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Abstract

We provide the first constructions of SNARGs for Batch-NP andP based solely on the sub-exponential
Decisional Diffie Hellman (DDH) assumption. Our schemes achieve poly-logarithmic proof sizes.

Central to our results and of independent interest is a new construction of correlation-intractable
hash functions for “small input” product relations verifiable in TC0, based on sub-exponential DDH.
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1 Introduction

Suppose a client wants to learn the outcome of some large computation, but it does not have sufficient
resources to perform the computation. Instead, it delegates the computation to an untrusted server. The
server returns the output to the client, together with a proof attesting to the correctness of the output. The
key requirement is that the client should be able to verify the proof in time that is significantly less than
performing the original computation.

Such proofs are referred to as succinct non-interactive arguments (SNARGs). The standard model for
SNARGs includes an initial setup, where a common reference string (CRS) is sampled and distributed to the
parties. The proof verification procedure is public, and the soundness guarantee is against computationally-
bounded provers. Over the years, SNARGs have found numerous applications to the design of advanced
cryptographic protocols, and recently seen adoption in the blockchain ecosystem (see, e.g., [BCG+14]).

SNARGs from Standard Assumptions. In this work, we focus on the goal of constructing SNARGs
from standard cryptographic assumptions. In this direction, [GW11] demonstrated a barrier to construct-
ing SNARGs for general NP languages based on falsifiable assumptions. To overcome this barrier, a re-
cent line of work has focused on the classes P and Batch-NP, where the former refers to deterministic
polynomial-time computations, and the latter refers to the setting where a prover wishes to prove mul-
tiple (i.e., a batch of) NP statements via a proof of size smaller than the combined witness length.1 We
provide a (incomplete) summary below and refer the reader to Section 1.2 for details:

– The works of [CJJ21b, KVZ21] demonstrate that SNARGs for Batch–NP imply SNARGs for P.2

– SNARGs for Batch-NP (and hence, P) can be obtained from the learning with errors (LWE) assump-
tion [CJJ21b], decisional linear assumption over bilinear maps [WW22], and joint assumptions of
quadratic residuosity and (sub-exponential) Decisional Diffie-Hellman (DDH) [CJJ21a, HJKS22].

SNARGs based on the sole hardness of DDH, however, remain unknown. We ask:

Do there exist SNARGs for P and Batch-NP based on DDH?

Conceptually, a positive answer to this question would improve our understanding of the power of the
discrete-logarithm family of assumptions. In recent years, a sequence of results have provided evidence
that the gap between this family and the more powerful tools of lattices and bilinear maps is narrower
than what was perceived previously. Some examples include succinct multiparty computation protocols
[BGI16], identity based encryption [DG17], and non-interactive zero-knowledge proofs [JJ21] based on
(sub-exponential) DDH. A positive resolution of our question would further consolidate this evidence.

Fiat-Shamir and Correlation Intractability. The aforementioned constructions of SNARGs (with the
exception of [WW22]) rely on the Fiat-Shamir paradigm [FS87] — a generic method of round-collapsing
public-coin interactive protocols. Given a public-coin interactive protocol, the Fiat-Shamir transformation
replaces the verifier’s messages with the hash of the protocol transcript so far.

The security of Fiat-Shamir was originally proven in the random oracle model. A recent line of work
[CCR16, KRR17, CCRR18, HL18, CCH+19, PS19, CKU20, BKM20, JJ21, HLR21] has demonstrated that the
Fiat-Shamir paradigm can be securely instantiated in the standard model using correlation intractable
hash functions (CIH) [CGH04]. Intuitively, CIH are hash functions whose input-output pairs behave in a

1SNARGs for Batch-NP are also referred to as non-interactive batch arguments (BARGs).
2Their transformations rely on the existence of somewhere extractable hash functions [HW15], which are known based on

many standard assumptions, including the ones considered in this work.
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similar way to a random function in that they do not satisfy any “bad” correlations. More specifically, a
hash function family {Hk}k is said to be correlation intractable for a relation class R, if for any relation 𝑅
in the relation class, given the hash key k to any efficient adversary, it is hard to find an input-output pair
of the hash function that satisfies the relation 𝑅.

A central goal in this line of research is to expand the class of relations that can be supported by CIH
based on standard assumptions. Presently, the best known result is due to [HLR21] who construct CIH
for so-called efficiently verifiable product relations, based on LWE. This result forms a key ingredient in the
work of [CJJ21b] towards building SNARGs from LWE.

We ask whether such CIH can be constructed from other assumptions, and in particular, DDH:

Do there exist CIH for efficiently verifiable product relations from DDH?

While our primary interest in this work is in using CIH for constructing SNARGs, we mention that re-
cent works have explored many other applications of CIH, including counter-examples to zero-knowledge
[KRR17, HLR21], non-interactive zero knowledge proofs [CCRR18, CCH+19, PS19, CKU20, BKM20, JJ21],
establishing hardness of complexity classes such as PPAD [CHK+19, JKKZ21], verifiable delay functions
[LV20, FPS22], error-correcting codes [GHY20], and more. Thus, the above question is of interest beyond
our immediate goal.

1.1 Our Results

SNARGs for P & Batch-NP. We construct SNARGs for P and Batch-NP based on the sub-exponential
hardness of DDH. Specifically, we assume that there exists a constant 𝑐 ∈ (0, 1) such that for any n.u.
probabilistic adversary that runs in time 𝜆𝑂 ( (log log𝜆)3 ) , its advantage in distinguishing a random tuple and
a Diffie-Hellman tuple is at most 2−𝜆𝑐 .3

Theorem 1 (Main Theorem, Informal). Assuming sub-exponential hardness of DDH, there exist:

– SNARGs for Batch-NP: For every polynomial𝑇 = 𝑇 (𝜆), there exists a SNARG for proving validity of
𝑇 C-SAT instances 𝑥1, · · · , 𝑥𝑇 w.r.t. circuit 𝐶 , where the size of the CRS and proof is poly(log𝑇, |𝐶 |, 𝜆)
and the verification time is poly(𝑇, |𝑥𝑖 |, 𝜆) + poly(log𝑇, |𝐶 |, 𝜆).

– SNARGs for P: For every polynomial𝑇 = 𝑇 (𝜆), there exists a SNARG forDTIME(𝑇 ) where the verifier
running time, size of CRS and proof are all poly(log𝑇, 𝜆) and the prover running time is poly(𝑇, 𝜆).

Both our constructions require a common random string setup, and their proof-sizes and verifier run-
times match the previous best-known results (ignoring multiplicative overhead in security parameter).

To prove Theorem 1, we follow the framework of [CJJ21b] that relies on two cryptographic tools:
CIH for efficiently verifiable product relations, and somewhere-extractable hash (SEH) functions [HW15].
Along the way, we obtain new results on CIH and SEH. We discuss them next.

CIH for Efficiently Verifiable Product Relations. We first recall the definition of efficiently verifiable
product relations [HLR21]. Let 𝑡 be an integer, and X and Y be two sets of binary strings. We say that a
relation 𝑅 ⊆ X × Y𝑡 is a product relation, if for every 𝑥 ∈ X, 𝑅𝑥 = {y | (𝑥, y) ∈ 𝑅} can be expressed as
the Cartesian product of a series of sets 𝑆1, 𝑆2, . . . , 𝑆𝑡 . Further, we say that 𝑅 is efficiently verifiable, if there
exists a circuit 𝐶 such that for every 𝑖 ∈ [𝑡], the set 𝑆𝑖 contains exactly all 𝑦𝑖 ∈ Y such that 𝐶 (𝑥,𝑦𝑖 , 𝑖) = 1.

We build CIH for product relations whose verification circuit𝐶 is in TC0 (i.e., constant-depth threshold
circuits), based on the sub-exponential DDH assumption. In fact, our construction can support slightly
super-constant depth threshold circuits.

3Our assumption is slightly stronger than the sub-exponential DDH assumption defined in [JJ21] (and used in [CJJ21a,
HJKS22]) that only considers polynomial-time adversaries.
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Theorem 2 (CIH for Product Relations, Informal). Assuming sub-exponential hardness of DDH, there exists
correlation intractable hash functions for product relations verifiable by threshold circuits of depth𝑂 (log∗ 𝜆),
with running time poly(𝜆, 𝑛𝑂 (log log𝑛) , log |Y|), where 𝑛 is the bit-length of the input to the hash function and
Y is the output space.

Limitation: Small Inputs. The running time of our CIH is slightly super-polynomial in its input length.
Hence, to obtain a polynomial-time hashing algorithm, our construction can only support inputs of size
𝜆𝑂 (1/log log𝜆) , which is a sub-polynomial in the security parameter 𝜆. As we discuss later, this poses some
additional challenges in adopting the framework of [CJJ21b] towards proving Theorem 1, and we develop
new tools to overcome these challenges.

Our Approach. The recent work of [HLR21] constructed CIH for (all) efficiently verifiable product relations
from LWE. At a high-level, their construction involves concatenating list-recoverable codes with CIH for
efficiently searchable relations (that are known from LWE [PS19]). If we restrict ourselves to the sub-
exponential DDH assumption, we only know CIH for searchable relations in TC0 [JJ21]. This means that
a direct attempt to port the approach of [HLR21] to the DDH-setting would require list-recoverable codes
with decoding in TC0. To the best of our knowledge, it is not known whether such codes exist. We there-
fore depart from the methodology of [HLR21], and present a new approach to construct CIH for product
relations (albeit with the “small input” restriction) without using coding-theory techniques.

Somewhere-Extractable Hash. Another key ingredient in the framework of [CJJ21b] is the notion
of somewhere extractable hash (SEH) with local openings [HW15]. Roughly speaking, a somewhere ex-
tractable hash is a keyed hash function with two indistinguishable modes: a normal mode and an extraction
mode. In the extraction mode, the hash key is associated with an index 𝑖 , and using a trapdoor, it is possible
to extract the value committed at index 𝑖 from the hash value. The local opening property requires that
the committer can open to a particular bit in the committed message, with a succinct opening.

The limitations of our CIH for product relations in Theorem 2 dictate additional requirements on SEH
for successfully adapting the framework of [CJJ21b] to the DDH setting:

– TC0 extraction: We require the extraction circuit of SEH to be in TC0.

– Large inputs: We require an SEH that supports input-sizes super-polynomial in the security param-
eter. Crucially, we still require that the local openings are succinct.

Intuitively, the first property is required since our CIH can only support relations verifiable in TC0.
The second property is dictated by the running time limitation of our CIH; see Section 2 for details.

We prove the following theorem:

Theorem 3 (Informal). Assuming sub-exponential hardness of DDH, there exists a large-input somewhere
extractable hash with local openings and extraction algorithm in TC0.

Constructing SEH with the above two properties based on (sub-exponential) DDH turns out to be quite
challenging. A natural adaptation of the tree-based approach to construct SEH with local openings used in
prior works does not simultaneously achieve both properties. A key technical ingredient in our solution is
a new Bulletproof-style [BBB+18] succinct proof in the pre-processing model that can be round-collapsed
in the standard model using our CIH.

1.2 Related Work

SNARGs. We start by providing a brief summary of recent work on SNARGs from falsifiable and stan-
dard assumptions. [KPY19] gave the first construction of SNARGs for P and Batch-NP from a falsifiable,
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albeit non-standard assumption over bilinear maps. Independently, [CCH+19] constructed SNARGs for
bounded-depth deterministic computations assuming the existence of fully homomorphic encryption with
optimal circular security. The first construction of SNARGs based on standard assumptions (namely, sub-
exponential LWE) was given by [JKKZ21] for the class of bounded-depth deterministic computations.

Recently, [CJJ21b] constructed SNARGs for P and Batch-NP with poly-logarithmic proof size from
LWE. Their work, as well as [KVZ21], also provides a transformation from SNARGs for Batch-NP to
SNARGs for P.4 In a separate work, [CJJ21a] constructed SNARGs for Batch-NP with proof size

√
𝑘 for

batch size 𝑘 based on quadratic residuosity and sub-exponential DDH (or LWE). Subsequently, [HJKS22]
improved the proof size to sublinear in 𝑘 . More recently, [WW22] constructed SNARGs for Batch-NP with
sublinear proof size based on the decisional linear assumption over bilinear maps. Finally, we mention
very recent works that devise efficiency boosting compilers for SNARGs for Batch-NP: [PP22, DGKV22]
construct rate-1 proofs with applications to incrementally verifiable computation, and [KLVW22] show
how to achieve strong succinctness (i.e., poly-logarithmic proof size) from weak succinctness (i.e., proof
size slightly smaller than the total witness length).

We conclude by mentioning three related lines of research: the first line of work, starting from [Mic94],
constructs SNARGs for NP (see, e.g., [Gro10, Lip12, GGPR13, BCI+13, BCCT13, Gro16, BCC+17]) in the
Random Oracle model or based on non-falsifiable assumptions [Nao03]. This line of work has led to effi-
cient constructions of SNARGs that are currently used in practice. The second line of work, starting from
[KRR13, KRR14], constructs designated-verifier SNARGs, where the verifier receives a secret key (sampled
together with the common reference string) for verifying proofs. Finally, in the interactive setting (where
the prover and the verifier exchange multiple messages), a long sequence of works, starting from [Kil92],
have constructed succinct argument and proof systems for various classes. We refer the reader to [CJJ21b]
for a more detailed overview.

CIH. A sequence of works [CCR16, KRR17, CCRR18, HL18, CKU20] constructed CIH for various classes
of (not necessarily efficiently searchable) relations from strong assumptions. Recently, [CCH+19] con-
structed CIH for all efficiently searchable relations from circular-secure fully homomorphic encryption,
and subsequently, [PS19] improved the assumption to standard LWE. More recently, [BKM20] constructed
CIH for relations that can be approximated by constant-degreee polynomials (over Z2) based on various
standard assumptions, and [JJ21] constructed CIH for TC0 based on sub-exponential DDH. Finally, [HLR21]
constructed CIH for efficiently verifiable product relations from LWE.

While the above works focus on single-input relations, a few works also study multi-input CIH for
specific relations [Zha16, HL18, LV22]. Finally, we mention [CLMQ21, Mou21] that investigate the minimal
assumptions necessary for CIH.

ConcurrentWork. In a concurrent work, Kalai, Lombardi and Vaikuntanathan [KLV22] construct SNARGs
for bounded-depth deterministic computations based on sub-exponential DDH (of the flavor considered
in [JJ21]). Unlike our work, they also prove the hardness of the complexity class PPAD under the same
assumption.

2 Technical Overview

We now provide a technical overview of our results. We organize the discussion in two parts: (1) First, in
Section 2.1, we describe our construction of CIH for “small input” product relations verifiable in TC0. (2)
Next, in Section 2.2, we describe our constructions of SNARGs for Batch-NP and P. Along the way, we
describe our new construction of somewhere extractable hash functions.

4The transformation of [KVZ21] also works for NTISP, i.e., bounded-space NP.
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2.1 CIH for Product Relations

We start by introducing some terminology. For any binary relation 𝑅 ⊆ X × Y, we refer to an element
𝑥 ∈ X as an input, and a 𝑦 ∈ Y as a challenge. We say that a challenge 𝑦 is bad with respect to 𝑥 , if
(𝑥,𝑦) ∈ 𝑅.5 We will also interchangeably refer to such a 𝑦 as a witness.

Further, we say that a relation 𝑅 is searchable by 𝑓𝑅 , if 𝑅 is the set of all pairs (𝑥,𝑦) such that y = 𝑓𝑅 (𝑥).

CIH for Unique-Witness Product Relations. As a starting point, we first show how to build CIH for
a weaker class of product relations, which we refer to as unique-witness product relations. We say that a
product relation 𝑅 ⊆ X × Y𝑡 is a unique-witness product relation, if for every input 𝑥 , the witness (i.e.,
the bad challenge) is unique. That is, for every 𝑥 ∈ X, there is at most one y ∈ Y𝑡 such that (𝑥, y) ∈ 𝑅.

Let |Y| be a polynomial in the security parameter. We observe that for any unique-witness product
relation 𝑅 ⊆ X ×Y𝑡 , there exists a function 𝑓𝑅 : X → Y𝑡 such that 𝑅 is searchable by 𝑓𝑅 . To see this, note
that we can find the unique bad challenge y = (𝑦1, . . . , 𝑦𝑡 ) ∈ Y𝑡 for any input 𝑥 by enumerating over all
values 𝑦𝑖 for every 𝑖 . In more detail, let 𝐶 (𝑥,𝑦𝑖 , 𝑖) be the circuit that verifies the product relation 𝑅. Our
function 𝑓𝑅 takes as input 𝑥 , and for each 𝑖 in [𝑡], it enumerates every 𝑦′𝑖 ∈ Y and if 𝐶 (𝑥,𝑦′𝑖 , 𝑖) = 1, then
it sets 𝑦𝑖 to be this 𝑦′𝑖 . Such a function 𝑓𝑅 (nearly) preserves the depth of the verification circuit 𝐶 , since
we can run 𝑡 enumerations of 𝑦′𝑖 ’s in parallel. Moreover, 𝑓𝑅 has polynomial-size description since |Y| is a
polynomial in the security parameter.

A recent work of [JJ21] constructed CIH for relations searchable in TC0. Combining their result with
the above observation, we can obtain CIH for unique-witness product relations verifiable in TC0.

Handling Multiple Witnesses. In general, product relations may not have unique witnesses. Indeed,
this is the case for the applications we consider in this work. Hence, CIH for unique witness product
relations are seemingly of limited interest. Somewhat surprisingly, we now show that constructing CIH
for non-unique-witness product relations can, in fact, be reduced to the task of constructing CIH for unique
witness product relations.

Dividing the Challenges. Our high level idea is to divide the challenge space into several smaller parts.
Let’s first consider a simpler case for 𝑡 = 1. We divide Y into Y1,Y2, . . . ,Y𝑑 . Looking ahead, we will de-
fine the bad challenges in Y1,Y2, . . . ,Y𝑑 , and hope that these bad challenges in Y will “spread” among
Y1,Y2, . . . ,Y𝑑 such that in each part Y𝑖 , the bad challenge is unique. We will then generalize this to
Y𝑡1 ,Y𝑡2 , . . . ,Y𝑡𝑑 for general 𝑡 and associate a series of new relations 𝑅1, 𝑅2, . . . , 𝑅𝑑 to these smaller chal-
lenge spaces and define bad challenges in Y𝑡𝑖 accordingly.

More specifically, we treat each challenge𝑦 ∈ Y as a binary string of length log2 |Y|. We then divide the
binary representation of the challenges evenly into 𝑑 parts. Hence, Y1,Y2, . . . ,Y𝑑 simply contain binary
strings of length log2 |Y|/𝑑 . A CIH for a product relation 𝑅 ⊆ X × Y𝑡 , given any input 𝑥 , operates as
follows: it first computes each part of the hash value y1, y2, . . . , y𝑑 , where y𝑖 ∈ Y𝑡𝑖 , and then point-wise
concatenates y𝑖 ’s together to obtain the hash value y = y1 | |y2 | | . . . | |y𝑑 . To determine how we compute
y𝑖 , we take inspiration from how CIH is applied in the actual interactive protocols. Usually we use the
CIH for the relation 𝑅 ⊆ X × Y𝑡 to instantiate the Fiat-Shamir transformation in an interactive protocol,
where the prover sends an 𝑥 in the first round, and the verifier samples a random 𝑦 ← Y in the second
round. Executing this protocol in parallel 𝑡 times results in the challenge space Y𝑡 . In this application,
dividing the challenge space Y into Y1, . . .Y𝑑 corresponds to the following multi-round protocol: instead
of sampling 𝑦 ← Y directly and sending it to the prover, the verifier samples 𝑦1 ← Y1 and sends it to the

5When 𝑥 is clear from the context, we simply say that 𝑦 is bad.
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prover, then the prover does nothing, and then the verifier samples 𝑦2 ← Y2 and sends it to the prover.
They continue this process in 𝑑-rounds until all 𝑦𝑖 ’s are sent.

Applying Fiat-Shamir transformation directly to this multi-round protocol, we obtain the following
iterative hashing algorithm. For 𝑖 = 1, 2, . . . 𝑑 , we compute y𝑖 = Hash𝑖 (𝑥, y1, y2, . . . , y𝑖−1) where Hash𝑖 , 𝑖 =
1, 2, . . . , 𝑑 is a series of hash functions. At 𝑖-th round, the hash function Hash𝑖 takes the transcript of the
protocol so far, which is the tuple (𝑥, y1, y2, . . . , y𝑖−1), where y𝑖 ∈ Y𝑡𝑖 is the vector of challenges in the 𝑡
parallel repetitions in the 𝑖-th round. Inspired by this Fiat-Shamir transformation, we construct our CIH
for 𝑅 by iteratively computing a series of CIH in the same way as above, except that we will instantiate
Hash𝑖 as CIH for unique-witness product relations. That is,

For 𝑖 = 1, 2, . . . , 𝑑, y𝑖 = Hash(k𝑖 , 𝑥, y1, . . . , y𝑖−1),

where k𝑖 is the CIH key for the 𝑖-th CIH, and we represent the hash algorithm of CIH as Hash(k𝑖 , ·).
To prove the correlation intractability of our CIH construction, we will reduce the security of our CIH
construction for 𝑅 to the correlation intractability of Hash(k𝑖 , ·) for some relation 𝑅𝑖 . To achieve this, we
first need to define the relations {𝑅𝑖}𝑖∈[𝑑 ] carefully so that they are unique-witness product relations.

Defining Unique-Witness Product Relations {𝑅𝑖}𝑖∈[𝑑 ] . For each 𝑖 = 1, 2, . . . 𝑑 , we will define the
relation 𝑅𝑖 over (X × Y𝑡1 × . . . × Y𝑡𝑖−1) × Y𝑡𝑖 . Before we define 𝑅𝑖 , we introduce the following recursive
view of the aforementioned multi-round protocol. Essentially, the aforementioned verifier is dividing the
whole challenge spaceY into |Y1 | parts in the first round, and then it takes the 𝑦1-th part as the remaining
challenge space {𝑦1} × Y2 . . . × Y𝑑 in the second round. In the second round, the verifier further divides
the remaining challenge space into |Y2 | parts and choose the 𝑦2-th part and so on. Finally, in the 𝑑-round,
after chosen 𝑦𝑑 , there is only one challenge 𝑦 = 𝑦1 | | . . . | |𝑦𝑑 left in the challenge space and so 𝑦 is chosen
as the challenge for the entire protocol.

To define 𝑅𝑖 , we focus on the number of bad challenges in the remaining challenge space after each
round in this recursive dividing process. Our key observation is that in the 𝑖-th round, there is at most
one 𝑦𝑖 such that the number of bad challenges in the 𝑦𝑖-th part is greater than 50% of the number of
the bad challenges in the remaining challenge space before the 𝑖-th round, i.e. the challenges with the
prefix 𝑦1 | | . . . | |𝑦𝑖−1. This is because if there are two such 𝑦𝑖 ’s, then the number of bad challenges exceeds
100%, which is a contradiction. Specifically, we use BadCnt(𝑥,𝑦1, 𝑦2, . . . , 𝑦𝑖−1) to denote the number of
bad challenges for 𝑥 with the prefix 𝑦1 | |𝑦2 | | . . . | |𝑦𝑖−1. We say 𝑦𝑖 is bad with respect to (𝑥,𝑦1, . . . , 𝑦𝑖−1), if
BadCnt(𝑥,𝑦1, 𝑦2, . . . , 𝑦𝑖−1, 𝑦𝑖) > BadCnt(𝑥,𝑦1, 𝑦2, . . . , 𝑦𝑖−1)/2. Namely, we define 𝑅𝑖,𝑥 as the set containing
the following challenges.

𝑅𝑖,𝑥 =

{
𝑦𝑖 | BadCnt(𝑥,𝑦1, 𝑦2, . . . , 𝑦𝑖−1, 𝑦𝑖) > BadCnt(𝑥,𝑦1, 𝑦2, . . . , 𝑦𝑖−1)/2

}
.

This is our definition of bad challenges for one parallel execution. Next, we define the bad challenge for 𝑡
parallel executions by taking the product of above bad relations for all parallel executions. Namely, let the
relation 𝑅 ( 𝑗 )

𝑖,𝑥
be the bad relation defined as above for the 𝑗-th parallel execution. Then we define 𝑅𝑖 as the

product relation specified by 𝑅 (1)
𝑖,𝑥
× 𝑅 (2)

𝑖,𝑥
× . . . × 𝑅 (𝑡 )

𝑖,𝑥
. Since each 𝑅 ( 𝑗 )

𝑖,𝑥
contains unique bad challenge, we

have that 𝑅𝑖 is a unique-witness product relation. Now we have defined a series of unique-witness product
relations 𝑅1, 𝑅2, . . . , 𝑅𝑑 . As we will see, each 𝑅𝑖 is associated with the hash function Hash(k𝑖 , ·).

Proving Correlation Intractability. To prove correlation intractability, we first need to show that the
relations 𝑅1, 𝑅2, . . . , 𝑅𝑑 “cover” the relation 𝑅. That is, for any 𝑥 and y ∈ Y𝑡 , where y is the point-wise
concatenation of y1, . . . , y𝑑 and y𝑖 is a challenge in Y𝑡𝑖 , if y is bad in 𝑅, then there must be some 𝑖∗ such
that y𝑖∗ is bad in 𝑅𝑖 . If we have this covering claim, then any adversary for our construction of CIH for 𝑅
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is essentially also an adversary for the 𝑖∗-th CIH for the relation 𝑅𝑖∗ . Hence the correlation intractability
of our construction follows from the correlation intractability of Hash(k𝑖 , ·). To finish this security proof,
it remains to prove the covering claim.

We first prove a “weak covering claim”, in which there is only one parallel execution (𝑡 = 1). Namely,
we will show that in the aforementioned definition of 𝑅𝑖,𝑥 , we have that if 𝑦 ∈ Y is bad with respect to 𝑥
and 𝑦 = 𝑦1 | | . . . | |𝑦𝑑 where 𝑦𝑖 ∈ Y𝑖 , then there must be some 𝑖∗ such that 𝑦𝑖∗ is bad (i.e. 𝑦𝑖∗ ∈ 𝑆𝑖∗,𝑥 ), once
we set the parameter 𝑑 to be greater than log2 BadCnt(𝑥). To see why this is true, if the first (𝑑 − 1) parts
𝑦1, 𝑦2, . . . , 𝑦𝑑−1 contain a bad challenge, then our weak covering claim holds. Otherwise, the first (𝑑 − 1)
parts must half the number of bad challenges in each round, but then the last part 𝑦𝑑 must be bad, since
the count of the bad challenge in the last round is one and the bad challenge count in the second last round
is already BadCnt(𝑥)/2𝑑−1 ≤ 1.

Now we attempt to prove the original covering claim, where there are 𝑡 parallel executions, using the
above weak covering claim. We will soon see that this is unachievable, and we need to expand our relations
𝑅𝑖 ’s a little. For every 𝑥 and y ∈ Y𝑡 , let y be the point-wise concatenation y1 | | . . . | |y𝑑 . We are going to
visualize y as a matrix of 𝑡 columns and 𝑑 rows, where the 𝑖-th row, for every 𝑖 ∈ [𝑑], is the vector y𝑖 ∈ Y𝑡𝑖 ,
and every column corresponds to a parallel execution. If y is bad, then every coordinate of y is bad. By
the weak covering claim, there is at least one bad element in each column of the above matrix. However,
we can not conclude that there exists a row y𝑖∗ where all its coordinates are bad, since the bad elements
in different columns may be at the different rows. But using the pigeonhole principle, we can still derive
something non-trivial. Specifically, there must be some row y𝑖∗ that contains at least 𝑡/𝑑 bad elements,
because the matrix has 𝑡 columns and thus the entire matrix contains at least 𝑡 bad elements.

𝑦4,1

𝑦3,1

𝑦2,1

𝑦1,1

𝑦4,2

𝑦3,2

𝑦2,2

𝑦1,2

𝑦4,3

𝑦3,3

𝑦2,3

𝑦1,3

𝑦4,4

𝑦3,4

𝑦2,4

𝑦1,4

𝑦4,5

𝑦3,5

𝑦2,5

𝑦1,5

𝑦4,1

𝑦2,2

𝑦1,3

𝑦4,4

𝑦3,5

Figure 1: For illustration, consider the setting where 𝑡 = 5, and 𝑑 = 4. Each column represents a parallel
execution, where the concatenation of the values within the same column represents a single element ofY.
The shaded 𝑦𝑖, 𝑗 elements represent the bad elements, where a bad y guarantees the existence of (at least)
one bad element per column. By pigeonhole principle there exists a row (row 4 in the above example) that
has at least ⌈𝑡/𝑑⌉ bad elements.

Now we modify the covering claim accordingly. We first use the notion of 𝛼-approximate product
relation [HLR21] to characterize a super-set 𝑅𝛼

𝑖
of 𝑅𝑖 , which contains all vectors y𝑖 ∈ Y𝑡𝑖 such that at

least 𝛼 = (𝑡/𝑑)/𝑡 = 1/𝑑 fraction of coordinates are bad. Then we modify the covering claim to assert that
𝑅𝛼1 , 𝑅

𝛼
2 , . . . , 𝑅

𝛼
𝑑

“cover” 𝑅. Then the pigeonhole principle above shows that the there must exist a row y𝑖∗ of
the matrix that is bad in 𝑅𝛼

𝑖∗ . Hence, the modified covering lemma is proved.
The reader may wonder how we build CIH for 𝛼-approximate product relations 𝑅𝛼

𝑖
, since our previ-

ous discussion can only handle CIH for unique-witness product relations, and now our covering lemma
requires CIH for 𝛼-approximate product relations. We observe that CIH for searchable relations in TC0 by
[JJ21] can, in fact, be extended to handle “𝛼-approximate searchable relations” in TC0, and our previous re-
duction from unique-witness product relation to searchable relations can be extended to the approximate
setting. Namely, by the same enumerating method, we can show that 𝑅𝛼

𝑖
’s are 𝛼 approximate searchable

relations. Hence, we can instantiate Hash(k𝑖 , ·) using CIH for 𝛼-approximate searchable relations.
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Restricting to Small Inputs. Let’s examine the running time of our CIH construction. Recall that our
CIH construction needs to enumerate the challenges in Y to count the number of the bad challenges.
Hence, the running time of our CIH is at least |Y|. Let 𝜆 be the security parameter, then we have 𝑑 =

log2 BadCnt(𝑥) = Θ(log 𝜆) number of parts, where each part has size |Y𝑖 |. We now see the lower bound of
|Y𝑖 |. Indeed, the approximation factor 𝛼 needs to be at least 1/|Y𝑖 |, otherwise the CIH for 𝛼-approximate
relations𝑅𝛼

𝑖
in each round can’t exist. This is because an uniform random challenge𝑦𝑖 ← Y𝑖 has probability

1/|Y𝑖 | to be bad (i.e. 𝑦𝑖 ∈ 𝑆𝑖,𝑥 ). For 𝑡 parallel executions, this implies that on average there are 1/|Y𝑖 | fraction
of bad coordinates in a random y𝑖 ← Y𝑡𝑖 . However, for CIH to exist, the fraction parameter 𝛼 at least need
to be non-trivial. Hence, 𝛼 needs to be greater than 1/|Y𝑖 |. Recall that 𝛼 = 1/𝑑 in our covering claim.
This implies that |Y𝑖 | needs to be at least 𝑑 , and hence |Y| is at least 𝑑 log𝑑 = 𝜆Θ(log log𝜆) , which is slightly
super-polynomial. This means that the running time of our CIH is super-polynomial.

