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Abstract. For arbitrary finite field Fq, q > 2 we prove that known q-
regular bipartite algebraic graphs A(n, q) existence on 2qn vertices have
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of these results on Extremal Graph Theory and graph based Algebraic
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1 Some results of Extremal Graph Theory

Classical Extremal Graph Theory developed by Erdős’ and his school had been
started with the following problem formulated by Turan.

What is the maximal value ex(v, Cn) for the size (number of edges) of simple
graph on v vertices without cycles Cn of length n? (see [1], [2], [3], [4])

To discuss the behavior of function ex(v, Cn) for large variable v we will use
the following standard notations.

Let f and g be two real valued functions on (a,∞).
1. f(x) <=> g(x), x→∞ if f(x)/g(x)→ 1 for x→∞;
2. f(x) = o(g(x)), x→∞ if f(x)/g(x)→ 0 for x→∞;
3. f(x) = O(g(x)), x→∞ if there exist C and x0 such that |f(x)| < C|g(x)|

for all x > x0;
4. f(x) = Ω(g(x)), x → ∞ if there exist a c > 0 and a sequence x1, x2, . . .

such that |f(xi)| ≥ c|g(xi)| for all i ≥ 1.
If n = 2k + 1 is odd positive integer we can assume that positive integer v

is even and take the complete bipartite graph with the partition sets of same
cardinality v/2. It contains v2/4 vertices, so ex(v, C2k+1) = O(v2).
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If n is even, then according to famous Erdős’ Even Circuit Theorem ex(v, C2k) =
O(v1+1/k). This proof was obtained by famous Erdős’ probabilistic method. Re-
call that the upper bound of the theorem is known to be sharp ex(v, C2k) =
Ω(v1+1/k) for k = 2, 3 and 5 only (see [4], [5], [7] for n = 2 and [6] for n = 3, 5).

The girth g(G) of the simple graph G is the length of its smallest cycle. The
studies of maximal size ex(v, C3, C4, . . . , Cn) for graph on v vertices without
cycles C3, C4, . . . , Cn, i.e. graphs of girth > n historically had been motivated
by their applications to Telephone Networking. As it follows from Erdős’ Even
Circuit Theorem ex(v, C3, C4, . . . , C2n) = O(v1+1/n).

More precise evaluations lead to the following bounds:

ex(v, C3, C4, . . . , C2k, C2k+1) ≤ (1/2)1+1/kv1+1/k + o(v1+1/k) (1)

ex(v, C3, C4, . . . , C2k) ≤ (1/2)v1+1/k + o(v1+1/k) (2)

The inequality (1) is established in [5] for all integers k ≥ 2. The upper bound
(2) can be obtained by similar arguments.

Similar to the case of ex(v, C2n) both bounds (1) and (2) are known to be
sharp up to magnitude for n = 2, 3 and 5 only.

The first general lower bounds of kind

ex(v, C3, C4, . . . , Cn) ≥ Ω(v1+c/n) (3)

where c is some constant was obtained in 50th by famous Erdos via studies
of families of graphs of large girth, i.e. infinite families of simple regular graphs
Gi of degree k, k > 2 and order vi such that the girth g(Gi) is ≥ γlogk−1(vi),
where γ is the independent of i constant. We refer to γ as speed of growth of
the family.

P.Erdős’ proved the existence of such a family with arbitrary large but
bounded degree k with γ = 1/4 by his famous probabilistic method.

Novadays several explicit families of graphs of large girth with unbounded
girth and arbitrarily large k are known. Among them reader can find the family
of Ramanujan-Cayley graphs X(p, q) had been defined in [8] and investigated in
[9], the family of bipartite algebraic graphs CD(n, q) defined in [10].

Notice that ex(v, C2k) ≥ ex(v, C3, C4, . . . , C2k+1). The best known lower
bound for k 6= 2, 3, 5 was obtained in [10]:

ex(v, C3, C4, . . . , C2k+1) = Ω(v1+2/(3k−3+e)) (4)

where e = 0 if k is odd, and e = 1 if k is even.

Family of graphs CD(n, q) were used for the justification of this bound.

The main result of this paper which is essential improvement of bound (4).
It is written below.

THEOREM 1.1.

ex(v, C3, C4, . . . , C2k+1) = Ω(v1+1/(k+1)) (5)

COROLLARY 1.1.

C ′v1+1/(k+1) ≤ ex(v, C2k) ≤ Cv1+1/k for certain constants C and C ′.

CONJECTURE 1.1.

