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We demonstrate that with some ideas from group theory we are very often able to 
recover the keywords for a quagmire cipher from its key table. This would be the last 
task for a cryptologist in analyzing such a cipher.

Introduction

The quagmire ciphers [1, 2] (also known as type 1, 2, 3, and 4 periodic polyalphabetic 
substitution ciphers) are generalizations of the Vigenère cipher [3] in which the plaintext alphabet is 
permuted, or the ciphertext alphabet which slides against it is permuted, or both. Each of the twenty-six
rows in the tableau for such a cipher as the key of a monoalphabetic substitution. A subset of them is 
chosen and applied in repeated sequence to the letters of the plaintext to create the ciphertext. That 
subset is what we call the “key table.”

We start with the Vigenère cipher and work our way to the quagmire 4. For each, we 
demonstrate that it is very often possible to recover the keywords from the key table for each type of 
cipher. With the quagmires 1, 3, and 4, doing so utilizes some ideas from algebraic group theory. The 
process can mostly be automated, but in the end a human must choose from a small set of possibilities.

Vigenère cipher

Every alphabet key for the Vigenère cipher (V) is a rotation, which we denote as Rn for n = 0, ...,
25. Rotation leftward is taken as positive. The rows of the Vigenère tableau form a subgroup of the 
permutation group, where “multiplication” is the composition of permutations, and this subgroup is 
isomorphic to the integers modulo 26 (Z26). Later we will need to know the orders of its elements, 
which we list here:

  elements                                                                                         order   
R0   1
R13   2
R2, R4, R6, R8, R10, R12, R14, R16, R18, R20, R22, R24 13
R1, R3, R5, R7, R9, R11, R15, R17, R19, R21, R23, R25 26

It is also important to note that there are twelve automorphisms of V, and that each corresponds 
to a different choice of order-26 element as the generator. Under each automorphism, the identity 
element e = R0 is mapped to itself, as is R13, which is the only order-2 element. Below is a table of 



examples of representations of these automorphisms, where we have organized them according to 
which rotation they map from R1.

Rn  =  an ◦ R1 ◦ an
−1

(Here and throughout this paper, the binary operation is the composition of permutations.) Note that 
these are not unique, and rotations of a have the same effect as a, since a rotated an is an ◦ Rm and

(an ◦ Rm) ◦ R1 ◦ (an ◦ Rm)−1  =  an ◦ Rm ◦ R1 ◦  R−m ◦ an
−1  =  an ◦ R1 ◦ an

−1

 Two of them, a1 and a25, are involutory. You might also notice that all of these are keys of affine 
ciphers that use an invertible multiplier (same as n) and no shift (any shift will also give 
automorphisms, an ◦ Rm; see above).

    n                                              a  n                                       
   1 ABCDEFGHIJKLMNOPQRSTUVWXYZ  =  e
   3 ADGJMPSVYBEHKNQTWZCFILORUX
   5 AFKPUZEJOTYDINSXCHMRWBGLQV
   7 AHOVCJQXELSZGNUBIPWDKRYFMT
   9 AJSBKTCLUDMVENWFOXGPYHQZIR
 11 ALWHSDOZKVGRCNYJUFQBMXITEP
 15 APETIXMBQFUJYNCRGVKZODSHWL
 17 ARIZQHYPGXOFWNEVMDULCTKBSJ
 19 ATMFYRKDWPIBUNGZSLEXQJCVOH
 21 AVQLGBWRMHCXSNIDYTOJEZUPKF
 23 AXUROLIFCZWTQNKHEBYVSPMJGD
 25 AZYXWVUTSRQPONMLKJIHGFEDCB

Each an maps each Rm to Rm·n, where m·n is evaluated modulo 26. The mathematician reading this may 
notice that while the Vigenère group {Rn} with ◦ is isomorphic to the additive group Z26, the set of 
automorphisms {an} with ◦ is isomorphic to the multiplicative group Z26

* of invertible elements of Z26, 
as

am ◦ an  =  am·n

where m·n is integer multiplication modulo 26. We will need this table later, so be sure to memorize it 
now.