To get around this issue, we observe that once we restrict the number of bad challenges to be 𝜆𝑂 (1/log log𝜆)

then |Y| becomes a polynomial in 𝜆. However, by putting such a restriction, our CIH can only support
relations where the fraction of bad challenges in the entire challenge space is 𝜆𝑜 (1)/|Y| = 𝑜 (1). To build
CIH for general product relations that supports any fraction of bad challenges, we further apply a subsam-
pling technique from [HLR21]. The idea is to divide the whole 𝑡 parallel execution into 𝐿 blocks, where
each block consists of ℓ = 𝑡/𝐿 parallel executions. Within each block, we sample a series of challenges
q1, q2, . . . , q𝑁 ← Yℓ randomly, and use a union bound over all possible input to argue that for every input,
at most ≈ log |X| of those 𝑁 challenges are bad. Now, we can view [𝑁 ] as a new challenge space, where
each challenge is an index 𝑖 ∈ [𝑁 ] corresponding to an original challenge q𝑖 . We can also define a new
relation 𝑅′ over X × [𝑁 ]𝐿 , which contains all “bad” tuples of indices. Once we build CIH for 𝑅′, we obtain
CIH for 𝑅 by selecting the corresponding q𝑖 ’s according to the output of CIH for 𝑅′. According to afore-
mentioned size lower bound on the challenge space, we derive that𝑁 needs to be at least (log𝐵)log𝐵 , where
𝐵 ≈ log |X| is the number of bad challenges among q𝑖 ’s. Hence, once we restrict log |X| ≤ 𝜆𝑂 (1/log log𝜆) ,
then the 𝑁 and also the running time of our CIH construction becomes polynomial in 𝜆. For more details,
see Section 4.1.

2.2 SNARGs for P & Batch-NP

We now describe applications of ourCIH to SNARGs for P and Batch-NP. Recent works of [KVZ21, CJJ21b]
demonstrated that SNARGs for Batch-NP are “complete” for constructing SNARGs for P. In fact, [CJJ21b]
reduces the task of constructing SNARGs for DTIME(𝑇 ) computation to constructing SNARGs for a special
Batch-NP language called the batch-index language. A batch-index language is associated with a circuit𝐶
where the instances are simply indices 𝑖 that can be represented in log𝑘 bits for a batch of size 𝑘 . Unlike
Batch-NP where the verifier has to read all the instance, one can make a strong verification requirement
from SNARGs for batch-index language, namely, that the total verification time (including the time to
“read” instances) is poly(𝜆, log𝑘, |𝐶 |).

In the rest of this subsection, we restrict our attention to constructing SNARGs for batch-index.

A Brief Primer on [CJJ21b]. We start by describing the high level paradigm in [CJJ21b] for the con-
struction of SNARGs for batch index. Our construction will be identical except for a few key changes that
we shall explain later. A reader who is familiar with the prior work can choose to skip this discussion.

PCP Generation: Using witnesses 𝜔1, · · · , 𝜔𝑇 , the prover generates 𝑇 PCPs 𝜋1, · · · , 𝜋𝑇 .
Succinct Column-wise Hash: The prover arranges the 𝜋1, · · · , 𝜋𝑇 ∈ {0, 1}ℓ into rows, and hashes

them in a column-wise manner (i.e. ℓ hashes each hashing vectors of length𝑇 ) using a somewhere
extractable hash (to be discussed shortly). Let this hash be denoted by 𝑐 = (𝑐1, · · · , 𝑐ℓ ).
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Challenge Generation via CIH: The prover applies the CIH (different from the hash scheme in the
previous step) to (𝐶, 𝑐) to generate the PCP queries 𝑄 .

Two-to-one Compression: The prover then defines a new circuit𝐶′ for the index language that hard-
codes the {𝑐 𝑗 } 𝑗∈𝑄 (the hash 𝑐 restricted only on “columns” specified by 𝑄), and takes as input
index 𝑖 and witness 𝜔𝑖 - where 𝜔𝑖 corresponds to the local openings of {𝜋𝑖, 𝑗 } 𝑗∈𝑄 . 𝐶′ checks (i)
that the local openings verify; and (ii) the PCP verifier accepts given the PCP responses {𝜋𝑖, 𝑗 } 𝑗∈𝑄 .
The prover further reduces the total number of (index) instances from 𝑇 to 𝑇 /2 applying a 2-to-1
reduction to 𝐶′ by defining a circuit 𝐶′′(𝑖, (𝜔2𝑖−1, 𝜔2𝑖)) B 𝐶′(2𝑖 − 1, 𝜔2𝑖−1) ∧𝐶′(2𝑖 − 1, 𝜔2𝑖−1).

Recursion: The prover finally recurses by repeating the above steps, sending witnesses in the clear
when the witnesses are small enough.

To ensure that the recursion reduces the size of the circuit and the number of instances, one needs
to demonstrate that 𝐶′′ defined above is “small” with respect to 𝐶 . The size of 𝐶′ (and thus of 𝐶′′) is
determined by:

1. size of the hash and local opening; and

2. size of the PCP verification circuit.

For (1), [CJJ21b] used a somewhere extractable hash (SEH) [HW15] with local openings. In such a hashing
scheme, a trapdoor td is generated along with the key𝐾 on input 𝑖∗ — td can then be used to extract, from 𝑐 ,
the uniquely value at index 𝑖∗ where the resultant hash is 𝑐 .6 The SEH used in the aforementioned work has
hash size, local opening size and verification time all to be polylogarithmic in𝑇 . For (2), [CJJ21b] observed
that existing PCP schemes can be viewed in an offline/online verification model where the offline verifier
pre-processes the circuit 𝐶 to produce PCP queries and a small state st such that the online verification
depends only polylogarithmically on 𝑇 and |𝐶 | given the PCP responses.

It was shown in [CJJ21b] that CIH for efficiently verifiable product relations (as defined in [HLR21])
suffices to prove security of the above described SNARG for batch index. Such a CIH was instantiated
from the work of [HLR21] assuming the hardness of LWE.

Key Challenges. The [CJJ21b] template uses two cryptographic primitives based on LWE, namely, SEH
and CIH. Thus, a natural idea to port the [CJJ21b] approach to our DDH-setting is as follows: replace the
CIH used in [CJJ21b] with our new CIH from Section 2.1, and instantiate the SEH used in their scheme
with one based on DDH [OPWW15, DGI+19].

This simple strategy, however, does not work right out of the box due to the limitations of our new
CIH. We describe the key challenges that arise in the process:

Input Size: As described in Section 2.1, our new CIH is restricted by its input size being small, i.e.
for security parameter 𝜆, the input size is bounded by poly(𝜆0) where 𝜆𝑂 (log log𝜆0 )

0 = 𝜆. From the
above description of the [CJJ21b] protocol, we have that the input to the CIH consists of the circuit
𝐶 (for the batch-index language) and the output of SEH. This means that both the circuit size and
the hash size are bounded by poly(𝜆0).

1. Bound on size of𝐶: The restriction on𝐶 is pretty significant since for obtaining a general
result, we would like to allow for circuits that are of size poly(𝜆) = poly(𝜆𝑂 (log log𝜆0 )

0 ).
Despite this seemingly strong restriction, we show that: (i) It is already sufficient to achieve
SNARGs for P — intuitively, this is because the circuit for batch-index language defined in
the transformation from SNARGs for batch-index to SNARGs for P [CJJ21b] are already
“small”; (ii) With the help of SEH, we can bootstrap SNARGs for small circuit batch-index

6An SEH implies somewhere binding at the same index.
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languages to achieve SNARGs for general batch-index languages. At a high level, we split
the large circuit 𝐶 into many smaller components 𝐶1, · · · ,𝐶ℓ such that each such com-
ponent is of size poly(𝜆0), and send ℓ proofs for each corresponding circuit. Care must
be taken to ensure that the smaller components are not disparate, but in fact “connect”
to verify a batch claim about the original circuit 𝐶 . We do not discuss the details in this
overview and refer the reader to Section 7.2.

2. Bound on hash size: The bound on the hash size necessitates that we must set the se-
curity parameter of SEH to be 𝜆0. Note, however, that the number of instances 𝑇 remains
polynomial in 𝜆. This means that the SEH must support large inputs, i.e inputs that are
of length super-polynomial in its security parameter.
Further, recall that in the [CJJ21b] template discussed earlier, the size of the circuit 𝐶′ —
that is recursed in the next step — is determined by the size of the local opening of SEH.
Putting this together with the bound on the circuit size, we have the restriction that the
size of the local opening of SEH can depend on poly(𝜆0) and only poly-logarithmically on
the large input length.

Verification in TC0: In addition to the restriction on input size, for a secure application of our new
CIH, we require that the bad challenge relation circuit be be verifiable in TC0. The bad challenge
relation circuit involves the following key steps:

1. Extraction of PCP: The PCP is extracted from the SEH.
2. PCP Verification: The online verification of the PCP is executed given its queries.
3. Checking satisfiability of the circuit: To ascertain if the 𝑖-th instance is true, check

circuit satisfiability of 𝐶 using witness extracted from the PCP.
Thus, we require that each of the above three steps can be performed in TC0. By choosing an
appropriate field, we extend the analysis of [CJJ21b] to show that both the extraction of the witness
from the PCP and online PCP verification can be computed in TC0. Further, given a witness
corresponding to a circuit 𝐶 , checking if the circuit is satisfiable can be done in TC0 by checking
all the gates in parallel. Thus steps 2 and 3 can be performed in TC0.
This leaves us with step 1, namely, we need SEH that supports extraction in TC0.

In summary, we are left with the task of constructing an SEH with the following key requirements:

– Large Inputs: The SEH must support inputs of length super-polynomial in the security parameter,
but nevertheless have succinct local openings.

– TC0 extraction: The SEH must support extraction in TC0.

In the remainder of this overview, we describe the key ideas underlying our construction of such a
SEH based on sub-exponential DDH.

2.3 Somewhere Extractable Hash from DDH

We start by recalling prior approaches to constructing SEH. We then discuss the main technical challenge
towards achieving the two properties we require. Finally, we present our solution.

Background. We follow the standard tree-based approach from prior work for constructing SEH with
short local openings. To hash a vector of length 𝑇 , the idea is to build a hash tree (akin to a Merkle tree)
with the leaves corresponding to the vector being hashed, and the root corresponding to the resultant
hash. We shall refer to the hash used in the construction of the tree to be the base hash, and the overall
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construction simply by SEH. The local opening to a bit (a leaf in the tree) consists of all siblings nodes on
the path from the leaf to the root, and verification involves recomputing the hash values along the path
from the claimed leaf to the root (using the siblings present in the proof) and comparing against the stored
root. Thus the size of the opening is determined by the number of siblings and the depth of the tree, both
of which are fixed for a given vector length 𝑇 by the arity (or degree) of the tree. Thus, if we were to set
the arity of the tree to be bounded by poly(𝜆0), where 𝜆0 is the security parameter of SEH, the proof of
local opening would be bounded by poly(𝜆0, log𝜆0 𝑇 ).

MainChallenge. Recall that our requirements from SEH are: (1) extraction in TC0, (2) support for inputs
of length super-polynomial in the security parameter 𝜆0, while still allowing for short local openings.

Let us consider the first requirement. In the context of tree based construction, extraction from SEH
translates to the extraction of a leaf value from the hashed root. The extraction procedure (on input the
trapdoor) starts from the root and works down to the (desired) leaf by extracting each hash value along
the path, one level at a time. The number of sequential steps in the extraction procedure is proportional to
the depth of the tree. Thus for extraction to be computable in TC0, the depth of the tree must be a constant.

Now, let us consider the second requirement on SEH. Note that in order to support large inputs, we can
no longer set the arity of the tree to be poly(𝜆0). This follows from the fact that for a constant depth tree
with arity poly(𝜆0), the total number of leaves is limited to be polynomial in 𝜆0. One way to circumvent
this, and support inputs of size poly(𝜆), would be to set the arity in the tree based construction to be
poly(𝜆) = poly(𝜆𝑂 (log log𝜆0 )

0 ). While this does support large inputs in constant depth, a local opening,
which constitutes sending all the siblings along the path is now of size poly(𝜆𝑂 (log log𝜆0 )

0 ), i.e. we lose
succinctness. This constitutes the main challenge that we need to overcome in our construction, namely,
devising succinct local openings when the arity of the tree is large.

Sibling Compression. Our key idea is to compress the large number of siblings into a single “effective”
sibling. The effective sibling must allow for re-computation of the hash, but it must not be possible to
manipulate the effective sibling to produce inconsistent local openings.

To explain the idea, we first describe the base hash scheme that we use in our tree based construction.
The scheme closely follows the construction of trapdoor hash functions based on DDH [DGI+19]. The hash
function Hash takes as input m ∈ {0, 1}𝑁 , a key𝐾 ∈ G2×𝑁 and produces a hash output 𝑐 ∈ G2. To generate
a hash key that allows for somewhere extraction of the input bit at index 𝑖∗ 7, the key generation, hashing
and extraction algorithms are described below

Key Generation: On input 𝑖∗, the key 𝐾 is generated as

𝐾 =

[
𝑔1 𝑔2 · · · 𝑔𝑁
ℎ1 ℎ2 · · · ℎ𝑁

]
=

[
𝑔1 · · · 𝑔𝑖∗−1 𝑔𝑖∗ 𝑔𝑖∗+1 · · · 𝑔𝑁

𝑔𝑠1 · · · 𝑔𝑠
𝑖∗−1 𝑔𝑠

𝑖∗ · 𝑔 𝑔𝑠
𝑖∗+1 · · · 𝑔𝑠

𝑁

]
where for every 𝑗 ∈ {1, · · · , 𝑁 }, 𝑔 𝑗 is a random group element from G, 𝑔 is the group generator,
and 𝑠 is randomly sampled. The trapdoor for this generated key is 𝑠 . At a high level, ℎ 𝑗 at every
position other than 𝑖∗ is computed by the exponentiation of 𝑔 𝑗 to the trapdoor 𝑠 , whereas ℎ𝑖∗ has
an additional product term of 𝑔. This structure will be exploited for the extraction.

Hashing: On input m = (𝑚1, · · · ,𝑚𝑁 ) ∈ {0, 1}𝑁 , and key 𝐾 , compute the hash 𝑐 = (𝑔′, ℎ′) =

Hash(𝐾,m) as 𝑔′ B
∏𝑁

𝑗=1 𝑔
𝑚 𝑗

𝑗
and ℎ′ B

∏𝑁
𝑗=1 ℎ

𝑚 𝑗

𝑗
.

7We refer the reader to the technical sections for discussion on the extension of the somewhere extraction property to multiple
bits
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Extraction: On input a hash 𝑐 = (𝑔′, ℎ′) and trapdoor 𝑠 , output𝑚𝑖∗ to be 0 if 𝑔′𝑠 = ℎ′, and 1 otherwise.
Intuitively, the correctness of extraction follows from the fact that if𝑚𝑖∗ is 0, the additional 𝑔 term
in ℎ𝑖∗ will disappear.

Assuming DDH, one can argue (as in [DGI+19]) that the index 𝑖∗ is hidden in the generated hash key
𝐾 . Before we discuss the local opening properties of the base scheme, note that the extraction involves
computing a group exponentiation 𝑔′𝑠 . With an appropriate pre-processing of 𝑔′, the exponentiation, and
thus the extraction can be computed in TC0, and we refer the reader to the technical section for details.

Now, given a hash value 𝑐 , instead of computing the naive the local opening to 𝑥𝑖∗ for some index 𝑖∗ (of
size proportional to the arity of the tree), we compute an “effective” sibling (𝑔′′, ℎ′′) = (∏𝑗≠𝑖∗ 𝑔

𝑥 𝑗
𝑗
,
∏

𝑗≠𝑖∗ ℎ
𝑥 𝑗
𝑗
),

and use this as the proof of local opening to 𝑥𝑖∗ . Given this effective sibling, the verification of local opening
now reduces to checking if 𝑐 = (𝑔′, ℎ′) is the same as (𝑔𝑥𝑖∗

𝑖∗ · 𝑔′′, ℎ
𝑥𝑖∗
𝑖∗ · ℎ′′).

While the above effective sibling idea does indeed satisfy correctness and reduce the cost of local
opening to be of size𝑂 (1), the security of local opening breaks down. Let us elaborate. An adversary trying
to cheat by sending inconsistent local opening can efficiently compute two distinct (pairs of) effective
siblings (𝑔′′, ℎ′′) and (𝑔′′, ℎ̃′′). Specifically, given a hash value (𝑔′, ℎ′), if an adversary wants to open index
𝑖∗ of the input to two distinct values, 𝑥𝑖∗ and 𝑥𝑖∗ , then it can compute the effective siblings as

(𝑔′′ = 𝑔′/𝑔𝑥𝑖∗
𝑖∗ , ℎ

′′ = ℎ′/ℎ𝑥𝑖∗
𝑖∗ ) and (𝑔′′ = 𝑔′/𝑔𝑥𝑖∗

𝑖∗ , ℎ̃
′′ = ℎ′/ℎ𝑥𝑖∗

𝑖∗ ) .

The computation of these inconsistent openings are efficient, and it is easy to see from construction that
both proofs verify, allowing for openings to different values. Thus the effective sibling, as defined, cannot
function as a proof of local opening since there there is no guarantee that the extracted value corresponds
to the value that an adversary provides a local opening for.

Proofs of Well-Formedness. To address this problem, we modify the above construction such that a
local opening now includes a succinct proof (of size poly(log𝑁 )) that the “effective” sibling was computed
correctly, i.e. a proof of well-formedness of the effective sibling. At a high level, the security of the proof
system would allow us to reduce the security of the local opening to the uncompressed case.

Note that the statement of correct computation includes the key ((𝑔1, · · · , 𝑔𝑁 ), (ℎ1, · · · , ℎ𝑁 )), and thus
any proof system we construct will necessarily need to the local opening verifier to read the statement,
which would incur a 𝑂 (𝑁 ) cost and thus verification would no longer be succinct. To circumvent this
issue, we construct the SEH where the verification of the local opening is in the offline/online model - the
offline phase is run once by the local opening given the SEH key to produce a short state of size poly(𝜆0),
and the online verification of the local opening can be done in size (and time) independent of the arity of
the tree. Further, the offline phase runs in time 𝑁𝑘 for some fixed constant 𝑘 .

Putting it all together, when we set 𝑁 = 𝜆𝑑 , we have that the verifier computes the pre-processed
state in time 𝜆𝑘𝑑 , which is independent of the exact value of 𝑇 since 𝑑 is a fixed constant. Since the pre-
processing is done once (per level) and depends solely on the keys present in the CRS, it is sufficient to
consider the efficiency restriction only on the online verification of the local opening. Thus, as required, (i)
the proof of local opening and its online verification can be done in time poly(𝜆0); and (ii) since the depth
of the tree remains constant, we can achieve extraction in TC0. We next discuss the construction of our
proof of well-formedness based on the (sub-exponential) hardness of DDH.

More Details. Our construction of the proof of well-formedness for the effective sibling involves mul-
tiple steps, which we describe below. For the sake of brevity, in this overview we will only cover a few of
them, and refer the reader to the relevant technical sections for complete details.
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Reduction to a Promise Language L: As a first step, we show that proving that the effective sibling
has been computed correctly can be reduced to proving that some related statement belongs to an
appropriately defined promise language L.

Interactive Proof (P,VO) for L: We construct an interactive proof for L in the model where V has ora-
cle access to a large string O, further makes a single query to this oracle at the end of the interactive
proof to determine whether to accept or reject8. The verifier in this oracle model is succinct, and runs
in time poly(𝜆, log𝑁 ). Our protocol design is inspired by the Bulletproof protocol [BBB+18].

Apply Fiat-Shamir to (P,VO) We show that our constructed CIH based on DDH can be used to round
collapse (P,VO) and make it non-interactive. This involves primarily showing that the correspond-
ing B satisfies the required properties to use the CIH. See Section 5.2.3 for details.

Pre-computing the Oracle O: As a last step, we consider an offline/online verifier that pre-compute
this oracle O (in a deterministic fashion) in the offline phase to produce a small digest that is used
in the online phase. At a high level the digest will be the Merkle root over the string O, where O
can be computed deterministically simply given the hash key 𝐾 . To read a specified location, the
prover can recompute O (since it is deterministic), and provide a Merkle proof matching the digest
in possession of the verifier. The location to be read is specified by the verifier’s random coins sent
during the interactive protocol, which the prover knows since it derives it using the CIH. See Section
5.2.3 for details.

In this overview, we will show how the proof of well-formedness reduces to the promise language, and
then present our interactive proof for the promise language. For the other steps, we refer the reader to the
technical sections.

We now define the promise language L = (LYES,LNO)

LYES B
{
(𝐾, 𝑣 = (𝑔′, ℎ′))

��� ∃m ∈ {0, 1}𝑛 s.t. Hash(𝐾,m) = 𝑣
}

LNO B
{
(𝐾, 𝑣 = (𝑔′, ℎ′))

��� ∃𝑠 s.t. ∀𝑗 ∈ [𝑛], ℎ 𝑗 = 𝑔𝑠𝑗 ∧ (ℎ′ ≠ (𝑔′)𝑠)
}

First note that the above languages are indeed disjoint. This is fairly easy to see - when 𝐾 is such that
there exists an 𝑠 such that for every 𝑗 ∈ {1, · · · , 𝑛}, ℎ 𝑗 = 𝑔𝑠𝑗 , then by construction, for any m ∈ {0, 1}𝑛 ,
Hash(𝐾,𝑚)9 computed as 𝑔′ =

∏
𝑗∈[𝑛] 𝑔

𝑚 𝑗

𝑗
and ℎ′ =

∏
𝑗∈[𝑛] ℎ

𝑚 𝑗

𝑗
=
∏

𝑗∈[𝑛] (𝑔
𝑚 𝑗

𝑗
)𝑠 satisfies ℎ′ = (𝑔′)𝑠 . Thus

it cannot simultaneously be true that Hash(𝐾,𝑚) = 𝑣 and ℎ′ ≠ (𝑔′)𝑠 .
Now, to show that the opening to 𝑚𝑖∗ at position 𝑖∗ can be reduced to proving a statement in L, the

prover first computes 𝑔′′ =
∏

𝑗≠𝑖∗ 𝑔
𝑚 𝑗

𝑗
, ℎ′′ =

∏
𝑗≠𝑖∗ ℎ

𝑚 𝑗

𝑗
and sets 𝐾 ′ as

𝐾 ′ B

[
𝑔1 · · · 𝑔𝑖∗−1 𝑔𝑖∗+1 · · · 𝑔𝑁
ℎ1 · · · ℎ𝑖∗−1 ℎ𝑖∗+1 · · · ℎ𝑁

]
.

Finally, the prover computes the non-interactive proof Π for L on the statement (𝐾 ′, 𝑣 = (𝑔′′, ℎ′′)). The
opening is then Π, 𝑚𝑖∗ , 𝑖∗. The verifier checks (i) if the hash 𝑐 = (𝑔′, ℎ′) satisfies 𝑔′ = 𝑔′′ · 𝑔𝑚𝑖∗

𝑖∗ and
ℎ′ = ℎ′′ · ℎ𝑚𝑖∗

𝑖∗ ; (ii) the proof Π verifies. The Completeness follows in a straightforward manner from the
description of LYES. For ”soundness”, we show extraction correctness, i.e. if 𝐾 was generated with index
𝑖∗, then Ext(𝑐, 𝑖∗, td) ≠ 𝑚𝑖∗ implies that (𝐾 ′, 𝑣 = (𝑔′′, ℎ′′)) ∈ LNO. First note that if 𝐾 was generated on

8A reader familiar with the sumcheck protocol may notice a similarity in describing the protocol as such
9Although we have discussed Hash to take an input a key 𝐾 generated for a specific index 𝑖∗, one can easily generalize this

notion to setting where 𝑖∗ = ∅. Note that in this case, one cannot hope to extract from any position.
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index 𝑖∗, 𝐾 satisfies the property that for all 𝑗 ≠ 𝑖∗, ℎ 𝑗 = 𝑔𝑠𝑗 and because we exclude the 𝑖∗-th column from
𝐾 to construct 𝐾 ′, for each 𝑗 ℎ 𝑗 = 𝑔𝑠𝑗 in 𝐾 ′. We argue extraction correctness in two cases (i) If the extracted
value 𝑚𝑖∗ = 0, then 𝑔′𝑠 = ℎ′. Thus opening 𝑚𝑖∗ = 1 implies (𝑔′′ · 𝑔𝑚𝑖∗

𝑖∗ )𝑠 = ℎ′′1 · ℎ
𝑚𝑖∗
𝑖∗ . By expanding and

cancelling terms, we get that 𝑔′′𝑠 = ℎ′′ · 𝑔, i.e. 𝑔′′ ≠ ℎ′′; (ii) if the extracted value𝑚𝑖∗ = 1, then 𝑔′𝑠1 ≠ ℎ′1.
Thus opening𝑚𝑖∗ = 1 implies (𝑔′′ · 𝑔𝑚𝑖∗

𝑖∗ )𝑠 ≠ ℎ′′1 · ℎ
𝑚𝑖∗
𝑖∗ , thus 𝑔′′ ≠ ℎ′′. In both cases, we have 𝑔′′ ≠ ℎ′′, thus

if the adversary attempts to break extraction correctness, (𝐾 ′, 𝑣) ∈ LNO.
Finally, we present our interactive protocol (P,VO), forL, where we specify the string O once we have

described the protocol. We describe a recursive protocol, where we fold a statement of length 𝑛 (i.e. size of
the key 𝐾 is𝑂 (𝑛)) to a statement of size 𝑛/𝐷 . In this overview, we describe a simplified recursive protocol
for 𝐷 = 2 while the more general case is presented in the technical section.

Let us set some notation. For m ∈ Z𝑛𝑝 , we represent m as (m𝐿,m𝑅), where m𝐿,m𝑅 ∈ Z𝑛/2𝑝 . Analogously,

we partition the key 𝐾 =

[
g𝐿 g𝑅
h𝐿 h𝑅

]
. Further, gx𝑖

𝑗
=

∏𝑛/2
𝑘=1 𝑔

𝑥𝑘+𝑖𝑛/2
𝑘+𝑗𝑛/2 ∈ G, and for every scalar 𝛾 ∈ Z𝑝 ,

g𝛾
𝑗+1 = (𝑔𝛾1+𝑗𝑛/2, 𝑔

𝛾

2+𝑗𝑛/2, · · · , 𝑔
𝛾

( 𝑗+1)𝑛/2) ∈ G
𝑛/2. Lastly, g𝛾

𝑗+1 · g𝑖+1 = (𝑔𝛾1+𝑗𝑛/2 · 𝑔1+𝑖𝑛/2, 𝑔
𝛾

2+𝑗𝑛/2 · 𝑔2+𝑖𝑛/2, · · · ,
𝑔
𝛾

( 𝑗+1)𝑛/2 · 𝑔1+(𝑖+1)𝑛/2) ∈ G𝑛/2.
As stated earlier, at each step the prover is going to fold 𝐾 into a key using the random challenge 𝛾

sent by the verifier. Let the common input by (𝐾, 𝑣), and the prover’s auxiliary input be m. The following
is the 𝑖-th iteration.

1. Prover P computes

(a) 𝑣𝐿 = (gm𝐿

𝐿
, hm𝐿

𝐿
) and 𝑣𝑅 = (gm𝑅

𝑅
, hm𝑅

𝑅
).

(b) �̃�1 = (gm𝑅

𝐿
, hm𝑅

𝐿
), �̃�2 = 𝑣 , �̃�3 = (gm𝐿

𝑅
, hm𝐿

𝑅
).

send (𝑣𝐿, 𝑣𝑅) and (�̃�1, �̃�2, �̃�3) to verifier VO .

2. Verifier VO

(a) Checks if 𝑣 = 𝑣𝐿 ·𝑉𝑅 , and 𝑣 = �̃�2.
(b) Sample 𝛾𝑖 ∈ 𝒞

send 𝛾𝑖 to P.

3. P and V set 𝑣 = �̃�1 · �̃�𝛾𝑖2 , �̃�
𝛾2
𝑖

3 .

4. P sets m = m𝑅 + 𝛾𝑖m𝐿 and 𝐾 = (g𝐿 · g𝛾𝑖𝑅 , h𝐿 · h
𝛾𝑖
𝑅
).

5. Repeat until 𝑛 = 1.

Finally, when 𝑛 = 1, the prover sends its reduced witness 𝑥 in the clear, at which point VO queries O on its
challenges 𝛾1, · · ·𝛾𝑟 and receives a key 𝐾 = (𝑔, ℎ) ∈ G2 and check if 𝑣 = (𝑔𝑥 , ℎ𝑥 ) for the reduced statement
𝑣 . Thus, we want O to function as essentially a look up table such that for every tuple 𝛾1, · · ·𝛾𝑟 , it simply
reads the corresponding reduced key in G2.

Completeness: For completeness, at each step 𝑖 , note that 𝑣 = (𝑔′, ℎ′)where𝑔′ = (gm𝑅+𝛾𝑖m𝐿

𝐿
·g𝛾𝑖 (m𝑅+𝛾𝑖m𝐿 )
𝑅

),
and ℎ′ = (hm𝑅+𝛾𝑖m𝐿

𝐿
· h𝛾𝑖 (m𝑅+𝛾𝑖m𝐿 )

𝑅
). Thus the new key 𝐾 and m are set correctly in the protocol to

guarantee completeness.
Soundness: To argue soundness, we denote each �̃�𝑖 = (𝑔𝛼𝑖 , 𝑔𝛽𝑖 ) for some 𝛼𝑖 , 𝛽𝑖 . This is done since

the cheating prover may send arbitrary group elements. But we know that �̃�2 = 𝑣 , and thus if
(𝐾, 𝑣) ∈ LNO, then 𝑔𝛽2 ≠ 𝑔𝑠𝛼2 . The newly computed 𝑣 ,

�̃�1 · �̃�𝛾𝑖2 , �̃�
𝛾2
𝑖

3 = (𝑔′′, ℎ′′) = (𝑔𝛼1+𝛾𝑖𝛼2+𝛾2
𝑖
𝛼3, 𝑔𝛽1+𝛾𝑖𝛽2+𝛾2

𝑖
𝛽3) .
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Then (𝑔′′)𝑠/ℎ′′ = 𝑔 (𝑠𝛼1−𝛽1 )+𝛾𝑖 (𝑠𝛼2−𝛽2 )+𝛾2
𝑖
(𝑠𝛼3−𝛽3 ) = 𝑔𝑃 (𝛾𝑖 ) where 𝑃 (𝑋 ) is a polynomial of degree at

most 2. Since 𝑠𝛼2 ≠ 𝛽2, 𝑃 is not a zero polynomial, and thus Pr[𝑃 (𝛾𝑖) = 0] ≤ 2/|𝒞 |. Therefore
overly a randomly sampled 𝛾𝑖 , (𝑔′′)𝑠 = ℎ′′ only with probability 2/|𝒞 |.

