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Abstract. This paper centers on the SIDH proof of knowledge work
by De Feo, Dobson, Galbraith, and Zobernig, which points out that the
Castryck-Decru attack does not apply to their first 3-special soundness
construction. This work analyzes and explicitly describes an optimized
recoverable Sigma protocol based on that 3-special soundness SIDH-
PoK construction. We also discuss the impact of moving to B-SIDH and
G2SIDH setups in terms of sizes.

Due to the Castryck-Decru attack, we decided to write this paper relying
on a theoretical analysis to list expected optimized signature sizes instead
of updating eprint 2022/475. We point out that this work is a theoretical
analysis extension of eprint 2022/475.
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1 Introduction

“If someone is able to show me that what I think or do
is not right, I will happily change, for I seek the truth,

by which no one was ever truly harmed...”

Marcus Aurelius

In 2014, De Feo, Jao, and Plût proposed a post-quantum Diffie-Hellman
protocol relying on the hardness of finding an isogeny between two supersingu-
lar curves, the SIDH protocol [31,19]. Their work was not only limited to key-
exchange procedures; they also presented a Zero-Knowledge protocol based on
the SIDH construction. In 2018, Yoo, Azarderakhsh, Jalali, Jao, and Soukharev
combined that Zero-Knowledge SIDH with the Fiat-Shamir transformation to
get a signature scheme [43]. Independently, Galbraith, Petit, Shani, and Ti im-
proved in [29] the signature sizes of [43], and proposed a signature-scheme based
on the problem of computing the endomorphism ring of a supersingular elliptic
curve.

In 2021, Ghantous, Katsumata, Pintore, and Veroni revisited the proofs for
the special soundness property in the SIDH-based identification protocol [30].
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Their analysis relies on collisions in the supersingular isogeny graph; assuming
evenly distributed cycles over the vertex set, their existence does not affect the
security of the SIDH-based signatures. Subsequently, De Feo, Dobson, Galbraith,
and Zobernig [17] found an issue and provided a counterexample, with the sound-
ness proof for the Zero-Knowledge SIDH construction. Such an issue applies to
the constructions from [43] and [29], but the authors stressed that SIDH sig-
nature schemes are still secure, a reasonable computational assumption, and no
known attack exists yet. Additionally, [17] presents an isogeny-based Proof of
Knowledge (PoK) that relies on a new hardness assumption, and is immune to
previously presented adaptive attacks [28,2,23,27]. The main result from [17] pro-
poses an efficient non-interactive SIDH-key validation. The principal difference
between [19,29] and [17] constructions is that they have 2-special and 3-special
soundness, respectively.

Sadly, the recent work by Castryck and Decru [9] presented a (heuristically)
polynomial SIDH key-recovery attack that breaks SIDH (and SIKE) in hours.
The three vital ingredients for the applicability of the Castryck-Decru attack are

– The public and fixed isogeny degree;
– The image of the auxiliary torsion points under the secret isogeny; and
– The endomorphism ring of the isogeny domain curve.

The followed-up work by Maino and Martindale in [37] provided an algorithm
that does not require the knowledge of the endomorphism ring of the domain
curve. Subsequently, Robert demonstrated the existence of a polynomial key-
recovery attack on SIDH [40]. Even the works from [37] and [40] remain theo-
retical; Castryck and Decru gave a public Magma code implementation of their
attack, which was improved by Oudompheng and Pope in Sagemath code [38].
It is worth mentioning that Castryck-Decru’s family attacks apply to [31,19,43]
but do not extend to the construction from [17, §5.3] and the quaternion-based
proposal of [29].

As the primary motivation of this work, it is of interest to determine the
efficiency (in sizes) for the 3-special soundness construction in [17, §5.3] and
analyze the impact of using B-SIDH [14] and G2SIDH [33] in such a 3-special
soundness protocol, hoping to reduce sizes.

Related work. In 2019, De Feo and Galbraith proposed a signature scheme
named SeaSign by combining the Commutative SIDH (CSIDH) [11] and Fiat-
Shamir transformation with aborts [18]. SeaSign aims to have shorter keys than
lattice signatures, but signing and verification are currently costly. Later, Decru,
Panny, and Vercauteren improved SeaSign performance by allowing the prover
not to answer a limited number of said parallel executions to decrease the re-
jection probability [22]. Subsequently, Beullens, Kleinjung, and Vercauteren in-
troduced a promising signature scheme labeled as CSI-FiSh [6] by integrating
similar optimizations of SeaSign on Stolbunov’s signature scheme [41]. They
showed that including quadratic twists cuts the public key size in half, being
300 times faster and about three times smaller than any optimized version of
SeaSign. In 2020, Kaafarani, Katsumata, and Pintore suggested a Lossy variant
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of CSI-FiSh with smaller signature sizes but two times slower than the original
CSI-FiSh [24].

