
Attacks on the Firekite cipher
Thomas Johansson1, Willi Meier2 and Vu Nguyen1

1 Lund university, Lund, Sweden, thomas.johansson@eit.lth.se, vu.nguyen@eit.lth.se
2 FHNW, Windisch, Switzerland, willi.meier@fhnw.ch

Abstract. Firekite is a synchronous stream cipher using a pseudo-random number
generator (PRNG) whose security relies on the hardness of the Learning Parity with
Noise (LPN) problem. It is one of a few LPN-based symmetric encryption schemes
and it can be very efficiently implemented on a low-end SoC FPGA. The designers,
Bogos, Korolija, Locher and Vaudenay, demonstrated appealing properties of Firekite
such as requiring only one source of cryptographically strong bits, small key size,
high attainable throughput, and a concrete measurement for the bit level security
depending on the selected practical parameters.
We propose distinguishing and key-recovery attacks on Firekite by exploiting the
structural properties of its PRNG. We adopt several birthday-paradox techniques
to show that a particular sum of Firekite’s output has a low Hamming weight with
higher probability than the random case. We achieve the best distinguishing attacks
with complexities 266.75 and 2106.75 for Firekite’s parameters corresponding to 80-bit
and 128-bit security, respectively. By applying the distinguishing attacks and an
additionally suggested algorithm, one can also recover the secret matrix used in the
Firekite PRNG, which is built from the secret key bits. This key recovery attack
works on most large parameter sets and has slightly larger complexity, for example
269.87 on the 80-bit security parameters n = 16384, m = 216, k = 216.
Keywords: PRNG · Firekite PRNG · Birthday paradox · k-list algorithm · LPN
· LPN-based symmetric encryption

1 Introduction
Since Shor [Sho99] in his seminal work introduced quantum algorithms that effectively broke
the discrete-log and factoring problems, researchers have set their sights to cryptographic
alternatives that promise to be quantum-resistant such as lattice-based or code-based
cryptography. In particular, cryptographic primitives whose security relies on learning
problems, such as Learning Parity with Noise (LPN), Learning with Errors (LWE), and the
closely related Ring-LPN, are receiving great attentions as they are built on supposedly
hard problems1. Moreover, Impagliazzo and Levin showed that cryptography is only
possible if efficient learning is not [IL90]. Besides the absence of an LPN-solving quantum
algorithm, LPN-based constructions are desired as they can be efficiently implemented
using mainly XOR ("exclusive or") operations, thus achieving popularity in lightweight
cryptography on constrained, low-powered devices. However, most of such proposed
constructions are inclined towards asymmetric cryptography and they have their own
disadvantages. This includes producing and extracting randomness (cryptographically
secure bits) from an entropy-limited source, causing a significant overhead cost [HDWH12,
Sho99], and they also often require large public keys.

Bogos, Korolija, Locher and Vaudenay [BKLV21] have proposed Firekite, a synchronous
symmetric cipher, using an LPN-based PRNG which requires only one cryptographically

1LPN with adversarial errors is NP-hard.
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strong bit vector to construct the secret matrix key. A small key size is attained by moving
from an LPN problem to a Ring-LPN problem [HKL+07]. Their study conjectures that the
corresponding Ring-LPN instance remains hard to solve when using said matrix instead of
a fully random matrix. They demonstrated that using the Firekite noise distribution for
an LPN instance is still secure and there is a "partial" transformation to an LPN instance.
Using the best BKW-style algorithm proposed by Levieil and Fouque [LF06], Firekite’s
designers measured the complexity to break the transformed LPN instances, thus derived
concrete complexity results for attacking their cipher. The cipher’s efficiency was tested in
terms of the throughput, which is the number of bytes encrypted or decrypted per second
using both desktop computers and FPGAs. They also showcased that, given dedicated
hardware, the Firekite PRNG can be parallelized, hence throughput improved substantially
for larger parameters.

One can draw many parallels between Firekite and the closely related LPN-C [GRS08b];
in particular, both involve computing a noisy product using a secret random matrix M and
a random error vector e. However, LPN-C further requires an error correcting code C and
the error vectors are drawn from a Bernoulli distribution, as opposed to being bounded
as in the Firekite PRNG. This could make the decrypting process fail once the error
weight exceeds the code’s error capacity. This drawback could be amended by truncating
the binomial distribution to make sure not too many bits are set in the error vectors.
However, it is speculated that doing so may have a negative impact to the security of
LPN-C [BKLV21]. Furthermore, LPN-C inherently requires a large random secret matrix
and draws two uniformly random vectors for every invocation of the encryption algorithm.
Hence, it becomes infeasible to implement it efficiently when implemented in a constrained
environment. Firekite, besides avoiding such undesirable features, surpasses LPN-C by
not requiring fresh random bits for each output block.

Even more important than constructing schemes that are potentially quantum secure,
it is crucial to try to attack them with the most suitable approaches to better understand
their security.

1.1 Contributions
In this work, we propose both distinguishing and key-recovery attacks for Firekite. We
observe that the secret matrix is fixed throughout every round of encryption. Hence, if
the vector components in the internal states collide to the zero codeword, the output by
Firekite, when combined together appropriately, result in unusually low weight sums and
can be detected. In other words, finding such occurrences amounts to solving a birthday
paradox problem with a specific target weight.

We then consider the secret matrix as the generator for a code and by carefully
determining which positions in the above combinations are free of errors, we describe
a key-recovery attack with a slightly higher complexity than that of the distinguishing
attack.

As examples, we apply the distinguishing attacks on the Firekite cipher with specific
parameters for 80-bit and 128-bit to better understand Firekite’s security. In particular,
we launch both, a distinguishing attack and a key recovery attack on parameters n =
16384,m = 216, k = 216 with complexity 268.87 and 269.97. As there are many choices of
parameter sets for each security level, the complexity numbers vary a bit depending on
selected parameter sets.

1.2 Related work
Due to their difficulty, either proved or conjectured, LPN and Ring-LPN have made their
ways into many cryptographic constructions such as human identification protocols which
were firstly introduced by Hopper and Blum [HB01], later modified and improved to HB+
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and HB# [JW05, KS06, GRS08a]. Recent LPN-based encryption schemes that can be
found are Helen by Duc and Vaudenay [DV13], or LPN-C by Gilbert et al. [GRS08b].
Using the Ring-LPN variant, Heyse et al. [HKL+12] proposed an efficient two-round
identification protocol in constrained environments, called Lapin. LPN also proves useful
in other applications, e.g., message authentication codes (MACs) [KPV+17, DKPW12],
pseudo-random generators [ACPS09, BFKL93], or CCA-secure public-key encryption
schemes [YZ16].

Since its introduction, LPN has drawn a plethora of LPN-solving studies with different
approaches. It is natural to see LPN as a decoding problem; hence a generic decoding
technique applies. Attacks on LPN can be categorized as Information-set decoding (ISD)
or BKW-type algorithms and they prove advantageous in different scenarios, namely,
low noise-rate and constant noise. ISD was first introduced by Prange [Pra62], and
further improved by Leon[Leo88], Lee and Brickell [LB88] and Stern [Ste93]. Recently,
several methods have been proposed to gain better attacks, to name a few, Ball-collision
technique by Bernstein et al. [BLP11], representation technique by Becker, Joux, May,
Meurer [BJMM12], or the state-of-the-art algorithm [BV15]. On the other hand, BKW
began with the foundation laid by Blum, Kalai, and Wasserman [BKW03]. Besides the
improvement by Levieil and Fouque who used Walsh-Hadamard transform to recover
several bits of the secret vector, using a limited number of queries, notable advancements
can be found such as covering codes by Guo et al. [GJL14], or on the use of the Generalized
birthday attack (GBA) [Wag02] as in [Kir11].