Looking ahead, the verifier will need to compute the oracle O as a part of its pre-processing, so we
need it to be of size poly(𝑛). By our description above, the size of O is |𝒞 |𝑟 , where 𝑟 is the total number
of rounds, i.e. for every tuple ∈ 𝒞

𝑟 , the verifier needs to store a key. In the above description, 𝐷 = 2,
𝑟 = log(𝑛), and thus to ensure |𝒞 |𝑟 is of size poly(𝑛), we can only allow |𝒞 | to be a constant, which results
in a high soundness error. Instead, we pick 𝐷 = log(𝑛), and |𝒞 | = log2(𝑛), this gives us 𝑟 =

log(𝑛)
log log(𝑛) and

finally |𝒞 |𝑟 = 𝑛2. Finally note that we extend the above description to arbitrary 𝐷 by partitioning the
statement into 𝐷 parts, and folding them using a higher degree polynomial in 𝛾𝑖 , where one can view the
above as folding using a degree 2 polynomial as is evident from the soundness analysis.

Remark 1. An observant reader may note that since the proof of local opening only satisfies computational
soundness, it is possible that the value extracted differs from the local opening sent by a cheating prover.
This event happens only with negligible probability, and the extracted value is indeed the unique value (at the
specified location) hashed by the cheating prover. Thus in our applications, we condition on the non-occurrence
of the event and argue soundness as if it the extracted value and the opened value always match.

3 Preliminaries

For any positive integer𝑛, denote [𝑛] = {1, 2, . . . , 𝑛}. For any positive integer𝑛, any vector𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛),
and any subset 𝑆 ⊆ [𝑛], we denote 𝑥 |𝑆 = {𝑥𝑖}𝑖∈𝑆 .

We will say that a cryptographic primitive is (𝑇, 𝜌)-secure if any𝑇 time adversary breaks the primitive
with probability ≥ 𝜌 . Thus, for schemes that satisfy “standard” security for a security parameter 𝜆, we say
that it is (poly(𝜆), negl(𝜆)).

3.1 Low-degree Extensions

For any fieldH and any extension field F ofH, any index (𝑖1, 𝑖2, . . . , 𝑖𝑚) ∈ H𝑚 , let Ẽq𝑖1,𝑖2,...,𝑖𝑚 be the following
polynomial over F[𝑥1, 𝑥2, . . . , 𝑥𝑚].

Ẽq𝑖1,𝑖2,...,𝑖𝑚 (𝑥1, 𝑥2, . . . , 𝑥𝑚) =
∏

𝑗1∈H\{𝑖1} (𝑥1 − 𝑗1) ·
∏

𝑗2∈H\{𝑖2} (𝑥1 − 𝑗1) . . .
∏

𝑗𝑚∈H\{𝑖𝑚 } (𝑥𝑚 − 𝑗𝑚)∏
𝑗1∈H\{𝑖1} (𝑖1 − 𝑗1) ·

∏
𝑗2∈H\{𝑖2} (𝑖1 − 𝑗1) . . .

∏
𝑗𝑚∈H\{𝑖𝑚 } (𝑖𝑚 − 𝑗𝑚)

For any string 𝑥 ∈ {0, 1}𝑛 , where 𝑛 = |H|𝑚 , we identify the set H𝑚 with the index set [𝑛]. Then we
define the low-degree extension of 𝑥 , LDE(𝑥), as the following polynomial in F[𝑥1, 𝑥2, . . . , 𝑥𝑚],

LDE(𝑥) =
∑︁

𝑖1,𝑖2,...𝑖𝑚∈H
𝑥𝑖1,𝑖2,...,𝑖𝑚 · Ẽq𝑖1,𝑖2,...,𝑖𝑚 (𝑥1, 𝑥2, . . . , 𝑥𝑚) .

3.2 Decisional Diffie-Hellman Assumption

In the following, we state the decisional Diffie-Hellman (DDH) assumption.

Definition 1 (Decisional Diffie-Hellman). A prime-order group generator is an algorithm G that takes the
security parameter 𝜆 as input, and outputs a tuple (G, 𝑝, 𝑔), where G is a cyclic group of prime order 𝑝 (𝜆),
and 𝑔 is a generator of G.
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Let G be a prime-order group generator. We say that G satisfies the DDH assumption if for any n.u. PPT
distinguisher D, there exists a negligible function 𝜈 (𝜆) such that���� Pr

[
(G, 𝑝, 𝑔) ← G(1𝜆), 𝑎, 𝑏 ← Z𝑝 : D(1𝜆,G, 𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1

]
−

Pr
[
(G, 𝑝, 𝑔) ← G(1𝜆), 𝑎, 𝑏,𝑢 ← Z𝑝 : D(1𝜆,G, 𝑝, 𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑢) = 1

] ���� ≤ 𝜈 (𝜆)
Sub-exponential DDH Assumption. In this work, we use the following version of sub-exponential
DDH assumption.

We say that G satisfies the sub-exponential DDH assumption, if there exists a constant 0 < 𝑐 < 1 such
that for any non-uniform distinguisher 𝐷 that runs in time 𝜆𝑂 ( (log log𝜆)3 ) , the advantage 𝜈 (𝜆) is bounded
by 2−𝜆𝑐 for any sufficiently large 𝜆.

3.3 Correlation Intractable Hash

We start by describing a hash familyH = {H𝜆}𝜆∈N, which is defined by the two following algorithms:
Gen: a PPT algorithm that on input the security parameter 1𝜆 , outputs key 𝑘 .
Hash: a deterministic polynomial algorithm than on input a key 𝑘 ∈ Gen(1𝜆), and an element 𝑥 ∈

{0, 1}𝑛 (𝜆) outputs an element 𝑦 ∈ {0, 1}𝜆 .
Given a hash familyH , we are now ready to define what it means forH to be correlation intractable.

Definition 2 ([CGH04]). A hash familyH = (H .Gen,H .Hash) is said to be correlation intractable (CI) for
a relation family R = {R𝜆}𝜆∈N if the following property holds:

For every PPT adversary A, there exists a negligible function negl(·) such that for every 𝑅 ∈ R𝜆 ,

Pr𝑘←H.Gen(1𝜆 )
𝑥←A(𝑘 )

[(𝑥,H .Hash(𝑘, 𝑥)) ∈ 𝑅] ≤ negl(𝜆) .

Efficiently Verifiable Product Relations. We take the following definitions of product relations, and
efficiently verifiable relations, from [HLR21].

Definition 3 (Product Relation, Definition 3.1 [HLR21]). A relation 𝑅 ⊆ X ×Y𝑡 is a product relation, if for
any 𝑥 , the set 𝑅𝑥 = {𝑦 | (𝑥,𝑦) ∈ 𝑅} is the Cartesian product of several sets 𝑆1,𝑥 , 𝑆2,𝑥 , . . . , 𝑆𝑡,𝑥 , i.e.

𝑅𝑥 = 𝑆1,𝑥 × 𝑆2,𝑥 × . . . × 𝑆𝑡,𝑥 .

Definition 4 (Efficiently Product Verifiability, Definition 3.3 [HLR21]). A relation 𝑅 is efficiently product
verifiable, if there exists a circuit 𝐶 such that, for any 𝑥 , the sets 𝑆1,𝑥 , 𝑆2,𝑥 . . . 𝑆𝑡,𝑥 (in Definition 3) satisfy that,
for any 𝑖 , 𝑦𝑖 ∈ 𝑆𝑖,𝑥 if and only if 𝐶 (𝑥,𝑦𝑖 , 𝑖) = 1.

Furthermore, if 𝐶 is a threshold circuit of depth 𝑑 , then we say 𝑅 is a 𝑑-depth verifiable product relation.

Definition 5. [Product Sparsity, Definition 3.4 [HLR21]] A relation 𝑅 ⊆ X × Y𝑡 has sparsity 𝜌 , if for any 𝑥 ,
the sets 𝑆1,𝑥 , 𝑆2,𝑥 , . . . , 𝑆𝑡,𝑥 (in Definition 3) satisfy |𝑆𝑖,𝑥 | ≤ 𝜌 |Y|.

Definition 6 (Approximate Product Relation). We say a relation 𝑅 ⊆ X ×Y𝑡 is an 𝛼-approximate product
relation, if for any 𝑥 , there exists subsets 𝑆1,𝑥 , 𝑆2,𝑥 . . . , 𝑆𝑡,𝑥 ⊆ Y𝑡 such that 𝑅𝑥 = {𝑦 | (𝑥,𝑦) ∈ 𝑅} can be written
as

|{𝑖 ∈ [𝑡] | 𝑦𝑖 ∈ 𝑆𝑖,𝑥 }| ≥ 𝛼𝑡 .
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Definition 7 (Searchable Relation). We say a relation 𝑅 ⊆ X × Y is searchable, if there exists a function
𝑓 : X → Y ∪ {⊥} such that for every 𝑥 ∈ X, we have that (𝑥,𝑦) ∈ 𝑅 if and only if 𝑦 = 𝑓 (𝑥).

Definition 8 (Approximate Searchable Relation). Let 𝛼 ∈ (0, 1) be a real and 𝑅 ⊆ X ×Y𝑡 be a relation. We
say 𝑅 is 𝛼-approximable by threshold circuits 𝑓1, 𝑓2, . . . , 𝑓𝑡 : X → Y ∪ {⊥}, if 𝑅𝑥 = {𝑦 | (𝑥,𝑦) ∈ 𝑅} is the
following set

|{𝑖 ∈ [𝑡] | 𝑦𝑖 = 𝑓𝑖 (𝑥)}| ≥ 𝛼𝑡 .
Furthermore, If the depth of the threshold circuits 𝑓1, 𝑓2, . . . , 𝑓𝑡 is bounded by 𝑑 , then we say 𝑅 is an 𝛼-

approximate searchable relation of depth 𝑑 .

3.4 Hash Tree

For going beyond space bounded computation, we recall the definition of hash trees as defined in [KPY19].
A hash tree consists of the following algorithms:

HT.Gen - randomized algorithm that on input the security parameter 1𝜆 outputs a hash key dk

HT.Hash - deterministic algorithm that on input the hash key dk and string 𝐷 ∈ {0, 1}𝐿 outputs a hash
tree tree and a root rt.

HT.Read - deterministic algorithm that on input hash tree tree and memory location ℓ outputs a bit 𝑏
along with a proof Π.

HT.Write - deterministic algorithm that on input hash tree tree, memory location ℓ and bit 𝑏 outputs
a new tree tree′, a new root rt′ along with a proof Π.

HT.VerRead - deterministic algorithm on input hash key dk, root rt, memory location ℓ , bit 𝑏 and proof
Π outputs either 0 or 1.

HT.VerWrite - deterministic algorithm on input hash key dk, root rt, memory location ℓ , bit 𝑏, new
root rt′ and proof Π outputs either 0 or 1.

Definition 9 (Hash Tree). Ahash tree scheme (HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite)
satisfies the following properties:

Completeness of Read. For every 𝜆 ∈ N, 𝐷 ∈ {0, 1}𝐿 for 𝐿 ≤ 2𝜆 and ℓ ∈ [𝐿]:

Pr
 HT.VerRead(dk, rt, ℓ, 𝑏,Π) = 1
𝐷 [ℓ] = 𝑏

������ dk← HT.Gen(1𝜆)
(tree, rt) B HT.Hash(dk, 𝐷)
(𝑏,Π) B HT.Read(tree, ℓ)

 = 1

Completeness of Write. For every 𝜆 ∈ N, 𝐷 ∈ {0, 1}𝐿 for 𝐿 ≤ 2𝜆 , ℓ ∈ [𝐿] and 𝑏 ∈ {0, 1} let 𝐷 ′ be the
string with its ℓ-th location set to 𝑏. We have that:

Pr
 HT.VerWrite(dk, rt, ℓ, 𝑏, rt′,Π) = 1
(tree′, rt′) = HT.Hash(dk, 𝐷 ′)

������ dk← HT.Gen(1𝜆)
(tree, rt) B HT.Hash(dk, 𝐷)
(tree′, rt′,Π) B HT.Write(tree, ℓ, 𝑏)

 = 1

Efficiency. In the completeness experiment, the running time of HT.Hash is |𝐷 | · poly(𝜆). The length of the
root rt, and proofs produced by HT.Read and HT.Write are poly(𝜆).

Soundness of Read. For every polynomial size adversary A there exists a negligible function negl(·) such
that for every 𝜆 ∈ N,

Pr

𝑏1 ≠ 𝑏2
HT.VerRead(dk, rt, ℓ, 𝑏1,Π1) = 1
HT.VerRead(dk, rt, ℓ, 𝑏2,Π2) = 1

������ dk← HT.Gen(1𝜆)
(rt, ℓ, 𝑏1,Π1, 𝑏2,Π2) ← A(dk)

 ≤ negl(𝜆)
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Soundness of Write. For every polynomial size adversaryA there exists a negligible function negl(·) such
that for every 𝜆 ∈ N,

Pr

rt1 ≠ rt2
HT.VerWrite(dk, rt, ℓ, 𝑏, rt1,Π1) = 1
HT.VerWrite(dk, rt, ℓ, 𝑏, rt2,Π2) = 1

������ dk← HT.Gen(1𝜆)
(rt, ℓ, 𝑏, rt1,Π1, rt2,Π2) ← A(dk)

 ≤ negl(𝜆)

Theorem 4 ([Mer88]). From any family of collision resistant hash functions, one can construct a hash tree
scheme.

3.5 Round-by-Round Soundness

Definition 10 (Round-by-Round Soundness [CCH+19]). Let Π = (P,V) be a public-coin interactive protocol
for a promise language L = (LYES,LNO), and 𝑑 (𝜆) be a function of 𝜆. Let 𝒞 be the space of randomness for
the verifier’s message on each round.

We say Π satisfies 𝑑 (𝜆)-round-by-round soundness, if there exists a deterministic (possibly inefficient)
function State that satisfies the following properties. State takes as input (𝑥, trans) where 𝑥 ∈ {0, 1}∗ is an
instance, and trans is a prefix of the transcript of the protocol, and State outputs either Accept or Reject.

1. Let 𝜙 be the empty transcript prefix. For any instance 𝑥 ∈ LYES, State(𝑥, 𝜙) = Accept. For any
𝑥 ∈ LNO, State(𝑥, 𝜙) = Reject.

2. For any instance 𝑥 and transcript prefix trans = (𝛼1, 𝛽1, 𝛼2, 𝛽2, . . . , 𝛼𝑖−1, 𝛽𝑖−1), if State(𝑥, trans) =

Reject, then for any (possibly unbounded) adversary A,

Pr
[
𝛼 ← A(1𝜆, 𝑥, trans), 𝛽 ← 𝒞 : State(𝑥, trans|𝛼 |𝛽) = Accept

]
≤ 𝑑 (𝜆)/|𝒞 |.

3. For any complete protocol transcript trans, If State(𝑥, trans) = Reject, then V(𝑥, trans) = 0.

As observed in [CCH+19], an ℓ round protocol satisfying 𝑑 round-by-round soundness, also satisfies
standard soundness with bound 𝑑ℓ/|𝒞 |. This follows from a simple application of the union bound over
each round.

4 CIH for Product Relations

We observe that the parameters of the CIH in [JJ21] can be modified to build the following CIH for 𝛼-
approximate searchable relations in TC0.

Theorem 5 (CIH for 𝛼-approximate searchable relations in TC0). Let {𝛼𝜆}𝜆∈N be a sequence of reals in
(0, 1), and R = {R𝜆}𝜆∈N be a family of relations, where each relation 𝑅 ∈ R𝜆 is an 𝛼𝜆-approximate searchable
relations of depth 𝑂 (log∗ 𝜆) (Definition 8) defined over X𝜆 × Y𝑡𝜆𝜆 .

Assuming sub-exponential DDH assumption, if the parameters satisfies 𝑡𝜆 ≥ 𝜆2/𝛼𝜆, |Y𝜆 | ≥ 2𝑒/𝛼𝜆 , then
there exists a CIH for R with running time poly(𝜆, |Y𝜆 |, 𝑛, 𝑡𝜆, |𝑓𝜆 |), where 𝑛 = log2 |X𝜆 | is the input length,
and |𝑓𝜆 | is an upper bound on the size of the threshold circuits defined in Definition 8.

Moreover, for any adversary that runs in time 𝜆𝑂 ( (log log𝜆)2 ) , its advantage for the aforementioned CIH is
at most 2−𝜆′ , where 𝜆′ = 𝜆𝑂 (1/log log𝜆) .

We defer the proof of this lemma to Appendix B.
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4.1 Construction

Lemma 1. Let R = {R𝜆}𝜆∈N be a family of relations, where each 𝑅 ∈ R𝜆 is 𝑂 (log∗ 𝜆)-depth verifiable
product relation (Definition 4) of sparsity 𝜌𝜆 defined over X𝜆 × Y𝑡𝜆𝜆 . Let 𝑛 = log2 |X𝜆 | be the length of bit
strings representing X𝜆 .

Assuming sub-exponential DDH assumption, if 𝑡𝜆 = Ω(𝜆3/log(1/𝜌𝜆)), there exists a CIH for R with
running time poly(𝜆, 𝑡𝜆, 𝑛𝑂 (log log𝑛) , log |Y|, |𝐶 |, log(1/𝜌𝜆)), where 𝐶 is the circuit that verifies the product
relation (See Definition 4).

Furthermore, for any adversary that runs in time 𝜆𝑂 ( (log log𝜆)2 ) , its advantage for the aforementioned CIH
is at most 2−𝜆′ , where 𝜆′ = 𝜆𝑂 (1/log log𝜆) .

Remark 2. If the sparsity 𝜌 = 1 − 𝜖 for some 𝜖 = 𝑜 (1), then the above parameters requirement on 𝑡 becomes
𝑡 = Ω(𝜆3/𝜖). The running time of CIH is poly

(
𝜆, 𝑡𝜆, 𝑛

𝑂 (log log𝑛) , log |Y|, |𝐶 |, 1/𝜖
)
.

Ingredients. Our construction will use the CIH for𝛼-approximate searchable relations of depth𝑂 (log∗ 𝜆)
CIH = (CIH.Gen,CIH.Hash) given by Theorem 5.

Construction. We describe our construction of CIH for small input product relations in Figure 2. As we
described in Section 2.1, we divide [𝑁 ] into Y1,Y2, . . . ,Ydepth, where each |Y𝑖 | = 2𝑒 log2(𝑛 + 𝜆), depth =

log2(𝑛 + 𝜆), and we set 𝑁 =
∏
𝑖∈[depth] |Y𝑖 | = 𝑛𝑂 (log log𝑛) .

4.2 Proof of Correlation Intractability

Before we start to prove Lemma 1, we first prove the following lemma, which bounds the number of bad
challenges in q1, q2, . . . , qℓ by rounghly the input length.

Lemma 2. Let 𝑅 ∈ X × Yℓ be a product relation with sparsity 𝜌 , input length 𝑛 = log2 |X|, and let 𝐵 =

log2 |X| + 𝜆. If ℓ ≥ log1/𝜌 (2𝑒𝑁 /𝐵) and we sample q1, q2, . . . , q𝑁 randomly from its challenge space Yℓ , then
the number of the bad challenges in q1, q2, . . . q𝑁 is at most 𝐵 for any input with overwhelming probability.
Namely,

Pr
𝑞1,𝑞2,...,𝑞𝑁←Yℓ

[∀𝑥 ∈ X : |{𝑖 | (𝑥, 𝑞𝑖) ∈ 𝑅}| ≤ 𝐵] ≥ 1 − 2−Ω (𝜆) .

Proof. Since we sample q1, q2, . . . , q𝑁 independently fromYℓ , we can bound the probability that there exist
𝐵 elements of them are bad as

2𝑛 ·
(
𝑁

𝐵

)
·
(
𝜌ℓ
)𝐵 ≤ 2𝑛 ·

(
𝑒𝑁

𝐵
𝜌ℓ
)𝐵
,

where 2𝑛 follows from an union bound over all possible inputs,
(
𝑁
𝐵

)
follows from an union bound over all

possible choice of the 𝐵 elements. Since we set ℓ = log1/𝜌 (2𝑒𝑁 /𝐵), and 𝐵 = 𝑛 + 𝜆, we can bound the right
hand side of the above inequality as 2𝑛 · (1/2)𝐵 = 2𝑛 · (1/2)𝑛+𝜆 = (1/2)𝜆 . We finish the proof.

In the rest of the proof, we only need to focus on whether the indices {𝑖 𝑗 } 𝑗∈[𝐿] can lead to a bad
{q𝑖 𝑗 } 𝑗∈[𝐿] . Namely, we only need to focus on the following relation

𝑅′ = {(𝑥, (𝑖1, 𝑖2, . . . , 𝑖𝐿)) | (𝑥, {q𝑖 𝑗 } 𝑗∈[𝐿]) ∈ 𝑅}.

𝑅′ is an product relation if 𝑅 ⊆ X ×Y𝑡 is a product relation. Let 𝑅′𝑥 = {i | (𝑥, i) ∈ 𝑅′}, then we there exists
𝑆 ′𝑥
(1) , 𝑆 ′𝑥

(2) , . . . 𝑆 ′𝑥
(𝐿) such that 𝑅′𝑥 = 𝑆 ′𝑥

(1) × . . . × 𝑆 ′𝑥 (𝐿) .
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CIH for Small Input Product Relations

Parameters: [𝑁 ] = Y1 × . . . × Ydepth, 𝑡 = ℓ · 𝐿.

– Gen(1𝜆):

– Sample 𝑁 queries from Yℓ : q1, q2, . . . , q𝑁 ← Yℓ .
– Sample a series of CIH keys for 𝛼-approximate searchable relations in X𝑖 × Y𝐿𝑖 , where 𝛼 =

1/depth, 𝐿 ≥ 𝜆2/𝛼 , and X𝑖 = X ×Y𝐿1 × . . . × Y𝐿𝑖−1.

∀𝑖 ∈ [𝐿], k𝑖 ← CIH.Gen(1𝜆),

– Output k = ({q𝑖}𝑖∈[𝑁 ], {k𝑖}𝑖∈[𝐿]).

– Hash(k, 𝑥):

– Parse k = ({q𝑖}𝑖∈[𝑁 ], {k𝑖}𝑖∈[𝐿]).
– For every 𝑖 = 1, 2, . . . , depth, we hash the input 𝑥 and the hash values we obtained so far.

𝑦𝑖 ← CIH.Hash(k𝑖 , (𝑥, y1, y2 . . . , y𝑖−1)) .

– Then for every 𝑖 ∈ [depth], we first decompose y𝑖 as a “row” vector (𝑦𝑖,1, 𝑦𝑖,2, . . . , 𝑦𝑖,𝐿), where
each 𝑦𝑖, 𝑗 ∈ Y𝑖 for every 𝑗 ∈ [𝐿].
Then we concatenate those rows to obtain a matrix and then take each column of it. Namely,
for each 𝑗 ∈ [𝐿], we compose the 𝑗-th column of the matrix as 𝑖 𝑗 = 𝑦1, 𝑗 | |𝑦2, 𝑗 | | . . . | |𝑦depth, 𝑗 ∈
Y1 × . . . × Ydepth.

– We use 𝑖 𝑗 ’s as indices to select the queries in {q𝑖}𝑖∈[𝑁 ] , and output

(q𝑖1, q𝑖2, . . . , q𝑖𝐿 ) .

Figure 2: Description of CIH for small input product relations.

Product Relations {𝑅𝑖}𝑖 . For each 𝑖 ∈ [depth], we define the following bad relation 𝑅𝑖 ⊆ X𝑖 × Y𝐿𝑖
for the 𝑖-th CIH. Recall that, we define X𝑖 = X × Y𝐿1 × . . . × Y𝐿𝑖−1. For any (𝑥, y1, y2, . . . , y𝑖−1) ∈ X𝑖 , let
𝑦𝑘,𝑗 ∈ Y𝑘 , ( 𝑗 ∈ [𝐿]) be the 𝑗-th coordinate of the vector y𝑘 for every 𝑘 ∈ [𝑖 −1]. We say𝑦𝑖, 𝑗 is bad, if it does
not half the number of bad challenges. Specifically, we define 𝑆 ( 𝑗 )

𝑖
as the sets of bad challenges as follows.

𝑆
( 𝑗 )
𝑖

=

{
𝑦 ∈ Y𝑘 | BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , 𝑦2, 𝑗 , . . . , 𝑦𝑖−1, 𝑗 , 𝑦) > BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , 𝑦2, 𝑗 , . . . , 𝑦𝑖−1, 𝑗 )/2

}
,

where BadCnt( 𝑗, 𝑥, r) counts how many bad challenges has the prefix r ∈ Y1 × . . . × Y𝑖 . Namely, it is
defined as the cardinality of the following set.{

r′ ∈ Y𝑖+1 × . . . × Ydepth | r| |r′ ∈ 𝑆 ′𝑥
( 𝑗 )

}
.

We define 𝑅𝑖 as the product relation characterized by

𝑆
(1)
𝑖
× 𝑆 (2)

𝑖
× . . . × 𝑆 (𝐿)

𝑖
.
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Approximate Product Relations {𝑅𝛼
𝑖
}𝑖 . Let 𝛼 = 1/depth. We define the 𝛼-approximate product rela-

tion 𝑅𝛼
𝑖

as the 𝛼-approximate relation of 𝑅𝑖 . That is, 𝑅𝛼
𝑖

contains exactly all (𝑥, y) where there exists some
y′ such that (𝑥, y′) ∈ 𝑅𝑖 and at least 𝛼-fraction of coordinates of y and y′ agrees.

We first show that 𝑅𝑖 are searchable by the almost same depth of threshold circuits as 𝑅 up to a constant
factor.

Lemma 3. If the product relation 𝑅 is verifiable in threshold circuit of depth 𝑑 , then for any 𝑖 ∈ [depth], 𝑅𝑖
is searchable by threshold circuits of depth 𝑂 (𝑑) and size poly(𝐿, 𝑁, |𝐶 |), where 𝐶 is the circuit that verifies
the product relation 𝑅.

Proof. Note that this lemma starts from an efficiently verifiable relation 𝑅 and claims that the product
relation described above is searchable in the same threshold circuit class. To prove this lemma, for each
𝑖 ∈ [depth], we build the following circuit 𝑓 𝑖 . 𝑓 𝑖 takes 𝑥 ∈ X, and y1, y2, . . . , y𝑖−1 as input, where y𝑖 ∈ Y𝐿𝑖 ,
and it outputs a vector y∗ = (𝑦∗1, 𝑦∗2, . . . , 𝑦∗𝐿). For each 𝑗 ∈ [𝐿], we enumerate all possible 𝑦𝑖, 𝑗 and if

BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , . . . , 𝑦𝑖−1, 𝑗 , 𝑦𝑖, 𝑗 ) > BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , . . . , 𝑦𝑖−1, 𝑗 )/2,

then we set 𝑦∗𝑗 = 𝑦𝑖, 𝑗 . Otherwise, we let 𝑦∗𝑗 = ⊥. Finally, we have 𝑓 𝑖 output y∗. Note that for each 𝑗 ∈ [𝐿],
𝑓 𝑖 only sets 𝑦∗𝑗 once, since 𝑆𝑖𝑥,𝑗 can only contain at most one element.

Next, we show that 𝑓 𝑖 can be computed by threshold circuits of depth 𝑂 (𝑑). Since the comparison
function and the division is known to be in TC0, we only need to show thatBadCnt( 𝑗, 𝑥, r) can be computed
by threshold circuit of depth 𝑂 (𝑑). To achieve this, we compute BadCnt( 𝑗, 𝑥, r) by enumerating all r′ ∈
Y𝑖+1× . . .×Ydepth in parallel and checking whether (r, r) is a bad challenge (i.e. r| |r′ ∈ 𝑆 ′𝑥 ( 𝑗 ) ). This checking
involves in selecting a query qr | |r′ among q1, q2, . . . , q𝑁 according to the index r| |r′ and check whether qr | |r′
is bad. The selection can be computed in TC0 and the checking can be done by threshold circuit of depth
𝑑 . Hence, we finish the proof.

Lemma 4 (Covering Lemma). Suppose we choose the parameters depth > log2 𝐵 + 1, where 𝐵 ≥ max𝑗,𝑥 {
BadCnt( 𝑗, 𝑥)} is an upper bound on the number of bad challenges.

For any 𝑥 ∈ X, and y1, y2, . . . , ydepth with y𝑖 ∈ Y𝐿𝑖 for every 𝑖 ∈ [depth], let 𝑖1, 𝑖2, . . . , 𝑖𝐿 ∈ [𝑁 ] be
the “columns” of the matrix whose rows are y1, y2, . . . ydepth. If (𝑥, (𝑖1, 𝑖2, . . . , 𝑖𝐿)) ∈ 𝑅′, then there exists
𝑖∗ ∈ [depth] such that y𝑖∗ is bad in 𝑅𝛼𝑖∗ . That is, ((𝑥, y1, . . . , y𝑖∗−1), y𝑖∗) ∈ 𝑅𝑖∗ .