The order-13 elements, together with R0, form a cyclic subgroup of their own (isomorphic to 
Z13). One result of this fact is that we cannot obtain an order-26 element from the product of order-13 
elements. Similarly, R0 and R13 form a cyclic subgroup that is isomorphic to Z2. From R13, we can never 
obtain any of the order-26 or order-13 elements. But more interesting, and more useful, is that there are 
thirteen groups of permutations of the alphabet isomorphic to Z26 that share the exact same Z13 
subgroup. We can find a generator of each by transforming R1 with one of these:



b0    =  ABCDEFGHIJKLMNOPQRSTUVWXYZ  =  e  =  a1

b1    =  ADCFEHGJILKNMPORQTSVUXWZYB
b2    =  AFCHEJGLINKPMROTQVSXUZWBYD
b3    =  AHCJELGNIPKRMTOVQXSZUBWDYF
b4    =  AJCLENGPIRKTMVOXQZSBUDWFYH
b5    =  ALCNEPGRITKVMXOZQBSDUFWHYJ
b6    =  ANCPERGTIVKXMZOBQDSFUHWJYL
b7    =  APCRETGVIXKZMBODQFSHUJWLYN  =  b6

−1

b8    =  ARCTEVGXIZKBMDOFQHSJULWNYP  =  b5
−1

b9    =  ATCVEXGZIBKDMFOHQJSLUNWPYR  =  b4
−1

b10  =  AVCXEZGBIDKFMHOJQLSNUPWRYT  =  b3
−1

b11  =  AXCZEBGDIFKHMJOLQNSPURWTYV  =  b2
−1

b12  =  AZCBEDGFIHKJMLONQPSRUTWVYX  =  b1
−1

If you look closely, you may see a pattern in them. The {bn} have their own Z13 structure:

bm ◦ bn  =  bm+n

where the addition is done modulo 13. For an example of finding one of the other groups, take b3 and 
apply it to R1, which is a generator of the Vigenère:

b3 ◦ R1 ◦ b3
−1  =  HWJYLANCPERGTIVKXMZOBQDSFU

This permutation generates the quagmire 3 that has these keys:

HWJYLANCPERGTIVKXMZOBQDSFU
CDEFGHIJKLMNOPQRSTUVWXYZAB
JYLANCPERGTIVKXMZOBQDSFUHW
EFGHIJKLMNOPQRSTUVWXYZABCD
LANCPERGTIVKXMZOBQDSFUHWJY
GHIJKLMNOPQRSTUVWXYZABCDEF
NCPERGTIVKXMZOBQDSFUHWJYLA
IJKLMNOPQRSTUVWXYZABCDEFGH
PERGTIVKXMZOBQDSFUHWJYLANC
KLMNOPQRSTUVWXYZABCDEFGHIJ
RGTIVKXMZOBQDSFUHWJYLANCPE
MNOPQRSTUVWXYZABCDEFGHIJKL
TIVKXMZOBQDSFUHWJYLANCPERG
OPQRSTUVWXYZABCDEFGHIJKLMN
VKXMZOBQDSFUHWJYLANCPERGTI
QRSTUVWXYZABCDEFGHIJKLMNOP
XMZOBQDSFUHWJYLANCPERGTIVK
STUVWXYZABCDEFGHIJKLMNOPQR
ZOBQDSFUHWJYLANCPERGTIVKXM
UVWXYZABCDEFGHIJKLMNOPQRST
BQDSFUHWJYLANCPERGTIVKXMZO
WXYZABCDEFGHIJKLMNOPQRSTUV
DSFUHWJYLANCPERGTIVKXMZOBQ



YZABCDEFGHIJKLMNOPQRSTUVWX
FUHWJYLANCPERGTIVKXMZOBQDS
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The even-numbered rotations of the Z13 subgroup of the Vigenère have been highlighted for you.

