣∣∣∣∣∣∣∣

≤ 3

∣∣∣∣∣∣∣∣∣∣
1

N2

∑
y′

P2

∑
x,ŷ,z

D: no 2–RSC
D(x)̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗
∣∣D ∪ (x, y′)

〉
∣∣∣∣∣∣∣∣∣∣

≤ 3(i− 1)

N
, (6)

where the first inequality comes from Lemma 2 and the fact that if the new value in the x register
is |⊥⟩ or stays the same, then there is still no 2-RSC in D. The second inequality comes from the
triangular inequality and the last inequality comes from using the triangular inequality and the
fact that there is at most (i− 1) values in D such that D(x) ̸= ⊥.

For bounding the first term, we analyse now the possibilities for achieving a 2–RSC, considering
the different cases of the inner sum. We have four possible ways to get from D that does not have
a 2–RSC to Dy′ := D ∪ (x, y′) that has a 2–RSC.

• (x = x2) Here, we consider the case where there exists an x0 and x1 such that h1(x0) = h1(x1)
and we query x such that h2(x0) = h2(x). If we have found ℓ collisions of h1 in D, then ℓ
values of y′ can make Dy′ contain a 2–RSC, out of the N possible values for the outcome of
h2 (notice that the value of h1(x) is not relevant for this case).

11



• (x = x1) Similar to the previous case, but swapping the roles of h1 and h2.

• (x = x0) Otherwise, we consider the case where we query x such that we have x1 and x2
(which might be equal), such that h1(x) = h1(x1) and h2(x) = h2(x2). Only i − 1 values of
y′ will make Dy′ contain a collision on h1. Similarly, only i − 1 values of y′ will make Dy′

contain a collision on h2.

Thus, we have

|P2cO(I − P2) |ϕi⟩| ≤

2 ·
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1 |ϕi⟩|

2

1/2

+ 4
(i− 1)

N
, (7)

and we give the details on Equation (7) in Appendix B.2.
Let |ψi−1⟩ be the state just after the (i − 1)th query, and let Ui be the unitary such that

|ϕi⟩ = (Ui ⊗ I) |ψi−1⟩ (see Equation (1)). Note that we also have |ψi⟩ = cO · (Ui ⊗ I) |ψi−1⟩. Using
Lemma 4, we get that:

|P2cO(I − P2) |ϕi⟩| ≤

√√√√2
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1(Ui ⊗ I) |ψi−1⟩|2 + 4

i− 1

N

≤

√√√√2
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1 |ψi−1⟩|2 + 4

i− 1

N
. (8)

Similarly, using Lemma 4:

|P2 |ϕi⟩| = |P2 (Ui ⊗ I) |ψi−1⟩| = |P2 |ψi−1⟩| . (9)

Then, using Equation (5), Equation (8) and Equation (9), and the notation from Equation (3),
we have:

gi ≤ gi−1 +

√√√√2
∑
ℓ≥0

ℓ

N
f̃ coli−1,ℓ

2

+ 4
i− 1

N
.

We will now expand this recursive formula to obtain a bound on gi.

Lemma 11. For every i ∈ N, we have that:

gi ≤
√
2

i−1∑
j=1

√
µ3(j)

N
+

√
2 · 2−9.5N1/8

+ 4
i2

N
,

where

µ3(j) = max

{
8e
j3/2√
N
, 10N1/8

}
.

12



Proof. From Lemma 10, we expand recursively Equation (4), and obtain (using that g0 = 0):

gi ≤
i−1∑
j=1

√√√√2
∑
ℓ≥0

ℓ

N
f̃ colj,ℓ

2

+ 4

i−1∑
j=1

j

N
. (10)

The second term of Equation (10) can be bounded by

4
i−1∑
j=1

j

N
≤ 4

i−1∑
j=1

i

N
≤ 4

i2

N
. (11)

As for the first term of Equation (10), we have:

i−1∑
j=1

√√√√2
∑
ℓ≥0

ℓ

N
f̃ colj,ℓ

2

=
√
2

i−1∑
j=1

√√√√√µ3(j)∑
ℓ=0

ℓ

N
f̃ colj,ℓ

2

+
∑

ℓ>µ3(j)

ℓ

N
f̃ colj,ℓ

2

≤
√
2

i−1∑
j=1


√√√√µ3(j)∑

ℓ=0

ℓ

N
f̃ colj,ℓ

2

+

√√√√ ∑
ℓ>µ3(j)

1 · f̃ colj,ℓ

2


≤

√
2

i−1∑
j=1

(√
µ3(j)

N
· f colj,1 + f colj,µ3(j)

)

≤
√
2

 i−1∑
j=1

√
µ3(j)

N
+

i−1∑
j=1

f colj,µ3(j)

 (12)

where in the second inequality, we used the fact that the term
∑

ℓ>µ3(j)
f̃ colj,ℓ

2

is equal to the

amplitude of finding at least µ3(j) distinct ℓ–collisions on h1, thus is exactly equal to f colj,µ3(j)

2

(defined in Equation (3)), and similarly for f colj,1 .
It follows that

i−1∑
j=1

f colj,µ3(j)
≤

i−1∑
j=1

(
4e · j3/2

µ3(j) ·
√
N

)µ3(j)

≤
i−1∑
j=1

(
1

2

)10N1/8

≤ 2−9.5N1/8
, (13)

where the first inequality comes from Lemma 8, the second inequality comes from the definition of
µ3(j) and in the last inequality we assume that i ≤ N1/2. Indeed, otherwise A can execute [14]’s
algorithm whose query complexity for finding a k–RSC is upper-bounded by O

(
N1/2

)
.

Putting together Equation (10), Equation (11), Equation (12) and Equation (13) gives the
result.

We can now use Lemma 11 to prove Theorem 9

Proof of Theorem 9. Using Lemma 11, we have for i ∈ N:

gi ≤
√
2

i−1∑
j=1

√
µ3(j)

N
+

√
2 · 2−9.5N1/8

+ 4
i2

N
.

13



We can bound the first term by:

√
2

i−1∑
j=1

√
µ3(j)

N
=

√
2

 ∑
j:µ3(j)=8e· j

3/2
√
N

√
8ej3/2

N3/4
+

∑
j:µ3(j)=10N1/8

√
10N1/8

N1/2


≤

√
2

 i−1∑
j=1

√
8ej3/2

N3/4
+

∑
j:µ3(j)=10N1/8

√
10N1/8

N1/2


≤ 4

√
e
i7/4

N3/4
+

(
10

8e

)2/3

·N5/12 ·
√
10N1/8

N1/2

≤ 4
√
e
i7/4

N3/4
+O(N−1/48),

where the second inequality comes from counting the number of j such that µ3(j) = 10N1/8, which

is equal to the number of j such that 8e j
3/2
√
N

≤ 10N1/8.

Thus, we have the following bound on gi:

gi ≤ 4
√
e
i7/4

N3/4
+ 4

i2

N
+O(N−1/48).

This bound is in the compressed oracle model, and using Lemma 1 we obtain the same bound
in the random oracle model by putting the negligible term in the O

(
N−1/48

)
.

So when i = o(N3/7), we have gi = o(1). Hence if we want gi to be constant, i.e. not o(1), we
must have i = Ω

(
N3/7

)
.

3.2 Finding k distinct 2-restricted subset cover

We are now interested in bounding the number of queries needed to find k distinct triplets that
satisfy a 2–RSC. We have the following result:

Theorem 12. Given two random functions h1, h2 : X → Y where N = |Y|, a quantum algorithm
needs to make Ω(k4/7 ·N3/7) queries to h1 and h2 to find k distinct 2–RSC with constant probability,
for any k ≤ N1/8.

To prove this theorem, we first introduce some notation. We denote P2,k,ℓ the set of databases
that satisfies k distinct 2–RSC, and that contain exactly ℓ collisions on h1. Using the notation
from the Section 3.1 and Equation (2), we have that P2,k,ℓ = PRSC

k,2 ∩ Pℓ−col−h1 . We denote

gi,k =
∣∣∣PRSC

k,2 |ψi⟩
∣∣∣ and ĝi,k,ℓ = |P2,k,ℓ |ψi⟩|, where |ψi⟩ is the state just after the ith query to

H = (h1, h2).
Our goal is to bound gi,k, and as in the previous subsection, we will first prove a recursive

formula stated in the next lemma.

Lemma 13. For every i ∈ N, and every k ∈ N, we have that:

gi,k ≤ gi−1,k +

√√√√2
∑
ℓ≥0

ℓ

N
ĝ2i−1,k−1,ℓ +

(i− 1)

N
gi−1,k−1.