Proof. We first show that, for any 𝑗 ∈ [𝐿], if the challenge (𝑦1, 𝑗 , 𝑦2, 𝑗 , . . . , 𝑦depth, 𝑗 ) is bad, i.e. (𝑦1, 𝑗 , 𝑦2, 𝑗 , . . . ,

𝑦depth, 𝑗 ) ∈ 𝑆 ′𝑥 ( 𝑗 ) , then there must be an index 𝑖∗ ∈ [depth] such that 𝑦𝑖∗, 𝑗 is bad, (i.e. 𝑦𝑖∗, 𝑗 ∈ 𝑆 ( 𝑗 )𝑖∗ ).
To see this, if there exists an 𝑖∗ < depth such that 𝑦𝑖∗, 𝑗 is bad, then we finish the proof. Otherwise,

suppose 𝑦𝑘,𝑗 is not bad for every 𝑘 < depth, we will show that 𝑦depth, 𝑗 is bad. This is because 𝑦𝑘,𝑗 ∉ 𝑆 ( 𝑗 )𝑘
implies that the challenge 𝑦𝑘,𝑗 half the number of the bad challenges, and hence we have

BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , . . . 𝑦𝑘,𝑗 ) ≤ BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , . . . , 𝑦𝑘−1, 𝑗 )/2,

for every 𝑘 < depth. Note that we have an upper bound of bad challenges 𝐵. Hence, iteratively applying
the above inequality, we derive that BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , . . . , 𝑦depth−1, 𝑗 ) ≤ 1, and according to our definition
of BadCnt, BadCnt( 𝑗, 𝑥,𝑦1, 𝑗 , . . . , 𝑦depth, 𝑗 ) = 1 because (𝑦1, 𝑗 , . . . , 𝑦depth, 𝑗 ) is bad. Hence, 𝑦depth, 𝑗 is bad since
it does not half the number of bad challenges.

Now, for 𝐿 indices 𝑖1, 𝑖2, . . . , 𝑖𝐿 , each index 𝑖 𝑗 = (𝑦1, 𝑗 , 𝑦2, 𝑗 , . . . , 𝑦depth, 𝑗 ) contains at least one bad challenge.
Hence, in total there are 𝐿 bad challenges among all {𝑦𝑘,𝑗 }𝑘∈[depth], 𝑗∈[𝐿] . By pigeonhole principle, there
exists an 𝑖∗ ∈ [depth] such that {𝑦𝑖∗, 𝑗 } 𝑗∈[𝐿] contains at least 𝐿/depth elements, which is at least 𝛼 =

1/depth-fraction of the coordinates. Hence, we finish the proof.
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Put Things Together. Next, we prove Lemma 1.

Proof of Lemma 1. For any n.u. PPT adversary A for the CIH construction in Figure 2, we build the fol-
lowing adversary A𝑖 to break the correlation intractability for the 𝑖-th CIH.
A𝑖 (1𝜆, k𝑖) generates other CIH keys {k𝑗 } 𝑗∈[depth]\{𝑖 } for A, and invokes 𝑥 ← A(1𝜆, k). Then it com-

putes y1, y2, . . . to the 𝑖-th level, as follows. For every 𝑗 = 1, 2, . . . , 𝑖 − 1, compute

y𝑗 B CIH.Hash(k𝑖 , (𝑥, y1, y2, . . . , y𝑖−1)) .

Output (𝑥, y1, y2, . . . , y𝑖).

Parameters. We first examine the parameters requirements of the underlying CIH is satisfied. For the
underlying CIH for 𝛼-approximate searchable relation, we require 𝐿 ≥ 𝜆2/𝛼 = 𝜆2 · depth = 𝑂 (𝜆2). For
|Y𝑖 |, we require |Y𝑖 | ≥ 2𝑒/𝛼 = 2𝑒 · depth. Hence, 𝑁 = |Y𝑖 |depth = 𝜆𝑂 (log log𝜆) , since we take depth =

log2(𝑛 + 𝜆). For the parameter 𝑡 , our construction requires it to be at least ℓ · 𝐿 = log1/𝜌 (2𝑒𝑁 /𝐵) ·𝑂 (𝜆2) =
𝑂 (𝜆2)/log(1/𝜌). Since we require 𝑡 ≥ Ω(𝜆3/log(1/𝜌)), this requirement is satisfied.

By Lemma 2, the condition of Lemma 4 holds. By Lemma 4, if adversary A attacks successfully, i.e.
(𝑥,Hash(k, 𝑥)) ∈ 𝑅, then there exists an index 𝑖∗ ∈ [depth] such that 𝛼-fraction of the entries in y𝑖∗ is bad.
By Lemma 3, this implies that the adversary A𝑘 attacks successfully. Hence, we have

Pr[A succeed] ≤
∑︁

𝑖∈[depth]
Pr[A𝑖 succeed] .

Since CIH.Hash(k𝑖 , ·) are correlation intractable, Pr[A𝑖 succeed] are negligible for all 𝑖 ∈ [depth]. Hence,
Pr[A succeed] ≤ negl(𝜆). We finish the proof.

4.3 Extensions

Lemma 5 (CIH for Approximate Product Relations). Let {𝛽𝜆}𝜆∈N be a family of reals in (0, 1). Let R =

{R𝜆}𝜆∈N be a family of relations, where each relation 𝑅 ∈ R𝜆 is a 𝛽𝜆-approximate product relation of depth
𝑂 (log∗ 𝜆) defined over X𝜆 × Y𝑡𝜆𝜆 with sparsity 𝜌𝜆 < 𝛽𝜆 .

Assuming sub-exponential DDH assumption holds and 𝑡𝜆 = Ω(𝜆3) · (1− 𝜌𝜆)/(𝛽𝜆 − 𝜌𝜆)3, then there exists

a CIH for R with running time poly
(
𝜆, 𝜆

𝑂 (log log𝜆)+𝑂 (log 1−𝜌𝜆
𝛽𝜆−𝜌𝜆

)
, 𝑡𝜆, |𝐶 |

)
, where𝐶 is the circuit that verifies the

product relation 𝑅.
Moreover, for any adversary that runs in time 𝜆𝑂 ( (log log𝜆)2 ) , its advantage is bounded by 2−𝜆′ , where

𝜆′ = 𝜆𝑂 (1/log log𝜆) .

Proof Sketch. The proof is almost the same as Lemma 1, and the construction of the CIH is almos the same
as Figure 2, except we modify the parameters and the bad relations 𝑅𝑖 , 𝑅𝛼𝑖 as follows.

We say q𝑖 as bad, if it contains at least (𝛽𝜆+𝜌𝜆)/2-fraction of bad coordinates. By Hoeffding’s inequality,
if we choose ℓ ≥ 4 ln(2𝑒𝑁 /𝐵)/(𝛽𝜆 − 𝜌𝜆)2, then the number of bad challenges among q1, . . . , q𝑁 can be
bounded by 𝐵 = 𝑛 + 𝜆 with probability 2−𝜆 . That is,

Pr
[
q1, q2, . . . q𝑁 ← Yℓ : ∃𝑥, |{𝑖 ∈ [𝑁 ] : (𝑥, q𝑖) ∈ 𝑅′}| > 𝐵

]
≤ 2𝑛 ·

(
𝑁

𝐵

) (
exp((−𝛽𝜆 − 𝜌𝜆2 )2ℓ)

)𝐵
≤

(
𝑒𝑁

𝐵
𝑒−(

𝛽𝜆−𝜌𝜆
2 )2ℓ

)𝐵
2𝑛

Since we choose ℓ ≥ 4 ln(2𝑒𝑁 /𝐵)/(𝛽𝜆 − 𝜌𝜆)2, the right hand side can be upper bounded by 2−𝐵2𝑛 = 2−𝜆 .
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We claim that for any y = (y1, . . . , y𝐿) ∈ (Yℓ )𝐿 , where each y𝑖 is in {q1, . . . , q𝑁 }, if y is bad for 𝑅 ∈ R𝜆 ,
i.e. (if we treat y as a vector inYℓ×𝐿 , then 𝛽𝜆-fraction of its entries are bad), then at least (𝛽𝜆−𝜌𝜆)/2(1−𝜌𝜆)-
fraction of y1, . . . , y𝐿 is bad. The claim can be proved as follows. Let 𝑥 be the fraction of bad vectors among
{q1, q2, . . . , q𝑁 }, then the total fraction of bad entries in y is at most

(1 − 𝑥) · 𝛽𝜆 + 𝜌𝜆2 + 𝑥 .

Since there are 𝛽𝜆-fraction of bad entries among all entries of y, we can lower bound the above formula
by 𝛽𝜆 . Solving this inequality for 𝑥 , we obtain 𝑥 ≥ (𝛽𝜆 − 𝜌𝜆)/2(1 − (𝛽𝜆 + 𝜌𝜆)/2) ≥ (𝛽𝜆 − 𝜌𝜆)/2(1 − 𝜌𝜆).

Hence, we further modify the 𝛼 in our CIH construction (Figure 2) as 𝛼 = (𝛽𝜆 −𝜌𝜆)/(2(1−𝜌𝜆) ·depth),
and 𝑁 = |Y𝑖 |depth = (2𝑒/𝛼)depth = 𝜆

𝑂 (log log𝜆)+𝑂 (log 1−𝜌𝜆
𝛽𝜆−𝜌𝜆

) . Hence, once we choose 𝑡 ≥ ℓ · 𝐿 where
𝐿 ≥ 𝜆2/𝛼 due to Theorem 5, then it’s large enough for our modified CIH construction. That is, 𝑡 ≥
Ω̃(𝜆2) (1 − 𝜌𝜆)/(𝛽𝜆 − 𝜌𝜆)3.

We adapt the following lemma implicit in [HLR21].

Lemma 6 (CIH for Round-by-Round Protocols). For any 2𝑟+1-rounds public-coin interactive protocolΠ with
round-by-round soundness 𝛿 (Definition 10). Let 𝑡 be the number of parallel repetitions, and 𝛼 = 1

𝑟
(1− 1/𝑡) be

a real, then we can instantiate the Fiat-Shamir transformation for the 𝑡-fold parallel repetition Π𝑡 with CIH
for 𝛼-approximate product relations 𝑅𝑖 ⊆ X𝑖 × Y𝑡 , where 𝑅𝑖 contains all bad challenges in the 𝑖-th round.
Namely,

((𝑥, 𝜏𝑖), {𝛽 𝑗 } 𝑗∈[𝑡 ]) ∈ 𝑅𝑖 , if and only if there exists at least 𝛼 fraction of 𝑗 ∈ [𝑡] such that

State(𝑥, 𝜏𝑖 | 𝑗 ) = Reject ∧ State(𝑥, 𝜏𝑖 | 𝑗 | 𝛽 𝑗 ) = Accept.

where 𝜏𝑖 = (𝛼1, 𝛽1, . . . , 𝛽𝑖−1, 𝛼𝑖) contains the transcript of the 𝑡-fold repetition protocol Π𝑡 in the first (2𝑖 − 1)-
rounds, and 𝜏𝑖 | 𝑗 is the partial transcript restricted to the 𝑗-th parallel execution.

Combining Lemma 6 and Lemma 5, we obtain the following corollary.

Corollary 1 (Fiat-Shamir for Round-by-Round Protocols via CIH). Let Π be a 2𝑟 + 1-rounds public-coin
interactive protocol Π with round by round soundness 𝛿 < 1/𝑟 , where the State function can be computed by
threshold circuits of depth𝑂 (log∗), and let 𝑡 be the number of parallel repetitions with 𝑡 = Ω(𝜆3) · (1−𝛿)/( 1

𝑟
−

𝛿)3.
Assuming sub-exponential DDH assumption, there exists a CIH family that instantiate the Fiat-Shamir

transformation for 𝑡-fold parallel repetition protocolΠ𝑡 . The CIH runs in time poly
(
𝜆, 𝑡, 𝜆

𝑂 (log log𝜆)+𝑂 (log 1−𝛿
1
𝑟 −𝛿
)
)

and can take input of length poly(𝜆).
Moreover, for any adversary that runs in time 𝜆𝑂 ( (log log𝜆)2 ) , its advantage for the soundness of the resulting

non-interactive protocol is at most 2−𝜆′ , where 𝜆′ = 𝜆𝑂 (1/log log𝜆) .

5 Somewhere Extractable Hash from DDH

In this section, we define and construct a somewhere extractable hash (with additional properties) assum-
ing the sub-exponential hardness of DDH. We first define the standard notion of a somewhere extractable
hash, then specify the additional properties required for our applications, and finally describe our con-
struction.
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5.1 Definition

In this subsection, we define a somewhere extractable hash [HW15], along with the required additional.
A somewhere extractable hash has a key with two computationally indistinguishable modes: (i) In the
normal mode, the key is uniformly random; and (ii) in the trapdoor mode, the key is generated according to
a subset 𝑆 denoting the coordinates of the message to be hashed.
Furthermore, a standard somewhere extractable hash require the following properties.

Efficiency: We require that the size of the CRS and hash roughly grows with |𝑆 |.

Extraction: The trapdoor mode hash key is associated with a trapdoor td, such that given the trapdoor,
one can extract the message on coordinates in 𝑆 . Note that the extraction implies the statistical
binding property for the coordinates in 𝑆 .

Local Opening: We allow the prover to generate a local opening for any single coordinate of the mes-
sage. The local opening needs to have a small size, which only grows poly-logarithmically with the
total length of the message. Moreover, we require that the value from the local opening should be
consistent with the extracted value.

For our application, we require some additional properties specified below.

Low-depth Extraction: We require that the extraction circuit for the hash can be implemented in TC0.
Specifically, we split the extraction into an pre-processing and online extraction phase, where the
trapdoor td is used only in the online phase. We require the online phase of the extraction to be
implemented in TC0.

Large inputs: We require that the somewhere extractable hash scheme to support input sizes that are
super-polynomial in the security parameter, i.e. 𝑁 = 𝜆𝜔 (1) . Further, we will continue to require
that the local opening is small for such inputs. In a manner similar to the extraction, we will split
the local opening verification opening into a pre-processing and online phase, and require that the
online verification is small.

We now move to the formal definition.

Definition 11 (Somewhere Extractable Hash). A somewhere extractable hash scheme for large inputs with
extraction in TC0 is a tuple of algorithms SEHash = (Gen, TGen,Hash,Open, PreVer,OnlineVer, PreExt,OnlineExt)
described below.

Gen(1𝜆, 1𝑁 , 1 |𝑆 |): On input a security parameter 𝜆, the length of the message 𝑁 , and the size of a subset
𝑆 ⊆ [𝑁 ], the “normal mode” key generation algorithm outputs a uniformly random hash key 𝐾 .

TGen(1𝜆, 1𝑁 , 𝑆): On input a security parameter 𝜆, the length of the message 𝑁 , an extraction subset 𝑆 ⊆
[𝑁 ], the “trapdoor mode” key generation algorithm outputs a hash key 𝐾∗ and a trapdoor td.

Hash(𝐾,m ∈ {0, 1}𝑁 ): On input the hash key 𝐾 , a vector m = (𝑚1,𝑚2, . . . ,𝑚𝑁 ) ∈ {0, 1}𝑁 it outputs a
hash 𝑐 .

Open(𝐾,m, 𝑖): On input the hash key 𝐾 , a vector m = (𝑚1,𝑚2, . . . ,𝑚𝑁 ) ∈ {0, 1}𝑁 , an index 𝑖 ∈ [𝑁 ], the
opening algorithm outputs a local opening 𝜋𝑖 to𝑚𝑖 .

PreVer(𝐾): On input the hash key𝐾 , the pre-processing algorithm for the local verification outputs a short
state st𝜋 of size poly(𝜆, log𝑁 )

OnlineVer(𝑐,𝑚𝑖 , 𝜋𝑖 , st𝜋 ): On input a hash 𝑐 , a bit𝑚𝑖 ∈ {0, 1}, a local opening 𝜋𝑖 ∈ {0, 1}poly(𝜆,log𝑁 ) and
the pre-processed state st𝜋 , the verification algorithm decides to accept (output 1) or reject (output 0)
the local opening.

26



PreExt(1𝜆, 𝑐): On input the security parameter 𝜆 and a hash 𝑐 , output a pre-processed value 𝑐′ that is to
be used for online extraction.

OnlineExt(𝑐′, 𝑆, td): On input the pre-processed hash 𝑐′ and a trapdoor td and the trapdoor td generated
by the trapdoor key generation algorithm TGen with respect to the subset 𝑆 , the online extraction
algorithm outputs an 𝑆 bit string𝑚𝑆 ∈ {0, 1} |𝑆 | .

Furthermore, we require the hash scheme to satisfy the following properties.

Succinct CRS. The size of the CRS is bounded by poly(𝜆, |𝑆 |, log𝑁 ).
Succinct Hash. The size of the hash 𝑐 is bounded by poly(𝜆, |𝑆 |, log𝑁 ).
Succinct Local Opening. The size of the local opening𝜋𝑖 ← Open(𝐾,𝑚, 𝑖, 𝑟 ) is bounded by poly(𝜆, |𝑆 |, log𝑁 ).
Succinct Verification. The running time of the online verification algorithm OnlineVer is bounded by

poly(𝜆, |𝑆 |, log𝑁 ).
Key Indistinguishability. For any non-uniform𝑇 -time adversaryA where𝑇 = poly(𝜆, 𝑁 ), there exists

a negligible function 𝜈 (𝑇 ) such that���� Pr
[
𝑆 ← A(1𝜆, 1𝑁 ), 𝐾 ← Gen(1𝜆, 1𝑁 , 1 |𝑆 |) : A(𝐾) = 1

]
−

Pr
[
𝑆 ← A(1𝜆, 1𝑁 ), (𝐾∗, td) ← TGen(1𝜆, 1𝑁 , 𝑆) : A(𝐾∗) = 1

] ���� ≤ 𝜈 (𝑇 ) .
Opening Completeness. For any hash key 𝐾 , any messagem = (𝑚1, . . . ,𝑚𝑁 ) ∈ {0, 1}𝑁 , any random-

ness 𝑟 , and any index 𝑖 ∈ [𝑁 ], we have

Pr [𝑐 ← Hash(𝐾,m; 𝑟 ), 𝜋𝑖 ← Open(𝐾,m, 𝑖, 𝑟 ) : Verify(𝐾, 𝑐,𝑚𝑖 , 𝑖, 𝜋𝑖) = 1] = 1.

Computational Extraction Correctness. For any subset 𝑆 ⊆ [𝑁 ], any trapdoor key (𝐾∗, td) ←
TGen(1𝜆, 1𝑁 , 𝑆), for any adversary PPT adversary A:

Pr

𝑖∗ ∈ 𝑆
∧ Verify(𝐾, 𝑐,𝑚𝑖∗, 𝑖

∗, 𝜋𝑖∗) = 1
∧ Ext(𝑐, td) |𝑖∗ ≠𝑚𝑖∗

������ (𝑐,𝑚𝑖∗, 𝑖
∗, 𝜋𝑖∗) ← A(𝜆, 𝐾)

 ≤ negl(𝜆)

Since the extracted value Ext(𝑐, td) |𝑖∗ is unique, except with negligible probability, if the proof is
accepting, the opening and extracted values are consistent.
We note that although this doesn’t achieve somewhere statistical extraction, we will see that it suffices
for our use case. Intuitively, this follows from the fact that the extracted value is unique, and the
computational aspect only comes from the proof of local opening. Thus, we will extract from the hash,
and argue that for any computationally bounded adversary, except with negligible probability, the
extracted value is indeed the value that the adversary opens to. And thus we shall simply use the
extracted value in the analysis of our application.

TC0 Extraction. We require the online extraction algorithmOnlineExt to be computable in TC0, whereas
we allow PreExt (without knowledge of the trapdoor td), to be computable in poly(𝜆) depth.

As described in the technical overview (Section 2), it is both additional requirements that necessitates a
new construction. Even removing one of the requirements would allow us to directly invoke constructions
in prior works [OPWW15, DGI+19] from polynomial hardness of DDH.
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Remark 3. We note that we do not impose any efficiency requirements on the pre-computation algorithm
PreVer. In fact, in our construction it will be the case that PreVer runs in time p(𝑚) for some fixed polynomial
p(·), where𝑚 is fixed independent of 𝑁 such that log𝑚 (𝑁 ) is a constant. This weak efficiency guarantee from
PreVer will be sufficient for our applications.

We shall prove the following theorem in the subsequent sections.
Theorem 6. There exists a construction of somewhere extractable hash for large inputs with extraction in TC0

assuming the sub-exponential hardness of DDH.

5.2 Construction

We construct the somewhere extractable hash in two steps: (i) base case: construct a somewhere extractable
hash for 𝑁 bit messages in the pre-processing model where the online verification is poly(𝜆, log𝑁 ) while
the pre-processing takes time𝑂 (𝑁 𝑧) for some fixed constant 𝑧; and then (ii) extend to a tree bootstrap the
construction by constructing an 𝑚-ary tree of depth log𝑚 (𝑁 ) to get the pre-processing down to 𝑂 (𝑚𝑧),
and online verification to be poly

(
𝜆, log𝑚 (𝑁 ), log𝑚

)
. Looking ahead, both 𝑁 and 𝑚 will both be super-

polynomial in 𝜆 such that log𝑚 (𝑁 ) = 𝑂 (1). This will ensure that the online verification will continue to
be poly(𝜆, log𝑁 ) while the other components will be polynomial in𝑚. We will fix𝑚 independent of 𝑁 .

5.2.1 Construction: Base Hash

We construct below a somewhere extractable hash scheme in the pre-processing model for the base con-
struction. Recall, that here for hashing strings of length 𝑁 , we allow the pre-processing to depend on 𝑁 𝑧

for some fixed constant 𝑧.
Our construction closely follows the construction of the trapdoor hash based on DDH [DGI+19], but

to achieve the properties discussed above, namely the succinct local opening in the pre-processing model,
we augment the construction with a new proof of opening. We start with a discussion of all the algorithms
except those pertaining to the proving of local opening, which we describe and prove separately. For the
subsequent discussion, let ℓ B |𝑆 |. Let the group be generated on 𝜆0 where 𝜆 = 𝜆

𝑂 (log log𝜆0 )
0 is the security

parameter for the scheme.
Gen(1𝜆, 1𝑁 , 1 |𝑆 |): Sample (G, 𝑝, 𝑔) ← G(1𝜆0), 𝑠1, · · · , 𝑠ℓ ←$ Z𝑝 , and set the hash key 𝐾 ∈ G(ℓ+1)×𝑁 to

be,

𝐾 =


𝑔1 𝑔2 · · · 𝑔𝑁
ℎ1,1 ℎ1,2 · · · ℎ1,𝑁
...

...
. . .

...

ℎℓ,1 ℎℓ,2 · · · ℎℓ,𝑁


where ∀𝑗 ∈ [𝑁 ], 𝑔 𝑗 ←$ G, and ∀𝑖 ∈ [ℓ], 𝑗 ∈ [𝑁 ], ℎ𝑖, 𝑗 = 𝑔𝑠𝑖𝑗 . Output 𝐾 .

TGen(1𝜆, 1𝑁 , 𝑆): Sample (G, 𝑝, 𝑔) ← G(1𝜆0), 𝑠1, · · · , 𝑠ℓ ←$ Z𝑝 , where ℓ B |𝑆 |. Let 𝑆 = { 𝑗∗1 , · · · , 𝑗∗ℓ }. Set
the hash key 𝐾 ∈ G(ℓ+1)×𝑁 to be,

𝐾∗ =


𝑔1 𝑔2 · · · 𝑔𝑁
ℎ1,1 ℎ1,2 · · · ℎ1,𝑁
...

...
. . .

...

ℎℓ,1 ℎℓ,2 · · · ℎℓ,𝑁


where ∀𝑗 ∈ [𝑁 ], 𝑔 𝑗 ←$ G, and ∀𝑖 ∈ [ℓ], 𝑗 ∈ [𝑁 ],

ℎ𝑖, 𝑗 =

{
𝑔
𝑠𝑖
𝑗
· 𝑔 if 𝑗 = 𝑗∗𝑖

𝑔
𝑠𝑖
𝑗

otherwise.
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let td B (𝑠1, · · · , 𝑠ℓ ). Output (𝐾∗, td).
Hash(𝐾,m = (𝑚1, · · · ,𝑚𝑁 ) ∈ {0, 1}𝑁 ): Compute the hash 𝑐 ∈ G(ℓ+1) as 𝑐 B (𝑔′, ℎ′1, · · · , ℎ′ℓ ), where

𝑔′ B
∏

𝑗∈[𝑁 ] 𝑔
𝑚 𝑗

𝑗
, and ∀𝑖 ∈ [ℓ], ℎ′𝑖 B

∏
𝑗∈[𝑁 ] ℎ

𝑚 𝑗

1, 𝑗 . Note that since we don’t care about our
hash being hiding, we ignore the random coins, i.e. Hash is a deterministic algorithm in our
construction.

PreExt(1𝜆, 𝑐): Parse 𝑐 as (𝑔′, ℎ′1, · · · , ℎ′ℓ ) and output 𝑐′ = ({𝑔′2𝑘 }[𝜆0 ]−1
𝑘=0 , ℎ′1, · · · , ℎ′ℓ )

OnlineExt(𝑐′, 𝑆, td): Parse td as (𝑠1, · · · , 𝑠ℓ ) and let 𝑆 = { 𝑗∗1 , · · · , 𝑗∗ℓ } . We compute 𝑚𝑆 as follows: for
each 𝑖 ∈ [ℓ],

𝑚 𝑗∗
𝑖
=

{
0 if 𝑔′𝑠𝑖 = ℎ′𝑖
1 otherwise

Output𝑚𝑆 .

Efficiency. Note that the size of the keys are 𝑂 (𝜆0 · 𝑁 · ℓ), the size of the commitment 𝑂 (𝜆0 · ℓ) and
the size of the pre-processed value 𝑐′ is 𝑂 (ℓ · poly(𝜆0)). The time taken to compute the commitment
is poly(𝜆0, 𝑁 , ℓ) while the extraction can be done poly(𝜆0, ℓ). Further note that for each 𝑖 , 𝑔′𝑠𝑖 can be
computed in TC0 given 𝑠𝑖 and {𝑔′2𝑘 }[𝜆0 ]−1

𝑘=0 , contained in the pre-computed hash 𝑐′. This can be done simply
by looking at the binary representation of 𝑠 , and multiplying the relevant 𝑔′2𝑘 - which can be done in TC0,
thus ensuring that OnlineExt can be computed in TC0.

Lemma 7. The above scheme satisfies key indistinguishability.

The key indistinguishability of the scheme follows from the security of DDH, argued in a manner
identical to [DGI+19]. Here we provide a sketch for the case that ℓ = 1, and can be extended easily to the
more general case. We in fact prove that the key output in the trapdoor mode on input 𝑖 is indistinguishable

from from 𝑈 ←$ G2×𝑁 . Given a tuple (𝑔𝑎, 𝑔𝑏, 𝑔𝑐), the key 𝐾 =

[
(𝑔𝑎)𝑟1 · · · (𝑔𝑎)𝑟𝑖 · · · (𝑔𝑎)𝑟𝑁
(𝑔𝑐)𝑟1 · · · (𝑔𝑐)𝑟𝑖 · 𝑔 · · · (𝑔𝑐)𝑟𝑁

]
. If

𝑔𝑐 = 𝑔𝑎𝑏 , then 𝐾 has the same distribution as the key generated by TGen on input 𝑖 , else it is random.
Finally note that since the security parameter for the group in 𝜆0, we require (poly

(
𝜆

log log𝜆0
0

)
, negl

(
𝜆

log log𝜆0
0

)
)-

security from DDH in the chosen group.

5.2.2 Proof of Local Opening

In this section, we shall describe the proof of local opening in the common references string (CRS) model.
As described earlier, we require strong efficiency properties from the proof verification algorithm. We will
first define below a promise language L = (LYES,LNO) for which we shall construct a non-interactive ar-
gument system in the CRS model. But before we construct this non-interactive argument, we describe how
such an argument system, in conjunction with a hash tree scheme, can be used to achieve computational
extraction correctness. We then build a non-interactive argument for L.

Our non-interactive argument for L is going to involve multiple steps that we outline here, and refer
the reader to the relevant technical sections for the details. As a first step, we build an interactive proof 10

(P,V𝐿) forL where the verifier V𝐿 will have access to an oracle 𝐿, and will otherwise be extremely efficient
- the efficiency will in fact be very close to the requirement from OnlineVer. Our interactive protocol is
inspired by the Bulletproof protocol [BBB+18], but our parameters are such that soundness of the protocol
is quite large. We thus parallel repeat and show that it satisfies the necessary requirements to apply the Fiat-
Shamir transformation to make it non-interactive. We then apply Lemma 10 to obtain a non-interactive

10statistically sound interactive protocol

29



argument system (PFS,V𝐿FS) in the CRS (and oracle) model. Finally, we show how to remove the need for
an oracle access in the non-interactive argument by the way of verifier pre-processing, and the use of hash
trees. The final non-interactive argument we denote by (P′, (V′1,V′2)) for L with CRS crsL . V′1 will run in
time 𝑁 𝑧poly(𝜆0, 𝜆) for a fixed constant 𝑧. The output produced is of size poly(𝜆). The running time of V′2
is poly(𝜆). Further, V′1 is a deterministic procedure.

Remark 4. Note that to handle arbitrary polynomial many instances 𝑇 , we cannot choose a fixed constant
depth. Since the number of keys correspond the depth of the hash tree, we set the number of keys to a super-
constant depth, log∗ 𝜆. When running the protocol for any polynomial 𝑇 , the prover and verifier will select
the appropriate constant 𝑐 such that 𝑇 ≤ 𝜆𝑐 . But since the CIH needs to be able to handle arbitrary poly-
nomial computation, the CIH is constructed to allow B𝐶,𝑐 that can be verified by threshold circuits of depth
𝑂 (log∗ 𝜆). It is a technicality of our construction, and explains the reasoning behind ourCIH theorem allowing
for𝑂 (log∗ 𝜆) verification, but we will not discuss it further in this overview, and assume for further discussion
B verifiable via constant depth threshold circuits, i.e. TC0.

Promise Language. We start by defining the following promise language L = (LYES,LNO) where

𝐾 =

[
𝑔1 · · ·𝑔𝑛
ℎ1 · · ·ℎ𝑛

]
, and 𝑣 = (𝑔′, ℎ′)

LYES B
{
(𝐾, 𝑣) ∈ G2×𝑛 × G2

��� ∃m ∈ {0, 1}𝑛 s.t. Hash(𝐾,m) = 𝑣
}

LNO B
{
(𝐾, 𝑣) ∈ G2×𝑛 × G2

��� ∃𝑠 ∈ Z𝑝 s.t. ∀𝑗 ∈ [𝑛], ℎ 𝑗 = 𝑔𝑠𝑗 ∧ (ℎ′ ≠ (𝑔′)𝑠)
}

First note that the above languages are indeed disjoint. This is fairly easy to see - when 𝐾 is such that
∃𝑠 ∈ Z𝑝 such that ∀𝑗 ∈ [𝑛], ℎ 𝑗 = 𝑔𝑠𝑗 , then by construction, for any m ∈ {0, 1}𝑛 , 𝑔′ =

∏
𝑗∈[𝑛] 𝑔

𝑚 𝑗

𝑗
and

ℎ′ =
∏

𝑗∈[𝑛] ℎ
𝑚 𝑗

𝑗
=
∏

𝑗∈[𝑛] (𝑔
𝑚 𝑗

𝑗
)𝑠 satisfy ℎ′ ≠ (𝑔′)𝑠 .

