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Abstract. Non-interactive zero-knowledge proofs of knowledge (NIZK-
PoK) serve as a key building block in many important cryptographic con-
structions. Achieving universally composable NIZKPoK secure against
adaptive corruptions was a long-standing open problem, recently solved
by Canetti, Sarkar, and Wang (Asiacrypt’22). This sole known con-
struction requires heavy cryptographic machinery such as correlation-
intractable hash functions, and is not ready for use in practice. In this
paper, we give constructions of adaptively secure universally composable
NIZKPoK in the global random-oracle model; we consider both the pro-
grammable and the non-programmable versions of the model. For many
practical NIZK proof systems, our constructions incur only a polyloga-
rithmic slowdown factor compared to stand-alone security.
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1 Introduction

An adaptive adversary attacking a cryptographic protocol can decide on the fly
which protocol participant(s) it wants to corrupt. As a result, the adversary gains
access to the memory of a device that is currently running, or has previously
run, the protocol. In the event that the adversary does not corrupt a party,
the protocol must protect this party’s security. Achieving security from such
adaptive corruptions is a notoriously difficult problem.

Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) are an im-
portant building block in cryptographic constructions. For example, NIZKPoK
allow honest protocol participants to prove they have formatted their protocol
messages correctly, and catch any adversary who is trying to deviate maliciously
from a protocol specification. This technique transforms protocols secure in the
“honest-but-curious” model (in which protocol participants are guaranteed to
act according to the protocol) into those secure in the more realistic “malicious”
model (in which the adversary can issue adaptive corruptions and execute arbi-
trary code). NIZKPoK that are safe to deploy in such a complex cryptographic
system must have composable security : they must maintain security properties
when composed concurrently with other protocols.

Thus, constructing a non-interactive zero-knowledge proof system that can
withstand adaptive corruptions in the universal composition (UC) framework of
Canetti [14] is a natural and well-motivated problem. Obtaining adaptive and
composable NIZKPoK was a long-standing open problem until Canetti, Sarkar,
and Wang [19] developed a compiler that leverages UC non-interactive commit-
ments, Camenisch and Damg̊ard’s commitment-based straight-line extractor [5],
and a correlation intractable hash function to obtain adaptive UC NIZKPoK
from standard assumptions. In particular, Canetti et al. consider Σ-protocols in
the FNICOM model, which assumes the first message of the Σ-protocol is a UC non-
interactive commitment, instantiated using equivocal commitments and CCA-2
secure public-key encryption with oblivious ciphertext sampling. Camenisch and
Damg̊ard’s extractor adds an additional O(λ) “commit-and-open” operations for
security parameter λ, and correlation intractable hash functions typically rely
on heavy-weight primitives like fully homomorphic encryption or indistinguisha-
bility obfuscation.

In this paper, we show how to obtain efficient and adaptive UC NIZKPoK
from any Σ-protocol with a natural adaptivity property in the global random-
oracle model. For most practicalΣ-protocols—i.e. those on the cusp of widespread
adoption in practice—our construction does not require any additional crypto-
graphic machinery; rather, it is as efficient as the Σ-protocol under the random-
ized Fischlin transform [24,27], which creates a multiplicative overhead for the
prover that is only superlogarithmic in λ. By treating the random oracle (RO) as
a global subroutine in the universal composition with global subroutines (UCGS)
model [1], our adaptive NIZKPoK retain composability even when the global RO
is shared among different sessions and protocols, as is likely in practice.



4 A. Lysyanskaya and L.N. Rosenbloom

Adaptive Σ-protocols. A standard Σ-protocol [23] is a three-move, public coin
zero-knowledge proof system over a binary NP relation R, where statements x
are proven to be in the language LR using a “witness” w such that (x,w) ∈ R.
The ‘three-move” form of a Σ-protocol is defined as follows: a prover P sends a
verifier V a first message com, V sends P a uniformly random challenge chl, P
responds with a value res, and V decides whether or not to “accept” (output
1) based on the proof transcript (x, com, chl, res). The “zero-knowledge proof
system” piece of the definition implies three properties: completeness, special
honest-verifier zero-knowledge (SHVZK), and special soundness (SS). The com-
pleteness property says that if P forms a proof using the three-move form on
input (x,w) ∈ R, then V always accepts. The SHVZK property states there
must exist a simulator algorithm SimProve that, on input the statement and
the challenge in advance, can produce a proof that looks statistically close to
that of a “real” prover without using a witness. Finally, the SS property implies
an extractor algorithm Extract that can compute a witness w from any two
proofs of a statement x with the same first message but different challenges.

Our key insight is that P is a probabilistic Turing machine, and its random
coins r determine the value of the first message com. This randomness is the
crux of the zero-knowledge property—it is the only information hidden from the
adversary during the SHVZK experiment. In the adaptive SHVZK experiment,
the adversary can corrupt P after P has already issued proofs, revealing the
entirety of P ’s random tape. We therefore consider an “adaptive” Σ-protocol to
be one that has an additional simulator algorithm, SimRand, that uses informa-
tion from SimProve and the witness that was supposedly used to compute the
proof to generate convincing-looking coins for P ’s random tape. Many popular
Σ-protocols are adaptive according to this definition.

Universal Composition with Global Subroutines. The security experi-
ment in the UC framework [14,1] tests a session of a cryptographic protocol Π
in the presence of arbitrary concurrent protocols, which are modeled using an
adversarial “environment” machine Z. Z controls the corrupted protocol partici-
pants through an adversary machine, and can also send inputs to honest protocol
participants and observe their outputs. In the “real-world” half of the security
experiment, the honest parties form their outputs according to the protocol Π,
and the adversary machine is the traditional notion of a cryptographic protocol
adversary A (i.e. one that executes arbitrary instructions). In the “ideal-world”
experiment, honest parties are just placeholder “dummies” who pass all of their
inputs to an ideal functionality F , which acts according to an “ideal” version
of the protocol. The adversary A is replaced with an “ideal adversary” S, who
acts like A when talking to Z, but also communicates with F and simulates the
view of the corrupted parties. When Z wishes to adaptively corrupt a protocol
participant P , F hands over any relevant information about P to S, and all fu-
ture communications with P are handled through S. If Z cannot distinguish its
interaction with “real” parties running Π in the presence of the “real” adversary
A from its interaction with “ideal” (dummy) parties running F in the presence
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of the “ideal” adversary, then Π is said to “UC-realize” (or be UC-secure with
respect to) F in the presence of Z.

In the original version of the framework [14], the “test session” of a proto-
col must be subroutine respecting—its subroutines cannot process inputs coming
from other sessions or protocols. Since it is reasonable to expect protocols in real-
world applications to share a common reference string (CRS) or RO, subsequent
versions of the UC framework such as joint-state UC (JUC) [18] and general UC
(GUC) [15] tweak the model to allow this feature. The GUC model in particular
is designed to incorporate global functionalities G that can be accessed by any
party in the security experiment. However, Badertscher, Canetti, Hesse, Tack-
mann, and Zikas [1] observe subtle inconsistencies in the GUC model stemming
from the (unconstrained) environment’s ability to spawn parties with arbitrary
session identifiers (see Appendix A [1]). Rather than relax the constraints of the
model, Badertscher et al. leverage the “shell-and-body” construct of the original
UC framework [14] to create a UC with global subroutines (UCGS) model. In
the UCGS model, the global subroutine protocol G is wrapped into a joint body
with the test protocol session π by a “shell” protocol M. The shell M processes
all communications in and out of π and G and ensures that the combined entity
M[π,G] is subroutine respecting, even though π and G are not.

In this work, the ideal functionality F is the ideal functionality FaNIZK for
adaptive NIZKPoK. The global subroutines are the restricted programmable
observable global RO GrpoRO of Camenisch, Drijvers, Gagliardoni, Lehmann, and
Neven [6] and the restricted observable (non-programmable) global RO GroRO of
Canetti, Jain, and Scafuro [15].

Adaptive Straight-Line Compilers. A straight-line compiler (SLC) [29] is
an algorithm SLC that takes as input any Σ-protocol ΣR for relation R (as de-
scribed above) and produces as output a non-interactive, straight-line extractable
(NISLE) proof system ΠSLC

R for R in the random-oracle model (ROM). Recall
that a proof system is straight-line extractable if the challenger in the security
experiment can obtain the two proofs needed to run the Extract algorithm
(and thereby compute a witness for the statement x) immediately after an ad-
versarial prover issues a single proof, i.e. without any further interaction with
the prover. In the ROM, the security experiment has access to the adversary’s
queries to the random oracle (RO); therefore, as long as an adversarial prover
is forced to query the RO on two proof transcripts with the same first mes-
sage but different challenges, the Extract algorithm can immediately compute
a witness for the prover’s statement. The randomized Fischlin transform [24,27]
sets the proof repetition parameters such that the prover is guaranteed (with
probability that is overwhelming in the security parameter) to issue two such
transcripts to the RO. Other forms of straight-line extraction, such as the afore-
mentioned commit-and-open construction due to Camenisch and Damg̊ard [5]
work in the plain model, but require the prover to couple each repetition with a
cryptographic commitment, creating substantial computational overhead.

We define an adaptive SLC as an SLC that preserves the adaptive secu-
rity properties of the underlying Σ-protocol—that is, the resulting proof system
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ΠSLC
R is also secure against adaptive corruptions. Specifically, we define new adap-

tive versions of the non-interactive multiple SHVZK (NIM-SHVZK) and special
simulation-soundness (NI-SSS) properties guaranteed by the regular SLC, and
show these properties (including completeness, Definitions 17-19) are both nec-
essary and sufficient to obtain adaptive UC NIZKPoK in the global ROM.

Theorem 2 (Informal). If a protocol Π creates adaptive UC NIZKPoK in
the ROM, then it must have the properties from Definitions 17-19.

Proof Insight. We show by contradiction that if there exists some distinguisher
A that can win the adaptive NIM-SHVZK or NI-SSS games (that is, if Π does
not have the properties from Definitions 17-19), we can construct a reduction
B that can distinguish between the real- and ideal-world adaptive UC experi-
ments. The key observation is that when B uses the NIM-SHVZK adversary as
a black-box (while playing the role of the adversarial environment Z against the
UC challenger), B is able to corrupt parties in the UC experiment in order to
simulate A ’s view exactly as it would expect from the NIM-SHVZK challenger.
If the UC challenger is running the ideal-world experiment, B would be talking
to the Corrupt interface of our adaptive NIZKPoK ideal functionality (Defini-
tion 6), which returns an output according to the simulator’s SimRand algorithm;
in the real world experiment, B would get the prover’s actual random tape.

Theorem 3 (Informal). Given any adaptive Σ-protocol ΣR and adaptive
straight-line compiler, we construct adaptive UC NIZKPoK in the

programmable global ROM (i.e. assuming the global RO can be programmed by
the security experiment).

Proof Insight. Given an adversary A that can distinguish the real- from ideal-
world UC experiments, we construct a series of hybrids that use A as a black-
box to win the adaptive NIM-SHVZK and adaptive NI-SSS games where the
corruption operations are handled similarly to the proof of Theorem 2. Since this
proof operates in the programmable global ROM, the NIM-SHVZK and NI-SSS
challengers are simulating proofs according to the traditional (programming-
based) SimProve algorithm, with the added constraint that there must exist a
corresponding SimRand algorithm that, given the simulated proof and the witness
supposedly used to compute it, outputs convincing-looking randomness for the
prover’s random tape.

While the programmable global ROM is convenient, there are subtle modeling
differences between the observable-only global RO GroRO’s observation interface,
which reveals the illegitimate queries of the environment in the UC experiment
to anyone who asks (including the environment), and the localized program-
ming interface of the programmable global RO GrpoRO, which is only revealed to
participants in a particular protocol session [29,6]. Moreover, recent works in ob-
taining adaptive [19] and efficient [25] UC proof systems have operated in some
version of the global RO-CRS hybrid model, indicating it is deserving of further
exploration. We therefore provide a construction of adaptive UC NIZKPoK in
the observable-only (non-programmable) global RO-CRS hybrid model.
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Theorem 4 (Informal). Given any adaptive Σ-protocol ΣR, any adaptive
straight-line compiler, and an adaptive version of Lysyanskaya and

Rosenbloom’s OR-protocol compiler [29], we construct adaptive UC NIZKPoK
in the observable-only (non-programmable) global RO-CRS hybrid model.

Proof Insight. This proof proceeds similarly to the proof above, except the sim-
ulator can no longer program the RO. We use a technique similar to that of
Lysyanskaya and Rosenbloom [29], in which the simulator has a special witness,
the trapdoor to the local CRSs for protocol session s, that the prover uses to show
that either it has a valid witness w for the statement x, or else it has the secret
trapdoor traps to CRSs. In our construction, the compiler relies on the SimRand
functionality of the underlying adaptive OR-protocol and a supplementary algo-
rithm, RealToSim, to provide convincing randomness for either witness on the
prover’s tape after the prover has been corrupted. We formalize this intuition
as an updated version of witness indistinguishability for the adaptive corruption
setting, and demonstrate that it can be achieved as long as both Σ-protocols
underlying the OR-protocol are adaptive special honest-verifier zero-knowledge
and have a new property we call randomness equivocability.

Theorem 1 (Informal). Given any adaptive OR-protocol ΣOR based on
Σ-protocols Σ0 and Σ1, if Σ0 and Σ1 are both adaptive special honest-verifier
zero-knowledge and randomness equivocable, then ΣOR is adaptive witness

indistinguishable.

Proof Insight. Recall that as part of an OR-protocol, the proof of a chosen
statement xb is computed according to the Σb.Prove algorithm on a “real” wit-
ness wb, while the proof of the other statement xb is computed according to
the simulator algorithm, Σb.SimProve. In order to maintain a notion of witness
indistinguishability in the adaptive corruption setting, the simulator must be
able to make the prover’s randomness look as if it formed either proof honestly.
To make the simulated proof look “real,” the simulator can use Σb.SimRand
to produce “real”-looking coins on the prover’s tape. However, note that this
functionality is not sufficient to take a “real”-looking proof and produce the
simulator’s random coins, such that the adversary is convinced it was produced
according to Σb.SimProve. We introduce a second property, randomness equiv-
ocability (RE), which uses the algorithm RealToSim in order to make a “real”
proof appear simulated. We then prove via a sequence of two reductions that, as
long as the underlying Σ-protocols have both the adSHVZK and RE properties
respectively, the OR-protocol based on those Σ-protocols are adaptive witness
indistinguishable.

Finally, we extend the randomized Fischlin transform in Definition 26 by
adding a SimRand functionality, and show the extended version meets our defini-
tion of an adaptive SLC. This implies we can efficiently transform any adaptive
Σ-protocol into adaptive UC NIZKPoK in both global ROMs.
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Theorem 5 (Informal). Our extended randomized Fischlin transform [24,27]
is an adaptive straight-line compiler; that is, it preserves the security

properties of adaptive Σ-protocols under transformation.

Proof Insight. In order for the adaptive version of the transform to provide a
convincing version of the prover’s random tape, the SimRand algorithm must
produce an acceptable version of the challenge selection step—one that agrees
with both the simulated proofs and, in the case of witness indistinguishability
(the property required for our GroRO-FCRS-hybrid model construction), any proofs
that the adversary can generate and query to the RO itself using the real witness.
Our extended simulator proceeds according to Kondi and shelat’s randomized
version of the Fischlin transform [27] up until it is time for the simulator to
output the prover’s random tape. To construct the tape, the SimRand algorithm
of the transform samples fresh randomness from its random tape for the prover’s
challenges, computing proofs using the real witness (which it obtains upon cor-
ruption) and querying the transcripts to the RO until it reaches an output string
0b, at which point it inserts the randomness used to sample the challenge of the
simulated proof. The first-message randomness of the simulated proof is com-
puted according to the SimRand algorithm of the underlying Σ-protocol; the
first messages for all of the other proofs are drawn freshly at random. Because
the prover in Kondi and shelat’s transform samples the challenges at random
from the challenge space, the adversary cannot distinguish the “real” prover’s
challenge selection path from the simulator’s.