The Vigenère is a trivially easy cipher for keyword recovery, once the key table is known. The 
shift keyword appears in the leftmost column of the table. For example:

     a b c d e f g h i j k l m n o p q r s t u v w x y z 
 k1  | K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 
 k2  | N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 
 k3  | I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 
 k4  | G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 
 k5  | H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 
 k6  | T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 
 k7  | S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 

Quagmire 2

As we discussed earlier [4], the rows of a quagmire 2 (Q2) cipher’s tableau form a left coset of 
the Vigenère subgroup. The base key for generating the tableau is the mixed alphabet formed by 
writing down the keyword, deleting repetitions of letters, and adding the remaining letters. For 
example, from the keyword ROUNDTABLE, we get

kbase  =   ROUNDTABLECFGHIJKMPQSVWXYZ

The fact that this is a left coset of the Vigenère is reflected in the fact that each key of the Q2 is a 
product of this base key with a rotation:

k  =  kbase ◦ Rn

Finding the keywords for a Q2 is also quite easy. The shift key is in the leftmost column of the 
key table. Since each key is a rotation of the base key, we can read off the alphabetic keyword without 
difficulty. For example, the table for keywords KNIGHTS and ROUNDTABLE is

     a b c d e f g h i j k l m n o p q r s t u v w x y z 
 k1  | K M P Q S V W X Y Z R O U N D T A B L E C F G H I J 
 k2  | N D T A B L E C F G H I J K M P Q S V W X Y Z R O U 
 k3  | I J K M P Q S V W X Y Z R O U N D T A B L E C F G H 
 k4  | G H I J K M P Q S V W X Y Z R O U N D T A B L E C F 
 k5  | H I J K M P Q S V W X Y Z R O U N D T A B L E C F G 
 k6  | T A B L E C F G H I J K M P Q S V W X Y Z R O U N D 
 k7  | S V W X Y Z R O U N D T A B L E C F G H I J K M P Q 



Quagmire 1

We also saw earlier [4] that the quagmire 1 (Q1) cipher forms a coset of the Vigenère, but this 
time on the right:

k  =  Rn ◦  kbase
−1

If we invert a Q1 key, we get an element of a left coset, i.e., a Q2 key:

k−1  =  (Rn ◦  kbase
−1)−1  =  kbase ◦ R−n

So the strategy to recover the alphabetic keyword is to invert the rows of the key table and then read off
the keyword as we did for the quagmire 2.

Our example uses the same two keywords as above. The Q1 key table is

     a b c d e f g h i j k l m n o p q r s t u v w x y z 
 k1  | K L O I N P Q R S T U M V H F W X E Y J G Z A B C D 
 k2  | N O R L Q S T U V W X P Y K I Z A H B M J C D E F G 
 k3  | I J M G L N O P Q R S K T F D U V C W H E X Y Z A B 
 k4  | G H K E J L M N O P Q I R D B S T A U F C V W X Y Z 
 k5  | H I L F K M N O P Q R J S E C T U B V G D W X Y Z A 
 k6  | T U X R W Y Z A B C D V E Q O F G N H S P I J K L M 
 k7  | S T W Q V X Y Z A B C U D P N E F M G R O H I J K L 

The inverses are

      a b c d e f g h i j k l m n o p q r s t u v w x y z 
 k1

−1  | W X Y Z R O U N D T A B L E C F G H I J K M P Q S V 
 k2

−1  | Q S V W X Y Z R O U N D T A B L E C F G H I J K M P 
 k3

−1  | Y Z R O U N D T A B L E C F G H I J K M P Q S V W X 
 k4

−1  | R O U N D T A B L E C F G H I J K M P Q S V W X Y Z 
 k5

−1  | Z R O U N D T A B L E C F G H I J K M P Q S V W X Y 
 k6

−1  | H I J K M P Q S V W X Y Z R O U N D T A B L E C F G 
 k7

−1  | I J K M P Q S V W X Y Z R O U N D T A B L E C F G H 

Quagmire 3

The quagmire 3 keys form a subgroup of permutations that is isomorphic to the Vigenère [4]. 
This isomorphism is expressed in terms of the base key as