Before we proceed with our construction of a SNARG in the pre-processing model for the above
promise languages. We show how such a SNARG would be sufficient to provide a proof of local open-
ing, and the somewhere soundness property it satisfies. Note that we will extend the function definitions
to additionally take in as input the CRS crsL and digest key dk. Here the digest key is output by the hash
tree scheme (Section ) on input security parameter 𝜆. Recall that the security parameter for G is 𝜆0.

We describe the overview for ℓ = 1, and then describe how it extends to the more general case. At a
high level, to open the hash 𝑐 to a value𝑚𝑖 at position 𝑖 , the prover considers the key 𝐾 ′ excluding the 𝑖-th
column of the key 𝐾 (i.e (𝑔𝑖 , ℎ𝑖)). It then hashes the input bits except the bit at position 𝑖 using this new
key 𝐾 ′ to obtain a new hash 𝑐′ = (𝑔′, ℎ′). Given (𝑔𝑖 , ℎ𝑖), the claimed opening𝑚𝑖 , the verifier can efficiently
check that 𝑐 = (𝑔𝑚𝑖

𝑖
· 𝑔′, ). Then the prover can then use the proof system of L to additional send a proof

that the pair (𝐾 ′, 𝑐′) ∈ LYES. Unfortunately, this requires the online verification procedure to access the
key𝐾 , which is of length 𝑁 . Instead, the verifier computes a hash tree digest over𝐾 , and asks the prover to
provide (𝑔𝑖 , ℎ𝑖) along with the proof of opening. Note that the verifier V′1 pre-processes on input𝐾 ′, which
depends on the index 𝑖 , but we want the pre-processing to be independent of the position the prover is
trying to prove, and thus repeat the pre-processing for each position, and compute a hash tree digest over
it. Since the pre-processing (and hash tree computation) is deterministic, the prover computes it as well,
and then provides the appropriate proof with respect to the same digest that the prover and verifier hold.
For instance, when the prover is proving a statement about an index 𝑖 , it also provides the corresponding
proof of local opening to the state computed by V′1 on input 𝐾 ′ defined earlier. Finally note that to extend
to ℓ > 1, we consider ℓ keys 𝐾 ′1, · · · , 𝐾 ′ℓ where each 𝐾 ′𝑖 = ((𝑔1, · · · , 𝑔𝑁 ), (ℎ𝑖,1, · · · , ℎ𝑖,𝑁 )), and repeat in
parallel.

Open(𝐾,m, 𝑗∗, dk, crsL):
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1. (tree, rt, treest, rtst) B PreVer(𝐾, dk) //we abuse notation here since PreVer does not output the cor-
responding hash trees, but provided here for notational brevity.

2. ((𝑔 𝑗∗, {ℎ𝑖, 𝑗∗}𝑖∈[ℓ ]),Π) B HT.Read(dk, rt, tree, 𝑗∗).
3. 𝑔′′ =

∏
𝑗≠𝑗∗ 𝑔

𝑚 𝑗

𝑗
, for all 𝑖 ∈ [ℓ], ℎ′′𝑖 =

∏
𝑗≠𝑗∗ ℎ

𝑚 𝑗

𝑖, 𝑗
.

4. For each 𝑖 ∈ [ℓ],

(a) Set 𝐾𝑖 as
[
𝑔1 · · · 𝑔 𝑗∗−1 𝑔 𝑗∗+1 · · · 𝑔𝑁
ℎ𝑖,1 · · · ℎ𝑖, 𝑗∗−1 ℎ𝑖, 𝑗∗+1 · · · ℎ𝑁

]
(b) Π𝑖 ← P′(𝐾𝑖 , 𝑣 = (𝑔′′, ℎ′′𝑖 ),𝑚 𝑗≠𝑗∗, crsL, dk).

5. (st𝑗∗,Πst) B HT.Read(dk, rtst, treest, 𝑗∗).
6. Output𝑚 𝑗∗, 𝜋 𝑗∗ = (𝑔′′, {ℎ′′𝑖 }𝑖 , (𝑔 𝑗∗, {ℎ𝑖, 𝑗∗}𝑖),Π, {Π𝑖}𝑖 , st𝑗∗,Πst).

PreVer(𝐾, dk):

1. tree, rt B HT.Hash(dk, 𝐾).
2. For each 𝑗 ∈ [𝑁 ]

(a) For each 𝑖 ∈ [ℓ]

i. Set 𝐾𝑖, 𝑗 as
[
𝑔1 · · · 𝑔 𝑗−1 𝑔 𝑗+1 · · · 𝑔𝑁
ℎ𝑖,1 · · · ℎ𝑖, 𝑗−1 ℎ𝑖, 𝑗+1 · · · ℎ𝑁

]
ii. st′𝑖, 𝑗 B V′1(dk, 𝐾𝑖, 𝑗 )

(b) st′𝑗 B {st′𝑖, 𝑗 }

3. treest, rtst B HT.Hash(dk, {st′𝑗 } 𝑗∈[𝑛]).
4. Output st B (rt, rtst).

OnlineVer(𝑐,𝑚 𝑗∗, 𝑗
∗, 𝜋 𝑗∗, st, dk, crsL):

1. Parse st as (rt, rtst)
2. Parse 𝜋 𝑗∗ as (𝑔′′, {ℎ′′𝑖 }𝑖 , (𝑔 𝑗∗, {ℎ𝑖, 𝑗∗}𝑖),Π, {Π𝑖}𝑖 , st𝑗∗,Πst).
3. Parse st𝑗∗ as {st′

𝑖, 𝑗∗}𝑖∈[ℓ ]
4. Check if the following hold

(a) HT.VerRead(dk, rt, 𝑗∗, (𝑔 𝑗∗, {ℎ𝑖, 𝑗∗}𝑖∈[ℓ ]),Π) = 1
(b) HT.VerRead(dk, rtst, 𝑗∗, st𝑗∗,Πst) = 1

(c) 𝑐 =


𝑔′′ · 𝑔𝑚 𝑗∗

𝑗∗

ℎ′′1 · ℎ
𝑚 𝑗∗
1, 𝑗∗
...

ℎ′′ℓ · ℎ
𝑚 𝑗∗
ℓ, 𝑗∗


(d) For each 𝑖 ∈ [ℓ], V′2(𝑣 = (𝑔′′, ℎ′′𝑖 ), crsL, dk, st′𝑖, 𝑗∗,Π𝑖) = 1

5. accept if none of the checks fail.
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Efficiency. The total time to compute the pre-processing is𝑁 𝑧+1poly(𝜆, ℓ + 1), and the online verification
takes time poly(ℓ, 𝜆0, 𝜆, log𝑁 ).

Lemma 8. The above scheme satisfies computational extraction correctness.

Proof. Let 𝑆 ⊂ [𝑁 ] be a subset, and let 𝑗∗ ∈ 𝑆 be the index output by the adversary A. We show that
computational extraction correctness holds for every such 𝑆 and 𝑗∗. Without loss of generality, assume
that 𝑗∗ is the first element of 𝑆 .

Let A output 𝜋 𝑗∗ = (𝑔′′, {ℎ′′𝑖 }𝑖 , (𝑔 𝑗∗, {ℎ̃𝑖, 𝑗∗}𝑖),Π, {Π𝑖}𝑖 , s̃t𝑗∗,Πst). We define the event E to occur when
both instances of HT.VerRead in OnlineVer accept (on proofs Π and Πst), but the values are “incorrect”,
i.e. (i) (𝑔 𝑗∗, {ℎ̃𝑖, 𝑗∗}𝑖) ≠ (𝑔 𝑗∗, {ℎ𝑖, 𝑗∗}𝑖); and (ii) s̃t𝑗∗ ≠ s̃t𝑗∗ . Note that these events are well defined given
the key 𝐾 , since (𝑔 𝑗∗, {ℎ𝑖, 𝑗∗}𝑖) and s̃t𝑗∗ are defined deterministically given 𝐾 , and can be computed in time
𝑇HT B 𝑂 (𝜆𝑛3) · poly(𝜅). Thus Pr[E] < negl(𝜆).

Now, let BREAK denote the event that A breaks the computational extraction correctness. Then,

Pr[BREAK] = Pr[BREAK | E ] Pr[E] + Pr[BREAK | E ] Pr[E]
< Pr[E] + Pr[BREAK | E ] < 𝜌 + Pr[BREAK | E ]

We will argue that Pr[BREAK | E ] will correspond to the probability of breaking the soundness of
the non-interactive argument for the promise problem, i.e. we argue that conditioned on event E, A is
attempting to generate a proof for (𝐾𝑖 , 𝑣) ∈ LNO for some 𝑖 (𝑖 = 1 in our case).

As we stated before, we assumed without loss of generality that 𝑗∗ = 𝑗∗1 . Thus the extracted value𝑚 𝑗∗

is computed as 0 if 𝑔′𝑠1 = ℎ′1, and 1 otherwise. To break extraction correctness,A outputs𝑚 𝑗∗ ≠𝑚 𝑗∗ . Note
that for any key 𝐾 sampled in the trapdoor mode on input 𝑆 where 𝑗∗1 = 𝑗∗, ℎ1, 𝑗∗ = 𝑔𝑠

𝑗∗ · 𝑔 and for each

𝑗 ≠ 𝑗∗, ℎ1, 𝑗 = 𝑔
𝑠
𝑗 . This implies that 𝐾1, 𝑗∗ as defined in PreVer is of the form

[
𝑔1 · · ·𝑔𝑁−1
ℎ1 · · ·ℎ𝑁−1

]
where for all 𝑗 ,

ℎ 𝑗 = 𝑔
𝑠
𝑗 . Thus, for it to be the case that (𝐾1, 𝑣 = (𝑔′′, ℎ′′1 )) ∈ LNO, we need to prove that ℎ′′1 ≠ 𝑔′′𝑠 . Here we

implicitly conditioning on event E to ensure that 𝐾1, 𝑗∗ that is used in the verification, is indeed exactly as
computed in PreVer.

We split the analysis into two cases:

Case (i): extracted value𝑚 𝑗∗ = 0. Since 𝑔′𝑠1 = ℎ′1,𝑚 𝑗∗ = 1 implies

(𝑔′′ · 𝑔𝑚 𝑗∗
𝑗∗ )

𝑠1 = ℎ′′1 · ℎ
𝑚 𝑗∗
1, 𝑗∗

⇒ (𝑔′′ · 𝑔 𝑗∗)𝑠1 = ℎ′′1 · ℎ1, 𝑗∗

⇒ (𝑔′′ · 𝑔 𝑗∗)𝑠1 = ℎ′′1 · 𝑔
𝑠1
1, 𝑗∗ · 𝑔

⇒ (𝑔′′)𝑠1 = ℎ′′1 · 𝑔
⇒ (𝑔′′)𝑠1 ≠ ℎ′′1

Case (ii): extracted value𝑚 𝑗∗ = 1. Since 𝑔′𝑠1 ≠ ℎ′1,𝑚 𝑗∗ = 0 implies

(𝑔′′ · 𝑔𝑚 𝑗∗
𝑗∗ )

𝑠1 ≠ ℎ′′1 · ℎ
𝑚 𝑗∗
1, 𝑗∗

⇒ (𝑔′′)𝑠1 ≠ ℎ′′1

Again, in the analysis of both of the two cases we implicitly use the fact that the “correct” values of 𝑔 𝑗∗
and ℎ1, 𝑗∗ are used, which is guaranteed conditioned on the event E occurring.
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Thus, conditioned on the event E, if A outputs 𝑚 𝑗∗ ≠ 𝑚 𝑗∗ , where 𝑚 𝑗∗ is the extracted value, then
(𝐾1, 𝑣 = (𝑔′′, ℎ′′1 )) ∈ LNO, which gives us,

Pr[BREAK | E ] = Pr
[
A breaks soundness for (P′, (V′1,V′2))

]
< negl(𝜆).

where the SNARG for L is 𝜌 ′ secure against 𝑇Π = poly(𝜆) adversaries. Putting it altogether,

Pr[BREAK] < negl(𝜆)

5.2.3 Non-interactive Argument for L = (LYES,LNO)

In this section, we will construct non-interactive arguments for L = (LYES,LNO). As described earlier,
our construction will proceed in multiple steps. We first define notation that will be instructive for this
section.

Notations. In the following discussion, we will require that keys and inputs are partitioned into blocks,
with operations performed on the entire block. To improve readability, we will define some shorthand
notations below. We will consider the setting where the number of blocks are fixed to be some param-
eter 𝐷 . Further, for simplicity, we assume that the parameter 𝑛 is some power of 𝐷 . Consider a vector
x = (𝑥1, · · · , 𝑥𝑛) ∈ Z𝑛𝑝 , we represent x by partitioning into 𝐷 vectors (x1, · · · , x𝐷 ) such that x𝑗+1 =

(𝑥1+𝑗𝑛/𝐷 , 𝑥2+𝑗𝑛/𝐷 , · · · , 𝑥 ( 𝑗+1)𝑛/𝐷 ) ∈ Z𝑛/𝐷𝑝 . We extend this analogously to partitioning the key 𝐾 ∈ G2×𝑛

as
[
g1 · · · g𝐷
h1 · · · h𝐷

]
where each g𝑗+1 = (𝑔1+𝑗𝑛/𝐷 , 𝑔2+𝑗𝑛/𝐷 , · · · , 𝑔( 𝑗+1)𝑛/𝐷 ) ∈ G𝑛/𝐷 and h𝑗+1 is defined similarly.

Further, gx𝑖+1
𝑗+1 =

∏𝑛/𝐷
𝑘=1 𝑔

𝑥𝑘+𝑖𝑛/𝐷
𝑘+𝑗𝑛/𝐷 ∈ G, and for every scalar 𝛾 ∈ Z𝑝 , g𝛾𝑗+1 = (𝑔𝛾1+𝑗𝑛/𝐷 , 𝑔

𝛾

2+𝑗𝑛/𝐷 , · · · , 𝑔
𝛾

( 𝑗+1)𝑛/𝐷 ) ∈

G𝑛/𝐷 . Lastly, g𝛾
𝑗+1 · g𝑖+1 =

(
𝑔
𝛾

1+𝑗𝑛/𝐷 · 𝑔1+𝑖𝑛/𝐷 , 𝑔
𝛾

2+𝑗𝑛/𝐷 · 𝑔2+𝑖𝑛/𝐷 , · · · , 𝑔𝛾( 𝑗+1)𝑛/𝐷 · 𝑔1+(𝑖+1)𝑛/𝐷
)
∈ G𝑛/𝐷 . Note that

we will overload notation and use
∏

over both for elements in G and G𝑛/𝐷 , where the resultant element
will be in G and G𝑛/𝐷 respectively. The usage will be clear from context.

Interactive Protocol. We start with the interactive protocol where the prover P and V will start with
a key 𝐾 ∈ G2×𝑛 , and at each step fold it into a new key 𝐾 ′ ∈ G2×𝑛/2 of half the size based on the verifier
challenge 𝛾 . After log𝐷 (𝑛) steps, only the final folded key 𝐾 ∈ G2×𝐷 is used by the verifier to perform
checks, and thus V does not need access to the intermediate folded keys during the protocol. From the
description of our protocol, it will become evident that the folded key depends solely on the starting
key 𝐾 , and the verifier randomness (𝛾1, · · · , 𝛾𝑛). To simplify the protocol and analysis, we describe the
interactive protocol in the pre-processing model where the verifier V has oracle access to a pre-processed
string denoted by V𝐿 . The string 𝐿 depends on 𝐾 , and our protocol will require the verifier to make a single
query on the randomness used during the protocol, i.e. (𝛾1, · · · , 𝛾𝑛), which returns the appropriate folded
key. We will subsequently discuss (i) how to compute the string 𝐿; and (ii) how to enable the prover to P
to provide read access to the appropriate location of 𝐿.

The interactive protocol is presented in Figure 3.

Lemma 9. The above protocol (P,V𝐿) is complete.

Proof. We argue completeness for the first level, and it then follows that the protocol is complete. Specifi-

cally, we show that at the first fold to obtain the new 𝐾 =

[
g
h

]
∈ G2×𝑛/𝐷 , x ∈ G𝑛/𝐷 and 𝑣 ∈ G2 we have
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Protocol: Interactive Protocol (P,V𝐿) for LYES

Common input: input (𝐾, 𝑣) ∈ G2×𝑛 × G2, security parameter 1𝜆 .
P’s auxiliary input: input x = (𝑥1, · · · , 𝑥𝑛)

1. Set 𝑖 = 1.

2. if 𝑛 > 𝐷 repeat:

(a) Prover does the following:

i. Parse 𝐾 as
[
g1 · · · g𝐷
h1 · · · h𝐷

]
and x as (x1, · · · , x𝐷 )

ii. For each 𝑗 ∈ [𝐷], set 𝑣 𝑗 ≔
[
gx𝑗
𝑗

hx𝑗
𝑗

]
.

iii. For each 𝑗 ∈ [𝐷 − 1], set

�̃� 𝑗 =

[
𝑗∏
𝑖=1

gx𝐷− 𝑗+𝑖
𝑖

hx𝐷− 𝑗+𝑖
𝑖

]
and �̃�𝐷+𝑗 =

[
𝐷− 𝑗∏
𝑖=1

gx𝑖
𝑗+𝑖

hx𝑖
𝑗+𝑖

]
iv. Set �̃�𝐷 B 𝑣 .
v. Send (𝑣1, · · · , 𝑣𝐷 ) and ((�̃�1, · · · , �̃�2𝐷−1)) to V.

(b) Verifier V𝐿 does the following:
i. Checks if 𝑣 =

∏𝐷
𝑗=1 𝑣 𝑗 and �̃�𝐷 = 𝑣 .

ii. Sample 𝛾𝑖 ←$ 𝒞.
iii. Send 𝛾𝑖 to P.

(c) P and V set 𝑣 =
∏2𝐷−1

𝑗=1 �̃�
𝛾 𝑗−1

𝑗
.

(d) P sets x =
∑𝐷
𝑗=1 x𝐷− 𝑗+1 · 𝛾 𝑗−1, and 𝐾 =

[
𝐷∏
𝑗=1

g𝛾
𝑗−1

𝑗

h𝛾
𝑗−1

𝑗

]
(e) 𝑛 B 𝑛/𝐷 , 𝑖 B 𝑖 + 1

3. Let ℎ B 𝑖

4. Prover sends x = (𝑥1, · · · , 𝑥𝐷 ) to V𝐿 .

5. Verifier V𝐿 does the following:

(a) Query 𝐿 at (𝛾1, · · · , 𝛾ℎ) and receive 𝐾 =

[
g
h

]
∈ G2×𝐷 as response.

(b) Check 𝑣 =
[
gx

hx

]
Accept if none of the checks have failed.

Figure 3: Interactive Protocol (P,V𝐿) for L𝑌

that 𝑣 =

[
gx

hx

]
. Thus in the last step when the prover sends x in the clear, V will accept by performing
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the computation.
By expanding each of the terms in the exponent for 𝑣 we have

2𝐷−1∏
𝑗=1

�̃�
𝛾 𝑗−1

𝑗
=


𝐷∏
𝑗=1

g
𝛾 𝑗−1(x𝐷+𝛾x𝐷−1 · · ·+𝛾𝐷−1x1)
𝑗

h
𝛾 𝑗−1(x𝐷+𝛾x𝐷−1 · · ·+𝛾𝐷−1x1)
𝑗

 .
From the construction of the “folded” 𝐾 =

[
g
h

]
in protocol, we see that the above equation is indeed

2𝐷−1∏
𝑗=1

�̃�
𝛾 𝑗−1

𝑗
=

[
g(x𝐷+𝛾x𝐷−1 · · ·+𝛾𝐷−1x1)

h(x𝐷+𝛾x𝐷−1 · · ·+𝛾𝐷−1x1)

]
.

and the protocol sets x to be
∑𝐷
𝑗=1 x𝐷− 𝑗+1 · 𝛾 𝑗−1.

Instead of proving simply the soundness, we shall make a stronger claim about the protocol that will
allow us to apply the Fiat-Shamir transform on the (parallel repeated version of the) above protocol to
achieve a non-interactive argument in the CRS model. Specifically, we prove that the protocol is round-
by-round sound (Definition 10).

Lemma 10. The above protocol (P,V𝐿) is (2𝐷 − 2) round-by-round sound.

Proof. To argue that the protocol is round-by-round sound, we define the function State. For any (𝐾, 𝑣) ∈
LYES, we define State(𝑥, 𝜙) = Accept, and for any (𝐾, 𝑣) ∈ LYES, we define State(𝑥, 𝜙) = Reject. This can
done by (i) checking if ∀𝑗 , ∃𝑠 such that ℎ 𝑗 = 𝑔𝑠𝑗 ; (ii) if so, check if ℎ′ ≠ (𝑔′)𝑠 and output Reject ; else check
if ∃m ∈ {0, 1}𝑛 s.t. Hash(𝐾,m) = 𝑣 . This is extended to State(𝑥, trans) where one simply checks if the
current claim at the end of the transcript is in LYES or LNO, with one small adjustment that now it could
be the case that m such that Hash(𝐾,m) = 𝑣 now comes from Z𝑝 instead of binary.

We now argue the probability of the State switching from Reject to Accept. This can happen in two
ways: (i) the key 𝐾 is such that there exists 𝑗 such that ℎ 𝑗 ≠ 𝑔𝑠𝑗 ; or (ii) 𝑣 is such that ℎ′ = 𝑔′𝑠 . Case (i)
never occurs by construction because if one were to start with a key 𝐾 where ℎ 𝑗 = 𝑔𝑠𝑗 for all 𝑗 , the folding
for any 𝛾 will ensure that for the new key 𝐾 ℎ 𝑗 = 𝑔

𝑠
𝑗 for all 𝑗 . Thus the focus is on case (ii). Note that if

the key satisfies the condition, 𝐾 ℎ 𝑗 = 𝑔
𝑠
𝑗 for all 𝑗 , then ℎ′ = 𝑔′𝑠 implies the existence of an opening to 𝑣 ,

which would result in the new claim (𝐾, 𝑣) to be in LYES. Let us compute the probability over the verifier
randomness that case (ii) occurs.

Since 𝑔 is the generator of G, we represent each �̃�𝑖 as
[
𝑔𝛼𝑖

𝑔𝛽𝑖

]
. Since V checks that �̃�𝐷 = 𝑣 , we know

that since in a Reject state, it must be the case that 𝑔𝛽𝐷 ≠ 𝑔𝑠𝛼𝐷 . Thus the newly computed 𝑣 ,

�̃�1 · �̃�𝛾2 · · · · �̃�
𝛾2𝐷−2

2𝐷−1 =

[
𝑔′′

ℎ′′

]
=

[
𝑔𝛼1+𝛾𝛼2+···+𝛾2𝐷−2𝛼2𝐷−1

𝑔𝛽1+𝛾𝛽2+···+𝛾2𝐷−2𝛽2𝐷−1

]
.

Then,
(𝑔′′)𝑠
ℎ′′

= 𝑔
∑2𝐷−1

𝑖=1 (𝑠𝛼𝑖−𝛽𝑖 )𝛾𝑖−1
= 𝑔𝑃 (𝛾 )

where 𝑠 is defined by the key, and 𝑃 (𝑋 ) is a polynomial of degree at most 2𝐷−2. Note that since (𝑠𝛼𝐷−𝛽𝐷 ) ≠
0, 𝑃 (𝑋 ) is not a zero-polynomial. Thus (𝑔′′)𝑠 = ℎ′′ if and only if 𝛾 is root of 𝑃 (𝑋 ). Since the number of
such roots are bounded by 2𝐷 − 2, we have achieved our claimed round-by-round soundness.

Lemma 11. The BAD relation defined above can be verified in TC0 given the trapdoor.
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Proof. From the above discussion, we need to check if the challenge is the root of the polynomial 𝑃 (𝑋 ). To
do so, BAD simply computes 𝑣 based on the prover messages to obtain (𝑔′, ℎ′). It then checks if 𝑔′𝑠 = ℎ′.
To be able to compute 𝑔′𝑠 in TC0, we must pre-process the input as 𝑔′, 𝑔′2, 𝑔′22

, 𝑔′2
3
, · · · such that given 𝑠 ,

𝑔′𝑠 can be computed in TC0 by selecting and multiplying the pre-processed elements.

Parameters and Efficiency. Looking ahead, we will require the pre-processing time to be “small”, and
thus set the challenge space to |𝒞 | = log2(𝑛), setting 𝐷 = log(𝑛) we get the total number rounds ℎ =

log(𝑛)
log log(𝑛) . This in turn means that the total possible verifier challenges is |𝒞ℎ | = 𝑛2. Setting these parameters
in Lemma 10 gives us a round-by-round soundness of 1/log(𝑛), which is quite large (not negligible in 𝜆).
To achieve negligible soundness, we need parallel repeat the protocol and then apply the Fiat-Shamir
transform to round collapse the protocol. Further, note that the total running time of the verifier V𝐿 is
(log𝑛/log log𝑛)𝐷 · poly(𝜆0).

Round Collapse via Fiat-Shamir. Given that we meet all the pre-conditions for applying the Fiat-
Shamir transform, the resultant protocol is a non-interactive argument in the CRS model. Note that the
size of the input to the CIH is 𝐷 · 𝑂 (𝜆0) = log𝑛 · 𝜆0 = poly(log log 𝜆 log 𝜆, 𝜆0). Here we use the fact that
we will consider applications where 𝑛 = 𝜆𝑂 (log log𝜆) . Thus by Corollary 1 we have non-interactive protocol
(PFS,V𝐿FS) with CRS crsFS where the running time of V𝐿FS is poly(𝜆). Further, as described in Corollary
1, the resultant protocol is also (𝜆𝑂 ( (log log𝜆)2 ) , 1/2𝜆1/log log𝜆 ) secure, i.e. secure against super-polynomial
adversaries.

Pre-Processing. Thus far we haven’t addressed how the verifier in the interactive protocol has access
to an oracle 𝐿. At a high level, given the key 𝐾 ∈ G2×𝑛 , 𝐿 is going to represent all possible folded keys,
each of the form G2×𝐷 . From our discussion of the parameters above, the total number of challenge tuples
is 𝑛2, and thus the total length of 𝐿 will be 𝑂 (𝜆0𝑛

2). We describe how to generate these keys in time
𝑂 (𝜆0𝑛

3). Importantly, note that once the string 𝐿 has been generated, the same string can be used across
all repetitions - or any instance that the key 𝐾 is used.

Since there are ℓ such pairs - (g, h1), · · · , (g, hℓ ), we generate a separate string 𝐿 for each such pair.
Our construction will use a hash tree scheme (HT.Gen,HT.Hash,HT.Read,HT.VerRead,) (Definition 9) with
security parameter 𝜆, where the write functions are omitted since we will not be requiring them. We split
the somewhere extractable key 𝐾 ∈ G(ℓ+1)×𝑛 (as in the hash scheme), into keys 𝐾1, · · · , 𝐾ℓ ∈ G2×𝑛 , which
are in line with the keys we have used for our interactive proof. Where for each 𝑖 ∈ [ℓ]

𝐾𝑖 =

[
𝑔1 · · · 𝑔𝑛
ℎ𝑖,1 · · · ℎ𝑖,𝑛

]
.

The pre-processing gets as input the digest key for the hash tree scheme dk← HT.Gen(𝜅).
PreVer(dk, 𝐾1, · · · , 𝐾ℓ ):

1. For each 𝑖 ∈ [ℓ] do the following:

(a) Set 𝐿𝑖 to be the empty string
(b) For each tuple (𝛾1, · · · , 𝛾ℎ) ∈ 𝒞ℎ , set 𝐿𝑖 [(𝛾1, · · · , 𝛾ℎ)] = FoldKey𝐷 (𝐾𝑖 , (𝛾1, · · · , 𝛾ℎ), 1, 𝑛)
(c) (tree𝐾,𝑖 , rt𝐾,𝑖) = HT.Hash(dk, 𝐿𝑖).

2. Output
{
tree𝐾,𝑖

}
𝑖∈[ℓ ] ,

{
rt𝐾,𝑖

}
𝑖∈[ℓ ] .
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Note that for each 𝑖 , the size of each 𝐿𝑖 [(𝛾1, · · · , 𝛾ℎ)] = is𝑂 (𝜆0), thus the total size of 𝐿𝑖 is𝑂 (𝜆0𝑛
2) and

the size of dk is poly(𝜆). Now FoldKey is defined below,

FoldKey𝐷 (𝐾, (𝛾1, · · · , 𝛾ℎ), 𝑟 , 𝑛):

1. Parse 𝐾 as
[
g1 · · · g𝐷
h1 · · · h𝐷

]
2. Set 𝛼 B 𝛾𝑟

3. Set 𝐾 ′ =
[
𝐷∏
𝑗=1

g𝛼
𝑗−1
𝑗

h𝛼
𝑗−1
𝑗

]
4. If 𝑛/𝐷 > 1, return FoldKey(𝐾 ′, (𝛾1, · · · , 𝛾ℎ), 𝑟 + 1, 𝑛/𝐷); else return 𝐾 ′

From the description of FoldKey above, it is easy to observe that the folded key indeed corresponds
exactly to the folded key in the execution of (P,V𝐿).

Getting rid of the oracle in (P,V𝐿). Given the description of the pre-processing step for the verifier,
the approach to getting rid of the oracle is natural. The new verifier V′ = (V′1,V′2) and prover P′ is described
below.

P′(𝐾, 𝑣, x, crs𝐹𝑆 , dk):

1. 𝜋FS B (𝛼1, 𝛾1, · · · , 𝛼ℎ, 𝛾ℎ) ← PFS(crs𝐹𝑆 , 𝐾, 𝑣, x).
2. tree𝐾 , rt𝐾 B PreVer(𝐾).
3. (𝐾 ′,ΠHT) B HT.Read(dk, rt𝐾 , tree𝐾 , (𝛾1, · · · , 𝛾ℎ)).
4. Output 𝜋FS, 𝐾 ′,ΠHT

V′1(𝐾, dk):

1. tree𝐾 , rt𝐾 B PreVer(dk, 𝐾).
2. Output st′ = rt𝐾

V′2(𝑣, crs𝐹𝑆 , dk, st′, (𝜋FS, 𝐾 ′,ΠHT)):

1. Parse 𝜋FS as (𝛼1, 𝛾1, · · · , 𝛼ℎ, 𝛾ℎ).
2. Check HT.VerRead(dk, st′, (𝛾1, · · · , 𝛾ℎ), 𝐾 ′,ΠHT) = 1.
3. Run V𝐿FS(crs𝐹𝑆 , 𝑣, 𝜋FS) where the query to 𝐿 is answered by sending 𝐾 ′.
4. Accept if all checks pass.

Note that we have slightly abused HT.Read and HT.VerRead to read more than a single bit, but these
functions extend naturally to multiple bits by simply concatenating the proof for each contained bit.