Applications. NIZKPoK are widely used in group [12,5], blind [26], threshold
[3], aggregate [27], and multi- [3,22] signatures, cryptographic shuffles [36,30]
and accumulators [2,10], anonymous networks [20], credentials [9], e-cash [8], e-
token [7], and voting [32,30,35], distributed ledgers [32], verifiable secret sharing
[35] and encryption schemes [5,11] that are secure against adaptively chosen ci-
phertext attacks (CCA security). We demonstrate that many of the Σ-protocols
used as core building blocks in these constructions, including proofs of knowl-
edge of discrete logarithm [34] and proofs of knowledge of n representations of
discrete logarithm [13,11], qualify as adaptive Σ-protocols, and can therefore
be efficiently transformed into adaptive UC NIZKPoK in the global ROM. The
result is an immediate and significant boost in the security potential of all of the
above real-world systems.

Theorems 6-7 (Informal). Many common Σ-protocols are adaptive
Σ-protocols, and can therefore be converted to efficient and adaptive UC

NIZPoK in the global ROM using our techniques.

Proof Insight. We observe that the abstract treatment of identification schemes
from linear function families due to Hauck, Kiltz, and Loss [26] closely resembles
the structure of common Σ-protocols such as proofs of knowledge of discrete log-
arithm [34] and n representations of discrete logarithm [13,11]. We remodel this
abstraction to include SimProve, SimRand, and Extract algorithms, resulting in
a natural class of adaptive Σ-protocols.



Efficient and Adaptive UC NIZKPoK 9

Organization. In Section 2, we introduce the various oracles, models, and se-
curity definitions we will use in our constructions. Section 3 contains formal
definitions of adaptive Σ-protocols and adaptive SLCs. We prove in Section 5
that the security guaranteed by adaptive SLCs is both necessary and sufficient
to create adaptive UC NIZKPoK in the programmable global ROM, and suf-
ficient along with an ideal CRS functionality [29] in the (non-programmable)
global RO-CRS hybrid model. In Section 6 we extend the randomized Fischlin
transform [24,27] such that it satisfies our definition of an adaptive SLC, and
can therefore create efficient and adaptive UC NIZKPoK from any adaptive Σ-
protocol. Finally in Section 7, we prove that many common Σ-protocols are
adaptive, concluding that efficient and adaptive UC NIZKPoK are realizable for
a variety of real-world systems.

2 Preliminaries

In this section, we give preliminary definitions of the global RO (Section 2.1)
and RO-CRS hybrid (Section 2.2) models we will use in our constructions, as
well as a specification of the adaptive corruption mechanism (Section 2.3), the
ideal adaptive NIZKPoK functionality FaNIZK (Section 2.4), and finally adaptive
security in the UCGS model (Section 2.5).

2.1 The Global Random Oracle Model(s)

We will demonstrate how to obtain adaptive UC NIZKPoK in two global random
oracle models: the restricted observable global ROM of Canetti et al. [17] and the
restricted programmable observable global ROM of Camenisch et al. [6]. Recall
from the introduction that NIZKPoK in the ROM traditionally require a proof
simulator algorithm SimProve that programs the outputs of the RO, and an
extractor algorithm Extract that observes the adversary’s RO queries. While
making the global RO programmable is easier from a construction standpoint,
the non-programmable model is closer to the intended vision of a truly “global”
RO that cannot be edited or controlled by any one entity. We highlight and
discuss the differences between the two models below.

The global ROs in both models have a traditional random function interface,
Query, which takes an any-length string as input and returns a uniformly ran-
dom ℓ-bit string as output [4]. The “global” designation refers to the fact that
there exists a single instance of the oracle for all sessions of a protocol, and po-
tentially across protocols (as opposed to one functionality per protocol session,
as in the standard UC model [14]). In order to be considered a global subrou-
tine in the UCGS model [1], the global RO must be subroutine respecting and
regular with respect to the challenge protocol. Both global ROs are subroutine
respecting since the “extended instance” of each includes querying parties in any
session, and no oracle subroutines interact directly with the querent. They are
also regular with respect to the challenge protocol, since they neither invoke new
NIZKPoK protocol participants nor run them as subroutines.
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The observable-only RO GroRO [17,6] records all “illegitimate” queries made
for a session s by parties with an sid ̸= s, which captures all of the environ-
ment’s direct queries (since the environment is external to all legitimate protocol
sessions by definition). The observability property is captured by the interface
Observe, which takes a session s as input and produces a list of illegitimate
queries Qs for s as output. Since the only queries in Qs are adversarial, we
model Qs as completely public—GroRO can release it to anyone who asks [6].

Definition 1 (Observable Global RO GroRO). [17,6] The observable global
RO GroRO is a tuple of algorithms (Query, Observe) defined over an output length
ℓ and an initially empty list of queries Q:

– v ← Query(x) : Parse x as (s, x′) where s is an SID. If a list Qs of ille-
gitimiate queries for s does not yet exist, set Qs = ⊥. If the caller’s SID
̸= s, add (x, v) to Qs. If there already exists a pair (x, v) in the query list Q,
return v. Otherwise, choose v uniformly at random from {0, 1}ℓ, store the
pair (x, v) in Q, and return v.

– Qs ← Observe(s) : If a list Qs of illegitimate queries for s does not yet exist,
set Qs = ⊥. Return Qs.

The programmable version GrpoRO [6] builds on the observable-only function-
ality with an additional interface, the IsProgrammed interface, which reveals the
programmed entries for a session s to any parties in the same session. Again since
the environment is external to all legitimate protocol sessions by definition, it
will not be able to query the IsProgrammed interface directly, and must instead
ask through the corrupted session participants (in the ideal world, the simula-
tor can always return “false” to corrupted session participants’ IsProgrammed
queries). Unlike the “illegitimate queries” of the observation interface, the list
of programmed queries cannot be made public to everyone (or the environment
could trivially distinguish the real from ideal experiments). It is unclear to date
how this distinction affects the security of protocols under composition in the
global ROM, if at all. In the meantime, we recall in the next section the GroRO-
FCRS-hybrid model, which will allow us to obtain adaptive UC NIZKPoK without
programming the global RO.

Definition 2 (Restricted Programmable Observable Global RO GrpoRO).
[6] The restricted programmable observable global random oracle GrpoRO is a tu-
ple of algorithms (Query, Observe, Program, IsProgrammed) defined over an out-
put length ℓ and initially empty lists Q (queries) and prog (programmed queries):

– v ← Query(x) : Same as Definition 1 above.

– Qs ← Observe(s) : Same as Definition 1 above.

– {0, 1} ← Program(x, v) : If ∃v′ ∈ {0, 1}ℓ such that (x, v′) ∈ Q and v ̸= v′,
output 0. Otherwise, add (x, v) to Q and prog and output 1.

– {0, 1} ← IsProgrammed(x) : Parse x as (s, x′). If the caller’s SID ̸= s,
output ⊥. Otherwise if x ∈ prog, output 1. Otherwise, output 0.
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2.2 The GroRO-FCRS-hybrid Model

In the observable-only GroRO-hybrid model, the SimProve algorithm has no addi-
tional power over a regular prover, since it cannot program GroRO. Thus, NIZKPoK
in the plain GroRO-hybrid model are impossible [17,6,33,16,15]. To work around
this impossibility result and construct UC NIZKPoK while avoiding the session-
localized IsProgrammed interface of the programmable global RO GrpoRO, Lysyan-
skaya and Rosenbloom introduce the GroRO-FCRS-hybrid model [29], where FCRS

is the (local) ideal common reference string (CRS) functionality.
In the real-world execution of the GroRO-FCRS-hybrid model, FCRS has one

interface, Query, that simply returns a consistent CRS to the participants of
a particular session s. In the ideal-world experiment, the simulator plays the
role of FCRS, and can generate CRSs for each session s with a secret trapdoor
traps. Provers in the GroRO-FCRS-hybrid model prove via an OR-type Σ-protocol
[21,23] that either they know a real witness to a statement, or they know the
trapdoor traps to CRSs. This allows the simulator in the ideal-world experiment
to “simulate” proofs of statements without witnesses using its extra power—the
CRS trapdoor—which a real-world prover will never have.

In order to make the CRS statement compatible with the definition of Σ-
protocols, it must be drawn from a samplable-hard relation S—that is, generating
the CRS must be efficient, and, given any CRSs ∈ LS , it must be overwhelmingly
difficult to generate a traps such that S(CRSs, traps) = 1 [29]. The relation
S must additionally be Σ-friendly : it must have a corresponding efficient Σ-
protocol ΣS . Proofs in the GroRO-FCRS-hybrid model are therefore well-specified
as OR-protocols ΣR∨S over the relation R ∨ S, where R is the relation of the
original Σ-protocol ΣR, and S is the samplable-hard relation underlying ΣS .
Formal definitions of the ideal functionality and context-friendly properties of
FCRS are given below.

Definition 3 (Samplable-Hard Relation). [29] A binary NP relation S is
samplable-hard with respect to a security parameter λ if it has the following
properties.

1. Sampling a statement-witness pair is easy. There exists a sampling
algorithm κS that on input 1λ outputs (x,w) such that S(x,w) = 1 and
|x| = poly(λ).

2. Computing a witness from a statement is hard. For a randomly sam-
pled statement-witness pair (x,w)← κS(1

λ) the probability that an efficient
adversary A can find a valid witness given only the statement is negligible.
Formally, for all PPT A ,

Pr[(x,w)← κS(1
λ), w′ ← A (1λ, x, κS) : (x,w

′) ∈ R] ≤ negl(λ).

Definition 4 (Σ-Friendly Relation). [29] A Σ-friendly relation S is a binary
NP relation with a corresponding efficient Σ-protocol ΣS.

Definition 5 (CRS Ideal Functionality). [29] The ideal functionality FCRS

of a common reference string (CRS) for a particular CRS generation mechanism
GenCRS is defined as follows.
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Query: Upon receiving a request (Query, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Query, s) was received, compute x according to the algorithm GenCRS and
store the tuple (CRS, s, x). Return (CRS, s, x).

2.3 Adaptive Corruptions in the UC Model

Adaptive corruptions allow the (adversarial) environment Z in the UC model to
obtain full internal views of honest parties after they have already participated
in a cryptographic protocol. Briefly, adaptive corruptions in the UC framework
are modeled as follows. When it wants to corrupt an extant party P , Z sends a
message (Corrupt, P ) to the control function [14].1

In the real world, the control function passes the message (Corrupt, P ) to
the traditional adversary A , who passes the message to P . Upon receiving the
corruption instruction, P relinquishes all of its hidden internal tapes, including
its input, output, work, and random tapes, to A .2

In the ideal world, the control function passes the message (Corrupt, P ) to
the ideal adversary S, who must be able to provide a convincing internal view
of P to Z. S does this by first querying the ideal functionality F (who has been
running computations on “dummy party” P ’s behalf) for any relevant informa-
tion about P ; it then runs some algorithms (in our case SimRand) to simulate P ’s
internal tapes. The control function routes all subsequent instructions for P to
A in the real world, and S in the ideal world. We call any protocol that satisfies
the UC security definition (given in the next section) with adaptive corruptions
adaptive UC, or aUC for short.

2.4 The NIZKPoK Ideal Functionality

Recall from the introduction that ideal functionalities F in the UC model oper-
ate on behalf of the honest “dummy parties” in the ideal-world experiment [14].
Upon receiving instructions from the ideal adversary S and setting up any neces-
sary parameters, FaNIZK proves statements for honest parties using the SimSetup
and SimProve algorithms (which do not take witnesses as input) and verifies
proofs using the Extract algorithm. If the algorithms from S do not function

1 The control function is the entity in the UC experiment in charge of passing messages
back and forth between all protocol participants. It is easiest to think of the control
function as a modeling technique that prevents Z from sending messages that are
outside the scope of the desired security experiment. For example, in the passive
corruption model, the control function would not allow a message (Corrupt, P ) to
go through after P was initialized. In the adaptive setting, corruption messages are
allowed at any point during the security experiment.

2 Coins from the random tape in the UC model [14] are defined (without loss of
generality) to be read-once and flipped on-the-fly, such that the calling TM can
generate as much randomness as it wants (within its polynomial run-time bound).
This implies that the corrupted party P will only need to relinquish its random tape
history, rather than a “full” tape (the length of which is undefined).
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as FaNIZK intends, for instance if SimProve produces proofs that do not verify
or Extract outputs invalid witnesses, FaNIZK outputs Fail. During its process-
ing, FaNIZK stores information about the proofs it has computed on each dummy
party’s behalf. S retrieves this information via FaNIZK’s Corrupt interface when-
ever an honest party is corrupted by the environment.

Definition 6 (Adaptive NIZKPoK Ideal Functionality). The ideal func-
tionality FaNIZK of an adaptive non-interactive zero-knowledge proof of knowl-
edge (adaptive NIZKPoK) for a particular session s is defined as follows.

Setup: Initialize an empty list C of corrupted parties. Upon receiving a request
(Setup, P ) from a party P = (pid, sid), check whether sid = s and P /∈ C.
If either check fails, output ⊥. Otherwise, if this is the first time a request
(Setup, P ) was received from an uncorrupted party with sid = s, do as follows:
pass (Setup, s) to the ideal adversary S, receive and store (Algorithms, Setup,
Prove, Verify, SimSetup, SimProve, Extract). Then run SimSetup and store
(ppm, zs), where ppm are public parameters and zs is any auxiliary output of
SimSetup. Otherwise, output ⊥.

Prove: Upon receiving a request (Prove, x, w) from a party P = (pid, sid),
check that sid = s, P /∈ C, and R(x,w) = 1. If any check fails, output ⊥.
Otherwise, set w aside, compute π according to the SimProve algorithm, and
check that Verify(x, π) = 1. If it doesn’t, output Fail. Otherwise, record the
tuple (Proof, P, x, w, π, zs, zπ), where zπ is any auxiliary output of the SimProve
algorithm. Output (Proof, P, x, π).

Verify: Upon receiving a request (Verify, x, π) from a party P = (pid, sid),
first check that sid = s and P /∈ C. If either check fails, output ⊥. Otherwise if
Verify(x, π) = 0, output (Verification, P, x, π, 0). Otherwise if (Proof, P, x, π)
is already stored, output (Verification, P, x, π, 1). Otherwise, compute w ac-
cording to the Extract algorithm. If R(x,w) = 1, output (Verification, P, x, π, 1)
for a successful extraction. Else if R(x,w) = 0, output Fail.

Corrupt: Upon receiving a request (Corrupt, P ) from S, add P to C and return
all of the stored tuples (Proof, P, ∗), if they exist. Otherwise, output ⊥.

2.5 UC Security with Adaptive Corruptions

At a high level, a protocol Π qualifies as adaptive UC (aUC) with respect to an
ideal functionality F (i.e. Π “aUC-emulates” F) in the global ROM if for all ef-
ficient players in the security experiment, no adaptively-corrupting environment
can distinguish the real-world experiment (with Π and A ) from the ideal-world
experiment (with FaNIZK and S).

In the UC with global subroutines (UCGS) model, Π UC-emulates F in the
presence of a global subroutine G if M[Π,G] UC-emulates M[F ,G], where M is the
“shell” wrapper discussed in the introduction. Badertscher et al. show in Propo-
sition 3.4 [1] that as long as the global subroutine is subroutine respecting and
regular with respect to the challenge protocol, and that the challenge protocol is
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subroutine respecting except in its interactions with G (i.e. it is G-subroutine re-
specting), then M[Π,G] (resp. M[F ,G]) are subroutine respecting and behave just
like Π and G (resp. F and G) would behave as individual entities. We argued in
Section 2.1 that both GrpoRO and GroRO qualify as global subroutines, and as GrpoRO
and GroRO are the only global subroutines in our experiments, Π and FaNIZK are
GrpoRO- and GroRO-subroutine respecting. Therefore, without loss of generality, we
consider our UC experiments “in the presence of global subroutines” GrpoRO and
GroRO—or in the GrpoRO- and GroRO-hybrid models for short—and make no further
reference to M (for details, see Section 3 in Badertscher et al. [1]).

We review the (standard) UC-security definition with respect to a generic
global subroutine G, and instantiate the individual versions (i.e. with the generic
global RO GRO, GrpoRO, GroRO, and FCRS) as needed throughout the paper.