14



Proof. From Lemma 5, we have the following inequality:∣∣PRSC
k,2 |ψi⟩

∣∣ ≤ ∣∣PRSC
k,2 |ϕi⟩

∣∣+ ∣∣PRSC
k,2 cO(I − PRSC

k,2 ) |ϕi⟩
∣∣ .

And we have that:∣∣PRSC
k,2 cO(I − PRSC

k,2 ) |ϕi⟩
∣∣

≤

∣∣∣∣∣∣∣∣∣∣
PRSC
k,2

∑
x,ŷ,z

D:k-1 2-RSC
D(x)=⊥

1√
N2

∑
y′

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,D ∪ (x, y′)
〉
∣∣∣∣∣∣∣∣∣∣
+ 3

i− 1

N

∣∣PRSC
k−1,2 |ϕi⟩

∣∣2

≤

2
∑
ℓ≥0

ℓ

N

∑
x,ŷ,z

D:k-1 2-RSC
ℓ collisions

on h1

|αx,ŷ,z,D|2



1/2

+

(i− 1)2

N2

∑
x,ŷ,z

D:k-1 2-RSC

|αx,ŷ,z,D|2


1/2

+ 3
i− 1

N

∣∣PRSC
k−1,2 |ϕi⟩

∣∣2

≤

2
∑
ℓ≥0

ℓ

N
|P2,k−1,ℓ |ϕi⟩|2

1/2

+ 4
i− 1

N

∣∣PRSC
k−1,2 |ϕi⟩

∣∣2 ,
where the first inequality comes from the same calculations done to obtain Equation (6), and the
second equality uses the same cases as for the case k = 1 in Lemma 10.

Using Lemma 4 and previous notation (as in Lemma 10), we obtain that:

gi,k ≤ gi−1,k +

2
∑
ℓ≥0

ℓ

N
ĝ2i−1,k−1,ℓ

1/2

+ 4
(i− 1)

N
gi−1,k−1.

Following the proof from the case k = 1, we will split the sum in two using µ3(j) as a threshold.
We also define a new notation that will simplify expressions:

Definition 14.

Ai =
i−1∑
ℓ=0

√
2

(√
µ3(ℓ− 1)

N
+
√
8
ℓ− 1

N

)
,

where

µ3(ℓ) = max

{
8e
ℓ3/2√
N
, 10N1/8

}
.

Before bounding gi,k, we first prove a bound on Ai.

Lemma 15. For every i ∈ N, we have that:

Ai ≤ 8
√
e
i7/4

N3/4
+ 4

i2

N
+O

(
N−1/48

)
.

It follows that Ai < 2eN1/8 for i ≤ N1/2.

15



We leave the proof of Lemma 15 to Appendix B.3. We can now state the lemma that bounds
gi,k.

Lemma 16. For every i ∈ N and k ∈ N, we have that:

gi,k <
Ak

i

k!
+
√
2 · 2−N1/8

.

Proof. We write f coli,j =
∣∣∣P ′

j−col−h1
|ϕi⟩
∣∣∣. From Lemma 13, we have that:

gi,k ≤ gi−1,k +

√√√√2
∑
ℓ≥0

ℓ

N
· ĝ2i−1,k−1,ℓ + 4

i− 1

N
· gi−1,k−1

≤ gi−1,k +
√
2

(√
µ3(i− 1)

N
· gi−1,k−1 + f coli−1,µ3(i−1)

)
+ 4

i− 1

N
· gi−1,k−1

= gi−1,k +
√
2

(√
µ3(i− 1)

N
+
√
8
i− 1

N

)
gi−1,k−1 +

√
2 · f coli−1,µ3(i−1), (14)

where the second inequality comes from separating the sum in two, similar to the proof of Lemma
11.

Following [10]’s proof for Lemma 14, by expanding the recursion we get:

gi,k ≤ Ak
i

k!
+
√
2 · eAi29.5N

1/8
. (15)

For completeness, the proof of Equation (15) is given in Appendix B.4. Using Lemma 15, we
can bound the second term, and:

gi,k <
Ak

i

k!
+
√
2 · 2−N1/8

.

We can now prove the main theorem of this subsection.

Proof of Theorem 12. Following from Lemma 16, we have that:

gi,k ≤ Ak
i

k!
+
√
2 · 2−N1/8 ≤

(
Ai · e
k

)k

+
√
2 · 2−N1/8

.

We now use the bound on Ai of Lemma 15:

gi,k ≤

(
8e3/2

k
· i

7/4

N3/4
+

4e

k
· i

2

N
+
e

k
·O
(
N−1/48

))k

+
√
2 · 2−N1/8

.

So if i = o(k4/7 ·N3/7), then gi,k = o(1). Hence if we want gi,k to be a constant, i.e. not o(1), we
must have i = Ω

(
k4/7 ·N3/7

)
.

16



3.3 Finding k distinct s-restricted subset cover

In this section, we generalize the result to the problem of finding k distinct s–RSC, for any s ≥ 3
and any k ≥ 1. We are given s random functions h1, . . . , hs such that for any i ∈ [1, s], hi : X → Y.
We will prove the following theorem.

Theorem 17. Given s random functions h1, . . . , hs : X → Y where N = |Y|, a quantum algorithm

needs to make Ω

(
(s+ 1)

− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
queries to h1, . . . , hs to find k distinct s–RSC

with constant probability, for any s ≤ log(log(N)) and any k ≥ N1/2s+1
.

And naturally we have the following corollary for k = 1:

Corollary 18. Given s random functions h1, . . . , hs : X → Y where N = |Y|, a quantum algorithm

needs to make Ω

(
(s+ 1)

− 2s

2s+1−1 ·N
2s−1

2s+1−1

)
queries to h1, . . . , hs to find one s–RSC with constant

probability, for any s ≤ log(log(N)).

In order to prove Theorem 17, we first define some notations, starting with the notations for
the amplitudes. We define:

1. fi,j as the amplitude of the databases D containing at least j distinct (s − 1)–RSC after i
quantum queries.

2. ĝi,j,k as the amplitude of the databases D containing at least j distinct (s − 1)–RSC and
exactly k distinct s–RSC after i quantum queries.

3. gi,k as the amplitude of the databases D containing exactly k distinct s–RSC after i quantum
queries.

More formally, let |ϕi⟩ (resp. |ψi⟩) be the state of the algorithm just before (resp. after) the ith

query to the oracle. We have:

fi,j =
∣∣∣PRSC

j,(s−1) |ψi⟩
∣∣∣ ,

ĝi,j,k =
∣∣∣PRSC

j,(s−1)P
RSC
k,s ¬PRSC

k+1,s |ψi⟩
∣∣∣ ,

gi,k =
∣∣PRSC

k,s ¬PRSC
k+1,s |ψi⟩

∣∣ .
We want to bound gi,k, and to do so, we define some convenient notation. We start by defining

Πs, a term that appears in the bound of gi,k.

Definition 19. Let Πs be defined as follows:


Π1 = 1

Π2 = 1

∀s ≥ 2, Πs+1 = 2 ·
√
s ·

√
Πs

We define Ai,s and µs(ℓ) as follows:

17



Definition 20.

Ai,s =
i−1∑
ℓ=0

Bℓ,s−1,

where

Bℓ,s =

√
s · µs+1(ℓ)

N
+ 4

(
ℓ

N

)s/2

+

(
s∑

r=2

ℓ

N r

)1/2

,

and

µs(ℓ) = max

{
Πs−1 · (8e)

2s−2−1

2s−3
ℓ(2

s−1−1)/2s−2

N (2s−2−1)/2s−2 , 40 · s2 ·Πs−1 ·N1/2s

}
.

We can now state the bound on gi,k that we will need to prove Theorem 17:

Lemma 21. For every i ∈ N and every k ∈ N, we have that:

gi,k ≤
Ak

i,s+1

k!
+O

(
2−(s+1)2·Πs·N1/2s+1

)
.

In order to prove Lemma 21, we first prove a bound on Ai,s.

Lemma 22. Ai,s ≤ (8e)
2s−2−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1 ·Πs +O
(
s4 ·Πs ·N−1/(2s(2s−2))

)
In the interest of space, we leave the proof of Lemma 22 to Appendix B.5, and we now prove

Lemma 21.

Proof of Lemma 21. We prove this theorem by induction. The case s = 3 corresponds to the

subsection 3.2. Fix s ≥ 3. We assume that fi,j ≤ Aj
i,s

j! + O
(
2−s2·Πs−1·N1/2s

)
for every i ∈ N and

j ∈ N. We will show that gi,k ≤ Ak
i,s+1

k! +O
(
2−(s+1)2·Πs·N1/2s+1)

.