GBA is one of the most pertinent generic attacks in cryptology, in particular, analyzing
the security of an LPN-based cryptographic scheme. There have been many notable works
related to the generalized birthday problem. Our study is inspired by the seminal works of
Wagner [Wag02] and May et al.’s approximate k-list algorithm [BM17].

1.3 Organization
The paper is organized as follows. Section 2 presents preliminary and background knowledge
regarding the LPN problem and its variants such as Ring-LPN. A brief review of the
LPN-based Firekite PRNG, and how it gave rise to the Firekite synchronous stream cipher
follows. We then describe our idea, and formally analyze our attack for Firekite in Section 3.
In Section 4, we attack different parameters proposed for Firekite and verify our approach
by a simulation with smaller parameters. We describe our key-recovery attack in Section 5
and discussions on how to improve Firekite finally concludes our work.

2 Background
Whereas the LPN problem usually finds its cryptographic applications in the public-key
domain, we will be interested in its application in symmetric cryptography. In particular,
we have seen constructions of a few synchronous stream ciphers [GRS08b, BKLV21] based
on LPN.

A synchronous stream cipher is a symmetric cipher, in which a stream of pseudorandom
bits is generated independently of the plaintext and ciphertext messages, and then bitwise
XOR-ed to the plaintext, to encrypt, or to the ciphertext, in order to decrypt. Cryptanalytic
attacks either aim at distinguishing the output of the pseudorandom bit generator from
random, recovery of its state, or key recovery. As known plaintext for a segment of
ciphertext implies knowledge of keystream for the same segment, a known plaintext attack
of a synchronous stream cipher assumes that a large part of keystream is available to an
attacker which is only limited by the maximum number of keystream bits allowed to be
output for a same key. Distinguishing attacks on the (known) keystream are relevant to
the security of stream ciphers as well: Depending on the nonranomness detected, some
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information on the plaintext may be leaked. For some stream ciphers, a distinguishing
feature can even be elaborated to a key recovery attack, as is the case for the distinguishing
property we shall derive for Firekite.

2.1 The LPN problem
LPN is an important problem in cryptography. It appears as one of main problems on which
we base post-quantum cryptography. Due to the existence of fast algorithms for quantum
computers that can solve the factorization and the discrete logarithm problems [Sho99], the
LPN problem (and the related LWE problem) including its different versions are of great
interest. No fast quantum algorithm that solves the LPN problem is known. Although
current omnipresent symmetric encryption schemes such as AES will likely not be rendered
obsolete in the near future, studies in post-quantum cryptography, namely aforementioned
works, are of absolute necessity. We need post-quantum cryptographic primitives to have
efficiency, confidence, and usability [Ber09].

LPN-based cryptographic constructions are also appealing, since only simple operations
such as bit-wise addition (XOR) and scalar products are used. This can give rise to efficient
algorithms or protocols.

The LPN problem can informally be described as the problem of solving a noisy binary
system of equations. We formally define it below.

Let Berη be the Bernoulli distribution and X ∼ Berη be a random variable where
X = {0, 1}. Then Pr[X = 1] = η, Pr[X = 0] = 1− η. Denote by x U←− {0, 1}m the event
that a vector x is drawn uniformly from {0, 1}m.

Definition 1. (LPN Oracle). Let x U←− {0, 1}m and η ∈ (0, 1
2 ). An LPN oracle ΠLPN for

x and η returns pairs of the form(
g U←− {0, 1}m, 〈x,g〉+ e

)
,

where e← Berη, and 〈x,g〉 denotes the scalar product of vectors x and g.

Definition 2. (LPN problem). Given an LPN oracle ΠLPN with parameters m and η.
The (m, η)-LPN problem is finding the secret vector x. An algorithm ALPN(T,N, δ) asking
for at most N oracle queries, using time at most T solves (m, η)-LPN if

Pr
[
ALPN(T,N, δ) = x : x U←− {0, 1}m

]
≥ δ.

The definition above is known as the search version of the LPN problem. In the
decisional version of the LPN problem, the objective is to distinguish ΠLPN from a
source giving uniformly random bits. The search and decisional versions are proved to be
computationally equivalent [KSS10].

We briefly look at a subclass of LPN problems called Ring-LPN which proves to be
useful in general and specifically used in the Firekite PRNG. Let f be a polynomial over
Z2 and R = Z2[x]/(f) denote the quotient ring. Hence R consists of all polynomials over
Z2 of degree less than that of f . We say r ← BerRη if the coefficients of the ring element
r ∈ R are assigned independently following the distribution Berη. If r is drawn uniformly
from R, we write r U←− R. The Ring-LPN problem can be defined similarly to the standard
LPN problem.

Definition 3. (Ring-LPN oracle). Let s U←− R and η ∈ (0, 1
2 ). A Ring-LPN oracle

ΠRing-LPN for s and η returns pairs of the form

(r U←− R, r · s+ e),

where e← BerRη .
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Definition 4. (Ring-LPN problem). Given a Ring-LPN oracle ΠRing-LPN with parameters
η and a polynomial ring R. The Ring-LPN problem is finding the secret polynomial
s ∈ R. An algorithm ARing-LPN(T,N, δ) asking for at most N oracle queries, using time at
most T solves the Ring-LPN problem if

Pr [ARing-LPN(T,N, δ) = s] ≥ δ.

It is worth pointing out the essential difference between LPN and Ring-LPN. If we
query the LPN oracle N times, then we can collect an m×N matrix G =

(
gT

1 · · ·gT
N

)
and

each column is generated independently. In the case of Ring-LPN, only one polynomial r
is generated uniformly random in R. If we consider a polynomial as its coefficient vector,
only the first column r is drawn uniformly random. The other columns are obtained
via shifting r. While the LPN problem has been shown to be NP-hard in the worst
case [BMVT78], the hardness of Ring-LPN is not known. However, there is a reduction
from Ring-LPN to LPN and the assumption is that Ring-LPN is also hard.

2.2 Firekite’s PRNG and Firekite construction
We recall that the decisional version of the LPN assumption can be interpreted as one can
not efficiently distinguish an LPN oracle from a source providing random bit vectors of
length m. Naturally, it can be extended into stating that distinguishing a noisy product of
an m× n matrix M and a secret vector v, i.e., vM + e from a random n-bit vector in Z2,
where e is a sparse n-bit noise vector is hard. As an example, LPN-C further used a [k, n]
error correcting code C with a generator matrix G to encode a plaintext x to a ciphertext
c through

c = xG + vM + e.

However, this construction inherently asks the source to produce random v and e for
encrypting a single plaintext. The Firekite PRNG circumvents this problem by extracting
both v and e from the noisy product and feeding them iteratively into the next encryption
invocations. Out of n bits, one can spare m+ k · logn bits to initialize the next round of
Firekite2. Let || denote the usual concatenation of vectors. We write

vM + e = (g||v′||ce).
Assuming n� m, one can split the noisy product into three components. Obviously,

m bits are used for producing the next vector v. Since e is only required to be a sparse
n-bit vector, we can have a compact representation of the next noise vector, called ce.
Then, the remaining bits, forming g, are the PRNG’s output. We are now in the position
to describe the Firekite PRNG formally.