A disadvantage of SeaSign, CSI-FiSh and its lossy variant, and the new
scheme from [5], is that their current proposals and implementations use CSIDH-
512, which seems to bring lower quantum security than NIST Level 1 [8,39,7,12].
In particular, such state-of-the-art works hint CSIDH instances with 2048 bits
are good choices to close NIST Level 1 of security. Nevertheless, using large
CSIDH instantiations (with about 2048 bits) would considerably slowdown on
the performance and increase public-key sizes for these CSIDH-based schemes,
negatively impacting higher security levels compared to NIST Levels 3 and 5.
The signature sizes remain the same, which makes CSIDH-based signature at-
tractive.

Lastly, De Feo, Kohel, Leroux, Petit, and Wesolowski introduced the current
shortest isogeny-based signature scheme SQIsign [20]. They only target NIST
level 1 of security, with signatures of 204 bytes, secret keys of 16 bytes, and
public keys of 64 bytes; their C-code implementation claims 0.6 seconds for key
generation, 2.5 seconds for signing, and 50 milliseconds for verification.

Contributions. We provide a detailed description to construct a Signature
scheme based on [17, Section 5.3]. We explicitly describe a non-interactive recov-
erable Sigma protocol over isogenies. Such sigma protocols prove the knowledge
of an isogeny under the Fixed degree relation given in [17,4]. We also estimate the
expected signature sizes by using built-in blocks SIDH, B-SIDH, and G2SIDH;
we applied (as far as we know) all possible tricks to reduce signature sizes as
much as possible.

Outline. We organize the paper as follows. We present all mathematical tools
required to describe the 3-special soundness construction from [17, §5.3] in Sec-
tion 2. Since the Sigma protocol proves the knowledge of an isogeny by using
SIDH as a built-in block, we explain SIDH in Section 2.1 and the Sigma protocol
in Section 2.2. To understand how the Sigma protocol works, we proceed in Sec-
tion 3.1 to detail tricks to reduce its commitment and response sizes. After that,
we present in Section 3.2 a recoverable Sigma protocol to construct a signature
protocol. Subsequently, we mention in Section 3.3 that replacing SIDH with B-
SIDH reduces the sizes. We show in Section 3.4 how G2SIDH can help to reduce
the sizes even more 1. In Section 3.5, we list (to the best of our knowledge) all
isogeny-based signatures still secure against the Castryck-Decru attack. Finally,
we conclude with some open problems and remarks in Section 4.

2 Preliminaries

In this section, we introduce all mathematical tools required in the SIDH con-
structions from [31,19]. Let p = 2a3b − 1 be a prime number satisfying p ≡
1 We highlight that we did not dig into the mathematical tools required for G2SIDH;
we took it as a black box. However, we mention the main differences between SIDH
and G2SIDH and take essential properties to describe how the recoverable Sigma
protocol will impact.
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3 mod 4 for some a, b ∈ Z+. Let Fp be a prime field with p elements and Fp2 a
quadratic field extension of Fp. We let E be a supersingular curve determined
by Equation 1 and assume E has exactly #E(Fp2) = (p+ 1)

2 points over Fp2 .

E : y2 = x3 +Ax2 + x, A ∈ Fp2 \ {±2}. (1)

The point at infinity ∞ of E plays the role of the neutral element. We say
P ∈ E is an order-d point if d is the smallest positive integer such that

[d]P = P + · · ·+ P︸ ︷︷ ︸
d times

=∞,

and write E[d] to denote the d-torsion subgroup {P ∈ E(Fp2) | [d]P =∞}. The
j-invariant of the curve E is 256(A2−3)3

A2−4 .

Isogenies From Kernel. We only consider separable isogenies. An isogeny
φ : E → E′ over Fp2 is a non-zero rational map fixing the point at infinity,
φ(∞) = ∞ . If such isogeny exists, we say E and E′ are isogenous over Fp2 ,
which happens if and only if #E(Fp2) = #E′(Fp2). The kernel kerφ of φ is
the subgroup {P ∈ E(Fp2) | φ(P ) = ∞}. We refer to φ as d-isogeny when
#kerφ = d holds. The dual d-isogeny φ̂ : E′ → E of φ is the isogeny satisfying

φ̂ ◦ φ : P 7→ [d]P and φ ◦ φ̂ : P 7→ [d]P.

2.1 SIDH protocol

The core idea of [17, §5.3] relies on the SIDH-square construction. So, let us list
the SIDH setup as follows:

– the quadratic field extension Fp2 of Fp along with p = 2a3b − 1;
– the starting supersingular curve E0 : y

2 = x3 + 6x2 + x 2;
– the order-2a basis {P0, Q0} satisfying 〈P0, Q0〉 = E0[2

a]; and
– the order-3b basis {P ′0, Q′0} satisfying 〈P ′0, Q′0〉 = E0[3

b].

The SIDH key generation is slightly different for each entity. Alice generates
public keys according to order-3b points, and her private keys determine secret
2a-isogenies. In contrast, Bob’s public keys are concerning order-2a points and his
private keys to 3b-isogenies. We sketch as follows Alice and Bob’s key generations
and derivations.
2 We choose the same E0 as in
– SIKE proposal [1], but it can be a different curve.
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Alice key generation.

1. Alice samples a random integer sk $←− J0 . . 2a − 1K as her private key;
2. She then computes the 2a-isogeny φ : E0 → E1 with kernel generated by
Kφ = P0 + [sk]Q0; and

3. She sets as her public key pk = (E1, φ(P
′
0), φ(Q

′
0)), and send it to Bob.