Corollary 2. Assuming the sub-exponential hardness of DDH, and the security of the hash tree scheme,
(P′, (V′1,V′2)) is a non-interactive argument for L = (LYES,LNO) in the CRS model. Further V′1 runs in time
𝑂 (𝜆0𝑛

3) and outputs a state of size poly(𝜆0). The total running time of V′2 is poly(𝜆).
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5.2.4 Bootstrapping via Tree Hashing

Note that in the previous section, we constructed a somewhere extractable hash scheme for vectors of
length𝑁 . The online verification was only poly(ℓ, 𝜆0, 𝜆, log𝑁 ) but the offline pre-processing was𝑁 4poly(𝜆, ℓ + 1).
In our use cases, if we commit to a string of length 𝑇 , we will want the verifier’s pre-computation time
to run in time significantly less than 𝑇 . It might help the reader to think of 𝑇 as the number of steps in
a DTIME(𝑇 ) computation, and it defeats the purpose of a SNARG if the offline phase depends on 𝑇 . We
consider the natural approach of building a hash tree using the base hash described in the previous section.
As stated previously, we will require the extraction of the value from the leaves to be done in TC0, and
thus the depth of the tree must be a constant. Therefore we pick 𝑁 (to be used in the base hash) to be such
that log𝑁 (𝑇 ) = 𝑑 for some constant 𝑑 . Since this approach is standard, we only sketch the construction
here.

1. Select 𝑑 keys 𝐾1, · · · , 𝐾ℓ , one for each level of the tree.

2. For each 𝑖 starting from the lowest level, partition the𝑇 bits into𝑇 /𝑁 blocks of size 𝑁 , and compute
the hash for each such block.

3. Parse the output as bits, and repeat again. Where 𝑇 ′ = 𝑇 /𝑁 × |Hash|, where |Hash| indicates the
number of bits in the output of the hash.

First note each element in the group can be represented by 𝑂 (𝜆0) bits. Since we are converting the
hash output, which are group elements, into bits, there will be an increase in the output size at each level.
Specifically, if at the leaf level, the key 𝐾0 is extractable at ℓ positions, then the output is 𝑂 (ℓ𝜆0) bits. At
the next level, we need all of these bits to be extractable in order to extract from the leaf level, therefore
𝐾1 must be statistically binding at 𝑂 (ℓ𝜆0) positions, and the output in bits is 𝑂 (ℓ𝜆2

0) at the second level.
Therefore, 𝐾𝑖 ∈ G( (𝑙+1)𝜆

𝑖
0 )×𝑁 . This means that by a simple calculation, the total number of bits at level 𝑖

is 𝑂 (𝑇 /𝑁 𝑖 × (ℓ + 1)𝑖 × 𝜆𝑂 (𝑖
2 )

0 ). Thus for the above construction to work, we need to argue that there is
indeed compression at each step. This follows from the fact that 𝑁 is super-polynomial in 𝜆, and thus the
function is indeed compressing.

Further, since the same key𝐾𝑖 is used in all the blocks of level 𝑖 , the verifier only needs to do the offline
pre-computation once per level, and does 𝑑 such pre-computations in total. This gives us the following
corollary.

Corollary 3. Assuming sub-exponential hardness ofDDH, the above scheme is a somewhere extractable hash
scheme for large inputs with extraction in TC0 (Definition 11). Further, to commit to strings of length𝑇 , let 𝑁
be fixed such that log𝑁 (𝑇 ) = 𝑂 (1). Then, the offline pre-processing runs in time 𝑁 4poly(𝜆, ℓ), and the proof
size as well as the online verification is poly(ℓ, 𝜆0, 𝜆, log𝑁 ).

5.3 No-Signaling Somewhere Extractable Hash

We consider here a slight variant of a no-signaling somewhere extractable (NS-SE) hash introduced in
the work of [GZ21]. The no-signaling property, as described in the technical overview is imposed on
the extractor of the SEHash. Intuitively, an extractor for an SE scheme is said to be computationally no-
signaling if for any sets 𝑆 ′ ⊆ 𝑆 , where 𝑆 is of size at most 𝐿, the extracted values corresponding to the
indices in 𝑆 ′ have computationally indistinguishable marginal distributions whether extracted on set 𝑆 or
𝑆 ′.

Definition 12. The extractor of an SEHash hash scheme (Gen, TGen,Hash,Open,Verify, Ext) is no-signaling
if for any 𝑆 ′ ⊆ 𝑆 ⊆ [𝑁 ], where |𝑆 | ≤ 𝐿, and any PPT adversary D = (D1,D2) there exists a negligible
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function negl(·) such that for every 𝜆 ∈ N,������ Pr
 D2(𝐾∗, 𝑐, ®𝑦, 𝑧)

������ (𝐾
∗, td) ← TGen(1𝜆, 1𝑁 , 𝑆 ′)

(𝑐, 𝑧) ← D1(𝐾∗)
®𝑦 B Ext(𝑐, td)


− Pr

 D2(𝐾∗, 𝑐, ®𝑦𝑆 ′, 𝑧)

������ (𝐾
∗, td) ← TGen(1𝜆, 1𝑁 , 𝑆)

(𝑐, 𝑧) ← D1(𝐾∗)
®𝑦 B Ext(𝑐, td)


������ ≤ negl(𝜆)

We will refer to SEHash schemes satisfying the above definition to be an 𝐿-no-signaling NS-SEHash
hash scheme.

Theorem 7 ([GZ21]). Given 𝐿 instances of an SEHash hash scheme (Gen, TGen,Hash,Open,Verify, Ext)
with locality parameter 1, one can construct an 𝐿-no-signaling NS-SEHash. Furthermore, if SEHash has
succinct local openings, then so does NS-SEHash.

At a very high level, the construction of an 𝐿-no-signaling NS-SEHash makes use of 𝐿 repetitions of
the underlying SEHash. Thus if the underlying SEHash satisfies computational extraction correctness, so
does the resultant NS-SEHash.

6 SNARGs for Small-Circuit Batch-Index

In this section, we shall construct SNARGs for Small-Circuit Batch-Index. We start by defining SNARGs
for Batch NP, and then defining the special case relevant for this work, SNARGs for Batch-Index. Before
describing the construction, we cover the necessary background on PCPs and the properties relevant for
this work.

6.1 Definition

Let SAT be the following language

SAT = {(𝐶, 𝑥) | ∃ 𝑤 s.t. 𝐶 (𝑥,𝑤) = 1},

where 𝐶 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1} is a Boolean function, and 𝑥 ∈ {0, 1}𝑛 is an instance.
A non-interactive batch argument for SAT is a protocol between a prover and a verifier. The prover

and the verifier first agree on a circuit 𝐶 , and a series of 𝑇 instances 𝑥1, 𝑥2, . . . , 𝑥𝑇 . Then the prover sends
a single message to the verifier and tries to convince the verifier that (𝐶, 𝑥1), (𝐶, 𝑥2), . . . , (𝐶, 𝑥𝑇 ) ∈ SAT.

Definition 13 (SNARGs for Batch-NP). A SNARG for Batch-NP a tuple of algorithms (Gen, TGen, P,V)
that work as follows.

– Gen(1𝜆, 1𝑇 , 1 |𝐶 |) : On input a security parameter 𝜆, the number of instances𝑇 , and the size of the circuit
𝐶 , the CRS generation algorithm outputs crs.

– TGen(1𝜆, 1𝑇 , 1 |𝐶 | , 𝑖∗) : On input a security parameter 𝜆, the number of instances𝑇 , the size of the circuit
𝐶 and an index 𝑖∗, the trapdoor CRS generation algorithm outputs crs∗.

– P(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜔1, 𝜔2, . . . , 𝜔𝑇 ) : On input crs, a circuit 𝐶 , and 𝑇 instances 𝑥1, 𝑥2, . . . , 𝑥𝑇 and
their corresponding witnesses 𝜔1, 𝜔2, . . . , 𝜔𝑇 , the prover algorithm outputs a proof 𝜋 .

– V(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜋) : On input crs, a circuit 𝐶 , a series of instances 𝑥1, 𝑥2, . . . , 𝑥𝑇 , and a proof 𝜋 ,
the verifier algorithm decides to accept (output 1) or reject (output 0).

39



Furthermore, we require the aforementioned algorithms to satisfy the following properties.

– Succinct Communication. The size of 𝜋 is bounded by poly(𝜆, log𝑇, |𝐶 |).

– Compact CRS. The size of crs is bounded by poly(𝜆, log𝑇, |𝐶 |).

– Succinct Verification. The verification algorithm runs in time poly(𝜆,𝑇 , 𝑛)+poly(𝜆, log𝑇, |𝐶 |). More-
over, it can be split into the following two parts11:

– Pre-processing: There exists a deterministic algorithm PreVerify(crs, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ) that takes as
input the CRS, and𝑇 instances𝑥1, 𝑥2, . . . , 𝑥𝑇 , and outputs a short sketch 𝑐 , where |𝑐 | = poly(𝜆, log𝑇, |𝑥1 |).

– Online Verification: There exists an online verification algorithmOnlineVerify(crs, 𝑐,𝐶, 𝜋) that
takes as input the sketch 𝑐 , a circuit𝐶 , and a proof 𝜋 , and outputs 1 (accepts) or 0 (rejects). Further-
more, the running time of the online verification algorithm is poly(𝜆, |𝐶 |, |𝑐 |, |𝜋 |) = poly(𝜆, log𝑇, |𝐶 |).

– CRS Indistinguishability. For any non-uniform PPT adversary A, and any polynomial 𝑇 = 𝑇 (𝜆),
there exists a negligible function 𝜈 (𝜆) such that���� Pr

[
𝑖∗ ← A(1𝜆, 1𝑇 ), crs← Gen(1𝜆, 1𝑇 ) : A(crs) = 1

]
−

Pr
[
𝑖∗ ← A(1𝜆, 1𝑇 ), crs∗ ← TGen(1𝜆, 1𝑇 , 𝑖∗) : A(crs∗) = 1

] ���� ≤ 𝜈 (𝜆) .
– Completeness. For any circuit 𝐶 , any 𝑇 instances 𝑥1, . . . , 𝑥𝑇 such that (𝐶, 𝑥1), (𝐶, 𝑥2), . . . , (𝐶, 𝑥𝑇 ) ∈

SAT and witnesses 𝜔1, 𝜔2, . . . , 𝜔𝑇 for (𝐶, 𝑥1), (𝐶, 𝑥2), . . . , (𝐶, 𝑥𝑇 ), we have

Pr
[
crs← Gen(1𝜆, 1𝑇 , 1 |𝐶 |), 𝜋 ← P(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜔1, 𝜔2, . . . , 𝜔𝑇 ) :

V(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜋) = 1
]
= 1.

– Semi-Adaptive Somewhere Soundness. For any non-uniform PPT adversary A, and any polyno-
mial𝑇 = 𝑇 (𝜆), there exists a negligible function 𝜈 (𝜆) such that AdvsoundA (𝜆) ≤ 𝜈 (𝜆), where AdvsoundA (𝜆)
is defined as

Pr
[
𝑖∗ ← A(1𝜆, 1𝑇 ), crs∗ ← TGen(1𝜆, 1𝑇 , 𝑖∗), (𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) ← A(crs∗) :

𝑖∗ ∈ [𝑇 ] ∧ (𝐶, 𝑥𝑖∗) ∉ SAT ∧ V(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) = 1
]
.

– SomewhereArgument of Knowledge. There exists a PPT extractor 𝐸 such that, for any non-uniform
PPT adversary A, and any polynomial 𝑇 = 𝑇 (𝜆), there exists a negligible function 𝜈 (𝜆) such that

Pr
[
𝑖∗ ← A(1𝜆, 1𝑇 ), crs∗ ← 𝐸 (1𝜆, 1𝑇 , 𝑖∗), (𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) ← A(crs∗),

𝜔 ← 𝐸 (𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) : 𝐶 (𝑥𝑖∗, 𝜔) = 1
]
≥ Pr

[
𝑖∗ ← A(1𝜆, 1𝑇 ), crs← Gen(1𝜆, 1𝑇 ),

(𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) ← A(crs∗) : V(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) = 1
]
− 𝜈 (𝜆).

11We note this is a stronger property than previously considered. However, its is natural, and our construction achieves this
property.
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Moreover, the CRS generated by the extractor crs∗ ← 𝐸 (1𝜆, 1𝑇 , 𝑖∗) and the CRS in real execution crs←
Gen(1𝜆, 1𝑇 ) are computationally indistinguishable.

SNARGs for Batch-Index. We now define SNARGs for Batch-Index. We start by defining the index
language.

Definition 14 (Index Language). Let index language be the following language

Lidx = {(𝐶, 𝑖) | ∃ 𝑤 s.t. 𝐶 (𝑖,𝑤) = 1},

where 𝐶 is a Boolean function, and 𝑖 is an index.

SNARGs for batch-index is a special case of SNARGs for batch-NP when the instances 𝑥1, . . . , 𝑥𝑇 are
simply the indices 1, 2, . . . ,𝑇 . We therefore omit 𝑥1, 𝑥2, . . . , 𝑥𝑇 as inputs to the prover and the verifier
algorithms (and also as an output of the adversaryA describing the semi-adaptive somewhere soundness
property). Furthermore, since the verifier does not need to read the instances, there is no pre-processing
in this case, and the succinct verification property requires the verifier to run in time poly(𝜆, log𝑇, |𝐶 |).

6.2 Background: PCP

In this subsection, we define PCPs with a fast and low depth online verification property. At a high level,
such a property requires that for any PCP for the circuit satisfiability language

C-SAT = {𝑥 | ∃𝑤 : 𝐶 (𝑥,𝑤) = 1},

the verification algorithm can be split into two parts: (i) a query algorithm Q which generates the PCP
queries that depend on 𝐶 but are independent of 𝑥 ; and (ii) an online verification algorithm D, which
depends on 𝑥 but its running time grows only polylogarithmically in |𝐶 | and polynomially in |𝑥 |, further
that D can be implemented in TC0. It was shown in [CJJ21b] that the PCP in [BFLS91], and the probabilistic
checkable interactive proofs in [RRR16], can be modified to obtain a PCP with fast online verification, i.e.
without the low depth property. We sketch below how one can slightly modify Q to ensure that D can be
implemented in TC0.

The following text is taken largely verbatim from [CJJ21b], with the appropriate changes discussed.

Definition 15. For any Boolean circuit 𝐶 : {0, 1} |𝑥 | × {0, 1} |𝑤 | → {0, 1}, a PCPs with a fast and low depth
online verification property for C-SAT is a tuple of polynomial-time algorithms (P,Q,D), with the following
syntax.

– P(1𝜆,𝐶, 𝑥, 𝜔) : The prover algorithm takes as input a security parameter 𝜆, the circuit 𝐶 , an instance 𝑥
and its witness 𝜔 , and outputs a PCP proof 𝜋 ∈ {0, 1}∗.

– Q (1𝜆,𝐶, 𝑟 ) :On input the security parameter 𝜆, the circuit𝐶 , and the random coin 𝑟 , the query algorithm
generates a subset 𝑄 ⊆ [|𝜋 |], and a state st.

– D(𝑥, st, 𝜋 ′) : On input an instance 𝑥 , a state st, and a binary string 𝜋 ′ ∈ {0, 1} |𝑄 | , the online verification
algorithm D deterministically decides to accept (output 1) or reject (output 0).

Furthermore, we require the following properties of the PCP.

– Completeness. For any circuit 𝐶 , any instance 𝑥 ∈ C-SAT, and any witness 𝜔 for 𝑥 , we have

Pr
𝑟

[
𝜋 ← P(1𝜆,𝐶, 𝑥, 𝜔), (𝑄, st) ← Q (1𝜆,𝐶, 𝑟 ) : D(𝑥, st, 𝜋 |𝑄 ) = 1

]
= 1.
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– 𝜌 (𝜆)-Soundness. For any circuit 𝐶 , and any 𝑥 ∉ C-SAT, and any string 𝜋∗ ∈ {0, 1}∗,

Pr
𝑟

[
(𝑄, st) ← Q (1𝜆,𝐶, 𝑟 ) : D(𝑥, st, 𝜋∗ |𝑄 ) = 1

]
≤ 𝜌 (𝜆).

– Polynomial Proof Size. The size of the proof 𝜋 is bounded by poly(𝜆, |𝐶 |).

– SmallQuery Complexity. The size of the set 𝑄 is bounded by poly(𝜆, log |𝐶 |).

– Succinct Verification. The state st can be represented in poly(𝜆, |𝑥 |, log |𝐶 |) bits, and the online veri-
fication algorithm runs in time poly(𝜆, |𝑥 |, log |𝐶 |). The query algorithm Q runs in time poly(𝜆, |𝐶 |).

– Low Depth Verification. The online verification algorithm can be computed in TC0.

– 𝜌-Proof of Knowledge in TC0. For any PCP proof 𝜋∗, there exists a deterministic polynomial time
extractor 𝐸, that can be implemented in TC0, such that, if Pr𝑟 [(𝑄, st) ← Q (1𝜆,𝐶, 𝑟 ) : D(𝑥, st, 𝜋∗ |𝑄 ) =
1] > 𝜌 (𝜆), then Pr[𝜔 ← 𝐸 (𝜋∗) : 𝐶 (𝑥, 𝜔) = 1] = 1.

We first state a following claim. But before we do so, we specify the field that will be working with.
Specifically, F will be a field of characteristic 2, i.e. F = F2𝑛 . This is necessary condition for us to claim
that certain functions can be computed in TC0. For such fields, consider {𝛼𝑖 ∈ F}𝑖 , iterated addition (

∑
𝑖 𝛼𝑖 )

and iterated multiplication (
∏
𝑖 𝛼𝑖 ) can be computed in TC0 [HV06, HAM02]. Henceforth, for notational

simplicity, we will refer to these fields simply by F and drop the subscript.

Claim 1. For any set of𝑑+2 pairs in F2, {(𝑥1, 𝑦1), · · · , (𝑥𝑑+2, 𝑦𝑑+2)}, checking if (𝑥𝑑+2, 𝑦𝑑+2) lie on the degree𝑑
univariate polynomial specified by {(𝑥1, 𝑦1), · · · , (𝑥𝑑+2, 𝑦𝑑+1)} can be implemented in TC0 with pre-processed
input that depend only on 𝑥1, · · · , 𝑥𝑑+2.

Proof Sketch. At a high level, this is done by computing a degree 𝑑 univariate polynomial 𝐿(𝑥) that inter-
polates the the points {(𝑥1, 𝑦1), · · · , (𝑥𝑑+2, 𝑦𝑑+1)}, and then checking if 𝐿(𝑥𝑑+2) = 𝑦𝑑+2. Note that 𝐿(𝑥𝑑+2) =∑𝑑+1
𝑗=1 𝑦𝑑 𝑗 ℓ𝑗 (𝑥𝑑+2), where ℓ1, · · · , ℓ𝑑+1 is the Lagrange basis for polynomials of degree ≤ 𝑑 . The reader

can observe that given {ℓ𝑗 (𝑥𝑑+2)} 𝑗∈[𝑑+1] , computing 𝐿(𝑥𝑑+2) and comparing to 𝑦𝑑+2 can be done in TC0,
since iterated addition and field multiplication are in TC0. All we need to show is that {ℓ𝑗 (𝑥𝑑+2)} 𝑗∈[𝑑+1]
can be computed given 𝑥1, · · · , 𝑥𝑑+2. This follows directly from the definition of Lagrange basis, where
ℓ𝑗 (𝑥) B

∏
𝑖≠𝑗

𝑥−𝑥𝑖
𝑥 𝑗−𝑥𝑖 , thus proving our claim.

A low degree test for a polynomial 𝑓 : F𝑚 → F, given only oracle access to 𝑓 checks whether 𝑓 is a
polynomial of total degree12 𝑑 , rejecting if 𝑓 is “far” from any degree 𝑑 polynomial. We do not formalize
the notion of “far” since it is not relevant to our discussion, and we refer the reader to [RS96, AS03, Sud95]
for more details. We make the following observation about the low degree tests in [RS96, AS03, Sud95],
which will be useful for our setting.

Observation 1. There exists low degree tests for polynomial 𝑓 : F𝑚 → F, that can be implemented in
TC0 given pre-processing information that depends only on the queries made to 𝑓 , and not on the evaluated
responses on 𝑓 . 13

12Total degree refers to the sum of all individual degrees in an𝑚-variate polynomial.
13We note that this claim also extends to the case where one needs to check the individual degree of the polynomial (as opposed

to total degree in the observation). This follows from the fact that the individual degree test consists of (i) a total degree test (as
in the claim); followed by (ii) a univariate test by interpolating points as in Claim 1. See [GR15] for more details.
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Proof Sketch. At a high level, the tests in [RS96, AS03, Sud95] involves randomly sampling 𝑟, 𝑠 ←$ F𝑚 , and
𝑖 ←$ F. Next, the test queries 𝑓 at 𝑟, 𝑟 + 𝑠, 𝑟 + 2𝑠, · · · , 𝑟 + 𝑑𝑠 and 𝑟 + 𝑖𝑠 and accepts only if (𝑖, 𝑟 + 𝑖𝑠) lies on
the univariate polynomial 𝑝 , where 𝑝 ( 𝑗) = 𝑓 (𝑟 + 𝑗𝑠) for all 𝑗 ∈ {0, · · · , 𝑑}. Thus the verification reduces
to Claim 1, which means that the verification can be done in TC0 with pre-processing computed given
only 𝑟 , 𝑠 and 𝑖 . Note that there exists tests with fixed co-efficients 𝛼 𝑗 = (−1) 𝑗+1

(
𝑑+1
𝑗

)
such that one can

simply check whether
∑
𝑗 𝛼 𝑗 𝑓 (𝑟 + 𝑗𝑠) = 0. Looking ahead, we mention this test as this will be relevant in

us showing that extraction of the witness from the PCP can be done in TC0.

We are now ready to extend the lemma in [CJJ21b] to state the following.

Lemma 12. There exists a PCP with fast and low depth online verification property for the C-SAT language
with 𝜌-soundness, and 𝜌-proof of knowledge property, where 𝜌 = 1 − 1/poly log |𝐶 |.

Proof Sketch. We show that the PCP in [BFLS91], and the probabilistic checkable interactive proofs in
[RRR16], can be modified to obtain a PCP with fast online verification. For any circuit 𝐶 , by the Cook-
Levin Theorem, there exists a 3-CNF 𝜙 such that for any 𝑥 , 𝜙 (𝑥, ·) is satisfiable if and only if 𝑥 ∈ C-SAT.
Furthermore, for any witness 𝜔 of 𝑥 ∈ C-SAT, we can derive a witness 𝑦 for 𝜙 (𝑥, ·), where |𝑦 | = 𝑂 ( |𝐶 |).

Parameters and Ingredients. Let H be a field of size polylog|𝐶 |, and let F be a large enough extension
field of H with size poly log |𝐶 |. Let 𝑚𝑥 = log |H | |𝑥 |, and 𝑚𝑦 = log |H | |𝑦 |. Let 𝑚′ = log |H | ( |𝑥 | + |𝑦 |), and
𝑛 = |𝑥 |.

Let 𝐼 : H𝑚′ → {0, 1}, 𝐾 : H𝑚′ → Hmax(𝑚𝑥 ,𝑚𝑦 ) be the following polynomials.

𝐼 (𝑖) =
{

1 𝑖 ≤ 𝑛,
0 Otherwise.

𝐾 (𝑖) =
{
𝑖 𝑖 ≤ 𝑛,
𝑖 − 𝑛 Otherwise.

where we identify the index set [|𝑥 | + |𝑦 |] withH𝑚 . Let �̃� , 𝐾 be the extension of 𝐼 , 𝐾 to F, respectively. Then
�̃� and 𝐾 has degree at most poly(𝑚′). Let 𝑥 = LDE(𝑥), 𝑦 = LDE(𝑦) be the low-degree extension of 𝑥,𝑦 over
F, respectively.

Let 𝑃 (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) be the following polynomial.

𝑃 (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) =
∏

𝑗∈{1,2,3}

(̃
𝐼 (𝑖 𝑗 ) · 𝑥 (𝐾 (𝑖 𝑗 )) + (1 − �̃� (𝑖 𝑗 )) · 𝑦 (𝐾 (𝑖 𝑗 )) − 𝑏 𝑗

)
(1)

Let 𝐶′ : H3𝑚′+3 → {0, 1} be a circuit such that 𝐶′(𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) = 1 if and only if 𝑏1, 𝑏2, 𝑏3 ∈ {0, 1} and
(𝑥𝑖1 = 𝑏1) ∨ (𝑥𝑖2 = 𝑏2) ∨ (𝑥𝑖3 = 𝑏3) is a clause in the 3-CNF 𝜙 , and let 𝐶 : F3𝑚′+3 → F be the extension
of 𝐶′ to F. Then we have that 𝜙 (𝑥, ·) is satisfiable, if and only if there exists a 𝑦 such that the following
polynomial 𝐹 (𝑧) of 3𝑚′ + 3 variables is a zero polynomial:

𝐹 (𝑧) =
∑︁

𝑖1,𝑖2,𝑖3∈H𝑚′ ,𝑏1,𝑏2,𝑏3∈{0,1}

𝐶 (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) · 𝑃 (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) · Ẽq𝑖1,𝑖2,𝑖3,𝑏1,𝑏2,𝑏3 (𝑧)

Construction Sketch. The PCP construction is the unrolling of the following interactive protocol con-
sisting of two parts.

– Low-Degree Testing: The prover sends 𝑦 = LDE(𝑦). The verifier performs a low-degree test on 𝑦.

– Sumcheck: Then the verifier sends a random 𝑧∗ ∈ F3𝑚′+3. The prover and the verifier then execute
a sumcheck protocol to prove 𝐹 (𝑧∗) = 0. Let

𝜙𝑧∗ (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) = LDE({Ẽq𝑖1,𝑖2,𝑖3,𝑏1,𝑏2,𝑏3 (𝑧
∗)}𝑖1,𝑖2,𝑖3∈H𝑚′ ,𝑏1,𝑏2,𝑏3∈{0,1})
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be the low-degree extension of the linear coefficients Ẽq𝑖1,𝑖2,𝑖3,𝑏1,𝑏2,𝑏3 (𝑧
∗). Then the prover and the

verifier run the sumcheck protocol for the sum∑︁
𝑖1,𝑖2,𝑖3∈H𝑚′ ,𝑏1,𝑏2,𝑏3∈{0,1}

𝐶 (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) · 𝑃 (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) · 𝜙𝑧∗ (𝑖1, 𝑖2, 𝑖3, 𝑏1, 𝑏2, 𝑏3) = 0.

At the end of the sumcheck protocol, the verifier obtains a random point (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) ∈ F3𝑚′+3

(corresponding to its messages in the protocol) and a value 𝑣 ∈ F. The verifier then checks whether

𝐶 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑖∗1, 𝑏∗2, 𝑏∗3) · 𝑃 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) · 𝜙𝑧∗ (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) = 𝑣 . (2)

We now describe how to fit this PCP construction into our definition of PCP with fast online verifica-
tion.

– PCP.Q (1𝜆,𝐶, 𝑟 ): We now show that the PCP queries can be generated independently of 𝑥 . The PCP
query consists of the queries in (i) the low-degree testing of𝑦; and (ii) the sumcheck. The low-degree
testing queries only query some values of 𝑦. Hence, these queries are generated independently of
𝑥 . The sumcheck protocol is public-coin. Therefore, the queries in sumcheck can also be generated
independent of 𝑥 .
In addition, for the sumcheck, we do the following “preprocessing” to ensure low depth and small
time in online verification. For 𝐶 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3), we evaluate it directly, and store the resul-
tant value in the state st. Furthermore, to help the online verification algorithm (described be-
low) compute 𝑃 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) in time only polylogarithmic in |𝐶 |, we compute 𝐾 (𝑖∗𝑗 ), �̃� (𝑖∗𝑗 ) and
{Ẽq𝑖1,𝑖2,...,𝑖𝑚𝑥

(𝐾 (𝑖∗𝑗 ))}𝑖1,𝑖2,...,𝑖𝑚𝑥 ∈H for 𝑗 ∈ {1, 2, 3} in time poly(𝐶), and also store the resultant values
in the state st. Finally, we compute and store 𝜙𝑧∗ (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) in st. Finally, for the low degree
test, compute the necessary pre-computed state as defined in 1.
Since there are𝑂 ( |H|𝑛) number of field elements in the state st, the size of st is bounded by poly(𝜆, |𝑥 |, log |𝐶 |).

– PCP.D(𝑥, st, 𝜋 ′): We will show that given the state st, the verification runs in poly( |𝑥 |, log |𝐶 |) time,
and computable in TC0.
For the low-degree testing, the verifier performs the same verification procedure as the underlying
low-degree testing. This takes time poly(log |𝐶 |). Note that this uses the pre-computed values in st,
and thus can be computed in TC0.
For the sumcheck, the verifier performs the same checks as in the underlying sumcheck protocol.
At the end, the verifier uses the “preprocessed” values of𝐶 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) present in the state st.
To compute 𝑃 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2 .𝑏∗3), the verifier will obtain each term in Equation 1. For 𝐾 (𝑖∗𝑗 ), �̃� (𝑖∗𝑗 ), the
verifier can obtain them from the state st. For𝑦 (𝐾 (𝑖∗𝑗 )), the verifier obtains it from the PCP response
𝜋 ′. For 𝑥 (𝐾 (𝑖∗𝑗 )), the verifier computes it by the definition of low-degree extension (see Section 3.1)
using {Ẽq𝑖1,𝑖2,...,𝑖𝑚𝑥

(𝐾 (𝑖∗𝑗 ))}𝑖1,𝑖2,...,𝑖𝑚𝑥
in the state st. Since this is an iterated addition using the values

{Ẽq𝑖1,𝑖2,...,𝑖𝑚𝑥
(𝐾 (𝑖∗𝑗 ))}𝑖1,𝑖2,...,𝑖𝑚𝑥

contained in st, 𝑥 (𝐾 (𝑖∗𝑗 )) can be computed in TC0. Now the verifier
obtains all terms in Equation 1, and hence can compute 𝑃 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3). Further, by Equation 1,
𝑃 (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) is a product of sum of constant many terms, and thus can be computed in TC0.
Finally, the verifier obtains 𝜙𝑧∗ (𝑖∗1, 𝑖∗2, 𝑖∗3, 𝑏∗1, 𝑏∗2, 𝑏∗3) from the state st, and verifies Equation 2, which
can be computed in TC0.
For the running time, the computation of the low-degree extension 𝑥 (𝐾 (𝑖∗𝑗 )) takes time 𝑂 ( |𝑥 | ·
poly(log |𝐶 |)). Hence, the online verification takes time poly( |𝑥 |, log |𝐶 |) in total, and as discussed
for each component, computable in TC0.
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By the above running time analysis, the succinct verification property is satisfied. The low depth
verification also follows analogously. The small query complexity follows from the small query complexity
of the low-degree testing and the sumcheck protocol. Since the sumcheck has 𝑂 (𝑚′)-rounds, and the
prover sends 𝑂 (1) elements in F in each round, the unrolled proof has size |F|𝑂 (𝑚′ ) = poly( |𝐶 |). Hence,
polynomial proof size property follows.