Let m, n, and k be some integer parameters, where n� m and n is a power of 2. A
secret key M is a binary matrix of size m× n, and w is a vector of length m+ k logn < n.
Together they form a pair (M,w), the state of the PRNG. We define w = v||ce, where
v and ce are of length m and k logn, respectively. As stated above, M is fixed and w is
updated for every iteration. It is straightforward to assign v = v′. To get the next error
vector e, we further parse ce = c1||c2||...||ck where ci is of length logn. Hence, each ci
can be seen as the binary presentation of a non-negative integer less than n. Therefore,
ce encodes an n-bit error vector of weight at most k. In particular, let bcj

be the unit
vector of length n, where the bit at the position represented by cj is 1. Then the error
vector e is defined as e =

∨k
j=1 bcj

. The execution of the Firekite PRNG is described by
Algorithm 1.

At each iteration, the PRNG’s input is its state (M,w), where the first m bits and
the remaining k logn bits of w are set to be v and ce respectively. Then the error vector

2Throughout the paper, log(.) denotes logarithm to base 2.
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Algorithm 1: Firekite PRNG
Input: An m× n secret matrix M and a nonce w, r > 0 : randomization rounds.

1 while r 6= 0 do
2 Parse: w = v||c1||c2||...||ck;
3 e←

∨k
j=1 bcj

;
4 g||w′ := vM + e; // Randomization
5 w← w′;
6 r ← r − 1;
7 while 1 do
8 Parse: w = v||c1||c2||...||ck;
9 e←

∨k
j=1 bcj

;
10 g||w′ := vM + e; // Generating keystream
11 w← w′;

Return: g

e is derived from its concise representation ce and the noisy n-bit product is computed
as vM + e. This vector is again parsed into g and w′ of length d = n−m− k logn and
m+k logn, respectively. The internal state is then updated to (M,w′) and g is the output
of the PRNG. The number r of randomization rounds is needed to guarantee that v is
fully random when Firekite outputs its keystream [BKLV21].

Firekite is a synchronous stream cipher that makes use of this PRNG to produce
the d-bit keystream g directly. Therefore, for each invocation, d-bit data of a plaintext
is encrypted, and the next output of Firekite depends on the updated internal state.
The designers pointed out that, for practicality, the parameters m,n, and k need to be
large which in turn makes the secret key M big. In order to solve this problem, they
proposed the following technique, which turns the LPN instance into a Ring-LPN instance.
Consider R = Z2[x]/(Xb − 1), i.e, the polynomial ring with binary coefficients reduced
modulo Xb − 1 such that (Xb − 1)/(X − 1) is irreducible. It is well known that every
polynomial in R can be represented by its coefficient vectors in Zb2. Pick q1

U←− Zb2 and
define qi = Xi−1q1, i = 1, ...b, meaning that we shift the entries in the coefficient vectors
q1 by i− 1 times. Hence, we can construct a b× b matrix Q by shifting the first column
to the left consecutively b− 1 times. The secret matrix M is obtained by generating the
first m rows, then dropping the last b − n columns of Q. Therefore, the secret key of
Firekite PRNG is, in fact, the random b-bit vector q1 rather than an m× n matrix M.
The designers conjectured that using such M does not substantially reduce the security
compared to a fully random matrix M.

Table 1: Firekite’s parameters for 80 and 128-bit security with the properties in terms of
key size b, relative throughput α, and number of initilization rounds r.

Parameters Properties
m n k Key size (b) α r Security level
216 1024 16 1061 0.63 18 82.76
216 2048 32 2053 0.72 18 82.76
216 16,384 216 16,421 0.80 21 80.68
352 2048 32 4099 0.74 18 129.07
352 8192 120 8219 0.77 18 128.99
352 16,384 228 16,421 0.78 18 128.93
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Table 1 shows a few sets of suggested parameters for Firekite that corresponds to 80 and
128 security bit levels. Other proposed parameter sets can be found in [BKLV21].

To derive an estimation of the concrete security of Firekite, one faces two problems:
First, the noise vectors from Firekite has weight at most k and the noise distribution is not
binomial, as opposed to a standard LPN instance. Second, an adversary only sees a part of
the noisy product. Therefore, it is necessary to prove that using Firekite noise distribution
for an LPN variant is still hard, and the underlying problem of solving Firekite is as hard
as LPN.

The first question is solved as follows. Let ∆(e) denote the Hamming weight of a n-bit

vectors and ej is the j-th bit of e. If e comes from Firekite, then Pr[ej = 0] =
(
n− 1
n

)k
.

Therefore, the expected Hamming weight of Firekite noise is

E[∆Firekite(e)] = n

(
1−

(
n− 1
n

)k)
,

and one can show that

2
3k < E[∆Firekite(e)] < k.

In a standard LPN problem with parameters η and m, E[∆LPN(e)] = ηm and
Pr[∆LPN(e) = bE[∆LPN(e)c] ∈ Ω(1/n). Therefore, given such an LPN instance, we
set k such that ηm ≤ k, e.g., k := 3

2ηm. Then the noise of this LPN instance could come
from the Firekite noise distribution with probability at least Ω(1/n). In other words, if the
LPN instance with the Firekite noise distribution can be broken efficiently, any standard
LPN instance can also be broken with O(n) more work.

As for the underlying problem of solving Firekite, Firekite’s designers were able to
show that it is at most as hard as the LPN problem, and they also conjectured that the
reverse is also true [BKLV21]. Using this transformation to attack Firekite with the most
efficient LPN-solving algorithm, namely the one by Levieil and Fouque[LF06], they were
able to derive the concrete proposed parameters for the different security levels.

2.3 The problem of observing noisy codewords from an unknown code
The task of recovering partially the secret matrix M (by observing vectors gi) can be seen
as identifying an unknown code by observing noisy codewords. The problem often arises
in different contexts [MGB12], especially in analyzing cryptosystems where encryption
involves error-correcting codes and the transmission is carried over a noisy channel (e.g., a
binary symmetric channel). General approaches consist of three steps: First, arranging
noisy codewords as rows of a matrix, then running the Gaussian elimination, and finally
from the non-echelon part finding sums of vectors that are candidates to construct dual
codewords (i.e, parity-check equations). Instead of looking at only columns that sum to
0, Sicot, Houcke and Barbier argued that sparse sums of columns can also be candidates
for being dual codewords [BSH06, SHB09]. Therefore, the last step can be reduced to
an instance of the well known close neighbors search problem. Beside the projection
method proposed by Cluzeau and Finiasz [CF09] which aimed to find sparse sums of
p columns (with complexity of order Ω(np/2) when p is even) that are equal in some
positions using birthday paradox and hashtables, there have been many improvements and
extensive studies to the close neighbors search problem recently. In particular, one being
the Dubiner method which later was applied by Carrier and Tillich in their generalized
approach [CT19]. Their algorithm only performed a partial Gaussian elimination for
the second steps. The argument is that the Gaussian elimination increases the noise by
combining noisy codewords, hence it is more likely to obtain sparse sums in the early stage
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of the Gaussian elimination and minimizing the dual codewords that might have been
undetected by Sicot-Houcke-Barbier algorithm [CT19]. Moreover it also allowed them to
find dual codewords of much larger weight (compared to the full Gaussian elimination)
with reasonable complexities.

In practice, the recovery of an unknown code by observing noisy codewords concerns
useful families of codes, such as cyclic codes, convolutional codes, turbo codes, or the
ubiquitous LDPC which is important as finding low-weight dual codewords is essential in
determining communication components such as unknown interleaver [BSH06, Tix15] or
reconstructing other families of codes.

In the next section we introduce a new method, namely finding a small number of
noisy codewords summing to the zero codeword through a generalized birthday type of
algorithm.