Definition 7 (aUC Protocols in the G-hybrid Model). A protocol Π with
security parameter λ aUC-realizes the ideal functionality F with adaptive cor-
ruptions in the G-hybrid model if for all efficient A , there exists an ideal ad-
versary S efficient in expectation such that for all efficient environments Z that
can issue adaptive corruptions,

IDEALGF,S,Z(1
λ, aux) ≈c REAL

G,∗
Π,A ,Z(1

λ, aux),

where G is a global subroutine, aux is any auxiliary information provided to the
environment, and ∗ represents any additional local functionality included in the
real-world experiment.

3 Adaptive Σ-protocols

In this section, we formalize the notion of adaptive Σ-protocols.

3.1 Σ-protocols

Recall from the introduction that a Σ-protocol for a binary NP relation R is
a three-move public-coin protocol between a prover P and a verifier V , after
which V is convinced that P has a witness w for some statement x such that
R(x,w) = 1. P is assumed to be a probabilistic (polynomial-time) Turing Ma-
chine (TM)—that is, P is assumed to have a random tape, from which it can
sample (polynomially-many) random bits. In the traditional definitions of Σ-
protocols [23,29], the contents of P ’s random tape are not explicitly captured in
the inputs and outputs of theΣ-protocol algorithms. However, P ’s randomness is
vital to the security experiment—it is the only piece of information hidden from
the adversary (recall the adversary in the special honest-verifier zero-knowledge
game is allowed to query for proofs of statements using witnesses of its choos-
ing), and in the adaptive corruption setting, the adversary will have access to
this randomness after proofs have been generated. Therefore, rather than keep-
ing the randomness necessary to compute proofs implicit in P ’s random tape,
we make it an explicit quantity, denoted r.
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The basic three-move form of a Σ-protocol is generally described as an in-
teractive “protocol template” τ [23,29]. The algorithmic version of the protocol
template definition [29] consists of the following algorithms: τ.Setup, τ.Commit,
τ.Challenge, τ.Respond, and τ.Decision. We modify the τ.Setup algorithm
such that the public parameters contain the prover’s randomness security pa-
rameter λP , derived from the overall security parameter λ, that specifies the
amount of randomness necessary to compute the first message com. In particular,
we assume the randomness r that is given as input to τ.Commit is sampled uni-
formly at random from {0, 1}λP , representing a λP -length section of P ’s random
tape. The algorithms τ.Challenge, τ.Respond, and τ.Decision are unchanged.

Definition 8 (Adaptive Σ-protocol Template). The adaptive Σ-protocol
template for a relation R is a tuple of efficient algorithms τ = (Setup, Commit,
Challenge, Respond, Decision), defined as follows.

– ppm ← Setup(1λ): Given a security parameter, generates a set of public
parameters ppm which minimally include 1λ, challenge length ℓ, and ran-
domness security parameter λP .

– com← Commit(ppm, x, w, r): Given statement x, witness w, and randomness
r ←$ {0, 1}λP , P sends V a message com.

– chl← Challenge(ppm, x, com): V sends P a random ℓ-bit string chl.

– res← Respond(ppm, x, w, com, chl): P sends V a reply res.

– {0, 1} ← Decision(ppm, x, com, chl, res): V decides whether to output 1 (ac-
cept) or 0 (reject) based on the input (ppm, x, com, chl, res).

The tuple (com, chl, res) is called a transcript or proof. We say a transcript or
proof is valid or accepting if Decision(ppm, x, com, chl, res) outputs 1.

In addition to the protocol template, Σ-protocols are defined with respect to
three fundamental properties: completeness, special honest-verifier zero-knowledge
(SHVZK), and special soundness (SS). Lysyanskaya and Rosenbloom formalized
aΣ-protocol for relationR as a tuple of algorithms,ΣR = (Setup, Prove, Verify,
SimSetup, SimProve, Extract), that capture the requirements of the three-move
form as well as the correctness and security properties. In the adaptive corrup-
tion setting, the zero-knowledge simulator must additionally be able to produce
a view of the prover’s randomness that is consistent with the proofs generated
by the SimProve algorithm.

We therefore introduce a new algorithm—SimRand—which, given its own
section of random tape rSim, a statement, a proof, some auxiliary information
produced by SimSetup and SimProve, and the witness that was supposedly used
to compute the proof, outputs some simulated randomness. This algorithm cap-
tures the intuition that an adaptive Σ-protocol simulator must be able to gen-
erate convincing randomness for the prover’s random tape after the proof has
already been generated and the prover is corrupted by the adversary. We will show
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in Section 7 that several widely-used instantiations of Σ-protocols are adaptive
according to this definition.

Finally, adaptive Σ-protocols require an adaptive version of special honest-
verifier zero-knowledge (SHVZK), in which the adversary should not be able to
tell the difference between the outputs of Prove and SimProve or between the
randomness r of a real prover and the output of SimRand.

Definition 9 (Adaptive Σ-protocol). An adaptive Σ-protocol for a relation
R based on adaptive protocol template τ (Definition 8) is a tuple of efficient pro-
cedures ΣR,τ = (Setup, Prove, Verify, SimSetup, SimProve, SimRand, Extract),
defined as follows.

– ppm ← Setup(1λ): Given a security parameter 1λ, invoke τ.Setup(1λ) to
obtain the public parameters ppm, which include randomness security param-
eters λP and λSim for the prover and simulator, respectively.

– π ← Prove((ppm, x, w, r), (ppm, x)): Let the first (resp. second) argument to
Prove be the input to P (resp. V ), where both parties get ppm and the state-
ment x, but only P gets witness w and randomness r ←$ {0, 1}λP . P and V
run τ.Commit, τ.Challenge, and τ.Respond. Output π = (com, chl, res).

– {0, 1} ← Verify(ppm, x, π): Given a proof π for statement x, parse π as
(com, chl, res) and output the result of running τ.Decision on input (x, com,
chl, res). Verify must satisfy the completeness property (Definition 10).

– (ppm, zSim)← SimSetup(1λ): Generate ppm and a general simulation trapdoor
zSim. Together, SimSetup, SimProve, and SimRand must satisfy the adaptive
special honest-verifier zero-knowledge property (Definition 11).

– (π, zπ)← SimProve(ppm, z, x, chl, rSim) : Given public parameters ppm, trap-
door zSim, statement x, challenge chl, and randomness rSim ← {0, 1}λSim ,
produce a proof π = (com, chl, res) and proof trapdoor zπ.

– r ← SimRand(ppm, zSim, zπ, x, π, w, rSim) : Given public parameters ppm, gen-
eral trapdoor zSim, proof trapdoor zπ, proof π for statement x, a witness w
such that R(x,w) = 1, and randomness rSim, produce randomness r.

– w ← Extract(ppm, x, π, π′) : Given two proofs π = (com, chl, res) and π′ =
(com, chl′, res′) for a statement x, output a witness w. Extract must satisfy
the two-special soundness property (Definition 12).

For convenience and when the meaning is clear, we use ΣR to represent ΣR,τ

and omit ppm from the input of the algorithms.

Definition 10 (Completeness). A Σ-protocol ΣR for relation R is complete
if for all (x,w) ∈ R and π ← ΣR.Prove((x,w), x), ΣR.Verify(x, π) = 1.

Definition 11 (Adaptive Special Honest-Verifier Zero-Knowledge). A
Σ-protocol ΣR for relation R is statistical (resp. computational) adaptive spe-
cial honest-verifier zero-knowledge (adaptive SHVZK) if there exist algorithms
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SimSetup, SimProve, and SimRand such that for any security parameter λ, any
adversary (resp. any PPT adversary) A , and a bit b←$ {0, 1}, there exists some
negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(λ), where b′ is the result
of running the game adSHVZKA ,ΣR

(1λ, b) from Figure 1. We say A wins the
adSHVZK game if Pr[b′ = b] > 1

2 + negl(λ).

adSHVZKA ,ΣR(1
λ, 0): Real

1 : ppm← ΣR.Setup(1
λ)

2 : (x,w, st)← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : r ←$ {0, 1}λP

5 : chl← {0, 1}ℓ

6 : π ← ΣR.Prove((x,w, r), (x, chl))

7 : else :

8 : π ← ⊥
9 : b′ ← A (st, π, r)

10 : return b′

adSHVZKA ,ΣR(1
λ, 1): Ideal

1 : (ppm, zs)← ΣR.SimSetup(1
λ)

2 : (x,w, st)← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : rSim ←$ {0, 1}λSim

5 : chl← {0, 1}ℓ

6 : (π, zπ)← ΣR.SimProve(zSim, x, chl, rSim)

7 : r ← ΣR.SimRand(zSim, zπ, x, π, w, rSim)

8 : else :

9 : π ← ⊥
10 : b′ ← A (st, π, r)

11 : return b′

Fig. 1. Adaptive Special Honest-Verifier Zero-Knowledge (adSHVZK) Game.

Definition 12 (Two-Special Soundness). A Σ-protocol ΣR for relation R
is two-special sound if there exists a PPT algorithm Extract such that for any
security parameter λ, any PPT adversary A ,

Pr[Fail← SSA ,ΣR
(1λ)] ≤ negl(λ),

where SS is the special soundness game described in Figure 2. We say A wins
the SS game if Pr[Fail← SSA ,ΣR

(1λ)] > negl(λ).

3.2 OR-protocols

An OR-protocol [23,29] is a special type of Σ-protocol over a disjunctive relation:
the prover shows that either it knows a witness w0 for a statement x0 such
that R0(x0, w0) = 1, or it knows a witness w1 for a statement x1 such that
R1(x1, w1) = 1. The structure of the proof produced by an OR-protocol prover is
Φ = (π0, π1, CHL), where one of the proofs πb is “real” (computed according to the
Σb.Prove algorithm) and the other is simulated (according to the Σb.SimProve
algorithm).
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SSA ,ΣR(1
λ)

1 : ppm← ΣR.Setup(1
λ)

2 : (x, π, π′)← A (1λ, ppm)

3 : parse π = (com, chl, res), π′ = (com′, chl′, res′)

4 : if (ΣR.Verify(x, π) = ΣR.Verify(x, π
′) = 1 ∧

5 : com = com
′ ∧ chl ̸= chl

′) :

6 : w ← ΣR.Extract(x, π, π
′)

7 : if R(x,w) = 0 :

8 : return Fail

9 : return Success

Fig. 2. Two-Special Soundness (SS) Game.

Zero-knowledge OR-protocols necessarily prevent the adversary from learning
anything about the witness other than the fact that the combined relationROR =
R0 ∨ R1 is satisfied. An OR-protocol ΣOR based on Σ-protocols Σ0 and Σ1

must therefore have a property called witness indistinguishability, which follows
from the special honest-verifier zero-knowledge property of Σ0 and Σ1 [23]. At
a high level, witness indistinguishability says that even when an adversary A is
allowed to choose the witness wb used to compute the proof, the best A can do
in distinguishing whether the prover used wb or wb to compute the proof is only
negligibly better than a random guess.

As part of our adaptive OR-protocol formalization, which we will need for
the proof of Theorem 4, we introduce an adaptive version of the witness in-
distinguishability property, which states (informally) that an adversary cannot
tell whether a prover used wb or wb even upon learning either the prover’s true
random tape or an alternative random tape that the prover might have had
if it were using the other witness. Since the traditional OR-protocol simulator
computes both halves πb and πb of the proof according to Σb.SimProve and
Σb.SimProve, respectively, in order to make the simulated random tape look
“real,” ΣOR.SimRand must produce real-looking randomness for the proof πb

corresponding to the witness wb that was supposedly used to run ΣOR.Prove.
Note, however, that the existence of the SimProve and SimRand algorithms alone
does not satisfy our intuition of adaptive witness indistinguishability, which re-
quires the challenger to issue a real proof that, once the prover’s randomness is
revealed, could have been computed according to either wb or wb.

We realize the adaptive witness indistinguishability property, fromΣ-protocols
that satisfy the randomness equivocability property we define below.

Let RealToSim be an algorithm that takes as input a proof π for statement x
computed according to Σ.Prove using witness w and randomness r, and outputs
simulated random coins rSim. In order to express that the simulator is able to
effectively equivocate the prover’s random tape in either direction (such that the



Efficient and Adaptive UC NIZKPoK 19

proof could have been computed according to wb or wb), we say that a Σ-protocol
is randomness equivocable if for all adversaries A , A cannot tell the difference
between a simulated proof accompanied by the simulator’s actual random tape
rSim and a real proof accompanied by the output of RealToSim. We formalize
this property below.

Definition 13 (Randomness Equivocability). A Σ-protocol ΣR for relation
R is randomness equivocable (RE) if there exist algorithms SimSetup, SimProve,
SimRand, and RealToSim such that ΣR is adaptive special honest-verifier zero-
knowledge (Definition 11) and for any security parameter λ, any adversary (resp.
any PPT adversary) A , and a bit b←$ {0, 1}, there exists some negligible func-
tion negl such that Pr[b′ = b] ≤ 1

2 + negl(λ), where b′ is the result of running
the game REA ,ΣR

(1λ, b) from Figure 3. We say A wins the adSHVZK game if
Pr[b′ = b] > 1

2 + negl(λ).

REA ,ΣR(1
λ, 0)

1 : (ppm, zs)← ΣR.SimSetup(1
λ)

2 : (Prove, x, w, st)← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : r ←$ {0, 1}λr

5 : chl← {0, 1}ℓ

6 : π ← ΣR.Prove((x,w, r), (x, chl))

7 : r′ ← ΣR.RealToSim(ppm, zs, x, π, w, r)

8 : else :

9 : π ← ⊥
10 : b′ ← A (st, π, r′)

11 : return b′

REA ,ΣR(1
λ, 1)

1 : (ppm, zs)← ΣR.SimSetup(1
λ)

2 : (Prove, x, w, st)← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : r′ ← {0, 1}λR′

5 : chl← {0, 1}ℓ

6 : (π, zπ)← ΣR.SimProve(zs, x, chl, r
′)

7 :

8 : else :

9 : π ← ⊥
10 : b′ ← A (st, π, r′)

11 : return b′

Fig. 3. Randomness Equivocability (RE) Game.

Together, the SimRand and RealToSim algorithms essentially decouple the
nature of the proof as real or simulated from the nature of the random coins
as real or simulated—they allow the simulator to decide post-proof whether the
prover’s revealed randomness corresponds to Σ.Prove or Σ.SimProve. When
plugged into an OR-protocol, this allows the simulator to equivocate the witness
used to compute a real proof from wb to wb by fabricating a “real” prover’s
random tape for the previously simulated proof πb (according to Σb.SimRand)
and the simulator’s random tape for the previously “real” proof πb (according
to Σb.RealToSim). We call this OR-protocol algorithm EquivRand.

Definition 14 (Adaptive OR-Protocol). An adaptive OR-protocol for a re-
lation ROR = R0 ∨ R1 based on adaptive Σ-protocols ΣR0,τ0 and ΣR1,τ1 (Defi-
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nition 9) is a tuple of procedures ΣOR = (Setup, Prove, Verify, SimSetup,
SimProve, SimRand, Extract), defined as follows.

– PPM ← Setup(1λ): Given a security parameter 1λ, run ΣR0 .Setup(1
λ) to

obtain ppm0 and ΣR1
.Setup(1λ) to obtain ppm1. Output PPM = (ppm0, ppm1).

– Φ ← Prove(X,W, T ): Parse X = (x0, x1), W = (w, b), and T = (r0, r1),
and let b be the bit such that (xb, w) ∈ Rb. Execute the following:

• Com← Commit(X,W, T ): P computes comb according to τb.Commit(xb, w,
rb). P chooses chlb at random and generates (comb, chlb, resb) by run-
ning ΣRb

.SimProve(xb, zb, chlb, rb). P sends V Com = (com0, com1).

• CHL← Challenge(X, Com): V sends P a random ℓ-bit string CHL.

• Res← Respond(X,W, Com, Chl): P sets chlb = CHL⊕chlb and computes
resb according to τb.Respond(xb, w, comb, chlb). P sends (Chl, Res) =
(chl0, chl1, res0, res1) to V .

The output “proof” Φ is a tuple (π0, π1, CHL), where πb = (comb, chlb, resb).

– {0, 1} ← Verify(X,Φ): Parse Φ as (π0, π1, CHL), where πb = (comb, chlb, resb)
for b ∈ {0, 1}. Execute the following:

• {0, 1} ← Decision(X, Com, Chl, Res): If τ0.Decision(x0, com0, chl0, res0)
= 1 and τ1.Decision(x1, com1, chl1, res1) = 1, return 1 (accept). Oth-
erwise, return 0 (reject).