Similarly to the previous subsection, we will bound gi,k recursively. Using Lemma 5, we have
that: ∣∣PRSC

k,s |ψi⟩
∣∣ ≤ ∣∣PRSC

k,s |ϕi⟩
∣∣+ ∣∣PRSC

k,s cO
(
I − PRSC

k,s

)
|ϕi⟩
∣∣ ,

where the second term can be written as:∣∣∣∣∣∣∣∣∣∣∣
PRSC
k,s

∑
x,ŷ,z

D:(k−1) distinct s−RSC
D(x)=⊥

1√
N s

∑
y′

ωyy′
n αx,ŷ,z,D

∣∣x, ŷ, z,D ∪ (x, y′)
〉
∣∣∣∣∣∣∣∣∣∣∣

(16)

+

∣∣∣∣∣∣∣∣∣∣∣
PRSC
k,s cO

∑
x,ŷ,z

D:(k−1) distinct s−RSC
D(x)̸=⊥

αx,ŷ,z,D |x, ŷ, z,D⟩

∣∣∣∣∣∣∣∣∣∣∣
. (17)

To bound the term of Equation (16), we analyse now the possibilities for achieving a s–RSC,
considering the different cases of the inner sum. We have different possible ways to get from D
that does not have a s-RSC to Dy′ := D ∪ (x, y′) that has a s-RSC.

18



• (x = x0) As for the case s = 2, we consider the cases where we query x such that we have
x1, . . . , xs, such that ∀1 ≤ j ≤ s, hs(x) = hs(xs). For every 1 ≤ j ≤ s, only i− 1 values of y′

will make Dy′ contain a collision on hs. Thus there are at most (i−1)s

Ns values of y′ such that
Dy′ contain a new s–RSC in this case.

• (x = xs) Similarly to the case s = 2, we consider the case where there exists x0, . . . , xs−1

such that x0, . . . , xs−1 is a (s − 1)–RSC, and we query x such that hj(x) = hj(x0) for some
1 ≤ j ≤ s. If we have found ℓ distinct (s − 1)–RSC in D previously, then ℓ values of y′ can
make Dy′ contain a s–RSC, out of the N possible values for the outcome of hj (notice that
the values of hi(x) for i ̸= j are not relevant for this case), and there are s different values
for j.

• However, some new terms do not appear in the case of 2–RSC. That would be the case where
the query x is equal to xi1 = xi2 = · · · = xir for some r ∈ {2, . . . , s} in the new s–RSC. We
bound these terms as follows: for each r, there is at most (i − 1) distinct (s − r)–RSC. For
each of these (s−r)–RSC, there are r collisions missing on some hi1 , . . . , hir . And exactly one
value of y′ will make Dy′ contain a collision for hij . The values of the other hash functions
are irrelevant here. Hence using Lemma 4 we can bound the probability of this event by:

s∑
r=2

i− 1

N r
gi−1,k−1

2, (18)

where we bound the amplitude of the database containing at least one (s − r)–RSC and
k− 1 distinct s–RSC after i− 1 quantum queries by gi−1,k−1, the amplitude of the databases
containing only k − 1 distinct s–RSC after i− 1 quantum queries.

Using Lemma 4, and as for the previous cases, by bounding the term of Equation (17) by

3
(
(i−1)
N

)s/2
gi−1,k−1, we can upper bound gi,k by

gi−1,k +

√√√√s
∑
ℓ≥0

ℓ

N
ĝ2i−1,ℓ,k−1 + 4

√
(i− 1)s

N s
gi−1,k−1

2 +

√√√√ s∑
r=2

i− 1

N r
gi−1,k−1

2

≤ gi−1,k +

√√√√s
∑
ℓ≥0

ℓ

N
ĝ2i−1,ℓ,k−1 +

4

(
i− 1

N

)s/2

+

(
s∑

r=2

i− 1

N r

)1/2
 gi−1,k−1, (19)

where the second term can be split in two, similar to the proof of Lemma 11:

√√√√s
∑
ℓ≥0

ℓ

N
ĝ2i−1,ℓ,k−1 ≤

√
s · µs+1(i− 1)

N
gi−1,k−1 +

√
s · fi−1,µs+1(i−1)

The term fi−1,µs+1(i−1) can be bounded by induction hypothesis by:

fi−1,µs+1(i−1) ≤
A

µs+1(i−1)
i−1,s

µs+1(i− 1)!
+O

(
2−s2·Πs−1·N1/2s

)
,

19



and the first term can be bounded by using Lemma 22 and the definition of µs+1(i− 1) by:

 e(4e)
2s−2−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1 Πs +O
(
s4ΠsN

−1/(2s(2s−2))
)

max

{
(8e)

2s−1−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1 Πs, 40(s+ 1)2Πs ·N1/2s
}


40(s+1)2ΠsN1/2s+1

,

which is smaller than (
1

2
+ o(1)

)40(s+1)2·Πs·N1/2s+1

,

which leads to:

fi−1,µs+1(i−1) < 2−9.8·4·(s+1)2·Πs·N1/2s+1

.

Using Definition 20, we rewrite Equation (19) as:

gi,k ≤ gi−1,k +Bℓ,s · gi−1,k−1 +
√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

.

Then, by expanding the inequality and using the fact that g0,k−1 = 0, we get:

gi,k ≤gi−1,k +Bℓ,s · gi−1,k−1 +
√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

...

≤
i−1∑
ℓ=0

(
Bℓ,s · gℓ,k−1 +

√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

)

≤

(
i−1∑
ℓ=0

Bℓ,s · gℓ,k−1

)
+ s ·N1/2 ·

√
s · 2−9.8·4·(s+1)2·Πs·N1/2s+1

≤

(
i−1∑
ℓ=0

Bℓ,s · gℓ,k−1

)
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

,

where we use the fact that i ≤ s ·
√
N for the third inequality.

Expanding this inequality, we obtain

gi,k ≤
Ak

i,s+1

k!
+ s3/2 · eAi,s+1 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

. (20)

For details on Equation (20), see Appendix B.6.
And because i ≤ s ·

√
N , we have Ai,s+1 ≤ 8e · (s + 1)2 · Πs ·N1/2s+1

. Using this and the fact

that s3/2 ≤ 2Πs·(s+1)2·N1/2s+1

, we conclude:

gi,k ≤
Ak

i,s+1

k!
+ 2−(s+1)2·Πs·N1/2s+1

.

At last we bound Πs to conclude the analysis.

20



Proposition 23. We have for any s ∈ N that:

Πs ≤ 4s

Proof. The statement is true for s = 1, 2. Assume it is true for s ≥ 2. Then,

Πs+1 = 2
√
s ·
√

Πs ≤ 2
√
s ·

√
4s ≤ 4(s+ 1).

Finally, we can prove Theorem 17:

Proof of Theorem 17. From Lemma 22, we have:

Ai,s ≤ (8e)
2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1 ·Πs +O
(
s4 ·Πs ·N−1/(2s(2s−2))

)
.

Hence we can bound gi,k for any i, k, by:

gi,k ≤
Ak

i,s+1

k!
+O

(
2−(s+1)2·Πs·N1/2s+1

)
≤
(
e ·Ai,s+1

k

)k

+O

(
2−(s+1)2·Πs·N1/2s+1

)

≤

(
e

k
(8e)

2s−1−1

2s−1
i(2

s+1−1)/2s

N (2s−1)/2s
·Πs+1 +

e

k
·O
(
(s+ 1)4Πs+1 ·N−1/(2s+1(2s+1−2))

))k

+O

(
2−(s+1)2·Πs·N1/2s+1

)

≤

(
e

k
· (8e)

2s−1−1

2s−1
i(2

s+1−1)/2s

N (2s−1)/2s
· 4(s+ 1) +

e

k
·O
(
4(s+ 1)5 ·N−1/(2s+1(2s+1−2))

))k

+O

(
2−4s(s+1)2·N1/2s+1

)
,

where the first inequality comes from Lemma 21, the third inequality comes from Lemma 22 and
the last inequality comes from Proposition 23.

If i = o

(
(s+ 1)

− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
, then gi,k = o(1). Hence if we want gi,k to be

constant, i.e. not o(1), we must have i = Ω

(
s
− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
.

4 The (r, k)–subset cover problem

In this section, we prove some upper and lower bounds on the (r, k)–SC problem. As far as we
know, there is no quantum algorithm to find a (r, k)–SC problem, except for [14]’s algorithm when
k = r, and for the harder problem of finding a k–RSC. We first prove a lower bound on the (1, k)–SC
problem, then design new algorithms for finding a (r, k)–SC.