3 The proposed distinguishing algorithm
In this section, we aim to give a brief description of the idea used in our distinguishing
attacks on Firekite. We firstly observe that the secret key matrix M is fixed throughout
the rounds of Firekite; hence, the keystream output by Firekite PRNG is subjected to
accumulating non-randomness. Let us look at the Firekite PRNG, fulfilling

vM + e = (g||v′||ce),

where v′ and ce are used in the next iteration by assigning v′ = v and e =
∨k
j=1 bcj

, and
g is the PRNG’s output. In the initial part of the attack, we concentrate on assuming the
knowledge of

g = vM′ + e′,

where g is a known d-bit vector, M′ is now considered as an m× d secret binary matrix
(obtained from the first d columns of the original M matrix) and e′ is a secret d-bit noise
vector, being the first d positions of e. It is known that ∆(e) ≤ k (which is small); hence,
the weight of e′ is also small. The expected weight of e′, denoted by k̂, can be computed
from k, n and d, since it is assumed that the ones in e are uniformly distributed among all
d positions.

In a synchronous stream cipher attack, we assume that an adversary has access to
a long output stream, which means access to a large number of d-bit vectors g. The
set of these vectors is written as {gi, i = 1, . . . , S}, where now gi = viM′ + e′i and for
some S to be addressed in the following subsections. We first sketch the ideas behind our
distinguishing attack, i.e., given an aforementioned set of vectors, decide whether they
originate from Firekite or if they are random vectors.

Our goal is to find a subset of gij vectors, j = 1, ..., l, such that the corresponding∑l
j=1 vij = 0, i.e., we find a set of noisy codewords such that the underlying information

vectors sum to zero. If l vectors vij , j = 1, . . . , l, sum to zero, then the sum of the
corresponding gij ’s is expected to be of weight around l · k̂ with nonzero contributions
coming only from the errors e′ij . Indeed, we then have

l∑
j=1

gij =
l∑

j=1
vijM

′ +
l∑

j=1
e′ij =

l∑
j=1

e′ij .

Therefore, when l is not too large, e.g. l = 4 or l = 8, the expected weight in
∑l
j=1 gij will

be low if
∑l
j=1 vij = 0. Since d is much larger than l · k̂, such a weight is very unlikely if

the vectors gij are random vectors. In the Firekite PRNG, such a collision of vectors of
length m (i.e, with probability proportional to 2−m) guarantees a low weight vector of
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length d. It is only intuitive to deduce that we can detect such occurrences more frequently
than what is expected in the random case.

3.1 A basic algorithm for finding noisy codewords summing to the zero
codeword

Recall that we want to find l different gij vectors, j = 1, · · · , l, such that the associated
unknown vectors vij sum to zero. Our approach is built from ideas from the generalized
birthday attack [Wag02] and the BKW algorithm [BKW03]. A different but related
approach is also May et al.’s Match-and-Filter algorithm [BM17].

In a simplified description following [Wag02], we set up l (l = 2t is a power of 2) lists
of size 2c filled by gi vectors. We then combine the lists pairwise, resulting in a new list
containing vectors created as a sum of two vectors, one from each initial list, such that
some c predetermined positions are all zero. The expected number of vectors in the new
list is 2c. After the first step we have l/2 lists. We then perform the same procedure again,
reducing another c positions to zero until one single list remains, i.e, after t steps. In
the remaining list, we will finally examine whether there are vectors

∑l
j=1 gij that are

candidates to satisfy
∑l
j=1 vij = 0. In fact, they are quite easily detected, since if this is

the case then
∑l
j=1 gij =

∑l
j=1 e′ij , which has very low weight.

As in the BKW algorithm framework, one may use the same list for gi vectors, providing
we slightly increase the list size to roughly 3 · 2c [LF06]. Starting with a list L(0), we can
write up a sequence of updated lists L(0) → L(1) → L(2) · · · → L(t), where in each step we
reduce another c positions. This means that L(i) have vectors where the first i · c positions
are all zero. We formally describe this approach in Algorithm 2.

Algorithm 2: t-step Distinguisher
Input: A list L(0), with gi vectors, i = 1, ..., 3 · 2c (|L(0)| = 3 · 2c), parameters

t = 2l, k, cω.
1 for i = 1, ..., t do
2 L(i) = Combine(L(i−1)) ; // Combine list, cancelling c bits.

3 minweight = k · l;
4 for g′ : L(t); // Filtering low weight sums.
5 do
6 if HammingWt(g′) ≤ minweight then
7 minweight = HammingWt(g′)

8 if minweight ≤ cω then
Return: Firekite

9 else
Return: Random

Figure 1 and Figure 2 is a visualization of the Combine step for the (i − 1)-th list
L(i−1) and the filtering for the last list, respectively.

We need to consider complexity and memory of the algorithm. Let this computational
complexity measured in simple operations be denoted C and the used memory in bits
be denoted Mem. Its main parts are the L(i) = Combine(L(i−1)) steps in the loop. We
assume that the vectors in the list L(i−1) are organized in a hash table. We have that
the first (i− 1) · c positions are all zero in all vectors in L(i−1), and they are again sorted
in different buckets in the hash table according to the value of the next c positions, i.e.,
position (i− 1) · c to i · c− 1, for i = 1, ..., t. The Combine step now creates new vectors
for the new list L(i) by adding together all possible pairs that are stored in the same
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0 · · · 0

i · c
0 · · · 0, 1

· · ·

0 · · · x1 · · · xc

· · ·

0 · · · 1, 1

(i− 1) · c

0 · · · 0 x1 · · · xc

i · c

0 · · · 0 0 · · · 0

XOR pairwise

A vector in L(i−1)

2c buckets

A vector in L(i)

Figure 1: Combine for L(i−1).

t · c

0 · · · 0

0 · · · 0

L(t)

Filter for low weight
|.| ≤ cω

Figure 2: Filter L(t) with cω.

bucket. This will cancel out another c positions so that vectors in L(i) start with i · c zeros.
New vectors are created until the list L(i) has cardinality 3 · 2c and the sorting procedure
is repeated for the next iteration 3. The complexity of one Combine step is then 3 · 2c
bit-wise additions of vectors of length at most d and storing the result in memory. We
adopt Firekite’s designers’ notation by letting p be the word-length of a bit-wise addition
operation, i.e, the number of bits for which an XOR operation can be computed 4. We
write the cost of one d-bit XOR operation as (1 + bd/pc). This procedure is repeated t
times in Algorithm 2. The final check for low weight vectors actually does not need to
go through all buckets, but only those with a low weight. This cost is then much smaller
than the previous steps and can be disregarded. The complexity can thus be estimated as

C = t · (3 · 2c) · (1 + bd/pc).

The required memory Mem is the storage of two lists, altogether at most Mem = 2 ·3 ·2c ·d
in bits.

Clearly, there is a possibility to reduce memory and complexity by not storing the
full length d vector but only indices to the original vectors instead. This can become
useful especially when d grows large and significantly adds to the complexity and memory
required per step. In the next subsection, we investigate the success probability of the
distinguisher.

3We might loose some vectors with this condition. In our simulation, we also tested to use all
combinations in a bucket, hence resulting in a slightly larger list after each Combine step. One obvious
improvement is to ignore buckets with fewer than two vectors.

