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We demonstrate that with some ideas from group theory we are very often able to
recover the keywords for a quagmire cipher from its key table. This would be the last
task for a cryptologist in analyzing such a cipher.

Introduction

The quagmire ciphers [1, 2] (also known as type 1, 2, 3, and 4 periodic polyalphabetic
substitution ciphers) are generalizations of the Vigenére cipher [3] in which the plaintext alphabet is
permuted, or the ciphertext alphabet which slides against it is permuted, or both. Each of the twenty-six
rows in the tableau for such a cipher as the key of a monoalphabetic substitution. A subset of them is
chosen and applied in repeated sequence to the letters of the plaintext to create the ciphertext. That
subset is what we call the “key table.”

We start with the Vigenere cipher and work our way to the quagmire 4. For each, we
demonstrate that it is very often possible to recover the keywords from the key table for each type of
cipher. With the quagmires 1, 3, and 4, doing so utilizes some ideas from algebraic group theory. The
process can mostly be automated, but in the end a human must choose from a small set of possibilities.

Vigenere cipher

Every alphabet key for the Vigenére cipher (V) is a rotation, which we denote as R, forn =0, ...,
25. Rotation leftward is taken as positive. The rows of the Vigenére tableau form a subgroup of the
permutation group, where “multiplication” is the composition of permutations, and this subgroup is
isomorphic to the integers modulo 26 (Z). Later we will need to know the orders of its elements,
which we list here:

elements order
Ro 1
Ri3 2
RZ, R4, RG, RB, RlO, RIZ, R14, R16, R18, RZO, RZZ, R24 ]-3
Rl; R3; RS, R7, R9, Rll, RlS, R17, R19; RZl, R23; R25 26

It is also important to note that there are twelve automorphisms of V, and that each corresponds
to a different choice of order-26 element as the generator. Under each automorphism, the identity
element e = R, is mapped to itself, as is Ri3, which is the only order-2 element. Below is a table of



examples of representations of these automorphisms, where we have organized them according to
which rotation they map from R;.

R, = an°Ri°a,*?

(Here and throughout this paper, the binary operation is the composition of permutations.) Note that
these are not unique, and rotations of a have the same effect as q, since a rotated a, is a, ° R, and

(anolqm)01'210((1n°12m)_1 = anol'?mol'?lcJ R—moan_1 = an°R1°an_1

Two of them, a; and a»s, are involutory. You might also notice that all of these are keys of affine
ciphers that use an invertible multiplier (same as n) and no shift (any shift will also give
automorphisms, a, ° R,; see above).

n ay
ABCDEFGHIJKLMNOPQRSTUVWXYZ = e
ADGJIMPSVYBEHKNQTWZCFILORUX
AFKPUZEJOTYDINSXCHMRWBGLQV
AHOVCJIQXELSZGNUBIPWDKRYFMT
AJSBKTCLUDMVENWFOXGPYHQZIR
11 ALWHSDOZKVGRCNYJUFQBMXITEP
15  APETIXMBQFUJYNCRGVKZODSHWL
17 ARIZQHYPGXOFWNEVMDULCTKBSJ
19  ATMFYRKDWPIBUNGZSLEXQJCVOH
21  AVQLGBWRMHCXSNIDYTOJEZUPKF
23  AXUROLIFCZWTQNKHEBYVSPMJGD
25  AZYXWVUTSRQPONMLKJIHGFEDCB

©O© J U1 W -

Each a, maps each R,, to Ry.n, where m-n is evaluated modulo 26. The mathematician reading this may
notice that while the Vigeneére group {R,} with ° is isomorphic to the additive group Zs, the set of
automorphisms {a,} with e is isomorphic to the multiplicative group Z of invertible elements of Zs,
as

dm°dn = dmn

where m-n is integer multiplication modulo 26. We will need this table later, so be sure to memorize it
now.

The order-13 elements, together with R,, form a cyclic subgroup of their own (isomorphic to
Z13). One result of this fact is that we cannot obtain an order-26 element from the product of order-13
elements. Similarly, Ry and R;3 form a cyclic subgroup that is isomorphic to Z,. From R;;, we can never
obtain any of the order-26 or order-13 elements.