Bob key generation.

1. Bob samples a random integer sk′ $←− J0 . . 3b − 1K as his private key;
2. He then computes the 3b-isogeny ψ : E0 → E2 with kernel generated by
Kψ = P ′0 + [sk′]Q′0; and

3. He sets as his public key pk′ = (E2, ψ(P0), ψ(Q0)), and send it to Alice.

Alice key derivation.

1. Alice computes the 2a-isogeny φ′ : E2 → E3 with kernel generated by Kφ′ :=
ψ(Kφ) = ψ(P0) + [sk]ψ(Q0); and

2. She finally sets as her secret shared the j-invariant j(E3) of E3.

Bob key derivation.

1. Bob computes the 3b-isogeny ψ′ : E1 → E′3 with kernel generated by Kψ′ :=
φ(Kψ) = φ(P ′0) + [sk′]φ(Q′0); and

2. He finally sets as his secret shared the j-invariant j(E′3) of E′3.

In the original SIDH construction from [31,19] and also in [1], the secret
shared corresponds with the j-invariant of the curves E3 and E′3. However,
Leonardi showed that the ending curves E3 and E′3 are equal to each other [35].
We illustrate the diagram determined by the SIDH protocol in Figure 1.

E0 E1

E2 E3

φ

ψ

φ′

ψ′

Fig. 1: Dashed arrows are secret and all curves are public. Horizontal and vertical
arrows denote 2a-isogenies and 3b-isogenies, respectively. .

Next, we summarize the constructions from [17] in Section 2.2. In particular,
we only focus on the constructions based on Definition 1. The idea behind [17,
§5.3] is to randomly generate SIDH-squares, as illustrated in Figure 1, to prove
the knowledge of the secret isogeny.
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Definition 1 (Fixed degree relation). Given a public curve pk = Ei gener-
ated by Alice or Bob without revealing any image of auxiliary points, we define
the Fixed degree relation by Equation 2.

Rdeg := {(E0, Ei, d, ω) | ω : E0 → Ei is a d-isogeny} . (2)

2.2 The still secure Sigma protocol 3-special sound

This section describes the construction from [17, §5.3]. The setup is the same as
in Section 2.1. Given a public 2a-isogenous curve E1 to E0. The prover (Peggy)
wants to convince the verifier (Victor) that she knows the secret 2a-isogeny
φ : E0 → E1, which implies knowing kerφ = 〈Kφ〉. Let λ ∈ {128, 192, 256} a
security parameter, and H be a cryptographic hash function with output length
2λ.

Public and private keys. Here, the public key is pk = E1, while sk = φ
determines the private key.

Commitment. This block proceeds by constructing random SIDH-squares de-
scribed in Figure 1 as follows.

– Peggy picks a random order-3b kernel generator Kψ in E0;
– She evaluates Kψ under the secret isogeny φ to get Kψ′ = φ (Kψ);
– She constructs an SIDH-square as in Figure 1 determined by
• the 3b-isogeny ψ : E0 → E2 with kerψ = 〈Kψ〉,
• the 3b-isogeny ψ′ : E1 → E3 with kerψ′ = 〈Kψ′〉, and
• the 2a-isogeny φ′ : E2 → E3 with kerφ′ = 〈Kφ′〉 where Kφ′ = ψ (Kφ);

– She chooses a random basis {P2, Q2} of E2

[
3b
]
;

– She evaluates P2 and Q2 under the secret isogeny φ′ to get P3 = φ′ (P2) and
Q3 = φ′ (Q2);

– She looks for two integers c, d ∈ J0 . . 3b − 1K such that
• The dual isogeny ψ̂ : E2 → E0 of ψ has kernel generator Kψ̂ = [c]P2 +

[d]Q2, and
• The dual isogeny ψ̂′ : E3 → E1 of ψ′ has kernel generator K

ψ̂′ = [c]P3 +

[d]Q3;
– She selects three random numbers rR, rL, and r from {0, 1}λ.
– Next, She commits com2 = (E2, P2, Q2) and com3 = (E3, P3, Q3) as
• comL = H (com2 || rL),
• comR = H (com3 || rR), and
• com′ = H ((c, d) || r);

– Finally, She sends the commitment message com ← (comL, comR, com′) to
Victor.

Challenge. Victor picks a uniformly random challenge chall $←− {−1, 0, 1}, and
send it to Peggy.
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Response. Once Peggy receives the challenge chall, she performs the following:

– If chall = 1, she sends resp← (com2, rL,Kφ′ , com3, rR) to Victor.
– If chall = 0, she sends resp← (com3, rR, c, d, r) to Victor.
– If chall = −1, she sends resp← (com2, rL, c, d, r) to Victor.

