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Abstract— Recent years have seen many advances in designing
secure messaging protocols, aiming at provably strong security
properties in theory or high efficiency for real-world practical
deployment. However, important trade-off areas of the design
space inbetween these elements have not yet been explored.

In this work we design the first provably secure protocol
that at the same time achieves (i) strong resilience against fine-
grained compromise, (ii) temporal privacy, and (iii) immediate
decryption with constant-size overhead, notably, in the post-
quantum (PQ) setting. Besides these main design goals, we
introduce a novel definition of offline deniability suitable for
our setting, and prove that our protocol meets it, notably when
combined with a PQ offline deniable initial key exchange.

1. Introduction

Driven by the global uptake of the Signal protocol, which
has been widely deployed in many messaging applications
worldwide by virtue of its high efficiency and strong security
guarantees, there have been many advances in the theory
and design of messaging protocols with desirable efficiency
and security properties during the last decade. We highlight
three of these properties.

(i) Immediate Decryption with Constant-Size Overhead: this
property, which is essential for practical messaging apps and
was formally studied by Alwen et al. [1], requires that the
recipients can decrypt every message at the time of arrival,
irrespective of the arrival of prior messages. Conventional
messaging solutions reuse a static encryption/decryption
key pair during every two-party conversation (aka. session).
However, the leakage of the private decryption keys indicates
the loss of privacy of all messages in the past and/or
future. Two basic security properties are formalized for
modern messaging protocols: forward secrecy (FS) and post-
compromise security (PCS). While FS requires the privacy
of past messages prior to the state expose, PCS enables the
parties to recover from state exposure. Common modern
messaging solutions obtain strong security guarantees by
making their encryption keys dependent in some way on all
previously sent messages. However, in realistic messaging

settings, messages can arrive out-of-order or may be lost
forever. If message n arrives before message n−1, it cannot
be decrypted until message n − 1 arrives; and if it never
arrives, communications become stuck. In theory, this can be
naively solved by appending all previous ciphertexts to the
next message sent. In practice, this naive solution is unusable,
as practical applications require constant-size overhead for
messages. The Signal protocol is a pioneering example in
the domain of messaging with relatively strong security and
immediate decryption with constant overhead.

(ii) Temporal Privacy: state compromise does not cause loss
of privacy of messages sent prior to a time interval and can be
healed after every time interval. Pijnenburg and Pöttering [2]
first observe that the immediate decryption restricts FS
by definition: an adversary that intercepts a message and
corrupts the receiver in the future can always compromise
this message. To solve this, [2] proposes a time-based BOOM
protocol that expires old keys and updates new keys after a
specific time interval. Intuitively, this solves the restricted
FS problem as adversaries cannot corrupt the expired keys
that have been erased from the state. However, every party
in BOOM obtains the partner’s latest public key only when
receiving the partner’s latest message. If two parties do not
frequently exchange messages, the restricted FS problem
remains. A trivial fix is to force every party to frequently
send “empty messages” for key updates. However, due to the
key-updatable framework underlying BOOM, this solution
potentially yields linearly growing bandwidth.

The original Signal protocol satisfies a similar temporal
privacy property but only for new conversations. Conceptu-
ally, the Signal protocol defines the initial Extended Triple-
Diffie-Hellman (X3DH) asynchronous key exchange [3] and
the Double Ratchet (DR) [4] for the subsequent message
exchanges. Note that the X3DH key establishment uses the
combination of public/private keys with different lifetimes,
i.e., long-term, medium-term, and one-time. Even if all previ-
ous keys are compromised, the privacy of new conversations
can still be recovered if the honest recipients upload their
new medium-term keys. Conversely, the privacy of all past
conversations under a certain medium-term key holds if that
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key is not leaked, even if other keys are leaked.

(iii) Resilience against Fine-Grained State Compromise:
the compromise of senders’ and recipients’ state does not
cause loss of privacy and authenticity, respectively. Mod-
ern secure messaging protocols like Signal [5] have been
fundamentally designed to be resilient against a weak form
of state compromise: the state is healed from compromise
after a back-and-forth interaction, i.e., PCS. However, Alwen
et al. [1] notice that such state compromise resilience of
Signal is very coarse rather than “fine-grained”: corruption
of the state of either party in a conversation will cause the
loss of both privacy and authenticity, since the privacy and
authenticity of messages depend on a symmetric secret that
is present in both parties’ states. It is however possible to
achieve the stronger notion of resilience against fine-grained
compromise by breaking this symmetry: in the literature, a
number of “optimal-secure” protocols [2], [6]–[9] provably
achieve such resilience against fine-grained compromise.

Challenges: Perhaps surprisingly, while each of the above
properties have been studied in isolation, there currently
exists no provably secure protocol that simultaneously offers
the above three desirable properties.

Alwen et al. [1] generalize DR of Signal to a new
SM protocol, based on which another TR protocol [10]
is proposed with slightly stronger security. However, the
original Signal, SM, and TR all satisfy immediate decryption
with constant-size overhead but lack the resilience against
fine-grained state compromise. To the best of our knowl-
edge, the BOOM protocol [2] is the only known protocol
that provides the temporal privacy. Moreover, similar to
other “optimal-secure” protocols [6]–[9] in the literature,
the BOOM protocol also provides a flavor of very strong
security guarantee (we call it “ID-optimal”) that includes the
resilience against fine-grained state compromise. However, all
these optimally secure protocols lack immediate decryption
with constant-size overhead. We summarize the situation for
related provably secure protocols in Figure 1.

Contributions: Our main contribution is the first provably
secure messaging protocol with immediate decryption and
constant-size overhead, temporal privacy, and resilience
against fine-grained state compromise. To this end, we intro-
duce a related new strong security notion called Extended-
Secure-Messaging (eSM). We show that the eSM notion
covers above strong properties and prove that our protocol
meets it, in particular, in the PQ setting.

Furthermore, to show that our protocol is a suitable PQ-
secure candidate for the DR in Signal, which is provably
offline deniable, we extend the offline deniability definition
for SPQR [11] (currently the only provably secure PQ-
asynchronous key establishment) to the multi-stage setting.
We prove that the combination of our eSM-secure protocol
and SPQR is offline deniable, making it the first full
messaging protocol that is provably offline deniable in the
PQ setting.

Overview: We give background and related work in Section 2.
We propose our new eSM syntax and security notion in

Protocols with
Temporal Privacy

Protocols with
Resilience against
Fine-Grained State

Compromise

Protocols with
Immediate Decryption

with Constant-size Overhead

SM [1], TR [10]†

This work

“ID-optimal” secure
BOOM [2]

“optimal” [6], [7],
“almost-optimal” [8]† ,

“sub-optimal” [9]

Figure 1: Comparison between this work and other existing proto-
cols with provable security properties w.r.t. (i) immediate decryption
with constant-size overhead, (ii) temporal privacy, and (iii) resilience
against fine-grained state compromise. All constructions in the
diagram (including this work) are PQ-compatible except for the
ones marked with †.

Section 3. We propose our concrete protocol that is provably
eSM-secure in Section 4, and show its offline-deniability
when combined with SPQR in Section 5.

We recall related cryptographic primitives in Appendix F.
We provide the full proofs of our theorems in the appendices.

2. Background and Related Work

2.1. Instant Messaging Protocols and Immediate
Decryption with Constant-Size Overhead

The Signal protocol provably offers strong security
guarantees, such as forward secrecy and post-compromise
security [5], [12], and offline deniability [13]. Moreover,
Signal has several features that are critical for large-scale real-
world deployment, such as message-loss resilience and imme-
diate decryption. Roughly speaking, message-loss resilience
and immediate decryption enable the receiver to decrypt a
legitimate message immediately after it is received, even
when some messages arrive out-of-order or are permanently
lost by the network. Notably, the Signal protocol provides
the above properties with constant-size overhead.

The core Signal protocol consists of two components: the
Extended Triple-Diffie-Hellman (X3DH) initial key exchange
and the Double Ratchet (DR) for subsequent message trans-
missions. Alwen et al. [1] introduce the notion of Secure
Messaging (SM), which is a syntax and associated security
notion that generalizes the security of Signal’s DR. Alwen
et al. also provide a concrete construction and prove that
it is SM-secure. This construction is not explicitly named
in [1]: in this work, we will refer to it as ACD19.

To the best of our knowledge, in addition to ACD19, the
only known provably secure protocol that provides immediate
decryption with constant-size overhead is the Triple Ratchet
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(TR) protocol [10]. However, the TR protocol is neither PQ-
secure nor resilient against the fine-grained state compromise.
We review the ACD19 and TR in details in Appendix A.
For the interested readers, we also compare ACD19 and TR
with our protocol in Appendix D.

2.2. Secure Messaging Protocols and Strong Security
Guarantees

Alwen et al. [1] observe that the ACD19 protocol lacks
resilience against fine-grained state compromise, because
both encryption and decryption of a message in ACD19
uses the shared state of both parties in a conversation. The
corruption of the shared state of either party immediately
compromises the subsequent messages, no matter whether
the corrupted party is the sender or receiver. To reduce the
impact of state exposure, the authors also describe a second
security notion for secure messaging, called PKSM, and a
corresponding construction, which we call ACD19-PK. At a
very high level, ACD19-PK extends ACD19 by encrypt-then-
signing the output of the original SM protocol using a public
key encryption (PKE) and a digital signature (DS). Intuitively,
ACD19-PK reduces the impact of state compromise, since
the adversary can neither recover the output of SM protocol
(and further the real message) from the PKE ciphertext
without knowing the recipient’s decryption key, nor forge a
valid ciphertext without knowing the sender’s signing key.
However, the main focus of [1] are SM and ACD19: for
ACD19-PK, neither a formal security model nor a concrete
proof is given; thus, its security is essentially conjectured.

In a parallel line of research, several messaging protocols
have been proposed to meet various strong or even “opti-
mal” security [2], [6]–[9], [14], [15]. They follow different
ratcheting frameworks aiming at various flavors of security,
notably, all of which capture resilience against fine-grained
compromise. Unfortunately, none of them provide immediate
decryption with constant-size overhead, due to their key-
update or state-update structures.

In particular, [2] observes that a protocol satisfying
immediate decryption can only achieve a weak form of
forward secrecy: an adversary that intercepts a message and
corrupts the receiver in the future can always compromise this
message. To solve this, [2] proposes a novel strong security
model, which we call “ID-optimal”, and a time-based BOOM
protocol that periodically expires old keys and updates new
keys. By this, neither the receiver nor an adversary who
corrupts the receiver’s state can decrypt a message that was
encrypted under an expired key. The efficiency and security
can be balanced by picking a reasonable time interval for
key update and expiration. However, we find that the BOOM
protocol has two constraints: On the one hand, every party
in BOOM obtains the partner’s latest public key only at the
time of receiving the partner’s latest message. If the message
exchange between two parties are not frequent, then the
restricted forward secrecy problem remains. On the other
hand, the BOOM protocol also makes use of a complicated
key-update mechanism and therefore provides immediate
decryption with linearly growing bandwidth.

We review protocols that meet various “optimal” security
in Appendix B.

2.3. Offline Deniability and Post-Quantum Security

The property of offline deniability prevents a judge from
deciding whether an honest user has participated in a conver-
sation even when other participants try to frame them. The
formal definition of offline deniability originates from [16]
and [13] in the simulation-based models respectively for
the authenticated key exchange (AKE) and full messaging
protocols. These works also prove that several well-known
classical AKE constructions, such as MQV, HMQV, 3DH,
and X3DH, and the full Signal protocol are offline deniable.

Constructing PQ secure asynchronous key establishments
is surprisingly complicated. There are a number of key
establishment protocols [17]–[20] that are potential candi-
dates for PQ security. However, all of their security proofs
rely on either the random oracle model or novel tailored
assumptions, which are still not well-studied in the PQ
setting. Hashimoto et al. [21] propose the first PQ secure key
establishment but unfortunately have to assume that every
party can pre-upload inexhaustible one-time keys for full
asynchronicity. A subsequent work by Brendel et al. [11]
proposed a new PQ asynchronous deniable authenticated
key exchange (DAKE) protocol, called SPQR, and a new
game-based offline deniability notion. Brendel et al. prove
that SPQR is offline deniable in the game-based paradigm
against quantum (semi-honest) adversaries.

To the best of our knowledge, SPQR is the only known
PQ secure key establishment with full asynchronicity. Al-
though it is straightforward that the combination of SPQR
and ACD19 can form a PQ-secure full messaging protocol
with promising privacy and authenticity, it is still an open
question which flavors of offline deniability can be provably
obtained for the combined protocols in the PQ setting.

3. Extended Secure Messaging

In this section, we first define our new extended secure
messaging (eSM) scheme in Section 3.1, followed by the
expected security properties in Section 3.2. Then, we define
an associated strong security model (eSM) in Section 3.3.

Notation: We assume that each algorithm A has a security
parameter λ and a public parameter pp as implicit inputs. In
this paper, all algorithms are executed in polynomial time.
Let (·) and {·} respectively denote an ordered tuple and an
unordered set. For any positive integer n, let [n] denote the
set of integers from 1 to n, i.e., [n] = {1, ..., n}. We write
y ← A(x) for running a deterministic algorithm A with input
x and assigning the output to y. We write y

$← A(x; r) for
a probabilistic algorithm A using randomness r, which is
sometimes omitted when it is irrelevant. We write J·K for a
boolean statement that is either true (denoted by 1) or false
(denoted by 0). We define an event symbol ⊥ that does not
belong to any set in this paper. Let n++ be a shorthand for
n ← n + 1. We use to denote a value that is irrelevant.
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We use D to denote a dictionary that stores values for each
index and D[·]← ⊥ for the dictionary initialization. In this
paper, we use req to indicate that a (following) condition is
required to be true. If the following condition is false, then
the algorithm or oracle containing this keyword is exited
and all actions in this invocation are undone.

3.1. Syntax

Definition 1. Let ISS denote the space of the initial shared
secrets between two parties. An extended secure messaging
(eSM) scheme consists of six algorithms eSM = (IdKGen,
PreKGen, eInit-A, eInit-B, eSend, eRcv), where

• (ipk , ik)
$← IdKGen() outputs an long-term identity public-

private key pair,
• (prepk , prek)

$← PreKGen() outputs a medium-term
public-private pre-key pair,

• stA ← eInit-A(iss) (resp. stB ← eInit-B(iss)) inputs an
initial shared secret iss ∈ ISS and outputs a session state,

• (st′, c)
$← eSend(st, ipk , prepk ,m) inputs a state st, a

long-term identity public key ipk , a medium-term public
prekey prepk , and a message m , and outputs a new state
and a ciphertext, and

• (st′, t, i,m) ← eRcv(st, ik , prek , c) inputs a state st, a
long-term identity private key ik , a medium-term private
key prek , and a ciphertext c, and outputs a new state, an
epoch number, a message index, and a message.

Our eSM re-uses two important concepts: epoch and
message index that originate in [1].

Epoch. The epoch t is used to describe how many back-
and-forth interactions in a two-party communication channel
(aka. session) have been processed. Let tA and tB respectively
denote the epoch counters of parties A and B in a session.
Both epoch counters start from 0. If either party P ∈ {A, B}
switches the actions, i.e., from sending to receiving or
from receiving to sending messages, then the counter tP
is incremented by 1. In this paper, we use even epochs
(tA, tB = 0, 2, 4, ...) to denote the scenario where B acts as
the sender and A acts as the receiver, and odd epochs in
reverse. In each epoch, the sender can send arbitrarily many
messages in a sequence. The difference between the two
counters tA and tB is never greater than 1, i.e., |tA − tB| ≤ 1.

Message Indices. The message index i identifies the index
of a message in each epoch. Notably, the epoch number t
and message index i output by eRcv indicate the position of
the decrypted message m during the communication. The
receiver is expected to recover the position of each decrypted
message even if it is delivered out of order.

3.2. Strong Security Properties

The eSM schemes aim at following strong security
properties. First, we expect our eSM to meet well-studied
basic properties below:

Alice Bob
tA = 0 tB = 0

m1 with (t, i) = (0, 1)

m2 with (t, i) = (0, 2)

m3 with (t, i) = (0, 3)

m4 with (t, i) = (1, 1)
tA = 1 tB = 1

Figure 2: An example session between Alice and Bob. The session
starts with tA = tB = 0, i.e., Bob is the sender. When Bob
continuously sends messages, the message index grows from 1
for m1 to 3 for m3. When Alice switches the role from receiver
to sender, the epoch increases to tA = tB = 1.

1) Correctness: The messages exchanged between two
parties are recovered in the correct order, if no adversary
manipulates the underlying transmissions.

2) Immediate decryption (ID) and message-loss resilience
(MLR): Messages must be decrypted to the correct
position as soon as they arrive; the loss of some messages
does not prevent subsequent interaction.

3) Forward secrecy (FS): All messages that have been sent
and received prior to a session state compromise of either
party (or both) remain secure to an adversary.

4) Post-compromise security (PCS): The parties can re-
cover from session state compromise (assuming the access
to fresh randomness) when the adversary is passive.

Second, our eSM targets the following advanced security
against fine-grained compromise.
5) Strong authenticity: The adversary cannot modify the

messages in transmission or inject new ones, unless the
sender’s session state is compromised.

6) Strong privacy: If both parties’ states are uncompromised,
the adversary obtains no information about the messages
sent. Assuming both parties have access to fresh ran-
domness, strong privacy also holds unless the receiver’s
session state, private identity key, and corresponding
private pre-key all are compromised.

7) Randomness leakage/failures: While both parties’ ses-
sion states are uncompromised, all above security prop-
erties (in particular, including strong authenticity and
strong privacy) except PCS hold even if the adversary
completely controls the parties’ local randomness. That
is, good randomness is only required for PCS.

Finally, our eSM also pursues two new security properties:
8) State compromise/failures: While the sender’s random-

ness quality is good and the receiver’s private identity
key or pre-key is not leaked, the privacy of the messages
holds even if both parties’ session states are corrupted.

9) Periodic privacy recovery (PPR): If the adversary is pas-
sive (i.e., does not inject corrupted messages), the message
privacy recovers from the compromise of both parties’ all
private information after a time period (assuming each
has access to fresh randomness).
We stress that the first new property state compro-

mise/failures has a particular impact for the secure messaging
after an insecure key establishment. For instance, consider
that the party B initializes a conversation with A using X3DH
in Signal. The leakage of the sender B’s private identity key
and ephemeral randomness in X3DH implies the compromise
of the initial shared secret and further both parties’ session
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states in DR. If B continuously sends messages to A without
receiving a reply in Signal, all messages in the sequence
are leaked, since the adversary can use A’s session state to
decrypt the ciphertexts. An eSM protocol with the “state
compromise/failures” property is able to prevent such attack.

Moreover, the second new property PPR complements
strong privacy. Assuming the secure randomness, the strong
privacy ensures the secrecy of past messages if the corre-
sponding private pre-keys are not leaked, while PPR ensures
the secrecy of future messages if new pre-key pairs are
randomly sampled and honestly delivered to the partner.

Remark 1. The relation between PPR and PCS depends
on what we take as the reference point for PCS. The term

“Post Compromise Security” was introduced in 2016 in [22],
which defines both a broader informal security guarantee
as well as a specific instantiation. PPR can be seen as a
subclass of the general initial PCS notion from [22].

Over time, follow-up works have developed more fine-
grained notions of PCS, notably instantiated for specific
protocol classes. One such example is [1], whose target
protocol class closely matches ours. Compared to the PCS
instantiation in [1], PPR can be regarded as an orthogonal
class of privacy that is related to time (aka. temporal privacy).
Although both the PCS instance from [1] and PPR provide
healing after compromise and might look similar, they differ
in the following three aspects.

1) Different Healing Objects: While the PCS in-
stance from [1] heals the session state (e.g., encryp-
tion/decryption keys), and might further impact on other
security guarantees (e.g. privacy, authenticity, etc.),
PPR heals the (strong) privacy, which is a concrete
security guarantee.

2) Different Healing Approaches: The PCS instance
from [1] holds only when the session states are healed.
Note that (strong) privacy is expected to hold “unless
the receiver’s session state, private identity key, and cor-
responding private pre-key all are compromised”. Thus,
PPR might hold when some private materials other
than session states are recovered, i.e., is independent
of their instance of PCS.

3.3. Security Model

The Extended Secure Messaging (eSM) security game
ExpeSMΠ,△eSM

for an eSM scheme Π with respect to a parameter
△eSM is depicted in Figure 3.

Notation. Our model considers the communication between
two distinct parties A and B. For a party P ∈ {A, B}, we
use ¬P to denote the partner, i.e., {P,¬P} = {A, B}. For an
element x and a set X , we write X

+← x for adding x in X ,
i.e., X +← x⇔ X ← X ∪ {x}. Similarly, we write X

−← x

for removing x from X , i.e., X −← x ⇔ X ← X \ {x}.
For a set of tuples X and a variable y, we use X(y) to
denote the subset of X , where each tuple x includes y, i.e.,
X(y) = {x ∈ X | y ∈ x}. We say y ∈ X if there exists a
tuple x ∈ X such that y ∈ x, i.e., y ∈ X ⇔ X(y) ̸= ∅.

Trust Model: We assume an authenticated channel between
each party and the server for key-update and -fetch and
therefore no forgery of the public identity keys and pre-
keys. This is the common treatment in the security analyses
in this domain, e.g. [5], the server is considered to be
a bulletin board, where each party can upload their own
and fetch other parties’ honest public keys. For practical
deployments, we require that the key-upload and key-fetch
processes between each party and sever use fixed bandwidth
and are only executed periodically. We omit the discussion
on the frequency of the pre-keys’ upload and retrieve1.

We assume that all session-specific data is stored at the
same security level in the state, but the non-session-specific
data that can be potentially shared among multiple sessions
(i.e., identity keys and pre-keys) might be stored differently.
Thus, corruption of session-specific state does not imply
leakage of the private identity key and pre-key and vice
versa. In fact, as we will show later, an eSM scheme can
achieve additional privacy guarantees if the private identity
keys (or pre-keys) can be stored in the secure environment
on the device, such as a Hardware Security Module (HSM).

Moreover, we also require the eSM scheme Π to be
natural, which is first defined for SM in [1, Definition 7].

Definition 2. We say an eSM scheme is natural, if the
following holds:

1) the receiver state remains unchanged, if the message
output by eRcv is m = ⊥,

2) the values (t, i) output by eRcv can be efficiently
computed from c,

3) if eRcv has already accepted an ciphertext correspond-
ing to the position (t, i), the next ciphertext correspond-
ing to the same position must be rejected,

4) a party always rejects ciphertexts corresponding to an
epoch in which the party does not act as receiver, and

5) if a party P accepts a ciphertext corresponding to an
epoch t, then t ≤ tP + 1.

Experiment Variables and Predicates. The security experi-
ment ExpeSMΠ,△eSM

includes the following global variables:
• safeidKA , safeidKB ∈ {true, false}: the boolean values indicat-

ing whether the private identity keys are revealed.
• Lrev

A ,Lrev
B : the lists that record the indices of the pre-keys

that are revealed.
• Lcor

A ,Lcor
B : the lists that record the indices of the epochs

where the session states are corrupted.
• nA,nB: the pre-key counters.
• tA, tB: the epoch counters.
• iA, iB: the message index counters.
• trans: a set that records all ciphertexts, which are honestly

encrypted but undelivered yet, and their related information.
See the helper function record for more details.

• allTrans: a set that records all honest encrypted ciphertexts
(including both the delivered and undelivered ones), and
their related information.

1. As an example, we can consider a scenario where every party is only
allowed to upload and fetch public keys at 12am every day.
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• chall: a set that records all challenge ciphertexts, which are
honestly encrypted but undelivered yet, and their related
information.

• allChall: a set that records all challenge ciphertexts (in-
cluding both the delivered and undelivered ones), and their
related information.

• comp: a set that records all compromised ciphertexts,
which are honestly encrypted but not delivered yet, and
their related information. A compromised ciphertext means
that the adversary can trivially forge a new ciphertext at
the same position.

• wincorr, winauth, winpriv ∈ {true, false}: the winning predi-
cate that indicates whether the adversary wins.

• b ∈ {0, 1}: the challenge bit.
Moreover, the experiment ExpeSMΠ,△eSM

also includes four
predicates as shown in Figure 3.
• safepreKP (ind): indicating whether ind-th pre-key of party P

is leaked. We define it true if ind is not included in Lrev
P .

• safe-stP(t): indicating whether the state of party P at epoch
t is expected to be safe. This predicate simplifies the
definition of safe-chP and safe-injP predicates below. We
define it true if none of epochs from t to (t −△eSM + 1)
is included in the list Lcor

P .
• safe-chP(flag, t, ind): indicating whether the privacy of

the message sent by P is expected to hold, under the
randomness quality flag ∈ {good, bad}, the sending epoch
t, and the receiver ¬P’s pre-key index ind. We define it
to be true if any of the following conditions hold:

(a) both parties’ states are safe at epoch t,
(b) the partner ¬P’s state is safe and the randomness quality

is flag = good,
(c) the partner ¬P’s identity key is safe and the randomness

quality is flag = good, or
(d) the partner ¬P’s ind-th pre-key is safe and the random-

ness quality is flag = good.
• safe-injP(t): indicating whether the authenticity at the party
P’s epoch t (i.e., P is expected not to accept a forged
ciphertext corresponding to epoch t) holds. We define it
to be true if the partner’s state is safe at epoch t.