(i) If n = 4 or n > 6 then ex(v, C2n) <=> cv1+1/(n+1) for some constant c.

Noteworthy that for n = 2, 3, 5 the equivalence ex(v, C2n) <=> cv1+1/n

holds for some c.
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Theorem 1.1 follows from the results on properties of the family of q-regular
bipartite graphs A(n, q) (see [11], [12], [13]) of order 2qn and further investigation
of their girths.

Noteworthy that speed of grows of girth of family of Cayley-Ramanujan
graphs X(p, q) of fixed degree p is 4/3. The speed of growth of girth of q-regular
graphs CD(n, q) tends to 4/3 from below when parameter q is growing. Alex
Lubotzky conjectured that 4/3 is the maximal possible speed of growth of the
girth. The existence of graphs A(n, q), q ≥ 4 of girth ≥ 2n disproves this conjec-
ture.

We can see that speed of growth of the girth of family A(n, q), n = 2, 3, . . .
tends to 2 when q is growing. Speed of girth grows for family of graphs A(n, q),
n = 2, 3, . . . is > 4/3 if q is at least 4.

As it formulated in [11] family A(n, q), q ≥ 3 like Cayley-Ramanujun graphs
is a family of small world graphs of bounded degre and large girth, well defined
projectibe limit A(q) of A(n, q) is isomorphic to q-regular tree Tq. Noteworthy
that in the case of family of Cayley-Ramanujan graphs of large girth the projec-
tive limit does not exist.

Recall that the girth and diameter of a graph are the minimal length of its
cycle and the maximal distance of the graph. We can consider the girth indicator
Cind(v) of a vertex v of the graph G as the minimal length of the cycle through
v and introduce a cycle indicator Cind(G) of the graph as the maximal value of
Cind(v) for its vertices. It was shown in [11] that graphs A(n, q), n = 2, 3, . . .
have maximal posible cycle indicator 2n + 2. We can prove that girth of the
graph A(n, q) is at most 2n for n > 6. So if n > 6 graphs A(n, q) are not vertex
transitive,

2 Case of algebraic graphs

The constructions of finite or infinite graphs with prescribed girth and diameter
is an important and difficult task of the graph theory. Noteworthy that the
incidence of the classical projective geometry over various fields is a graph of
girth 6 and diameter 3.

J. Tits defined generalized m-gons as bipartite graphs of girth 2m and diam-
eter m. Feit and Higman proved that finite generalized m-gons with bi-degrees
> 2 exist only in the cases of m = 3, 4, 6, 8, and 12. Geometries of finite simple
groups of rank 2 are natural examples of generalized m-gons for m = 3, 4, 6, 8.
Classification of flag transitive generalized m-gons of the Moufang type were
obtained by J. Tits and R. Weiss.

Let F be a field. Recall that a projective space over F is a set of elements con-
structed from a vector space over F such that a distinct element of the projective
space consists of all non-zero vectors which are equal up to a multiplication by a
non-zero scalar. Its subset is called a quasiprojective variety if it is the set of all
solutions of some system of homogeneous polynomial equations and inequalities.

An algebraic graph φ over F consists of two things: the vertex set Q being
a quasiprojective variety over F of non-zero dimension and the edge set being a
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quasiprojective variety φ in Q×Q such that (x, x) is not element of φ for each
x ∈ Q and xφy implies yφx (xφy means (x, y) ∈ φ).

The graph φ is homogeneous (or N -homogeneous), if for each vertex u ∈
Q, the set {x|uφx} is some quasiprojective variety M(u) over F of a non-zero
constant dimension N independent on the choice of N . We further assume that
each M(u) contains at least 3 elements. We refer to codim(φ) = dim(V )/N as
codimension of an algebraic graph φ.

THEOREM 2. 1. [14].
Let Γ be the homogeneous algebraic graph over a field F of girth g such that

the dimension of a neighborhood for each vertex is N , N ≥ 1. Then codim(Γ ) =
dim(V )/N ≥ [(g − 1)/2].

The following corollary is an analog of Even Circuit Theorem by Erdős’.
COROLLARY 2. 1.
Let Γ be a homogeneous graph over a field F , F 6= F2 and let E(Γ ) be a

variety of its edges. Then dim(E(Γ )) ≤ dim(V (Γ ))(1 + [(g − 1)/2]−1).
We introduce v(g, F ), F 6= F2 as milimal value of codim(Γ ) for homogeneous

algrbraic graph Γ over F of girth g. We refer to v(g, F ) as algebraic rank of
girth g over field F . We introduce v(g) as minimum v(g, F ) for various fields F ,
F 6= F2 and refer to it as absolute rank of g.