If Decision(X, Com, Chl, Res) = 1 and chl0⊕chl1 = CHL, output 1 (accept).
Otherwise, output 0 (reject).

– (PPM, Z) ← SimSetup(1λ): Compute (ppm0, z0) ← ΣR0 .SimSetup(1
λ) and

(ppm1, z1) ← ΣR1 .SimSetup(1
λ). Return (PPM, Z) where PPM = (ppm0, ppm1)

and Z = (z0, z1).

– Φ← SimProve(PPM, X, Z, CHL, T ′) : Parse PPM = (ppm0, ppm1), X = (x0, x1),
Z = (z0, z1), and T ′ = (r′0, r

′
1). Generate chl0 uniformly at random and

set chl1 = chl0 ⊕ CHL. Compute π0 ← ΣR0 .SimProve(x0, chl0) and π1 ←
ΣR1 .SimProve(x1, chl1). Return Φ = (π0, π1, CHL).

– T ← SimRand(PPM, Z,X, Φ,W, T ′) : Parse PPM = (ppm0, ppm1), Z = (z0, z1),
X = (x0, x1), Φ = (π0, π1, CHL), W = (w, b), and T ′ = (r′0, r

′
1). Com-

pute rb ← ΣRb
.SimRand(ppmb, zb, xb, πb, w, r

′
b) and let rb = r′

b
. Return T =

(r0, r1).

– T ← EquivRand(PPM, Z,X, Φ,W, T ′) : Parse PPM = (ppm0, ppm1), Z = (z0, z1),
X = (x0, x1), Φ = (π0, π1, CHL), W = (w, b), and T ′ = (r′0, r

′
1). Compute

rb ← ΣRb
.RealToSim(ppmb, zb, xb, πb, w, r

′
b) and rb ← ΣRb

.SimRand(ppmb, zb,
xb, πb, w, r

′
b
). Return T = (r0, r1).

– W ← Extract(X,Φ,Φ′): Parse X = (x0, x1), Φ = (π0, π1), and Φ′ =
(π′

0, π
′
1). Compute w0 ← ΣR0

.Extract(x0, π0, π
′
0) and w1 ← ΣR1

.Extract(x1,
π1, π

′
1). Return W = (w0, w1).
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3.3 Requirements for Adaptive Witness Indistinguishability

Finally, we formalize the definition of adaptive witness indistinguishability for
OR-protocols discussed in Section 3.2 and show in Theorem 1 that as long as
the underlying Σ-protocols Σ0 and Σ1 are both adaptive special honest-verifier
zero-knowledge and randomness equivocable, the OR-protocol based on Σ0 and
Σ1 is adaptive witness indistinguishable.

Definition 15 (Adaptive Witness Indistinguishability). An adaptive OR-
protocol ΣOR = (Setup, Prove, Verify, SimSetup, SimProve, SimRand, Extract)
(Definition 14) based on two adaptive Σ-protocols ΣR0 and ΣR1 (Definition 9) is
adaptive witness indistinguishable (adWI) if there exists an algorithm EquivRand

such that for all security parameters 1λ, all PPT A , and a bit b←$ {0, 1}, there
exists some negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(λ), where b′

is the result of running the game adWIA ,ΣOR
(1λ, b) from Figure 4. We say A

wins the adWI game if Pr[b′ = b] > 1
2 + negl(λ).

adWIA ,ΣOR(1
λ, 0)

1 : PPM← ΣOR.Setup(1
λ)

2 : (x0, x1, w0, w1, b, st)← A (1λ, ppm)

3 : if R0(x0, w0) = R1(x1, w1) = 1 :

4 : Set W = (wb, b)

5 : T ←$ {0, 1}λT

6 : CHL← {0, 1}ℓ

7 : Φ← ΣOR.Prove((X,W, T ), (X, CHL))

8 :

9 : else :

10 : Φ← ⊥
11 : b′ ← A (Φ, T, st)

12 : return b′

adWIA ,ΣOR(1
λ, 1)

1 : PPM← ΣOR.Setup(1
λ)

2 : (x0, x1, w0, w1, b, st)← A (1λ, ppm)

3 : if R0(x0, w0) = R1(x1, w1) = 1 :

4 : Set W = (wb, b)

5 : T ′ ←$ {0, 1}λT ′

6 : CHL← {0, 1}ℓ

7 : Φ← ΣOR.Prove((X,W, T ), (X, CHL))

8 : T ← ΣOR.EquivRand(Z,X,Φ,W, T ′)

9 : else :

10 : Φ← ⊥
11 : b′ ← A (Φ, T, st)

12 : return b′

Fig. 4. Adaptive Witness Indistinguishability (adWI) Game.

Theorem 1 (adSHVZK and RE Imply Adaptive WI). Let ΣOR = (Setup,
Prove, Verify, SimSetup, SimProve, SimRand, Extract) be an OR-protocol (Def-
inition 14) based on two Σ-protocols ΣR0,τ0 and ΣR1,τ1 (Definition 9). If ΣOR

is adaptive special honest-verifier zero-knowledge (Definition 11) and random-
ness equivocable (Definition 13), then ΣOR is adaptive witness indistinguishable
(Definition 15).
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Proof. We wish to show that as long as ΣOR is adaptive special honest-verifier
zero-knowledge (adSHVZK) and randomness equivocable (RE), A ’s advantage
in distinguishing the 0-bit from 1-bit adaptive witness indistinguishability (adWI)
experiments is negligible. Without loss of generality and to simplify the proof,
we consider the equivalent formulation of all three definitions in which the state-
ment Pr[b′ = b] ≤ 1

2 + negl(λ) is replaced with |Pr[b′ = 0 | b = 0] − Pr[b′ = 0 |
b = 1]| ≤ negl(λ), where b′ represents A ’s output in either the b = 0 or b = 1
experiments.

Let the 0-bit adWI experiment be denoted RS for “real-sim,” since the ad-
versary’s chosen witness wb is used as input to ΣOR.Prove—such that πb and
rb are real (according to Σb.Prove and the prover’s random tape) and πb and rb
are simulated (according to Σb.SimProve and the simulator’s random tape). Let
the 1-bit adWI experiment be denoted SR for the above scenario’s complement,
“sim-real,” where the only change is that the random tape is equivocated (ac-
cording to Σb.SimRand and Σb.RealToSim). We fix A ’s probability of outputting
0 in the RS (resp. SR) experiment to be pA

RS(λ) (resp. p
A
SR(λ)). We will show via

a hybrid experiment SS, or “sim-sim”—in which both halves of the proof are
according to SimProve—that for all A , as long as ΣOR is adSHVZK and RE,
|pA

RS(λ)− pA
SR(λ)| ≤ negl(λ).

Lemma 1. Let the 0-bit experiment of the adWI game (Figure 4) be denoted
adWI-RS (for “real-sim”). Consider a hybrid experiment denoted adWI-SS (for
“sim-sim”) in which lines 4-8 of either experiment in the adWI game are re-

placed as follows. Set W = (wb, b). Sample rb ←$ {0, 1}
λR′

b , r′
b
←$ {0, 1}

λR′
b ,

chl0 ←$ {0, 1}ℓ0 , and chl1 ←$ {0, 1}ℓ1 . Set CHL = chl0 ⊕ chl1. Compute
π0 ← Σ0.SimProve(z0, x0, chl0, r0) and π1 ← Σ1.SimProve(z1, x1, chl1, r1). Set
Φ = (π0, π1, CHL). Finally, compute rb ← Σb.SimRand(ppmb, zb, xb, πb, wb, rb′)
and set T = r0||r1. Then for all A , as long as both Σ0 and Σ1 are adaptive
special honest-verifier zero-knowledge (adSHVZK), |pA

RS(λ)− pA
SS(λ)| ≤ negl(λ).

Proof. Assume for a contradiction that A ’s fixed 0-output probabilities pA
RS(λ)

and pA
SS(λ) are such that |pA

RS(λ)−pA
SR(λ)| > negl(λ). We construct a reduction B

that, given A as a black-box, outputs 0 with probability pB
0 when the challenge

bit b∗ = 0 and probability pB
1 when the challenge bit b∗ = 1 in the adSHVZK

game such that |pB
0 − pB

1 | > negl(λ). B proceeds as follows.
B forwards (1λ, PPM) from the adSHVZK challenger C to A , who returns

(x0, w0, x1, w1, b, st). Without loss of generality, let the adSHVZK challenger
be parameterized over Σb, denoted Cb. B sets (x,w) = (xb, wb) and sends the
query (Prove, x, w, st′) to Cb, who returns (π, r). B sets rb = r and πb = π,

where πb = (comb, chlb, resb). It then samples rb ←$ {0, 1}
λR

b′ and computes
πb = Σb.SimProve(xb, CHL ⊕ chlb, rb). Finally, it sets Φ = (π0, π1, CHL) and
T = r0||r1, and returns (Φ, T, st) to A . B outputs whatever A outputs.

If Cb is running on input a challenge bit b∗ = 0, then the returned proof
π will be according to Σb.Prove on input the random tape r while the second
proof πb is according to Σb.SimProve and returned with the simulator’s random
coins, exactly as A expects from the adWI-RS experiment. Therefore, when
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b∗ = 0, pB
0 = pA

RS . If Cb is running on input b∗ = 1, then π will be according
to Σb.SimProve and the random tape r will be according to Σb.SimRand. The
second proof πb will also be simulated and returned with the simulator’s ran-
domness, exactly as A expects from the adWI-SS experiment. Therefore, when
b∗ = 1, pB

1 = pA
SS . Since we have |pA

RS(λ)− pA
SR(λ)| > negl(λ) by assumption, this

implies |pB
0 − pB

1 | > negl(λ), contradicting the adSHVZK property of Σb and
completing the proof of Lemma 1. ⊓⊔

Lemma 2. Let the 1-bit experiment of the adWI game (Figure 4) be denoted
adWI-SR (for “sim-real”) and let the hybrid experiment adWI-SS be as defined

in Lemma 1, except this time (without loss of generality), sample r′b ←$ {0, 1}
λR′

b

and r′
b
←$ {0, 1}

λR′
b , then compute rb ← Σb.SimRand(ppmb, zb, xb, πb, wb, r

′
b). For

all A , as long as both Σ0 and Σ1 are randomness equivocable (RE), |pA
SR(λ) −

pA
SS(λ)| ≤ negl(λ).

Proof. Again assume for a contradiction that A ’s fixed 0-output probabilities
pA
SR(λ) and pA

SS(λ) are such that |pA
SR(λ) − pA

SR(λ)| > negl(λ). We construct a
reduction B that, given A as a black-box, outputs 0 with probability pB

0 when
the challenge bit b∗ = 0 and probability pB

1 when the challenge bit b∗ = 1 in the
RE game such that |pB

0 − pB
1 | > negl(λ).

B proceeds the same as in Lemma 1, except for two differences. First, the
challenger Cb is for the RE experiment parameterized over Σb rather than the ad-
SHVZK experiment parameterized over Σb. Second, B computes πb rather than
πb, this time according to Σb.SimProve(zb, xb, chlb, r

′
b) for r

′
b ←$ {0, 1}λR

b′ , and
sets rb ← Σb.SimRand(zb, xb, πb, wb, r

′
b). If Cb is running on input bit b∗ = 0, then

πb is according to Σb.Prove and rb is according to Σb.RealToSim while πb and rb
are according to Σb.SimProve and Σb.SimRand, respectively, just as A expects
from the adWI-SR experiment. If, on the other hand, Cb is running on input
b∗ = 1, then πb is according to Σb.SimProve and rb is the simulator’s random
tape, while πb and rb are still according to Σb.SimProve and Σb.SimRand, re-
spectively, just as A expects from the adWI-SS experiment. Therefore, we again
have |pB

0 − pB
1 | > negl(λ), contradicting the RE property of Σb and completing

the proof of Lemma 2. ⊓⊔

By the triangle inequality, for all A we have

|pA
RS(λ)− pA

SR(λ)| = |(pA
RS(λ)− pA

SS(λ)) + (pA
SS(λ)− pA

SR(λ))|

≤ |pA
RS(λ)− pA

SS(λ)|+ |pA
SS(λ)− pA

SR(λ)|.

We showed via the two lemmas that |pA
RS(λ) − pA

SS(λ)| ≤ negl(λ) and |pA
SS(λ) −

pA
SR(λ)| ≤ negl(λ). By substitution, we have

|pA
RS(λ)− pA

SR(λ)| ≤ negl(λ) + negl(λ) ≤ negl(λ),

completing the proof of Theorem 1. ⊓⊔
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4 Adaptive Straight-Line Compilers

Adaptive straight-line compilers are straight-line compilers [29] that preserve the
adaptive security properties of the Σ-protocol being transformed. Recall from
the introduction that a regular straight-line compiler SLC takes a Σ-protocol ΣR

for a relation R as input and produces a new proof system ΠSLC
R that is a tuple of

(non-interactive) algorithms (SetupH , ProveH , VerifyH , SimSetup, SimProve,
Extract), where H is a traditional RO.

In order to be considered a straight-line compiler, ΠSLC
R must have the follow-

ing properties: overwhelming completeness (i.e. a negligibly small completeness
error is allowed), non-interactive multiple special honest-verifier zero-knowledge
(NIM-SHVZK), and non-interactive special simulation soundness (NI-SSS). Our
adaptive version of an SLC, denoted aSLC, says that ΠaSLC

R must have adaptive
NIM-SHVZK and adaptive NI-SSS properties—that is, NIM-SHVZK and NI-SSS
must hold even when the adversary gets to compare the prover’s true randomness
with the output of SimRand.

Definition 16 (Adaptive Straight-Line Compiler). An algorithm SLC is
an adaptive straight-line compiler (adaptive SLC) in the random-oracle model
if given any adaptive Σ-protocol ΣR for relation R (Definition 9) as input, it
outputs a tuple of algorithms ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup,
SimProve, SimRand, Extract) based on ΣR that satisfy the following proper-
ties: overwhelming completeness (Definition 17), adaptive non-interactive mul-
tiple special honest-verifier zero-knowledge (Definition 18), and adaptive non-
interactive special simulation soundness (Definition 19).

We refer to ΠaSLC
R ← aSLC(ΣR) as an adaptive and non-interactive straight-

line extractable (adaptive NISLE) proof system for R, and proofs generated by
ΠaSLC

R as adaptive and non-interactive straight-line extractable zero-knowledge
proofs of knowledge (adaptive NISLE ZKPoK).

Definition 17 (Overwhelming Completeness). An adaptive NISLE proof
system ΠaSLC

R for relation R in the random-oracle model has the overwhelming
completeness property if for any security parameter λ, any (x,w) ∈ R, and any
proof π ← ΠaSLC

R .ProveH(x,w),

Pr[ΠaSLC
R .VerifyH(x, π) = 1] ≥ 1− negl(λ).

The RO in the “real-world” experiment Hf is parameterized by a function
f ←$ F selected from random function family F , while the RO in the “ideal-
world” experiment is a list oracle HL parameterized by an initially empty list
L that the challenger in the security experiment can program via the interface
ProgL. In order to maintain indistinguishability between the experiments and
satisfy the (adaptive) NIM-SHVZK property, the ideal-world challenger must
program the RO imperceptibly.3

3 To satisfy NIM-SHVZK when ΣR.SimProve involves programming, the first message
com will need entropy that is superlogarithmic in the security parameter [24,29].



Efficient and Adaptive UC NIZKPoK 25

RO Hf (x)

1 : return f(x)

Random List Oracle HL(x)

1 : if ∃ v s.t. (x, v) ∈ L :

2 : return v

3 : else :

4 : v ← {0, 1}ℓ

5 : L.append(x, v)

6 : return v

Interface ProgL(x, v)

1 : if ∄ v′ s.t. (x, v′) ∈ L :

2 : L.append(x, v)

Fig. 5. Random Oracle Functionalities for NIM-SHVZK and NI-SSS Games [29].

For convenience and consistency the Prog interface is included in the defi-
nitions of NIM-SHVZK and NI-SSS; in non-programmable models such as the
GroRO-hybrid model, we consider Prog a defunct oracle that returns ⊥.