Helper Functions. To simplify the security experiment
definition, we use five helper functions.
• sam-if -nec(r): If r ̸= ⊥, this function outputs (r, bad)

indicating that the randomness is adversary-controlled.
Otherwise, a new random string r is sampled from the
space R2 and is output together with a flag good.

• record(P, type, flag, ind,m, c): A record rec, which in-
cludes the party’s identity P, the partner’s pre-key index ind,
the randomness flag flag, the epoch counter tP, the message
index counter iP, the message m , and the ciphertext c, is
added into the transcript sets trans and allTrans. If the
safe-injP(tP) predicate is false, then this record is also
added into the compromise set comp. If c is a challenge
ciphertext, indicated by whether type = chall, the record
rec is also added into the challenge sets chall and allChall.

2. The randomness space R is not specific and depends on the concrete
functions and algorithms. Here, we use R only for simplicity.

• ep-mgmt(P, flag, ind): When the party P enters a new
epoch as the sender upon the partner’s ind-th pre-key, the
new epoch number is added to the state corruption list Lcor

P

if the safe challenge predicate is false. Then, the epoch
counter tP is incremented by 1 and the message index
counter i is set to 0.

• delete(t, i): deletes all records that includes (t, i) from
the sets trans, chall, and comp.

• corruption-update(): checks all records in the allTrans
list whether the safe challenge predicates for the first
messages in each epoch (still) hold or not. If it does not
hold, then adds the epoch into the corruption list.

Notably, the helper function corruption-update is in-
voked in the key-revealing and state-corruption oracles to
capture the impact of the leakage of any secret on the secrecy
of the (past) session states.

Experiment Execution and Oracles. At the beginning of the
ExpeSMΠ,△eSM

security model, the safe predicates for identity
keys, the reveal and corruption lists for pre-keys and states,
and the pre-key counters are initialized. Then, the adversary
is given access to O1 := {NEWIDKEY-A, NEWIDKEY-B,
NEWPREKEY-A, NEWPREKEY-B} oracles for generating
both parties’ identity keys and at least one pre-keys. A
random initial shared secret iss is sampled from the space
ISS. Then, the session states stA and stB are respectively
initialized by eInit-A and eInit-B of eSM. After initializing
the epoch and message index counters, the sets, and the
winning predicates wincorr and winauth, a challenge bit b
is randomly sampled. The adversary is given access to all
eighteen oracles and terminates the experiment by outputting
a bit b′ for evaluating the winning predicate winpriv. Finally,
the experiment outputs all these three winning predicates.
In Figure 3, we only depict nine oracles with suffix -A for
party A. The oracles for party B are defined analogously.
Oracle Category 1: Identity and pre-keys. The first eight
oracles are related to the generation and the leakage of
identity keys and pre-keys.
• NEWIDKEY-A(r), NEWIDKEY-B(r): Both oracles can

be queried at most once. The input random string, which
is sampled when necessary, is used to produce a public-
private identity key pair by using IdKGen(r). The corre-
sponding safety flags are set according to whether the
input r = ⊥ or not. The public key is returned.

• NEWPREKEY-A(r), NEWPREKEY-B(r): Similar to the
oracles above, a public-private pre-key pair is generated.
The corresponding pre-key index is added into the list Lrev

A

or Lrev
B if the input r ̸= ⊥. The public key is returned.

• REVIDKEY-A, REVIDKEY-B: These oracles simulate the
reveal of the identity private key of a party P ∈ {A, B}.
The corresponding safe predicate is set to false. Then, the
corruption-update helper function is invoked to update
whether the current and past states are still secure or not.
We require that this oracle invocation does not cause the
change of safe challenge predicate for any record in the
all-challenge set allChall. Otherwise, this oracle undoes all
actions during this invocation and exits. This step prevents
the adversary from distinguishing the challenge bit by
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trivially revealing enough information to decrypt the past
challenge ciphertexts.
Then, all records in the transcript set trans, whose safe
injection predicate turns to false, are added into the
compromise set comp. This step prevents the adversary
from making a trivial forgery by using the information
leaked by the reveal of the identity key.
Finally, the corresponding private identity key is returned.

• REVPREKEY-A(n), REVPREKEY-B(n): These oracles
simulate the reveal of the n-th private pre-key of a party P.
The input n must indicate a valid prekey counter, i.e., n ≤
nP, and is added into the reveal list Lrev

P . The rest of these
oracles are same as above: (1) runs corruption-update,
(2) aborts the oracles if the safe challenge predicates of
any record in the allChall set is violated, and (3) adds all
records in the trans set, whose safe injection predicate is
violated, into the set comp.
Finally, the corresponding private pre-key is returned.

Oracle Category 2: State Corruption. The following two
oracles allow adversaries to corrupt session states.
• CORRUPT-A, CORRUPT-B: These oracles simulate the

corruption of party P’s session states. First, the current
epoch counter is added to the state corruption list Lcor

P ,
followed running corruption-update to update whether
this corruption impacts the safety of other session states.
Next, we require that either the set chall does not include
the record produced by the partner ¬P, or such a record
exists but (1) the flag in the record is good and (2) P’s iden-
tity key or P’s pre-key corresponding to the pre-key index
in the record is safe. If the requirement is not satisfied, this
oracle undoes all actions in this invocation and exits. This
requirement prevents the adversary from distinguishing
the challenge bit by trivially revealing enough information
to decrypt the past challenge ciphertexts.
After that, we add all records rec ∈ trans, which are
produced by ¬P at an unsafe epoch t, into the compromise
set comp. We also add all records rec ∈ trans, which are
produced by P at current epoch if the partner’s session at
current epoch is not safe. This requirement prevents the
adversary from trivially breaking the strong authenticity by
corrupting the sender’s state and forging the corresponding
undelivered messages.
Finally, the session states are returned.

Oracle Category 3: Message Transmission. The final
eight oracles simulate the honest message encryptions and
the adversary’s capability of manipulating the message
transmission.
• TRANSMIT-A(ind,m, r), TRANSMIT-B(ind,m, r): These

transmission oracles simulate the real sending execution.
The input index ind must not exceed the partner’s current
pre-key counter. The random string r is sampled when
necessary. The epoch information is updated if entering
a new epoch. After incrementing the message index, the
eSend algorithm is executed using the controlled or freshly
sampled randomness r to transmit the message m upon the
partner’s identity key and ind-th pre-key. After recording
the transcript, the ciphertext is returned.

• CHALLENGE-A(ind,m0,m1, r), CHALLENGE-B(ind,

m0,m1, r): These challenge oracles simulate the sending
execution, where the adversary tries to distinguish the
encrypted message m0 or m1. These oracles are defined
similar to the execution of transmission oracles with input
(ind,mb, r) for the challenge bit b ∈ {0, 1} sampled at the
beginning of the experiment. The only difference is that
the safety predicate safe-chP(flag, tP, ind) for P ∈ {A, B}
must hold and that the input messages m0 and m1 must
have the same length.

• DELIVER-A(ind, c), DELIVER-B(ind, c): These delivery
oracles simulate the receiving execution of a ciphertext
generated by the honest party. This means, there must
exist a record (P, ind, t, i,m, c) in the transcript set trans.
The eRcv is invoked. If the output epoch t′, message index
i′, and decrypted message m ′ does not match the one in
the record, the adversary wins via the predicate wincorr.
If the output is in the challenge set chall, the decrypted
message m ′ is set to ⊥ to prevent the adversary from
trivially distinguishing the challenge bit. After updating
the epoch counter, the record is deleted from transcript
set, challenge set, and compromise set. This in particular
means that the ciphertext c is considered as a forgery after
this delivery. Finally, the output epoch t′, the message
index i′, and the decrypted message m ′ is are returned.

• INJECT-A(ind, c), INJECT-B(ind, c): These oracles simu-
late a party P’s receiving execution of a ciphertext forged
by the adversary. The input ind ≤ nP specifies a pre-key for
running eRcv and the input c must be not produced by the
partner in the transcript set. We require that eRcv is invoked
under the condition that the safety predicates safe-injP(tA)
and safe-injP(tB) both are true. If the decrypted message
is not ⊥ and the ciphertext at the same position is not
compromised, the adversary wins via the winauth predicate.
The rest of this oracle is identical to the delivery oracles.

Definition 3. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-
eSM secure if the below defined advantage for all adversaries
against the ExpeSMΠ,△eSM

experiment in Figure 3 in time t is
bounded by

AdveSMΠ,△eSM
(A) := max

(
Pr[ExpeSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)
≤ ϵ,

where q, qep, and qM respectively denote the maximal number
of queries A can make, of epochs, and of each party’s pre-
keys in the ExpeSMΠ,△eSM

experiment.

Conclusion. Finally, we explain how our eSM security
captures all security properties listed in Section 3.2.
• Correctness: No correctness means the encrypted message

cannot be recovered correctly and causes the winning event
via Line 48.

• Immediate decryption and message-loss resilience: No
immediate decryption or message-loss resilience means
that some messages cannot be recovered to the correct
position from the delivered ciphertext when the adversary
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ExpeSMΠ,△eSM
(A):

1 safeidKA , safeidKB ,LrevA ,LrevB ,LcorA ,LcorB ← ⊥
2 (nA,nB)← (0, 0)
3 ()← AO1 ()
4 req ⊥ /∈ {safeidKA , safeidKB }
5 req nA,nB ≥ 1

6 iss
$← ISS

7 stA ← eInit-A(iss), stB ← eInit-B(iss)
8 (tA, tB), (iA, iB)← (0, 0)
9 trans, chall, comp, allChall, allTrans← ∅

10 b
$← {0, 1}, wincorr,winauth ← false

11 b′
$← AO2 ()

12 winpriv ← Jb = b′K
13 return (wincorr,winauth,winpriv)

NEWIDKEY-A(r):
14 req safeidKA = ⊥
15 (r, flag)

$← sam-if -nec(r)

16 (ipkA, ikA)
$← IdKGen(r)

17 safeidKA ← Jflag = goodK
18 return ipkA
REVIDKEY-A:
19 safeidKA ← false
20 corruption-update()
21 foreach (P, ind, flag, t, i,m, c) ∈ allChall
22 req safe-chP(flag, t, ind)
23 foreach (P, t) ∈ trans and ¬safe-inj¬P(t)

24 comp
+← trans(P, t)

25 return ikA

NEWPREKEY-A(r):
26 nA++

27 (r, flag)
$← sam-if -nec(r)

28 (prepknA
A , preknA

A )
$← PreKGen(r)

29 if flag = bad : LrevA

+← nA
30 return prepkA
REVPREKEY-A(n):
31 req n ≤ nA

32 LrevA

+← n
33 corruption-update()
34 foreach (P, ind, flag, t, i,m, c) ∈ allChall
35 req safe-chP(flag, t, ind)
36 foreach (P, t) ∈ trans and ¬safe-inj¬P(t)

37 comp
+← trans(P, t)

38 return prekn
A

TRANSMIT-A(ind,m, r):
39 req ind ≤ nB

40 (r, flag)
$← sam-if -nec(r)

41 ep-mgmt(A, flag, ind)
42 iA++

43 (stA, c)
$← eSend(stA, ipkB, prepk

ind
B ,m; r)

44 record(A, norm, flag, ind,m, c)
45 return c

DELIVER-A(c):
46 req (B, ind, t, i,m, c) ∈ trans for some ind, t, i,m
47 (stA, t′, i′,m′)← eRcv(stA, ikA, prek

ind
A , c)

48 if (t′, i′,m′) ̸= (t, i,m): wincorr ← true
49 if (t, i,m) ∈ chall: m′ ← ⊥
50 tA ← max(tA, t′)
51 delete(t, i)
52 return (t′, i′,m′)

INJECT-A(ind, c):
53 req (B, c) /∈ trans and ind ≤ nA
54 req safe-injA(tB) and safe-injA(tA)
55 (stA, t′, i′,m′)← eRcv(stA, ikA, prek

ind
A , c)

56 if m′ ̸= ⊥ and (B, t′, i′) /∈ comp
57 winauth ← true
58 tA ← max(tA, t′)
59 delete(t′, i′)
60 return (t′, i′,m′)

CHALLENGE-A(ind,m0,m1, r):
61 req ind ≤ nB

62 (r, flag)
$← sam-if -nec(r)

63 ep-mgmt(A, flag, ind)
64 req safe-chA(flag, tA, ind) and |m0| = |m1|
65 iA++

66 (stA, c)
$← eSend(stA, ipkB, prepk

ind
B ,mb; r)

67 record(A, chall, flag, ind,mb, c)
68 return c

CORRUPT-A:

69 LcorA

+← tA
70 corruption-update()
71 req (B, ind, flag) /∈ chall or

(
flag = good and safeidKA

)
or

(
flag = good and safepreKA (ind)

)
72 foreach (B, t) ∈ trans and ¬safe-stB(t)
73 comp

+← trans(B, t)
74 foreach (A, tA) ∈ trans and ¬safe-stB(tB)
75 comp

+← trans(A, tA)
76 return stA

sam-if -nec(r):
77 flag← bad
78 if r = ⊥
79 r

$←R
80 flag← good
81 return (r, flag)

record(P, type, flag, ind,m, c):
82 rec← (P, ind, flag, tP, iP,m, c)

83 allTrans, trans
+← rec

84 if ¬safe-inj¬P(tP): comp
+← rec

85 if type = chall: allChall, chall +← rec

ep-mgmt(P, flag, ind):
86 if (P = A and tP even) or (P = B and tP odd)
87 if ¬safe-chP(flag, tP, ind)
88 LcorP

+← tP + 1
89 tP++, iP ← 0

delete(t, i):
90 rec← (P, ind, flag, t, i,m, c) for some P, ind, flag,m, c

91 trans, chall, comp
−← rec

corruption-update():
92 foreach (P, ind, flag, t, 1,m, c) ∈ allTrans
93 if ¬safe-chP(flag, (t − 1), ind)

94 LcorP

+← t

safepreKP (ind) ⇔ ind /∈ Lrev
P

safe-stP(t) ⇔ t, (t − 1), ..., (t −△eSM + 1) /∈ Lcor
P

safe-chP(flag, t, ind) ⇔
(
safe-stP(t) and safe-st¬P(t)

)
or

(
flag = good and safe-st¬P(t)

)
or

(
flag = good and safeidK¬P

)
or

(
flag =

good and safepreK¬P (ind)
)

safe-injP(t) ⇔ safe-st¬P(t)

Figure 3: The extended secure messaging experiment ExpeSMΠ,△eSM
for an eSM scheme Π with respect to a parameter △eSM. O1 :=

{NEWIDKEY-A, NEWIDKEY-B, NEWPREKEY-A, NEWPREKEY-B} and O2 denotes all oracles. This figure only depicts the oracles for
A (ending with -A). The oracles for B are defined analogously. We highlight the difference to the SM-security game for a SM scheme in
[1] with blue color.
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invokes the transmission and delivery oracles in an arbitrary
order, which causes the winning event via Line 48.

• Forward secrecy: Note that the adversary can freely access
the corruption oracles if all challenge ciphertexts have been
delivered. No FS means that the adversary can distinguish
the challenge bit from the past encrypted messages and
wins via Line 12.

• Post-compromise security: Note that the states are not
leaked to a passive adversary after the owner sends a reply
in a new epoch (i.e., epochs are not added into the state
corruption list in Line 88), assuming fresh randomness and
the partner’s uncorrupted state, or identity key or pre-key,
see Line 87.
No PCS indicates that a state at an epoch not in the state
corruption lists might still be corrupted, which causes the
lose of other security properties.

• Strong authenticity: The adversary can inject a forged
ciphertext (Line 53) that does not correspond to a com-
promised ciphertext position (Line 56) if sender’s session
state is safe. Recall that a ciphertext is compromised only
when the session state of the sender is unsafe (see Line 23,
36, 72, 75, 84).
No strong authenticity means that the forged ciphertext
can be decrypted to a non-⊥ message when the sender
is not corrupted, and further causes the winning of the
adversary via Line 57.

• Strong privacy: Note that the challenge ciphertexts must
be produced without the violation the safety predicate
safe-ch in Line 64, i.e., at least one of the following
combinations are not leaked: (1) both parties’ states, (2) the
encryption randomness and the receiver’s state, (3) the
encryption randomness and the receiver’s private identity
key, or (4) the encryption randomness and the receiver’s
corresponding private pre-key. Moreover, our identity key
reveal oracles, pre-key reveal oracles, and state corruption
oraclesalso prevent the adversary from knowing all of the
above combinations related to any challenge ciphertext at
the same time (see Line 22, 35, 71).
No strong privacy means that the adversary can distinguish
the challenge bit even when at least one of the above four
combinations holds, which further causes the winning
event via Line 12.

• Randomness leakage/failures: This is ensured by the fact
that all of the above properties hold if the parties’ session
states are uncompromised.

• State compromise/failures: This is ensured by the strong
privacy even when both parties’ state are corrupted, as
explained above.

• Periodic privacy recovery (PPR): Note that the pre-
keys can be periodically generated optionally under fresh
randomness. The PPR is ensured by the strong privacy
when the sender’s randomness is good and the receiver’s
newly freshly sampled pre-key is safe, as explained above.

Moreover, we can also observe that higher security can
be obtained if the device of a party (assume A) supports
a secure environment, such as an HSM. If A’s identity
key pair is generated in a secure environment, the private
identity key can be neither manipulated nor predicted by

any adversary. This means that the adversary can only
query NEWIDKEY-A(r) with input r = ⊥ and never query
REVIDKEY-A oracle in ExpeSMΠ,△eSM

. Thus, the predicate
safeidKA is always true. If the partner B has access to the
fresh randomness, then the privacy of the messages sent
from B to A always holds.

We stress that our eSM model is strictly stronger than the
SM model [1], even without taking the usage of identity keys
and pre-keys into account. We provide a detailed comparison
in Appendix C for interested readers.

4. Extended Secure Messaging Scheme

In Section 4.1 we describe the intuition behind our eSM
construction, followed by a detailed description in Section 4.2.
In Section 4.3, we prove the eSM security of our eSM
construction and provide concrete instantiations.

4.1. Intuition behind the eSM Construction

Our eSM construction, depicted in Figure 4, uses a key
encapsulation mechanism KEM = (K.KG,K.Enc,K.Dec),
a digital signature DS = (D.KG,D.Sign,D.Vrfy), a sym-
metric key encryption SKE = (S.Enc,S.Dec), and five key
derivation functions KDFi for i ∈ [5].

To send a message, the sender runs the KEM encapsu-
lation algorithm three times: the encapsulation upon the
partner’s latest per-epoch public key, which ensures the
privacy against fine-grained state compromise and PCS; the
one upon the partner’s latest public pre-key, which ensures
temporal privacy and the PPR property; and finally the
one upon the partner’s latest public identity key, which
ensures even stronger privacy if the device supports an
HSM for storing private identity keys. The sender also signs
the outgoing ciphertext using DS and his latest per-epoch
signing key to ensure the authenticity against fine-grained
state compromise.

Moreover, our eSM construction uses three variants of
the NAXOS trick [23], in which ephemeral randomness is
combined with a local secret to strengthen against random-
ness compromise or manipulation attack. First, a symmetric
root key st.rk together with ephemeral randomness is used
to derive new shared state when sending the first message
in each epoch. This provides strong privacy for new epochs
against randomness leakage and manipulation; Second, the
sender’s local NAXOS string st.nxs together with the
ephemeral randomness is used to improve key generation
when sending the first message in each epoch. This provides
strong authenticity for the new epoch and strong privacy for
the next epoch against randomness leakage and manipulation;
Third, the unidirectional ratchet keys urk (derived from the
shared state) together with the ephemeral randomness are
used to derive the real message keys. This ensures FS while
preserving immediate decryption with constant-size overhead.

We give a detailed comparison with the ACD19 construc-
tion [1] in Appendix D.
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4.2. The eSM Construction in Detail

For simplicity, we assume all symmetric keys in our
construction (including the root key rk, the chain key ck, the
unidirectional ratchet key urk, and the message key mk) have
the same domain {0, 1}λ. We assume the key generation
randomness spaces of KEM and DS are also {0, 1}λ. The
underlying DS and SKE are assumed to be deterministic.
We first introduce the state in our construction.

Definition 4. The state in our eSM construction in Figure 4
consists of following variables:
• st.id: the state owner. In this paper, we have stA.id = A

and stB.id = B.
• st.t: the local epoch counter. It starts with 0.
• st.i0, st.i1, ...: the local message index counter of each

epoch. They start with 0.
• st.rk ∈ {0, 1}λ: the (symmetric) root key. This key is

initialized from the initial shared secret and updated only
when entering next epoch. The root key is used to initialize
the chain key at the time of update.

• st.ck0, st.ck1, ... ∈ {0, 1}λ: the (symmetric) chain keys at
each epoch. These keys are initialized at the beginning
of each epoch and updated when sending messages. The
chain keys are used to deterministically derive the (one-
time symmetric) unidirectional ratchet keys (urk).

• st.nxs ∈ {0, 1}λ: a local NAXOS random string, which
is used to improve the randomness when generating new
KEM and DS key pairs.

• st.Dl : the dictionary that stores the maximal number (aka.
the length) of the transmissions in the previous epochs.

• st.prtr: the pre-transcript that is produced at the beginning
of each epoch and is attached to the ciphertext whenever
sending messages in the same epoch.

• st.D0
urk , st.D1

urk , ...: the dictionaries that store the (one-
time symmetric) unidirectional ratchet keys urk for each
epoch. The urks are used to derive the (one-time symmet-
ric) message keys (mk) for real message encryption and
decryption using SKE.

• (st.ek0, st.dk0), (st.ek1, st.dk1), ...: the (asymmetric)
KEM public key pairs. These key pairs are used to
encapsulate and decapsulate the randomness, which
(together with the unidirectional ratchet key urk) is used
to derive the message keys (mk) of SKE.

• (st.sk-1, st.vk-1), (st.sk0, st.vk0), (st.sk1, st.vk1), ...3: the
(asymmetric) DS private key pairs, which are used to
sign and verify the (new) pre-transcript output by eSend.

Our eSM construction makes use of two auxiliary func-
tions: eSend-Stop and eRcv-Max for practical memory man-
agement. Here, we only explain the underlying mechanism
and omit their concrete instantiation.
• eRcv-Max(st, l): This algorithm is called in eRcv algo-

rithm when the caller switches its role from message sender
in epoch st.t to message receiver in a new epoch st.t + 1.

3. The superscript of the signing/verification keys indicates the epochs
when the DS key pairs are generated and used until the next key generation
two epochs later. Here, we slightly abuse the notation and have st.sk-1 and
st.vk-1, which are used only to sign/verify the verification key in epoch 1.