21



4.1 Lower bound on finding a (1, k)–subset cover

In this subsection, we will prove a lower bound on the (1, k)–SC problem. We are given k random
functions h1, . . . , hk such that for i ∈ [1, k], hi : X → Y. We write N = |Y| and for x ∈ X , we write
H(x) = {hi(x)|i ∈ [1, k]}. The goal of this subsection is to prove the following theorem.

Theorem 24. Given k random functions h1, . . . , hk : X → Y where N = |Y|, a quantum algorithm

needs to make Ω
(
C

−1/5
k ·Nk/5

)
queries to h1, . . . , hk to find one (1,k)–SC with constant probability,

where Ck =
∑k

j=2
k!

(j−1)! .

To prove Theorem 24, we introduce the problem of finding a j–repetition on hi1 , . . . , hij , that
consists in finding an x ∈ X such that hi1(x) = · · · = hij (x). More formally, we define the following
database property:

Definition 25.

∀ℓ, j, P rep
ℓ,j =

{
D ∈ D

∣∣∣∣ ∃x1, x2, . . . , xℓ,∀i,∀1 ≤ ℓ ≤ j, h1(xi) = hℓ(xi)
∀i ̸= p, xi ̸= xp

}
.

Note that we define the property only for ℓ distinct j–repetition on h1, . . . , hj , because by
symmetry, the probability of finding a j–repetition on h1, . . . , hj is the same as finding a j–repetition
on hi1 , . . . , hiℓ .

We also define:

1. f̃ repi,ℓ,j as the amplitude of the databases D containing at least ℓ distinct j–repetitions on
h1, . . . , hj after i quantum queries.

2. f repi,ℓ,j as the amplitude of the databases D containing exactly ℓ distinct j–repetitions on
h1, . . . , hj after i quantum queries.

3. gi,k as the amplitude of the databases D containing at least one (1, k)–SC after i quantum
queries.

More formally, let |ψi⟩ be the state just after the ith query to the oracle, then f̃ repi,ℓ,j =
∣∣∣P rep

ℓ,j |ψi⟩
∣∣∣,

f repi,ℓ,j =
∣∣∣P rep

ℓ,j ¬P rep
ℓ+1,j |ψi⟩

∣∣∣, and gi,k =
∣∣∣PSC

(1,k) |ψi⟩
∣∣∣.

Our goal is to bound gi,k and for that we will bound f̃ repi,ℓ,j .

Lemma 26. For all i, ℓ, j ∈ N, we have that:

f̃ repi,ℓ,j ≤
(

4e · i
ℓ ·N

j−1
2

)ℓ

.

22



Proof. Following the proof of Lemma 13, we have that:

f̃ repi,ℓ,j ≤ f̃ repi−1,ℓ,j +

√
1

N j−1
f̃ repi−1,ℓ−1,k

2

+
3(i− 1)

N j
f̃ repi−1,ℓ−1,k

≤ f̃ repi−1,ℓ,j + 4

√
1

N j−1
f̃ repi−1,ℓ−1,k

2

≤
i−1∑
m=0

4

√
1

N j−1
f̃ repm,ℓ−1,k

≤
i−1∑

m1=0

m1∑
m2=0

4

√
1

N j−1
4

√
1

N j−1
f̃ repm2,ℓ−2,k

...

≤
∑

0≤mℓ<mℓ−1<···<m1<i

(
16

N j−1

)ℓ/2

≤ iℓ

ℓ!

(
16

N j−1

)ℓ/2

≤
(

4e · i
ℓ ·N (j−1)/2

)ℓ

,

where the second inequality comes from the fact that we can assume i ≤ N j/2.

We now bound the amplitude gi,k with an inductive formula, as for the RSC problem.

Lemma 27. For all i ∈ N and k ∈ N, we have that:

gi,k ≤ gi−1,k + 4

(
kk
i− 1

Nk

)1/2

+

 k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j
· k!

(j − 1)!
f repi−1,ℓ,j

2

1/2

.

Proof. For convenience, we denote Pk = PSC
(1,k) the projector on the databases D that contain at

least a (1, k)–SC. We write |ϕi⟩ the state just before the ith quantum query, and |ψi⟩ the state just
after the ith quantum query.

Using Lemma 5, and writing Dy′ := D ∪ (x, y′) we have that:

|Pk |ψi⟩| ≤ |Pk |ϕi⟩|+

∣∣∣∣∣∣∣∣Pk

∑
x,ŷ,z

D:no (1,k)–SC

1√
Nk

∑
y′

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,Dy′
〉∣∣∣∣∣∣∣∣+ 3

i− 1

Nk
(21)

We analyse now the possibilities for achieving a (1, k)–SC, considering the different cases of the
inner sum. We have multiple possible ways to get from D that does not have a (1, k)–SC to Dy′

that has a (1, k)–SC.

• (x = x0) Here, we consider the case where we query x such that {hi(x)} ⊆ {hi(x1)}, where
x1 was queried before. Notice that there are (i− 1) possible values of x1, and for each fixed
value of x1, we have kk possible values of H(x) that would lead to this value. This leads to
kk(i− 1) possible values of y′ that would lead to an (1, k)-SC.

23



• (x = x1) Here, we consider the case where we query x such that {hi(x0)} ⊆ {hi(x)}, where
x0 was queried before.

Let us suppose that x0 has a j-repetition on hi1 , . . . , hij , for some distinct i1, ..., ij . Notice
that in this case, S := {hi(x0)} has k − j + 1 elements and we will count the number of
possible H(x) that contains all of these elements. Out of the k functions h1, . . . , hk, we have(

k
k−j+1

)
possible ways of choosing the functions that will be filled with the values in S. When

we fix such functions, there are |S|! = (k − j + 1)! ways of filling them with the elements of
S, and N j−1 ways of filling the other functions. Therefore, there are

(
k

k−j+1

)
(k− j+1)!N j−1

values of H(x) such that {hi(x0)} ⊆ {hi(x)}.

This gives, bounding the last term of Equation (21) by 3
(
kk i−1

Nk

)1/2
:

|Pk |ψi⟩| ≤ |Pk |ϕi⟩|+ 4

kk i− 1

Nk

∑
x,ŷ,z

D:no k–SC

|αx,ŷ,z,D|2


1/2

+


k∑

j=2

∑
ℓ≥0

ℓ

Nk+1−j
· k!

(j − 1)!

∑
x,ŷ,z

D:no k–SC
ℓ distinct j−repetitions

|αx,ŷ,z,D|2


1/2

.

Using Lemma 4 and our notations, we conclude:

gi,k ≤ gi−1,k + 4

(
kk
i− 1

Nk

)1/2

+

 k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j
· k!

(j − 1)!
f repi−1,ℓ,j

2

1/2

.

We now bound gi,k in the following lemma.

Lemma 28. For every i ∈ N and k ∈ N, we have that:

gi,k ≤ 4kk/2 · i
3/2

Nk/2
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · i

5/2

Nk/2
.

Proof. From Lemma 27, we have that:

gi,k ≤ gi−1,k + 4

(
kk
i− 1

Nk

)1/2

+

 k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j
· k!

(j − 1)!
f repi−1,ℓ,j

2

1/2

.

We want to bound each term in the sum indexed by j. Fix j ∈ {2, . . . , k}. We have that:∑
ℓ≥0

ℓ

Nk+1−j
· k!

(j − 1)!
f repi−1,ℓ,j

2
=

k!

(j − 1)!
·
∑
ℓ≥0

ℓ

Nk+1−j
f repi−1,ℓ,j

2
.

24



Next, we have that: ∑
ℓ≥0

ℓ

Nk+1−j
f repi−1,ℓ,j

2 ≤ i− 1

Nk+1−j
·
∑
ℓ≥1

f repi−1,ℓ,j
2

=
i− 1

Nk+1−j
· f̃ repi−1,1,j

2

≤ i− 1

Nk+1−j
·
(
4e · (i− 1)

N
j−1
2

)2

=
(4e)2(i− 1)3

Nk
,

where f̃ repi−1,1,j is the amplitude of the databases D containing at least one j–repetition on h1, . . . , hj
after i − 1 quantum queries. The first inequality follows since there cannot be more than i − 1
distinct j–repetitions on h1, . . . , hj after i− 1 quantum queries. The second inequality comes from

the bound on f̃ repi−1,1,j in Lemma 26.
This gives: k∑

j=2

k!

(j − 1)!

∑
ℓ≥0

ℓ

Nk+1−j
f repi−1,ℓ,j

2

1/2

≤

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · (i− 1)3/2

Nk/2
.