k  =  kbase ◦ Rn ◦ kbase
−1



Now, it is well known and easy to prove that any permutation can be rewritten as a product of 
exchanges. An exchange simply swaps two elements. Since we can get from the identity element to any
permutation by exchanges, it follows that we can get from any permutation to another permutation. 
After all, we could first go from the first to the identity, then on to the second. In the case of alphabetic 
keys, we can do this with twenty-five or fewer exchanges.

Our strategy for recovering the base key is to find a sequence of exchanges that will transform 
one of the order-13 or order-26 elements of the Q3 table into a rotation of the same order, which we 
choose to be R1 or R2 as appropriate. The product of those exchanges is a base key. (The mathematician 
in the audience may prefer to do it by diagonalizing matrices.) Since the exchanges are applied to both 
sides of a key, they move around more than just two letters. Therefore it is best to start at one end and 
work our way to the other. The base key that we find may not be the one we want (up to a rotation), so 
we will use the automorphisms of the Vigenère to find eleven additional candidate base keys. If we 
began with an order-26 element, then these are the only twelve choices. However, if the order of our 
original element is 13, then we also must try each of the bn listed in the section above on the Vigenère, 
in order to explore the entire space of Q3s that share the element. We then have to pick out the best 
from the 156 resulting options by eye. Choosing the best one can be automated, if we assume that after 
the keyword is placed in the mixed alphabet, we know how the remainder of the letters of are placed. 
For an order-2 element, we do not yet have a solution, but suspect that it involves a large number of 
options from which to choose, perhaps 213 13! / 26. However, if we are in possession of the order-2 
element and one order-13 element, they define an unique Q3 and their product is an order-26 generator 
of it; this makes life easy again.

The method will be made more clear by an example. Here is a key table built from with the shift
keyword KNIGHTS. The shift key is in the column under r, indicating that the base key begins with R.

     a b c d e f g h i j k l m n o p q r s t u v w x y z 
 k1  | W X R S Z O U N D T A Y B Q M L E K C V P F G H I J 
 k2  | E C H B G I J K M P Q F S A D V W N X L T Y Z R O U 
 k3  | S V Y P X Z R O U N D W T M J A B I L Q K E C F G H 
 k4  | P Q W K V X Y Z R O U S N J H D T G A M I B L E C F 
 k5  | Q S X M W Y Z R O U N V D K I T A H B P J L E C F G 
 k6  | F G J E I K M P Q S V H W L A X Y T Z C B R O U N D 
 k7  | R O D Y N T A B L E C U F X V G H S I Z W J K M P Q 

The orders of these keys are 13, 26, 13, 13, 2, 26, and 13. Let us first concentrate first on k2, since it has
order 26. We need to find exchanges which eventually convert k2 into R1. For each exchange, we 
transform the key thusly:

k  →  E k E−1  ( =  E k E)

We are always able to succeed with at most twenty-five exchanges. Here is one example of a series of 
exchanges (this series is not unique):