COROLLARY 2.2.
v(g, F ) ≥ [(g − 1)/2] and v(g) ≥ [(g − 1)/2].
THEOREM 2.2.
If g is even positive integer ≥ 4 and F 6= F2 then v(g, F ) ∈ {(g − 2)/2, g/2}

for each field F ..
COROLLARY 2.3.
v(g) ∈ {(g − 2)/2, g/2}.

3 The construction of graphs A(n,K) over
commutatative ring K and their properties

Let K be a commutative ring. We define A(n,K) as a bipartite graph with the
point set P = Kn and line set L = Kn (two copies of a Cartesian power of
K are used). We will use brackets and parenthesis to distinguish tuples from
P and L. So (p) = (p1, p2, . . . , pn) ∈ Pn and [l] = [l1, l2, . . . , ln] ∈ Ln. The
incidence relation I = A(n,K) (or the corresponding bipartite graph I) is given
by condition p and l, if and only if the equations of the following kind hold:

p2 − l2 = l1p1,
p3 − l3 = p1l2,
p4 − l4 = l1p3, (6)
p5 − l5 = p1l4,
. . . ,
pn − ln = p1ln−1 for odd n and
pn − ln = l1pn−1 for even n.
Graphs A(m,K) were obtained in [11] as quotients of graphs D(n,K) (see

[10] and further references).
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The graphs A(n,K) obtained as special homomorphic images (see [11], [12]
of graphs D(n,K) (see [7]) which defines the projective limit D(K) with points

(p) = (p01, p11, p12, p21, p22, p22, . . . , pii, pii+1, pi+1,i, pi+1,i+1, . . . ),

lines

[l] = [l10, l11, l12, l21, l22, l22, . . . , lii, lii+1, li+1,i, li+1,i+1, . . . ].

which can be thought of as infinite sequences of elements in K such that only
finitely many components are nonzero.

We now define an incidence structure (P , L, I) with the partition sets P and
L as follows. We say that a point (p) is incident with a line [l], and write (p)I[l],
if their coordinates obey the following relations:

li,i−pi,i=l1,0pi−1,i
,

l′i,i − p′i,i = li,i−1p0,1,

li,i+1 − pi,i+1 = li,ip0,1, (7)

li+1,i − pi+1,i = l1,0p
′
i,i.

(These four relations are well defined for i > 1, p1,1 = p′1,1, l1,1 = l1,1.) This
incidence structure (P,L, I) is denoted by D(K).

We speak now of the incidence graph of (P,L, I) with vertex set P ∪ L and
edge set consisting of all pairs {(p), [l]} for which (p)I[l]. For each positive integer
k ≥ 2, we obtain an incidence structure (Pk, Lk, Ik) as follows. Firstly, Pk and Lk
are obtained from P and L, respectively, by simply projecting each vector onto
its k initial coordinates. The incidence Ik is then defined by imposing the first
k − 1 incidence relations and ignoring all the other ones. The incidence graph
corresponding to the structure (Pk, Lk, Ik) is denoted by D(k,K).

These incidence relations are motivated by the linear interpretation of Lie
geometries in terms of their Lie algebras [23] (see [24]).

Let us define the root subgroups Uα, where the root α belongs Root = Ã1 =
{(01), (11), (11), (12), (21), (22)′, (22), . . . , (i, i), (ii)′, (i, i+ 1), (i+ 1, i), . . . }. The
group Uα is generated by the root transformations tα(x), x ∈ K, of P ∪ L,
α ∈ Root were defined in the case of arbitrary commutative ring K in the [11].
The transformation t0,1(x) is an automorphism of D(K) which transform point
(p) as above to point with first coordinate p01 + x and line [l] to line with first
coordinate l10. Similarly the transformation t1,0,(x) is an automorphism of D(K)
which moves line [l] to a line with first coordinate l10 + x and point (p) to the
poin with first coordinate p01. Assume that elements of Root are listed above in
the fixed natural order <. For α outside the set of simple roots (01) and (10) we
consider graph automorphism tα(x), x ∈ K which leavs coordinate pβ of point
(p) and lβ of line [l] without change and moves p to pα + x and lα to lα + x. It
is easy to see that group U generated by various Uα acts transitively on sets of
points, lines and edges of the graph.