4For example, the Advance Vector Extension AVX-512 allows XOR to have 512 bits computed per
cycle.
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3.2 An analysis of the success probability of the proposed algorithm
Since the added noise in the

∑l
j=1 gij =

∑l
j=1 vijM

′ +
∑l
j=1 e′ij =

∑l
j=1 e′ij expression

becomes significant as l grows large, a low-weight sum from Firekite will become hard to
distinguish as l grows (from the random case). We hence fix the number of algorithmic
steps t to 2 or 3, corresponding to l = 4 and l = 8 in the proposed algorithm, respectively.
Also, a vector formed as

∑l
j=1 gij =

∑l
j=1 vijM

′ +
∑l
j=1 e′ij =

∑l
j=1 e′ij will be called

a zero sum vector. Furthermore, considering a sum of error vectors, e.g.,
∑l
j=1 e′ij , we

say that a position is error free mod 2 if
∑l
j=1 e′ij is zero in that position; we say that a

position is simply error free if all e′ij are zero in the position. Obviously, it can happens
that a double error event occurs, i.e., two ones in the same position and 1 + 1 = 0. We
shall look more closely into this particular scenario in later subsections.

3.2.1 The case l = 4

Starting with l = 4, we are interested in knowing if a zero sum vector can be found in the
final list. The expected number of zero sum vectors in the final list is denoted by N . We
can expect

N =
(

3 · 2c
4

)
· 2−m · 3 · 2−c · Pnf

such zero sum vectors, which can be roughly explained as follows: First, there are
(3·2c

4
)

possible combinations from the initial list. Among all such 4-sums, only a fraction 2−m
will correspond to a zero sum in vij , j = 1, · · · , 4. Second, there are 3 ways to choose
2 pairs as proceeded in Algorithm 2. We consider two particular pairs {gi1 ,gi2} and
{gi3 ,gi4} summing to a zero sum, we further condition gi1and gi2 to cancel in the first c
bits with probability 2−c (the other pair automatically follows). Finally, we assume that
e′i1 + e′i2 + e′i3 + e′i4 is zero in the first 2c positions, i.e, error free mod 2. This probability
is denoted Pnf (noise-free).

Pnf can be bounded by the probability that the first 2c positions are error free. For
each e′i1 , there are at most k bits set, uniformly distributed among n positions5, so
the probability of one error vector, being error free in the first 2c position, is roughly
((n− 2c)/n)k. Therefore, we have

Pnf ≥ ((n− 2c)/n)4k.

Lemma 1. When l = 4, we expect to have

N >

(
3 · 2c

4

)
· 2−m−c · 3 · ((n− 2c)/n)4k

zero sum vectors in the final list in Algorithm 2.

Then if we pick cw to be slightly larger than 4 · k̂, it is very likely that we will be
successful, assuming that the expected number of zero sum vectors in the final list is more
than one.

3.2.2 The case l = 8

Next, we investigate l = 8. Similar to the previous case, we can have an expression of the
expected zero sum vector N as:

5The expected weight of e′ from Firekite is smaller than k, but we can compute probabilities from
error assignment in e.
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N =
(

3 · 2c
8

)
· 2−m · 105 · 2−4c · Pnf.

The explanation is again as follows: The number of different sums of 8 vectors that can be
constructed is

(3·2c

8
)
. Among them, we expect a fraction of 2−m summing to the zero case.

There are 7 · 5 · 3 = 105 ways to form 4 pairs of 8 vectors. Consider the particular pairing
{gi1 ,gi2}, {gi3 ,gi4}, {gi5 ,gi6}, and {gi7 ,gi8}. A sum constructed from this pairing will
be in the final list of Algorithm 2 if gi1 +gi2 , gi3 +gi4 and gi5 +gi6 are all zero in the first c
positions. Then gi7 +gi8 has to be zero in the first c positions. The probability of this event
for each choice of fixed indices is 2−3c. Similarly to the 4-sum, now (gi1 +gi2) + (gi3 +gi4)
must sum to zero in the next c positions, with probability 2−c. Finally, we also need the
sum of error vectors to be error free mod 2 in 3c positions and the probability of this event
is again denoted by Pnf.

As before, Pnf can be bounded by the probability that no errors occur in the first 3c
positions. The probability of such a distribution for a single error vector is then roughly
((n− 3c)/n)k and for all eight of them we have

Pnf ≥ ((n− 3c)/n)8k.

Lemma 2. When l = 8, we expect to have

N >

(
3 · 2c

8

)
· 2−m−4c · 105 · ((n− 3c)/n)8k

zero sum vectors in the final list in Algorithm 2.

For l = 8 there are more errors in general, meaning that Pnf is much smaller compared
to l = 4. This gives a stronger motivation for examining other error patterns such as the
double errors canceling out. In particular, the sums from our algorithm can have 1 + 1 = 0
in the first 3c bits. More specifically, if two error vectors have a one in the same position,
their combination still survives the Combine step in Algorithm 2. For some parameters
proposed by Firekite’s designers, certain double error events are even more likely than
having no error at all in the first 3c positions and thus should not be neglected. Since the
error vectors are sparse (e.g., k = 16� n = 1024), if a double error occurs at a position, it
most likely happens only once, i.e, coming from one pair of gij ’s (or equivalently, e′ij ’s).
Having four ones in the same position is exceedingly rare. Therefore, we can safely say
that we only have non-repeating double errors. Let us look at the simple case where errors
from Firekite have exactly k bits set and we consider the estimation below for Pnf as
reasonable.6

Assume we have ε ≤ k double errors, and the probability is denoted by Pε. Then Pε
is equal the sum of all possible error patterns/combinations of gi vectors, provided they
result in ε collisions. One writes

ε =
∑
i,j>i

εij ,

where εij denotes the number of double errors between gi and gj . The total number of
errors in 3 · c positions of gi is εi =

∑
j εij . Hence

Pε =
∑
{(εij)}

Pε,{(εij)}.

where {(εij)} is an eligible error colliding pattern of gi vectors with the corresponding
probability Pε,{(εij)}.

6The expected weight of errors from Firekite can be smaller than k. Hence using binomial expressions,
while not entirely correct, gives a good approximation.
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Lemma 3. Let gi, i = 1, . . . , 8 be binary vectors. Then, the noise-free probability of∑8
i=1 gi in the first 3 · c bits is:

Pnf =
∑

ε=0,...,k
Pε =

∑
ε=0,...,k
{(εij)}

Pε,{(εij)}

where

Pε,{(εij)} ≈
8∏
i=1

(
k

εi

)(
3c
n

)εi
(
n− 3c
n

)k−εi

(
ε1
ε1i

)(
ε2−ε12
ε2i

)
. . .
(3c−ε1i−...−εi−1i

εi−ε1i−...εi−1i

)(
εi−1−ε1i−1−...εi−2i−1

εi−1i

)(3c
εi

) .

Proof. Given ε double errors and a fixed error colliding pattern {(εij)}. Without loss of
generality, we further assume that εi ≥ εj for i < j, i.e., g1 has the most errors in the first
3c bits. The probability of gi having εi errors in the first 3c bits is:(

k

εi

)(
3c
n

)εi
(
n− 3c
n

)k−εi

We also requires g2 to have ε12 colliding positions out of ε2. This probability is(
ε1
ε12

)(3c−ε12
ε2−ε12

)(3c
ε2

) .

Similarly, for vector g3, the colliding probability is(
ε1
ε13

)(
ε2−ε12
ε23

)(3c−ε13−ε23
ε3−ε13−ε23

)(3c
ε3

) .

Generalizing for gi and the lemma follows.

However, it is not practical to take into account all possible double error events. For
instance, if the expected numbers of 1’s in the first t · c positions for each error vector is
small, e.g., fewer than 2, multiple double errors occur with vanishing probability. It also
becomes increasingly hard to deduce all possible colliding patterns and the probabilities
for such occurrences are insignificant to, say one or two double error events; hence they do
not contribute substantially to our estimate. Moreover, an improvement in Pnf suggests
that we need less input for Algorithm 2. A reasonable approximation suffices for us to
deduce the necessary initial list size |L(0)| so that the expected number of zero sums is
N > 1.