Definition 18 (Adaptive Non-Interactive Multiple SHVZK). An adap-
tive NISLE proof system ΠaSLC

R for relation R in the random-oracle model has the
adaptive non-interactive multiple special honest-verifier zero-knowledge (adNIM-
SHVZK) property if there exist algorithms ΠSLC

R .SimSetup, ΠSLC
R .SimProve, and

ΠSLC
R .SimRand such that for any security parameter λ, any PPT adversary A , and

a bit b←$ {0, 1}, there exists some negligible function negl such that Pr[b′ = b] ≤
1
2+negl(λ), where b′ is the result of running the game adNIM–SHVZKH∗,∗

A ,ΠSLC
R
(1λ, b)

from Figure 6.

Similarly, we extend Lysyanskaya and Rosenbloom’s definition of NI-SSS
[29] by giving A not only the output of ΠaSLC

R .SimProve, but of ΠaSLC
R .SimRand

as well. The adaptive NI-SSS property says that soundness must hold even
when A can see polynomially-many proofs from the simulator and can corrupt
polynomially-many provers (i.e., see the contents of polynomially-many random
tapes). Our work has the same limitation of Lysyanskaya and Rosenbloom [29]
in that we formalize the ΠaSLC

R .Extract algorithm to work based on the adver-
sary’s queries to the random oracle, denoted QA . Extending the formalization
of SLCs to include “key-based” extractors that leverage verifiable encryption
schemes [5]—and determining whether or not such extractors can be used to
obtain (adaptive) UC NIZKPoK—is left for future work.

Definition 19 (Adaptive Non-Interactive SSS). An adaptive NISLE proof
system ΠSLC

R for relation R in the random-oracle model has the adaptive non-
interactive special simulation sound (adNI-SSS) property if there exists an algo-
rithm ΠSLC

R .Extract such that for any security parameter λ and any PPT adver-
sary A ,

Pr[Fail← adNI–SSSHA ,ΠSLC
R
(1λ)] ≤ negl(λ),

where H is any random oracle and adNI–SSS is the game described in Figure 7.
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adNIM–SHVZKH∗,F
A ,ΠSLC

R
(1λ, 0): Real

1 : f ←$ F

2 : ppm← ΠSLC
R .SetupHf (1λ)

3 : st← A Hf (1λ, ppm)

4 : while st /∈ {0, 1} :

5 : (Prove, x, w, st)← A Hf (st)

6 : if R(x,w) = 1 :

7 : r ←$ {0, 1}λr

8 : π ← ΠSLC
R .ProveHf (x,w, r)

9 : else :

10 : π, r ← ⊥

11 : st← A Hf (st, π, r)

12 : return st

adNIM–SHVZKH∗,Prog
A ,ΠSLC

R
(1λ, 1): Ideal

1 : L← ⊥

2 : (ppm, zs)← ΠSLC
R .SimSetupProgL(1λ)

3 : st← A HL(1λ, ppm)

4 : while st /∈ {0, 1} :

5 : (Prove, x, w, st)← A HL(st)

6 : if R(x,w) = 1 :

7 : (π, zπ)← ΠSLC
R .SimProveProgL(zs, x)

8 : r ← ΠSLC
R .SimRandProgL(zs, zπ, x, π, w)

9 : else :

10 : π, r ← ⊥

11 : st← A HL(st, π, r)

12 : return st

Fig. 6. Adaptive Non-Interactive Multiple SHVZK (adNIM-SHVZK) Game.

adNI–SSS
HL,ProgL
A ,ΠSLC

R
(1λ)

1 : L, pflist, Response, st← ⊥;

2 : ppm, z ← ΠSLC
R .SimSetupProgL(1λ)

3 : while A HL(1λ, ppm, st) ̸= halt :

4 : (Query,QA , st)← A HL(st)

5 : if Query = (Prove, x, w) ∧R(x,w) = 1 :

6 : π, zπ ← ΠSLC
R .SimProveProgL(z, x)

7 : pflist.append(x, π)

8 : r ← ΠSLC
R .SimRandProgL(z, zπ, x, π, w)

9 : Response← (x, π, r)

10 : elseif Query = (Challenge, x, π)

11 : if ΠSLC
R .VerifyHL(x, π) = 1 ∧ (x, π) /∈ pflist :

12 : w ← ΠSLC
R .Extract(x, π,QA )

13 : if R(x,w) = 0 : return Fail

14 : st← A HL(st, Response)

15 : return Success

Fig. 7. Adaptive Non-Interactive Special Simulation Soundness (adNI-SSS) Game.
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Finally, non-interactive special soundness (NI-SS) is a weakened version of
the NI-SSS game where A does not get to interact with the simulator. This is
not a sufficient property to obtain adaptive UC NIZKPoK, but we will need it
later as a building block for the proof of Theorems 2 and 5.

Definition 20 (Non-Interactive Special Soundness). [29] A NISLE proof
system ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) non-
interactive special sound (NI-SS) in the random-oracle model if there exists an
algorithm ΠSLC

R .Extract such that for any security parameter λ any random
oracle H, and any PPT adversary A ,

Pr[Fail← NI–SSA ,ΠSLC
R
(1λ)] ≤ negl(λ),

where NI–SS is the NI-SS game described in Figure 8. We say A wins the NI–SS
game if Pr[Fail← NI–SSHA ,ΠSLC

R
(1λ)] > negl(λ).

NI–SSH
A ,ΠSLC

R
(1λ)

1 : ppm← ΠSLC
R .Setup(1λ)

2 : st← A H(1λ, ppm)

3 : while st ̸= ⊥ :

4 : (x, π,QA , st)← A H(st)

5 : Response← ⊥

6 : if ΠSLC
R .VerifyH(x, π) = 1 :

7 : w ← ΠSLC
R .Extract(x, π,QA )

8 : if R(x,w) = 0 :

9 : return Fail

10 : st← A H(st, Response)

11 : return Success

Fig. 8. Non-Interactive Special Soundness (NI-SS) Game.

5 Adaptive and Universally Composable NIZKPoK

In this section, we show that the adaptive non-interactive multiple special honest-
verifier zero-knowledge (adNIM-SHVZK) and adaptive non-interactive special
simulation-soundness (adNI-SSS) properties afforded by any adaptive straight-
line compiler (SLC) are necessary to achieve adaptive UC NIZKPoK in any
global ROM (Section 5.1), and that they are sufficient to transform any Σ-
protocol into an adaptive UC NIZKPoK in the GrpoRO-hybrid model (Section 5.2).
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For our construction in the GroRO-FCRS-hybrid model, we show how to adapt
Lysyanskaya and Rosenbloom’s OR-protocol compiler [29] to obtain adaptive
UC NIZKPoK without programming the global RO (Section 5.3).

5.1 Adaptive UC NIZKPoK are adNIM-SHVZK and adNI-SSS

We begin by showing that any adaptive UC NIZKPoK must be adaptive NIM-
SHVZK and adaptive NI-SSS. Because this result holds for any choice of global
RO with the minimal Query functionality (as described in Section 2.1), we use
the generic notation GRO to represent the global RO.

Theorem 2. Let Π be a protocol that aUC-realizes FaNIZK in the GRO-hybrid
model (Definition 7 where G is replaced with GRO) with adaptive corruptions. Then
Π must be overwhelmingly complete (Definition 17), adaptive NIM-SHVZK (Def-
inition 18), and adaptive NI-SSS (Definition 19).

Proof. We proceed by cases and show that if Π is not overwhelmingly complete
and adNIM-SHVZK then it does not aUC-realize FaNIZK in the GRO-hybrid model
with adaptive corruptions, and similarly that if Π is not adNI-SSS then it does
not aUC-realize FaNIZK in the same model.

Our first reduction B uses an adversary A that wins the adNIM-SHVZK
game from Figure 6 with non-negligible advantage to distinguish between the
real- and ideal-world aUC experiments with non-negligible advantage. B pro-
ceeds as follows. After passing the security and public parameters that it received
from the aUC experiment to A , B forwards A ’s oracle queries to GRO and GRO’s
responses back to A .

Prove queries proceed as follows. Note that according to the definition of
adNIM-SHVZK, any time A issues a Prove query, it is expecting not only a
proof, but also the proof’s randomness, in return. In order to accurately simulate
A ’s view, B first issues the Prove query as-is to a new honest party in the
aUC experiment.4 Before returning the proof to A , B then corrupts the prover
to obtain the prover’s internal tapes. Since the Prove operation was the first
performed by the honest party, B simply takes the first λr bits of the prover’s
random tape and returns these bits to A along with the proof.

If the aUC challenger is running the real-world experiment, the proof will
be the result of running Π.Prove on the prover’s witness and randomness. If
the aUC challenger is running the ideal-world experiment, the proof will be the
result of the ideal functionality FaNIZK running Π.SimProve, and the randomness
will have been generated by the simulator (ideal adversary) S using Π.SimRand.
Therefore, B simulates A ’s view exactly, and succeeds in distinguishing the real-
and ideal-world aUC experiments with the same probability that A distinguishes
the real- from ideal-world adaptive NIM-SHVZK game.

4 Recall that as part of the (adaptive) UC experiment, the environment is permitted
to spawn polynomially-many protocol participants, subject to polynomial run-time
restrictions [14].
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The only other condition that might allow B to distinguish the two exper-
iments are if the ideal functionality FaNIZK in the ideal-world aUC experiment
outputs Fail due to a completeness error. This condition occurs with negligible
probability due to overwhelming completeness.

The second reduction uses two black-box algorithms: A that wins the adap-
tive NI-SSS game from Figure 7, and A ′ that wins the regular NI-SS game
(Definition 20), in which the adversary does not have access to simulated proofs,
with non-negligible advantage. B answers A ’s queries the same as in the previ-
ous reduction, by forwarding all of A ’s oracle queries to GRO and Prove queries
to the aUC challenger, then making adaptive corruptions to obtain the prover’s
randomness. B forwards A ′’s queries to GRO (note A ′ does not make Prove

queries, but can run Π.Prove itself).
B proceeds the same as before, forwarding all of A ’s oracle queries to GRO

and Prove queries to the aUC challenger, then making adaptive corruptions to
obtain the prover’s randomness. Whenever A (resp. A ′) outputs a proof π for
a statement x such that Π.Verify(x, π) = 1, B gathers A ’s (resp. A ′’s) oracle
queries QA (resp. QA ′) and runs w ← Π.Extract(x, π,QA (resp.A ′)). If w is such
that R(x,w) = 0, B invokes a new honest party and sends it the instruction
(Verify, x, π). If the aUC challenger is running the ideal-world experiment, then
B has simulated A ’s expected view, and the honest (dummy) party will invoke
FaNIZK on A ’s proof and output Fail, causing B to output “ideal.” If the aUC
challenger is running the real-world experiment, then on input a proof π from A ′,
the real-world honest party will outputΠ.Verify(x, π) = 1, causing B to output
“real.” B therefore distinguishes the ideal- from real-world aUC experiments
with the same probability as A and A ′, respectively. ⊓⊔

5.2 Adaptive UC NIZKPoK in the GrpoRO-hybrid Model

We prove in this section that running any adaptive Σ-protocol ΣR for relation R
through any adaptive straight-line compiler (adaptive SLC) results in adaptive
UC NIZKPoK for relation R in the (programmable) GrpoRO-hybrid model. First,
we make explicit an additional check that an honest verifier (and the Verify in-
terface of the ideal functionality FaNIZK) must make in order to correctly evaluate
a proof. Recall that GrpoRO is programmable by any party participating in a pro-
tocol session s, including the adversarial session participants who are controlled
by the environment. Therefore, honest verifiers (and FaNIZK) must check whether
GrpoRO was programmed at any index queried by the verification procedure, and
if so, reject the proof.

Definition 21 (GrpoRO-hybrid Model Verification Check). Let ΠSLC
R be any

NISLE proof system (Definition 16), FaNIZK be the adaptive non-interactive zero-
knowledge proof of knowledge ideal functionality (Definition 6), and GrpoRO be
the restricted programmable observable global random oracle (Definition 1). Ev-
ery time the Verify algorithm of ΠSLC

R or the Verify interface of FaNIZK queries
GrpoRO on some input in, insert the following check: send a query IsProgrammed(in)
to GrpoRO; if GrpoRO returns 1, output 0 (reject).
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We now show that any adaptive straight-line compiler is sufficient to create
adaptive UC NIZKPoK in the GrpoRO-hybrid model.

Theorem 3. Let ΣR be any adaptive Σ-protocol for relation R (Definition 9),
GrpoRO be the restricted programmable observable global random oracle (Definition
1 in A.2) and SLC be any adaptive straight-line compiler (Definition 16). Then
the NISLE proof system ΠSLC

R ← SLC(ΣR) aUC-realizes FaNIZK in the GrpoRO-
hybrid model (Definition 7 where G is replaced with GrpoRO).

Proof. We begin with the construction of the ideal adversary (simulator) S.

Construction of the Ideal Adversary. When S receives (Setup, s) from FaNIZK, S
returns the tuple of algorithmsΠSLC

R . When corrupted parties issue IsProgrammed
queries, S returns false. When Z issues a query (Corrupt, P ) for a party
P = (pid, sid), S sends (Corrupt, P ) to FaNIZK to obtain the stored tuples
(Proof, P, x1, w1, π1, z1), . . . , (Proof, P, xq, wq, πq, zq) corresponding to each que-
ry (Prove, P, xi, wi) that Z issued to P . (who forwarded them to FaNIZK). For
each tuple, S interprets zi = (zs, zπi

) as the auxiliary outputs of ΠSLC
R .SimSetup

andΠSLC
R .SimProve, respectively. S then runs ri ← ΠSLC

R .SimRand(zs, zπi
, x, π, w)

to obtain simulated randomness ri. To reconstruct the prover’s random tape R,
S concatenates R = r1|| . . . ||rq and returns R to Z. Otherwise, S forwards all
communications between Z and the protocol.

We proceed by creating a hybrid argument that starts in the real-world ex-
periment and replaces each piece of the real-world protocol ΠSLC

R with the func-
tionality of FaNIZK and S.

Hybrid 1. First, we replace all of the environment’s and adversary’s connections
to the real-world protocol participants with the “challenger” of our reduction, C.
This difference is syntactic, so Hybrid 1 is identical to the real-world experiment.

Hybrid 2. In the second hybrid, we replace C’s real-world Prove functional-
ity with the Prove interface of FaNIZK and random tape simulation of S, and
show the environment’s views are indistinguishable between Hybrids 1 and 2
as long as ΣR is adaptive and non-interactive multiple special honest-verifier
zero-knowledge (adNIM-SHVZK). First, we specify C to simulate GrpoRO accord-
ing to its specification (noting that C can “program” its simulation) and re-
turn false to all of the corrupted parties’ IsProgrammed queries. As long as
ΠSLC

R .SimProve produces valid proofs for statements x ∈ LR with overwhelm-
ing probability (which follows from overwhelming completeness), the environ-
ment’s view of GrpoRO remains statistically indistinguishable between the hybrids
(which follows from the restriction of the IsProgrammed interface), Z is forced
to distinguish the hybrids based on the only other difference—the proofs πi and
randomness ri.

We bound Z’s probability of distinguishing the hybrids based on the proofs
and randomness by constructing a reduction to the adNIM-SHVZK property
as follows. Whenever Z issues a query (Prove, P, xi, wi) to C, C forwards the
query to the adNIM-SHVZK challenger from Figure 6, who returns (πi, ri). C
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forwards πi to Z and stores (P, ri) for later. If Z issues a query (Corrupt, P ),
C retrieves all of the tuples (P, ri) and sets the random tape R to be the con-
catenation of all ri in the order they were stored. It then returns R to C. For
Z’s queries (Verify, x, π), C returns the result of running ΠSLC

R .Verify(x, π). C
outputs whatever Z outputs.

Note that if the adNIM-SHVZK challenger is running the 0-bit experiment
(using ΠSLC

R .Prove and the prover’s randomness), C simulates Z’s exact view of
the experiment in Hybrid 1. Else if the adNIM-SHVZK challenger is running
the 1-bit experiment (using ΠSLC

R .SimProve and ΠSLC
R .SimRand), C simulates Z’s

view of Hybrid 2. Therefore, C succeeds at winning the adNIM-SHVZK game
with the same probability that Z can distinguish the hybrids, proving Hybrid 1
is computationally indistinguishable to Hybrid 2.