Finally, by developing the recursive terms (and using that g0,k = 0), we get that:

gi,k ≤ gi−1,k + 4

√
kk
i− 1

Nk
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · (i− 1)3/2

Nk/2

...

≤
i−1∑
ℓ=0

4

√
kk

ℓ

Nk
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · ℓ

3/2

Nk/2


≤ 4kk/2

i3/2

Nk/2
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · i

5/2

Nk/2
.

We can now prove Theorem 24.

Proof of Theorem 24. From Lemma 28, we have that:

gi,k ≤ 4kk/2 · i
3/2

Nk/2
+

√√√√ k∑
j=2

k!

(j − 1)!
· 4e · i

5/2

Nk/2
.

Writing Ck =
∑k

j=2
k!

(j−1)! , this rewrites as:

gi,k ≤ 4kk/2 · i
3/2

Nk/2
+
√
Ck ·

4e · i5/2

Nk/2
.

If i = o
(
C

−1/5
k ·Nk/5

)
, then gi,k = o(1). Hence if we want gi,k to be constant, i.e. not o(1), we

must have i = Ω
(
C

−1/5
k ·Nk/5

)
.

25



4.2 Algorithm for finding a (1, k)–subset cover

We now describe an algorithm that finds a (1, k)–SC, assuming |X | = |Y|k = Nk. We first notice
that an algorithm that finds a collision on H also finds a (1, k)–SC in an expected O(Nk/3) number
of queries. We show now that there is a more efficient algorithm, as stated in the following theorem:

Theorem 29. There exists a quantum algorithm that finds a (1, k)–SC in expected O
(
Nk/4

)
quan-

tum queries if k is even, and O(Nk/4+1/12) if k is odd.

To prove this theorem, we describe the following algorithm (which takes as parameters j and t,
whose values will be chosen later):

Algorithm 1. Input: j ∈ {2, . . . , k} and t ∈ N.

1. Define F1 : X → {0, 1} as follows:

F1(x) =

{
1, if h1(x) = h2(x) = · · · = hj(x)

0, otherwise.

(Note that an element x ∈ X such that F1(x) = 1 is a j–repetition.)

2. Execute Grover’s algorithm t times on F1 to find t distinct j–repetitions in H. Let T =
{x1, . . . , xt} be the set of these j–repetitions.

3. Define F2 : X → {0, 1} as follows:

F2(x) =


1, if there exists x0 ∈ T such that h1(x) = h1(x0)

and for 1 ≤ m ≤ k − j, hm+1(x) = hj+m(x0)

0, otherwise.

4. Execute Grover’s algorithm to find an x such that F2(x) = 1

5. Find x0 in T corresponding to x, and output (x, x0).

Lemma 30. Algorithm 1 makes an expected number of O
(
N (2k−j+1)/6

)
queries to the oracle when

j ≤ k+2
2 for t = N (k−2j+2)/3.

Proof. Notice that if we consider a uniformly random function, we have that Pr[h1(x) = · · · =
hj(x)] = N−j+1. Therefore, the expected number of elements in X such that F1(x) = 1 is Nk ·
N−j+1 = Nk−j+1. We write X1, . . . , XNk the random variables corresponding to F1’s output on
each x ∈ X , X the sum of these variables, µ = Nk−j+1 their mean. Chernoff bound tells us that
for any 0 ≤ δ ≤ 1,

Pr (|X − µ| ≥ µδ) ≤ e−δ2µ/3.

With δ = 1/2, we have:

Pr
(
|X − µ| ≥ µ

2

)
≤ e−µ/12.

Thus, unless with probability e−(Nk−j+1)/12, the number of elements x ∈ X such that F1(x) = 1 is
greater than Nk−j+1/2.

Hence using Theorem 36, the second step of the algorithm is expected to makeO

(
t ·
√

Nk

Nk−j+1

)
=

O
(
t ·N (j−1)/2

)
quantum queries to the oracle.

26



Notice that for a fixed value x0, if we consider a uniformly random function, we have that

Pr[h1(x) = h1(x0) ∧ h2(x) = hm+1(x0) ∧ · · · ∧ hk−j+1(x) = hk(x)] = N j−k−1.

Therefore, the expected number of elements such that F2(x) = 1 is t · Nk · N j−k−1 = t · N j−1.
Similarly, using Chernoff bound, unless with probability e−(t·Nj−1)/12, the number of elements such
that F2(x) = 1 is greater than t·N j−1/2. Hence, using Theorem 36, the fourth step of the algorithm

is expected to make O

(√
Nk

t·Nj−1

)
= O

(
N(k−j+1)/2

√
t

)
quantum queries to the oracle.

By picking t = N (k−2j+2)/3 with j ≤ k+2
2 (otherwise t < 1), the complexity of the algorithm is

O(N (k−2j+2)/3 ·N (j−1)/2) = O(N (2k−j+1)/6).

We now prove Theorem 29

Proof of Theorem 29. From Lemma 30, the complexity of Algorithm 1 is O(N (2k−j+1)/6) when
j ≤ k+2

2 .

• If k is even, then we pick j = k+2
2 to reach a complexity of O(Nk/4).

• If k is odd, then we pick j = k+1
2 to reach a complexity of O(Nk/4+1/12).

Note that if j > k+1
2 , then the second step of the algorithm is expected to make at least

O
(
N

k+1
4

)
quantum queries, which is worse than O(Nk/4+1/12).

Remark 2. Note that we do not reach the lower bound of Theorem 24, and it would be interesting
to see if the gap can be further reduced by either improving our lower bounds or designing a more
efficient algorithm.

A slightly better algorithm We describe a more efficient algorithm when k is not constant.
The idea is to take into account the fact that we do not necessarily need the j–repetitions from
the previous algorithm to occur on the first j functions h1, . . . , hj , but they could rather be on any
hi1 , . . . , hij instead. We also consider permutations of the h1, . . . , hk in the fourth step of Algorithm
1.

Theorem 31. There exists a quantum algorithm that finds a (1, k)–SC in:

• O
((

k
(k+2)/2

)−1/2 ·Nk/4
)
quantum queries if k is even,

• O
((

k
(k+1)/2

)−1/2 ·Nk/4+1/12
)
quantum queries if k is odd.

The gain that we obtain is a function of k and is therefore not significant if k is constant.
However, as we have shown in Theorem 24, the dependence in k can be quite large for the (1, k)–
SC problem.

To prove this theorem, we describe the algorithm as follows (which takes again as input two
integers j and t playing the role of parameters whose optimal values will be determined later):

Algorithm 2. Input: j ∈ {2, . . . , k} and t ∈ N.

27



1. Define F1 : X → {0, 1} as follows:

F1(x) =


1, if there exists distinct i1, . . . , ij ∈ [1, k] such that

hi1(x) = hi2(x) = · · · = hij (x)

0, otherwise.

(Note that an element x ∈ X such that F1(x) = 1 is a j–repetition.)

2. Execute Grover’s algorithm t times on F1 to find t distinct j–repetitions in H. Let T =
{x1, . . . , xt} be the set of these j–repetitions. We write, for ℓ ∈ [1, t] Iℓ = {iℓ1, . . . , iℓj} the set

of indices such that hiℓ1
(xt) = · · · = hiℓk

(xt), and I
′
ℓ = [1, k]\Iℓ = {iℓj+1, . . . , i

ℓ
k}.

3. Define F2 : X → {0, 1} as follows:

F2(x) =


1, if there exists distinct j0, j1, . . . , jk−j+1 ∈ [1, k],

and ℓ ∈ [1, t] s.t. hiℓ1
(xℓ) = hj0(x)

and for all 1 ≤ m ≤ k − j, hjm(x) = hiℓj+m
(xℓ)

0, otherwise.

4. Execute Grover’s algorithm to find an x such that F2(x) = 1

5. Find x0 in T , and output (x, x0).

Remark 3. F1 (resp. F2) can be constructed with O
((

k
j

))
(resp. O

(
k!

(j−1)!

)
) quantum gates and

one query to H.

Lemma 32. Algorithm 2 makes an expected number of O
((

k
j

)−1/2
N (2k−j+1)/6

)
queries to the

oracle when j ≤ k+2
2 for t = N (k−2j+2)/3.

The proof of Lemma 32 is given in Appendix B.7. We now prove Theorem 31.

Proof of Theorem 31. From Lemma 32, the complexity of Algorithm 2 is O
((

k
j

)−1/2 ·N (2k−j+1)/6
)

when j ≤ k+2
2 .

• If k is even, for j = k+2
2 , we get a complexity of O

((
k

(k+2)/2

)−1/2 ·Nk/4
)
.