To illustrate this argument, we consider the case where we have the relative Hamming
weight of the error vectors ei’s in the first 3 · c positions to be slightly larger than 2 (l = 8).
Hence, we focus only on the scenarios of up to 2 double errors in Figure 3.

(t · c)
· · · 1 · · ·

· · · 1 · · ·

(a) 1 double error

· · · 1 · · · 1 · · ·

· · · 1 · · · 1 · · ·

· · · 1 · · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1 · · ·

(b) 2 double errors

Figure 3: Illustration for the colliding patterns
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3.2.3 The random case

In the previous subsections, we saw that if we choose parameters accordingly, we can
expect to have zero sum vectors in the final list with non-trivial probability. We now need
to check whether low weight sums can stem from random vectors. In other words, the zero
sums must be easily distinguished from those coming from the random case.

Assume Algorithm 2 outputs "Firekite" for the random case. This means that it has
found a vector in the final list of weight at most cω. It is thus of interest to derive the
likelihood of such a vector in the random case. Recall ∆(g) as the Hamming weight of a
binary vector g, and let g[i] be the i-bit truncated g (first i positions). A vector in the
final list will have the first t · c positions all zero, but the remaining positions d − t · c
positions are just formed by XOR-ing l random bit values; thus, they are independent and
uniformly distributed on {0, 1}. The probability of such a vector having Hamming weight
at most cω is

Pr
[
∆(g) ≤ cω : g ∈ Zd2,g[t·c] = 0

]
=
∑cω

i=0
(
d−t·c
i

)
2d−t·c ,

and the expected number of vectors of weight at most cω, denoted by Nrandom, in the final
list is

Nrandom = 3 · 2c ·
∑cω

i=0
(
d−t·c
i

)
2d−t·c .

Information theoretically, we have an approximation7 as

Nrandom = 3·2c·
∑cω

i=0
(
d−t·c
i

)
2d−t·c ≈

cω∑
i=0

2−(1−H(i/(d−t·c)))(d−t·c)+c ≈ 2−(1−H(cω/(d−t·c)))(d−t·c)+c,

where H(p) = −p log(p) − (1 − p) log(1 − p) with p ∈ (0, 1). Therefore, if there exists a
low weight sum in the final list L(t) and Nrandom is vanishingly small, we have shown that
the Firekite’s output vectors are indeed not random.

4 Results for the distinguisher
In this section we give the results for our distinguishing attack as described in Section 3
when it is applied on the suggested parameter sets for Firekite.

4.1 Theoretical complexity estimation for the proposed parameters of
Firekite

We investigate the results for the proposed parameters case n = 1024,m = 216, d =
648, k = 16, where the claimed security level is 82. We justify our choices of the crucial
parameter c as follows. One can find the inspiration from Wagner l-tree algorithm [Wag02]
in Algorithm 2, namely, by consecutively canceling out c bits. Wagner argued that one
needs lists of size O(2

m
1+log l ) to have a solution in the exact l-list birthday problem. In our

algorithm, obviously we need a bit more8, i.e, O(2
m

1+log l +a) where a depends on Pnf. Note
that Pnf remains relatively the same if c ≈ m

1+log l . Therefore, we initially set c = m
1+log l ,

then raising until we get N > 1. Finally, we verify N > 1 again with Pnf estimated by
said c.

7We use 2n
(

n
i

)
≈ 2(1−H(i/n))n. The final approximation is due to overwhelming contribution of

2−(1−H(cω/(d−t·c)))(d−t·c)+c.
8Wagner showed that one can find α1+log l more solutions at the expense of α times more work, provided

α ≤ 2m/(log l·(1+log l)) [Wag02].
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1. For l = 4 we derive the following: We pick c = 76, cw = d4 · k̂e = 41, where k̂ = k·d
n .

Let P0 denote the probability of the first 2 · c position being error free. By simply

setting Pnf ≈ P0 =
(
n− 2 · c

n

)4k
≈ 2−14.83, we get N > 1.42 and

Nrandom ≈ 2−215.76.

2. For l = 8 we derive the following: Picking c = 62 and similarly, cω = dl · k · dne = 81,
we have Nrandom very close to zero.
As an example, we approximate Pnf by the sum of probabilities of no double errors
P0, one double errors P1, and two double errors P2 (ε = 0, 1, 2). As discussed that
many double errors are improbable, we focus on the most likely cases.

• If there is no double error, P0 =
(
n− 3c
n

)8k
≈ 2−37.017.

• Assume there is one double error occurring. For the colliding pair of vectors, the
probability of having exactly one 1 in the same position k2

3c
( 3c
n

)2 (n−3c
n

)2(k−1),
and there are

(8
2
)
ways to select a pair/colliding pattern {(εij)}, hence

P1 ≈
(

8
2

)
k2

3c

(
3c
n

)2(
n− 3c
n

)2(k−1)(
n− 3c
n

)6k
≈ 2−36.092.

• If there are two double errors, then there are two cases: the double errors
happen in one pair or two pairs (note that a vector in the first pair can appear
in the second pair). Let P21 and P22 denoted such events, respectively, then

P2 ≈ P21 + P22.

where

P21 ≈
(

8
2

)(k
2
)2(3c
2
) (3c

n

)4(
n− 3c
n

)2(k−2)(
n− 3c
n

)6k
.

and

P22 ≈
(

8
3

)(
k

2

)(
3c
n

)2(
n− 3c
n

)k−2
· 2 ·

[
k

3c

(
3c
n

)(
n− 3c
n

)(k−1)
]2(

n− 3c
n

)5k

+
(

8
2

)(
6
2

)(
k2

3c

)2(3c
n

)4(
n− 3c
n

)4(k−1)(
n− 3c
n

)4k
.

Therefore, P2 ≈ 2−35.86, and Pnf > P0 + P1 + P2 ≈ 2−34.65 ≈ 4P0 which gives
N > 2.7. The failure probability for this attack when cω = 81 can be indicated
by

Nrandom ≈ 2−90.23.

Table 2 shows our attack’s complexity and the corresponding Nrandom for a few sets of
parameters suggested by the Firekite’s designers. Recall that the theoretical complexity is

C = t · (3 · 2c) · (1 + bd/pc).

In their implementation, beside several optimization flags, they also use a compilation
flag -mavx2 that allows XOR operations to apply on 256 bits per cycle. Therefore, in our
complexity estimates, we set p = 256.
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Table 2: Our distinguishing attack complexity corresponding to a few selected sets of
parameters for 80-bit and 128-bit security of Firekite’s stream cipher.