Verification. Depending on the challenge, Victor does the following calculations
to validate the commitment and response:

– (comL, comR, com′)← com
– If chall = 1,
• He parses

∗ (com2, rL,Kφ′ , com3, rR)← resp,
∗ (E2, P2, Q2)← com2, and
∗ (E3, P3, Q3)← com3;

• He rejects if H (com2 || rL) 6= comL or H (com3 || rR) 6= comR;
• He rejects if Kφ′ 6∈ E2 or Kφ′ does not have order 2a;
• He computes the 2a-isogeny φ′ : E2 → E′3 with kernel generator Kφ′ ;
• Finally, Victor accepts if and only if E3 = E′3, P3 = φ′(P2) and Q3 =
φ′(Q2), otherwise rejects.

– If chall = 0,
• He parses

∗ (com3, rR, c, d, r)← resp, and
∗ (E3, P3, Q3)← com3;

• Victor rejects if H ((c, d) || r) 6= com′ or H (com3 || rR) 6= comR;
• He computes K

ψ̂′ as [c]P3 + [d]Q3;
• He rejects if Kψ′ does not have order 3b;
• He computes the 3b-isogeny ψ′ : E3 → E′1 with kernel generator Kψ′ ;
• Finally, Victor accepts if and only if E1 = E′1, otherwise rejects.

– If chall = −1,
• He parses

∗ (com2, rL, c, d, r)← resp, and
∗ (E2, P2, Q2)← com2;

• Victor rejects if H (com2 || rL) 6= comL or H ((c, d) || r) 6= com′;
• He computes Kψ̂ as [c]P2 + [d]Q2;
• He rejects if Kψ does not have order 3b;
• He computes the 3b-isogeny ψ : E2 → E′0 with kernel generator Kψ;
• Finally, Victor accepts if and only if E0 = E′0, otherwise rejects.

Remark 1. The computations in the Response and Verification concerning
the case chall = 1 correspond with the horizontal arrows of Figure 1. While
chall = 0 and chall = −1 determines the right-vertical and left-vertical arrows,
respectively.
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The current wave of attacks by Castryck-Decru [9], Maino-Martindale [37],
and Robert [40] do not extend to the Sigma protocol from [17, §5.3], which is
described above in Section 2.2. Given that the public keys do not include images
of any auxiliary point the current Castryck-Decru family attacks do not help
to find (either in a polynomial or subexponential time) the secret isogeny φ.
Additionally,

– If chall = 1. The kernel generator Kφ′ of φ′ : E2 → E3 is revealed, along
with the points P2, Q2 and their respectively image P3 = φ′(P2) and Q3 =
φ′(Q2). Therefore, any key-recovery attack from [9,37,40] recovers a kernel
generator for the 2a-isogeny φ′, which is already public.

– If chall = 0. The kernel generator K
ψ̂′ of the (expected) dual 3b-isogeny

ψ̂′ : E3 → E1 is public, along with the image points P3 = φ′(P2) and Q3 =
φ′(Q2). Now, the curve E2 and the points P2, Q2 ∈ E2 are not revealed, and
thus the points P3 and Q3 looks like random points. Furthermore, there are
no image of auxiliary points under φ′ (or its dual). So, the current Castryck-
Decru family attacks do not help to find the secret 2a-isogeny φ′.

– If chall = −1. The kernel generator Kψ̂ of the (expected) dual 3b-isogeny
ψ̂ : E2 → E0 is public, along with two random points P2 and Q2. Now,
the curve E3 and the random points P3, Q3 ∈ E2 are not revealed. In fact,
there are no image of auxiliary points under φ (or its dual). So, the current
Castryck-Decru family attacks do not help to find the secret 2a-isogeny φ.

2.3 Sigma protocol & the Fiat-Shamir transform

As a way to describe the security assumption, Figure 2 illustrates the hard
problem of the Sigma protocol from Section 2.2, and assumes the cases from
Figure 2a, Figure 2b, and Figure 2c do not simultaneously occur for a fixed
instance. Essentially, the hardness assumption relies on distinguishing between
well-formed and altered instances (E2, E3, φ

′), that is on the Decisional Super-
singular Product Problem (DSPP) [17].

Definition 2 (Decisional Supersingular Product Problem (DSPP): Al-
ice’s case). Let E0 be a Montgomery curve as in the SIDH setting (see Sec-
tion 2.1). Given a 2a-isogeny φ : E0 → E1 with kernel 〈Kφ〉, the Decisional Su-
persingular Product Problem (DSPP) asks to distinguish between the following
two distributions:

– (E2, E3, φ
′) is the bottom of a random SIDH-square as in Figure 1. That is,

for a randomly chosen order-3b kernel 〈Kψ〉, we have E2 is the codomain
curve of the 3b-isogeny ψ with kernel 〈Kψ〉, E3 is the codomain curve of the
3b-isogeny ψ′ with kernel 〈φ(Kψ)〉, and φ′ : E2 → E3 is the 2a-isogeny with
kernel 〈ψ(Kφ)〉.

– (E2, E3, φ
′) such that E2 is a randomly chosen elliptic curve with same car-

dinality as E0, and φ′ : E2 → E3 is a random 2a-isogeny with cyclic kernel.
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The sigma protocol described in Section 2.2 is 3-special soundness under the
relation given by Definition 1. Furthermore, when repeated λ times, it becomes a
Special Honest-Verifier Zero-Knowledge (SHVZK) PoK with soundness (2/3)

κ,
assuming the DSPP is computationally hard and the commitment scheme de-
termined by H is computationally binding and statistically hiding [17, Theorem
4].