IdKGen():

1 (ipk , ik)
$← K.KG()

2 return (ipk , ik)

PreKGen():

3 (prepk , prek)
$← K.KG()

4 return (prepk , prek)
eInit-A(iss):

5 stA.nxs ∥ ∥ stA.rk ∥ stA.ck0 ∥ rKEMA ∥ rKEMB ∥ rDS
A ∥ rDS

B ← iss

6 ( , stA.dk
0)

$← K.KG(rKEMA ), (stA.ek1, )
$← K.KG(rKEMB )

7 (stA.sk
-1, )

$← D.KG(rDS
A ), ( , stA.vk

0)
$← D.KG(rDS

B )
8 stA.id ← A, stA.prtr← ⊥, stA.t ← 0, stA.i0 ← 0
9 stA.Dl [·]← ⊥, stA.D0

urk [·]← ⊥
10 return stA
eInit-B(iss):

11 ∥ stB.nxs ∥ stB.rk ∥ stB.ck0 ∥ rKEMA ∥ rKEMB ∥ rDS
A ∥ rDS

B ← iss

12 (stB.ek
0, )

$← K.KG(rKEMA ), ( , stB.dk
1)

$← K.KG(rKEMB )

13 ( , stB.vk
-1)

$← D.KG(rDS
A ), (stB.sk0, )

$← D.KG(rDS
B )

14 stB.id ← B, stB.prtr← ⊥, stB.t ← 0, stB.i0 ← 0, stB.Dl [·]← ⊥
15 return stB
eSend(st, ipk , prepk ,m):

16 (c1, k1)
$← K.Enc(st.ekst.t ), (c2, k2)

$← K.Enc(ipk)

17 (c3, k3)
$← K.Enc(prepk)

18 (updar, updur)← KDF1(k1, k2, k3)
19 if (st.id = A and st.t even) or (st.id = B and st.t odd)
20 l← eSend-Stop(st), st.t++, st.ist.t ← 0

21 r
$← {0, 1}λ, (st.nxs, rKEM , rDS)← KDF2(st.nxs, r)

22 (ek, st.dkst.t+1)
$← K.KG(rKEM ), (st.skst.t , vk) $← D.KG(rDS)

23 prtrar ← (l, c1, c2, c3, ek, vk), σar ← D.Sign(st.skst.t−2, prtrar)
24 st.prtr← (prtrar, σar), (st.rk, st.ckst.t )← KDF3(st.rk, updar)
25 (st.ckst.t , urk)← KDF4(st.ckst.t ), mk ← KDF5(urk, updur)
26 c′ ← S.Enc(mk,m), prtrur ← (st.t, st.ist.t , c′, c1, c2, c3)
27 σur ← D.Sign(st.skst.t , prtrur)
28 return (st, (st.prtr, prtrur, σur))
eRcv(st, ik , prek , c):
29 ((prtrar, σar), prtrur, σur)← c
30 (l, c1, c2, c3, ek, vk)← prtrar, (t, i, c′, c′1, c

′
2, c

′
3)← prtrur

31 if t ≤ st.t− 2: req st.Dl [t] ̸= ⊥ and i ≤ st.Dl [t]
32 req t ≤ st.t + 1
33 req (st.id = A and t even) or (st.id = B and t odd)
34 if t = st.t + 1
35 req D.Vrfy(st.vkt−2, prtrar, σar)
36 eRcv-Max(st, l), st.Dl [t− 2]← l, st.t++
37 k1 ← K.Dec(st.dkst.t , c1), k2 ← K.Dec(ik , c2)
38 k3 ← K.Dec(prek , c3)
39 (updar, )← KDF1(k1, k2, k3)
40 (st.rk, st.ckst.t )← KDF3(st.rk, updar)
41 Dst.t

urk [·]← ⊥, st.ist.t ← 0, st.ekst.t+1 ← ek, st.vkst.t ← vk
42 req D.Vrfy(st.vkt , prtrur, σur)
43 k′1 ← K.Dec(st.dkt , c′1), k

′
2 ← K.Dec(ik , c′2)

44 k′3 ← K.Dec(prek , c′3)
45 ( , updur)← KDF1(k′1, k

′
2, k

′
3)

46 while st.it ≤ i
47 (st.ckt , urk)← KDF4(st.ckt ), Dt

urk [st.i
t ]← urk, st.it++

48 urk ← Dt
urk [i], D

t
urk [i]← ⊥, req urk ̸= ⊥

49 mk ← KDF5(urk, updur) , m ← S.Dec(mk, c′)
50 return (st, t, i,m)

Figure 4: Our eSM construction. KEM = (K.KG,K.Enc,K.Dec),
DS = (D.KG,D.Sign,D.Vrfy), and SKE = (S.Enc, S.Enc) respec-
tively denote a key encapsulation mechanism, a deterministic digital
signature and a deterministic authenticated encryption schemes. The
KDFi for i ∈ [5] denote five independent key derivation functions.

This algorithm inputs (the caller’s) state st and a number l
and remembers the value l together with the epoch counter
t′ = st.t − 1 locally. Once l messages corresponds to the
old epoch t′ are received, the state values for receiving
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messages in epoch t′, i.e., st.it
′
, st.ckt

′
, st.dkt

′
, st.vkt

′
,

st.Dt′

urk , st.Dl [t
′] are erased, i.e., set to ⊥. Moreover, the

number how many times the chain key st.ckst.t has been
forwarded (i.e., how many messages have been sent) in
the epoch st.t is stored, while the chain key st.ckst.t itself
together with the encryption key st.ekst.t is erased.

• eSend-Stop(st): This algorithm is called in eSend algo-
rithm when the caller switches its role from the message
receiver in epoch st.t to the message sender in a new epoch
st.t + 1. This algorithm inputs (the caller’s) state st and
outputs how many messages are sent in the epoch st.t−1,
which is locally stored during the previous eRcv-Max
invocation, denoted by l. The signing key st.skt is also
erased after its signs the next verification key st.vkt+2

later. We write l← eSend-Stop(st).
Following the syntax in Definition 1, our eSM construc-

tion consists of following six algorithms below.

IdKGen(): The identity key generation algorithm samples
and outputs a public-private KEM key pair.

PreKGen(): The pre-key generation algorithm samples and
outputs a public-private KEM key pair.

eInit-A(iss): The A’s extended initialization algorithm inputs
an initial shared secret iss ∈ ISS. First, A parses iss into
seven components: the initial NAXOS string stA.nxs , the
shared root key stA.rk, the shared chain key stA.ck0, and four
randomness for A’s and B’s KEM and DS key generation:
rKEMA , rKEMB , rDS

A , rDS
B . Then, A respectively runs K.KG and

D.KG on the above randomness and stores stA.dk
0, stA.ek1,

stA.sk
-1, stA.vk

0, which are respectively generated using
rKEMA , rKEMB , rDS

A , and rDS
B . The other values generated in

the meantime are discarded.
Finally, A sets the identity stA.id to A, the local pre-

transcript stA.prtr to ⊥, the epoch counter stA.t to 0, the
message index stA.i

0 to 0, and initializes the maximal
transmission length dictionary Dl and the unidirectional
ratchet dictionary D0

urk , followed by outputting the state stA.

eInit-B(iss): The B’s extended initialization algorithm inputs
an initial shared secret iss ∈ ISS and runs very similar
to eInit-A. First, B parses iss into seven components: the
initial NAXOS string stB.nxs , the shared root key stB.rk, the
shared chain key stB.ck0, and four randomness for A’s and
B’s KEM and DS key generation: rKEMA , rKEMB , rDS

A , rDS
B .

Then, B respectively runs K.KG and D.KG on the above
randomness and stores stB.ek

0, stB.dk
1, stB.vk

-1, stA.sk
0,

which are respectively generated using rKEMA , rKEMB , rDS
A ,

and rDS
B . The other values generated in the meantime are

discarded. Note that the values stored by B is the ones
discarded by A, and vice versa.

Finally, B sets the identity stB.id to B, the local pre-
transcript stB.prtr to ⊥, the epoch counter stB.t to 0, the
message index stB.i

0 to 0, and initializes the maximal
transmission length dictionary Dl , followed by outputting
the state stB. Note that no unidirectional ratchet dictionary
D0

urk is initialized, since B acts as the sender in the epoch 0.

eSend(st, ipk , prepk ,m): The sending algorithm inputs the

(caller’s) state st, the (caller’s partner’s) public identity key
ipk and pre-key prepk , and a message m .

First, the caller runs the encapsulation algorithm of KEM
and obtains three ciphertext-key tuples (c1, k1), (c2, k2), and
(c3, k3) respectively using the local key st.ekst.t , and the
identity key ipk , and the pre-key prepk . Next, the caller
applies KDF1 to k1, k2, and k3, for deriving two update
values updar and updur.

If the caller switches its role from receiver to sender, i.e.
the caller st.id is A and the epoch stA.t is even or the caller
is B and the epoch is odd, it first executes the following
so-called asymmetric ratchet (ar) framework: First, the caller
runs eSend-Stop(st) for a value l that counts the sent
messages in the previous epoch, followed by incrementing
the epoch counter st.t by 1 and initializing the message
index counter st.ist.t to 0. Next, the caller samples a random
string r, which together with the local NAXOS string st.nxs
is applied to a key derivation function KDF2, in order
to produce a new NAXOS string, a KEM key generation
randomness rKEM , which is used to produce a new KEM
key pair for receiving messages in the next epoch, and a DS
key generation rDS, which is used to produce a new DS key
pair for sending messages in this epoch. The caller stores the
private decapsulation keys and signing keys into the state.
Then, the caller signs the pre-transcript for the ar framework
prtrar, including the value l, the ciphertext c1, c2, and c3,
the newly sampled encapsulation key ek and the verification
key vk, using the signing key produced two epochs earlier
st.skst.t−2 for a signature σar. The pre-transcript prtrar and
signature σar are stored into the state st.prtr. Finally, the
caller forwards the ar framework by applying a KDF3 to the
root key st.rk and the update updar for deriving new root
key and chain key st.ckst.t .

Next, the caller executes the so-called unidirectional
ratchet (ur) framework, no matter whether the ar framework
is executed in this algorithm invocation or not: First, the
caller forwards the unidirectional ratchet chain by applying
a KDF4 to the current chain key st.ckst.t for deriving next
chain key and a unidirectional ratchet key urk. Next, the
caller applies a KDF5 to the unidirectional ratchet key urk
and the update updur for the message key mk, followed by
encrypting the message m by c′ ← S.Enc(mk,m). Finally,
the caller signs the pre-transcript prtrur of the ur framework,
including the epoch st.t, the message index st.ist.t , and the
ciphertexts c′, c1, c2, and c3, for a signature σur using the
signing key st.skst.t . This algorithm outputs a new state st
and a final ciphertext, which is a tuple of the ar pre-transcript
and signature st.prtr = (prtrar, σar), the ur pre-transcript
prtrur, and the signature σur.

eRcv(st, ik , prek , c): The receiving algorithm inputs the
(caller’s) state st, private identity key ik and pre-key prek ,
and a ciphertext c, and does the mirror execution of eSend.

First, the caller parses the input ciphertext c into the pre-
transcript and signature of ar framework (prtrar, σar), the
unidirectional ratchet pre-transcript prtrur, and the signature
σur. Next, the caller further parses the pre-transcript prtrar
into one number l, three ciphertexts c1, c2, and c3, an
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encapsulation key ek, and a verification key vk, and parses
prtrur into an epoch counter t, a message index counter i,
and four ciphertexts c′, c′1, c′2, and c′3.

If the parsed epoch counter indicates a past epoch,
i.e., t ≤ st.t − 2, the caller checks whether the maximal
transmission length has been set (and not erased) and whether
the parsed message index does not exceed the corresponding
maximal transmission length. Then, the caller checks whether
the parsed epoch counter is valid (by checking whether
st.id = A or B if the parsed epoch counter is even or odd)
and in a meaningful range (by checking whether t ≤ st.t+1).
If any check is wrong, the eRcv aborts and outputs m = ⊥.

If the parsed epoch counter t is the next epoch, i.e.,
t = st.t + 1, the caller executes the asymmetric ratchet
framework: The caller first checks whether the signature
σar is valid under the verification key st.vkt−2 and pre-
transcript prtrar and aborts if the check fails. Next, the caller
invokes eRcv-Max(st, l), records the transmission length l,
and increments the epoch counter. Then, three keys k1, k2,
and k3 are respectively decapsulated from c1, c2, and c3
using local keys st.dkst.t , the private identity key ik , and
pre-key prek . After that, the caller applies KDF1 to above
keys for update value updar, which then together with the
root key st.rk is applied to KDF3 for a new root key and
chain key st.ckst.t . Finally, the caller initializes a dictionary
Dst.t

urk for storing the unidirectional ratchet keys in this epoch,
sets the message counter st.ist.t to 0, and locally stores the
encapsulation key for the next epoch and verification key
for this epoch.

Then, the caller executes the unidirectional ratchet frame-
work, no matter whether ar is executed in this algorithm
invocation or not: First, the caller also checks whether the
signature σur is valid under the verification key st.vkt and
pre-transcript prtrur. Next, three keys k′1, k′2, and k′3 are
respectively decapsulated from c′1, c′2, and c′3 using local keys
st.dkst.t , the private identity key ik , and pre-key prek . Then,
the caller applies KDF1 to above three keys for the update
value updur. After that, the caller continuously forwards the
unidirectional ratchet chain, followed by storing the unidi-
rectional ratchet keys into the dictionary and incrementing
the message index by 1, until the local message index st.it

reaches the parsed message index i. In the end, the caller
reads the unidirectional ratchet key urk from the dictionary
corresponding to the parsed message index, followed by
erasing it from the dictionary. It must hold that urk = ⊥
and aborts otherwise. The caller then derives the message
key mk by applying KDF5 to urk and the update updur, and
finally decrypts the message m from ciphertext c′ using mk.

This algorithm outputs a new state st, the parsed epoch
t and message index i, and the decrypted message m .

4.3. Security Conclusion and Concrete Instantiation

Theorem 1. Let Π denote our eSM construction in Sec-
tion 4.2. If the underlying KEM is δKEM -strongly correct4 and

4. By strongly correct, we mean that the schemes are conventionally
correct for all randomness. See Appendix F.

ϵIND-CCA
KEM -secure, DS is δDS-strongly correct and ϵSUF-CMA

DS -
secure, SKE is δSKE-strongly correct and ϵIND-1CCA

SKE -secure,
KDF1 is ϵ3prfKDF1

-secure5, KDF2 is ϵdualKDF2
secure, KDF3 is

ϵprfKDF3
-secure, KDF4 is ϵprgKDF4

-secure, KDF5 is ϵdualKDF5
-secure,

in time t, then Π is (t, q, qep, qM,△eSM, ϵ)-eSM secure for
△eSM = 2, where

ϵ ≤ (qep + q)δDS + 3(qep + q)δKEM + qδSKE + qepϵ
SUF-CMA
DS

+ q2epqM(q + 1)ϵIND-CCA
KEM + qep(qM + 2)qϵIND-1CCA

SKE

+ q2epqM(q + 1)ϵ3prfKDF1
+ q2ep(qepq + qep + 1)ϵdualKDF2

+ q2ep(q + 1)ϵprfKDF3
+ qepq(q + 1)ϵprgKDF4

+ qep(qepqMq + qepqM + 2q)ϵdualKDF5

Proof. Our proof is divided into two steps: First, we modular-
ize the eSM security into three simplified security notations:
correctness, privacy, and authenticity, which are defined
in Appendix G.

Second, we introduce four lemmas in Appendix H.1.
Lemma 1 reduces the eSM security to the simplified security
notions, the full proof of which is given in Appendix H.2.
Lemma 2, 3, and 4 respectively proves the simplified correct-
ness, privacy, and authenticity of our eSM construction in Sec-
tion 4.2, the full proof of which are given in Appendix H.3,
H.4, and H.5. The proof is concluded by combining the
above four lemmas together.

Instantiation: We give the concrete instantiation for both
classical and PQ settings. The deterministic DS can be instan-
tiated with Ed25519 for classical setting, the formal analysis
was given in [24], and the NIST suggested CRYSTALS-
Dilithium for the PQ security, which is analyzed in [25]. A
generic approach to instantiating KEM is to encrypt random
strings using deterministic OW-CCA or merely OW-CPA
secure PKE for strong correctness [26], [27]. The NIST
suggested NTRU is also available for IND-CCA security
and strong correctness [28]. The deterministic IND-1CCA
secure authenticated encryption SKE can be instantiated
with the Encrypt-then-MAC construction in [29]. The dual
or prg-secure KDFi for i ∈ {2, ..., 5} can be instantiated
with HMAC-SHA256 or HKDF. The 3prf-secure KDF1 can
be instantiated with the nested combination of any dual-
secure function, as explained in Appendix F.4. We suggest
to double the security parameter of the symmetric primitives
for PQ security.

5. Offline Deniability

As explained in Section 2.3, although the combinations
of SPQR and ACD19 or our eSM achieve strong privacy and
authenticity in the PQ setting, it is still an open question what
flavors of offline deniability can be achieved by the combined
protocols in the PQ setting. To address this, we extend
the game-based offline deniability for asynchronous DAKE
scheme Σ [11] to its combination with an eSM scheme Π.

5. By 3prf security, we mean that a function is indistinguishable from a
random function w.r.t any of the three inputs. See Appendix F.4.
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Our offline deniability experiment is depicted in Figure 5.
For the notational purpose, we use ipk , ik , prepk , and prek
to denote the public and private keys that are generated
by DAKE construction Σ. The keys generated by eSM
construction Π are notated without overline. The difference to
the original model in [11, Definition 11], also see Definition 7
in Appendix E, is highlighted with blue color.

In addition to message senders and receivers, the deniabil-
ity experiment includes three new roles: accuser, defendant,
and judge. For any two-party conversation, we call a party
“accuser”, whose identifier is denoted by aid, if it wants to
accuse that its honest conversation partner has communicated
with it. Correspondingly, we call the accused honest partner
“defendant”, whose identifier is denoted by did. The role of
the “judge” in the experiment is performed by the adversary.
The goal of the experiment is to ensure that no adversaries
(i.e., the real-life judges) can distinguish the real conversation
transcripts between accusers and defendants from the fake
ones that are produced by the accusers alone, given all secrets
of all parties.

The experiment initializes a dictionary Dsession, which
records the identity of the parties in each session, and
a session counter n with 0. Next, long-term identity and
medium-term pre- public/private key pairs of Σ and Π are
generated for all honest parties and provided to the adversary
(e.g., the judge). A challenge bit b ∈ {0, 1} is randomly
sampled. The adversary (i.e., the judge) is given repeated
access to the following two oracles: The Session-Start oracle
initializes a session between a sender sid and a receiver rid
and determines that the party aid ∈ {sid, rid} plays the role
of accuser in this session and the other party did ∈ {sid, rid}
plays the role of defendant in this session. This oracle
executes a real session setup and real eSM initialization if
b = 0, and some fake algorithms that simulate the accuser’s
view if b = 1. The Session-Execute forwards the interaction
in an existing session one step: this oracle executes eSM
algorithm for sending and receiving one message honestly if
b = 0, and some fake algorithms that simulate the accuser’s
view if b = 1. The adversary wins if it can distinguish real
conversation transcripts (i.e., b = 0) from fake transcripts
that simulate accusers’ views (i.e., b = 1). We say a full
messaging protocol is offline deniable, if there exist fake
algorithms that prevent all adversaries from winning the
offline deniability experiment in polynomial time. By this,
we ensure that if a protocol is offline deniable, then no
judge can decide whether a transcript given by the accuser
is the real transcript of the conversation with the defendant
or produced by the accuser alone.

Oracle Session-Start(sid, rid, aid, did, ind): This oracle in-
puts are a sender identity sid, a receiver identity rid, an
accuser identity aid, a defendant identity did, and a pre-
key index ind. This oracle first checks whether the sender
identity and the receiver identity are distinct and whether
either the sender is the accuser and the receiver is the
defendant or another way around. Next, the session counter n
is incremented by 1 and the set of the sender identity sid and
the receiver identity rid is set to Dsession[i]. Then, it simulates

the honest DAKE execution if the challenge bit is 0 or the
accuser is the sender. Otherwise, it runs the fake algorithm
Σ.Fake. In both cases, a key K and a transcript T are derived.
In the end, if the challenge bit is 0, then the oracle honestly
runs Π.eInit-A(K) and Π.eInit-B(K) on the shared key K to
produce the state stnsid and stnrid. Otherwise, the oracle runs a
function FakeeInitΠ (K, ipkdid, ik aid,Lprek

aid , sid, rid, aid, did) to
produce a fake state stnFake. The transcript T is returned.

Oracle Session-Execute(sid, rid, i, ind,m): This oracle in-
puts a sender identity sid, a receiver identity rid, a session
index i, a pre-key index ind, and a message m . This oracle
first checks whether the session between sid and rid has
been established by requiring Dsession[i] = {sid, rid}. Next,
if the challenge bit is 0, this oracle simulates the honest
transmission of message m . Otherwise, this oracle produces
a ciphertext c by running a function FakeeSendΠ on the fake
state stiFake, the receiver’s public identity key ipk rid, pre-
key prepk ind

rid , the message m, and sender identity sid, the
receiver identity rid, and a pre-key index ind. In both cases,
the ciphertext c is returned.

We stress that our offline deniability model is a significant
extension to the one for DAKE in [11]. First, our model also
allows the adversary (e.g. the judge) to obtain all initial
private secret of all parties, as in [11].

Second, while the model in [11] prevents an adversary
from deciding the challenge bit b given the (output) shared
keys and the transcripts of DAKE key establishments, our
model prevents an adversary from deciding b given the
transcripts of full conversations, which include the one of
DAKE and the one of eSM inputting the shared key of DAKE.
This extension follows the idea behind the simulation-based
extension [13].

Third, the accuser in the model for DAKE in [11] must
play the role of a responder resp (i.e., the receiver rid during
the key establishment) rather than an initiator (i.e., the sender
sid during the key establishment), since the Σ.Fake algorithm
is only defined on the responder’s behalf. The main reason
behind is that all transcripts in a DAKE scheme are produced
by the initiator alone. However, the responder producing no
output during the key establishment might produce some
transcripts afterwards. To capture this, our model also allows
the accuser to be the initiator init in the whole conversation.
In fact, our Session-Execute simulates the accuser’s view
(when b = 1) by running the FakeΠ algorithm that simulates
the stateful execution of either the initiator or the responder,
depending on whether aid = sid or rid in the corresponding
Session-Start query6.

Definition 5. We say the composition of a DAKE scheme
Σ and an eSM scheme Π is (t, ϵ, qP, qM, qS)-deniable, if
two functions FakeeInitΠ and FakeeSendΠ exist such that the
below defined advantage for any adversary A in time t is

6. In our model, we restrict the behavior of the accuser, who acts as
initiator, to be honest during the key establishment phase, see Line 23. We
leave a stronger model without this restriction as future work.
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ExpdeniΣ,Π,qP,qM,qS
(A):

1 Dsession[·]← ⊥, n← 0

2 Lall,L
ipk
all ,Lprepkall ← ∅

3 for u ∈ [qP]

4 Lpreku ← ∅
5 Lpreku ← ∅
6 (ipku, iku)

$← Σ.IdKGen()

7 (ipku, iku)
$← Π.IdKGen()

8 Lipkall
+← {ipku}

9 Lall
+← (ipku, iku)

10 Lall
+← (ipku, iku)

11 for ind ∈ [qM]

12 (prepk
ind
u , prek

ind
u )

$← Σ.PreKGen()

13 (prepk ind
u , prek ind

u )
$← Π.PreKGen()

14 Lpreku
+← prek

ind
u , Lprepkall

+← prepk
ind
u

15 Lpreku
+← prek ind

u

16 Lall
+← (prepku, preku)

17 Lall
+← (prepku, preku)

18 b
$← {0, 1}

19 b′
$← AO (Lall)

20 return Jb = b′K

Session-Start(sid, rid, aid, did, ind):
21 req {aid, did} = {sid, rid} and sid ̸= rid
22 n++, Dsession[n]← {sid, rid}
23 if b = 0 or aid = sid
24 πrid.role← resp, πrid.stexec ← running
25 πsid.role← init, πsid.stexec ← running

26 (π′
rid,m)

$← Σ.Run(ik rid,L
prek
rid ,Lipkall ,Lprepkall , πrid, (create, ind))

27 (π′
sid,m

′)
$← Σ.Run(ik sid,L

prek
sid ,Lipkall ,Lprepkall , πsid,m)

28 (K,T )
$← (π′

sid.K, (m,m ′))
29 else

30 (K,T )
$← Σ.Fake(ipk sid, ik rid,L

prek
rid , ind)

31 if b = 0

32 stnsid
$← Π.eInit-B(K), stnrid

$← Π.eInit-A(K)
33 else

34 stnFake
$← FakeeInitΠ (K, ipkdid, ikaid,Lprekaid , sid, rid, aid, did)

35 return T

Session-Execute(sid, rid, i, ind,m):
36 req Dsession[i] = {sid, rid}
37 if b = 0

38 (stisid, c)
$← Π.eSend(stisid, ipk rid, prepk

ind
rid ,m)

39 (stirid, , , )← Π.eRcv(stirid, ik rid, prek
ind
rid , c)

40 else

41 (stiFake, c)
$← FakeeSendΠ (stiFake, ipk rid, prepk

ind
rid ,m, sid, rid, ind)

42 return c

Figure 5: The offline deniability experiment for an adversary A against the combination of a DAKE scheme Σ and an eSM scheme Π.
The experiment ExpdeniΣ,Π,qP,qM,qS

is parameterized the maximal numbers of parties qP, pre-keys per party qM, and total sessions qS. We
highlight the difference to the offline deniability experiment for DAKE in Definition 7 with blue color.

bounded by

AdvdeniΣ,Π,qP,qM,qS
(A) := |ExpdeniΣ,Π,qP,qM,qS

(A)− 1

2
| ≤ ϵ

where qP, qM, and qS respectively denote the maximal number
of parties, of pre-key per party, and total sessions in the
ExpdeniΣ,Π,qP,qM,qS

in Figure 5.

Theorem 2. Let Σ denote a DAKE scheme and Π denote
our eSM construction in Section 4.2. If Σ is (t, ϵ, q)-deniable
(with respect to any qP, qM) in terms of the Definition 7 ,
then the composition of Σ and Π is (t, ϵ, qP, qM, q)-deniable.

Proof Sketch. We define FakeeInitΠ algorithm as running both
eInit-A and eInit-B upon the input K and storing all other
inputs. We define FakeeSendΠ algorithm as honest execution
of Π.eSend upon sender sid followed by Π.eRcv upon the
receiver rid and the ciphertext of Π.eSend. If the adversary
cannot distinguish the real DAKE transcripts and output keys
from the fake ones, then it cannot distinguish the real DAKE
and eSM (and therefore the full) transcripts from the fake
ones. We give the full proof in Appendix H.6.
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Appendix A.
Review of ACD19 and TR Protocols

The ACD19 protocol [1, Section 5.1]: The ACD19 protocol is
an instance of the SM scheme and can be further modularized
into three building blocks: the Continuous Key Agreement
(CKA), where the sender exchanges its randomness with
the partner; the Forward-Secure Authenticated Encryption
with Associated Data (FS-AEAD), where the sender sends
messages to the recipient and updates the shared state in a
deterministic manner, which provides forward secrecy and
immediate decryption; the PRF-PRNG refreshes its inherent
shared state by using the randomness of provided by CKA
and initializes a new FS-AEAD thread, which provides the
post-compromise security.