Parameters Attacks(log) Nrandom(log)
m n k Security 4-sum 8-sum 4-sum 8-sum
216 1024 16 82.76 80.17 66.755 -215.76 -90.23
216 2048 32 82.76 81.17 67.755 -765.79 -465.74
216 16384 216 80.68 83.28 68.87 -9011.62 -6541.71
352 2048 32 129.07 130.16 106.75 -541.407 -275.94
352 4096 58 128.95 129.16 105.75 -1742.23 -1150.69
352 16384 228 128.93 131.257 107.84 -8510.19 -6023.39

With 4-sum attacks and for small parameters of 80-bit secured Firekite, we can only
refine Firekite’s designer measurements marginally. However, our 8-sum distinguisher
manages to break Firekite for all parameters, except for the smallest 128-bit secure instance,
which is n = 1024,m = 352, and k = 16. In particular, we can find a zero sum with the
cost 2107.75 but Nrandom ≈ 83. Therefore, we were unable to claim that the Firekite’s
output is not randomly distributed as the low weight sums found could easily come from
random vectors. The explanation is that d = n−m− k logn is not so large compared to
8 · k̂ in this case; hence, it is impossible to distinguish from the case of random vectors
gi. In general, 8-sum attack performs slightly better when the parameters n and k grows
(with the same factor, as suggested by Firekite’s designers). This is owing to the fact that
d grows bigger while m remains relatively unchanged; hence we have even smaller failure
probability and bigger error free probability Pnf. In fact, we need a smaller initial list (3 ·260

compared to 3 · 262) when attacking Firekite instance with n = 16384,m = 216, k = 216.
These theoretical results above can be improved; larger Firekite parameters make the

double error events more probable. For instance, attacking the parameters n = 16384,m =
352, k = 228 with 8-sum distinguisher, we find that two double errors (P2) are twice as
likely as no error (P0). Therefore, Pnf should be better approximated by taking, e.g., P3
and P4 into consideration.

4.2 Simulation results for smaller parameters
We verify our approach and formulas by performing simulations. As a toy example, we set
up a mini version of Firekite with small parameters and run Algorithm 2. Our parameters
are m = 52, n = 256, k = 4, b = 269, and r = 15. Recall that b is the secret key’s length
used to generate the first row of Firekite’s secret matrix M such that (Xb − 1)/(X − 1) is
irreducible in Z2[x] and r is the number of randomization rounds before Firekite generates
its actual output.

• For the 4-sum distinguisher, the filter weight is cω = 11. The parameter c is chosen
so that

N =
(

3 · 2c
4

)
· 2−m · 3 · 2−c · Pnf > 1.

One has P0 =
(
n− 2c
n

)4k
≈ 2−14.83. If we choose c = 18, i.e |L(0)| = 3 · 218, there

are, on average, less than 1 bit set of the error vectors in the first 2c bits. One
can safely assume Pnf ≈ P0, and it gives N ≈ 3.6. The simulation returns 1 ∼ 3
low weight vectors consistently. The discrepancy can be explained as follows: The
assumption that we can keep the list’s size |L(i)| = 3.2c is often violated as there are
more vectors after every Combine step owing to vectors being not evenly distributed
among buckets. Therefore, "good" combinations that present in zero sums might be
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discarded by chance. Keeping all combinations from Combine, we obtain more low
weight sums after filtering with cω (obviously, at the cost of higher complexity) and
the simulation is more consistent with the theoretical estimate. We now look at the
probability of 4 random vectors summing to such sums:

Pr
[
∆(g) ≤ cω = 11 : g ∈ L(2),g[2·18] = 0

]
=
∑cω

i=0
(
d−2·c
i

)
2d−2·c ≈ 2−83.757,

therefore,
Nrandom ≈ 2−64.172.

• For the 8-sum distinguisher, the filter weight is chosen to be cω = 21. Again, c must
fulfill

N =
(

3 · 2c
8

)
· 2−m−4c · 105 · Pnf > 1,

where Pnf ≈ P0 + P1 + P2 ≈ 2−7.67. Setting c = 14, meaning |L(0)| = 3 · 214,
suffices and gives N > 1.35. It needs to be clarified that in the 8-sum attack’s
implementation, the effect of keeping |L(i)| = 3 · 214 is more visible. In particular,
we might discard all "good combinations" when N is very close to 1. We adapt by
allowing |L(1)| and |L(2)| to be at most 2 · |L(0)|, then directly filter combinations
from |L(2)| with cω. Therefore, the complexity is slightly higher than the theoretical
estimate provided in the previous section. We suppose said negative impact can be
mitigated when c is large as the vectors in |L(i)| might be more evenly distributed
among buckets. The simulation returns around 1 low weight vector on average.
In the random case, the probability of having a vector having Hamming weight up
to cω is:

Pr
[
∆(g) ≤ cω = 21 : g ∈ L(3),g[3·14] = 0

]
=
∑cω

i=0
(
d−3·c
i

)
2d−3·c ≈ 2−50.162,

which yields
Nrandom ≈ 2−34.577.

5 A key-recovery attack on Firekite
In this section we show a possible way to turn the distinguishing attack into a key-recovery
attack with a bit higher complexity. We focus on the recovery of the secret matrix M′.
First, we recall that the secret matrix M in Firekite is constructed by choosing a part
of the bigger a b× b matrix Q as described in Section 2. We pick q1

U←− Zb2 and defined
rows in the matrix Q as qi = Xi−1q1, i = 1, ...b, i.e., by shifting the first column to the
left consecutively b − 1 times. The secret matrix M is obtained by dropping the last
b− n columns of Q and keeping only the first m rows. The secret key is only the random
b-bit vector q1 rather than a m× n matrix M. Let the unknown bits in q1 be written as
q1 = (k1, k2, . . . , kb).

More specifically, we can now see that if M = [mij ]m×n then every entry in the matrix
M corresponds to an unknown key bit, i.e.,

mij = kiij ,

where iij is a known index. As M′ is the first part of M, the same holds for M′.
Next, we note that M′ as a generator matrix is spanning a code C. But there are many

generator matrices spanning the same code. One particular case is when M′ is transformed
to a systematic generator matrix, that is a matrix of the form M′′ = [I | J], where I
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is the m × m identity matrix. We assume C = {vM′,v ∈ Zm2 } = {v[I | J],v ∈ Zm2 }.
Clearly, M′′ = SM′ for some m×m unknown matrix S. In this case, entries in J can no
longer be linearly expressed from unknown key bits. Therefore, we consider all entries in
J as unknown. There is an assumption here that the fist m columns of M′ are linearly
independent, which is adopted.

The key-recovery attack consists in running the aforementioned distinguisher, finding
several zero sum vectors, and then deducing M′. We first show how to derive the secret
key from such zero sum vectors if we assume that the first m positions are all error free
mod 2. Again, a zero sum vector fulfills

l∑
j=1

gij =
l∑

j=1
vijM

′ +
l∑

j=1
eij =

l∑
j=1

eij .

Therefore, finding a zero sum amounts to knowing the corresponding
∑l
j=1 eij . We now

consider a single gij vector. Its positions can be split in two parts, namely those for which
we know that they are (most likely) error free mod 2 (since the error vector is zero in this
position) and those for which we do not have knowledge of, since one of the l involved
vectors has an error. Note that the first t · c positions are error free, most other positions
are as well, but there will be roughly l · k̂ positions where at least one of the eight vectors
will have an error.

Assuming that the first m positions are all of the error free type, one can write

gij = vij [I | J] + eij .

We further have roughly d− t · c− l · k̂ additional positions to be error free. For each such
position, we can form a linear equation. Denote by Jq by the q-th column of J. Assume a
position q > m is error free. Then

gij (q) =
m∑
i=1

vij (i)Jq(i).

Here gij (q) denotes position q in vector gij , etc. Since gij (q) and vij are known, it gives a
linear equation in the unknowns of vector Jq. Collecting many such equations will enable
us to derive Jq and eventually, the full J matrix. However, this will not work in practice if
the probability of double errors as discussed above are not negligible. Hence, we need to
consider a more complicated approach where we try to detect columns with double errors.

Assuming now that we have found several zero sum vectors with the 8-sum distinguisher,
we put them in a matrix and examine its structure. Let the first seven vectors in the first
zero sum vector

∑l
j=1 gij be denoted g1,g2, . . . ,g7, the first seven vectors in the next zero

sum vector be denoted g8,g9, . . . ,g14, etc. We now form a matrix G consisting of P such
vectors of the form

G =



g1
...
g7
g8
...
gP


.