Hybrid 3. In the third hybrid, we replace C’s Verify functionality with the
Verify functionality of FaNIZK, and show the environment’s views are indistin-
guishable between Hybrids 2 and 3 as long as ΠSLC

R is adaptive non-interactive
special simulation-sound (adNI-SSS). We construct a reduction that uses an en-
vironment Z that can distinguish Hybrids 2 and 3 with non-negligible advantage
to win the adNI-SSS game from Figure 7 as follows. First, note the only differ-
ence in output between Hybrids 2 and 3 is that the Hybrid 3 experiment can
output Fail, while the Hybrid 2 experiment never does—in particular, Hybrid
3 will output Fail if Z succeeds in producing a valid, non-simulated proof that
causes ΠSLC

R .Extract to output Fail. For Z’s Prove queries, the reduction acts
according to Hybrid 2, this time forwarding the queries to the adNI-SSS chal-
lenger, returning the proofs, and saving random bits in case Z issues a corruption
query on the prover. When Z issues a query (Verify, x, π) for a proof π that C
did not send to Z, C sends (Challenge, x, π,QP∗) to the adNI-SSS challenger.
Since both the adNI-SSS challenger and FaNIZK use the ΠSLC

R .Extract algorithm
and fail under the same conditions, C succeeds in winning the adNI-SSS game
with the same probability that Z distinguishes Hybrids 2 and 3.

Hybrid 4. The final hybrid replaces C with FaNIZK and S. Note that since C now
runs all of FaNIZK and S’s procedures, this is again a syntactic difference, and
Hybrid 3 is identical to Hybrid 4. ⊓⊔

5.3 Adaptive UC NIZKPoK in the GroRO-FCRS-hybrid Model

Similarly, any adaptive SLC in conjunction with our adaptive version of the OR-
protocol construction given by Lysyanskaya and Rosenbloom [29] is sufficient to
create adaptive UC NIZKPoK in the GrpoRO-FCRS-hybrid model. We begin by
amending the required properties for the CRS relation (which we reviewed in
Section 2.2) to include adaptivity, and by formalizing an adaptive OR-protocol.
We then update the algorithms of Lysyanskaya and Rosenbloom’s OR-protocol
construction to create an adaptive NISLE proof system, denoted Πauc

R∨S.

Definition 22 (Adaptive Σ-Friendly Relation). An adaptive Σ-friendly
relation S is a binary NP relation with a corresponding efficient and adaptive
Σ-protocol ΣS.
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Finally, we specify a candidate aUC Σ-protocol compiler for the GroRO-FCRS-
hybrid model, and show that, when composed with an adaptive Σ-friendly re-
lation S, any Σ-protocol ΣR can be made into an aUC NIZKPoK in the same
model.

Definition 23 (Candidate Compiler). Let ΣR be any adaptive Σ-protocol for
relation R (Definition 9), GroRO be the restricted observable global random oracle
(Definition 1), ΣS be an efficient Σ-protocol for samplable-hard relation S (Defi-
nition 3), FCRS be the ideal CRS functionality (Definition 5) where GenCRS := κS,
and aSLC be any adaptive straight-line compiler (Definition 16). Then our candi-
date compiler auc is an algorithm that, on input ΣR and aSLC, produces a tuple
of algorithms Πauc

R∨S = (SetupGroRO , ProveGroRO,FCRS , VerifyGroRO,FCRS , SimSetup,
SimProve, SimRand, Extract), defined in Figure 9.

Theorem 4. Let ΣR be any adaptive Σ-protocol for relation R (Definition 9),
GroRO be the restricted observable global random oracle (Definition 1) ΣS be an
efficient Σ-protocol for samplable-hard relation S (Definition 3), FCRS be the ideal
CRS functionality (Definition 5), aSLC be any adaptive straight-line compiler
(Definition 16), and auc be the adaptive OR-protocol compiler (Definition 23).
Then ΠaSLC

R∨S ← auc(ΣR, aSLC) aUC-realizes FaNIZK in the GroRO-FCRS-hybrid model
(Definition 7 where G is replaced with GroRO and ∗ is replaced with FCRS).

Proof. The construction of the ideal adversary (simulator) S is the same as in the
proof of Theorem 3, except it returns Πauc

R∨S to FaNIZK rather than ΠSLC
R , and there

are no IsProgrammed queries. (Note that the simulation and proof trapdoors, zs
and zπ, are simply the simulator’s CRS list simcrs and section of the random
tape T ′ corresponding to π, respectively.)

We again create a hybrid reduction that starts in the real-world experiment
and replaces each piece of the real-world adaptive NISLE OR-protocol Πauc

R∨S with
the functionality of FaNIZK and S.

Hybrid 1. Identical to Hybrid 1 in the proof of Theorem 3.

Hybrid 2. In the second hybrid, we replace C’s real-world Prove functional-
ity with the original straight-line compiled OR-protocol simulator algorithms
ΠaSLC

R∨S .SimSetup, ΠaSLC
R∨S .SimProve, and ΠaSLC

R∨S .SimRand. This step allows us to
avoid giving C control over the CRS trapdoors for now, such that we are able to
show in the next hybrid argument that C can use a proof-forging environment to
break either the adNI-SSS property or the hardness property of the samplable-
hard relation S (i.e. the reduction produces a CRS trapdoor). The proof that
Hybrid 2 is indistinguishable from Hybrid 1 proceeds identically to the proof
under Hybrid 2 in Theorem 3 above, modulo the IsProgrammed interface.

Hybrid 3. In the third hybrid, we replace C’s Verify functionality with the
Verify functionality of FaNIZK, and show the environment’s views are indistin-
guishable between Hybrids 2 and 3 as long as ΠSLC

R is adaptive non-interactive
special simulation-sound (adaptive NI-SSS) and S is a hard relation (i.e. given
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auc Compiler Parameters

1λ, R,ΣR, λR, λR′ , S,ΣS , λS , λS′ , aSLC,GroRO,FCRS with GenCRS := (x,w)← κS(1
λ)

Πauc
R∨S.Setup

GRO(1λ)

1 : PPM← ΠaSLC
R∨S .Setup

GRO(1λ)

2 : return PPM

Πauc
R∨S.SimSetup(1

λ)

1 : PPM, Z′ ← ΠaSLC
R∨S .SimSetup(1

λ)

2 : simcrs← ⊥
3 : Z = (Z′, simcrs)

4 : return (PPM, Z)

Πauc
R∨S.Prove

GRO,FCRS(PPM, s, x, w, T, T ′)

1 : if R(x,w) ̸= 1 :

2 : return ⊥
3 : CRSs ← Fs

CRS.Query(s)

4 : X ← (x, CRSs)

5 : W ← (w, 0)

6 : Φ← ΠaSLC
R∨S .Prove

GRO(PPM, X,W, T, T ′)

7 : return (s,X, Φ)

Πauc
R∨S.SimProve(PPM, Z, s, x, w, T, T ′)

1 : if R(x,w) ̸= 1 :

2 : return ⊥
3 : if ∄(CRSs, traps) s.t.
4 : (s, CRSs, traps) ∈ simcrs :

5 : (CRSs, traps)← κS(1
λ)

6 : simcrs.append(s, CRSs, traps)

7 : X ← (x, CRSs)

8 : W ← (traps, 1)

9 : Φ← ΠaSLC
R∨S .Prove

GRO(PPM, X,W, T, T ′)

10 : return (s,X, Φ, simcrs)

Πauc
R∨S.Verify

GRO,FCRS(PPM, s,X, Φ)

1 : parse X = (x, CRSs)

2 : CRS
′
s ← FCRS.Query(s)

3 : if CRSs = CRS
′
s∧

4 : ΠaSLC
R∨S .Verify

GRO(PPM, X, Φ) = 1 :

5 : return 1

6 : else :

7 : return 0

Πauc
R∨S.Extract(PPM, X, Φ,QP∗)

1 : W ← ΠaSLC
R∨S .Extract(X,Φ,QP∗)

2 : parse X = (x, CRSs)

3 : parse W = (w, traps)

4 : if RR∨S(X,W ) = 1 ∧R(x,w) = 0 :

5 : return Fail

6 : else :

7 : return W

Πauc
R∨S.SimRand(PPM, Z,X, Φ,W, T ′)

1 : parse PPM = (ppm0, ppm1), Z = (z0, z1), X = (x, CRSs)

2 : parse Φ = (π0, π1, CHL),W = (w, 0), T ′ = (r′0, r
′
1)

3 : r∗0 ← ΣR.SimRand(ppm0, z0, x, π0, w, r′0)

4 : r∗1 ← ΣS .RealToSim(ppm1, z1, CRSs, π1, traps, r
′
1)

5 : T ∗ = (r∗0 , r
∗
1)

6 : return T ∗

Fig. 9. Compiler Πauc
R∨S ← auc(ΣR, SLC) for ΣR in the GroRO-FCRS-hybrid Model
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CRSs, the probability of finding traps such that S(CRSs, traps) = 1 is negligi-
ble). Z’s adaptive corruption queries are handled identically to those in Hybrid
2 (i.e. S patches together the prover’s random tape by concatenating the out-
puts of ΠaSLC

R∨S .SimRand returned by the adaptive NI-SSS challenger). C plays the
role of the adversary in the adaptive NI-SSS game, forwarding Z’s queries to its
challenger. When Z produces a valid proof that causes Πauc

R∨S.Extract to output
Fail (which happens with non-negligible probability by assumption, as the fail-
ure condition is the only difference between the hybrids), either R is not satisfied
and C wins the adaptive NI-SSS game, or S is not satisfied and C breaks the
hardness property of S.

Hybrid 4. In the fourth hybrid, C goes back to using Πauc
R∨S.Prove and revealing

the real prover’s random tape upon corruption. As the only difference between
Hybrids 3 and 4 is to reverse the transition between real and simulated proofs
made in Hybrid 2, the proof is an almost identical reduction to the adNIM-
SHVZK property of ΠSLC

R∨S, with one caveat: we must argue that Z is not able
to use its interactions with the Πauc

R∨S.Extract algorithm to help it distinguish
between the real and simulated proofs. Following Lysyanskaya and Rosenbloom
[28], we note that since Πauc

R∨S.Extract operates using only information that Z
already knows (its externalized proofs and RO queries), it cannot possibly gain
any new insight from interacting with the extractor. Therefore, the only way for
Z to distinguish between Hybrids 3 and 4 is to break the adNIM-SHVZK prop-
erty, which follows from the same reduction used to prove indistinguishability
between Hybrids 1 and 2.

Hybrid 5. In the penultimate hybrid, C replaces the proof process with Πauc
R∨S.

SimSetup, Πauc
R∨S.SimProve, and Πauc

R∨S.SimRand. Recall that Πauc
R∨S.SimProve is

essentially Πauc
R∨S.Prove, except that C generates and stores pairs (CRSs, traps)

for each protocol session s in the list simcrs, and uses the witness traps as
input to Πauc

R∨S.Prove rather than a “real” witness w. We show that Hybrid 4 is
indistinguishable from Hybrid 5 as long as Πauc

R∨S is witness equivocable (WE),
which follows from the adSHVZK property of ΣR∨S according to Theorem 1.
Since the WE game captures only a single Prove query, we consider a hybrid
experiment in which the first i queries (and corresponding sections of the prover’s
random tape) are answered according to Hybrid 4, and the i+1st query onwards
are answered according to Hybrid 5. Our reduction B will use a environment Z
that can distinguish between the i and i+ 1st with non-negligible advantage to
win the WE game from Figure 4 with non-negligible advantage. B proceeds as
follows.

B answers Z’s RO queries as usual. For up to and including the ith Prove

query that Z issues for a party P , B computes and returns proofs usingΠauc
R∨S.Prove,

exactly as Z expects from Hybrid 4; past the i+1st query, B computes and re-
turns proofs usingΠauc

R∨S.SimProve, exactly as Z expects from Hybrid 5. Along the
way, B stores the tuples (P,Φi, Ti). When Z issues the i+ 1st query (Prove, P,
s, xi+1, wi+1) for some party P in session s, B constructs a query (Prove, xi+1,
CRSs, wi+1, traps, 0, st) and forwards it to the WE challenger, who returns a
response (Φ, T, st). B stores the tuple (P,Φi+1, Ti+1) = (P,Φ, T ), programs the



Efficient and Adaptive UC NIZKPoK 35

RO to agree with Φ, then returns Φ to Z. If Z issues a query (Corrupt, P ), B
gathers all of the tuples (P,Φi, Ti) and returns the concatenation of all Ti to Z.
If Z outputs “Hybrid 3” then B outputs 0; otherwise if Z outputs “Hybrid 4”
then B outputs 1.

Note that if the WE challenger is running the 0-bit experiment, it computed
the proof Φi+1 using the real witness wi+1 for xi+1 using tape Ti+1, which is
exactly what Z expects from Hybrid i + 1. Otherwise if the WE challenger is
running the 1-bit experiment then it computed the proofs using the opposite
witness traps for statement CRSs, then “equivocated” the random tape to look
like it used wi+1, which is exactly what Z expects from Hybrid i. Therefore, B
succeeds in winning the WE game with the same probability as Z succeeds in
distinguishing Hybrids i and i + 1. Since the number of Prove queries must be
polynomial in the security parameter, B’s total advantage in winning the WE
game over all of the proofs is still non-negligible, completing the proof.

Hybrid 6. Identical to Hybrid 4 in Theorem 3. ⊓⊔

6 Constructions via the Adaptive Fischlin Transform

In this section, we extend the randomized Fischlin transform [24,27] for the
adaptive setting (Section 6.2), and prove that it is an adaptive SLC (Section 6.3).

6.1 Requirements of the Randomized Fischlin Transform

To stop A from predicting com and querying the RO on (x, com) before the prover
does, the com messages of Σ-protocols under not just Fischlin’s transform but
any non-interactive transform in the ROM need entropy that is superlogarithmic
in the security parameter.

Definition 24 (Superlogarithmic Commitment Entropy). [24] Let ΣR be
any Σ-protocol for binary NP relation R and template τ as specified in Defini-
tion 9. ΣR has superlogarithmic commitment entropy if for all (x,w) ∈ LR, the
min-entropy of com← τ.Commit(x,w) is superlogarithmic in λ.

The strong special soundness property [27] says that the extractor must still
work as long as there is some difference between the challenges and responses of
two transcripts—in particular, it could be that chl = chl′, as long as res ̸= res′.

Definition 25 (Strong Special Soundness). [27] A Σ-protocol ΣR for rela-
tion R (Definition 9) has the strong special soundness property if the condition
chl ̸= chl′ in the specification of the Σ.Extract algorithm is replaced with the
condition (chl, res) ̸= (chl′, res′).
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6.2 The Adaptive Randomized Fischlin Transform

The standard randomized Fischlin transform [24,27] is a straight-line compiler
rFis [29] that transforms any Σ-protocol with certain general properties into
a non-interactive, straight-line extractable (NISLE) proof system ΠrFis

R in the
ROM. The prover in the randomized Fischlin transform essentially rewinds it-
self, computing proofs on repeated commitments (but different challenges) until
it is guaranteed with overwhelmingly probability that there are at least two
transcripts queried to the RO with the same commitment but different chal-
lenges. The algorithm ΠrFis

R .Extract takes these proofs as input (via the adver-
sary’s oracle query history QA ), and can therefore extract a witness for valid,
adversarially-created proofs without any further interaction with the prover.

We argue in this section that our adaptive randomized Fischlin transform
aFis, which extends rFis with a SimRand functionality, preserves the adaptive
security property of the underlying Σ-protocol: we will show that as long as ΣR

is adaptive and conforms to standards of rFis discussed in the previous section,
aFis is an adaptive SLC. The ΠaFis

R .SimRand functionality, which is in charge of
producing a convincing version Q of the prover’s random tape, works as follows.

In order to reconstruct the random “first-message” section of Q (i.e. the
section used to run τ.Commit), the ΠaFis

R .SimRand algorithm runs ΣR,τ .SimRand
using auxiliary output fromΠaFis

R .SimProve. To simulate the random “challenge-
selection” section of Q (i.e. the section used to generate the prover’s random
selection of challenges), ΠaFis

R .SimRand first gathers the random coins corre-
sponding to all of the challenges sampled by ΠaFis

R .SimProve. Note that in order
for (not only the challenges in the proof tuple) but all of the challenges included
in Q to agree with the output of the RO, ΠaFis

R .SimRand must be able to simulate
the prover’s entire sequence of challenges.