The completeness and soundness follows from the completeness and soundness of the zero-testing and
the sumcheck protocol. The proof of knowledge property follows from the decoding of 𝑦.

Low Depth Extraction. The low degree test only guarantees that the 𝑦 is “close” to a degree 𝑑 polyno-
mial. To extract, one needs to apply a self-correction procedure[Sud95, GLR+91] to decode 𝑦. Specifically, if
the low degree test rejects with probability 𝜌 , then one can construct a polynomial 𝑔 of degree 𝑑 , that is
2𝜌 close to 𝑓 . For 𝑥 ∈ F𝑚 ,

𝑔(𝑥) = maj𝑠∈F𝑚

{
𝑑+1∑︁
𝑖=1

𝛼𝑖 · 𝑓 (𝑥 + 𝑖𝑠)
}

where 𝛼𝑖 = (−1)𝑖+1
(
𝑑+1
𝑖

)
.

We show that the above term can be computed in TC0. First note that we will chose F𝑚 such that
|F|𝑚 will be poly(𝜆). Thus, for each 𝑠 ∈ F𝑚 , we compute

∑𝑑+1
𝑖=1 𝛼𝑖 · 𝑓 (𝑥 + 𝑖𝑠), which is an iterated sum and

field multiplication, and can thus be done in TC0. Let the outputs be 𝑣1, · · · , 𝑣 |F |𝑚 . In order to compute
the majority, we first compute the frequency of each output, and then find the output that has the highest
frequency. Finding highest frequencies can be done in TC0 - let the elements of F be 𝛼1, · · · , 𝛼 |F | , the
frequency for each element 𝛼𝑖 can be computed as

∑
𝑗∈ |F |𝑚 (𝛼𝑖 = 𝑣 𝑗 ). The comparison of two elements in

F can be done in TC0, since this can be reduced to 𝑛 parallel copies of boolean equality comparison for
fields of characteristic 2. Let c(𝛼𝑖) be the count corresponding to 𝛼𝑖 . To check if 𝛼𝑖 has the highest count,
one computes

∧
𝑗 (c(𝛼𝑖) ≥ c(𝛼 𝑗 )), where each comparison is done in TC0, and the AND over polynomially

inputs can be implemented by a threshold gate, thus ensuring the entire computation is in TC0. This is
done for each 𝛼𝑖 Finally, output 𝛼𝑖∗ if the corresponding AND gate results in 1 (breaking ties arbitrarily).

Next, we define the bad relation for any PCP with fast and low depth online verification property with
an eye towards our SNARGs for small-circuit batch-index construction we describe next. As described in
the overview in section 2, we commit several PCP proofs “columnwise” using a somewhere extractable
hashand apply a CIH to these commitments to obtain the query PCP 𝑄 .

In the soundness proof, we first switch the commitment key to the trapdoor mode. The bad relation
is defined with respect to the trapdoor td of the commitment. Specifically, we can use td to extract a PCP
proof 𝜋 from the commitment. Now given the extracted proof 𝜋 , we define a query 𝑄 to be bad, when
𝜋 |𝑄 is accepting but we cannot extract a witness from 𝜋 . However, the verification algorithm not only
needs𝑄 , but also the state st. To resolve this issue, in the following definition, we have the CIH output the
randomness 𝑟 . We then use this randomness to generate 𝑄 and st via PCP.Q . The SEHash scheme used
below will have security parameter 𝜆0 where 𝜆 = 𝜆

𝑂 (log log𝜆0 )
0 .

Definition 16 (Bad relation for PCP). Let SEHash = (SEHash.Gen, SEHash.TGen, SEHash.Hash, SEHash.Open,
SEHash.Verify, SEHash.Ext) be a somewhere extractable hash scheme, and PCP = (P,Q,D) be any PCP with
fast online verification, we define the bad relation R = {R𝜆0}𝜆0 for PCP as follows.

For any instance length 𝑛 = 𝑛(𝜆0), witness length𝑚 = 𝑚(𝜆0), proof length ℓ = ℓ (𝜆0), and a parameter
𝑇 = 𝑇 (𝜆), we define the bad relation for PCP as R𝜆 = {𝑅𝜆0,𝑥,td}, where td is obtained from (𝐾∗, td) ←
SEHash.TGen(1𝜆0, 1𝑇 , 𝑖∗) for a index 𝑖∗ ∈ [𝑇 ], and

𝑅𝜆0,𝑥,td = {((𝐶, 𝑐), 𝑟 ) | 𝐶 (𝑥, 𝐸 (𝜋)) ≠ 1 ∧ D(𝑥, st, 𝜋 |𝑄 ) = 1},
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where (𝑄, st) = Q (1𝜆0,𝐶, 𝑟 ), 𝑐 = {𝑐𝑞}𝑞∈[ℓ ], 𝜋 = {SEHash.Ext(𝑐𝑞, td)}𝑞∈[ℓ ] , 𝐶 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1} is
a Boolean circuit, and 𝑥 is a string of length 𝑛, and 𝐸 is the proof of knowledge extractor.

Note that we do not require 𝑇 to be poly(𝜆0), it can be poly(𝜆).

Theorem 8 (CIH for PCP). There exists a PCP with fast and low depth online verification (P,Q,D) and a hash
family H such that, H is correlation intractable for its bad relation family R = {R𝜆0}𝜆0 (in Definition 16).
Furthermore,H can be evaluated in time poly(𝜆, |𝐶 |).

Proof. Intuitively, we will take the PCP in Lemma 12, and repeat its verification several times in parallel
(with independent randomness), and apply Lemma 1 to the resulting PCP.

Let PCP′ = (PCP′.P, PCP′.Q, PCP′.D) be the (1 − 𝜖)-sound PCP with fast online verification from
Lemma 12, where 𝜖 = 1/poly log |𝐶 |. We build a new PCP = (P,Q,D) as follows.

– P is the same as PCP′.P.

– Q (1𝜆0,𝐶, 𝑟 ): Parse 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑡 ), where 𝑡 = 𝜆3
0/𝜖 .

– For each 𝑖 ∈ [𝑡], let (𝑄𝑖 , st𝑖) = PCP′.Q (1𝜆0,𝐶, 𝑟𝑖).
– Output 𝑄 = (𝑄1, 𝑄2, . . . , 𝑄𝑡 ), st = (st1, st2, . . . , st𝑡 ).

– D(𝑥, st, 𝜋 ′) Parse 𝜋 ′ = (𝜋 ′1, 𝜋 ′2, . . . , 𝜋 ′𝑡 ), and st = (st1, st2, . . . , st𝑡 ).

– For each 𝑖 ∈ [𝑡], verify if PCP′.D(𝑥, st𝑖 , 𝜋 ′𝑖 ) = 1.
– If all verification passes, then output 1 (accept). Otherwise output 0 (reject).

– Proof of knowledge Extractor 𝐸: We use the proof of knowledge extractor of PCP′ as the extractor
for PCP.

The resultant PCP satisfies 𝜌 = (1 − 𝜖)𝑡 = 2−Ω (𝜆0 ) -soundness and 𝜌-proof of knowledge property.
By construction, for each security parameter 𝜆, instance 𝑥 , and trapdoor td, 𝑅𝜆,𝑥,td is a product relation,
since the bad relation for PCP is the product of the bad relations for PCP′. The bad relation for PCP′ is
efficiently verifiable in time poly(𝜆0, log𝑇, |𝐶 |), where |𝐶 | = poly(𝜆0). Further, given our discussion of the
PCP construction, the bad relation is also verifiable in TC0. Note that the online verification will take time
of the PCP will take time poly(𝜆0, |𝐶 |)

To demonstrate sparsity, for any instance𝑥 and extracted PCP proof𝜋 , if𝐶 (𝑥, 𝐸 (𝜋)) ≠ 1, then Pr𝑟 [(𝑄, st) ←
Q (1𝜆0,𝐶, 𝑟 ) : D(𝑥, st, 𝜋 |𝑄 ) = 1] ≤ 𝜌 , otherwise this contradicts the 𝜌-soundness of PCP. Since our con-
struction is a parallel repetition,

Pr
𝑟
[(𝑄, st) ← Q (1𝜆0,𝐶, 𝑟 ) : D(𝑥, st, 𝜋 |𝑄 ) = 1] = Pr

𝑟
[(𝑄, st) ← PCP′.Q (1𝜆0,𝐶, 𝑟 ) : PCP′.D(𝑥, st, 𝜋 |𝑄 ) = 1]𝑡 .

Hence, if the left hand is bounded by 𝜌 , then we have

Pr
𝑟
[(𝑄, st) ← PCP′.Q (1𝜆0,𝐶, 𝑟 ) : PCP′.D(𝑥, st, 𝜋 |𝑄 ) = 1] ≤ 1 − 𝜖.

Hence, the relation 𝑅𝜆0,td has sparsity (1−𝜖). Therefore, by Lemma 1, there exists a correlation intractable
hash familyH for R.
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6.3 Construction

In this section, we will use the constructed SEHash, and CIH for PCP to construct SNARGs for batch-index,
where the circuit is “small”. Specifically, we consider the setting where |𝐶 | = poly(𝜆0) where 𝜆 = 𝜆

log log𝜆0
0

is the security parameter of the scheme.
Our construction is identical to [CJJ21b], except that we replace (i) the SEHash with our constructed

SEHash assuming (sub-exponential hardness of) DDH; and (ii) the CIH with the CIH for small inputs. The
construction is presented in Section C for completeness, with the changes highlighted below. We argue
that these changes are sufficient to achieve the same result as [CJJ21b] for circuits with size poly(𝜆0), but
under the sub-exponential DDH assumption.

Differences from [CJJ21b]. We elaborate on the differences below.

1. To apply the input restricted CIH, we need to show that at each step, the input to the CIH is bounded
by poly(𝜆0). Since the CIH is applied on the SEHash which has security parameter 𝜆0, we only
need to argue that the circuit NewRel, and thus VerifyC, is bounded in size by poly(𝜆0). This simply
follows from the description ofVerifyC, which performs an online verification of (i) the local opening
of SEHash; and (ii) of the PCP responses. Since we have chosen the parameters appropriate (for PCP
and SEHash) that VerifyC is bounded in size by poly(𝜆0) as required at each step.

2. The proof follows in an identical manner, except that when we rely on primitives with security
parameter 𝜆0, we require the primitive to be (poly(𝜆), negl(𝜆)) where 𝜆 = 𝜆

log log𝜆0
0 . This follows

from the fact that in the security reductions to these primitives, since the parameter of the scheme
is 𝜆, the reduction will run a poly(𝜆) adversary that succeeds with probability 1/poly(𝜆). This can
be done by appropriately setting the security parameter of the underlying primitives.

3. Lastly, unlike in [CJJ21b], due to the efficiency constraints, we use the SEHash constructed in Sec-
tion 5.1, which only satisfies computational extraction correctness. This means that except with
negligible probability, if the SEHash opening proof is accepting, the uniquely extracted value from
the SEHash is the same as the value in the opening. This does not affect the security of the trans-
formation - as described in Section 6.2 the PCP extraction is done via the SEHash extractor, which
outputs a unique value given the commitment. This extracted value is used in the analysis, and one
can then simply argue that except with negligible probability, this corresponds exactly to the value
the adversary opens the SEHash commitment to. Here we continue to crucially rely on the fact that
given the SEHash key, the extracted value is statistically determined for any commitment.

This gives us the following theorem,

Theorem 9. Assuming the sub-exponential hardness of DDH, there exists a SNARG for small-circuit batch-
index with circuit size bounded by poly(𝜆0), where 𝜆 = 𝜆

log log𝜆0
0 is the security parameter of the SNARG.

7 SNARGs for P and Batch-NP

In this section, we describe how SNARGs for small-circuit batch-index can be used to obtain SNARGs for
P and Batch-NP. The transformations are fairly straightforward, and we only give a high-level sketch.

7.1 SNARGs for P

Similar to Section 6.3, our SNARG for P (more generally, SNARGs for RAM computation) is exactly the con-
struction in [CJJ21b] with minor changes: (i) the security parameter used for the underlying no-signalling
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somewhere extractable hash scheme and the tree hash scheme are 𝜆0, where 𝜆 = 𝜆
log log𝜆0
0 ; and (ii) use the

SNARGs for batch index for circuits of size poly(𝜆0). We present the definition for the more general setting
of RAM delegation, and a complete description of the construction in [CJJ21b] in Section D.

As in Section 6.3, the primitives with security parameter 𝜆0 will require (poly(𝜆), negl(𝜆)) security. All
that’s left to do is show that the index circuit that is batched is of size poly(𝜆0). From Figure 7, observe
that the index circuit𝐶index performs the online verification of the local openings of the NS-SEHash hash,
and then checks the circuit 𝜑 . Since the security parameter for both the NS-SEHash and hash tree scheme
are 𝜆0, it follows that |𝐶index | = poly(𝜆0). Thus, following [CJJ21b], we have the theorem.

Theorem 10. Assuming the sub-exponential hardness of DDH, for every polynomial 𝑇 = 𝑇 (𝜆), there exists
a publicly verifiably non-interactive RAM delegation scheme with CRS size, proof size and verifier time all
poly(𝜆, log𝑇 ) while the prover running time is poly(𝜆,𝑇 ).

7.2 SNARGs for Batch-NP

Here we will sketch the transformation that extends SNARGs for small circuits batch-index, to SNARGs for
batch-index, i.e. removing the small circuit requirements. As a corollary to this extension, from [CJJ21b]
we also achieve SNARGs for Batch NP. At a high level, we want to reduce the problem of SNARGs for
batch-index for a (potentially large) circuit𝐶 to many invocations of the SNARGs for small circuits batch-
index.

The idea is simple: each of these circuits will only verify a single gate14 in the original circuit 𝐶 , and
thus the total number of these new circuits will be 𝐷 = |𝐶 |, which we denote by 𝐶1, · · · ,𝐶𝐷 . As long as
we can show that 𝐶𝑖 = poly(𝜆0), the prover can send a batch index proof for each of these circuits, for a
multiplicative overhead in communication of |𝐶 |, which satisfies the succinctness requirement.

Let the number of gates be 𝐷 , and the number of wire values be 𝑊 = 𝑂 ( |𝐶 |). We have made the
simplifying assumption that both the fan-in and fan-out of the circuit is 2. Thus, we can define a function
𝐺 : [𝐷] ↦→ [𝑊 ]4, that maps the gate to its corresponding 4 wire indices. Thus, given the 4 wire values,
of gate 𝑗 , specified by 𝐺 ( 𝑗), the correctness of the gate can be checked in 𝑂 (1) time. We denote the four
indices by 𝐺 ( 𝑗)1,𝐺 ( 𝑗)2,𝐺 ( 𝑗)3,𝐺 ( 𝑗)4. Note that we need to ensure consistency across the circuits, else a
cheating prover will try to convince the verifier of 𝐷 independent circuits. We solve this by the following
method to batch 𝑇 instances:

1. Prover P computes the wire values for the index circuit 𝐶 , i.e. for instance 𝑖 , the wire values are
𝜔𝑖,1, · · · , 𝜔𝑖,𝑊

2. The prover uses a somewhere extractable hash SEHash to hash these in a column-wise fashion.
Specifically, 𝑐 = {𝑐 𝑗 } 𝑗∈[𝑊 ] where for each 𝑗 ∈ [𝑊 ], 𝑐 𝑗 B SEHash.Hash(𝐾,𝜔1, 𝑗 , · · · , 𝜔𝑇,𝑗 ).

3. The prover next defines 𝐷 index circuits 𝐶1, · · · ,𝐶𝐷 as follow:

(a) 𝐶 𝑗 has hardcoded 𝑐𝐺 ( 𝑗 )1, 𝑐𝐺 ( 𝑗 )2, 𝑐𝐺 ( 𝑗 )3, 𝑐𝐺 ( 𝑗 )4 , and the pre-processed state stSEHash of SEHash.
(b) On input 𝑖 and witness 𝑤𝑖, 𝑗 B (𝜔𝐺 ( 𝑗 )1, 𝜔𝐺 ( 𝑗 )2, 𝜔𝐺 ( 𝑗 )3, 𝜔𝐺 ( 𝑗 )4, 𝜋𝐺 ( 𝑗 )1, 𝜋𝐺 ( 𝑗 )2, 𝜋𝐺 ( 𝑗 )3, 𝜋𝐺 ( 𝑗 )4), runs

the online verification for SEHash to check if (i) the 𝜋𝑘 correspond to the local opening of 𝑐𝑘
to 𝜔𝑘 ; and (ii) 𝜔𝐺 ( 𝑗 )1, 𝜔𝐺 ( 𝑗 )2, 𝜔𝐺 ( 𝑗 )3, 𝜔𝐺 ( 𝑗 )4 satisfy the gate constraint for gate 𝑗 .

4. For each 𝑗 ∈ [𝐷], prover computes Π ← BARG.P(𝐶 𝑗 ,𝑇 , {𝑤𝑖, 𝑗 }𝑖∈[𝑇 ]).

5. Sends proof {Π 𝑗 } 𝑗∈[𝐷 ] to the verifier.
14For simplicity we assume that the gate has fan-in 2, and fan-out 2.
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If we set the security parameter of SEHash to be 𝜆0, then by succinct local opening property of SEHash
above description we have that for each 𝑗 , |𝐶 𝑗 | = poly(𝜆0). The somewhere soundness of the scheme
follows from (i) the somewhere extractability property of SEHash since once can generate the key for each
circuit 𝐶 𝑗 on the same input 𝑖∗; and (ii) somewhere soundness of the SNARGs for batch index of small
circuits. We thus have the following theorem.

Theorem 11 (SNARGs for Batch-Index). Assuming the existence of SNARGs for small-circuit batch-index
and somewhere extractable hash (SEH), there exists SNARGs for Batch-index where the size of the CRS and
proof is poly(𝜆, log𝑇, |𝐶 |), and the verification time is poly(𝜆, log𝑇, |𝐶 |).

Instantiating the primitives with the constructions in this paper, we have the following corollary.

Corollary 4. Assuming sub-exponential DDH, there exists SNARGs for Batch-index where the size of the
CRS and proof is poly(𝜆, log𝑇, |𝐶 |), and the verification time is poly(𝜆, log𝑇, |𝐶 |).

Finally, from [CJJ21b], we have the following corollary for SNARGs for Batch NP.

Corollary 5 (SNARGs for Batch NP). Assuming sub-exponential DDH, there exists SNARGs for Batch-
NP where the size of the CRS and proof is poly(𝜆, log𝑇, |𝐶 |), and the verification time is poly(𝜆,𝑇 , 𝑛) +
poly(𝜆, log𝑇, |𝐶 |).
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A Interactive Trapdoor Hashing Protocol

The following definition of interactive trapdoor hashing protocol is taken verbatim from [JJ21].
Let C = {C𝑛,𝑢}𝑛,𝑢 be a family of circuits, where each circuit 𝑓 ∈ C𝑛,𝑢 is a circuit of input length 𝑛

and output length 𝑢. An 𝐿-level interactive trapdoor hashing protocol for the circuit family C is a tuple of
algorithms ITDH = (KGen,Hash&Enc,Dec) that are described below.

We use 𝜆1, . . . , 𝜆𝐿 to denote the security parameters for different levels. Throughout this work, these
parameters are set so that they are polynomially related. That is, there exists a 𝜆 such that 𝜆1, . . . , 𝜆𝐿 are
polynomials in 𝜆.

– KGen(1𝜆ℓ , ℓ, 𝑓 , hℓ−1, tdℓ−1): The key generation algorithm takes as input a security parameter 𝜆ℓ (that
varies with the level number), a level number ℓ , a circuit 𝑓 ∈ C𝑛,𝑢 , a level (ℓ − 1) hash value hℓ−1 and
trapdoor tdℓ−1 (for ℓ = 1, hℓ−1 = tdℓ−1 = ⊥). It outputs an ℓ th level key kℓ and a trapdoor tdℓ .

– Hash&Enc(kℓ , 𝑥, eℓ−1): The hash-and-encode algorithm takes as input a level ℓ hash key kℓ , an input
𝑥 , and a level (ℓ−1) encoding eℓ−1. It outputs an ℓ th level hash value hℓ and an encoding eℓ ∈ {0, 1}𝑢 .
When ℓ = 1, we let eℓ−1 = ⊥.

– Dec(td𝐿, h𝐿): The decoding algorithm takes as input a level 𝐿 trapdoor td𝐿 and hash value h𝐿 , and
outputs a value d ∈ {0, 1}𝑢 .

We require ITDH to satisfy the following properties:

– Compactness: For each level ℓ ∈ [𝐿], the bit length of hℓ is at most 𝜆ℓ .

– (Δ, 𝜖)-Approximate Correctness: For any 𝑛,𝑢 ∈ N, any circuit 𝑓 ∈ C𝑛,𝑢 and any sequence of
security parameters (𝜆1, . . . , 𝜆𝐿), we have

Pr
𝑟1,𝑟2,...,𝑟𝐿

[∀𝑥 ∈ {0, 1}𝑛,Ham(e ⊕ d, 𝑓 (𝑥)) < Δ(𝑢)] > 1 − 𝜖 (𝑢, 𝜆1, . . . , 𝜆𝐿),

where e, d are obtained by the following procedure: Let h0 = td0 = e0 = ⊥. For ℓ = 1, 2, . . . , 𝐿,

– Compute (kℓ , tdℓ ) ← KGen(1𝜆ℓ , ℓ, 𝑓 , hℓ−1, tdℓ−1; 𝑟ℓ ) using random coins 𝑟ℓ .
– Hash and encode the input 𝑥 : (hℓ , eℓ ) ← Hash&Enc(kℓ , 𝑥, eℓ−1).

Finally, let e = e𝐿 be the encoding at the final level, and d = Dec(td𝐿, h𝐿).

– Leveled Function Privacy: There exist a simulator Sim and a negligible function 𝜈 (·) such that for
any level ℓ ∈ [𝐿], any polynomials 𝑛(·) and 𝑢 (·) in the security parameter, any circuit 𝑓 ∈ C𝑛,𝑢 , any
trapdoor td′ ∈ {0, 1} |tdℓ−1 | , any hash value h′ ∈ {0, 1} |hℓ−1 | , and any n.u. PPT distinguisher D,���� Pr

[
(kℓ , tdℓ ) ← KGen(1𝜆ℓ , ℓ, 𝑓 , h′, td′) : D(1𝜆ℓ , kℓ ) = 1

]
−

Pr
[̃
kℓ ← Sim(1𝜆ℓ , 1𝑛, 1𝑢, ℓ) : D(1𝜆ℓ , k̃ℓ ) = 1

] ���� ≤ 𝜈 (𝜆ℓ ) .
We say that the ITDH satisfies sub-exponential leveled function privacy, if there exists a constant
0 < 𝑐 < 1 such that for any non-uniform distinguisher that runs in time 𝜆𝑂 (log log𝜆)2 , 𝜈 (𝜆ℓ ) is bounded
by 2−𝜆𝑐ℓ for any sufficiently large 𝜆ℓ .
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Assuming sub-exponential DDH holds, [JJ21] provides the construction of ITDH for P/poly with sub-
exponential leveled function privacy. Here we only care about ITDH for𝑂 (log∗ 𝜆) depth threshold circuits.
We state the theorem from [JJ21] as follows.

Theorem 12 (Implicit in [JJ21]). Let {𝐿𝜆}𝜆∈N, {𝑤𝜆}𝜆∈N be two sequences of integers with 𝐿𝜆 = 𝑂 (log∗ 𝜆)
and𝑤 ≥ 𝜆, and {C𝜆,𝑤}𝜆,∈N be a class of threshold circuits of depth 𝐿 and output length𝑤 .

There exists a 2𝐿-level interactive trapdoor hashing protocol for {C𝜆}𝜆∈N that achieves (Δ, 𝜖)-approximate
correctness and sub-exponential function privacy, where Δ = 𝜆 and 𝜖 = 2−Ω (𝜆) , and we require that 𝜆1 < 𝜆2 <

. . . < 𝜆2𝐿 < 𝜆/2𝐿.
Moreover, if we assume the sub-exponential DDH assumption (as defined in Definition 1), then the con-

struction satisfies sub-exponential leveled function privacy.

B Proof of Theorem 5

Construction. The construction of our CIH is almost the same as the CIH in [JJ21]. We take it verbatim
here. The only difference is in the proof of correlation intractability.

CIH for 𝛼-Approximate Product Relations

– Gen(1𝜆):

– For each ℓ ∈ [𝐿], set 𝜆ℓ = 𝜆
1
2 (

𝑐
2 )

𝐿−ℓ .
– Compute simulated receiver’s messages for ITDH:

∀ℓ ∈ [𝐿], kℓ ← ITDH.Sim(1𝜆ℓ , 1𝑛, 1𝑤, ℓ)

– Sample a mask u← {0, 1}𝑤 uniformly at random.
– Output k =

(
{kℓ }ℓ∈[𝐿], u

)
.

– Hash(k, 𝑥):

– Parse k = ({kℓ }ℓ∈[𝐿], u).
– Let e0 = ⊥. Compute hash values and encodings for ITDH:

∀ℓ ∈ [𝐿], (hℓ , eℓ ) ← ITDH.Hash&Enc(kℓ , 𝑥, eℓ−1) .

– Output e ⊕ u, where e = e𝐿 .

Figure 4: Description of CIH.

Proof Sketch. We follow the proof in [JJ21] with some modifications. We prove Theorem 5 by contradiction.
Let {𝑓𝜆}𝜆∈N be a sequence of threshold circuits for {R𝜆}𝜆∈N with depth 𝐿 = 𝑂 (log∗ 𝜆) and let A be a n.u.
PPT adversary breaking the correlation intractability with probability 𝜖 (𝜆). We present a series of hybrids
in the proof of [JJ21] as follows.

For any relation 𝑅 ∈ R𝜆 , we use 𝑅𝑥 to denote the set {y ∈ Y𝑡𝜆
𝜆
| (𝑥, y) ∈ 𝑅}.

– Hyb0: In this hybrid, if the adversary’s attack successes, then output 1, otherwise output 0.
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– Sample the CIH key k← Gen(1𝜆), and run the adversary 𝑥 ← A(1𝜆, k).
– If Hash(k, 𝑥) ∈ 𝑅𝑥 , then output 1, otherwise output 0.

– Hybℓ
∗

1 : Here the index ℓ∗ ∈ {1, . . . , 𝐿 + 1}. This hybrid is almost the same as Hybℓ∗−1
1 (or Hyb0 when

ℓ∗ = 1), except that we additionally guess the hash value hℓ∗−1 by sampling h′
ℓ∗−1 from uniform

distribution. Hence Hyb1
1 = Hyb0.

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , ℓ∗ − 1, if ℓ > 1, let h′ℓ−1 ← {0, 1}𝜆ℓ−1 . Let

(kℓ , tdℓ ) ← ITDH.KGen(1𝜆ℓ , ℓ, 𝑓𝜆, h′ℓ−1, tdℓ−1)

– If ℓ∗ > 1, sample h′
ℓ∗−1 ← {0, 1}𝜆ℓ∗−1 uniformly at random. Let kℓ∗ ← ITDH.Sim(1𝜆ℓ∗ , 1𝑛, 1𝑤, ℓ∗).

– For ℓ = ℓ∗ + 1, . . . , 𝐿, let kℓ ← ITDH.Sim(1𝜆ℓ , 1𝑛, 1𝑤, ℓ).
– Sample u← {0, 1}𝑤 uniformly at random. Let k = ({kℓ }ℓ∈[𝐿], u).
– Run the adversary 𝑥 ← A(1𝜆, k).
– If Hash(k, 𝑥) ∈ 𝑅𝑥 and ∀𝑖 ∈ [ℓ∗ − 1], h′ℓ = hℓ , then output 1. Otherwise, output 0.

– Hybℓ
∗

1.5: Here the index ℓ∗ ∈ {1, . . . , 𝐿 + 1}. This hybrid is the same as Hybℓ∗1 , except that we replace
the ℓ th level key with a “real key” generated by ITDH.KGen.

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , ℓ∗, if ℓ > 1, let h′ℓ−1 ← {0, 1}𝜆ℓ−1 . Let

(kℓ , tdℓ ) ← ITDH.KGen(1𝜆ℓ , ℓ, 𝑓𝜆, h′ℓ−1, tdℓ−1)

– For ℓ = ℓ∗ + 1, . . . , 𝐿, let kℓ ← ITDH.Sim(1𝜆ℓ , 1𝑛, 1𝑤, ℓ).
– Sample u← {0, 1}𝑤 uniformly at random. Let k = ({kℓ }ℓ∈[𝐿], u).
– Run the adversary 𝑥 ← A(1𝜆, k).
– If Hash(k, 𝑥) ∈ 𝑅𝑥 and ∀𝑖 ∈ [ℓ∗ − 1], h′ℓ = hℓ , then output 1. Otherwise, output 0.

– Hyb2: This hybrid is the same as Hyb𝐿+11 .

– Let h0 = td0 = ⊥. For ℓ = 1, 2, . . . , 𝐿, if ℓ > 1, let h′ℓ−1 ← {0, 1}𝜆ℓ−1 . Let

(kℓ , tdℓ ) ← ITDH.KGen(1𝜆ℓ , ℓ, 𝑓𝜆, h′ℓ−1, tdℓ−1)

– Sample h′
𝐿
← {0, 1}𝜆𝐿 uniformly at random.

– Sample u← {0, 1}𝑤 uniformly at random. Let k = ({kℓ }ℓ∈[𝐿], u).
– Run the adversary 𝑥 ← A(1𝜆, k).
– If Hash(k, 𝑥) ∈ 𝑅𝑥 and ∀𝑖 ∈ [𝐿], h′ℓ = hℓ , then output 1. Otherwise, output 0.

With the same proof in [JJ21], we can get Pr[Hybℓ∗1.5 = 1] ≥ Pr[Hybℓ∗1 = 1] − 2−𝜆
𝑐
ℓ∗ and Pr[Hybℓ∗+11 = 1] ≥

Pr[Hybℓ∗1.5 = 1]/2𝜆ℓ∗ ,where 𝑐 is a constant. Next we modify the proof in [JJ21] to prove Pr[Hyb2 = 1] <
2−Ω (𝜆) .
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Bound the Probability Pr[Hyb2 = 1]. In Hyb2, we check if ∀𝑖 ∈ [𝐿], h′ℓ = hℓ . Note that if such check
passes, then Hash(k, 𝑥) = e ⊕ u in 𝑅𝑥 , where e is the encoding in the final level in an honest execution.
Hence,

Pr[Hyb2 = 1] ≤ Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥 : e ⊕ u ∈ 𝑅𝑥 ] ,

where 𝑟1, 𝑟2, . . . , 𝑟𝐿 are the random coins for the ITDH, and the encoding e is obtained from the following
procedure.