The Vigenére is a trivially easy cipher for keyword recovery, once the key table is known. The
shift keyword appears in the leftmost column of the table. For example:



abcdefghijklmnopgrstuvwxyz
kk | KLMNOPQRSTUVWXYZABCDEFGHTIIJ
kk | NOPQRSTUVWXYZABCDEFGHTIUJKLM
ks | T JKLMNOPQRSTUVWXYZABCDETFGH
ks | GHI JKLMNOPQRSTUVWXYZABCDEF
ks | HI JKLMNOPQRSTUVWXYZABCDETFG
ks | TUVWXYZABCDEFGHIJKLMNOPQRS
ks | STUVWXYZABCDEFGHIJKLMNOPQR

Quagmire 2

As we discussed earlier [4], the rows of a quagmire 2 (Q2) cipher’s tableau form a left coset of
the Vigenére subgroup. The base key for generating the tableau is the mixed alphabet formed by
writing down the keyword, deleting repetitions of letters, and adding the remaining letters. For
example, from the keyword ROUNDTABLE, we get

kvase = ROUNDTABLECFGHIJKMPQSVWXYZ

The fact that this is a left coset of the Vigeneére is reflected in the fact that each key of the Q2 is a
product of this base key with a rotation:

k = kbase ° Rn
Finding the keywords for a Q2 is also quite easy. The shift key is in the leftmost column of the

key table. Since each key is a rotation of the base key, we can read off the alphabetic keyword without
difficulty. For example, the table for keywords KNIGHTS and ROUNDTABLE is

ki
ka
ks
ka
ks
ks
ks
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Quagmire 1

We also saw earlier [4] that the quagmire 1 (Q1) cipher forms a coset of the Vigenére, but this
time on the right:

k = Rn ° kbas;1

If we invert a Q1 key, we get an element of a left coset, i.e., a Q2 key:



k71 = (Rn ° kbaseil)i1 = kbaseoR*n

So the strategy to recover the alphabetic keyword is to invert the rows of the key table and then read off
the keyword as we did for the quagmire 2.

Our example uses the same two keywords as above. The Q1 key table is

ki
ka
ks
ka
ks
ks
ks
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The inverses are

k™!
k271
k3_1
ki
k571
ke_l
k!
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Quagmire 3

The quagmire 3 keys form a subgroup of permutations that is isomorphic to the Vigeneére [4].
This isomorphism is expressed in terms of the base key as

— -1
k - kbase ° Rn ° kbase

Now, it is well known and easy to prove that any permutation can be rewritten as a product of
exchanges. An exchange simply swaps two elements. Since we can get from the identity element to any
permutation by exchanges, it follows that we can get from any permutation to another permutation.
After all, we could first go from the first to the identity, then on to the second. In the case of alphabetic
keys, we can do this with twenty-five or fewer exchanges.

Our strategy for recovering the base key is to find a sequence of exchanges that will transform
one of the order-26 elements of the Q3 table into a rotation of order 26, which we choose to be R;. The
product of those exchanges is a base key. (The mathematician in the audience may prefer to do it by



diagonalizing matrices.) Since the exchanges are applied to both sides of a key, they move around more
than just two letters. Therefore it is best to start at one end and work our way to the other. The base key
that we find may not be the one we want (up to a rotation), so we will use the automorphisms of the
Vigenere to find eleven additional candidate base keys. We then have to pick out the best one by eye.

Unfortunately, if we start with an order-13 key, then we are unlikely to succeed. The reason for
this is that there are many Q3 ciphers with the same order-13 elements. If we try to find an
isomorphism that takes R» to our order-13 Q3 key, we are able to do so. However, when we use the
result to find an order-26 generator, there are many possibilities. Each of them generates a Q3 with the
same order-13 elements, but with different order-26 elements. Even with the automorphisms of the
Vigenere, we are unlikely to find the base key that we seek. A similar thing happens if we start with the
order-2 element. Recall that the order-13 elements of the Vigenére with R, form a subgroup, and that
from it we are unable to obtain any of the order-26 elements. Similarly for the subgroup {Rq, Ri3}. The
isomorphism from V to Q3 does not change this structure.

If we randomly select an element from a Q3 tableau, there is a 6/13 = 46% chance that we will
have an order-26 element. For a key table with two elements, the odds are 1 — (7/13)* = 71%. Clearly,
for a table of n keys, the chances of finding an order-26 element is 1 — (7/13)". So there is good reason
to be optimistic.