       k2  = ECHBGIJKMPQFSADVWNXLTYZROU

           → BGHECIJKMPQFSADVWNXLTYZROU E2,5

           → BCJEGIHKMPQFSADVWNXLTYZROU E3,7

           → BCDPGIHKMEQFSAJVWNXLTYZROU E4,10

           → BCDEVIHKMPQFSAJGWNXLTYZROU E5,16

           → BCDEFYHKMPQVSAJGWNXLTIZROU E6,22

           → BCDEFGOKMPQVSAJYWNXLTIZRHU E7,25

           → BCDEFGHJMPQVSAKYWNXLTIZROU E8,15

           → BCDEFGHIPMQVSAKYWNXLTJZROU E9,10

           → BCDEFGHIJYQVSAKMWNXLTPZROU E10,16

           → BCDEFGHIJKOVSAYMWNXLTPZRQU E11,25

           → BCDEFGHIJKLYSAVMWNXOTPZRQU E12,15

           → BCDEFGHIJKLMQAVYWNXOTPZRSU E13,25

           → BCDEFGHIJKLMNWVYAQXOTPZRSU E14,17

           → BCDEFGHIJKLMNOZYAQXWTPVRSU E15,23

           → BCDEFGHIJKLMNOPUAQXWTZVRSY E16,26

           → BCDEFGHIJKLMNOPQTUXWAZVRSY E17,21

           → BCDEFGHIJKLMNOPQRWXUAZVTSY E18,20

           → BCDEFGHIJKLMNOPQRSVUAZXTWY E19,23

           → BCDEFGHIJKLMNOPQRSTZAUXVWY E20,22

           → BCDEFGHIJKLMNOPQRSTUYZXVWA E21,26

→ R1  = BCDEFGHIJKLMNOPQRSTUVWXYZA E22,25

The product of the exchanges is our provisional base key:

kbase′  =  E2,5 ◦ E3,7 ◦ . . . ◦ E21,26 ◦ E22,25  =  AEGJPVYODBCHKQWZUTLFIMSXRN

We have not found the base key that we seek, since we do not see a discernable keyword in it. 
Therefore, we apply the twelve automorphisms of the Vigenère group. For each, we multiply by an on 
the right (since the automorphism is on the rotations). These are the twelve candidates that we get:

AEGJPVYODBCHKQWZUTLFIMSXRN
AJYBKZLMREPOCQUFSNGVDHWTIX
AVCZINPBWFRJDQLXGOKTSEYHUM
AOWMGBUXPHLNYQIEDZSJCTRVKF
ABLECFGHIJKMPQSVWXYZROUNDT
AHSOLJWNCMYTGQRBIVUEKXDFPZ
AZPFDXKEUVIBRQGTYMCNWJLOSH
ATDNUORZYXWVSQPMKJIHGFCELB
AFKVRTCJSZDEIQYNLHPXUBGMWO
AMUHYESTKOGXLQDJRFWBPNIZCV



AXITWHDVGNSFUQCOPERMLZKBYJ
ANRXSMIFLTUZWQKHCBDOYVPJGE

We can clearly see a recognizable keyword in kbase′ ◦ a9:

kbase  =  ABLECFGHIJKMPQSVWXYZROUNDT

Now, rotating the base key merely reorders the rows of tableau but does not change them:

kbase  →  kbase ◦ Rm

kn  =   kbase ◦ Rn ◦ kbase
−1  →  (kbase ◦ Rm) ◦ Rn ◦ (kbase ◦ Rm)−1

              =   kbase ◦ Rm ◦ Rn ◦ R−m ◦ kbase
−1

               =   kbase ◦ Rn ◦ kbase
−1  =  kn

Therefore, we can harmlessly rotate kbase until it begins with R, as we know from above that it must. We 
now have it and the keyword:

kbase  =  ROUNDTABLECFGHIJKMPQSVWXYZ

Now let us try with an order-13 element. Take

k1  =  WXRSZOUNDTAYBQMLEKCVPFGHIJ

We want to transform it into R2 by some series of exchanges. One such series is

kbase′  =  E3,23 ◦ E4,24 ◦ E5,7 ◦ E6,8 ◦ E7,21 ◦ E8,14 ◦ E9,16 ◦ E10,17 ◦ E11,12 ◦ E12,21 ◦ E13,25 ◦
          E14,26 ◦ E15,16 ◦ E16,17 ◦ E17,24 ◦ E18,20 ◦ E20,22 ◦ E21,23 ◦ E22,26 ◦ E23,26 ◦ E25,26

=   ABWXGHUNPQLEYZIJDTSVCFROKM                

The best choice for finding the keyword comes from using a5 and b10:

kbase′ ◦ a5 ◦ b10  =  ABLECFGHIJKMPQSVWXYZROUNDT

This is the same result we have above for the order-26 element, and we can rotate it the same way to 
put the keyword in front.