Let H0 = td0 = e0 = ⊥. For ℓ = 1, 2, . . . , 𝐿,
– Compute (kℓ , tdℓ ) ← ITDH.KGen(1𝜆ℓ , ℓ, 𝑓𝜆, hℓ−1, tdℓ−1; 𝑟ℓ ) with random coins 𝑟ℓ .

– Hash the input 𝑥 using the hash key (hℓ , eℓ ) ← ITDH.Hash&Enc(kℓ , 𝑥, eℓ−1)
Finally, let e = e𝐿 be the encoding at the final level, and also let d = ITDH.Dec(td𝐿,H𝐿). Since the ITDH
used in [JJ21] for 𝑂 (log∗ 𝜆)-depth threshold circuits satisfies (Δ = 𝜆, 𝜖 = 2−Ω (𝜆) )-approximate correctness
by Theorem 12, we have

Pr
𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥,Ham(e ⊕ d, 𝑓𝜆 (𝑥)) > 𝜆] < 2−Ω (𝜆) .

Hence, except with probability 2−Ω (𝜆) , we have that ∀𝑥,Ham(e ⊕ d, 𝑓𝜆 (𝑥)) ≤ 𝜆. Denote the Hamming
error vector between e ⊕ d and 𝑓𝜆 (𝑥) as 𝜀. Then we have 𝑓𝜆 (𝑥) = e ⊕ d ⊕ 𝜀, and the weight of 𝜀 is at most
𝜆. For any vector y ∈ Y𝑡 , given a set 𝑆 containing 𝛼𝑡 indexes 𝑖1, . . . , 𝑖𝛼𝑡 ∈ [𝑡], we use y|𝑆 to represent the
vector of (𝑦𝑖1, . . . , 𝑦𝑖𝛼𝑡 )𝑇 in Y𝛼𝑡 . Now, we have,

Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥 : (𝑥, e ⊕ u) ∈ 𝑅] ≤ Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥, 𝑆, |𝑆 | ≥ 𝛼𝑡 : e ⊕ u|𝑆 = 𝑓𝜆 (𝑥) |𝑆 ]

≤ Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥, 𝑆, |𝑆 | ≥ 𝛼𝑡 : e ⊕ u|𝑆 = 𝑓𝜆 (𝑥) |𝑆 ∧ ∀𝑥 : Ham(e ⊕ d, 𝑓𝜆 (𝑥)) ≤ Δ]

+ Pr
𝑟1,...,𝑟𝐿

[∃𝑥,Ham(e ⊕ d, 𝑓𝜆 (𝑥)) > Δ]

≤ Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥, 𝑆, |𝑆 | ≥ 𝛼𝑡 : e ⊕ u|𝑆 = 𝑓𝜆 (𝑥) |𝑆 ∧ ∃𝜀 : e ⊕ d = 𝑓𝜆 (𝑥) + 𝜀] + 2−Ω (𝜆)

≤
(
𝑡

𝛼𝑡

)
Pr

u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿
[∃𝑥, 𝜀 : e ⊕ u|𝑆 = e ⊕ d ⊕ 𝜀 |𝑆 ] + 2−Ω (𝜆)

≤
(
𝑡

𝛼𝑡

)
· Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥, 𝜀 : u|𝑆 = d ⊕ 𝜀 |𝑆 ] + 2−Ω (𝜆) .

The first inequality holds as 𝑅 is 𝛼-approximable by 𝑓𝜆 . The second inequality holds since we enumerate
all possibilities of whether Ham(e ⊕ d, 𝑓𝜆 (𝑥)) ≤ Δ holds or not. The third inequality follows from the
(Δ = 𝜆, 𝜖 = 2−Ω (𝜆) )-approximate correctness of ITDH. The fourth inequality holds by the union bound on
the set 𝑆 . The last one holds as we cancel e on both sides of the equation. Note that, for any fixed random
coins 𝑟1, 𝑟2, . . . , 𝑟𝐿 , the decoding value d only depends on h1, h2, . . . , h𝐿 . The number of possible choice of d|𝑆
is 2(𝜆1+𝜆2+...+𝜆𝐿 ) ≤ 22𝜆𝐿 ≤ 22𝜆1/2 . The number of possible values of 𝜀 |𝑆 is at most

( |𝑆 |
Δ

)
≤ (𝑒 |𝑆 |/Δ)Δ = 2𝑂 (𝜆) .

Hence, we have

Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥, 𝜀 : u|𝑆 = d ⊕ 𝜀 |𝑆 ] < 22𝜆1/2 · 2𝑂 (𝜆) ·
(

1
|Y|

) |𝑆 |
= 2𝑂 (𝜆) · 1

|Y|𝛼𝑡

In summary, we have

Pr
u←{0,1}𝑤 ,𝑟1,𝑟2,...,𝑟𝐿

[∃𝑥 : (𝑥, e ⊕ u) ∈ 𝑅] ≤
(
𝑡

𝛼𝑡

)
· 2𝑂 (𝜆)/|Y|𝛼𝑡 ≤

(
𝑒

𝛼 |Y|

)𝛼𝑡
· 2𝑂 (𝜆) .

If |Y| ≥ 2𝑒/𝛼 , then the above inequality can be bounded by 2−𝛼𝑡+𝑂 (𝜆) . Since we set 𝑡 ≥ 𝜆2/𝛼 , this
probability is bounded by 2−Ω (𝜆2 ) .
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Completing the Proof. Let 𝜖 (𝜆) = Pr[Hyb0 = 1]. We first claim that, for each ℓ∗ ∈ [𝐿 + 1], we have

Pr
[
Hybℓ

∗
1 = 1

]
≥ (𝜖 (𝜆) − ℓ∗2−𝜆2

1+2𝜆1)/22𝜆ℓ∗−1,

where 𝜆0 = 0.
We now prove this claim by induction on ℓ∗. For ℓ∗ = 1, since Hyb1

1 and Hyb0 are identical, we have
Pr

[
Hyb1

1 = 1
]
= Pr

[
Hyb0 = 1

]
≥ 𝜖 (𝜆). Hence, then the claim holds for ℓ∗ = 1. Now, we assume the claim

holds for ℓ∗, we prove that the claim holds for ℓ∗ + 1 as follows.
By Pr

[
Hybℓ

∗
1.5 = 1

]
≥ Pr

[
Hybℓ

∗
1 = 1

]
− 2𝜆

𝑐
ℓ∗ , we have

Pr
[
Hybℓ

∗
1.5 = 1

]
≥ Pr

[
Hybℓ

∗
1 = 1

]
− 2𝜆

𝑐
ℓ∗ ≥ (𝜖 (𝜆) − ℓ∗2−𝜆2

1+2𝜆1)/22𝜆ℓ∗−1 − 2−𝜆
𝑐
ℓ∗ .

By the choice of the parameters, we have 𝜆ℓ∗ = (𝜆ℓ∗−1)
2
𝑐 Hence, the right hand side is bounded by

𝜖 (𝜆) − ℓ∗2−𝜆2
1+2𝜆1/22𝜆ℓ∗−1 − 2−𝜆

2
ℓ∗−1 = (𝜖 (𝜆) − ℓ∗2−𝜆2

1+2𝜆1 − 2−𝜆
2
ℓ∗−1+𝜆ℓ∗−1)/22𝜆ℓ∗−1

≥ (𝜖 (𝜆) − (ℓ∗ + 1)2−𝜆2
1+2𝜆1)/22𝜆ℓ∗−1

By Pr
[
Hybℓ

∗+1
1 = 1

]
≥ Pr[Hybℓ∗1.5 = 1]/2𝜆ℓ∗ , then we have

Pr
[
Hybℓ

∗+1
1 = 1

]
≥ Pr[Hybℓ∗1.5 = 1]/2𝜆ℓ∗ ≥ (𝜖 (𝜆) − (ℓ∗ + 1)2−𝜆2

1+2𝜆1)/22𝜆ℓ∗−1+𝜆ℓ∗

> (𝜖 (𝜆) − (ℓ∗ + 1)2−𝜆2
1+2𝜆1)/22𝜆ℓ∗ .

Hence, we finish prove the claim.
By this claim, and the fact that Hyb2 is identical to Hyb𝐿+11 we know that

Pr[Hyb2 = 1] = Pr[Hyb𝐿+11 = 1] ≥ (𝜖 (𝜆) − (𝐿 + 1)2−𝜆2
1+2𝜆1)/22𝜆1/2

.

As Pr[Hyb2 = 1] < 2−Ω (𝜆) , we have

𝜖 (𝜆) < 2−Ω (𝜆)+2𝜆1/2 + (𝐿 + 1)2−𝜆2
1+2𝜆1 .

Since 𝐿 = 𝑂 (log∗ 𝜆) and 𝜆1 = 𝜆
𝑂 ( 1

log log log𝜆 ) , we finish the proof.

C Protocol: SNARGs for Small-Circuit Batch-Index

The following section is taken largely verbatim from [CJJ21b], with the differences highlighted below in
the description.

The description of the SNARGs for Batch-Index is recursive - to construct BARG𝐿 = (Gen, TGen, P,V)
at the 𝐿-level of recursion, the following components are used:

– A somewhere extractable hash (section 5.1) SEHash = (SEHash.Gen, SEHash.TGen, SEHash.Hash,
SEHash.Open, SEHash.Verify, SEHash.Ext, SEHash.PreVer, SEHash.OnlineVer ) with security param-
eter 𝜆0 .

– A PCP with fast and low depth verification PCP = (PCP.P, PCP.Q, PCP.D) with proof length ℓ =
ℓ (𝜆0, |𝐶 |) with security parameter 𝜆0 .

– A CIH (definition 2) H = (H .Gen,H .Hash) for the bad relation of PCP from Theorem 8 with
security parameter 𝜆0 .

– A non-interactive batch arguments at the (𝐿− 1)-level BARG𝐿−1 = (BARG𝐿−1.Gen,BARG𝐿−1.TGen,
BARG𝐿−1.P,BARG𝐿−1.V) with security parameter 𝜆.
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Circuit NewRel[𝐾,𝑄,{𝑐𝑞 }𝑞∈𝑄 ,st, stSEHash ]
(𝑖, ( ®𝜌, 𝜋 ′, ®𝜌 ′, 𝜋 ′′))

Output
VerifyC[𝐾,𝑄,{𝑐𝑞 }𝑞∈𝑄 ,st, stSEHash ]

(2𝑖 − 1, ®𝜌, 𝜋 ′) ∧ VerifyC[𝐾,𝑄,{𝑐𝑞 }𝑞∈𝑄 ,st, stSEHash ]
(2𝑖, ®𝜌 ′, 𝜋 ′′).

Figure 5: The grouped new circuit, where the ungrouped new circuit VerifyC is depicted in Figure 6.

Circuit VerifyC[𝐾,𝑄,{𝑐𝑞 }𝑞∈𝑄 ,st, stSEHash ]
(𝑖, ®𝜌, 𝜋 ′)

Hardwired: The commitment key 𝐾 , the set 𝑄 , the commitments {𝑐𝑞}𝑞∈𝑄 , the state st for PCP
verification and the state stSEHash for the SEHash online verification .

Parse the input ®𝜌 = {𝜌𝑞}𝑞∈𝑄 , and 𝜋 ′ = {𝜋 ′𝑞}𝑞∈𝑄 .

– For each 𝑞 ∈ 𝑄 , verify the online opening 𝜋 ′𝑞 to the commitment 𝑐𝑞 . Specifically, verify

∀𝑞 ∈ 𝑄, SEHash.OnlineVer (𝑐𝑞, 𝜋 ′𝑞, 𝑖, 𝜌𝑞, stSEHash) = 1.

– Verify 𝜋 ′ is accepted by the PCP online verification, i.e. verify PCP.D(st, 𝑖, 𝜋 ′) = 1.

– If all verification passes, then output 1 (accept), otherwise output 0 (reject).

Figure 6: The ungrouped new circuit.

Construction. We proceed to describe the construction. In the base case 𝐿 = 0 and 𝑇 = 1, we have the
prover send the witness directly to the verifier, and have the verifier verify the witness. When 𝐿 ≥ 1, we
reduce the batch argument to verify a batch of𝑇 /2 instances, and apply the (𝐿−1)-level BARG recursively.
In more detail, we construct BARG for 𝐿 ≥ 1 as follows.

– Gen(1𝜆, 1𝑇=2𝐿 , 1 |𝐶 |): The CRS generation algorithm generates a CRS, which contains (i) a somewhere
extractable hash key; (ii) a CRS for the smaller non-interactive batch arguments BARG𝐿−1; and (ii)
a key for the CIHH .

– Let𝐾 ← SEHash.Gen( 1𝜆0 , 1𝑇 , 11), crs′ ← BARG𝐿−1.Gen(1𝜆, 1𝑇
′
, 1 |NewRel |), andH .𝑘 ←H .Gen( 1𝜆0 ),

where 𝑇 ′ = 𝑇 /2.
– Let crs = (𝐾, crs′,H .𝑘) and output crs.

– TGen(1𝜆, 1𝑇 , 1 |𝐶 | , 𝑖∗): The trapdoor CRS generation algorithm generates the trapdoor CRS as follows.

– Generate (𝐾∗, td) ← SEHash.TGen( 1𝜆0 , 1𝑇 , {𝑖∗}),

– Let crs∗′ ← BARG.TGen(1𝜆, 1𝑇 ′, 1 |NewRel | , ⌊(𝑖∗ + 1)/2⌋), andH .𝑘 ←H .Gen( 1𝜆0 ).
– Let crs∗ = (𝐾∗, crs∗′,H .𝑘), and output crs∗.
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– P(crs,𝐶, 𝜔1, 𝜔2, . . . , 𝜔𝑇 ): The prover algorithm first commits to all PCP strings in a “columnwise”
manner, and then applies the CIH to the commitment.

– For each 𝑖 ∈ [𝑇 ], compute the PCP proof 𝜋𝑖 ← PCP.P( 1𝜆0 ,𝐶, 𝑖, 𝜔𝑖) for 𝑖-th instance (𝐶, 𝑖).
– Committing the 𝜋 = {𝜋𝑖}𝑖∈[𝑇 ] “columnwise”,

∀𝑞 ∈ [ℓ], 𝑐𝑞 ← SEHash.Hash(𝐾, {𝜋𝑖 |𝑞}𝑖∈[𝑇 ] ; 𝑟𝑞),

with uniformly random 𝑟𝑞 .

– Applying the CIH to 𝑐 = {𝑐𝑞}𝑞∈[ℓ ] , 𝑟 ←H .Hash(H .𝑘, (𝐶, 𝑐)), and let (𝑄, st) ← PCP.Q ( 1𝜆0 ,𝐶, 𝑟 ).
– For each 𝑖 ∈ [𝑇 ], let ®𝜌𝑖 be the opening of 𝜋𝑖 |𝑄 . Specifically,

®𝜌𝑖 = { SEHash.Open (𝐾, {𝜋𝑖 |𝑞}𝑖∈[𝑇 ], 𝑖, 𝑟𝑞)}𝑞∈𝑄 .

– Compute a smaller BARG proof, let

Π′ ← BARG′.P(crs′,NewRel[𝐾,𝑄,{𝑐𝑞 }𝑞∈𝑄 ,st, stSEHash ]
, { ®𝜌2𝑖−1, 𝜋2𝑖−1 |𝑄 , ®𝜌2𝑖 , 𝜋2𝑖 |𝑄 }𝑖∈[𝑇 ′ ]),

where NewRel is depicted in Figure 5.
– Output the proof Π = (𝑐,Π′).

– V(crs,𝐶,Π): The verification algorithm parses the proof Π as the commitment and the proof for the
smaller BARG, then it utilizes the fast online verification property of the PCP to delegate the online
verification to the smaller BARG.

– Parse Π = (𝑐,Π′). Applying CIH to 𝑐 , let 𝑟 ←H .Hash(H .𝑘, (𝐶, 𝑐)).
– stSEHash B PreVer(𝐾) .

– Generate the PCP query, (𝑄, st) ← PCP.Q ( 1𝜆0 ,𝐶, 𝑟 ).
– Verify the smaller BARG, output BARG𝐿−1.V(crs′,NewRel[𝐾,𝑄,{𝑐𝑞 }𝑞∈𝑄 ,st, stSEHash ]

,Π′).

D Protocol: SNARGs for P

The following text is taken largely verbatim from [CJJ21b], where the definitions are from [KPY19].

D.1 Turing Machine Delegation

Consider a Turing machineM. A publicly verifiable non-interactive delegation scheme forM consists of
the following polynomial time algorithms:

Del.S - randomized setup algorithm that on input security parameter 1𝜆 , time bound𝑇 and input length
𝑛 outputs a pair of public keys - prover key pk and verifier key vk.

Del.P - deterministic prover algorithm that on input prover key pk and an input 𝑥 ∈ {0, 1}𝑛 outputs a
proof Π.

Del.V - deterministic verifier algorithm that on input verifier key pk, input 𝑥 ∈ {0, 1}𝑛 and proof Π
outputs either 0 or 1.

For any Turing machineM, we define the corresponding languageUM below,

UM B
{
(𝑥,𝑇 )

��M accepts 𝑥 within 𝑇 steps
}
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Definition 17. A publicly verifiable non-interactive delegation scheme (Del.S,Del.P,Del.V) for M with
setup time 𝑇S = 𝑇S(𝜆,𝑇 ) and proof length 𝐿Π = 𝐿Π (𝜆,𝑇 ).

Completeness. For every 𝜆,𝑇 , 𝑛 ∈ N such that 𝑛 ≤ 𝑇 ≤ 2𝜆 , and 𝑥 ∈ {0, 1}𝑛 such that (𝑥,𝑇 ) ∈ UM ,

Pr
[
Del.V(vk, 𝑥,Π) = 1

���� (pk, vk) ← Del.S(1𝜆,𝑇 , 𝑛)
Π B Del.P(pk, 𝑥)

]
= 1

Efficiency. In the completeness experiment above,

– Del.S runs in time 𝑇S.
– Del.P runs in time poly(𝜆,𝑇 ) and outputs a proof of length 𝐿Π .
– Del.V runs in time 𝑂 (𝐿Π) + 𝑛 · poly(𝜆).

Soundness. For every PPT adversary A and pair of polynomials 𝑇 = 𝑇 (𝜆) and 𝑛 = 𝑛(𝜆) there exists a
negligible function negl(cot) such that for every 𝜆 ∈ N,

Pr
[
Del.V(vk, 𝑥,Π) = 1
(𝑥,𝑇 ) ∉ UM

���� (pk, vk) ← Del.S(1𝜆,𝑇 , 𝑛)
(𝑥,Π) ← A(pk, vk)

]
≤ negl(𝜆)

D.2 RAM Delegation

A RAM machine of word size ℓ is modeled as a deterministic machine with random access to memory of
size 2ℓ where the local state of the machine has size only𝑂 (ℓ). At each time step, the machine updates its
local state by either reading or writing a single memory. At any given time, the memory and the local state
together represent the configuration cf of the machine. For simplicity, we assume that the machine has no
input outside of its local state and memory, and the word size ℓ will correspond to the security parameter
𝜆.

A publicly verifiable non-interactive delegation scheme for R consists of the following polynomial
time algorithms:

RDel.S - randomized setup algorithm that on input security parameter 1𝜆 , time bound 𝑇 outputs a
triple of public keys - prover key pk, verifier key vk and a digest key dk.

RDel.D - deterministic digest algorithm that on input digest key dk and configuration cf outputs a
digest h.

RDel.P - deterministic prover algorithm that on input prover key pk and a pair of source and destination
configurations cf, cf′ outputs a proof Π.

RDel.V - deterministic verifier algorithm that on verifier key pk, pair of digests h, h′ and proof Π out-
puts either 0 or 1.

For any machine R, we define the corresponding languageUR below,

UR B
{
(ℓ, cf, cf′,𝑇 )

�� R with word size ℓ transitions from cf to cf′ in 𝑇 steps
}

Definition 18. A publicly verifiable non-interactive delegation scheme (RDel.S,RDel.D,RDel.P,RDel.V) for
R with setup time 𝑇S = 𝑇S(𝜆,𝑇 ) and proof length 𝐿Π = 𝐿Π (𝜆,𝑇 ).

Completeness. For every 𝜆,𝑇 ∈ N such that 𝑛 ≤ 𝑇 ≤ 2𝜆 , and cf, cf′ ∈ {0, 1}∗ such that (𝜆, cf, cf′,𝑇 ) ∈
UR ,

Pr

 RDel.V(vk, h, h′,Π) = 1

��������
(pk, vk, dk) ← RDel.S(1𝜆, )
h B RDel.D(dk, cf)
h′ B RDel.D(dk, cf′)
Π B Del.P(pk, cf, cf′)

 = 1
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Efficiency. In the completeness experiment above,

– RDel.S runs in time 𝑇S.
– RDel.D on input cf runs in time |cf | · poly(𝜆) and outputs a digest of length 𝜆.
– RDel.P runs in time poly(𝜆,𝑇 , |cf |) and output a proof of length 𝐿Π .
– RDel.V runs in time 𝑂 (𝐿Π) + poly(𝜆).

Collision resistance. For every PPT adversary A and pair of polynomials 𝑇 = 𝑇 (𝜆)there exists a neg-
ligible function negl(cot) such that for every 𝜆 ∈ N,

Pr
[
cf ≠ cf′

RDel.D(dk, cf) = RDel.D(dk, cf′)

���� (pk, vk, dk) ← RDel.S(1𝜆,𝑇 , 𝑛)
(cf, cf′) ← A(pk, vk, dk)

]
≤ negl(𝜆)

Soundness. For every PPT adversary A and pair of polynomials 𝑇 = 𝑇 (𝜆)there exists a negligible func-
tion negl(·) such that for every 𝜆 ∈ N,

Pr


RDel.V(vk, h, h′,Π) = 1
(𝜆, cf, cf′,𝑇 ) ∈ UR
h = RDel.D(dk, cf)
h′ ≠ RDel.D(dk, cf′)

�������� (pk, vk, dk) ← RDel.S(1𝜆,𝑇 , 𝑛)
(cf, cf′, h, h′,Π) ← A(pk, vk, dk)

 ≤ negl(𝜆)

As discussed in [KPY19], the notion of RAM delegation considered in their work is different from those
in prior works [KP16, BHK17] - namely that in prior works the adversary was not required to output the full
configuration explicitly, only that it was difficult to produce accepting proofs for two different statements
(h, h′) and (h, h′′) that share the same initial digest. We refer the reader to [KPY19] for a more detailed
comparison of the notions.

The following theorem establishes that RAM delegation implies Turing machine delegation for the
definitions described above.

Theorem 13 ([KPY19]). Suppose that for any RAM machine there exists a publicly verifiable non-interactive
delegation scheme with setup time𝑇 ′S and proof length 𝐿

′
Π . Then for any Turing machine there exists a publicly

verifiable non-interactive delegation scheme with setup time𝑇S and proof length 𝐿Π where𝑇S(𝜆,𝑇 ) = 𝑇 ′S (𝜆,𝑇 ′),
𝐿Π (𝜆,𝑇 ) = 𝐿′Π (𝜆,𝑇 ′) for 𝑇 ′ = 𝑂 (𝑇 ).

RAMmachine steps to circuit satisfiability. We use the translation from a single step of the machine
R as described in [KPY19]. Without loss of generality, assume that every step of R consists of a single
read operation, followed by a single write operation. Therefore, a single step can be decomposed into the
following deterministic polynomial time algorithms:

StepR: On input the local state st of R, outputs the memory location ℓ that R while in state st would read
from.

StepW: On input the local state st and bit 𝑏, outputs a bit 𝑏′, memory location ℓ ′ and state st′ such that R
while in state st on reading bit 𝑏 would write 𝑏′ to location ℓ ′ and then transition to new local state
st′.

We denote by 𝜑 the circuit representing a single step of R, i.e. given a pair of digests h = (st, rt),
h′ = (st′, rt′), bit 𝑏 and proof Π,Π′ there exists an efficiently computable 𝑤 (given (h, h′, 𝑏,Π,Π′)) such
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that 𝜑 (h, h′, 𝑏,Π,Π′,𝑤) = 1 if and only if

ℓ = StepR(st)
(𝑏′, ℓ ′, st′′) = StepW(st, 𝑏)

st′ = st′′

HT.VerRead(dk, rt, ℓ, 𝑏,Π) = 1
HT.VerWrite(dk, rt, ℓ ′, 𝑏′, rt′,Π′) = 1

From the efficiency of the hash tree scheme, there exists a 𝜑 such that the above can be represented as a
formula of 𝐿 = poly(𝜆) variables.

We will use 𝜑𝑖 to denote the 𝑖-th step in the above formula 𝜙 . Note that the subscript will be helpful in
our discussion of security, but the circuits themselves are identical for all 𝑖 .

For 𝑇 steps of R, we then have the following formula 𝜙 over 𝑀 B 𝑂 (𝐿 ·𝑇 ) variables:

𝜙

(
h0,

{
h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖

}
𝑖∈[𝑇 ]

)
B

∧
𝑖∈[𝑇 ]

𝜑𝑖 (h𝑖−1, h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖)

Note that the above formula is not an index language. This is because for all 𝑖 , 𝜑𝑖 and 𝜑𝑖+1 share a
part of the witness, something not handled by the index language since we would have to ensure that the
(partial) witness is the same. As described in the technical overview, we handle this by using a NS-SEHash
to commit to the witnesses, and then prove for each 𝑖 that values in the commitment satisfy the clause 𝜙𝑖 .
The no-signaling property will help ensure consistency of the shared witness across different clauses 𝜑𝑖
and 𝜑𝑖+1. The changes from [CJJ21b] are highlighted.

– An𝐿-no-signaling-SEHash hash schemeNS-SEHash = (NS-SEHash.Gen,NS-SEHash.TGen,NS-SEHash.Hash,
NS-SEHash.Open,NS-SEHash.Verify,NS-SEHash.Ext, NS-SEHash.PreVer,NS-SEHash.OnlineVer ) with
security parameter 𝜆0 .

– A non interactive batch argument for an index language (BARG.Gen,BARG.TGen,BARG.P,BARG.V)
with security parameter 𝜆 for circuits of size poly(𝜆0) .

– A hash tree scheme (HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite) with secu-
rity parameter 𝜆0 .

RDel.S(1𝜆,𝑇 ): Generate the public parameters for the underlying primitives

𝐾 ← Gen( 1𝜆0 , 1𝑀 , 1𝐿), crs← BARG.Gen(1𝜆, 1𝑇 , 1 |𝐶index |), dk← HT.Gen( 1𝜆0 ).

Ouput (pk B (𝐾, crs, dk), vk B (𝐾, crs), dk).

RDel.D(dk, cf = (st, 𝐷)): Compute the hash tree,

(tree, rt) B HT.Hash(dk, 𝐷)

Output h B (st, rt).

RDel.P((pk, dk), cf, cf′): Prover emulates R for 𝑇 steps from cf to cf′ to obtain the satisfying assignment
for 𝜙 as follows: define

(st0, 𝐷0) B cf, (tree0, rt0) B HT.Hash(dk, 𝐷0), h0 B (st0, rt0)
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Then for every 𝑖 ∈ [𝑇 ]

ℓ𝑖 = StepR(st𝑖−1),
(𝑏𝑖 ,Π𝑖) B HT.Read(tree𝑖−1, ℓ𝑖),
(𝑏′𝑖 , ℓ ′𝑖 , st𝑖) B StepW(st𝑖−1, 𝑏𝑖),
(tree𝑖 , rt𝑖 ,Π′𝑖 ) B HT.Write(tree𝑖−1, ℓ

′
𝑖 , 𝑏
′
𝑖 ),

h𝑖 B (st𝑖 , rt𝑖)

and then compute (efficiently)𝑤𝑖 be such that 𝜑𝑖 (h𝑖−1, h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖) = 1.
Compute the no-signaling commitment to (h0, {h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖}𝑖∈[𝑇 ])

𝑐 B NS-SEHash.Hash
(
𝐾,

(
h0,

{
h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖

}
𝑖∈[𝑇 ]

))
For every 𝑖 ∈ [𝑇 ], compute the local opening to the commitment:

For 𝐴 ∈
{
h𝑖−1, h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖

}
,

𝜌𝐴 B NS-SEHash.Open(𝐾,𝐴, 𝑅)

Compute the circuit𝐶index as described below, and then compute the proof of the underlying BARG

Π B BARG.P
(
crs,𝐶index,

{
h𝑖−1, h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖 , 𝜌h𝑖−1, 𝜌h𝑖 , 𝜌𝑏𝑖 , 𝜌Π𝑖

, 𝜌Π′
𝑖
, 𝜌𝑤𝑖

}
𝑖∈[𝑇 ]

)
Output (𝑐,Π).

RDel.V(vk, h, h′,Π): Given 𝑐 and 𝐾 , compute

stNS-SEHash B NS-SEHash.PreVer(𝐾) ,

compute 𝐶index (described below) and output 1 if and only if

BARG.V (crs,𝐶index,Π) = 1
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Circuit 𝐶index

Hardwired: 𝐾, 𝑐, 𝜑, , stNS-SEHash
Input: 𝑖, h𝑖−1, h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖 , 𝜌h𝑖−1, 𝜌h𝑖 , 𝜌𝑏𝑖 , 𝜌Π𝑖

, 𝜌Π′
𝑖
, 𝜌𝑤𝑖

Output: Output 1 if and only if

1. Verify commitment openings:

(a) NS-SEHash.OnlineVer(𝑐, h𝑖−1, 𝜌h𝑖−1, stNS-SEHash) = 1

(b) NS-SEHash.OnlineVer(𝑐, h𝑖 , 𝜌h𝑖 , stNS-SEHash) = 1

(c) NS-SEHash.OnlineVer(𝑐, 𝑏𝑖 , 𝜌𝑏𝑖 , stNS-SEHash) = 1

(d) NS-SEHash.OnlineVer(𝑐,Π𝑖 , 𝜌Π𝑖
, stNS-SEHash) = 1

(e) NS-SEHash.OnlineVer(𝑐,Π′𝑖 , 𝜌Π′𝑖 , stNS-SEHash) = 1

(f) NS-SEHash.OnlineVer(𝑐,𝑤𝑖 , 𝜌𝑤𝑖
, stNS-SEHash) = 1

2. 𝜑𝑖 (h𝑖−1, h𝑖 , 𝑏𝑖 ,Π𝑖 ,Π′𝑖 ,𝑤𝑖) = 1

Figure 7: Circuit 𝐶index.
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