The method will be made more clear by an example. Here is a key table built from with the shift
keyword KNIGHTS. The shift key is in the column under r, indicating that the base key begins with R.

abcdefghijklmnopgrstuvwXy?z
kk | WXRSZOUNDTAYBQMLEKCVPFGHTIIJ
kk | ECHBGIJKMPQFSADVWNXLTYZROU
ks | SVYPXZROUNDWTMIABILQKECTFGH
ks | PQWKVXYZROUSNJIHDTGAMIBLETCETEF
ks | QS XMWY ZROUNVDKITAHBPJLECTFG
kk | FGIJEIKMPQSVHWLAXYTZCBROUND
ks ] RODYNTABLECUFXVGHSIZWJIKMPAQ

The orders of these keys are 13, 26, 13, 13, 2, 26, and 13. Let us concentrate first on k», since it has
order 26. We need to find exchanges which eventually convert k. into R;. For each exchange, we
transform the key thusly:

k - EKE"' (= EKE)

We are always able to succeed with at most twenty-five exchanges. Here is one example of a series of
exchanges (this series is not unique):



ky ECHBGIJKMPQFSADVWNXLTYZROU

— BGHECI JKMPQFSADVWNXLTYZROU E>s
- BCJEGIHKMPQFSADVWNXLTYZROU Es;
— BCDPGIHKMEQFSAJVWNXLTYZROU Es10
— BCDEVIHKMPQFSAJGWNXLTYZROU Es 6
— BCDEFYHKMPQVSAJGWNXLTIZROU Es»
— BCDEFGOKMPQVSAJYWNXLTIZRHU E7 s
- BCDEFGHJIMPQVSAKYWNXLTIZROU Eg s
- BCDEFGHIPMQVSAKYWNXLTJZROU Es 10
- BCDEFGHIJYQVSAKMWNXLTPZROU Ei0.16
— BCDEFGHIJKOVSAYMWNXLTPZRQU Eii25
— BCDEFGHI JKLYSAVMWNXOTPZRQU Ei 15
— BCDEFGHI JKLMQAVYWNXOTPZRSU Ei325
— BCDEFGHIJKLMNWVYAQXOTPZRSU Ei417
— BCDEFGHIJKLMNOZYAQXWTPVRSU Eis23
— BCDEFGHI JKLMNOPUAQXWTZVRSY Ei626
— BCDEFGHI JKLMNOPQTUXWAZVRSY Ey721
— BCDEFGHIJKLMNOPQRWXUAZVTSY Eis20
- BCDEFGHI JKLMNOPQRSVUAZXTWY E1923
— BCDEFGHIJKLMNOPQRSTZAUXVWY E2
— BCDEFGHIJKLMNOPQRSTUYZXVWA Eji6
— R, = BCDEFGHI JKLMNOPQRSTUVWXYZA E» s

The product of the exchanges is our provisional base key:
kbase' = Ezys © E3,7 °...° E21,26 ©° E22,25 = AEGJPVYODBCHKQWZUTLFIMSXRN

We have not found the base key that we seek, since we do not see a discernable keyword in it.
Therefore, we apply the twelve automorphisms of the Vigenére group. For each, we multiply by a, on
the right (since the automorphism is on the rotations). These are the twelve candidates that we get:

AEGJPVYODBCHKQWZUTLFIMSXRN
AJYBKZLMREPOCQUFSNGVDHWTIX
AVCZINPBWFRJIDQLXGOKTSEYHUM
AOWMGBUXPHLNYQIEDZSJCTRVKF
ABLECFGHIJKMPQSVWXYZROUNDT
AHSOLJWNCMYTGQRBIVUEKXDFPZ
AZPFDXKEUVIBRQGTYMCNWJLOSH
ATDNUORZYXWVSQPMKJIHGFCELB
AFKVRTCJSZDEIQYNLHPXUBGMWO
AMUHYESTKOGXLQDJRFWBPNIZCV



AXITWHDVGNSFUQCOPERMLZKBYJ
ANRXSMIFLTUZWQKHCBDOYVPJGE
We can clearly see a recognizable keyword in Kpsse' © as:
kpsse = ABLECFGHIJKMPQSVWXYZROUNDT

Now, rotating the base key merely reorders the rows of tableau but does not change them:
kbase - kbase ° Rm

kn = kbase ° Rn ° kbas;1 - (kbase ° Rm) ° Rn ° (kbase ° }Qm)71
= kbase ° Rm ° Rn ° Rfm ° kbas,e_1
= kbase ° Rn ° kbase_1 = kn