The ACD19 protocol is managed according to the epoch,
which is used to describe how many interactions in a two-
party communication channel have been processed. The
behavior of a party (assume A) for sending messages is
different when A enters a new epoch or not:
1) When a receiver A switches to sender and sends the first

message in a new epoch, A first counts and remembers
how many messages have been sent in the last epoch using
the corresponding FS-AEAD thread, which is then erased.
Next, A increments the inherent epoch counter by 1. Then,
A invokes the sending algorithm of the CKA component
for exchanging the randomness with the partner B. The
output of CKA algorithm in this epoch is also remembered
locally. Afterwards, A refreshes the shared state using
PRF-PRNG and initialize a new FS-AEAD thread for the
new epoch.

2) Regardless of whether A is sending the first message in
a new epoch (after executing the above step) or sending
subsequent messages in the current epoch, A uses the
current FS-AEAD thread for the encrypting real message
with associated data: the number of messages sent two
epoch earlier, the output of CKA in this epoch, the current
epoch counter.

The receiving process is defined in the reverse way. When
a sender (assume B) receives a message indicating the next
epoch, B switches his role to receiver and enters the next
epoch by incrementing the internal epoch counter. Notably,
B parses and locally remembers the number of messages sent
two epochs earlier from the received ciphertext and erases
the FS-AEAD thread once these messages arrived at B.

Moreover, several different instantiations of CKA,
FS-AEAD, and PRF-PRNG components are also given in [1].

The TR protocol [10, Section 5.1]: The Triple Ratchet (TR)
is very close to the ACD19 construction in [1], except for
the following two differences:
1) When a party switches its role from receiver to sender, it

does not count and remember how many messages have
been sent in the last epoch. Instead, this step is executed
in the receiving algorithm when a party enters a new
epoch and switches its role from sender to receiver.

2) The underlying CKA component must be instantiated
with a customized CKA+ construction, which provides
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better privacy against randomness leakage but relies on
a non-standard assumption and a random oracle. Note
that CKA is a generic building block, while CKA+ is a
concrete instantiation. The other building blocks such as
FS-AEAD and PRF-PRNG can be instantiated with the
constructions in [1].
For the interested readers, we also compare ACD19 and

TR with our protocol in Appendix D.

Appendix B.
Review on Messaging Protocols with Various
Optimal Security

The “optimal” protocols by Jäger and Stepanovs [6] and
by Pöttering Rösler [7], the “sub-optimal” protocol by Durak
and Vaudenay [9], and a novel protocol by Pijnenburg and
Pöttering [2] (we call “ID-optimal”), all are post-quantum
compatible. The “almost-optimal” protocol by Jost, Maurer,
and Mularczyk [8] only has classically secure instantiation.
Technically, they follow different ratcheting frameworks:

(1) “optimal” Jäger-Stepanovs protocol [6]: In the Jäger-
Stepanovs protocol, all cryptographic building blocks except
the hash functions, such as PKE and DS, are asymmetric
and updatable. When Alice continuously sends messages
to Bob, the next encryption key is deterministically derived
from an encryption key included in the last reply from Bob
and all past transcript since the last reply from Bob. On
the one hand, this protocol enjoys high security guarantee
against impersonation due to the asymmetric state. On the
other hand, this protocol has no message-loss resilience,
namely, if one message from Alice to Bob is lost, then Bob
cannot decrypt subsequent messages anymore. In particular,
no instantiation with constant bandwidth in the post-quantum
setting is available.

(2) “optimal” Pöttering-Rösler protocol [7]: In the Pöttering-
Rösler protocol, both asymmetric and symmetric primitives,
including updatable KEM, DS, MAC are employed. When
Alice sends messages to Bob, she first runs the encapsulations
upon the one or more KEM public keys depending on her
behavior. If Alice is sending a reply, then she needs to
run the encapsulation upon all accumulated KEM public
keys that are generated and signed by Bob. Otherwise, she
only needs one KEM public key that was generated by
herself when sending the previous message. After that, Alice
derives the symmetric key for message encryption from the
symmetric state and the encapsulated keys. This protocol
enjoys state healing when continuously sending messages.
Any unpredictable randomness at some point can heal Alice’s
state from corruption when she continuously sends messages.
However, this protocol has no message-loss resilience: If
one message is lost in the transmission, the both parties’
symmetric states that are used for key update mismatch.
This means, all subsequent messages cannot be correctly
recovered by the recipient.

(3) “sub-optimal” Durak-Vaudenay protocol [9]: In contrast
to the above two “optimal” approaches, the Durak-Vaudenay

protocol does not employ any key updatable components
and has a substantially better time complexity. When Alice
sends messages to Bob, she samples several fragments of a
symmetric key and encrypts them using signcryption with
the accumulated sender keys, where the sender keys are
generated either by herself or by Bob depending on whether
Alice is continuously sending messages or sending a reply.
The Durak-Vaudenay protocol is similar to Pöttering-Rösler
but is less reliant on the state. Any randomness leakage
corrupts the next message. Moreover, both the message and
the receiver key that is used for receiving or sending next
message, are encrypted under the symmetric key. This implies
that the protocol does not have message-loss resilience: If
one message is lost in the transmission (from either Alice
or Bob), the communication session is aborted.

(4) “almost-optimal” Jost-Maurer-Mularczyk protocol [8]:
The Jost-Maurer-Mularczyk protocol aims at stronger secu-
rity than what is achieved by Signal, but slightly weaker
than optimal security proposed in Jäger-Stepanovs’ and
Pöttering-Rösler’s work, yet its efficiency is closer to that
of Signal. The Jost-Maurer-Mularczyk protocol employs
two customized novel schemes: healable and key-updating
encryption (HkuPke) and key-updating signatures (KuSig).
When Alice sends messages to Bob, Alice first samples two
DS key pairs, while the one is used by Alice for sending next
continuous message, the other is used by Bob for sending the
reply. Next, Alice updates the key of HkuPke and encrypts
the message as well as the private DS signing key for Bob.
Then, Alice signs the transcript and her next DS verification
key twice, by using KuSig and DS. Finally, the state is
updated. Note that the sender has to send the next DS signing
and verification keys to the partner. If one message is lost in
the transmission (from either Alice or Bob), the receiver can
neither verify the next message from the partner nor send
a valid reply to the partner – the communication session
becomes stuck.

Moreover, Jost-Maurer-Mularczyk’s HkuPke construc-
tion uses a customized secretly key-updatable encryption
(SkuPke), the only known instantiation of which relies on
the Diffie-Hellman exchange, for which currently no PQ-
secure instantiation is available.

(5) “ID-optimal” Pijnenburg-Pöttering protocol [2]: The
Pijnenburg-Pöttering protocol aims to solve the weak forward
secrecy caused by the immediate decryption by definition. In
principle, the immediate decryption requires every receiver
to be able to decrypt a ciphertext at the time of arrival.
Thus, if an adversary can intercept a message and corrupt
the receiver’s state in the future, the adversary can always
recover the plaintext from the intercepted ciphertext.

To solve this, the Pijnenburg-Poettering protocol employs
three updatable mechanisms: Updatable Signature Schemes
(USS), Key-Evolving KEM (KeKEM), and Key-Updatable
KEM (KuKEM). Unlike all above protocols, while keys of
the KuKEM and USS schemes are updated whenever a party
switches the role from receiver to sender, the keys of KeKEM
are updated every certain time interval. If a past message
does not arrive at the receiver, the receiver still stores the
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corresponding decryption keys for the decryption at the time
of message arrival, however, but only within a fixed length
of time. After a pre-defined time interval, the corresponding
decryption keys are expired and cleaned from the local state.
By this, the compromise of a party’s state does not cause
the message leakage that is sent long time ago.

In particular, none of these protocols provide immediate
decryption with constant-size overhead.

Appendix C.
Security Model Comparison between our eSM
and SM in [1]

Our eSM model extends the SM model [1], with the follow-
ing main differences.

Extended Syntax. Compared to the original SM definition [1],
eSM has two additional algorithms IdKGen and PreKGen:
IdKGen outputs the public-private identity key, which is fixed
once generated, and PreKGen outputs pre-key pairs, which
are updated regularly (similar to X3DH). The generated
identity and pre-key pairs both are used in the eSend and
eRcv algorithms for sending and receiving messages.

More Expected Security Properties. Our eSM is expected
to preserve all basic properties of the SM schemes in [1],
including correctness, immediate decryption, FS, and PCS.
Moreover, our eSM targets the stronger authenticity and
privacy than SM in [1]. In particular, the authenticity and
privacy in [1] hold only when neither parties’ states are
compromised. Instead, we aim for stronger authenticity
and privacy against more fine-grained state compromise.
This potentially indicates that our eSM achieves stronger
randomness leakage/failures property. Finally, our eSM also
aims at two new properties: state compromise/failures and
PPR, which are not captured by SM in [1].

Stronger Security Model. Our eSM model is more com-
plicated than the SM model [1] from many aspects. First,
our eSM model needs more variables that are related to the
identity keys and pre-keys, which are excluded in [1], such as
safeidKP , Lrev

P , and nP, for P ∈ {A, B}. We also import two new
sets allTrans and allChall to simplify the security analysis
of the benefits obtained from using the identity keys and
pre-keys. Besides, we use two lists Lcor

A and Lcor
B to capture

the state corruption of either party instead of using a single
counter. While splitting the single state corruption variable
into two helps our model to capture our strong privacy and
strong authentication, using lists but not a counter additionally
simplifies the definition of the safe state predicate.

Second, we define two new safe predicates safepreKP and
safe-stP, which respectively capture the safety of the the pre-
key and session state. The safe-chP and safe-injP predicates
were introduced in [1]. However, our eSM model defines
them in a different way: Compared to [1], our safe-chP
predicates additionally input a randomness quality, a epoch
number, and a pre-key index. While the safe-chP predicate
in [1] equals the condition (a), our new conditions (b), (c),

and (d) respectively capture the strong privacy, state compro-
mise/failures, and PPR security properties. Moreover, our
safe-injP additionally inputs an epoch number t.

We stress that our safe requirements are more relaxed
and allow to reveal more information than in [1] (even
when removing the usage of identity keys and pre-keys).
In particular, if a safe predicate in the SM security model
in [1] is true, then the one in our eSM model is true, but
the reserve direction does not always hold.

Third, our eSM model has one new helper function
corruption-update. The other four helper functions in
our eSM model are introduced in [1], but are defined with
slight differences due to our new notations.

Finally, our eSM model includes 8 new oracles that are
not included in SM [1]. The new oracles are related to the
identity keys and pre-keys. Besides, the other 8 oracles for
message transmissions are identical to the one in SM model,
except for the notation differences. The only oracles that
have huge differences with the ones in SM model are state
corruption oracles: While our corrupt oracles requires any
of three conditions holds: (1) the chall does not include the
record produced by the partner ¬P, (2) the flag in the record
is good and P’s identity key is safe, and (3) the flag in the
record is good and P’s pre-key corresponding to the pre-
key index in the record is safe, the ones in SM model only
require the condition (1). After that, the corruption oracle
in our eSM model adds all records rec ∈ trans, which are
produced by ¬P at an unsafe epoch t (but not all epochs as
in [1]), into the compromise set comp.

Compared to [1], the corruption oracles in our model
can be queried under weaker requirements, providing the
adversary with more information. Moreover, our corruption
oracles set fewer records into the compromise set, which
enables the adversary to forge ciphertexts for more epochs.

Conclusion. Even without taking the use of identity keys and
pre-keys into account, our security model is strictly stronger
than the one in [1].

Appendix D.
Comparison of our eSM construction with
ACD19 and TR

Although our eSM construction in Section 4.2, the
ACD19 in [1], and the TR construction in [10], all satisfy
immediate decryption with constant bandwidth consumption,
their designs differ in many details.

Comparison between our eSM construction and ACD19:
The ACD19 protocol in [1, Section 5.1] employs three un-
derlying modules: CKA, FS-AEAD, and PRF-PRNG. While
the CKA employs the asymmetric cryptographic primitives,
such as KEM or Diffie-Hellman exchange, the FS-AEAD and
PRF-PRNG only employ symmetric cryptographic primitives,
such as AEAD, PRF, PRG. In particular, the FS-AEAD
deterministically derives the symmetric keys for encrypting
messages and decrypting ciphertexts from the state, which
is shared by both parties. Besides, they provide several CKA
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instantiations and all of them sample the asymmetric key
pairs only using the ephemeral randomness. Moreover, their
construction does not rely on any material outside the session
state. Thus, it is obvious that the leakage of either state will
trigger the loss of the privacy and authenticity.

Compared to the ACD19, our eSM construction has the
differences mainly from following three aspects: First, the
asymmetric primitives are used in every sending or receiving
execution. In particular, our construction uses the KEM and
DS keys across our asymmetric ratchet (ar) and unidirectional
ratchet (ur) frameworks. Although this stops the further
modularization of our eSM construction, the deployment of
the KEM and DS provides better performance in terms of
the strong privacy and strong authenticity, since the leakage
of sender’s (resp. receiver’s) state does not indicate the
compromise of the decapsulation key (resp. signing key)
and preserves the privacy (resp. authenticity).

Second, our construction makes use of the identity keys
and pre-keys, which also provide benefits in terms of strong
privacy, state compromise/failure, and PPR. If the corruption
of a device’s full state without secure environment is not
noticed by the owner (which is the common real-world
scenario), the privacy for subsequent messages from the
partner is lost until the corruption party sends a reply. The
use of pre-key provides mitigation in this scenario as the pre-
key is updated every certain period in the back-end without
the active behavior of the corrupted party. Moreover, if the
device has a secure environment such as an HSM, storing
identity keys into the HSM provides even stronger security
guarantees, as we explained in Section 3.3.

Finally, our construction implicitly uses three kinds
of NAXOS-like tricks for strong privacy. (1) First, the
symmetric root key together with ephemeral randomness
is used for deriving new shared state when sending the first
message in each epoch, this is same as in ACD19. (2) Second,
the NAXOS string st.nxs (in the sender’s state) together with
the ephemeral randomness is used for improving the key
generation when sending the first message in each epoch.
(3) Third, the unidirectional ratchet keys (derived from the
shared state) together with the ephemeral randomness are
used to derive the real message keys. We stress the second
and third NAXOS tricks provide additional benefits to our
construction when comparing with ACD19. On the one hand,
bad randomness quality of a party when sending the first
message in a new epoch will cause leakage of the private
KEM key in ACD19, but not in our construction. In this case,
the corruption of the partner in the next epoch will cause
the loss of privacy in ACD19, but not in our construction,
due to the second NAXOS trick. On the other hand, the
message keys are derived from not only the mere state but
also ephemeral randomness. The third NAXOS trick together
with the usage of identity keys and pre-keys provide stronger
privacy against state corruption attacks.

As an aside, we observe that the CKA instantiation
based on LWE (Frodo) does not provide correctness: CKA-
correctness requires both parties to always output the same
key, even if the adversary controls the randomness. Since
LWE based Frodo includes an error that needs to be recon-

ciled during the decapsulation, the adversary can always pick
bad randomness to prevent the correct reconciliation. Instead,
our construction is provably correct in the post-quantum
setting, if the underlying KEM satisfies strong correctness,
as explained in Section 4.3.

Comparison between our eSM construction and TR: The
TR construction in [10, Section 5.1] is very close to the one in
ACD19 except for two differences: (1) The FS-Stop function
of the underlying FS-AEAD components is invoked when
receiving the first message in a new epoch but not sending.
(2) The underlying CKA component must be instantiated
with a new customized CKA+ construction based on a Diffie-
Hellman exchange. The state of CKA+ component does not
merely rely on the randomness but also on the past state.
This can be seen as a variant of the NAXOS trick.

Compared to the TR construction, our eSM construction
mainly differs in four aspects: First, our construction employs
generic KEMs aiming at post-quantum compatibility, while
TR makes use of a concrete Diffie-Hellman exchange, which
is vulnerable to quantum attacks.

Second, while TR and our constructions both use the
root key for a NAXOS trick, the NAXOS trick for improving
privacy of the KEM key pairs is different. While TR uses a
tailored CKA+ construction assuming a non-standard StDH
and random oracles, our construction uses a local NAXOS
string st.nxs only assuming the dual security of the function
KDF2, the generic constructions of which based solely on
standard assumptions are given in [30].

Third, TR and our construction both prevent an adversary
from corrupting the receiver in the current epoch and forging
a ciphertext corresponding to the previous epoch to the
partner by erasing a party’s state for sending messages
once a message from the partner for the next epoch arrives.
Note that this attack is effective against ACD19, as the
adversary can in the current epoch corrupt the FS-AEAD
thread corresponding to the previous epoch and use it to
encrypt the forged message. The only difference Due to the
immediate decryption property, the forged ciphertext must
be correctly decrypted. The TR construction prevents this
attack by invoking FS-Stop function when receiving the
first message in a new epoch to erase the chain key for
sending in the previous epoch. In contrast, our construction
prevents this attack by erasing both the chain key and the
KEM encapsulation key for sending in the old epoch in the
eRcv-Max function.

Fourth, the remaining benefits of our construction in
comparison to ACD19 also apply to the comparison with
TR, including strong privacy, strong authenticity, PPR, the
resilience to a novel forgery attack.

Appendix E.
Review on DAKE Scheme and the Game-based
Deniability

We recall the DAKE scheme and its offline deniability
notion from [11].
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ExpdeniΣ,qP,qM,qS
(A):

1 Lall,L
ipk
all ,Lprepkall ← ∅

2 for u ∈ [qP]

3 Lpreku ← ∅
4 (ipku, iku)

$← Σ.IdKGen()

5 Lipkall
+← {ipku}

6 Lall
+← (ipku, iku)

7 for ind ∈ [qM]

8 (prepk
ind
u , prek

ind
u )

$← Σ.PreKGen()

9 Lpreku
+← prek

ind
u , Lprepkall

+← prepk
ind
u

10 Lall
+← (prepku, preku)

11 b
$← {0, 1}

12 b′
$← AO (Lall)

13 return Jb = b′K

Session-Start(sid, rid, ind):
14 if b = 0
15 πrid.role← resp, πrid.stexec ← running
16 πsid.role← init, πsid.stexec ← running

17 (π′
rid,m)

$← Σ.Run(ik rid,L
prek
rid ,Lipkall ,Lprepkall , πrid, (create, ind))

18 (π′
sid,m

′)
$← Σ.Run(ik sid,L

prek
sid ,Lipkall ,Lprepkall , πsid,m)

19 (K,T )
$← (π′

sid.K, (m,m ′))
20 else

21 (K,T )
$← Σ.Fake(ipk sid, ik rid,L

prek
rid , ind)

22 return (K,T )

Figure 6: The offline deniability experiment for an adversary A against a DAKE scheme Σ. The oracle O := {Session-Start}.

E.1. The DAKE Scheme

Definition 6. An asynchronous deniable authenticated key
exchange (DAKE) protocol Σ is a tuple of algorithms
Σ = (Σ.IdKGen,Σ.PreKGen,Σ.EpKGen,Σ.Run,Σ.Fake)
as defined below.
• (Long-term) identity key generation (ipku, iku)

$←
Σ.IdKGen(): outputs the identity public/private key pair
of a party u.

• (Medium-term) pre-key generation (prepk
ind

u , prek
ind

u )
$←

Σ.PreKGen(): outputs the ind-th public/private key pair
of a party u.

• (Ephemeral) key generation (epk
ind

u , ek
ind

u )
$←

Σ.EpKGen(): outputs the ind-th public/private key
pair of user u

• Session execution (π′,m ′)
$← Σ.Run(iku,Lprek

u ,Lipk
all ,

Lprepk
all , π,m): inputs a party u’s long-term private key

iku, a list of u’s private pre-keys Lprek
u , lists of long-term

and medium-term public keys for all honest parties Lipk
all

and Lprepk
all , a session state π, and an incoming message

m , and outputs an updated session state π′ and a (possibly
empty) outgoing message m ′. To set up the session sending
the first message, Σ.Run is called with a distinguished
message m = create.

• Fake algorithm (K,T )
$← Σ.Fake(ipku, ikv,Lprek

v , ind):
inputs one party u’s long-term identity public key ipku,
the other party v’s long-term identity private key ikv, a
list of v’s private pre-keys Lprek

v , and an index of party v’s
pre-key ind and generates a session key K and a transcript
T of a protocol interaction between them.

The session state π includes following variables (we only
recall the ones related to the offline deniability):
• role ∈ {init, resp}: the role of the party. The initiator
init and the responder resp indicate the message sender
and receiver in the DAKE, respectively.

• stexec ∈ {⊥, running, accepted, reject}: The status of
this session’s execution. The status is initialized with ⊥

and turns to running when the session starts. The status
is set to accept if the DAKE is executed without errors
and reject otherwise.

E.2. The Game-based Offline Deniability Experi-
ment

The game-based offline deniability experiment
ExpdeniΣ,qP,qM,qS

(A) for a DAKE protocol Σ is depicted
in Figure 6, where qP, qM, and qS respectively denotes the
maximal number of parties, of (medium-term) pre-keys per
party, and of total sessions. At the start of this experiment,
long-term identity and medium-term pre- public/private key
pairs are generated for all qP honest parties and provided
to the adversary7. A random challenge bit b is fixed for
the duration of the experiment. The adversary is given
repeated access to a Session-Start oracle which takes as
input two party identifiers sid and rid and a pre-key index
ind. If b is 0, then the Session-Start oracle will generate an
honest transcript of an interaction between sid and rid using
the Σ.Run algorithm and each party’s secret keys. If b is
1, then the Session-Start oracle will generate a simulated
transcript of an interaction between sid and rid using
the Σ.Fake algorithm. At the end of the experiment, the
adversary outputs a guess b′ of b. The experiment outputs
1 if b′ = b and 0 otherwise. The adversary’s advantage in
the deniability game is the absolute value of the difference
between 1

2 and the probability the experiment outputs 1.

Definition 7. An asynchronous DAKE protocol Σ is (t, ϵ, qS)-
deniable (with respect to maximal number of parties qP and
pre-keys per party qM) if for any adversary A with running
time at most t and making at most qS many queries (to its
Session-Start oracle), we have that

AdvdeniΣ (A) :=
∣∣Pr[ExpdeniΣ,qP,qM,qS

(A) = 1]− 1

2

∣∣ ≤ ϵ

where ExpdeniΣ,qP,qM,qS
(A) is defined in Figure 6.

7. The adversary here can be considered as a judge in reality.
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Appendix F.
Preliminaries

F.1. Key Encapsulation Mechanisms

Definition 8. A key encapsulation mechanism (KEM) scheme
over randomness space R and symmetric key space K is
a tuple of algorithms KEM = (K.KG,K.Enc,K.Dec) as
defined below.

• Key Generation (ek, dk)
$← K.KG(pp): takes as input

the public parameter pp and outputs a public encap-
sulation and private decapsulation key pair (ek, dk)
.

• Encapsulation (c, k)
$← K.Enc(ek): takes as input a

public key pk and outputs a ciphertext c and a symmetric
key k. We write (c, k)

$← K.Enc(ek; rEncaps) if the
random coins rEncaps ∈ R is specified.

• Decapsulation k ← K.Dec(dk, c): takes as input a
secret key dk and a ciphertext c and outputs either a
symmetric key k or an error symbol ⊥.

We say a KEM is δ-correct if for every (ek, dk)
$←

K.KG(), we have

Pr[k ̸= K.Dec(dk, c) : (c, k)
$← K.Enc(ek)] ≤ δ

In particular, we call a KEM (perfectly) correct if δ = 0.
We say a KEM is δ-strongly correct if for every

(ek, dk)
$← K.KG() and every rEncaps ∈ R, we have

Pr[k ̸= K.Dec(dk, c) : (c, k)
$← K.Enc(ek; rEncaps)] ≤ δ

Compared to the conventional correctness, the strong
correctness requires that the encapsulate keys can be correctly
recovered for every randomness coins involved during the
encapsulation. In particular, we call a KEM (perfectly)
strongly correct if δ = 0.

In terms of the security notions, we recall the standard
indistinguishability under chosen plaintext/ciphertext attacks
(IND-CPA/IND-CCA). The IND-CPA security prevents an
adversary from distinguishing the encapsulated symmetric
key of a challenge ciphertext from a random one. The
IND-CCA security additionally allows the adversary to access
a decapsulation oracle.

Definition 9. Let KEM = (K.KG,K.Enc,K.Dec) be a key
encapsulation mechanism scheme with symmetric space K.
We say KEM is ϵ-IND-XXX secure for XXX ∈ {CPA,CCA},
if for every (potential quantum) adversary A , we have

ϵIND-CCA
KEM (A) :=

∣∣∣Pr[ExptIND-XXX
KEM (A) = 1]− 1

2

∣∣∣ ≤ ϵ

where the ExptIND-XXX
KEM (A) experiment is defined in Figure 7.

F.2. Digital Signature

Definition 10. A digital signature scheme over message
space M and randomness space R is a tuple of algorithms
DS = (D.KG,D.Sign,D.Vrfy) as defined below.