Signature scheme using the strong Fiat-Shamir transform [25,3]. The
main idea is to avoid the interaction between Peggy and Victor by allowing Peggy
to generate the challenge as the hash of the statement and the commitment. In
our case, Peggy would first generate κ commitments comi and then obtains the
challenge (chall1, . . . , challκ−1) = RO(pk,m, com0, . . . , comκ−1), where m is
the message to be signed. We denote by RO a random oracle that outputs
strings in {−1, 0, 1}κ. Each challenge challi determines the response values for
comi. This transformation is secure [42] in the Quantum Random Oracle Model
(QROM).

E′
0 = E0? E1

E2 E3

φ

ψ̂

φ′

ψ′

(a) Given ker ψ̂ = 〈Kψ̂〉. The prover ac-
cepts if the codomain curve E′

0 of ψ̂ is
equal to E0; otherwise rejects.

E0 E′
1 = E1?

E2 E3

φ

ψ

φ′

ψ̂′

(b) Given ker ψ̂′ = 〈K
ψ̂′〉. The prover ac-

cepts if the codomain curve E′
1 of ψ̂′ is

equal to E1; otherwise rejects.

E0 E1

E2 E′
3 = E3?

φ

ψ

φ′

ψ′

(c) Given kerφ′ = 〈K′
φ〉. The verifier ac-

cepts if and only if the codomain curve
E′

3 of φ′ is equal to E3, P3 = φ′(P2) and
Q3 = φ′(Q2); otherwise rejects.

Fig. 2: Dashed arrows and curves labeled with gray ink are secret and unknown
by the adversary and distinguisher.
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3 Efficient Sigma construction built-in functions

This section describes a way to optimize the Sigma construction described in Sec-
tion 2.2 via recoverable Sigma protocols and applying the tricks from [29] and [4].

3.1 Reducing sizes according state-of-the-art tricks

A commitment com = (comL, comR, com′) has fixed bitlength equals 6λ. Recall

– comL = H (com2 || rL) with com2 = (E2, P2, Q2);
– comR = H (com3 || rR) with com3 = (E3, P3, Q3); and
– com′ = H ((c, d) || r) where Kψ = [c]P2 + [d]Q2 and Kψ′ = [c]P3 + [d]Q3

hold.;

The response resp has a different size depending on if chall = 1 holds; let
us analyze the cases below:

Case chall 6= 1. The response includes log2(p) bits that determines (c, d).
Notice, we can do it better by computing either ∆ =

(
cd−1 mod 3b

)
or ∆ =(

dc−1 mod 3b
)
plus one bit b ∈ {0, 1} to decide which point is multiplied by

∆: either Pj + [∆]Qj or [∆]Pj + Qj as kernel point generator for j := 2, 3.
In other words, we suggest to replace (c, d) by (b,∆), and update the commit
com′ as H ((b,∆) || r). That trick reduces (c, d) of log2(p) bits to (b,∆) of log2(p)

2
bits. Now, let CanonicalBasis3(E) denotes the procedure to find two order-3b
points P ′ and Q′ such that 〈P ′, Q′〉 = E[3b], and set j ∈ {2, 3}. The commit-
ment comj = (Ej , Pj , Qj) has 6 log2(p) bits. The idea is to compute P ′, Q′ ←
CanonicalBasis3(Ej) and find integers αPj ,αQj

, βPj
, βQj

∈
q
0 . . 3b − 1

y
such

that Pj = [αPj
]P ′ + [βPj

]Q′ and Qj = [αQj
]P ′ + [βQj

]Q′. Therefore, replace the
commitment comj = (Ej , Pj , Qj) by comj =

(
Ej , (αPj , βPj ), (dQj , βQj )

)
. That

trick reduces the sizes from 6 log2(p) bits to about 4 log2(p) bits.

Case chall = 1. The response includes both com2 and com3, along with the
kernel order-2a point generator Kφ′ . Same trick as in the case chall 6= 1 allows
to reduce the commitment size of (com2, com3) from 12 log2(p) to 8 log2(p); since
we can get P3 and Q3 from P2 and Q2 using φ′, we do not need to include P3 and
Q3 in the response, which reduces up to 6 log2(p) bits. Let CanonicalBasis2(E2)
denotes the procedure to find two order-2a points P and Q such that 〈P,Q〉 =
E2[2

a]. Analogously to the 3b-torsion basis case, we can reduceKφ′ by finding two
integers α, β ∈ J0 . . 2a − 1K such that Kφ′ = [α]P + [β]Q. Moreover, we suggest
to represent Kφ′ using log2 p

2 by computing either ∆2 =
(
αβ−1 mod 2a

)
or ∆2 =(

βα−1 mod 2a
)
plus one bit b2 ∈ {0, 1} to decide which point is multiplied by

∆2: either P + [∆2]Q or [∆2]P +Q as kernel point generator.