Therefore, we can harmlessly rotate k. until it begins with R, as we know from above that it must. We
now have it and the keyword:

kvase = ROUNDTABLECFGHIJKMPQSVWXYZ

Quagmire 4

The alphabetic keys of the quagmire 4 cipher (Q4) are constructed from rotations with two base
keys, one on the plaintext side (k;), and one on the ciphertext side (k.):

k= keoRyok

As we have seen [4], the Q4 is both a left coset and a right coset of Q3 ciphers (different on each side).
The multiplier that takes us from the Q3 to the Q4 is

h = keek,*
To go from Q4 to the Q3 on the left, we multiply the Q4 keys on the left by the inverse of h:
h'ek = kyeRyoky"
and to go to the Q3 on the right, we multiply by h™" on the right:
keh' = keoeRyo k'
We also saw that any row of the key table can serve as an h. So our strategy for recovering the
keywords is to choose an h and then to transform the key table to the left Q3. There we can employ the

technique above to recover k,. Transforming the key table to the right Q3 will allow us to find k..

Here is an example, built from three different keywords. Once again, we can see that the shift
key, k, = KNIGHTS, appears in the column under r; this indicates that k, begins with the letter R.



abcdefghijklmnopgrstuvwXxyz
ki | STYPWZEXCALVIOMBUKRQNDTFGHI
kk | VWESZXCALIBYUQORDNFTPGHJIKM
ks | GHMDKNOPQSTJVRBWYIZFUEXCAL
ks | OPTMSVWYZEXQCKHALGINJIBURDTF
ks | PQVNTWYZEXCSAMJILIHBOKURDTEFG
ks | XCIZLBURDFGAHYVIKTMEWNOPQS
ks, | EXLYAIBURDFCGWTHJISKZVMNOPAQ
Suppose we choose k; to be our h.
h = ki = JPIVGWXYMZRKOUNDTSABQLEHCF
Let us use it to transform the key table into the Q3 on the left:
abcdefghijklmnopgrstuvwXxyz
kilekk | ABCDEFGHIJKLMNOPQRSTUVWXYZ
ki'ek, | LEGAFHIJKMPCQTNSVUWBDXYZRO
ki'eks | X YOVRUNDTABZLSPECMFWQGHTIJK
kileks | NDBOALECFGHTIRYJKXMUZPQSVW
ki'eks | DTLUBECFGHIAJOZKMYPNRQSVWX
k'eks | HIMFKPQSVWXJYCLZRBOGEUNDTA
kilek, | GHKC IJMPQSVWIXEBYZARFLOUNDT

Notice that the shift key has been transformed to its encryption by a monoalphabetic substitution cipher
using h as its key. Again it appears in column r.

S (h, k) = RUMXYBA
Fortunately, k, " » ks has order 26, and we can use it. We obtain this provisional base key:
kase' = AXITWHDVGNSFUQCOPERMLZKBYJ

Since no discernable keyword pops out at us, we try the automorphisms of V. The best choice is as,
and we obtain

Kbase' © a3 = ABLECFGHIJKMPQSVWXYZROUNDT
After a harmless rotation, we have found the base key and keyword on the plaintext side:

k, = ROUNDTABLECFGHIJKMPQSVWXYZ



Next, we work with the Q3 on the right:

kio ki |
kz ° kl_l |
kso ki |
koo ki |
ks ° kl_l |
keo ki |
ko ki |
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We can see the shift key in the column under Kk, but here it does not mean that the keyword begins with
K. However, if it means anything,

S (h, “k”) = “R”
As expected, ks ki, has order 26. Using it we can obtain this provisional base key (as an example):
kiase' = ASGCQFXPDEORZNUYMBWKIVJLTH
The best automorphism seems again to be aos.
Koase' © a3 = ALIBURDFGHJKMNOPQSTVWYZEXC
After a harmless rotation, we have found the base key and likely keyword on the ciphertext side:
k. = EXCALIBURDFGHJKMNOPQSTVWYZ

We now know everything about this Q4 cipher.

Conclusion

We have shown how it is often possible to recover the keywords for a quagmire cipher from its
key table. To do so, we used some ideas from group theory. The techniques are mostly algorithmic and
do not require guessing or dictionary attacks, but do require human intervention in deciding from
among a small number of results.



Appendix: Identifying the cipher

Suppose that we have a key table ki, k, ..., and we know that it belongs to a cipher in the V-Q
family. Can we determine which one? Yes. And we only need two distinct keys to do it. Call them k;
and k,.

If we have two keys and at least one of them is a rotation (one may be the identity e = Ry), then
the cipher is a Vigenere. If not, then continue as follows.