In the adaptive setting, generating a convincing version of the prover’s en-
tire challenge sequence is non-trivial, and in particular requires a simulation
technique other than the dynamic programming strategy of the original and
randomized Fischlin transforms [24,27]. To see why this is the case, consider
the setting of witness indistinguishability, where there can be two witnesses, w0

and w1, that satisfy a particular statement x. Given the constraint of a chal-
lenge space that is logarithmic in the security parameter λ, the adversary can,
upon receiving a proof from ΠaFis

R .SimProve (but before issuing a corruption to
receive the output of ΠaFis

R .SimRand), test outputs of the RO on transcripts it
generates using w0 or w1 and the same commitments as ΠaFis

R .SimProve, but
different challenges.

In the original version of the transform, the SimProve algorithm samples a
mapping µ of challenges to outputs, and simulates the proof transcript using the
first challenge in µ that maps to the all-zero string [24]. It then programs the RO
to return the all-zero string for the simulated proof transcript [24] and outputs
the proof. Whenever the adversary makes any queries of the form described
above, SimProve programs the RO on input the adversary’s proof transcript
such that the challenge-to-RO-output is consistent with the mapping µ. Once
the prover is corrupted and its witness wb is revealed, however, the mapping µ
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becomes fixed to wb. The adversary can now perform a new kind of replay attack,
where it compares the distribution of the outputs that it queried (potentially
with w1−b) to the distribution of µ. In the real world, transcripts computed
over the same commitments and challenges but using w1−b rather than wb will
produce an output distribution µ′ that is independent of µ. At the time that
SimProve programs the RO, it is not able to determine whether the witness used
by the adversary matches the witness used by the prover, and can therefore only
guess (with success probability 1

2 ) whether it should be programming the RO
output from the distribution µ or µ′.

Thankfully, Kondi and shelat’s randomization of the challenge space allows
the ΠaFis

R .SimRand algorithm to finish the challenge section of the prover’s ran-
dom tape by computing transcripts using the real witness, sampling a fresh
challenge-to-output mapping µ, and inserting the challenge used to compute the
simulated transcript as the first input to produce the all-zero string. Due to sub-
tle technical difficulties that are the subject of future work, we assume that the
challenge space l is exponential, or on the order of 2λ, with respect to security
parameter λ. This is true of many Σ-protocols, but not all (for those that do not
have this property a priori, the security parameter can be sufficiently increased
using parallel repetition of the proof process, trading linear multiplicative over-
head for adaptive security). We predict that this restriction can be relaxed, but
leave the exploration of those techniques to future work.

We will show that as long as the Σ-protocol used as input to the compiler is
adaptive special honest-verifier zero-knowledge (adSHVZK), the output of the
adaptive simulator algorithms ΠaFis

R .SimProve and ΠaFis
R .SimRand are indistin-

guishable from that of ΠaFis
R .Prove.

Definition 26 (Adaptive Randomized Fischlin Transform). Let ΣR,τ be
any adaptive Σ-protocol for relation R (Definition 9) based on protocol template
τ (Definition 8) with the required properties for rFis (Definitions 24 and 25).
Let H be any random oracle. Then the randomized Fischlin transform of ΣR,τ ,
denoted aFis, is an algorithm that takes ΣR,τ as input and creates a tuple of
algorithms ΠaFis

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve,
SimRand, Extract), defined as follows.

– ppm← SetupH(1λ) : H is fixed. Let b, n, t be set according to the randomized
Fischlin transform [27,24]: bn = ω(log λ), 2t−b = ω(log λ), b, n, t = O(log λ)
and b ≤ t, where we use n in place of r repetitions to avoid confusion with the
notation for randomness. Let ℓ = O(2λ). The compound randomness security
parameters are λQ = ⌈n(λr + 2tℓ)⌉ and λQ′ = ⌈n(λ′

r + ℓ) + n(λr + 2tℓ)⌉,
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where λr and λr′ are the randomness security parameters of ΣR,τ .
5 Run

ppmΣ ← τ.Setup(1λ). Output the public parameters ppm = (ppmΣ , b, n, t, ℓ, λQ).

– (x, Φ) ← ProveH(x,w,Q) : Compute the vector of n first messages com =
⟨com1, . . . , comn⟩ by running τ.Commit(x,w, ri) for 1 ≤ i ≤ n, where each ri
consumes λr bits of the random tape Q. To compute each proof πi, sample
challenges chlj from Q and compute resj ← τ.Respond(x,w, comi, chlj)
until H(x, com, i, chlj , resj) = 0b, then set πi = (comi, chlj , resj). Finally,
return (x, Φ), where Φ = (π1, . . . , πn).

– {0, 1} ← VerifyH(x, Φ) : Parse Φ = (π1, . . . , πn). Output 1 (accept) if and
only if ΣR.Verify(x, πi) = 1 and

∑n
i=1 H(x, com, i, chli, resi) = 0b for 1 ≤

i ≤ n. Otherwise, output 0 (reject).

– (ppm, zs)← SimSetup(1λ) : Fix H and generate b, n, t the same as in Setup.
Generate ppmΣ and simulator state information zs by running ΣR,τ .SimSetup.
Set ppm = (ppmΣ , b, n, t, λR) and return (ppm, zs).

– (x, Φ, ZΦ) ← SimProve(x, zs, Q
′) : For each proof 1 ≤ i ≤ n, sample a ran-

dom ri and a random challenge chli from Q′. Then run ΣR,τ .SimProve(x, zs,
chli, ri) to obtain πi = (comi, chli, resi) and zπi

. For each proof, program
the output of H on input (x, com, i, chli, resi) to be 0b. Finally, output the
proof tuple (x, Φ) and auxiliary information ZΦ, where Φ = (Φ1, . . . , Φn) and
ZΦ = (zπ1

, . . . , zπn
).

– Q ← SimRand(ppm, zs, ZΦ, x, Φ, w,Q
′) : Parse Φ = (π1, . . . , πn) and ZΦ =

(zπ1
, . . . , zπn

). Reconstruct the proof randomness Q corresponding to Φ as fol-
lows. For each proof πi = (comi, chli, resi), run ΣR,τ .SimRand(ppm, zs, zπi

, x,
πi, w) to obtain ri, and concatenate it to Q. Then, sample a fresh random
challenge chlj from Q′ and compute resj ← τ.Respond(ppm, x, w, comj , chlj).
If H(x, com, j, chlj , resj) = 0b, concatenate chli to Q and move on to the
next proof πi+1; otherwise, concatenate chlj to Q and continue sampling
challenges until the condition is met. Finally, return Q.

– w ← Extract(X,Φ,QA ) : Parse Φ = (π1, . . . , πn) and each πi = (comi, chli,
resi). Given a list QA the adversary’s queries to H, search for two queries
(x, com, i, chli, resi) and (x, com, i, chl′i, res

′
i) such that (chli, resi) ̸= (chl′i,

res′i) and ΣR.Verify(x, πi) = ΣR.Verify(x, π
′
i) = 1. If no such queries ex-

ist, output Fail. Otherwise, obtain w by running ΣR.Extract(x, π, π
′).

5 For each execution of ΠaFis
R .Prove, we will need enough randomness to compute n

proofs, each requiring λr bits to compute the first message and 2tt bits to sample 2t

t-bit random challenges. For each execution of simulator algorithms ΠaFis
R .SimProve

and ΠaFis
R .SimRand, we will need enough randomness to sample 2t b-bit random

challenges and n(ℓ−b) bits to program the random oracle, as well n(λr′) bits to feed
into n executions of ΣS,τ .SimRand and n2tt bits to simulate the challenge selection
process.
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6.3 Adaptive Randomized Fischlin is an Adaptive SLC

We now prove that the adaptive randomized Fischlin transform aFis qualifies as
an adaptive SLC, and can therefore efficiently bootstrap adaptive Σ-protocols
into adaptive UC NIZKPoK in the global ROM(s).

Theorem 5. Let ΣR,τ be an adaptive Σ-protocol based on protocol template τ
for relation R (Definition 9) with the required properties for rFis (Definitions 24
and 25), and H : {0, 1}∗ → {0, 1}b be any random oracle. Then the adaptive
randomized Fischlin transform aFis (Definition 26) is an adaptive straight-line
compiler for ΣR,τ (Definition 16) in the random-oracle model.

Proof. Recall that an adaptive straight-line compiler according to our defini-
tion must create protocols that are overwhelmingly complete, adaptive non-
interactive multiple special honest-verifier zero-knowledge (adNIM-SHVZK), and
adaptive non-interactive special simulation-sound (adNI-SSS). First, note that
since the specification of ΠaFis

R .Prove does not functionally change between rFis

and aFis (as our explicit treatment of the prover’s randomness is syntactic),
aFis is as complete as rFis [24,27]. We proceed by contrapositive to show that
if ΠaFis

R is not additionally adNIM-SHVZK and adNI-SSS, then the underlying
Σ-protocol ΣR cannot be regular adaptive special honest-verifier zero-knowledge
(adSHVZK), contradicting the assumption in the theorem statement.

We begin by constructing a reduction B that uses an algorithm A that can
win the adNIM-SHVZK game (Definition 18) parameterized over ΠaFis

R with
non-negligible advantage as a black-box in order to win the adSHVZK game
(Definition 11) parameterized over ΣR with non-negligible advantage. B pro-
ceeds as follows. When it obtains ppm from the adSHVZK challenger, B passes
ppm to A . Note that the adSHVZK challenger is expecting exactly one Prove

query (i.e. it is not multi-adaptive), so we modify A to distinguish two hybrids
i − 1 and i, where in the i − 1st hybrid, the first i − 1 proofs and random
coins are according to ΠaFis

R .Prove using randomness r ∈ {0, 1}λr , and the ith

onward are according to ΠaFis
R .SimProve and ΠaFis

R .SimRand using randomness
r′ ∈ {0, 1}λr′ . B models the RO with an initially empty list L← ⊥. To answer
the first i − 1 queries, B first samples f ←$ F then runs Hf on the query,
storing the input-output pair in L. From the ith query onward, B programs the
RO using the interface ProgL according to ΠaFis

R .SimProve and ΠaFis
R .SimRand.

For the first i−1 queries (Prove, x, w) from A , B samples randomness Q←
{0, 1}λQ , runs ΠaFis

R .Prove(x,w,Q), and returns (Φ,Q) to A . On A ’s ith query
(Prove, x∗, w∗), B passes (Prove, x∗, w∗) to its challenger and receives (π∗, r∗)
for π∗ = (com∗, chl∗, res∗) that is either the result of running ΣR.Prove on
randomness r∗ or the result of running ΣR.SimProve and ΣR.SimRand. Note that
that A is expecting more proofs than just π∗, as the output of ΠaFis

R .Prove and
ΠaFis

R .SimProve should actually be a tuple of proofs Φi = π1, . . . , πn. Moreover,
since each proof in the tuple πj ∈ Φi requires the prover to make 2t − 1 secret
queries to the RO, A is expecting more randomness in the prover’s tape than
just r∗.
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Without loss of generality, we define each chunk Qj of the prover’s random
tape Q to be a λr-length segment corresponding to the first-message randomness
for πj , followed by a tℓ-length segment corresponding to the randomness used to
sample the challenges for each RO query, where t is the total number of queries
the prover makes to the RO in the process of producing πj . We can then modify
A again to distinguish the hybrids i, j from i, j + 1, where in the i, jth hybrid,
all of the proofs up to and including πj are computed according to ΠaFis

R .Prove
and Qj is the prover’s random tape, while in the i, j + 1st hybrid onward, πj

is computed according to ΠaFis
R .SimProve and Qj is generated according to

ΠaFis
R .SimRand. B constructs the hybrid proof tuple Φi from the challenge query

as follows.

Let the jth commitment comj = com∗, and πj = π∗ = (com∗, chl∗, res∗).
Since it must have the entire tuple com1, . . . , comn of commitments before run-
ningΠaFis

R .Prove, B starts by running the steps ofΠaFis
R .SimProve n−j times to

obtain πj+1, . . . , πn. B then samples each r1, . . . rj−1 from Q′ and runs τ.Commit
j − 1 times to obtain com1, . . . , comj−1. It then finalizes the commitment vector
com = com1, . . . , comn and programsH to output 0b on input (x, com, k, chlk, resk)
for each simulated proof πk, where k ∈ [j + 1, n]. B computes each proof
π1, . . . , πj−1 by running the steps of ΠaFis

R .Prove starting right after the gener-
ation of the commitment vector.

B generates the prover’s hybrid random tape Q for the proof tuple Φ as
follows. For each of the first chunks Qm ∈ Q1, . . . , Qj−1, B concatenates the
first-message randomness rm and challenge randomness chl1, . . . , chlt it used
in the execution of ΠaFis

R .Prove. The jth chunk, which must contain the λr + tℓ
bits corresponding to the challenge proof π∗ = πj , are generated as follows.
B sets the first λr bits to be the value r∗ returned by the adSHVZK chal-
lenger. B then samples a fresh random challenge chlm, computes resm ←
τ.Respond(ppm, x, w, com∗, chlm), and checks whetherH(x, com, j, chlm, resm) =
0b. If it does, B concatenates chl∗ to Q and moves on to the next step. Other-
wise, B concatenates chlm to Q and continues sampling challenges until the con-
dition is met. Finally for the remaining chunks Qm ∈ Qj+1, . . . , Qn, B concate-
nates the first-message randomness rm and challenge randomness chl1, . . . , chlt
returned by executing ΠaFis

R .SimRand on input the proofs πj+1, . . . , πn and sim-
ulation trapdoors zπj+1 , . . . , zπn output by its execution of SimProve.

Finally, B returns Φ and Q to A .

For the analysis, consider that B’s execution of the proofs π1, . . . , πj and
πj+2, . . . , πn and corresponding randomness is exactly what A expects in either
hybrid. It remains to show that the challenge proof πj+1 and corresponding ran-
domness is also formatted according to what A expects. If the adSHVZK chal-
lenger is playing with bit b = 0 and generated (π∗, r∗) according to ΠaFis

R .Prove
and the prover’s random tape, then πj+1 and the first-message section of Qj+1

corresponding to rj+1 (i.e. the randomness used to generate com∗ = comj+1) will
be exactly what A expects from the i, j + 1st hybrid. If, on the other hand,
π∗, r∗ were generated according to ΠaFis

R .SimProve and ΠaFis
R .SimRand respec-
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tively, then A ’s view of πj+1 and rj+1 in Qj will be according to the hybrid
i, j.

For the challenge section of Qj+1, note that the challenge selection process of
ΠaFis

R .Prove is identical to that of ΠaFis
R .SimRand up to the challenge in the tth

transcript—the Prove and SimRand algorithms sample challenges and compute
responses using the real witness until they find a transcript that causes the
RO to return 0b. When this condition occurs, the Prove algorithm returns the
accepting transcript computed using the challenge it sampled, while the SimRand
algorithm inserts the challenge and transcript generated by SimProve. For the
challenge section of Qj+1, B samples challenges according to either algorithm
and when it finds a transcript that returns 0b, it inserts the challenge chl∗ from
the adSHVZK challenger. A ’s view of the challenge selection section in the case
that b = 0 is therefore identical to hybrid i, j + 1, while if b = 1, its view is
identical to hybrid i, j.

Therefore, if B outputs 0 when A outputs “Hybrid i, j + 1” and 1 when A
outputs “Hybrid i, j,” it succeeds with the same probability as A . Because i is
bounded by the number of prove queries and j is bounded by the parameter n,
the number of hybrids is polynomial in the security parameter, and B’s summed
advantage over all of the hybrids is negligible, completing the proof that ΠaFis

R

must be adNIM-SHVZK.