• Key Generation (vk, sk) $← D.KG(pp): inputs the
public parameter pp and outputs a public verification
and private signing key pair (vk, sk).

• Signing σ
$← D.Sign(sk,m; rSign): inputs a signing key

sk and a message m ∈M and outputs a signature σ;
if the random coins rSign ∈ R is specified.

• Verification true/false ← D.Vrfy(vk,m, σ): inputs a
verification key vk, a message m, and a signature σ
and outputs a boolean value either true true or false.

We say a DS is δ-correct if for every (vk, sk)
$← D.KG()

and every message m ∈M, we have

Pr[false← D.Vrfy(vk,m,D.Sign(sk,m))] ≤ δ

In particular, we call a DS (perfectly) correct if δ = 0.
We say a DS is δ-strongly correct if for every (vk, sk)

$←
D.KG(), every message m ∈ M, and every rSign ∈ R we
have

Pr[false← D.Vrfy(vk,m,D.Sign(sk,m; rSign))] ≤ δ

Compared to the conventional correctness, the strong
correctness requires that the signed message-signature pair
be correctly verified for every randomness coins involved
during the signing. In particular, we call a DS (perfectly)
strongly correct if δ = 0.

In terms of the security notations, we recall the standard
(strongly) existential unforgeability against chosen message
attack EUF-CMA and SUF-CMA.

Definition 11. Let DS = (D.KG,D.Sign,K.Dec) be a digital
signature scheme with message space M. We say DS is ϵ-
EUF-CMA secure (resp. ϵ-SUF-CMA secure), if for every
(potential quantum) adversary A, we have

ϵEUF-CMA
DS (A) := Pr[ExptEUF-CMA

DS (A) = 1] ≤ ϵ

ϵSUF-CMA
DS (A) := Pr[ExptSUF-CMA

DS (A) = 1] ≤ ϵ

where the experiment ExptEUF-CMA
DS (A) and

ExptSUF-CMA
DS (A) are defined in Figure 8.

F.3. Authenticated Encryption

Definition 12. An authenticated encryption (SKE) scheme
over message space M, randomness space R, symmetric
key space K, and ciphertext space C is a tuple of algorithms
SKE = (S.Enc,S.Dec) as defined below.

• Encryption c
$← S.Enc(k,m; rEnc): takes as input a

symmetric key k and a message m and outputs a
ciphertext c. We write c

$← S.Enc(k; rEnc) if the random
coins rEnc ∈ R is specified.
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ExptIND-CPA
KEM (A):

1 b
$← {0, 1}

2 (ek, dk)
$← K.KG()

3 (c⋆, k⋆0)
$← K.Enc(ek)

4 k⋆1
$← K

5 b′
$← A(ek, c⋆, k⋆b )

6 return Jb = b′K

ExptIND-CCA
KEM (A):

1 b
$← {0, 1}

2 (ek, dk)
$← K.KG()

3 (c⋆, k⋆0)
$← K.Enc(ek)

4 k⋆1
$← K

5 b′
$← AODecaps (ek, c⋆, k⋆b )

6 return Jb = b′K

ODecaps(c):
7 if c = c⋆

8 return ⊥
9 k′ ← K.Dec(dk, c)
10 return k′

Figure 7: IND-CPA and IND-CCA experiments for KEM = (K.KG,K.Enc,K.Dec) with symmetric key space K.

ExptEUF-CMA
DS (A):

1 L ← ∅
2 (vk, sk)

$← D.KG()

3 (m⋆, σ⋆)
$← AOSign (vk)

4 if m⋆ ∈ L
5 return 0
6 return JD.Vrfy(vk,m⋆, σ⋆)K
OSign(m):

7 σ
$← D.Sign(sk,m)

8 L +← m
9 return σ

ExptSUF-CMA
DS (A):

1 L ← ∅
2 (vk, sk)

$← D.KG()

3 (m⋆, σ⋆)
$← AOSign (vk)

4 if (m⋆, σ⋆) ∈ L
5 return 0
6 return JD.Vrfy(vk,m⋆, σ⋆)K
OSign(m):

7 σ
$← D.Sign(sk,m)

8 L +← (m, σ)
9 return σ

Figure 8: EUF-CMA and SUF-CMA experiments for DS = (D.KG,D.Sign,D.Vrfy).

• Decryption m ← S.Dec(k, c): takes as input a sym-
metric key k and a ciphertext c and outputs either a
symmetric key k or an error symbol ⊥.

We say a SKE is δ-correct if for every k
$← K and every

message m ∈M, we have

Pr[m ̸= S.Dec(k,S.Enc(k,m))] ≤ δ

In particular, we call a SKE (perfectly) correct if δ = 0.
We say a SKE is δ-correct if for every k

$← K(), every
message m ∈M,and every rEnc ∈ R, we have

Pr[m ̸= S.Dec(k, S.Enc(k,m; rEnc))] ≤ δ

Compared to the conventional correctness, the strong
correctness requires that the encrypted message can be
correctly recovered for every randomness coins involved
during the encryption. In particular, we call a SKE (perfectly)
strongly correct if δ = 0.

In terms of the security notions, we recall the indis-
tinguishability under one-time chosen ciphertext attacks
(IND-1CCA). In this security notion, the adversary is allowed
to query the encryption oracle OEnc at most once. However,
the adversary can have access to the decryption oracle ODec

with arbitrary times.
In particular, this security notion is achievable even for

deterministic SKE.

Definition 13. Let SKE = (S.Enc,S.Dec) be an authenti-
cated encryption scheme with ciphertext space C. We say
SKE is ϵ-IND-1CCA secure, if for every (potential quantum)
adversary A , we have

ϵIND-1CCA
SKE (A) :=

∣∣∣Pr[ExptIND-1CCA
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ

where the ExptIND-1CCA
SKE (A) experiment is defined in Fig-

ure 9.

F.4. Pseudorandom Generators and Pseudorandom
Functions

Definition 14. Let F : R → O denote a function that maps
a random string r ∈ R to an output y ∈ O. We say F
is ϵ-prg secure if for any variable X that follows uniform
distribution over R and any variable Y that follows uniform
distribution over O, we have

AdvprgF (D) :=
∣∣∣Pr[D(F(X)) = 1]− Pr[D(Y ) = 1]

∣∣∣ ≤ ϵ

Definition 15. Let F : K×M → O be a function that maps
a key k ∈ K and a string m ∈M to an output y ∈ O. We
say F is ϵ-prf-secure if for any k

$← K and any truly random
function R :M→O, we have

AdvprfF (D) :=
∣∣∣Pr[DF(k,·) = 1]− Pr[DR(·) = 1]

∣∣∣ ≤ ϵ

We say PRF is swap-secure if the argument-swapped function
¯PRF(m, k) := PRF(k,m) is prf-secure. We say PRF is a

dual-PRF when it is both prf-secure and swap-secure.

Definition 16. Let m ≥ 2. Let F : K1 × ...×Km → O be
a function that maps m keys ki ∈ Ki for 1 ≤ i ≤ m to
an output y ∈ O. We say F is ϵ-mprf-secure if all of the
functions Fi(ki, (k1, ..., ki−1, ki+1, ..., km)) := F(k1, ..., km)
is prf-secure.

21



ExptIND-1CCA
SKE (A):

1 b
$← {0, 1}

2 k
$← K()

3 c⋆ ← ⊥
4 b′

$← AOEnc,ODec ()
5 return Jb = b′K

OEnc(m):
1 req c⋆ = ⊥
2 if b = 0

3 c⋆
$← S.Enc(k,m)

4 else

5 c⋆
$← C

6 return c

ODec(c):
7 if c = c⋆ or b = 1
8 return ⊥
9 return S.Dec(k, c)

Figure 9: IND-1CCA experiment for SKE = (S.KG, S.Enc, S.Dec) with ciphertext space C.

The mprf secure function can be easily construction from
dual-secure functions. In this paper, we makes use of a mprf-
secure KDF for m = 3. Below, we present the instantiation
and prove the security.

Theorem 3. Let F1 : K1×K2 → O1 and F2 : O1×K3 → O2

be two functions. If F1 and F2 both are ϵ-dual-secure, then
the function F′(k1, k2, k3) := F2(F1(k1, k2), k3) is ϵ′-3prf-
secure such that ϵ′ ≤ qϵ, where q denotes the number of
queries by any adversary against 3prf-security of F′.

Proof. We first show that F̄1(k1, (k2, k3)) :=
F′(k1, k2, k3) = F2(F1(k1, k2), k3) is prf-secure. We
prove this by game hopping. Let q denote the number of
queries that an adversary A makes. Let Advi denote the
advantage of A in winning game i.
Game 0. This game is identical to the experiment. And we
have that Adv0 := ϵ′

Game 1. In this game, whenever A queries (k2, k3), the chal-
lenger samples a random y1 and replaces F̄1(k1, (k2, k3)) =
F2(F1(k1, k2), k3) by F̄1(k1, (k2, k3)) = F2(y1, k3). If the
adversary A can distinguish Game 0 and Game 1, then we
can easily construct an adversary that breaks the prf security
of F1. Thus, Adv0 − Adv1 ≤ ϵ.
Game 2. In this game, whenever A queries (k2, k3), the chal-
lenger samples a random y1 and replaces F̄1(k1, (k2, k3)) =
F2(y1, k3) by F̄1(k1, (k2, k3)) = y2.

If the adversary A can distinguish Game 0 and Game 1,
then we can easily construct an adversary that breaks the prf
security of at least one of q F2. Thus, Adv0 − Adv1 ≤ qϵ.

Now, in Game 2 the challenger always simulates the
random function. Thus, A cannot distinguish it, and we have
that ϵ ≤ (q + 1)ϵ.

The analysis for the prf-security of
F̄2(k2, (k1, k3)) :=F′(k1, k2, k3) = F2(F1(k1, k2), k3)
and F̄3(k3, (k1, k2)) := F′(k1, k2, k3) = F2(F1(k1, k2), k3)
is similar.

Appendix G.
Security Modularization

The analysis for the security of messaging protocols are
often very tedious, since both the security model and the
protocols are usually highly complex. Alwen et al. [1] opt to
first reduce the SM-security into several simplified security
notions: correctness, privacy, and authenticity. Then, they
respectively prove the individual simplified security of their
proposal ACD19. We adopt the similar strategies: we split

the eSM-security into several new simplified security notions
and prove the reduction between eSM and the new simplified
security notions.

Correctness: We define our correctness model ExpCORR
Π,△eSM

for an eSM scheme Π with respect to a parameter △eSM

identical to the model ExpeSMΠ,△eSM
with the same parameter

△eSM, except for the following modifications:
1) there are no CHALLENGE-A and CHALLENGE-B ora-

cles
2) the INJECT-A and INJECT-B are replaced by a reduced

injection oracle, which is identical to the injection oracle
except for the following two modifications:
• if the input ciphertext c does not correspond to any

position (t′, i′) ∈ comp, INJECT-A and INJECT-B
immediately returns (t′, i′,⊥)

• the if-clause in Line 56 and 57 are removed
This simplified correctness experiment is defined similar

to the one in [1].
Note that the adversary receives no information about

the challenge bit, since the challenge oracles are removed.
The adversary cannot win via the predicate winpriv except
by randomly guessing. Moreover, the predicate winauth in
the injection oracles is removed. The winauth predicate is
never set to true. Intuitively, the adversary can win the
correctness game with non-zero advantage only via wincorr

in the DELIVER-A and DELIVER-B oracles.

Definition 17. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-
CORR secure if the below defined advantage for any adver-
sary A in time t is bounded by

AdvCORR
Π,△eSM

(A) :=Pr[ExpCORR
Π,△eSM

(A) = (1, 0, 0)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number
of queries A can make, the maximal number of epochs,
and the maximal number of pre-keys of each party in the
experiment ExpCORR

Π,△eSM
.

Authenticity: We define our authenticity model ExpAUTHΠ,△eSM

for an eSM scheme Π with respect to a parameter △eSM

identical to the model ExpeSMΠ,△eSM
with the same parameter

△eSM, except for the following modifications:
1) there are no CHALLENGE-A and CHALLENGE-B ora-

cles
2) the winning predicate wincorr is never set to true in

the DELIVER-A and DELIVER-B, i.e., the if-clause in
Line 48 is removed.

3) the adversary has to output an epoch t⋆ at the beginning
of the experiment
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4) the INJECT-A and INJECT-B are replaced by a reduced
injection oracle (see above) unless the input ciphertext
c corresponds to the epoch t⋆. (Recall that the position
including the epoch and message index is assumed to
be efficiently computable from c for natural eSM.)

This simplified authenticity experiment is defined differ-
ently from the one in [1], as the adversary has to output
only one epoch t⋆, which indicates the epoch of the forged
ciphertext, without outputting another epoch t⋆L as in [1],
which indicating the last corruption event before the t⋆.

Note that the adversary receives no information about
the challenge bit, since the challenge oracles are removed.
The adversary cannot win via the predicate winpriv except by
randomly guessing. Moreover, the predicate wincorr in the
deliver oracles is removed. The wincorr predicate is never set
to true. Intuitively, the adversary can win the authenticity
game with non-zero advantage only via winauth in the
INJECT-A and INJECT-B oracles for a forged ciphertext
corresponding to the epoch t⋆, which is claimed by the
adversary at the beginning of the experiment.

Definition 18. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-
AUTH secure if the below defined advantage for any adver-
sary A in time t is bounded by

AdvAUTHΠ,△eSM
(A) :=Pr[ExpAUTHΠ,△eSM

(A) = (0, 1, 0)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number
of queries A can make, the maximal number of epochs,
and the maximal number of pre-keys of each party in the
experiment ExpAUTHΠ,△eSM

.

Privacy: We define our privacy model ExpPRIVΠ,△eSM
for an eSM

scheme Π with respect to a parameter △eSM identical to the
model ExpeSMΠ,△eSM

with the same parameter △eSM, except for
the following modifications:

1) the winning predicate wincorr is never set to true in
the DELIVER-A and DELIVER-B, i.e., the if-clause in
Line 48 is removed.

2) the INJECT-A and INJECT-B are replaced by a reduced
injection oracle (see above).

3) the adversary has to output an epoch t⋆ at the beginning
of the experiment.

4) the challenge oracle CHALLENGE-A (resp.
CHALLENGE-B) can only be queried if tA = t⋆

(resp. tB = t⋆)
This simplified privacy experiment is also defined dif-

ferently from the one in [1], as the adversary has to output
only one epoch, which indicates the epoch of the challenge
query, without outputting another epoch t⋆L as in [1], which
indicating the last corruption event before the t⋆.

Note that the predicate wincorr in the deliver oracles and
the winauth in the injection oracles are removed. The wincorr

and winauth predicates are never set to true. Intuitively, the
adversary can win the privacy game only via winpriv predicate
by distinguishing the challenge bit using the challenge
ciphertexts corresponding to the epoch t⋆, which is claimed
by the adversary at the beginning of the experiment.

Definition 19. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-
PRIV secure if the below defined advantage for any adversary
A in time t is bounded by

AdvPRIVΠ,△eSM
(A) :=Pr[ExpPRIVΠ,△eSM

(A) = (0, 0, 1)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number
of queries A can make, the maximal number of epochs,
and the maximal number of pre-keys of each party in the
experiment ExpPRIVΠ,△eSM

.

Appendix H.
Proof of Theorems and Lemmas

H.1. Our Lemmas

Lemma 1. Let Π be an eSM scheme that is
• (t, q, qep, qM,△eSM, ϵ

CORR
Π )-CORR secure,

• (t, q, qep, qM,△eSM, ϵ
AUTH
Π )-AUTH secure, and

• (t, q, qep, qM,△eSM, ϵ
PRIV
Π )-PRIV secure

Then, it is also (t, q, qep, qM,△eSM, ϵ)-eSM secure, where

ϵ ≤ ϵCORR
eSM + qep(ϵ

AUTH
eSM + ϵPRIVeSM )

Lemma 2. Let Π denote our eSM construction in Section 4.2.
If the underlying KEM, DS, and SKE are respectively
δKEM , δDS , δSKE-strongly correct8 in time t, then Π is
(t, q, qep, qM,△eSM,Adv

CORR
Π,△eSM

)-CORR secure for△eSM = 2,
such that

AdvCORR
Π,△eSM

≤ (qep + q)δDS + 3(qep + q)δKEM + qδSKE

Lemma 3. Let Π denote our eSM construction in Section 4.2.
If the underlying KEM is ϵIND-CCA

KEM -secure, SKE is ϵIND-1CCA
SKE -

secure, KDF1 is ϵ3prfKDF1
-secure9, KDF2 is ϵdualKDF2

secure, KDF3

is ϵprfKDF3
-secure, KDF4 is ϵprgKDF4

-secure, KDF5 is ϵdualKDF5
-

secure, in time t, then Π is (t, q, qep, qM,△eSM,Adv
PRIV
Π,△eSM

)-
PRIV secure for △eSM = 2, such that

AdvPRIVΠ,△eSM
≤ qMqepqϵ

IND-CCA
KEM + qMqϵ

IND-1CCA
SKE + qMqepqϵ

3prf
KDF1

+ q2epqϵ
dual
KDF2

+ qepqϵ
prf
KDF3

+ q2ϵprgKDF4
+ (qMqep + 1)qϵdualKDF5

Lemma 4. Let Π denote our eSM construction in Section 4.2.
If the underlying DS is ϵSUF-CMA

DS -secure, KEM is ϵIND-CCA
KEM -

secure, SKE is ϵIND-1CCA
SKE -secure, KDF1 is ϵ3prfKDF1

-secure,
KDF2 is ϵdualKDF2

secure, KDF3 is ϵprfKDF3
-secure, KDF4 is

ϵprgKDF4
-secure, KDF5 is ϵdualKDF5

-secure, in time t, then Π is
(t, q, qep, qM,△eSM,Adv

AUTH
Π,△eSM

)-AUTH secure for△eSM = 2,
such that

AdvAUTHΠ,△eSM
≤ ϵSUF-CMA

DS + qepqMϵ
IND-CCA
KEM + 2qϵIND-1CCA

SKE

+ qepqMϵ
3prf
KDF1

+ qep(qep + 1)ϵdualKDF2
+ qepϵ

prf
KDF3

+ qϵprgKDF4
+ (qepqM + q)ϵdualKDF5

8. By strongly correct, we mean that the schemes are conventionally
correct for all randomness. See Appendix F for more details.

9. By 3prf security, we mean that a function is indistinguishable from a
random function with respect to any of the three inputs. See Appendix F.4
for mode details.
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H.2. Proof of Lemma 1

Proof. The proof is conducted by case distinction. Let A
denote an attacker that breaks ExpeSMΠ,△eSM

security of an eSM
scheme Π with respect to the parameter △eSM. Recall that
the advantage of A in winning ExpeSMΠ,△eSM

experiment is
defined as:

AdveSMΠ,△eSM
(A) =max

(
Pr[ExpeSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)

Below, we respectively measure Pr[ExpeSMΠ,△eSM
(A) =

(1, 0, 0)], Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)], and

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)] − 1

2 | in the following
Case 1, 2, and 3.

Case 1. We compute the probability Pr[ExpeSMΠ,△eSM
(A) =

(1, 0, 0)], i.e., A wins via the winning predicate wincorr by
reduction. Namely, if A can win ExpeSMΠ,△eSM

experiment of
the eSM construction Π with a parameter △eSM, then there
exists an attacker B1 that breaks simplified CORR security
of the eSM construction Π with the same parameter △eSM.
Let C1 denote the challenger in the ExpCORR

Π,△eSM
experiment.

At the beginning, the attacker B1 samples a challenge bit
b ∈ {0, 1} uniformly at random. Then, B1 invokes A and
answers the queries from A as follows. Note that all safe
predicates in eSM and CORR experiments are identical, B1
can always compute the safe predicates by itself, according
to A’s previous queries.

• NEWIDKEY-A(r) and NEWIDKEY-B(r): B1 simply
forwards them to C1 followed by forwarding replies
from C1 to A.

• NEWPREKEY-A(r) and NEWPREKEY-B(r): B1 sim-
ply forwards them to C1 followed by forwarding replies
from C1 to A.

• REVIDKEY-A and REVIDKEY-B: B1 sets safeidKA or
safeidKB (according the invoked oracle) to false and runs
corruption-update(). For each record in the allChall
set, B1 then checks whether the safe challenge predicate
for all of the records holds. If one of them is false, B1
undoes the actions in this query and exists the oracle
invocation. In particular, B1 resets the safe identity
predicate to true. Then, the attacker B1 simply forwards
the queries to C1 followed by forwarding replies from
C1 to A.

• REVPREKEY-A(ind) and REVPREKEY-B(ind): B1
adds the ind into the pre-key reveal list, according to the
invoked oracle and runs corruption-update(). For
each record in the allChall set, B1 then checks whether
the safe challenge predicate for all of the records holds.
If one of them is false, B1 undoes the actions in this
query and exists the oracle invocation. In particular, B1
removes the pre-key counter ind from the pre-key reveal
list. Then, the attacker B1 simply forwards the queries
to C1 followed by forwarding replies from C1 to A.

• CORRUPT-A and CORRUPT-B: Let P denote the party,
whose session state the attacker is trying to cor-
rupt. B1 adds the corresponding epoch counter tP
into the session state corruption list Lcor

P and runs
corruption-update(). Next, B1 checks whether there
exists a record including (¬P, ind, flag) ∈ chall. If such
element does not exist, or, such element exists but either
of the following conditions holds,
– flag = good and safeidKP

– flag = good and safepreKP (ind)
If one of them is false, B1 undoes the actions in this
query and exists the oracle invocation. In particular, B1
removes the epoch counter tP from the session state
corruption list. Then, the attacker B1 simply forwards
the queries to C1 followed by forwarding replies from
C1 to A.

• TRANSMIT-A(ind,m, r) and TRANSMIT-B(ind,m, r):
B1 simply forwards them to C1 followed by forwarding
replies from C1 to A.

• CHALLENGE-A(ind,m0,m1, r) and
CHALLENGE-B(ind,m0,m1, r): We first consider
the case for answering CHALLENGE-A(ind,m0,m1, r).
The attacker B1 first computes flag = Jr = ⊥K.
Namely, flag = true if and only if r is ⊥. Then, B1
checks whether the predicate safe-chA(flag, tA, ind) is
true, according to A’s previous queries. If the safe
predicates is false, or, the input messages m0 and
m1 have the distinct length, B1 simply aborts the
oracle. Otherwise, B1 queries TRANSMIT-A(ind,mb, r)
to C1 for a ciphertext c. Then, B1 adds the record
record(A, ind, flag, tA, iA,mb, c) into its own allChall
and chall. Finally, B1 returns c to A.
The step for answering CHALLENGE-B(ind,m0,m1, r)
is similar to above step except that the functions and
variables related to A are replaced by the ones to B and
vice versa.

• DELIVER-A(c) and DELIVER-B(c): B1 first checks
whether there exists an element (t, i, c) ∈ chall for any
t and i. If such element exists, the attacker B1 simply
returns (t, i,⊥) to A. Otherwise, B1 simply forwards
the queries to C1, followed by forwarding replies from
C1 to A. After that, B1 removes any element including
(t, i, c) from the challenge set chall.

• INJECT-A(ind, c) and INJECT-B(ind, c): B1 simply for-
wards them to C1 followed by forwarding replies from
C1 to A.

Note that if the attacker A wins via the winning predicate
wincorr, the winning predicate winauth in the INJECT-A and
INJECT-B is never set to true, which implies either m ′ = ⊥
or (B, t′, i′) ∈ comp, where t′ and i′ can be efficiently
computed from the input ciphertext c. This means, the
reduced injection oracles are identical to the original injection
oracles from A’s view. Moreover, all other oracles are
honestly simulated. This means, B1 wins if and only if
A wins. Thus, we have that

Pr[ExpeSMΠ,△eSM
(A) = (1, 0, 0)] ≤ AdvCORR

Π,△eSM
(B1) ≤ ϵCORR

Π

Furthermore, if A runs in time t, so does B1.
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Case 2. We compute the probability Pr[ExpeSMΠ,△eSM
(A) =

(0, 1, 0)], i.e., A wins via the winning predicate winauth by
reduction.

Namely, if A can win ExpeSMΠ,△eSM
experiment of a eSM

construction Π with a parameter △eSM, then there exists
an attacker B2 that breaks simplified AUTH security of
the eSM construction Π with the same parameter △eSM.
Let C2 denote the challenger in the ExpAUTHΠ,△eSM

experiment.
At the beginning, the attacker B2 samples a challenge bit
b ∈ {0, 1} and an epoch t⋆ ∈ [qep] uniformly at random.
Next, B2 sends t⋆ to its challenger C2. Then, B2 invokes A
and answers the queries from A as follows. Note that all safe
predicates in eSM and AUTH experiments are identical, B2
can always compute the safe predicates by itself, according
to A’s previous queries.

• NEWIDKEY-A(r) and NEWIDKEY-B(r): B2 simply
forwards them to C2 followed by forwarding replies
from C2 to A.

• NEWPREKEY-A(r) and NEWPREKEY-B(r): B2 sim-
ply forwards them to C2 followed by forwarding replies
from C2 to A.