• If k is odd, for j = k+1
2 , we get a complexity of O

((
k

(k+1)/2

)−1/2 ·Nk/4+1/12
)
.

Note that if j > k+1
2 , then the second step of the algorithm is expected to make at least

O
((

k
(k+1)/2

)−1/2 ·N
k+1
4

)
quantum queries.

4.3 Algorithm for finding a (r, k)–subset cover

In this section, we describe an algorithm for solving the (r, k)–SC problem. We consider the case
where |X | = |r · Y|k = rk ·Nk. The result is stated as follows:

Theorem 33. There exists a quantum algorithm that finds a (r, k)–SC in O
(
Nk/(2+2r)

)
quantum

queries to H, if k is divisible by r + 1, and O
(
Nk/(2+2r)+1/2

)
otherwise.

28



The idea of the algorithm is essentially the same as Algorithm 1 of Section 4.2:

1. we first find t distinct (r − 1, k′)–SC for some integers t and k′;

2. we then find the (r, k)–SC.

The first step is done recursively, using the algorithm defined for lower values of k′ and r − 1.
The second step uses Grover’s algorithm. The algorithm can be defined for any value of k′ and t,
and we pick them to optimize the complexity.

More formally, we define the algorithm recursively. Assume that we have an algorithm that can

output a (r − 1, k′)–SC in O
(
Nk′/2r

)
queries, for any k′ < k such that k′ is divisible by r. Then,

we can find a (r, k)–SC as follows:

Algorithm 3. Input: t ∈ N, k′ ∈ N.

1. Execute the (r − 1, k′)–SC algorithm t times to find t distinct (r − 1, k′)–SC in H. Let T =
{(x1,0, x1,1, . . . , x1,r−1), . . . , (xt,0, xt,1, . . . , xt,r−1)} be the set of these (r − 1, k′)–SC.

2. Define F : X → {0, 1} as follows:

F (x) =


1, if there exists (xi,0, xi,1, . . . , xi,r−1) ∈ T such that

∀1 ≤ m ≤ k − k′, hm(x) = hk′+m(xi,0),

0, otherwise.

3. Execute Grover’s algorithm to find an x such that F (x) = 1

4. Find (xi,0, xi,1, . . . , xi,r−1) in T and output (xi,0, xi,1, . . . , xi,r−1, x).

Lemma 34. Algorithm 3 makes an expected number of O
(
Nk/(2+2r)

)
queries to the oracle, when

k is divisible by r, and O
(
Nk/(2+2r)+1/2

)
otherwise.

We defer the proof of Lemma 34 to Appendix B.8.

Acknlowedgements

ABG is supported by ANR JCJC TCS-NISQ ANR-22-CE47-0004, and by the PEPR integrated
project EPiQ ANR-22-PETQ-0007 part of Plan France 2030. This work is part of HQI initiative
(www.hqi.fr) and is supported by France 2030 under the French National Research Agency award
number “ANR-22-PNCQ-0002”. We thanks the anonymous reviewers for their valuable comments
that helped improving the quality of this paper.

References

[1] J.-P. Aumasson and G. Endignoux. Clarifying the subset-resilience problem. Cryptology ePrint
Archive, Report 2017/909, 2017. https://eprint.iacr.org/2017/909.

[2] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou,
M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS: Practical stateless hash-based
signatures. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056
of LNCS, pages 368–397. Springer, Heidelberg, Apr. 2015.

29

https://eprint.iacr.org/2017/909


[3] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe. The
SPHINCS+ signature framework. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors,
ACM CCS 2019, pages 2129–2146. ACM Press, Nov. 2019.

[4] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. Random
oracles in a quantum world. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 41–69. Springer, Heidelberg, Dec. 2011.

[5] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 46(4-5):493–505, jun 1998.

[6] G. Brassard, P. Høyer, and A. Tapp. Quantum cryptanalysis of hash and claw-free functions.
In C. L. Lucchesi and A. V. Moura, editors, LATIN ’98: Theoretical Informatics, Third Latin
American Symposium, Campinas, Brazil, April, 20-24, 1998, Proceedings, volume 1380 of
Lecture Notes in Computer Science, pages 163–169. Springer, 1998.

[7] K.-M. Chung, S. Fehr, Y.-H. Huang, and T.-N. Liao. On the compressed-oracle technique,
and post-quantum security of proofs of sequential work. In A. Canteaut and F.-X. Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 598–629. Springer,
Heidelberg, Oct. 2021.

[8] L. K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM STOC,
pages 212–219. ACM Press, May 1996.

[9] L. Lamport. Constructing digital signatures from a one-way function. Technical Report SRI-
CSL-98, SRI International Computer Science Laboratory, october 1979.

[10] Q. Liu and M. Zhandry. On finding quantum multi-collisions. In Y. Ishai and V. Rijmen,
editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 189–218. Springer, Hei-
delberg, May 2019.

[11] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast signing and
verifying. In L. M. Batten and J. Seberry, editors, ACISP 02, volume 2384 of LNCS, pages
144–153. Springer, Heidelberg, July 2002.

[12] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Journal on Computing, 26(5):1484–1509, oct 1997.

[13] T. Yamakawa and M. Zhandry. Classical vs quantum random oracles. In A. Canteaut and
F.-X. Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 568–597.
Springer, Heidelberg, Oct. 2021.

[14] Q. Yuan, M. Tibouchi, and M. Abe. On subset-resilient hash function families. Designs, Codes
and Cryptography, 90, 03 2022.

[15] M. Zhandry. How to record quantum queries, and applications to quantum indifferentiability.
In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 239–268. Springer, Heidelberg, Aug. 2019.

30



A Grover’s algorithm and Quantum Fourier Transform

A.1 Grover’s algorithm

Here we quickly recall Grover’s algorithm. We start by defining the search problem.

Definition 35 (Search problem). We are given a function F : X → {0, 1}. The search problem
consists of finding an x ∈ X such that F (x) = 1, in the least amount of queries to F possible.

Grover’s algorithm solves the search problem in O

(√
|X |
t

)
, where t is the number of x such

that F (x) = 1. The result is stated as follows:

Theorem 36 ([8][5]). Let F : X → {0, 1} be a function, t = |{x|F (x) = 1}|, and N = |X |. Then,

Grover’s algorithm finds an x such that F (x) = 1 with constant probability with O

(√
N
t

)
queries

to F. Moreover, this algorithm is optimal.

Remark 4. When constructing quantum algorithms in the Quantum Random Oracle Model, we
are given a black box access to a function H : X → Y. To use Grover’s algorithm in this model, we
need to construct the function F : X → {0, 1} from the function H. Then, to count the number of
queries to H, it is sufficient to compute the number of queries to F .

A.2 The Quantum Fourier Transform

Let Y = {0, 1}n, for some n ∈ N. We recall that the computational basis is {|y⟩}y∈Y . The

Quantum Fourier Transform is a unitary that, given an input state |ϕ⟩ =
∑2n−1

k=0 xk |k⟩, outputs∑2n

k=0 yk |k⟩ where the yk’s are computed with the following formula:

yk =
1

2n/2

2n−1∑
ℓ=0

xℓω
kℓ
N

where ωN = e2πi/2
n
thus ωℓ

N is a 2n-th root of unity.
This unitary can be efficiently implemented, and we write it QFT.
Applying the QFT to the computational basis yields the Fourier basis {|ŷ⟩}y∈Y .

B Technical proofs

B.1 Proof of Lemma 8

As previously mentioned, the proof closely follows the proof of Corollary 11 from [10].
We write P ′

ℓ−col−h1
the set of databases that contain at least ℓ distinct collisions on h1.

Let i ∈ N. Let |ϕi⟩ be the state just before the ith query to H = (h1, h2), namely

|ϕi⟩ =
∑

x,ŷ,z,D

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ ,

where x is the query register, y is the answer register, z is the work register and D is the database
register. Let |ψi⟩ be the state right after the ith query to H, namely

|ψi⟩ =
∑

x,ŷ,z,D
D(x)=⊥

1√
N2

∑
y′

ωyy′

N αx,ŷ,z,D |x, ŷ, z⟩ ⊗
∣∣D ∪ (x, y′)

〉
+ cO

∑
x,ŷ,z,D
D(x) ̸=⊥

αx,ŷ,z,D |x, ŷ, z⟩ ⊗ |D⟩ .