We now use the fact that ΠaFis
R is adNIM-SHVZK to argue that ΠaFis

R must
also be adaptive non-interactive special simulation-sound (adNI-SSS). Consider
a new reduction B that uses an adversary A that can win the adNI-SSS game
(Definition 19), as well as a second adversary A ′ that can win the regular non-
interactive special soundness (NI-SS) game (Definition 20 in Appendix ??) with
non-negligible advantage as black boxes to win the adNIM-SHVZK game (Defi-
nition 18). B forwards all of A ’s Prove queries to and from the adNIM-SHVZK
challenger, and all of A ’s random oracle queries to and from H. Similarly, B
forwards all of A ′’s oracle queries to and from H. Whenever A produces a fresh
(non-simulated) proof (x, Φ) such that ΠaFis

R .Verify(x, Φ) = 1, B computes
w ← ΠaFis

R .Extract(x, Φ,QA ) and checks whether R(x,w) = 0, which happens
with non-negligible probability by assumption. B does the same for A ′’s proofs
(x′, Φ′). (The argument that there must be sufficient queries in QA or QA ′ to
invoke ΠaFis

R .Extract in the first place is identical to the arguments given by
Kondi and shelat [27]; in brief, the strong special soundness property stops A
from being able to “tweak” an old proof to create a forgery, for instance by
changing one response.

If the adNIM-SVHZK challenger is playing with bit b = 1 and the proofs
and randomness being passed to A are according to ΠaFis

R .SimProve and ΠaFis
R .

SimRand, this is exactly what A expects from the adNI-SSS game, and B’s
advantage is the same as A ’s. If the adNIM-SHVZK challenger is playing with
bit b = 0, then A ’s advantage reduces to A ′’s advantage in the standard NI-SS
game (since A ′ can always generate honest proofs and randomness according
to ΠaFis

R .Prove itself). Assume for a contradiction that there is a non-negligible
difference between the extraction failures produced by A when b = 1 and A /A ′
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when b = 0. If B observes a difference in output betwen A and A ′, B knows
A has an extra advantage due to seeing simulated proofs and randomness and
outputs 1; otherwise if there is no difference, B outputs 0. Therefore, the differ-
ence must be negligible, implying that as long as ΠaFis

R is adNIM-SHVZK (as
proven in the preceeding paragraphs) and NI-SS (which follows directly from the
special soundness of ΣR,τ and the randomness of H), ΠaFis

R must be adNI-SSS.

We have shown that the tuple ΠaFis
R ← aFis(ΣR,τ ) is overwhelmingly com-

plete, adNIM-SVHZK, and adNI-SSS, completing the proof that aFis is an adap-
tive straight-line compiler. ⊓⊔

6.4 Realizing Efficient and Adaptive aUC NIZKPoK from
Σ-protocols in the Global ROM(s)

We demonstrated in Section 5.2 that any adaptive SLC is sufficient to convert
any Σ-protocol ΣR into a NISLE proof system ΠSLC

R that aUC-realizes FaNIZK in
the GrpoRO-hybrid model. In the previous section, we proved that the adaptive
randomized Fischlin transform aFis is an adaptive SLC for any Σ-protocol that
has either the strong special soundness property. Therefore, we can efficiently
aUC-realize FaNIZK in the programmable global ROM using aFis and any such
Σ-protocol.

Corollary 1. Let ΣR be any adaptive Σ-protocol for a relation R (Definition 9)
with the required properties for aFis (Definitions 24 and 25), and aFis be the
adaptive randomized Fischlin transform (Definition 26). Then the NISLE proof
system ΠSLC

R ← aFis(ΣR) aUC-realizes FaNIZK in the GrpoRO-hybrid model (Defi-
nition 7 where GRO := GrpoRO).

Proof. The corollary follows directly from Theorems 3 and 5. ⊓⊔

Similarly, we showed in Section 5.3 that any adaptive SLC is sufficient in
conjunction with the adaptive OR-protocol compiler aguc from Definition 23 to
convert any Σ-protocol into a NISLE proof systemΠauc

R∨S that aUC-realizes FaNIZK

in the GroRO-FCRS-hybrid model. Therefore, we can efficiently aUC-realize FaNIZK

in the non-programmable global ROM using aguc, aFis and any Σ-protocol
that is compatible with aFis.

Corollary 2. Let ΣR be any adaptive Σ-protocol for a relation R (Definition 9)
with the required properties for aFis (Definitions 24 and 25), aguc be the adap-
tive OR-protocol compiler (Definition 23), and aFis be the adaptive random-
ized Fischlin transform (Definition 26). Then the NISLE proof system Πauc

R∨S ←
aguc(ΣR, aFis) aUC-realizes FaNIZK in the GroRO-FCRS-hybrid model (Definition 7
where G := GroRO and ∗ := FCRS).

Proof. The corollary follows directly from Theorems 4 and 5. ⊓⊔
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7 Practical Adaptive Σ-protocols

In this section, we recall the abstract treatment of identification schemes from
linear function families due to Hauck, Kiltz, and Loss [26], and remodel it to
capture many simple Σ-protocols (Section 7.1). We then give three satisfying
instantiations: proofs of knowledge of a discrete logarithm (Section 7.2) and n
equivalent representations of m witnesses (Section 7.3). As proven in Sections 5
and 6.2, any Σ-protocol that qualifies as adaptive can be efficiently bootstrapped
into an adaptive UC NIZKPoK in the programmable global ROM, and in the
non-programmable global ROM as long as the Σ-protocol is also randomness
equivocable. We therefore conclude with an abstract blueprint and three instan-
tiations of efficient, composable, and adaptively-secure NIZKPoK for a variety
of real-world applications.

7.1 Simple Adaptive Σ-protocol Abstraction

Hauck et al.’s construction of “canonical identification schemes” from pseudo-
modules and linear function families [26] describes an abstract three-move iden-
tification scheme that bears close resemblance to the three-move form of a
Σ-protocol. We remodel their construction as a Σ-protocol template and add
new adaptive Σ-protocol-specific abstractions for the SimProve, SimRand, and
Extract algorithms.

For simplicity and since all of our instantiations are parameterized over mod-
ules, we narrow the focus of our abstraction to modules rather than pseudo-
modules. Briefly, we form the Σ-protocol module over the challenge space C and
the language (statement) space X . The definition of a module requires that C is
a ring with multiplicative identity 1C , X is a group with additive commutativ-
ity, and for all chl, chl′ ∈ C and x, y ∈ X , there exists a map C × X → X
satisfying the following properties: 1) chl · (x + y) = chl · x + chl · y, 2)
(chl+ chl′) · x = chl · x+ chl′ · x, 3) (chl · chl′) · x = chl · (chl′ · x), and 4)
1C ·x = x. In order to guarantee the special soundness property, we additionally
require that for any two proofs π = (com, chl, res) and π′ = (com, chl′, res′) for
x such that Verify(x, π) = Verify(x, π′) = 1 and chl ̸= chl′ ̸= 0C , the inverse
of (chl−chl′) exists. We write the inversion (chl−chl) · (chl−chl′)−1 = 1C .

6

We highlight the properties of linear function families that are critical to under-
standing our results as part of the proof below.

Definition 27 (Simple Adaptive Σ-protocol Candidate). The simple adap-
tive Σ-protocol candidate Σsim for relation R is a tuple of efficient procedures
Σsim = (Setup, Prove, Verify, SimSetup, SimProve, SimRand, RealToSim, Extract)
that adhere to the following format:

6 Note that some Σ-protocol constructions that would otherwise fit this template,
such as the proof of knowledge of an RSA inverse, do not quite work because the
extractor cannot compute the inverse of (chl−chl′) directly (in the case of the RSA
inverse, the extractor uses Shamir’s trick [10]). For such constructions, it might be
convenient to use the abstraction for the adaptive SHVZK property and treat the
special soundness property separately.
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– ppm ← Setup(1λ): Define the linear function family LF = (PGen, F) (Def-
inition 3.1 in [26]) such that ppm ← PGen(1λ) fixes a statement space X ,
witness space W, first message space A, challenge space C, response space
B, and randomness space R such that W = R = B, X = A, W and X form
modules over C, |X | ≥ |C| ≥ 22λ, and the evaluation function F :W → X .

– π ← Prove((ppm, x, w, r), (ppm, x)): P sends V a first message com = F(r).
V replies with a challenge chl←$ C. P responds with res = chl · w + r.

– {0, 1} ← Verify(ppm, x, π): Parse π as (com, chl, res). If F(res) = chl ·x+
com, output 1 (accept). Otherwise, output 0 (reject).

– ppm← SimSetup(1λ): Invoke Setup(1λ) and return ppm.

– π ← SimProve(ppm, x, chl, r′) : Parse r′ = res and compute com = F (res−
chl · w). Return π = (com, chl, res).

– r ← SimRand(ppm, x, π, w) : Parse π = (com, chl, res). Compute and output
r = res− (chl · w).

– r′ ← RealToSim(ppm, π) : Parse π = (com, chl, res) and output r′ = res.

– w ← Extract(ppm, x, π, π′) : Given any two proofs π = (com, chl, res) and
π′ = (com, chl′, res′) such that Verify(x, π) = Verify(x, π′) = 1 and chl ̸=
chl′, compute and output w = (res− res′) · (chl− chl′)−1.

Theorem 6. The simple adaptive Σ-protocol candidate given above (Defini-
tion 27) is an adaptive Σ-protocol (Definition 3) with randomness equivocability
(Definition ??).

Proof. The following proof relies on two core properties of the evaluation function
F, described below (for details in context, see Definition 4.1 [26]). First, the
pseudo-module homomorphism (PMH) property states that for all y, z ∈ W,
F(chl · y + z) = chl · F(y) + F(z). Second, the smoothness property guarantees
that for all y ∈ W, F(y) is uniformly distributed over X . (Recall these properties
hold as well for W = R = B and X = A.) We will now show that the simple
Σ-protocol format given above satisfies the necessary completeness, adaptive
special honest-verifier zero-knowledge, and special soundness properties of an
adaptive Σ-protocol.

Completeness. The verifier checks whether F (res) = chl · x + com. By the
PMH property, we have F (chl · w + r) = chl · F (w) + F (r) = chl · x+ com.

Adaptive SHVZK. As long as r ←$ R and chl ←$ C, the distribution of
res = chl · w + r computed in Σsim.Prove is uniformly random in B. The
res ←$ B and chl ←$ C sampled by Σsim.SimProve are therefore identical
to the res and chl in a real proof. By the smoothness of F, Σsim.SimProve’s
com = F (res − chl · w) is also uniformly random in A. Since res and chl are
uniformly random in B and C respectively, the distribution of r = res−(chl ·w)
will be similarly random. Note that both simulations are correct, since

F(r) = F(res− chl ·w) = −chl · F(w)+ F(res) = −chl ·x+ chl ·x+ com = com
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by the PMH property. The outputs of Σsim.Prove and r are therefore distributed
identically to the outputs of Σsim.SimProve and Σsim.SimRand, respectively. Fi-
nally, in order to make a real proof look simulated, the RealToSim algorithm
simply pretends that the uniform randomness of res formed the simulator’s
random tape.

Special Soundness. Solving the two verification equations for com and setting
them equal, we get F(res)− chl · x = F(res′)− chl′ · x, which implies

F(w) · chl− F(w) · chl′ = F(res)− F(res′) (substitution and commutativity)

F(w) · (chl− chl′) = F(res)− F(res′) (distributivity)

F(w) = F(res)− F(res′) · (chl− chl′)−1 (invertability of chl− chl′)

⇒ F(w) = F((res− res′) · (chl− chl′)−1) (PMH property)

⇒ w = (res− res′) · (chl− chl′)−1. ⊓⊔

7.2 Adaptive Proof of Knowledge of Discrete Logarithm

Proofs of knowledge of discrete logarithm (PoK DL), also known as Schnorr
proofs, are the backbone of many practical constructions of group [12,5], thresh-
old [3], blind [26], and multi- [3,22] signatures.

The public parameters ppm are (G, q, g), where G is a cyclic group of prime
order q, and g is a generator of G. The statement and first-message spaces are
X = A = G, the witness, randomness, and response spaces are W = B = R =
Zq, and the challenge space is C = Z∗

q . The evaluation function F : Zq → G
is defined such that F(w) = w · g. For elements x and y in Zq, we define the
operation x · y to be the process of adding y to itself (component-wise) x times
modulo q. For elements x ∈ Zq,Z∗

q and y ∈ G, we define x ·y to be the process of
performing the group operation on y with itself x times. (In traditional Schnorr,
this would be exponentiation yx; in the elliptic curve version, it would the scalar
multiplication xy where y is a curve point.)

Z∗
q and G satisfy the requirements of a module, and all elements in C = Z∗

q are
invertible. Furthermore, the pseudo-module homomorphism property is satisfied
because F(w) := w · g ⇒ F(chl · w + r) = (chl · w + r) · g = chl · w · g + r · g =
chl·F (w)+F (r). Finally, F is smooth, since for r ←$ Zq, F (r) = r·g is uniformly
distributed over G.

7.3 Adaptive Proof of Knowledge of Equality of n Representations

Proofs of knowledge of equality of n representations ofm witnesses (PoK EqRep)
are essential building blocks in the construction of cryptographic shuffles [36,30],
accumulators [2,10], and anonymous credentials [9], which form the basis of
anonymous networks, voting, payment, and identification systems. Note also that
PoK EqRep is a generalization of other common Σ-protocols such as standard
proofs of knowledge of representation [13,11] and Okamoto-Schnorr [31], and
that the following result holds for those narrower instantiations as well.
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Theorem 7 (PoK EqRep is an Adaptive Σ-protocol). A proof of knowl-
edge of equality of n representations can be described as a simple adaptive Σ-
protocol with randomness equivocability (Definition 27).

Proof. We recall the setup. The public parameters ppm are (G, q, g1, . . . , gn),
where G is a cyclic group of prime order q, and each gi is a vector of m generators
gi,1, . . . , gi,m. The statement and first-message spaces are X = A = Gn, the
witness, randomness, and response spaces are W = R = B = Zm

q , and the
challenge space is C = Z∗

q . The evaluation function F : Zm
q → Gn is defined such

that

F(w) = F(w1, . . . , wm) =

m∏
i=1

wi · g1,i, . . . ,
m∏
i=1

wi · gn,i.

The operator · is defined, component-wise, the same as in the proof of Theo-
rem ??.

The prover’s first message com = F(r) becomes

F(r1, . . . , rm) =

m∏
i=1

wi · g1,i, . . . ,
m∏
i=1

wi · gn,i

for r1, . . . , rm ←$ Zq. We can therefore write com = ⟨com1, . . . , comn⟩. The chal-
lenge is a uniformly random element chl ←$ Z∗

q , and the prover’s response is
res = ⟨res1, . . . , resm, where each resi = chl · wi + rm. The verifier accepts
the proof (com, chl, res) if and only if

F(res) = F(res1, . . . , resm) =

m∏
i=1

resi · g1,i, . . . ,
m∏
i=1

resi · gn,i =

m∏
i=1

(chl · wi + ri) · g1,i, . . . ,
m∏
i=1

(chl · wi + ri) · gn,i =

chl · F(w) + F(r) = chl · x+ com.

The SimProve algorithm samples a random m-length response vector from Zm
q

and computes each component of the n-length first message vector com1, . . . , comn
as

com = F(res− chl ·w) =
m∏
i=1

(resi− chl ·wi) · g1,i, . . . ,
m∏
i=1

(resi− chl ·wi) · gn,i,

and each random value ri output by SimRand is computed resi − (chl · wi) for
1 ≤ i ≤ m. Similarly, each witness wi is extracted by computing (resi − res′i) ·
(chl− chl′)−1, where (chl− chl′) ̸= 0 is again invertible in Z∗

q .
The pseudo-module homomorphism and smoothness properties follow from

the component-wise application of the arguments from Theorem ??:

F(chl · w + r) = F(chl · w1, . . . , wm + r1, . . . , rm) =
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m∏
i=1

(chl · wi + ri) · g1,i, . . . ,
m∏
i=1

(chl · wi + ri) · gn,i =

m∏
i=1

(chl · wi) · g1,i + ri · g1,i, . . . ,
m∏
i=1

(chl · wi) · gn,i + ri · gn,i =

chl ·
m∏
i=1

wi · g1,i + ri · g1,i, . . . , chl ·
m∏
i=1

wi · gn,i + ri · gn,i =

chl · F(w) + F(r).

Finally, since each ri ← Zq and ri · g1,i is a uniformly random element in G,
F(r) = F(r1, . . . , rm) =

∏m
i=1 ri · g1,i, . . . ,

∏m
i=1 ri · gn,i is distributed uniformly

over Gn. ⊓⊔
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