• REVIDKEY-A and REVIDKEY-B: B2 sets safeidKA or
safeidKB (according the invoked oracle) to false and runs
corruption-update(). For each record in the allChall
set, B2 then checks whether the safe challenge predicate
for all of the records holds. If one of them is false, B2
undoes the actions in this query and exists the oracle
invocation. In particular, B2 resets the safe identity
predicate to true. Then, the attacker B2 simply forwards
the queries to C2 followed by forwarding replies from
C2 to A.

• REVPREKEY-A(ind) and REVPREKEY-B(ind): B2
adds ind into the pre-key reveal list, according to the
invoked oracle and runs corruption-update(). For
each record in the allChall set, B2 then checks whether
the safe challenge predicate for all of the records holds.
If one of them is false, B2 undoes the actions in this
query and exists the oracle invocation. In particular, B2
removes the pre-key counter ind from the pre-key reveal
list. Then, the attacker B2 simply forwards the queries
to C2 followed by forwarding replies from C2 to A.

• CORRUPT-A and CORRUPT-B: Let P denote the party,
whose session state the attacker is trying to cor-
rupt. B2 adds the corresponding epoch counter tP
into the session state corruption list Lcor

P and runs
corruption-update(). Next, B2 checks whether there
exists a record including (¬P, ind, flag) ∈ chall. If such
element does not exist, or, such element exists but either
of the following conditions holds,
– flag = good and safeidKP

– flag = good and safepreKP (ind)
If one of them is false, B2 undoes the actions in this
query and exists the oracle invocation. In particular, B2
removes the epoch counter tP from the session state
corruption list. Then, the attacker B2 simply forwards
the queries to C2 followed by forwarding replies from
C2 to A.

• TRANSMIT-A(ind,m, r) and TRANSMIT-B(ind,m, r):
B2 simply forwards them to C2 followed by forwarding
replies from C2 to A.

• CHALLENGE-A(ind,m0,m1, r) and
CHALLENGE-B(ind,m0,m1, r): We first consider
the case for answering CHALLENGE-A(ind,m0,m1, r).
The attacker B2 first computes flag = Jr = ⊥K.
Namely, flag = true if and only if r is ⊥. Then, B2
checks whether the predicate safe-chA(flag, tA, ind) is
true, according to A’s previous queries. If the safe
predicates is false, or, the input messages m0 and
m1 have the distinct length, B2 simply aborts the
oracle. Otherwise, B2 queries TRANSMIT-A(ind,mb, r)
to C2 for a ciphertext c. Then, B2 adds the record
record(A, ind, flag, tA, iA,mb, c) into its own allChall
and chall. Finally, B2 returns c to A.
The step for answering CHALLENGE-B(ind,m0,m1, r)
is similar to above step except that the functions and
variables related to A are replaced by the ones to B and
vice versa.

• DELIVER-A(c) and DELIVER-B(c): B2 first checks
whether there exists an element (t, i, c) ∈ chall for any
t and i. If such element exists, the attacker B2 simply
returns (t, i,⊥) to A. Otherwise, B2 simply forwards
the queries to C2, followed by forwarding replies from
C2 to A. After that, B2 removes any element including
(t, i, c) from the challenge set chall.

• INJECT-A(ind, c) and INJECT-B(ind, c): B2 simply for-
wards them to C2 followed by forwarding replies from
C2 to A.

Note that if the attacker A wins via the winning predicate
winauth, the winning predicate wincorr in the DELIVER-A(c)
and DELIVER-B(c) is never set to true. This means, the
deliver oracles in CORR experiment is identical to the
original deliver oracles from A’s view. Note also that the
winning predicate winauth is never set to false once it has
been set to true.

Assume that attacker B2 guesses the epoch t⋆ cor-
rectly, such that A triggers the flip of winauth by querying
INJECT-A(ind, c) or INJECT-B(ind, c) for a ciphertext c
corresponding to epoch t⋆, which happens with proba-
bility 1

qep
. For all previous queries INJECT-A(ind, c) and

INJECT-B(ind, c), where c does not correspond to the epoch
t⋆, the flip of winauth from false to true will not be triggered.
In this case, our reduced injection oracle correctly simulates
the behavior of the original injection oracles. For all previous
queries INJECT-A(ind, c) and INJECT-B(ind, ct), where c
corresponds to the epoch t⋆, our reduced injection oracle
simulates the identical behavior of the original injection
oracles.

Note that all other oracles are honestly simulated. The
attacker B2 wins if and only if A wins and the guess t⋆ is
correctly. Note also that the event A wins and the number
that B2 guesses are independent. Thus, we have that

Pr[ExpeSMΠ,△eSM
(A) = (1, 0, 0)] ≤ qepAdv

CORR
Π,△eSM

≤ qepϵ
AUTH
Π

Moreover, if A runs in time t, so does B2.
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Case 3. We compute the probability |Pr[ExpeSMΠ,△eSM
(A) =

(0, 0, 1)]− 1
2 |, i.e., A wins via the winning predicate winpriv

by hybrid games. Let Gj denote the simulation of Game j.
Game 0. This game is identical to the ExpeSMΠ,△eSM

experiment.
Thus, we have that

Pr[G0(A) = (0, 0, 1)] = Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]

Game i (1 ≤ j ≤ qep). This game is identical to Game
(j − 1) except the following modifications:

• When the attacker queries
CHALLENGE-A(ind,m0,m1, r) at epoch j, the
challenger first checks whether ind ≤ nB and
|m0| = |m1| and aborts if the condition does not hold.
Then, the challenger samples a random message m̄ of
the length |m0| and runs CHALLENGE-A(ind, m̄, m̄, r)
instead of CHALLENGE-A(m0,m1, r). Finally, the
challenger returns the produced ciphertext c to A.

It is easy to observe that in Game qep all challenge
ciphertexts are encrypted independent of the challenge bit.
Thus, the attacker A can output the bit b′ only by randomly
guessing, which indicates that

Pr[Gqep(A) = (0, 0, 1)] =
1

2
Let E denote the event that the attacker can distinguish

any two adjacent hybrid games. We have that

|Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]| ≤ Pr[E]

Moreover, note that the modifications in every hybrid game
j is independent of the behavior in hybrid game (j − 1).
Thus, we have that
|Pr[G0(A) = (0, 0, 1)]− Pr[Gqep(A) = (0, 0, 1)]|

≤|
qep∑
j=1

Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]|

≤
qep∑
j=1

|Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]|

≤qep Pr[E]

Below, we analyze the probability of the occurrence of
the event E by reduction. Namely, if A can distinguish any
two adjacent games Game (j − 1) and Game j, then there
exists an attacker B3 that breaks simplified PRIV security of
the eSM construction Π with the same parameter △eSM. Let
C3 denote the challenger in the ExpPRIVΠ,△eSM

experiment. At the
beginning, the attacker B3 sends the epoch j to its challenger
C3 and samples a bit b̄ ∈ {0, 1} uniformly at random. Then,
B3 invokes A and answers the queries from A as follows.
Note that all safe predicates in Game (j − 1), Game j, and
PRIV experiments are identical, B3 can always compute the
safe predicates by itself, according to A’s previous queries.

• NEWIDKEY-A(r) and NEWIDKEY-B(r): B3 simply
forwards them to C3 followed by forwarding replies
from C3 to A.

• NEWPREKEY-A(r) and NEWPREKEY-B(r): B3 sim-
ply forwards them to C3 followed by forwarding replies
from C3 to A.

• REVIDKEY-A and REVIDKEY-B: B3 sets safeidKA or
safeidKB (according the invoked oracle) to false and runs
corruption-update(). For each record in the allChall
set, B3 then checks whether the safe challenge predicate
for all of the records holds. If one of them is false, B3
undoes the actions in this query and exists the oracle
invocation. In particular, B3 resets the safe identity
predicate to true. Then, the attacker B3 simply forwards
the queries to C3 followed by forwarding replies from
C3 to A.

• REVPREKEY-A(ind) and REVPREKEY-B(ind): B3
adds ind into the pre-key reveal list, according to the
invoked oracle and runs corruption-update(). For
each record in the allChall set, B3 then checks whether
the safe challenge predicate for all of the records holds.
If one of them is false, B3 undoes the actions in this
query and exists the oracle invocation. In particular, B3
removes the pre-key counter ind from the pre-key reveal
list. Then, the attacker B3 simply forwards the queries
to C3 followed by forwarding replies from C3 to A.

• CORRUPT-A and CORRUPT-B: Let P denote the party,
whose session state the attacker is trying to cor-
rupt. B3 adds the corresponding epoch counter tP
into the session state corruption list Lcor

P and runs
corruption-update(). Next, B3 checks whether there
exists a record including (¬P, ind, flag) ∈ chall. If such
element does not exist, or, such element exists but either
of the following conditions holds,
– flag = good and safeidKP

– flag = good and safepreKP (ind)
If one of them is false, B3 undoes the actions in this
query and exists the oracle invocation. In particular, B3
removes the epoch counter tP from the session state
corruption list. Then, the attacker B3 simply forwards
the queries to C3 followed by forwarding replies from
C3 to A.

• TRANSMIT-A(ind,m, r) and TRANSMIT-B(ind,m, r):
B3 simply forwards them to C3 followed by forwarding
replies from C3 to A.

• CHALLENGE-A(ind,m0,m1, r) and
CHALLENGE-B(ind,m0,m1, r): These oracles
are answered according to one of the following cases.
Here, we only explain the behavior for answering
CHALLENGE-A for simplicity. The behavior for
answering CHALLENGE-B can be defined analogously.
– [tA < j]: When the attacker A queries

CHALLENGE-A(ind,m0,m1, r) at epoch tA < j, the
B3 first computes flag← Jr = ⊥K. Next, B3 checks
whether safe-chA(flag, tA, ind) = true, ind ≤ nB, and
|m0| = |m1| and aborts if any condition does not
hold. Otherwise, B3 samples a random message m̄ of
the length |m0| and queries TRANSMIT-A(ind, m̄, r)
for a ciphertext c. Finally, the B3 adds the record
rec = (A, ind, flag, tA, iA, m̄, c) into both allChall and
chall, followed by returning the ciphertext c to A.

– [tA = j]: When the attacker A queries
CHALLENGE-A(ind,m0,m1, r) at epoch tA = j,
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the B3 first computes flag ← Jr = ⊥K. Next,
B3 checks whether safe-chA(flag, tA, ind) = true,
ind ≤ nB, and |m0| = |m1| and aborts if any
condition does not hold. Otherwise, B3 samples
a random message m̄ of the length |m0| and
queries CHALLENGE-A(ind,mb̄, m̄, r) for a cipher-
text c. Finally, the B3 adds the record rec =
(A, ind, flag, tA, iA, , c) into both allChall and chall,
followed by returning the ciphertext c to A.

– [tA > j]: When the attacker A queries
CHALLENGE-A(ind,m0,m1, r) at epoch tA > j, the
B3 first computes flag← Jr = ⊥K. Next, B3 checks
whether safe-chA(flag, tA, ind) = true, ind ≤ nB, and
|m0| = |m1|, and aborts if any condition does not
hold. Otherwise, B3 queries TRANSMIT-A(ind,mb̄,
r) for a ciphertext c. Finally, the B3 adds the record
rec = (A, ind, flag, tA, iA,mb̄, c) into both allChall and
chall, followed by returning the ciphertext c to A.

• DELIVER-A(c) and DELIVER-B(c): B3 first checks
whether there exists an element (t, i, c) ∈ chall for any
t and i. If such element exists, the attacker B3 simply
returns (t, i,⊥) to A. Otherwise, B3 simply forwards
the queries to C3, followed by forwarding replies from
C3 to A. After that, B3 removes any element including
(t, i, c) from the challenge set chall.

• INJECT-A(ind, c) and INJECT-B(ind, c): B3 simply for-
wards them to C3 followed by forwarding replies from
C3 to A.

Note that if the attacker A wins via the winning predicate
winpriv, the winning predicate wincorr in the DELIVER-A and
DELIVER-B and winauth in the INJECT-A and INJECT-B is
never set to true. This means, the deliver oracles and injection
oracles in PRIV experiment is identical to the original ones
from A’s view.

Note that all other oracles are honestly simulated. If
the challenge bit b in the PRIV experiment is 0, then B3
perfectly simulates Game (j − 1) to A. If the challenge bit
b in the PRIV experiment is 1, then B3 perfectly simulates
Game j to A. This means, the attacker B3 wins if and only
if A can distinguish the adjacent hybrid games Game (j−1)
and Game j, which is defined as the occurrence of event E.
Thus, we have that

Pr[E] ≤ AdvPRIVΠ,△eSM
≤ ϵPRIVeSM

Combing the equations above, we have that:

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|

=|Pr[G0(A) = (0, 0, 1)]− Pr[Gqep(A)]|
≤qep Pr[E] ≤ qepϵ

PRIV
eSM

Moreover, if A runs in time t, so does B2.

Conclusion. The proof is concluded by

AdveSMΠ,△eSM
(A) =max

(
Pr[ExpeSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)

≤max
(
ϵCORR
Π , qepϵ

AUTH
Π , qepϵ

PRIV
Π

)
≤ϵCORR

Π + qep(ϵ
AUTH
Π + ϵPRIVΠ )
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H.3. Proof of Lemma 2

Proof. The proof is given by a sequence of games. Let Advj
denote the attacker A’s advantage in winning Game j.
Game 0. This game is identical to the ExpCORR

Π,△eSM
. Thus, we

have that
Adv0 = AdvCORR

Π,△eSM

Game 1. In this game, if the attacker queries
INJECT-A(ind, c) and INJECT-B(ind, c) with c correspond-
ing to position (t⋆, i⋆) such that t⋆ ≤ min(tA, tB) − 2, the
challenger immediately returns (t⋆, i⋆,⊥).

Note that the oracles are defined symmetric for party
A and B. Without the loss of generality, we only explain
the case for INJECT-A(ind, c) and t⋆ is even. The case for
INJECT-B and t⋆ is odd can be given analogously.

In fact, recall that the eRcv algorithm is executed in
INJECT-A(ind, c) oracle only if the following conditions
hold

1) (B, c) /∈ trans
2) ind ≤ nA
3) safe-injA(tB) = true and safe-injA(tA) = true which are

equivalent to safe-stB(tB) = true and safe-stB(tA) =
true

4) (t⋆, i⋆) ∈ comp, where (t⋆, i⋆) is the position of the
input ciphertext c

Recall that (t⋆, i⋆) ∈ comp means that a ciphertext at
this position has been produced by a party, which implies
that t⋆ ≤ max(tA, tB). Moreover, a ciphertext is added into
comp only when

1) in the CORRUPT-A oracle, if safe-st(t⋆) = false holds.
2) in the CORRUPT-B oracle at epoch tB = t⋆, which

means safe-stB(t⋆) = false
3) in the TRANSMIT-B oracle, if safe-injA(t

⋆) =
safe-stB(t⋆) = false holds

4) in the REVIDKEY-A, REVIDKEY-B,
REVPREKEY-A, REVPREKEY-B oracles, if
safe-injA(t

⋆) = safe-stB(t⋆) = false
In all of the above cases, we know that safe-stB(t⋆) =

false. Note that the conditions safe-stB(tB) = false and
safe-stB(tA) = false must hold at the same time. This means,
t⋆ ≤ min(tA, tB)−2. Thus, Game 0 and Game 1 are identical
from the attacker’s view. Thus, we have that

Adv0 = Adv1

In particular, this also means that both parties have
already received at least one message in the epoch t⋆ and have
produced the root keys before the INJECT-A and INJECT-B
for ciphertexts corresponding t⋆ are queried.
Game 2. This game is identical to Game 1 except the
following modification:

1) Whenever the challenger executes TRANSMIT-A and
TRANSMIT-B to enter a new epoch t⋆, the challenger
records the root key rk′ ← st.rk produced during the
oracle. When DELIVER-A or DELIVER-B is invoked
on the first ciphertext that corresponds to the epoch t⋆,
the challenger replaces the derivation of the root key
rk by the recorded rk′.

The gap between Game 1 and Game 2 can be analyzed
by a sequence of hybrid games, where each hybrid only
replace the root key at one epoch. Note that if the receiver
executes the eRcv algorithm for the first message in a new
epoch. The new st.rk is derived only when the output of
D.Vrfy in Line 35 is true, which happens except probability
δDS . Note also that the DELIVER-A and DELIVER-B oracles
are used to simulate the transmission of the original data that
were produced. The honest KEM ciphertexts are delivered to
the receiver and will be decrypted using the corresponding
private keys in Line 37. All of them are correctly recovered
except probability at most 3δKEM . If both parties’ local root
keys are identical, which is true due to the previous hybrid
game, the root keys of both parties in this epoch are also
identical in this hybrid game. Note that there are at most qep
epochs. Thus, we have that

Adv1 ≤ Adv2 + qep(δDS + 3δKEM)

Game 3. This game is identical to Game 2 except the
following modification:

1) Whenever the challenger executes TRANSMIT-A and
TRANSMIT-B, the challenger records the message key
mk

′
← mk produced during the oracle together with the

position. When DELIVER-A or DELIVER-B is invoked
on a ciphertext, the challenger searches the mk at
the location of the input c, followed by replacing the
derivation of the message key mk by the recorded mk

′
.

This game is similar to Game 2. The only difference is
that the challenger runs q hybrid games but not qep, where
q denotes the maximal queries that A can make. Thus, we
can easily have that

Adv2 ≤ Adv3 + q(δDS + 3δKEM)

Game 4. This game s identical to Game 3 except the
following modification:

1) Whenever the challenger executes
TRANSMIT-A(ind,m, r) and TRANSMIT-B(ind,
m, r), the challenger records the message m produced
during the oracle together with the position. When
DELIVER-A or DELIVER-B is invoked on a ciphertext,
the challenger searches the message m ′ at the location
of the input c, followed by replacing the recovery of
the message m by the recorded m ′.

This game is similar to Game 3. The only difference is
that the challenger runs q hybrid games on the scheme SKE
which is deterministic and δSKE-correct. Similarly, we can
easily have that

Adv3 ≤ Adv4 + qδSKE

Final Analysis of Game 4: Now, whenever DELIVER-A or
DELIVER-B is delivered, the original messages are always
correctly recovered and output with the correct position,
which means the attacker never wins. Thus, we have that

Adv5 = 0
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The following equation concludes the proof.

AdvCORR
Π,△eSM

≤ qep(δDS + 3δKEM) + q(δDS + 3δKEM + δSKE)

= (qep + q)δDS + 3(qep + q)δKEM + qδSKE
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H.4. Proof of Lemma 3

Proof. The proof is given by a sequence of games. Let Advj
denote the attacker A’s advantage in winning Game j. At
the beginning of the experiment, the attacker A outputs a
target epoch t⋆, such that it only queries challenge oracles
in this epoch. Without loss of generality, we assume t⋆ is
odd, i.e., A is the message sender. The case for t⋆ is even
can be given analogously.
Game 0. This game is identical to the ExpPRIVΠ,△eSM

. Thus, we
have that

Adv0 = AdvPRIVΠ,△eSM

Game 1. This game is identical to Game 0 except the
following modifications:

1) At the beginning of the game, in addition to the target
epoch t⋆, the attacker has to output a target message
index i⋆.

2) The challenge oracle CHALLENGE-A can only be
queried for encrypting i⋆-th message (i.e., iA = i⋆ − 1
before the query and iA = i⋆ after the query) in tA = t⋆.

We analyze the gap between Game 0 and Game 1 by
hybrid games. Note that A can query oracles at most q times.
There are at most q messages can be encrypted in the target
epoch.

Game 1.0. This game is identical to Game 0. Thus,
we have that

Adv1.0 = Adv0

Game 1.j, 1 ≤ j ≤ q. This game is identical to Game
1.(j − 1) except the following modification:

1) If A sends challenge oracle
CHALLENGE-A(ind,m0,m1, r) for encrypting
j-th message. The challenger first checks whether
m0 and m1 have the same length and aborts if
the condition does not hold. Then, the challenge
samples a random message m̄ of the length m0

and runs CHALLENGE-A(ind, m̄, m̄, r) instead
of CHALLENGE-A(ind,m0,m1, r). Finally, the
challenger returns the produced ciphertext c to A.

It is easy to observe that all challenge ciphertexts are
encrypted independent of the challenge bit in Game
1.q. Thus, the attacker can guess the challenge bit only
by randomly guessing in Game 1.q, which implies that

Adv1.q = 0

Let E denote the event that the attacker A can distin-
guish any two adjacent hybrid games. Note that the
modification in every hybrid game j is independent of
the behavior in hybrid game (j − 1). Thus, we have
that

Adv1.0 = Adv1.0 − Adv1.q ≤ qPr[E]

We compute the probability of the occurrence of the
event E by reduction. If A can distinguish any Game
1.(j − 1) and Game 1.j, then we can construct an
attacker B1 that breaks Game 1. The attacker B1 is
executed as follows:

1) When A outputs an epoch t⋆, B outputs (t⋆, j).
Meanwhile, B1 samples a random bit b̄ ∈ {0, 1}
uniformly at random.

2) When A queries CHALLENGE-A, B answers accord-
ing one of the following case:
• [iA < j − 1]: When the attacker queries

CHALLENGE-A(ind,m0,m1, r) when iA < j−1,
i.e., for encrypting messages before j-th message.
B1 first computes flag ← Jr = ⊥K. Next B1
checks whether safe-chA(flag, tA, ind), ind ≤ nB,
and m0 and m1 have the same length. If any con-
dition does not hold, B1 simply aborts. Otherwise,
B1 samples a random message m̄ of the length
m0 and queries TRANSMIT-A(ind, m̄, r) for a
ciphertext c. Finally, B1 adds the corresponding
record into both allChall and chall, followed by
returning the ciphertext c to A.

• [iA = j − 1]: When the attacker queries
CHALLENGE-A(ind,m0,m1, r) when iA = j−1,
i.e., for encrypting j-th message. B1 first com-
putes flag ← Jr = ⊥K. Next B1 checks whether
safe-chA(flag, tA, ind), ind ≤ nB, and m0 and m1

have the same length. If any condition does not
hold, B1 simply aborts. Otherwise, B1 samples a
random message m̄ of the length m0 and queries
CHALLENGE-A(ind,mb̄, m̄, r) for a ciphertext c.
Finally, B1 adds the corresponding record into
both allChall and chall, followed by returning the
ciphertext c to A.

• [iA > j − 1]: When the attacker queries
CHALLENGE-A(ind,m0,m1, r) when iA > j−1,
i.e., for encrypting messages after j-th message.
B1 first computes flag ← Jr = ⊥K. Next B1
checks whether safe-chA(flag, tA, ind), ind ≤ nB,
and m0 and m1 have the same length. If either
condition does not hold, B1 simply aborts. Other-
wise, B1 queries TRANSMIT-A(ind,mb̄, r) for a
ciphertext c. Finally, B1 adds the corresponding
record into both allChall and chall, followed by
returning the ciphertext c to A.

3) To answer all other oracles, B1 first checks whether
the safe predicate requirements in individual oracles
hold. If so, B1 simply forward the queries to chal-
lenger and returns the reply to A. If not, B1 simply
aborts.

Note that all other oracles are honestly simulated except
for CHALLENGE-A. If the challenge bit b in Game 1
is 0, then B1 perfectly simulates Game 1.(j − 1) to A.
If the challenge bit b in Game 1 is 1, then B1 perfectly
simulates Game 1.j to A. Thus, if A can distinguish
any adjacent two hybrid games, B1 wins Game 1, which
implies Pr[E] ≤ Adv1, and further

Adv0 = Adv1.0 ≤ qPr[E] ≤ qAdv1

Game 2. Let ind⋆ denote the index of prepkB that is
used to encrypt i⋆’s message in epoch t⋆. Let flag⋆ denote
the random quality in the target challenge oracle. In this
game, A wins immediately, if at the end of experiment
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safe-stB(t⋆) =
(
flag⋆ = good and safeidKB

)
=
(
flag⋆ =

good and safepreKB (ind⋆)
)
= false.

Note that before the challenge query, the safe predicate
safe-chA(flag, t⋆, ind⋆) must hold, i.e.,(

safe-stA(t⋆) and safe-stB(t⋆)
)

or
(
flag⋆ = good and

safe-stB(t⋆)
)

or
(
flag⋆ = good and safeidKB

)
or(

flag⋆ = good and safepreKB (ind⋆)
)

This means, at least one of the following conditions must
hold at the time of query of CHALLENGE-A.

1) safe-stB(t⋆) = true

2)
(
flag⋆ = good and safeidKB

)
= true

3)
(
flag⋆ = good and safepreKB (ind⋆)

)
= true

When querying identity keys or pre-keys oracles, the
oracle aborts if it will triggers the safe challenge predicate
safe-chA(flag⋆, t⋆, ind⋆) to false. When querying corruption
oracles, the violation of safe-stB must indicate

(
flag⋆ = good

and safeidKB

)
or
(
flag⋆ = good and safepreKB (ind⋆)

)
. Thus,

at least one of the above conditions must hold even at the
end of experiment

This means, A cannot gain any additional advantage in
winning Game 2, which implies that

Adv1 = Adv2

Below, we analyze the advantage Adv2 into three cases,
whether

(
flag⋆ = good and safeidKB

)
= true or

(
flag⋆ =

good and safepreKB (ind⋆)
)

= true or safe-stB(t⋆) = true

holds at the end of the experiment.