31



From Lemma 5, we have that:∣∣P ′
ℓ−col−h1

|ψi⟩
∣∣ ≤ ∣∣P ′

ℓ−col−h1
|ϕi⟩
∣∣+ ∣∣P ′

ℓ−col−h1
cO(I − P ′

ℓ−col−h1
) |ϕi⟩

∣∣ . (22)

Writing f coli,ℓ =
∣∣P ′

ℓ−col−h1
|ψi⟩

∣∣ and similarly to the proof of Lemma 10, using Lemma 2 and
Lemma 4 we obtain the following recursive inequality:

f coli,ℓ ≤ f coli−1,ℓ + 4

√
i− 1√
N

f coli−1,ℓ−1

≤
i−1∑
j=0

4

√
j√
N
f colj,ℓ−1

≤
i−1∑
j1=0

4

√
j1√
N

j1−1∑
j2=0

4

√
j2√
N
f colj2,ℓ−2

...

≤
∑

0≤jℓ<jℓ−1<···<j1<i

ℓ∏
k=1

4

√
jk√
N

≤ 1

ℓ!

∑
0≤jℓ,jℓ−1,...,j1<i

ℓ∏
k=1

4

√
jk√
N

=
1

ℓ!

 ∑
0<j<i

4

√
i− 1√
N

j

≤

(
4e · i3/2

j
√
N

)j

,

where the computation follows from the proof of Lemma 11 in [10].

32



B.2 Proof of Equation (7)

Writing Dy′ = D ∪ (x, y′),∣∣∣∣∣∣∣∣∣∣∣
P2

∑
y′

1√
N2

∑
x,ŷ,z
D:¬P2
D(x)=⊥

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,Dy′
〉
∣∣∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣∣∣
∑
ℓ≥0

ℓ

N

∑
b∈{1,2}

∑
x,ŷ,z
D:¬P2
exactly ℓ

collisions on hb

∑
y′

1√
N2

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,Dy′
〉

+
(i− 1)2

N2

∑
x,ŷ,z
D:¬P2

∑
y′

1√
N2

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,Dy′
〉∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣∣∣∣∣
2 ·
∑
ℓ≥0

ℓ

N

∑
x,ŷ,z
D:¬P2
exactly ℓ

collisions on h1

∑
y′

1√
N2

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,Dy′
〉
∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
(i− 1)2

N2

∑
x,ŷ,z
D:¬P2

∑
y′

1√
N2

ωyy′

N αx,ŷ,z,D

∣∣x, ŷ, z,Dy′
〉∣∣∣∣∣∣∣∣

≤


2 ·
∑
ℓ≥0

ℓ

N

∑
x,ŷ,z
D:¬P2
exactly ℓ

collisions on h1

|αx,ŷ,z,D|2



1/2

+

(i− 1)2

N2

∑
x,ŷ,z
D:¬P2

|αx,ŷ,z,D|2


1/2

≤

2 ·
∑
ℓ≥0

ℓ

N
|Pℓ−col−h1 |ϕi⟩|

2

1/2

+
(i− 1)

N
,

where in the second inequality, we used the symmetry of finding collisions on h1 and collisions on
h2, and used the definition of |Pℓ−col−h1 |ϕi⟩|

2 in the last inequality.

33



B.3 Proof of Lemma 15

Proof. We have that

Ai ≤
∑

ℓ:µ(ℓ)=8e ℓ3/2√
N

√
2 ·

√
8eℓ3/2

N3/4
+

∑
ℓ:µ3(ℓ)=10N1/8

√
2 ·

√
10N1/8

N1/2
+

i−1∑
ℓ=0

4 · ℓ− 1

N

≤
i−1∑
ℓ=1

√
2 ·

√
8eℓ3/2

N3/4
+

∑
ℓ:µ3(ℓ)=10N1/8

√
2 ·

√
10N1/8

N1/2
+

i−1∑
ℓ=0

4 · ℓ− 1

N

≤ 4
√
e
i7/4

N3/4
+
√
2 ·
(
10

8e

)2/3

·N5/12 ·
√
10N1/8

N1/2
+ 4 · i

2

N

≤ 4
√
e · i

7/4

N3/4
+ 4 · i

2

N
+O

(
N−1/48

)
,

where the third inequality comes from counting the number of ℓ such that µ3(ℓ) = 10N1/8, which

is equal to the number of ℓ such that 8e ℓ
3/2
√
N

≤ 10N1/8.

B.4 Proof of Equation (15)

Here, we give a proof of Equation (15). Starting from Equation (14), we have that:

gi,k ≤ gi−1,k +
√
2

(√
µ3(i− 1)

N
+
√
8
i− 1

N

)
gi−1,k−1 +

√
2 · f coli−1,µ3(i−1)

...

≤
√
2

i−1∑
ℓ=0

((√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 + f colℓ,µ3(ℓ)

)

≤
√
2

i−1∑
ℓ=0

((√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 +

(
1

2

)10N1/8
)

≤
i−1∑
ℓ=0

√
2

(√
µ3(ℓ)

N
+

√
8
ℓ

N

)
gℓ,k−1 +

√
2 · 2−10N1/8 ·N1/2

≤
i−1∑
ℓ=0

√
2

(√
µ3(ℓ)

N
+

√
8
ℓ

N

)
gℓ,k−1 +

√
2 · 2−9.5N1/8

,

where the second inequality comes from the recursion on the first term gi−1,k, and using the fact
that g0,k = 0. For the third inequality, we used Lemma 8 and the definition of µ3. Expanding

34



recursively inside the sum, we have:

gi,k ≤
i−1∑
ℓ=0

√
2

(√
µ3(ℓ)

N
+
√
8
ℓ

N

)
gℓ,k−1 +

√
2 · 2−9.5N1/8

≤
i−1∑
ℓ1=0

√
2

(√
µ3(ℓ1)

N
+
√
8
ℓ1
N

)(
ℓ1∑

ℓ2=0

√
2

(√
µ3(ℓ2)

N
+
√
8
ℓ2
N

)
gℓ2,k−2

+
√
2 · 2−9.5N1/8

)
+

√
2 · 2−9.5N1/8

...

≤
∑

0≤ℓk<ℓk−1<···<ℓ1<i

k∏
j=1

√
2

(√
µ3(ℓj)

N
+

√
8
ℓj
N

)

+
√
2 · 2−9.5N1/8

k−1∑
t=0

∑
0≤ℓt<ℓt−1<···<ℓ1<i

t∏
j=1

√
2

(√
µ3(ℓj)

N
+
√
8
ℓj
N

)

≤ Ak
i

k!
+
√
2 · 29.5N1/8

k−1∑
t=0

At
i

t!

≤ Ak
i

k!
+
√
2 · eAi29.5N

1/8
,

where the third inequality comes from expanding recursively all of the terms gℓt,k−t, and using the
fact that gℓ,0 = 1. The fourth inequality comes from the fact that:

∑
0≤ℓk<ℓk−1<···<ℓ1<i

k∏
j=1

√
2

(√
µ3(ℓj)

N
+
√
8
ℓj
N

)

≤ 1

k!

∑
0≤ℓk,ℓk−1,...,ℓ1<i

k∏
j=1

√
2

(√
µ3(ℓj)

N
+

√
8
ℓj
N

)

=
1

k!

k∏
j=1

∑
0≤ℓj<i

√
2

(√
µ3(ℓj)

N
+

√
8
ℓj
N

)

=
1

k!

k∏
j=1

Ai

=
Ak

i

k!
.

35



B.5 Proof of Lemma 22

Proof. We have that:

Ai,s =

i−1∑
ℓ=0

√(s− 1) · µs(ℓ)
N

+ 4

(
ℓ

N

)s/2

+

(
s∑

r=2

ℓ

N r

)1/2


=
√
s− 1

i−1∑
ℓ=0

√
µs(ℓ)

N
+ 4

i−1∑
ℓ=0

(
ℓ

N

)s/2

+

i−1∑
ℓ=0

(
s∑

r=2

ℓ

N r

)1/2

. (23)

Notice that

i−1∑
ℓ=0

√
µs(ℓ)

N

=
∑

ℓ:µs(ℓ)=40·s2·Πs−1·N1/2s

√
40 · s2 ·Πs−1 ·N1/2s

N
(24)

+
∑

ℓ:µs(ℓ)>40·s2·Πs−1·N1/2s

√
µs(ℓ)

N

≤
∑

ℓ:µs(ℓ)=40·s2·Πs−1·N1/2s

√
40 · s2 ·Πs−1 ·N1/2s

N
(25)

+
i−1∑
ℓ=0

(8e)
2s−2−1

2s−2
ℓ(2

s−1−1)/2s−1

N (2s−2−1)/2s−1 ·N−1/2 ·
√
Πs−1,

where we replaced µs(ℓ) by its value, and the inequality comes from the fact that there cannot
be more than i values such that µs(ℓ) > 40 · s2 · Πs−1 · N1/2s . The second summation is at most

(8e)
2s−2−1

2s−2 i(2
s−1)/2s−1

N(2s−1−1)/2s−1 ·
√
Πs−1.