Quagmire 4

The alphabetic keys of the quagmire 4 cipher (Q4) are constructed from rotations with two base 
keys, one on the plaintext side (kp), and one on the ciphertext side (kc):

k  =  kc ◦ Rn ◦ kp
−1



As we have seen [4], the Q4 is both a left coset and a right coset of Q3 ciphers (different on each side). 
The multiplier that takes us from the Q3 to the Q4 is

h  =  kc ◦ kp
−1

To go from Q4 to the Q3 on the left, we multiply the Q4 keys on the left by the inverse of h:

h−1 ◦ k  =  kp ◦ Rn ◦ kp
−1

and to go to the Q3 on the right, we multiply by h−1 on the right:

k ◦ h−1  =  kc ◦ Rn ◦ kc
−1

We also saw that any row of the key table can serve as an h. So our strategy for recovering the 
keywords is to choose an h and then to transform the key table to the left Q3. There we can employ the 
technique above to recover kp. Transforming the key table to the right Q3 will allow us to find kc.

Here is an example, built from three different keywords. Once again, we can see that the shift 
key, kv = KNIGHTS, appears in the column under r; this indicates that kp begins with the letter R.

     a b c d e f g h i j k l m n o p q r s t u v w x y z 
 k1  | S T Y P W Z E X C A L V I O M B U K R Q N D F G H J 
 k2  | V W E S Z X C A L I B Y U Q O R D N F T P G H J K M 
 k3  | G H M D K N O P Q S T J V R B W Y I Z F U E X C A L 
 k4  | O P T M S V W Y Z E X Q C K H A L G I N J B U R D F 
 k5  | P Q V N T W Y Z E X C S A M J L I H B O K U R D F G 
 k6  | X C I Z L B U R D F G A H Y V J K T M E W N O P Q S 
 k7  | E X L Y A I B U R D F C G W T H J S K Z V M N O P Q 

Suppose we choose k1 to be our h.

h  =  k1  =  JPIVGWXYMZRKOUNDTSABQLEHCF

Let us use it to transform the key table into the Q3 on the left:

           a b c d e f g h i j k l m n o p q r s t u v w x y z   
 k1

−1 ◦ k1  | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
 k1

−1 ◦ k2  | L E G A F H I J K M P C Q T N S V U W B D X Y Z R O 
 k1

−1 ◦ k3  | X Y O V R U N D T A B Z L S P E C M F W Q G H I J K 
 k1

−1 ◦ k4  | N D B O A L E C F G H T I R Y J K X M U Z P Q S V W 
 k1

−1 ◦ k5  | D T L U B E C F G H I A J O Z K M Y P N R Q S V W X 
 k1

−1 ◦ k6  | H I M F K P Q S V W X J Y C L Z R B O G E U N D T A 
 k1

−1 ◦ k7  | G H K C J M P Q S V W I X E B Y Z A R F L O U N D T 



Notice that the shift key has been transformed to its encryption by a monoalphabetic substitution cipher
using h as its key. Again it appears in column r.