Case 1:
(
flag⋆ = good and safeidKB

)
= true.

In this case,
(
flag⋆ = good and safeidKB

)
= true holds

at the end of the experiment, thus also holds at the time of
challenge oracle CHALLENGE-A query. We use AdvC1

j to
denote A’s advantage in winning Game j in this case. In
the remaining of this case analysis, we focus on the epoch
t⋆ and the message index i⋆.
Game C1.3. This game is identical to Game 2 except the
following modification:

1) The challenger additionally samples a random key k′ ∈
K, where K denote the key space of the underlying
KEM.

2) (updar, updur) ← KDF1(k1, k2, k3) in Line 18 in Fig-
ure 4 is replaced by (updar, updur)← KDF1(k1, k

′, k3)
3) k2 ← K.Dec(ik , c2) in Line 37 in Figure 4 is replaced

by k2 ← k′

If A can distinguish Game 2 and Game C1.3, then we
can construct an attacker B2 that breaks IND-CCA security
of underlying KEM. The attacker B2 receives a public key
pk, a challenge ciphertext c⋆, and a key k⋆, and simulates
the game as follows:

1) A outputs (t⋆, i⋆) at the beginning of the game.

2) When A queries NEWIDKEY-B(r), checks whether
r = ⊥. If r ̸= ⊥, then B2 returns pk to A.

3) When A queries CHALLENGE-A(ind⋆,m0,m1, r) for
encrypting i⋆’s message in the epoch t⋆, B2 aborts if r ̸=
⊥. Then, B2 honestly runs CHALLENGE-A except re-
placing (updar, updur)← KDF1(k1, k2, k3) in Line 18
in Figure 4 by (updar, updur)← KDF1(k1, k

⋆, k3)
4) When A queries DELIVER-B(c) oracle, where c is

output by CHALLENGE-A oracles, B2 honestly runs
the eRcv algorithm except directly using k⋆ at the place
of k2 instead of running decapsulation algorithm.

5) When A queries INJECT-B(ind, c) oracle for a pre-
key index ind and a ciphertext c, B2 forwards c to
its decapsulation oracle for a key k, followed by use
this key in the place of the decapsulated k2 to run eRcv
algorithm.

6) All other oracles are honestly simulated.
Note that if the challenge bit in the IND-CCA security
experiment equals 0, then B2 simulates Game 2 to A. If the
challenge bit in the IND-CCA security experiment equals 1,
then B2 simulates Game C1.3 to A. B2 wins if and only if
A can distinguish Game 2 and Game C1.3. Thus, we have
that

AdvC1
2 ≤ AdvC1

3 + ϵIND-CCA
KEM

Game C1.4. This game is identical to Game C1.3 except
the following modifications:

1) The challenger additionally samples a random update
value ũpd

ur
∈ {0, 1}λ

2) mk ← KDF5(urk, updur) in Line 25 and 49 in Figure 4
is replaced by mk ← KDF5(urk, ũpd

ur
)

If A can distinguish Game C1.3 and Game C1.4, then
we can construct an attacker B3 that breaks 3prf security of
underlying KDF1. Note that the random key k′ is sampled
random in Game C1.3. B3 can easily query k1, k3 to its
oracle on the second input, and use the reply in the place
of (updar, updur). If the oracle simulates KDF1, then B3
simulates Game C1.3 to A. If the oracle simulates a random
function, then B3 simulates Game C1.4. Thus, we have that

AdvC1
3 ≤ AdvC1

4 + ϵ3prfKDF1

Game C1.5. This game is identical to Game C1.4 except
the following modifications:

1) The challenger additionally samples a random message
key m̃k ∈ {0, 1}λ

2) c′ ← S.Enc(mk,m) in Line 26 and 49 in Figure 4 is
replaced by c′ ← S.Enc(m̃k ,m)

Similar to the game above, if A can distinguish Game
C1.4 and Game C1.5, then we can construct an attacker
B4 that breaks swap security of underlying KDF5. Note that
the random update value ũpd

ur
is sampled random in Game

C1.4. B4 can easily query urk to its oracle and use the reply
in the place of mk. If the oracle simulates KDF5, then B4
simulates Game C1.3 to A. If the oracle simulates a random
function, then B3 simulates Game C1.5. Thus, we have that

AdvC1
4 ≤ AdvC1

5 + ϵswapKDF5
≤ AdvC1

5 + ϵdualKDF5
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Game Final Analysis for Case 1: In the end, we compute
A’s advantage in winning Game C1.5 by reduction. If A
can win Game C1.5, then we can construct an attacker B5
that breaks IND-1CCA security of the underlying SKE. The
reduction is simulated as follows:

1) A outputs (t⋆, i⋆) at the beginning of the game.
2) B samples a random bit b̄ $← {0, 1}.
3) When A queries CHALLENGE-A(ind⋆,m0,m1, r) for

encrypting i⋆’s message in the epoch t⋆, B5 aborts if r ̸=
⊥ or m0 and m1 have different length. Next, B5 samples
a random message m̄ of length |m0|.Then, B5 queries
its challenger on (m̄,mb̄) and receives a ciphertext c⋆.
After that, B5 honestly runs CHALLENGE-A except
replacing c′ ← S.Enc(mk,m) in Line 26 and 49 in
Figure 4 by c′ ← c⋆.

4) When A queries DELIVER-B(c) oracle such that c in-
cludes t⋆, i⋆, and c⋆, B5 honestly simulates DELIVER-B
except for outputting m ′ = ⊥.

5) When A queries INJECT-B(ind, c) oracle for a pre-key
index ind and a ciphertext corresponds to the position
(t⋆, i⋆), B5 forwards c to its decapsulation oracle for a
message m ′, followed by outputting (t⋆, i⋆,m ′)

6) All other oracles are honestly simulated.
Note that if the forgery via INJECT-B is accepted, then the
attacker cannot win via winpriv predicate since a natural eSM
scheme does not accept two messages at the same position.
So, B5 perfectly simulate Game C1.5 to A and wins if and
only if A wins. Thus, we have that

AdvC1
5 ≤ ϵIND-1CCA

SKE

To sum up, we have that

AdvC1
2 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM

Case 2:
(
flag⋆ = good and safepreKB (ind⋆)

)
= true.

In this case,
(
flag⋆ = good and safepreKB (ind⋆)

)
= true

holds at the end of the experiment, thus also holds at the time
of challenge oracle CHALLENGE-A query. We use AdvC2

j

to denote A’s advantage in winning Game j in this case. In
the remaining of this case analysis, we focus on the epoch
t⋆ and the message index i⋆.
Game C2.3 In this game, the challenger guesses the index of
the pre-key ind⋆ by randomly guessing at the beginning of
the experiment. If the guess is wrong, the challenger aborts
and let A immediately win. Note that there are at most qM
in the experiment, the challenger can guess correctly with
probability 1

qM
. Thus, we have that

AdvC2
2 ≤ qMAdv

C2
3

Game C2.4, C2.5, C2.6. These games are defined similar to
Game C1.3, C1.4, C1.5. The only difference is to apply the
modification not to B’s identity key but B’s ind⋆-th pre-key.
The proof can be easily given in a similar way and we have
that

AdvC2
3 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM

To sum up, we have that

AdvC2
2 ≤ qM(ϵ

IND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM )

Case 3: safe-stB(t⋆) = true.
In this case, safe-stB(t⋆) = true holds at the end of

the experiment, thus also holds at the time of challenge
oracle CHALLENGE-A query. We further split this case
into two subcases: when A queries the challenge oracle
at CHALLENGE-A for encrypting i⋆’s message at epoch t⋆

whether
(
flag⋆ = good and safe-stB(t⋆)

)
holds, see Case

3.1, or,
(
safe-stA(t⋆) and safe-stB(t⋆)

)
holds, see Case 3.2.

Case 3.1:
(
flag⋆ = good and safe-stB(t⋆)

)
.

Game C3.1.3 This game is identical to Game 2 except the
following modification:

1) Whenever P ∈ {A, B} is trying to sending the first
message in a new epoch t + 1 (i.e. P = A if t even
and P = B if t odd) and the execution Lcor

P

+← t+ 1 in
Line 88 in the ep-mgmt helper function in Figure 4 is
not triggered, then the challenger replaces r

$← {0, 1}λ,
(stP.nxs, r

KEM , rDS) ← KDF2(stP.nxs, r) executed in
the following eSend algorithm in Line 21 in Figure 4 by
stP.nxs

$← {0, 1}λ, rKEM $← {0, 1}λ, rDS $← {0, 1}λ.
We analyze A’s advantage in winning Game C3.1.3 by

hybrid games.
Game hy.0: This game is identical to Game 2. Thus,
we have that

AdvC3.1
2 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to
game Game hy.(j − 1) except that:

1) When entering epoch j from j − 1, if the execution
Lcor
P

+← j in Line 88 in the ep-mgmt helper function
in Figure 4 is not triggered for P = A if j odd
and P = B if j even, then in the following eSend

algorithm, the challenger replaces r
$← {0, 1}λ,

(stP.nxs, r
KEM , rDS) ← KDF2(stP.nxs, r) executed

in Line 21 in Figure 4 by stP.nxs
$← {0, 1}λ,

rKEM
$← {0, 1}λ, rDS $← {0, 1}λ.

It is obvious that Game hy.qep is identical to Game
C3.1.3. Thus, we have that

AdvC3.1
3 = Advhy.qep

Let E denote the event that A can distinguish any
adjacent hybrid games Game hy.(j−1) and Game hy.j. Note
that the modification in every hybrid game is independent
of the behavior of the previous game. Thus, we have that

AdvC3.1
2 − AdvC3.1

3 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of
event E by case distinction. Note that the execution Lcor

P

+← j
in Game hy.j indicates that Game hy.(j− 1) is identical to
Game hy.j. Below, we only consider the case for that the
execution Lcor

P

+← j is not triggered. Note also that Lcor
P

+← j
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is not triggered only when safe-chP(flag, j − 1, ind⋆), which
further implies that one of the following conditions must hold:
(1) safe-stP(j − 1) or (2) flag = good. Then, we consider
each of the two cases.
Case safe-stP(j − 1): First, safe-stP(j − 1) means (j −

1), (j − 2) /∈ Lcor
P . Moreover, (j − 1) /∈ Lcor

P indicates
that (1) the execution Lcor

P

+← (j−2) in Game hy.(j−2)
is not triggered, and (2) the state corruption on P
is not invoked during epoch (j − 1) and (j − 2).
According to hybrid game Game hy.(j − 2), the value
stP.nxs sampled uniformly at random during sending
the first message in epoch (j − 2). In other words,
stP.nxs is uniformly at random from the attacker’s
view when entering epoch j from (j − 1). During
sending the first message in epoch j, r

$← {0, 1}λ,
(stP.nxs, r

KEM , rDS) ← KDF2(stP.nxs, r) is executed
in Line 21 in Figure 4. By the prf security of KDF2,
it is easy to know that if A can distinguish Game
hy.(j − 1) and Game hy.j, then there must exist an
attacker that distinguish the keyed KDF2 and a random
function. Thus, it holds that

Pr[E] ≤ ϵprfKDF2

Case flag = good: This means, the first message in epoch
j−2 is computed using fresh randomness. In particular,
this means, r

$← {0, 1}λ, (stP.nxs, r
KEM , rDS) ←

KDF2(stP.nxs, r) is executed in Line 21 in Figure 4
uses fresh randomness r. It is easy to know that stP.nxs
after sending the first message in epoch (j − 2) is
distinguishable from a random string, due to the swap-
security of KDF2.
Thus, we have that

Pr[E] ≤ ϵswapKDF2

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF2

+ ϵswapKDF2

)
≤ ϵdualKDF2

To sum up, we have that

AdvC3.1
2 ≤ qep Pr[E] + AdvC3.1

3 ≤ AdvC3.1
3 + qepϵ

dual
KDF2

Game C3.1.5, C3.1.6, C3.1.7. Note that safe-stB(t⋆) means
that t⋆, (t⋆ − 1) /∈ Lcor

B . This implies that both following
conditions must hold:

1) stP.nxs
$← {0, 1}λ, rKEM $← {0, 1}λ, rDS $← {0, 1}λ

are executed when B was entering t⋆ − 1.
2) The corruption oracle CORRUPT-B is not queried during

t⋆ and (t⋆ − 1).
Furthermore, the KEM key pair in stB generated in epoch
t⋆−1 for A to encrypt messages in t⋆ is not leaked. Applying
a similar game hopping to the KEM key pair in the state,
as to the identity key pairs in Game 1.3, 1.4, 1.5, we can
easily have that

AdvC3.1
3 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM

Combing the above statements, we have that

AdvC3.1
2 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM + qepϵ

dual
KDF2

Case 3.2:
(
safe-stA(t⋆) and safe-stB(t⋆)

)
.

Game C3.2.3 This game is identical to Game 2 except the
following modification:

1) Whenever P ∈ {A, B} is trying to sending the first
message in a new epoch t + 1 (i.e. P = A if t even
and P = B if t odd) and the execution Lcor

P

+← t + 1
in Line 88 in the ep-mgmt helper function in Fig-
ure 4 is not triggered, then the challenger replaces
(st.rk, st.ckst.t) ← KDF3(st.rk, updar) executed in the
following eSend algorithm in Line 24 in Figure 4 by
stP.rk $← {0, 1}λ and st.ckst.t $← {0, 1}λ, followed by
storing (t + 1, stP.rk, st.ckt+1, st.prtr).

2) if there exist a locally stored tuple (t′, rk, ck, prtr)
and the eRcv is invoked to entering epoch t′ with
ciphertext including prtr, the challenger replaces
(st.rk, st.ckst.t) ← KDF3(st.rk, updar) executed in the
eRcv algorithm in Line 40 in Figure 4 by st.rk ← rk,
st.ckst.t ← ck.

We analyze A’s advantage in winning Game C3.2.3 by
hybrid games.

Game hy.0: This game is identical to Game 2. Thus,
we have that

AdvC3.2
2 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to
game Game hy.(j − 1) except that:

1) When P ∈ {A, B} is trying to send the first mes-
sage in a new epoch j (i.e. P = A if j odd and
P = B if t even) and the execution Lcor

P

+← j
in Line 88 in the ep-mgmt helper function in
Figure 4 is not triggered, then the challenger replaces
(st.rk, st.ckj)← KDF3(st.rk, updar) executed in the
following eSend algorithm in Line 24 in Figure 4 by
stP.rk $← {0, 1}λ and st.ckj $← {0, 1}λ, followed by
storing (j, stP.rk, st.ckj , st.prtr).

2) if there exist a locally stored tuple (t′, rk, ck, prtr)
and the eRcv is invoked to entering epoch t′ with
ciphertext including prtr, the challenger replaces
(st.rk, st.ckj)← KDF3(st.rk, updar) executed in the
eRcv algorithm in Line 40 in Figure 4 by st.rk ← rk,
st.ckj ← ck.

It is obvious that Game hy.qep is identical to Game
C3.1.3. Thus, we have that

AdvC3.2
3 = Advhy.qep

Let E denote the event that A can distinguish any
adjacent hybrid games Game hy.(j−1) and Game hy.j. Note
that the modification in every hybrid game is independent
of the behavior of the previous game. Thus, we have that

AdvC3.2
2 − AdvC3.2

3 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of
event E by case distinction. Note that the execution Lcor

P

+← j
in Game hy.j indicates that Game hy.(j− 1) is identical to
Game hy.j. Below, we only consider the case for that the
execution Lcor

P

+← j is not triggered. Note also that Lcor
P

+← j
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is not triggered only when safe-chP(flag, j − 1, ind), which
further implies that one of the following conditions must
hold:

1)
(
safe-stP(j − 1) and safe-st¬P(j − 1)

)
2)
(
flag = good and safe-st¬P(j − 1)

)
3)
(
flag = good and safeidK¬P

)
4)
(
flag = good and safepreK¬P (ind)

)
Then, we consider each of the four cases:
Case

(
safe-stP(j − 1) and safe-st¬P(j − 1)

)
: Recall that

safe-stP(j−1) and safe-st¬P(j−1) means (j−1), (j−
2) /∈ Lcor

A ,Lcor
B . This indicates that (1) the execution

Lcor
P

+← (j − 1) in Game hy.(j − 1) is not triggered,
and (2) the state corruption on both party is not invoked
during epoch (j−1). (3) the first message that P receives
in the epoch (j − 1) is not forged by the attacker.
According to hybrid game Game hy.(j − 1), the value
stP.rk sampled uniformly at random during sending the
first message in epoch (j− 1). In other words, stP.rk is
uniformly at random from the attacker’s view when en-
tering epoch j from (j−1). During sending the first mes-
sage in epoch j, (st.rk, st.ckj)← KDF3(st.rk, updar) is
executed in the eSend algorithm in Line 24 in Figure 4.
By the prf security of KDF3, it is easy to know that if
A can distinguish Game hy.(j − 1) and Game hy.j,
then there must exist an attacker that distinguish the
keyed KDF3 and a random function. Thus, it holds that

Pr[E] ≤ ϵprfKDF3

Case
(
flag = good and safe-st¬P(j − 1)

)
: This case can

be analyze in the following games. Here, we only sketch
the idea, since they are very similar to Game C3.1.3,
Game C1.3, Game C1.4, and Game C1.5. First, similar
to analysis in Game C3.1.3, we know that KEM public
key stored in st¬P and will be used by P in epoch
j is sampled uniformly at random except probability
qepϵ

dual
KDF2

. Next, similar to Game C1.3, we know that the
encapsulated key is indistinguishable from a random key
except probability ϵIND-CCA

KEM due to the IND-CCA security
of the underlying KEM. Then, similar to Game C1.4,
we know that the update value updar is indistinguishable
from a random string in {0, 1}λ except probability ϵ3prfKDF1

due to the 3prf security of the KDF1. Finally, similar
to Game C1.5, the root key st.rk and the chain key
st.ckj are indistinguishable from random strings except
probability ϵswapKDF5

≤ ϵdualKDF5
due to the swap-security

(and the dual-security) of the function KDF5. Thus, we
have that

Pr[E] ≤ qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5

Case
(
flag = good and safeidK¬P

)
: This case can be analyze

in the following games. Here, we only sketch the idea,
since they are very similar to Game C1.3, Game C1.4,
and Game C1.5. First, similar to Game C1.3, we

know that the encapsulated key is indistinguishable
from a random key except probability ϵIND-CCA

KEM due to
the IND-CCA security of the underlying KEM. Then,
similar to Game C1.4, we know that the update value
updar is indistinguishable from a random string in
{0, 1}λ except probability ϵ3prfKDF1

due to the 3prf security
of the KDF1. Finally, similar to Game C1.5, the root
key st.rk and the chain key st.ckj are indistinguishable
from random strings except probability ϵswapKDF5

≤ ϵdualKDF5

due to the swap-security (and the dual-security) of the
function KDF5. Thus, we have that

Pr[E] ≤ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5

Case
(
flag = good and safe-st¬P(j − 1)

)
: This case can

be analyze in the following games. Here, we only sketch
the idea, since they are very similar to Game C2.3,
Game C2.4, Game C2.5, and Game C2.6. First, similar
to analysis in Game C2.3, the challenger first guesses
the medium-term pre-key that will be used for sending
the first message in epoch j, which can be guessed
correctly with probability at least 1

qM
. Next, similar to

Game C2.4, we know that the encapsulated key is
indistinguishable from a random key except probability
ϵIND-CCA
KEM due to the IND-CCA security of the underlying
KEM. Then, similar to Game C2.5, we know that the
update value updar is indistinguishable from a random
string in {0, 1}λ except probability ϵ3prfKDF1

due to the
3prf security of the KDF1. Finally, similar to Game
C2.6, the root key st.rk and the chain key st.ckj are
indistinguishable from random strings except probability
ϵswapKDF5

≤ ϵdualKDF5
due to the swap-security (and the dual-

security) of the function KDF5.
Thus, we have that

Pr[E] ≤ qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
, qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

This means, it holds that

AdvC3.2
2 ≤ AdvC3.2

3 + qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM

+ ϵ3prfKDF1
+ ϵdualKDF5

, qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

Game C3.2.4. This game is identical to Game 3.2.3 except
the following modification:

1) For running A’s eSend at t⋆, the execution
(st.ckt

⋆

, urk)← KDF4(st.ckt
⋆

) in Line 25 in Figure 4
is replaced by st.ckt

⋆ $← {0, 1}λ, urk $← {0, 1}λ. After
that, the challenger stored (st.ckt

⋆

, urk) into a local
list.
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2) For running B’s eRcv at t⋆ the execution
(st.ckt

⋆

, urk) ← KDF4(st.ckt
⋆

) in Line 47 is
replaced by the tuple (st.ckt

⋆

, urk) in the local list for
the corresponding message index.

The advantage gap of A in winning Game C3.2.3 and
Game C3.2.4 can be computed by hybrid games. Recall that
A can query oracles at most q times, the maximum of the
message index is q.

Game hy.0: This game is identical to Game C3.2.3.
Thus, we have that

AdvC3.2
3 = Advhy.0

Game hy.j, (1 ≤ j ≤ q): This game is identical to
game Game hy.(j − 1) except that:

1) For running A’s j-th eSend at t⋆, the execution
(st.ckt

⋆

, urk)← KDF4(st.ckt
⋆

) in Line 25 in Figure 4
is replaced by st.ckt

⋆ $← {0, 1}λ, urk $← {0, 1}λ.
After that, the challenger stored (st.ckt

⋆

, urk) into a
local list.

2) For running B’s eRcv on a ciphertext corresponds to
the position (t⋆, j), the execution (st.ckt

⋆

, urk) ←
KDF4(st.ckt

⋆

) in Line 47 is replaced by the tuple
(st.ckt

⋆

, urk) in the local list for the corresponding
message index j.

It is obvious that Game hy.q is identical to Game C3.2.4.
So, we have that AdvC3.2

4 = Advhy.q. The gap between
every two adjacent hybrid games can be reduced to the prg
security of KDF4. Namely, if the attacker can distinguish
Game hy.(j − 1) from Game hy.j, then there must exist an
attacker can distinguish the real KDF4 and a random number
generator. Thus, we can easily have that

AdvC3.2
3 ≤ AdvC3.2

4 + qϵprgKDF4

Game C3.2.5. This game is identical to Game C3.2.4 except
the following modifications:

1) The challenger additionally samples a random message
key m̃k ∈ {0, 1}λ for the position (t⋆, i⋆)

2) c′ ← S.Enc(mk,m) in Line 26 and 49 in Figure 4 is
replaced by c′ ← S.Enc(m̃k ,m)

Note that the unidirectional ratchet key urk is sampled
random in Game C3.2.4. Similar to the game Game C1.5,
if A can distinguish Game C3.2.4 and Game C3.2.5, then
we can construct an attacker that breaks prf security (and
therefore the dual security) of underlying KDF5. Thus, we
have that

AdvC3.2
4 ≤ AdvC3.2

5 + ϵprfKDF5
≤ AdvC3.2

5 + ϵdualKDF5

Game Final Analysis for Case C3.2:
Similar to the final analysis for Game C1, if the attacker

A can distinguish the challenge bit in Game C3.2.5, then
there exists an attacker that breaks IND-1CCA security of
the underlying SKE. Thus, we can easily have that

AdvC3.2
5 ≤ ϵIND-1CCA

SKE

To sum up, we have that

AdvC3.2
2 ≤ qep max

(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
, qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

+ qϵprgKDF4
+ ϵdualKDF5

+ ϵIND-1CCA
SKE

Combining all statements above, the proof is concluded
by

AdvPRIVΠ,△eSM

≤qmax(AdvC1
2 ,AdvC2

2 ,AdvC3.1
2 ,AdvC3.2

2 )

≤qmax

(
ϵIND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM ,

qM(ϵ
IND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM ),

ϵIND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM + qepϵ
dual
KDF2

,

qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)
+ qϵprgKDF4

+ ϵdualKDF5

+ ϵIND-1CCA
SKE

)

≤q

(
qMϵ

IND-1CCA
SKE + qep(ϵ

prf
KDF3

+ qepϵ
dual
KDF2

)+

qMqep(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
) + qϵprgKDF4

+ ϵdualKDF5

)
≤qMqepqϵIND-CCA

KEM + qMqϵ
IND-1CCA
SKE + qMqepqϵ

3prf
KDF1

+ q2epqϵ
dual
KDF2

+ qepqϵ
prf
KDF3

+ q2ϵprgKDF4
+ (qMqep + 1)qϵdualKDF5
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H.5. Proof of Lemma 4

Proof. The proof is given by a sequence of games. Let Advi
denote the attacker A’s advantage in winning Game i. At
the beginning of the experiment, the attacker A outputs a
target epoch t⋆, such that it only queries the injection oracles
inputting ciphertexts corresponding to in this epoch. Without
loss of generality, we assume t⋆ is even, i.e., A is the message
receiver. The case for t⋆ is even can be given analogously.
Note also that the attacker A can immediately win when it
successfully triggers the winning predicate winauth turning
form false to true. So, we only consider the case that A
successfully forges a ciphertext only once.
Game 0. This game is identical to the ExpAUTHΠ,△eSM

. Thus, we
have that

Adv0 = AdvAUTHΠ,△eSM

Game 1. This game is identical to Game 0 except the
following modifications:

1) If the attacker queries INJECT-A(ind, c) with c corre-
sponding epoch t⋆ and a message index i⋆ such that
t⋆ ≤ tA − 2 and (B, t⋆, i⋆) /∈ trans, the challenger
immediately aborts the oracle and outputs (t⋆, i,⊥).