Reducing via recoverable Sigma protocol. Following the hints from [4, c.f.
Remark 3], we transform the Sigma protocol into a recoverable Sigma protocol.
That is, the signer can output (chall, resp) as signature instead of (com, resp).
Given a signature (chall, resp), Victor then first recomputes com, and checks
that chall = H(pk,m, com) before verfiying the transcript.
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3.2 Explicit description of an efficient recoverable Sigma protocol

Let us assume Peggy wants to convince Victor that she knows the secret 2a-
isogeny φ : E0 → E1, which implies knowing kerφ = 〈Kφ〉. Let m be a message
to be signed.

Signing. Peggy proceeds as follows:

– She computes (com2, rL), (com3, rR), ((c, d), r), and
– Kφ′ as in the commitment procedure from Section 2.2;
– She evaluates
• comL = H (com2 || rL),
• comR = H (com3 || rR), and
• com′ = H ((b,∆) || r) where (b,∆) are computed as in Section 3.1;

– She calculates comH ← H(pk || m || com) with com = (comL, comR, com′);
– She picks as random challenge as chall← PRNG (comH) ∈ {−1, 0, 1};
• If chall = 1, she gets (b2, ∆2), (αPj , βPj ), and (αQj , βQj ) for j := 2, 3

as in Section 3.1, and sets

resp←
(
com′, E2, (αP2 , βP2), (αQ2 , βQ2), rL, (b2, ∆2), E3, rR

)
;

• If chall = 0, she obtains (αP3
, βP3

) and (αQ3
, βQ3

) as in Section 3.1,
and sets

resp←
(
comL, E3, (αP3 , βP3), (αQ3 , βQ3), rR, (b,∆), r

)
;

• If chall = −1, she computes (αP2
, βP2

) and (αQ2
, βQ2

) as in Section 3.1,
and sets

resp←
(
comR, E2, (αP2

, βP2
), (αQ2

, βQ2
), rL, (b,∆), r

)
;

– Finally, Peggy sends σ ← (challH, resp) to Victor.

Verifying. Victor does the below calculations to validate the signature σ =
(challH, resp):

– He computes the challenge as chall← PRNG (comH) ∈ {−1, 0, 1};
– If chall = 1,
• He takes com′, rL, and rR from resp;
• He reconstructs com2 = (E2, P2, Q2), E3, and Kφ′ from resp;
• He computes the 2a-isogeny φ′ : E2 → E′3 with kernel generator Kφ′ ;
• He evaluates P2 and Q2 under φ′ to get P3 = φ′(P2) and Q3 = φ′(Q2);
• He sets com3 = (E3, P3, Q3), and calculates comL = H (com2 || rL) and
comR = H (com3 || rR);

• He rejects if H(pk || m || com) 6= comH where com = (comL, comR, com′);
• Finally, Victor accepts if and only if E3 = E′3, otherwise rejects.

– If chall = 0,
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• He takes ((b,∆), r), comL, and rR from resp;
• He reconstructs com3 = (E3, P3, Q3) from resp;
• He calculates com′ = H ((b,∆) || r) and comR = H (com3 || rR);
• He rejects if H(pk || m || com) 6= comH where com = (comL, comR, com′);
• He calculates Kψ′ using P3, Q3, and (b,∆);
• He computes the 3b-isogeny ψ′ : E3 → E′1 with kernel generator Kψ′ ;
• Finally, Victor accepts if and only if E1 = E′1, otherwise rejects.

– If chall = −1,
• He takes ((b,∆), r), comR, and rL from resp;
• He reconstructs com2 = (E2, P2, Q2) from resp;
• He calculates com′ = H ((b,∆) || r) and comL = H (com2 || rL);
• He rejects if H(pk || m || com) 6= comH where com = (comL, comR, com′);
• He calculates Kψ using P2, Q2, and (b,∆);
• He computes the 3b-isogeny ψ : E2 → E′0 with kernel generator Kψ;
• Finally, Victor accepts if and only if E0 = E′0, otherwise rejects.

Notice, if chall = 1 then the response resp in the above recoverable Sigma
protocol has 8λ+13 log2(p)

2 bits; otherwise, it has 8λ+9 log2(p)
2 bits. Therefore, in

average the response resp has 24λ+31 log2(p)
6 ≈ (4λ+ 5 log2(p)) bits. As the last

optimization, we suggest taking

(chall0, . . . , challκ−1)← RO (H′(comH,0, . . . , comH,κ−1))

as κ challenges for κ repetitions of the above recoverable Sigma protocol,
where H′ is a hash function return λ-bits and RO is a random oracle that
uniformly samples from {−1, 0, 1}κ. After that, we get a signature

σ =
(
H′(comH′,0, . . . , comH,κ−1), resp0, . . . , respκ−1

)
of (λ+ κ (4λ+ 5 log2(p)))-bits. We list the expected sizes according to [1,36]
in Table 1.

log2(p) λ κ Security Level Private key Public Key Signature
377 128 219 NIST Level 1 24 B 96 B 66.592 KB
546 192 329 NIST Level 3 35 B 138 B 145.113 KB
697 256 438 NIST Level 5 44 B 176 B 248.816 KB
434 128 219 NIST Level 1 28 B 110 B 74.257 KB
503 160 274 NIST Level 2 32 B 126 B 108.250 KB
610 192 329 NIST Level 3 39 B 154 B 158.273 KB
751 256 438 NIST Level 5 47 B 188 B 261.956 KB