S (h, kv)  =  RUMXYBA

Fortunately, k1
−1 ◦ k3 has order 26, and we can use it. We obtain this provisional base key:

kbase′  =  AXITWHDVGNSFUQCOPERMLZKBYJ

Since no discernable keyword pops out at us, we try the automorphisms of V. The best choice is a23, 
and we obtain

kbase′ ◦ a23  =  ABLECFGHIJKMPQSVWXYZROUNDT

After a harmless rotation, we have found the base key and keyword on the plaintext side:

kp  =  ROUNDTABLECFGHIJKMPQSVWXYZ

Next, we work with the Q3 on the right:

           a b c d e f g h i j k l m n o p q r s t u v w x y z   
 k1 ◦ k1

−1  | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
 k2 ◦ k1

−1  | I R L G C H J K U M N B O P Q S T F V W D Y Z A E X 
 k3 ◦ k1

−1  | S W Q E O X C A V L I T B U R D F Z G H Y J K P M N 
 k4 ◦ k1

−1  | E A Z B W U R D C F G X H J K M N I O P L Q S Y T V 
 k5 ◦ k1

−1  | X L E U Y R D F A G H C J K M N O B P Q I S T Z V W 
 k6 ◦ k1

−1  | F J D N U O P Q H S T G V W Y Z E M X C K A L R I B 
 k7 ◦ k1

−1  | D H R M B N O P G Q S F T V W Y Z K E X J C A U L I 

We can see the shift key in the column under k, but here it does not mean that the keyword begins with 
K. However, if it means anything,

S (h, “k”)  =  “R”

As expected, k3 ◦ k1
−1 has order 26. Using it we can obtain this provisional base key (as an example):

kbase′  =  ASGCQFXPDEORZNUYMBWKIVJLTH

The best automorphism seems again to be a23.

kbase′ ◦ a23  =  ALIBURDFGHJKMNOPQSTVWYZEXC

After a harmless rotation, we have found the base key and likely keyword on the ciphertext side:



kc  =  EXCALIBURDFGHJKMNOPQSTVWYZ

We now know everything about this Q4 cipher.

Conclusion

We have shown how it is often possible to recover the keywords for a quagmire cipher from its 
key table. To do so, we used some ideas from group theory. The techniques are mostly algorithmic and 
do not require guessing or dictionary attacks, but may require human intervention or automated 
selection in deciding from among a number of results.



Appendix: Identifying the cipher

Suppose that we have a key table k1, k2, ..., and we know that it belongs to a cipher in the V-Q 
family. Can we determine which one? Yes. And we only need two distinct keys to do it. Call them k1 
and k2.

If we have two keys and at least one of them is a rotation (one may be the identity e = R0), then 
the cipher is a Vigenère. If not, then continue as follows.

The keys of a Q1 are all of the form

k  =  Rn ◦  kbase
−1

Therefore, if we take k1 ◦  k2
−1 and obtain a rotation, then we know we have a Q1 cipher.

k1 ◦  k2
−1  =  (Rm ◦  kbase

−1) ◦ (Rn ◦  kbase
−1) −1 =  Rm ◦  kbase

−1 ◦  kbase ◦  R−n  =  Rm ◦  R−n  =  Rm−n

The keys of a Q2 are of the form

k  =  kbase ◦ Rn

So, if we take k1
−1 ◦  k2 and obtain a rotation, then we know we have a Q2 cipher.

k1
−1 ◦  k2  =  (kbase ◦ Rm)−1 ◦ (kbase ◦ Rn)  =   R−m ◦ kbase

−1 ◦ kbase ◦  Rn  =  R−m ◦  Rn  =  Rn−m

If we still do not know, then find the order of the keys. If they are both in the set {1,2,13,26}, 
then we are confident that we have a Q3. Furthermore, if one is the identity and the other is not a 
rotation, then that indicates a Q3.

If all of the above tests have failed, then find k1 ◦  k2
−1 and k1

−1 ◦  k2. If they both pass the Q3 test,
then the cipher is Q4.



Appendix: Further examples

On page 183 of Gaines’s book [2], in figure 148, are five exercises in keyword recovery. Let’s 
see what we can do with them.

1.  Q·ZAXBOCN·ERFPVG·YMUI·W·TL  (Q1)

The key has some missing letters. Nevertheless, we can invert it to find

DFH·KMP·U··ZSIGNAL·YTOWERC

The keyword is clearly SIGNALBYTOWER.