Note that a record is not included in the transcript set
for the previous epochs, only when

1) this record is delivered
2) no sender has produced any message in the previous

epoch t⋆ with message index i⋆

The first case can be easily excluded, since a natural eSM
scheme never accepts two messages at the same position. For
the second case, note that B produces messages only with
continuous message indices. B didn’t produce the message
with message index i⋆ means that i⋆ exceeds the maximal
message length that B has produced in the epoch t⋆. Since
in eSM A has received all maximal message length in all
previous epochs (see Line 36 in Figure 4) and will aborts
the eRcv execution if i exceeds the maximal message length
in the corresponding epoch (see Line 31 in Figure 4). This
game is identical to Game 0 from A’s view. Thus, we have
that

Adv1 = Adv0

Note that the attacker can win only when it queries
INJECT-A(ind, c) such that all of the following conditions
hold

1) c corresponds to epoch t⋆

2) (B, c) /∈ trans
3) ind ≤ nA
4) safe-injA(tA) = safe-stB(tA) and safe-injA(tB) =

safe-stB(tB)
5) m ′ ̸= ⊥
6) (B, t⋆, i⋆) /∈ comp

where (stA, t
⋆, i⋆,m ′)← eRcv(stA, ikA, prepk

ind
A , c)

In particular, (B, t⋆, i⋆) /∈ comp but (B, t⋆, i⋆) ∈ trans
means that

1) safe-stB(t⋆) = true holds at the time of B sending
message corresponding to the position (t⋆, i⋆), and

2) if safe-stB(t⋆) = false, CORRUPT-A cannot be queried

3) If CORRUPT-A is queried at epoch t⋆, then
CORRUPT-B cannot be queried.

4) CORRUPT-B can be queried only after the ciphertext
corresponding to (t⋆, i⋆) has been honestly generated.

5) After the leakage of identity keys or pre-keys,
safe-stB(t⋆) = false

So, at most one of CORRUPT-A and CORRUPT-B at
epoch t⋆, but not both.

We separate the analysis for t⋆ ≥ tA − 1, see Case 1, or
t⋆ ≤ tA − 2, see Case 2.

Case 1. t⋆ ≥ tA − 1.
In this case, the attacker queries INJECT-A(ind, c) for

some pre-key index ind and ciphertext c under the condition
that safe-stB(tB) = true. This means, tB, (tB − 1) /∈ Lcor

B .
Game C1.2 This game is identical to Game 1 except the
following modification:

1) Until epoch t⋆, whenever P ∈ {A, B} is trying to sending
the first message in a new epoch t + 1 (i.e. P = A if
t even and P = B if t odd) and the execution Lcor

P

+←
t + 1 in Line 88 in the ep-mgmt helper function in
Figure 4 is not triggered, then the challenger replaces
r

$← {0, 1}λ, (stP.nxs, rKEM , rDS)← KDF2(stP.nxs, r)
executed in the following eSend algorithm in Line 21
in Figure 4 by stP.nxs

$← {0, 1}λ, rKEM
$← {0, 1}λ,

rDS $← {0, 1}λ.
We analyze A’s advantage in winning Game C1.2 by

hybrid games.
Game hy.0: This game is identical to Game 1. Thus,
we have that

AdvC1.1
1 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to
game Game hy.(j − 1) except that:

1) When entering epoch j from j − 1, if the execution
Lcor
P

+← j in Line 88 in the ep-mgmt helper function
in Figure 4 is not triggered for P = A if j odd
and P = B if j even, then in the following eSend

algorithm, the challenger replaces r
$← {0, 1}λ,

(stP.nxs, r
KEM , rDS) ← KDF2(stP.nxs, r) executed

in Line 21 in Figure 4 by stP.nxs
$← {0, 1}λ,

rKEM
$← {0, 1}λ, rDS $← {0, 1}λ.

It is obvious that Game hy.qep is identical to Game
C1.2. Thus, we have that

AdvC1
2 = Advhy.qep

Let E denote the event that A can distinguish any
adjacent hybrid games Game hy.(j−1) and Game hy.j. Note
that the modification in every hybrid game is independent
of the behavior of the previous game. Thus, we have that

AdvC1
1 − AdvC1

2 ≤ qep Pr[E]

Below, we compute the probability of the occurrence
of event E by case distinction. Note that the execution
Lcor
P

+← j in Game hy.j indicates that Game hy.(j − 1) is
identical to Game hy.j. Below, we only consider the case for
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that the execution Lcor
P

+← j is not triggered. Note also that
Lcor
P

+← j is not triggered only when safe-chP(flag, j−1, ind)
for some pre-key index ind, which further implies that one
of the following conditions must hold: (1) safe-stP(j− 1) or
(2) flag = good. Then, we consider each of the two cases.
Case safe-stP(j − 1): First, safe-stP(j − 1) means (j −

1), (j − 2) /∈ Lcor
P . Moreover, (j − 1) /∈ Lcor

P indicates
that (1) the execution Lcor

P

+← (j−2) in Game hy.(j−2)
is not triggered, and (2) the state corruption on P
is not invoked during epoch (j − 1) and (j − 2).
According to hybrid game Game hy.(j − 2), the value
stP.nxs sampled uniformly at random during sending
the first message in epoch (j − 2). In other words,
stP.nxs is uniformly at random from the attacker’s
view when entering epoch j from (j − 1). During
sending the first message in epoch j, r

$← {0, 1}λ,
(stP.nxs, r

KEM , rDS) ← KDF2(stP.nxs, r) is executed
in Line 21 in Figure 4. By the prf security of KDF2,
it is easy to know that if A can distinguish Game
hy.(j − 1) and Game hy.j, then there must exist an
attacker that distinguish the keyed KDF2 and a random
function. Thus, it holds that

Pr[E] ≤ ϵprfKDF2

Case flag = good: This means, the first message in epoch
j−2 is computed using fresh randomness. In particular,
this means, r

$← {0, 1}λ, (stP.nxs, r
KEM , rDS) ←

KDF2(stP.nxs, r) is executed in Line 21 in Figure 4
uses fresh randomness r. It is easy to know that stP.nxs
after sending the first message in epoch (j − 2) is
distinguishable from a random string, due to the swap-
security of KDF2.
Thus, we have that

Pr[E] ≤ ϵswapKDF2

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF2

+ ϵswapKDF2

)
≤ ϵdualKDF2

To sum up, we have that

AdvC1
1 ≤ qep Pr[E] + AdvC1

2 ≤ AdvC1
2 + qepϵ

dual
KDF2

Final Analysis for Case C1.
Note that tA − 1 ≤ t⋆ and that t⋆ even. Then, there are

following seven cases:
1) tA is even: tA = tB = t⋆

2) tA is odd: t⋆ = tA − 1, tB = tA − 1
3) tA is odd: t⋆ = tA − 1, tB = tA
4) tA is odd: t⋆ = tA − 1, tB = tA + 1
5) tA is odd: t⋆ = tA + 1, tB = tA − 1
6) tA is odd: t⋆ = tA + 1, tB = tA
7) tA is odd: t⋆ = tA + 1, tB = tA + 1

In all of above seven cases, t⋆ and tB are not two epochs
apart. Moreover, by safe-stB(tA) amd safe-stB(tB), we know
that the A has to forge at least one signature against a
pair of uncorrupted and freshly generated key pair, due to

Game C1.2. To make a successful injection query, A has to
either keep the pre-transcript and forge a signature for the
pre-transcript or forge a signature for a new pre-transcript,
which violates the SUF-CMA security of the underlying DS
scheme. Thus, we can have that

AdvC1
2 ≤ ϵSUF-CMA

DS

To sum up, we have that

AdvC1
1 ≤ ϵSUF-CMA

DS + qepϵ
dual
KDF2

Case 2. t⋆ ≤ tA − 2.
In this case, A aims to forge a ciphertext in a past epoch.

By Game 1, we know that (t⋆, i⋆) ∈ trans, where i⋆ denotes
the message index corresponding to the forged ciphertext.
Game C2.2 This game is identical to Game 1 except the
following modification:

1) The challenger directly outputs (t⋆, i,⊥) for answering
any INJECT-A(ind, c) if safe-stB(t⋆) = true, where
(t⋆, i) is the position of c.

Note that safe-stB(t⋆) = true holds at the time of B
sending message corresponding to the position (t⋆, i⋆) for
some i⋆. This means, safe-stB(t⋆) = true when B was switch
from receiver to sender when entering epoch t⋆. Similar to
the analysis in Game C1.2, we know that the signing keys
are randomly sampled except probability at most qepϵdualKDF2

.
If safe-stB(t⋆) = true at the time of any INJECT-A query,
the signing key has not been corrupted. Similar to the final
analysis of Game C1.2, if A can forge a ciphertext, then we
can construct another attacker that invokes A to break the
SUF-CMA security of DS. Thus, we have that

AdvC2
1 ≤ AdvC2

2 + ϵSUF-CMA
DS + qepϵ

dual
KDF2

In the games below, we assume that safe-stB(t⋆) = false
when A queries INJECT-A. Recall that CORRUPT-B can be
queried only after the ciphertext corresponding to (t⋆, i⋆)
has been honestly generated. This also means that the unidi-
rectional ratchet key urk for encrypting and decrypting the
ciphertext corresponding position (t⋆, i⋆) has been removed
from the state stB. Moreover, if CORRUPT-B is queried, then
CORRUPT-A cannot be queried.
Game C2.3 This game is identical to Game C2.2 except
the following modification:

1) Until epoch t⋆. Whenever P ∈ {A, B} is trying to sending
the first message in a new epoch t + 1 (i.e. P = A if
t even and P = B if t odd) and the execution Lcor

P

+←
t + 1 in Line 88 in the ep-mgmt helper function in
Figure 4 is not triggered, then the challenger replaces
(st.rk, st.ckst.t) ← KDF3(st.rk, updar) executed in the
following eSend algorithm in Line 24 in Figure 4 by
stP.rk $← {0, 1}λ and st.ckst.t $← {0, 1}λ, followed by
storing (t + 1, stP.rk, st.ckt+1, st.prtr).

2) if there exist a locally stored tuple (t′, rk, ck, prtr)
and the eRcv is invoked to entering epoch t′ with
ciphertext including prtr, the challenger replaces
(st.rk, st.ckst.t) ← KDF3(st.rk, updar) executed in the
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eRcv algorithm in Line 40 in Figure 4 by st.rk ← rk,
st.ckst.t ← ck.

The analysis of this game is identical to Game C3.2.3
in Section H.4. We can easily know that

AdvC2
2 ≤AdvC2

3 + qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM

+ ϵ3prfKDF1
+ ϵdualKDF5

, qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

Game C2.4 This game is identical to Game C2.3 except
the following modification until CORRUPT-B is invoked:

1) For running A’s eSend at t⋆, the execution
(st.ckt

⋆

, urk)← KDF4(st.ckt
⋆

) in Line 25 in Figure 4
is replaced by st.ckt

⋆ $← {0, 1}λ, urk $← {0, 1}λ. After
that, the challenger stored (st.ckt

⋆

, urk) into a local
list.

2) For running B’s eRcv at t⋆ the execution
(st.ckt

⋆

, urk) ← KDF4(st.ckt
⋆

) in Line 47 is
replaced by the tuple (st.ckt

⋆

, urk) in the local list for
the corresponding message index.

The advantage gap of A in winning Game C3.2.3 and
Game C3.2.4 can be computed by hybrid games and reduced
to the prg security of KDF4. Note that A can query at most
q, we can easily have that

AdvC2
3 ≤ AdvC2

4 + qϵprgKDF4

Game C2.5. In this game, the challenger guesses the message
index i⋆ that A wants to attack. Note that A can query at
most q times oracles. The challenger guesses correctly with
probability at least 1

q . Thus, we have that

AdvC2
4 ≤ qAdvC2

5

Game C2.6. This game is identical to Game C2.5 except
the following modifications:

1) The challenger additionally samples a random message
key m̃k ∈ {0, 1}λ for the position (t⋆, i⋆)

2) If the pre-key index ind equals the one for producing
ciphertext at position (t⋆, i⋆) and the KEM ciphertext
are same as produced before, the challenger replaces
c′ ← S.Enc(mk,m) in Line 26 and 49 in Figure 4 by
c′ ← S.Enc(m̃k ,m). Otherwise, the challenger samples

another random key m̃k
′

∈ {0, 1}λ for decrypting
ciphertext at location (t⋆, i⋆).

Note that the unidirectional ratchet key urk is sampled
random in Game C2.4. If A can distinguish Game C2.5 and
Game C2.6, then we can construct an attacker that breaks
prf security (and therefore the dual security) of underlying
KDF5. Thus, we have that

AdvC2
5 ≤ AdvC2

6 + ϵprfKDF5
≤ AdvC2

6 + ϵdualKDF5

Game C2.7. This game is identical to Game C2.6 except
the following modifications:

1) If A queries INJECT-A(ind, c) such that
a) c corresponds to the position (t⋆, i⋆)
b) ind does not equal the one for producing the ci-

phertext at position (t⋆, i⋆) or the KEM ciphertexts

included in c do not equal the ones in the original
ciphertext at position (t⋆, i⋆)

then the challenger simply returns (t⋆, i⋆,⊥)
The gap between Game C2.6 and Game C2.7 can be re-

duced to the IND-1CCA security of SKE. The reduction sim-
ulates Game C2.6 honestly except for the INJECT-A(ind, c)
that is described above. In this case, the reduction forwards
the symmetric key ciphertext to its decryption oracle for a
reply m ′. Then, the reduction returns (t⋆, i⋆,m ′) to A. If
the challenge bit is 0, then the reduction simulates Game
C2.6 honestly, otherwise, it simulates Game C2.7. Thus, if
A can distinguish Game C2.6 and Game C2.7, then the
reduction can easily distinguish the challenge bit. Thus, we
have that

AdvC2
6 ≤ AdvC2

7 + ϵIND-1CCA
SKE

Game C2.8. This game is identical to Game C2.7 except
the following modifications:

1) If A queries INJECT-A(ind, c) such that
a) c corresponds to the position (t⋆, i⋆)
b) ind equals the one for producing the ciphertext at

position (t⋆, i⋆) and the KEM ciphertexts included in
c equal the ones in the original ciphertext at position
(t⋆, i⋆)

then the challenger simply returns (t⋆, i⋆,⊥)
The gap between Game C2.7 and Game C2.8 can

be reduced to the IND-1CCA security of SKE. The re-
duction simulates Game C2.7 honestly except for the
TRANSMIT-B(ind,m, r) and INJECT-A(ind, c) that is de-
scribed above.

For the TRANSMIT-B(ind,m, r) query, the reduction
forwards m to its encryption oracle for a ciphertext c′. The
rest of this oracle is honestly simulated.

For the INJECT-A(ind, c) query, the reduction forwards
symmetric key ciphertext in the c to its decryption oracle
for a reply m ′. Then, the reduction returns (t⋆, i⋆,m ′) to A.

If the challenge bit is 0, then the reduction simulates
Game C2.7 honestly, otherwise, it simulates Game C2.8.
Thus, if A can distinguish Game C2.7 and Game C2.8,
then the reduction can easily distinguish the challenge bit.
Thus, we have that

AdvC2
7 ≤ AdvC2

8 + ϵIND-1CCA
SKE

Final Analysis for Case C2:
Note that no matter what kind of INJECT-A(ind, c) query

A asks, where c corresponds to the position (t⋆, i⋆) , the
challenger always returns (t⋆, i⋆,⊥) immediately, according
to Game C2.7 and Game C2.8. Thus, A can never win and
we have that

AdvC2
8 = 0
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To sum up, we have that

AdvC2
1 ≤ ϵSUF-CMA

DS + qepϵ
dual
KDF2

+ qϵprgKDF4

+ q(ϵdualKDF5
+ 2ϵIND-1CCA

SKE )

+ qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
, qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ ϵSUF-CMA
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵIND-1CCA

SKE )

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

The following equation concludes the proof.

AdvAUTHΠ,△eSM
≤ max(AdvC1

1 ,AdvC2
1 )

≤ max

(
ϵSUF-CMA
DS + qepϵ

dual
KDF2

, ϵSUF-CMA
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵIND-1CCA

SKE ) + qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2

+ qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
))

≤ ϵSUF-CMA
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵIND-1CCA

SKE )

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

IND-CCA
KEM

+ ϵ3prfKDF1
+ ϵdualKDF5

)
)

≤ ϵSUF-CMA
DS + qepqMϵ

IND-CCA
KEM + 2qϵIND-1CCA

SKE + qepqMϵ
3prf
KDF1

+ qep(qep + 1)ϵdualKDF2
+ qepϵ

prf
KDF3

+ qϵprgKDF4

+ (qepqM + q)ϵdualKDF5
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H.6. Proof of Theorem 2

Proof. The proof is given by reduction. Namely, if there
exists an attacker A that breaks the offline deniability
for the composition of a DAKE scheme Σ and our eSM
construction Π in Section 4.2, then we can always construct
an attacker B that breaks the offline deniability of Σ in terms
of Definition 7, also see [11, Definition 11].

We first define the function FakeeInitΠ and the function
FakeeSendΠ for our eSM construction Π.

• FakeeInitΠ (K, ipkdid, ik aid,Lprek
aid , sid, rid, aid, did): this

algorithm inputs a key K ∈ iss , identity public keys
ipkA and ipkB, a list of private pre-keys Lprek

rid , the
sender identity sid, the receiver identity rid, the accuser
identity aid, and the defendant identity did, followed
by executing the following steps:

1) stA
$← Π.eInit-A(K)

2) stB
$← Π.eInit-B(K)

3) stFake ←
(
(stA, rid), (stB, sid)

)
4) return stFake

• FakeeSendΠ (stFake, ipk , prepk ,m, sid, rid, ind): this algo-
rithm inputs a fake state stFake, an public identity key
ipk , a public pre-key prepk , a message m, a sender
identity sid, a receiver identity rid, and a pre-key index
ind, followed by executing the following steps:

1) Parse
(
(stA, idA), (stB, idB)

)
← stFake

2) if idA = sid, then

a) (stA, c)
$← Π.eSend(stA, ipk , prepk ,m)

b) copy all symmetric values in session state stA to
session state stB

c) If stA.t is incremented in the above Π.eSend
invocation, then extract the new verification key
vk and new encryption key ek from c, followed
by set vk and ek into stB

d) stFake ← ((stA, idA), (stB, idB))
3) else

a) (stB, c)
$← Π.eSend(stB, ipk , prepk ,m)

b) copy all symmetric values in session state stB to
session state stA

c) If stB.t is incremented in the above Π.eSend
invocation, then extract the new verification key
vk and new encryption key ek from c, followed
by set vk and ek into stA

d) stFake ← ((stA, idA), (stB, idB))
At the beginning of the experiment, the attacker B inputs

a list Lall that includes all public-private key pairs of Σ from
its challenger. Next, B honestly samples the random identity
key and pre-key pairs of Π and sets them into the respective
lists as in the ExpdeniΣ,Π,qP,qM,qS

. In particular, all public-private
key pairs are added into the list Lall. B also initializes a
empty dictionary Dsession and a counter n to 0. Then, B
sends the list Lall to A.

When A queries Session-Start(sid, rid, aid, did, ind), B
first checks whether {sid, rid} = {aid, did} and sid ̸= rid
holds. It either condition does not hold, B simply aborts the
oracle. Next, B increments the counter n, followed by adding

{sid, rid} into the dictionary Dsession[n]. Then, B checks
whether aid = sid. If the conditions holds, then B simply
honestly runs Σ on the corresponding input and finally de-
rives a key K ∈ iss and a transcript T . Otherwise, B queries
its challenge oracle with the input (sid, rid, ind) for the key
K and the transcript T . After that, B runs the above defined
function FakeeInitΠ (K, ipkdid, ik aid,Lprek

aid , sid, rid, aid, did) for
a fake state stnFake. Finally, B returns the transcript to A.

When A queries Session-Execute(sid, rid, i, ind,m), B
simply simulates Session-Execute as if the bit b = 1.

At the end of the experiment, when A outputs a bit b′,
B then forwards it to its challenger.

Note that our FakeeInitΠ algorithm perfectly simulates the
process of running Π.eInit-A and Π.eInit-B. Moreover, we
consider two cases for the queries to the Session-Execute
oracle:

1) If the sender identity sid in the Session-Execute oracle
query is idA. Note that when a party receives a message
from the partner in our eSM construction Π, it only
passively updates the symmetric state, and optionally
update the verification key and encryption key from the
partner. In this case, our FakeeSendΠ algorithm perfectly
simulates the case that idA sends messages to idB.

2) If the sender identity sid in the Session-Execute oracle
query is idB. In this case, similar to the analysis above,
our FakeeSendΠ algorithm also perfectly simulates the
case that idB sends messages to idA.

To sum up, in both cases B perfectly simulates
ExpdeniΣ,Π,qP,qM,qS

to A. Thus, B wins if and only if A wins.
Obviously, the number of sessions at least as many as the
number of challenge oracles that B queries. And A and B
runs in the approximately same time, which concludes the
proof.

Appendix I.
Changelog

We provide a summary of the main changes between
versions:

• v1.0, October 28, 2022: Initial release.
• v1.1, August 15, 2023: Our design initially aims at the

first protocol that simultaneously satisfies (i) immediate
decryption with constant-size overhead, (ii) PQ security,
and (iii) resilience against fine-grained state compromise.
This version additionally takes property (iv) temporal
privacy into account. Our design remains PQ-secure (i.e.
satisfies property (ii)). In addition to this, our design
aims at the first protocol that simultaneously satisfies
properties (i), (iii), (iv). We added the background
for temporal privacy and improved the explanation for
offline deniability. Moreover, we added security model
comparison between our eSM and the SM model in [1],
see Appendix C.
Updated the title to be in line with the corresponding
IEEE S&P 2024 publication.

40



Contents

1 Introduction 1

2 Background and Related Work 2
2.1 Instant Messaging Protocols and Immediate Decryption with Constant-Size Overhead . . . . . . . . . 2
2.2 Secure Messaging Protocols and Strong Security Guarantees . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Offline Deniability and Post-Quantum Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Extended Secure Messaging 3
3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Strong Security Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Extended Secure Messaging Scheme 9
4.1 Intuition behind the eSM Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 The eSM Construction in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Security Conclusion and Concrete Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Offline Deniability 12

References 14

Appendix A: Review of ACD19 and TR Protocols 15

Appendix B: Review on Messaging Protocols with Various Optimal Security 16

Appendix C: Security Model Comparison between our eSM and SM in [1] 17

Appendix D: Comparison of our eSM construction with ACD19 and TR 17

Appendix E: Review on DAKE Scheme and the Game-based Deniability 18
E.1 The DAKE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
E.2 The Game-based Offline Deniability Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Appendix F: Preliminaries 20
F.1 Key Encapsulation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
F.2 Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
F.3 Authenticated Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
F.4 Pseudorandom Generators and Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . 21

Appendix G: Security Modularization 22

Appendix H: Proof of Theorems and Lemmas 23
H.1 Our Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
H.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
H.3 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
H.4 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
H.5 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
H.6 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix I: Changelog 40

41


	Introduction
	Background and Related Work
	Instant Messaging Protocols and Immediate Decryption with Constant-Size Overhead
	Secure Messaging Protocols and Strong Security Guarantees
	Offline Deniability and Post-Quantum Security

	Extended Secure Messaging
	Syntax
	Strong Security Properties
	Security Model

	Extended Secure Messaging Scheme
	Intuition behind the eSM Construction
	The eSM Construction in Detail
	Security Conclusion and Concrete Instantiation

	Offline Deniability
	References
	Appendix A: Review of ACD19 and TR Protocols
	Appendix B: Review on Messaging Protocols with Various Optimal Security
	Appendix C: Security Model Comparison between our eSM and SM in EC19:AlwenThe
	Appendix D: Comparison of our eSM construction with ACD19 and TR
	Appendix E: Review on DAKE Scheme and the Game-based Deniability
	The DAKE Scheme
	The Game-based Offline Deniability Experiment

	Appendix F: Preliminaries
	Key Encapsulation Mechanisms
	Digital Signature
	Authenticated Encryption
	Pseudorandom Generators and Pseudorandom Functions

	Appendix G: Security Modularization
	Appendix H: Proof of Theorems and Lemmas
	Our Lemmas
	Proof of thm:From Simplified Security To SMS Security
	Proof of thm:eSM-simpified correctness
	Proof of thm:eSM-simpified privacy
	Proof of thm:eSM-simpified authenticity
	Proof of Theorem 2

	Appendix I: Changelog