Now we will examine the columns and the related known error vector for the corre-
sponding zero sum vector. The first t · c columns are all without error, from the process.
For the remaining columns, we check each one of them to see if

∑l
j=1 gij is zero in this

position in all the zero sum vectors that we use. If this is the case, then the column is
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free of direct errors and we keep it. If it is not true, then we discard the column. The
probability that a single column will be kept is computed as in Subsection 3.2.2 After this
process, we have a new matrix G′ of length t · c+ U , where U is the number of columns
kept in the previous step. If t · c+ U > P > m there will be low-weight codewords in the
code spanned by G′. Namely, if P > m then we have linear combinations of rows that
correspond to summing to a zero codeword plus error terms. But from the previous step
we removed all columns for which there is a visible direct single error contribution, so the
only error contribution in the code comes from double errors. Each double error will give
either a 0 or a 1 as contribution in that position. But double errors are much less common.
If we assume that we have D double errors in the columns in G′, then we expect to have
codewords in the code spanned by G′ that have weight around D/2. Also, because we can
form 2P−m different combinations of rows that sum to zero in the underlying code, we
will have 2P−m low weight codewords of weight around D/2. Finally, every column in G′
can be found to contain a double error or not. If this position is zero in all (or almost all)
low-weight codewords, there is no double error. Otherwise, we detected a double error in
that position. From this information, it is possible to do a full recovery through additional
steps.

One problem is to find enough columns free of direct errors. When the length is small,
there will be very few columns free of direct errors and the length of G′ is not enough to
have low-weight codewords.

5.1 Explaining the key recovery attack on Firekite with n=16384
Consider the Firekite parameters choice m = 216, n = 16384 and k = 216. The attack
works as follows. First we run the 8-sum distinguisher to obtain zero sum vectors. In this
case, we need to have slight more than m/7, so we choose to find 32 zero sum vectors.
Using our previous formulas we choose c = 60 generating N ≈ 3.5 zero sum vectors
using the 8-sum distinguisher. Instead of repeating the distinguishing attacks 32 times or,
equivalently 25 more work, we can instead increase the initial list size to 3 · 261 to obtain
enough low-weight sum (N ≈ 41), with an affordable complexity of Cdistinguishing = 269.87.

We now consider a matrixG of dimension 32·7 consisting of the gi vectors as its rows and
we then remove columns with direct associated errors. In a zero sum vector, there are 216 ·8
errors inserted, so a positon is error free with probability (1−1/(16384−61·3))216·8 ≈ 0.899.
In our case, we want the position to be error free in all 32 zero sum vectors, which brings
the probability to about 0.033. Since d = 13144, we can expect to have about 432
columns error free. So we form the matrix G′ which is of dimension P = 224 and length
189 + 432 = 621. There will be 2224−216 = 28 codewords in the code spanned by G′ with
support corresponding to the double errors.

By computing the likelihood of double errors we find that a column in G′ is error free
with probability at most 0.99532 = 0.85. For instance, consider a simple case where there
is a non-repeating double error at position j-th of a zero sum, then the probability is

1−
(

8
2

)
·

(
1−

(
16383
16384

)216
)2

·
(

16383
16384

)216·6
≈ 0.995

One can expect 621 · 0.15 = 93 columns to have double errors. In conclusion, the
code spanned by G′ will contain 28 codewords where the weight is distributed around 47.
Finding low-weight codewords in a random binary linear code is a well-known problem that
has been studied extensively. One can use ISD algorithms to complete the task. For our
example, an improved Stern’s ISD algorithm 9 yields the bit-complexity estimate, denoted

9The estimate is obtained in a recent work by Andre Esser and Emanuele Bellini [EB21], where they
unify ISD-algorithm variants (Prange,Stern,MMT,BJMM) in a Nearest-Neighbor framework. They also
provided a complexity estimator for independent parameters.



20 Attack on the Firekite cipher

CISD, to be 244.6, which is small compared to the distinguishing step.
A random linear code with dimension 224 and length 621 will have an expected

minimum distance of about 100 according to the Varshamov-Gilbert bound, so the low
weight codewords would come from the observation above. Finally, generating say 16
such low weight codewords, we look for the positions where all the 16 of these codewords
are zero. This would be the case for more than 500 positions and in this way we have
identified 500 columns that are completely error free. Using a selection of them as the
information set of the code we can now easily recover remaining parts of the code M′. The
total complexity is therefore

C = Cdistinguishing + CISD ≈ 269.87 + 16 · 244.6 ≈ 269.87.

6 Discussion and Conclusions
Having seen how Firekite is vulnerable to our distinguisher, especially the 8-sum distin-
guishing attack, it is natural to ask how we can make Firekite and other similar ciphers
resilient to a generic birthday problem solving algorithm. From the result and performance
of our attacks, there are certain approaches one can consider. First, we observed that
Nrandom, or in other words, the failure probability inflates when the filtering weight cω
grows. That is to say, unless cω is very small compared to d, it is difficult to distinguish
Firekite’s zero sum vectors from those that could stem from random vectors gi. Therefore,
instantiating Firekite with larger k can be beneficial. Second, we have discussed that the
attack complexity depends on the parameter c which is solely determined by m (if we fix
l), the number of rows in M. Therefore, if the security level is close to m/(1 + log l), our
attack becomes infeasible. As a contribution to Firekite’s design criteria, we propose a few
modifications as follows.

1. For small Firekite’s parameters, one can increase k slightly which yields an LPN
instance with a higher noise rate; therefore more difficult to solve in general. In
our estimate, larger k suggests a drastic decrease in Pnf and an increase in Nrandom.
Clearly, it is now exceedingly unlikely to have no error in the first t · c bits and d
becomes smaller which makes it more difficult to distinguish the zero sum found
by Algorithm 2 from those stemming from the random case. As an example, by
setting k = 24 for the instance n = 1024,m = 216, our attack was rendered vain as
Nrandom is always larger than 1. This comes at the cost of decreasing the number
of bits encrypted per invocation; hence more instructions need to be executed per
bit. However, larger parameter instances of Firekite are less affected by this "fix" as
d becomes large relatively to k. For instance, our 8-sum attack still succeeds with
n = 16384,m = 216 despite raising k from its original k = 216 to k = 400. We
only need to slightly increase |L(0)| = 3 · 267 and we still obtain a good good failure
probability as Nrandom ≈ 2−2835. An extreme adjustment such as k = 600 gives
Firekite resistance to our attack. It is also worth noting that the likelihood of double
error events become much more prevalent with this modification and will affect the
proposed key recovery attack negatively.

2. Having discussed that the initial list L(0) size requirement depends directly on m, we
therefore can adapt Firekite with a bigger m, equivalently using more rows from the
matrix Q. It also effectively decreases d, hence a larger failure probability. However,
as in Table 1, the estimated security level (by the LF2 BKW algorithm) should grow
correspondingly. Therefore, our attacks still serve as better security measurements
for Firekite. Again, a larger matrix M worsens the Firekite performance in terms of
a more costly matrix-vector multiplications and fewer bits encrypted per invocation.
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Finally, we may discuss possible future improvements to the proposed attack. We
believe that there can be a possibility to gain some small amount in terms of decreased
complexity by smaller changes in the distinguishing algorithm. One idea could be to not
only allow sums of vectors that sum to zero in c positions, but also those that have weight
1 in these c positions. Still, it would not change the complexity significantly and with
modified parameters as suggested above the Firekite should meet the intended security
level.
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