2.  UVDWSXKYHZCFRJQLINGPTOMEAB  (Q3)

Nicely, this key has order 26. From that alone, we know that it belongs to a quagmire 3, and did 
not have to be told. By whatever method is most expedient, we obtain, for example, this provisional 
base key:

kbase′  =  AUTPLFXESGKCDWMRNJZBVOQIHY

Multiplying on the right by a19 (one of the automorphisms of the Vigenère group) gives

kbase′ ◦ a19  =  ABDFHJKPQRSUVWXYZCLINGTOME

An irrelevant rotation gives us the original base key with obvious keyword:

kbase  =  CLINGTOMEABDFHJKPQRSUVWXYZ

3.  HJGKFPEQORSTDMBUVWXAYZCLIN  (Q3)

The order of this key is 13. However, one might notice that if we take the key from example 2 
and raise it to the 24th power, we obtain this key. They therefore belong to the same Q3 tableau, so have
the same keyword,  CLINGTOME.

We can also try the procedure for dealing with Q3 elements of order 13. If we do so, we get this 
provisional base key:

kbase′  =  ABHJQRVWZCNGMEDFKPSUXYLITO

The best choice for a keyword comes from multiplying on the right by a7 and then by b7 to get

kbase′ ◦ a7 ◦ b7  =  ABDFHJKPQRSUVWXYZCLINGTOME

A simple rotation brings the keyword to the front:



kbase  =  CLINGTOMEABDFHJKPQRSUVWXYZ

4.  VNUXJYZDQEMPOWCKRIATLSBFGH
     HSGJRKLNFPQBUIVAWCXYTZDEMO  (Q4)

The inverse of the first multiplied on the left of the second gives

k1
−1 ◦ k2  =  ZVYEQPUBXLIWCRASNODFTGHJKM

This element has order 26. From it we can find a provisional base key like this one:

kbase′  =  AZMCYKIXJLWHBVGUTFPSDEQNRO

Multiplying on the right by a23 gives

kbase′ ◦ a23  =  ANDFGHJKMOQSTVWXYZREPUBLIC

An irrelevant rotation gives us the original base key with obvious keyword:

kp  =  REPUBLICANDFGHJKMOQSTVWXYZ

When we multiply the inverse of the first key on the right of the second we have

k2 ◦ k1
−1  =  XDVNPEMOCRATQSUBFWZYGHIJKL

Again (no surprise) we have an element with order 26. We can find a provisional base key such as this 
one:

kbase′  =  AXJRWICVHOUGMQFEPBDNSZLTYK

Multiplying on the right by a23 gives

kbase′ ◦ a23  =  ATSBFGHIJKLNPQUVWXYZDEMOCR

An irrelevant rotation gives us the original base key with obvious keyword:

kc  =  DEMOCRATSBFGHIJKLNPQUVWXYZ

5.  GXYZMHAFTRLKEVQUOJWIPNSBCD
     E·GJIK·LB··UTCVW·QDXS·····  (Q3)

The first key has order 2, which makes it useless by itself. However, we can use it to fill in 
missing letter in the second key. If we apply the key amplification method from [4], we find that in 
order to be consistent with the first key, the second must be (with still two missing letters)



E·GJIKMLBOPUTCVWNQDXSYZ·AR

The missing letters are F and H. One choice of placing them results in an order-13 key. Since that one 
gives us 156 options of nonsense, we try the other choice:

EFGJIKMLBOPUTCVWNQDXSYZHAR

This key has order 26. From it we can find a provisional base key such as this one:

kbase′  =  AEIBFKPWZRQNCGMTXHLUSDJOVY

Multiplying on the right by a9 gives

kbase′ ◦ a9  =  ARLEQUINSBCDFGJKMOPTVWXYZH

Then we can harmlessly rotate to get the intended base key and its keyword:

kbase  =  HARLEQUINSBCDFGJKMOPTVWXYZ
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