Table 1: Byte sizes. Signature sizes correspond with the average case. Private
keys correspond to integer coefficients sk in Z2a , while public keys are elliptic
curves E : y2 = x3 +Ax2 + x described by the element A in Fp2 . Since 2a ≈ √p,
public keys are 4x larger than private keys.
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3.3 To the quadratic twist to reduce sizes

Following B-SIDH construction [14,15], we can still reduce the signature sizes
using the quadratic twist curve. For instance, according the parameter sets
from [15], we can use primes of 256-bits (NIST Level 1), 384-bits (NIST Level
3), and 512-bits (NIST Level 5). The idea is to choose a prime number p with
M | (p+ 1) and N | (p− 1) being smooth integer numbers close to p and

– replace order-2a points and 2a-isogenies by order-M points andM -isogenies,
and

– replace order-3b points and 3b-isogenies with order-N points andN -isogenies.

On the other hand, [17, Theorem 4] also holds if we repeat κ times the
Sigma protocol described in [17, §5.3] and replace 2a and 3b with M and N ,
respectively. It becomes an SHVZK PoK with soundness (2/3)κ, assuming the
DSPP is computationally hard. Table 2 illustrates the respective signature sizes
based on Section 3.2 under the B-SIDH setup [15].

log2(p) λ κ Security Level Private key Public Key Signature
256 128 219 NIST Level 1 32 B 64 B 49.072 KB
384 192 329 NIST Level 3 48 B 96 B 110.568 KB
512 256 438 NIST Level 5 64 B 128 B 196.256 KB

Table 2: Byte sizes. Signature sizes correspond with the average case. Private
keys correspond to integer coefficients sk in ZM , while public keys are elliptic
curves E : y2 = x3 + Ax2 + x described by the element A in Fp2 . Since M ≈ p,
public keys are 2x larger than private keys.

3.4 To Jacobian of genus-two curves to keep reducing sizes

Following G2SIDH construction [26,33], we have another way to reduce sizes by
working with Jacobian of genus two hyperelliptic curves 3. This time the idea is
replace 2a-isogenies and 3b-isogenies with (2a, 2a)-isogenies and (3b, 3b)-isogenies.
One crucial difference between SIDH and G2SIDH is that we do not have only
two generators for the torsion subgroups; we have four generators instead, and
the isogeny kernels are generated by two elements. For instance, given a public
(2a, 2a)-isogenous Jacobian J1 to J0. This time Peggy wants to convince Victor
that she knows the secret (2a, 2a)-isogeny φ : J0 → J1, which implies knowing
kerφ = 〈Kφ,0,Kφ,1〉. Here, J0 is a public and fixed Jacobian of a genus two curve
H0, similarly J1 (the public key) comes from a genus two hyperelliptic curve H1.

Similarly to Section 3.3, [17, Theorem 4] also extends if we repeat κ times the
Sigma protocol described in [17, §5.3] and replace 2a-isogenies and 3b-isogenies
3 For a deeper understanding of isogenies in the context of G2SIDH, we strongly
suggest reading [26,10,33,32]
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with (2a, 2a)-isogenies and (3b, 3b)-isogenies, respectively. It becomes an SHVZK
PoK with soundness (2/3)κ, assuming the G2DSPP (described by Definition 3)
is computationally hard.

Definition 3 (Genus two Decisional Supersingular Product Problem
(G2DSPP): Alice’s case). Let J0 be a Jacobian of genus two curve H0

as in the G2SIDH setting. Given a (2a, 2a)-isogeny φ : J0 → J1 with kernel
〈Kφ,0,Kφ,1〉, the Genus two Decisional Supersingular Product Problem, labeled
as G2DSPP, asks to distinguish between the following two distributions:

– (J2, J3, φ
′) is the bottom of a random G2SIDH-square. That is, for a ran-

domly chosen order-(3b, 3b) kernel 〈Kψ,0,Kψ,1〉, we have J2 is the codomain
of the (3b, 3b)-isogeny ψ with kernel 〈Kψ,0,Kψ,1〉, J3 is the codomain of the
(3b, 3b)-isogeny ψ′ with kernel 〈φ(Kψ,0), φ(Kψ,1)〉, and φ′ : J2 → J3 is the
(2a, 2a)-isogeny with kernel 〈ψ(Kφ,0), ψ(Kφ,1)〉.

– (J2, J3, φ
′) such that J2 is a randomly chosen Jacobian with same cardinality

as J0, and φ′ : J2 → J3 is a random (2a, 2a)-isogeny with kernel 〈R0, R1〉 for
some order-2a elements R0, R1 ∈ J2[2a].