For the first summation of Equation (25), we need to count the values of ℓ such that µs(l) =
40s2 · Πs−1 ·N1/2s . By using the definition of µs(ℓ), this quantity corresponds to the number of ℓ
that satisfies:

Πs−1 · (8e)
2s−2−1

2s−3
ℓ(2

s−1−1)/2s−2

N (2s−2−1)/2s−2 ≤ 40 · s2 ·Πs−1 ·N1/2s

⇔ℓ ≤

 40

(8e)
2s−2−1

2s−3

2s−2/(2s−1−1)

·N
(

1
2s

+ 2s−2−1

2s−2

)
2s−2

2s−1−1 · s
2s

2s−1−1

⇔ℓ ≤ O

(
s

2s

2s−1−1 ·N
(

1
2s

+ 2s−2−1

2s−2

)
2s−2

2s−1−1

)
.

36



Thus the first summation of Equation (25) is upper-bounded by:∑
ℓ:µs(ℓ)=10·Πs−1·N1/2s

√
10 · s2 ·Πs−1 ·N1/2s

N
=

√
10 · s2 ·Πs−1 ·N1/2s

N
·O
(
s

2s

2s−1−1 ·N
(

1
2s

+ 2s−2−1

2s−2

)
2s−2

2s−1−1

)
≤ O

(
N

− 1
2
+ 1

2s+1+
2s−3

4(2s−1−1) · s4 ·
√

Πs−1

)
≤ O

(
N

−22s−1+2s+2s−1−1+22s−4

2(2s−2) · s4 ·
√
Πs−1

)
≤ O

(
N−1/(2s(2s−2)) · s4 ·

√
Πs−1

)
= O

(
N−1/(2s(2s−2)) · s4 ·Πs

)
,

where for the first inequality we use that 2s

2s−1−1
+ 1 ≤ 4 for all s ≥ 3.

Therefore, we have that:

i−1∑
ℓ=0

√
µs(ℓ)

N
≤ (2e)

2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1

√
Πs−1 +O

(
N−1/(2s(2s−2)) · s4 ·Πs

)
. (26)

For the second term of Equation (23), we have:

4
i−1∑
ℓ=0

(
ℓ

N

)s/2

≤ 4

i−1∑
ℓ=0

(
ℓ

N

)

≤ 4

i−1∑
ℓ=0

(
ℓ

N

)(2s−1−1)/2s−1

, (27)

where we use that s ≥ 3 and 1 ≥ (2s−1 − 1)/2s−1. And for the third term,

i−1∑
ℓ=0

(
s∑

r=2

ℓ

N r

)1/2

≤
i−1∑
ℓ=0

(
(s− 1)

ℓ

N2

)1/2

≤
i−1∑
ℓ=0

(√
s− 1

ℓ

N

)

≤
i−1∑
ℓ=0

(
√
s− 1

(
ℓ

N

)(2s−1−1)/2s−1
)
, (28)

where we used that r ≥ 2 for the second inequality, and that 1 ≥ (2s−1 − 1)/2s−1 for the last

inequality. Thus, using that 2 · (8e)
2s−2−1

2s−2 ≥ 6 and combining Equation (23), Equation (26),
Equation (27) and Equation (28) yields that:

Ai,s ≤ 2 · (8e)
2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1 ·
√
s− 1 ·

√
Πs−1

+O
(
N−1/(2s(2s−2)) · s4 ·Πs

)
= (8e)

2s−2−1

2s−2
i(2

s−1)/2s−1

N (2s−1−1)/2s−1 ·Πs +O
(
s4 ·Πs ·N−1/(2s(2s−2))

)
.

37



B.6 Proof of Equation (20)

We have

gi,k ≤

(
i−1∑
ℓ=0

Bℓ,s · gℓ,k−1

)
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

≤

 i−1∑
ℓ1=0

Bℓ1,s

 i−1∑
ℓ2=ℓ1

Bℓ2,s · gℓ2,k−1 + s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1


+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

.

We get by induction

gi,k ≤

(
i−1∑
ℓ1=0

Bℓ1,s

(
i−1∑

ℓ2=ℓ1

Bℓ2,s

(
i−1∑

ℓ3=ℓ2

Bℓ3,s · · ·

+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

)
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

))
+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

.

We thus obtain

gi,k ≤

 ∑
0≤ℓk<ℓk−1<···<ℓ1<i

k∏
j=1

Bℓj ,s


+ s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

·
k−1∑
t=0

∑
0≤ℓt<ℓt−1<···<ℓ1<i

t∏
j=1

Bℓj ,s,

and finally

gi,k ≤
Ak

i,s+1

k!
+

k−1∑
ℓ=0

Aℓ
i,s+1

ℓ!
· s3/2 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

≤
Ak

i,s+1

k!
+ s3/2 · eAi,s+1 · 2−9.5·4·(s+1)2·Πs·N1/2s+1

.

B.7 Proof of Lemma 32

Proof. Similarly to the proof of Lemma 30, we can consider that there are O
(
Nk−j+1

)
marked

elements in the function F1. Hence, using Theorem 36, the second step of the algorithm is expected
to make

O

(
t ·
√

Nk

Nk−j+1 ·
(
k
j

)) = O

 t√(
k
j

) ·N (j−1)/2


38



quantum queries to the oracle.
Similarly to the proof of Lemma 30, we can consider that there are t · N j−1 · k!

(j−1)! marked
elements in the function F2. Hence, using Theorem 36, the fourth step of the algorithm is expected
to make

O

(√
Nk

t ·N j−1 · k!
(j−1)!

)
= O

(
N (k−j+1)/2

√
t

·
√

(j − 1)!

k!

)
quantum queries to the oracle.

By picking t = N (k−2j+2)/3 with j ≤ k+2
2 , the complexity of the algorithm is

O

(
N (k−2j+2)/3 ·N (j−1)/2 ·

(√
1(
k
j

) +√ j!

k!

))
= O

N (2k−j+1)/6√(
k
j

)


quantum queries to the oracle.

B.8 Proof of Lemma 34

Proof. We first prove the result when k is divisible by r + 1. The result holds for r = 1 (using
Algorithm 1 and Lemma 30).

Fix r > 2, and assume the result holds for r − 1.

The first step of the algorithm is expected to make O
(
t ·Nk′/2r

)
quantum queries to the oracle

if k′ is divisible by r.
Similarly to the proof of Lemma 30, we can consider that there are t ·Nk′ marked elements in

the function F1. Hence, using Theorem 36, the third step of the algorithm is expected to make

O
(√

Nk

t·Nk′

)
quantum queries to the oracle.

Picking t = N (rk−rk′−k′)/3r gives a complexity O
(
N (2rk+(1−2r)k′)/6r

)
.

By picking k′ = r
r+1k, k

′ is an integer since k is divisible by r + 1. Moreover, k′ is divisible by

r and the complexity becomes O
(
Nk/(2+2r)

)
.

If k is not divisible by r+ 1, then there is a k′ between k and k+ r+ 1 such that k′ is divisible
by r+1. Then, we can use Algorithm 3 to find a (r, k′)–SC with the same functions h1, . . . , hk and
new random functions hk+1, . . . , hk′ . This gives us a (r, k)–SC for the functions h1, . . . , hk, and the
quantum query complexity is

O
(
Nk′/(2+2r)

)
≤ O

(
N (k+r+1)/(2+2r)

)
.

39


	Introduction
	Our results
	Technical Overview
	Related works, discussion and open problems

	Preliminaries
	Compressed oracle technique
	The problem of subset cover and its variants

	Lower bound on the k–restricted subset cover problem
	Finding a 2–restricted subset cover
	Finding k distinct 2-restricted subset cover
	Finding k distinct s-restricted subset cover

	The (r,k)–subset cover problem
	Lower bound on finding a (1,k)–subset cover
	Algorithm for finding a (1,k)–subset cover
	Algorithm for finding a (r,k)–subset cover

	Grover's algorithm and Quantum Fourier Transform
	Grover's algorithm
	The Quantum Fourier Transform

	Technical proofs
	Proof of Lemma 8
	Proof of eq:projection-2rsc-app
	Proof of Lemma 15
	Proof of equation:bound2sc
	Proof of Lemma 22
	Proof of eq:bound-giksrsc-app
	Proof of Lemma 32
	Proof of Lemma 34