The keys of a Q1 are all of the form
k = Ryo Kpase '
Therefore, if we take k;  k, " and obtain a rotation, then we know we have a Q1 cipher.
kie ky' = (Rm° knase ') © (Rn° Koase ) "= Rm° Kbase ' © Kbase© R-n = Rnwe Ry = Ruon
The keys of a Q2 are of the form
k = Kkoase ° Ry
So, if we take k; " ° k, and obtain a rotation, then we know we have a Q2 cipher.
ki'o ky = (Kpase © Rm) ™" © (Kbase © Rn) = R © Kbase ' © Kbase ©° Rn = R-m° Ry = Ry

If we still do not know, then find the order of the keys. If they are both in the set {1,2,13,26},

then we are confident that we have a Q3. Furthermore, if one is the identity and the other is not a

rotation, then that indicates a Q3.

If all of the above tests have failed, then find k; > k,™ and k; ™" = ke. If they both pass the Q3 test,
then the cipher is Q4.



Appendix: Further examples

On page 183 of Gaines’s book [2], in figure 148, are five exercises in keyword recovery. Let’s
see what we can do with them.

1. Q- ZAXBOCN:ERFPVG:-YMUI-W-TL (Q1)

The key has some missing letters. Nevertheless, we can invert it to find

DFH-KMP-U- - ZSIGNAL - YTOWERC

The keyword is clearly SIGNALBYTOWER.

2. UVDWSXKYHZCFRJQLINGPTOMEAB (Q3)

Nicely, this key has order 26. From that alone, we know that it belongs to a quagmire 3, and did
not have to be told. By whatever method is most expedient, we obtain, for example, this provisional
base key:

Kase' = AUTPLFXESGKCDWMRNJZBVOQIHY
Multiplying on the right by ai (one of the automorphisms of the Vigenére group) gives
Kbase' © @19 = ABDFHIKPQRSUVWXYZCLINGTOME

An irrelevant rotation gives us the original base key with obvious keyword:

kvase = CLINGTOMEABDFHJKPQRSUVWXYZ

3. HIGKFPEQORSTDMBUVWXAYZCLIN (Q3)
The order of this key is 13, so there is little that we can do with it alone. However, one might

notice that if we take the key from example 2 and raise it to the 24™ power, we obtain this key. They
belong to the same Q3 tableau, so have the same keyword, CLINGTOME.

4. VNUXJYZDQEMPOWCKRIATLSBFGH
HSGJRKLNFPQBUIVAWCXYTZDEMO (Q4)
The inverse of the first multiplied on the left of the second gives

ki ok, = ZVYEQPUBXLIWCRASNODFTGHJKM

This element has order 26. From it we can find a provisional base key like this one:



koase' = AZMCYKIXJLWHBVGUTFPSDEQNRO
Multiplying on the right by a,; gives
Koase' © a2z = ANDFGHJKMOQSTVWXYZREPUBLIC
An irrelevant rotation gives us the original base key with obvious keyword:
k, = REPUBLICANDFGHJKMOQSTVWXYZ
When we multiply the inverse of the first key on the right of the second we have
ky e ki = XDVNPEMOCRATQSUBFWZYGHIJKL

Again (no surprise) we have an element with order 26. We can find a provisional base key such as this
one:

Kbase' = AXIJRWICVHOUGMQFEPBDNSZLTYK
Multiplying on the right by a.; gives
Kbase' © as = ATSBFGHIJKLNPQUVWXYZDEMOCR
An irrelevant rotation gives us the original base key with obvious keyword:

k. = DEMOCRATSBFGHI JKLNPQUVWXYZ

5. GXYZMHAFTRLKEVQUOJWIPNSBCD
E-GJIK-LB--UTCVW-QDXS: - - - - (Q3)

The first key has order 2, which makes it useless by itself. However, we can use it to fill in

missing letter in the second key. If we apply the key amplification method from [4], we find that in
order to be consistent with the first key, the second must be (with still two missing letters)

E-GJIKMLBOPUTCVWNQDXSYZ - AR

The missing letters are F and H. One choice of placing them results in an order-13 key. Since that
cannot help us, we try the other choice:

EFGJIKMLBOPUTCVWNQDXSYZHAR
This key has order 26, as desired. From it we can find a provisional base key such as this one:
kvasse' = AEIBFKPWZRQNCGMTXHLUSDJOVY

Multiplying on the right by ay gives



kbase' © as = ARLEQUINSBCDFGJKMOPTVWXYZH
Then we can harmlessly rotate to get the intended base key and its keyword:

kvsse = HARLEQUINSBCDFGJKMOPTVWXYZ
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