Essentially, the genus-two recoverable Sigma protocol remains the same flow
as in Section 3.2, but we need to consider that it requires double generators
and isogeny evaluations. Additionally, we have that the kernel generators of the
(2a, 2a)-isogenies and (3b, 3b)-isogenies can be expressed by linear combinations
determined with three integer coefficients c, d, and e of log2(p)

2 -bits. In summary,
we need double of log2(p)

2 -bits integer coefficients to represent com2 and com3,
and three coefficients to represent the kernel generators of φ′, ψ and ψ′. To be
more precise, if chall = 1, then resp has (4λ + 9 log2(p))-bits. Otherwise, we
have resp of (4λ + 7 log2(p))-bits. Consequently, in average we get a response
resp with 12λ+23 log2(p)

3 ≈ (4λ+ 8 log2(p))-bits. Since the best algorithm to find
an isogeny is Õ(p) (classically) and Õ(

√
p) (quantumly) [16], we can work with

primes of 128 (NIST Level 1), 192 (NIST Leve 3), and 256 (NIST Level 5). Table 3
lists the expected sizes of the signature over Jacobian of genus two curves.

log2(p) λ κ Security Level Private key Public Key Signature
128 128 219 NIST Level 1 24 B 192 B 42.064 KB
192 192 329 NIST Level 3 36 B 288 B 94.776 KB
256 256 438 NIST Level 5 48 B 384 B 168.224 KB

Table 3: Byte sizes. Signature sizes correspond with the average case. Private
keys correspond to 3-tuples of integer coefficients (skc, skd, ske) in Z3

2a , while
public keys are genus two hyperelliptic curves H : y2 = f(x) described by the
degree-6 polynomial f(x) over Fp2 . Since 2a ≈

√
p, public keys are 8x larger than

private keys.
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3.5 Size comparisons against isogeny-based signatures

As mentioned in Section 1, the short keys are the most significant selling point
of isogeny-based signature construction. In contrast, isogeny construction has a
high latency in practice, which seems to be much easier to improve. This section
compares state-of-the-art isogeny-based signatures that remain secure against
Castryck-Decru family attacks in terms of byte lengths. Currently, there are
different families of isogeny-based sigma protocols, such as:

– CSIDH-based: Sea-sign [18,22], CSI-FiSh [6] and the Lossy CSI-FiSh [24];
– SIDH-based: [17, §5.3]; and
– Quaternion-based: SQI-sign [20,21] and [29].

Since all CSIDH-based proposals are initially based over a 512-bits prime
field, we compare them by moving into a 2048-bits prime field (as suggested
in [8,39,12])). Using a 2048-bits CSIDH-prime impacts public-key sizes and tim-
ing efficiency; signature sizes stay fixed as in CSIDH-512. Now, due to the ex-
tended variety of CSIDH-based configurations determined by

– the number n of different isogeny degrees,
– the number B of isogenies per isogeny degree, and
– the number S of multiple public-key curves as CSIDH-base public-keys.

We try to englobe a fair comparison assuming n = 74, B = 5, and S = 26,
which gives a good trade-off between small signature sizes and timings. We used
the script from [22] to get sizes concerning the improved Sea-sign over a 2048-bits
prime field. Table 4 lists all analyzed isogeny-based signature sizes in bytes.

Scheme Private key Public Key Signature
[29, §4] with Fiat-Shamir transform 32 B 96 B 11.264 KB
Original SQI-sign [20] 16 B 64 B 204 BSQI-sign improvement from [21]
Sea-sign [18] 16 B 16.384 KB 720 B
Sea-sign improvement from [22] 16 B 16.128 KB 7.220 KB
Simple variant of CSI-FiSh [6] 16 B 16.384 KB 560 B
Lossy CSI-FiSh [24] 16 B 16.896 KB 560 B
Optimized [17, §5.3] according to Section 3.2 24 B 96 B 66.592 KB
Twist quadratic variant of [17, §5.3] according to Section 3.3 32 B 64 B 49.072 KB
Genus two variant of [17, §5.3] according to Section 3.4 24 B 192 B 42.064 KB
Table 4: Byte sizes concerning state-of-the-art isogeny-based signatures with
close to NIST security Level 1. For a fair comparison, we set all CSIDH-
based construction in [18,22,6,24] over a 2048-bits prime field (as suggested
in [8,39,12]). Large CSIDH primes only impact public-key sizes and timing effi-
ciency; signature sizes stay fixed as in CSIDH-512.
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4 Concluding remarks

After the wave of Castryck-Decru attacks, it could be hard to stand for using
some isogeny constructions. Therefore, we list all flavors of isogeny-based sig-
natures for which the Castryck-Decru attack does not apply (see Section 3.5).
We also estimate the expected optimized sizes for the 3-special soundness Sigma
protocol from [17, §5.3] and discuss its extensions on the B-SIDH and G2SIDH
context.

Open problems. As pointed out in [17], there is no 2-special soundness con-
struction under the Fixed degree relation: can we construct it for SIDH-squares?
A 2-special soundness protocol would considerably reduce sizes and, thus, the
number of repetitions (e.g., κ = 128 instead of 219).

A recent new proposal by LeGrow, Ti, and Zobernig suggests using the super-
singular non-superspecial abelian surface [34], where the Costello-Smith attack
from [16] does not apply and allows working with 87-bit primes (concerning
NIST Security Level 1). Is it possible to build a shorter Sigma protocol using
the proposals from [34]?

We learn more from failure than from success. Do not
let it stop us. Failure could build new isogeny schemes.
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