We define an incidence structure with point set P ′ and line set L′ isomorphic
to K∞ which is a totality of tuples over K with a finite support. It will be
convenient for us to denote vectors from P ′ as

x = (x) = (x0,1, x1,1, x1,2, x2,2, . . . , xi,i, xi,i+1, . . . )

and vectors from L as

y = [y] = [y1,0, y1,1, y1,2, y2,2, . . . , yi,i, yi,i+1, . . . ].
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We say that a point (x) is incident with a line [y] and write xIy or (x)I[y] if
the following conditions are satisfied:

yi,i − xii = xi−1,iy1,0,

yi,i+1 − xi,i+1 = x1,0yi,i, (8)

where i = 1, 2, . . . .

We denote the graph of incidence relation of this incidence structure as A(K).

We can identify the set of points P of graph D(K) as function from R0,1 =
Root − {(1, 0)} to K and the set of lines L with affine space of functions from
R1,0 = Root−{(0, 1)} toK We consider the subsetsRoot′ = {(01), (10), (11), (12), (22), (23), . . . },
R′0,1 = R0,1 ∩ R′ and R′1,0 = R1,0, ∩ R′ of Root of Root. It allows us to identify
sets P ′ and L′ with affine subspaces {f : R′0,1 → K} and {f : R′1,0 → K} of P
and L respectively.

It is easy to see that restrictions of R0,1) and R1,0 onto R′0,1) and R′1,0 induce

projections of affine spaces P anf L onto P ′ and L′ and homomorphism η of
graph D(K) onto the graph A(K).

We can check that element tα(x), α ∈ R′0,1, x ∈ K preserves affine subspaces

P ′ and L′. Restriction of this transformation on P ′ ∪ L′ is automorphism t̃α of
the graph A(K),

PROPOSITION 3.1.

Group Ũ of automorphisms of A(K) generated by various t̃α(x), α ∈ R0,1,
x ∈ Ktα(x), α ∈ R0,1, x ∈ K acts transitively on the point set P ′.

Let kR′0,1 be the set of first k elements of R′0,1 accordingly to the chosen

order. Symbol kR′1,0 stands for the set of first k elements of R1,0. It is easy to

see that restrictions of elements from P ′ and L′ on kR′0,1 and kR′1,0 form affine

spaces kPk and kL. We use kP and kL as partition set of incidence structute
I(k,K) with incidence relation defined by first k − 1 equations of A(K). It is
possible to write points and lines simply as (x1, x2, . . . , xk) and [y1, y2, . . . , yk]
and rerite equations in the form 6. So I(k,K) are isomorphic to A(k,K).

PROPOSITION 3.2.

Group ˜kU of automorphisms of A(k,K), k ≥ 2 generated by various t̃β,
β ∈ R′0,1, x ∈ K acts transitively on the point set kP .

LEMMA 3.1 (two numbers lemma accordingly [11]).

Let (0)[1y]I(2y)I . . . Iny be a path in the graph A(n,K), n ≥ 4, starting
at the zero point ((0) = (0, 0, . . . , 0)) and determined by a sequence of colors
0, x1, x2, . . . , xn−1, xn. Then the last two components of the vertex ny are α =
x2(x1 − x3) . . . (xn−3 − xn−1(xn − xn−2) and β = −xn−1α. where x2 6= 0, xi 6=
xi+2, i = 1, 2, . . . , n− 2.

The fact that graphs A(n, q), q > 2, n = 2, 3, . . . form a family of large girth
was stated in [13] together with the first lower bound for the girth of A(n,K)
where K is a commutative integrity ring. The following statement essentially
imroves this bound.

THEOREM 3.1.

Let K be a commutative integrity ring. Then the girth of graph A(n,K) is
≥ 2n. If K is a field then the girth of A(n,K) is 2n or 2n+ 2.
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PROOF. Graphs A(2,K), and A(3,K) are isomorphic to graphs D(2,K) and
D(3,K) of girth at least 6 and 8 respectively. Let us consider graph A(n,K),
n ≥ 4. Let us assume that it contains cycle C of length 2n − 2. Automorphism
group of A(n,K) is point transitive. So without loss of generality we can assume
that (0, 0, . . . , 0) is an element of C. It contains distinct neighbours [x1, 0, . . . , 0]
and [y1, 0, . . . , 0] of this point within the cycle C.

We can assume that one of the colours say x1 differs with 0.
Then cycle contains the path (0, 0, . . . , 0), [x1, 0, 0, . . . , 0], (x2,−x1x2. . . . , 0),

. . . , vn. Last two coordinates of vn are α = x2(x1 − x3) . . . (xn−3 − xn−1)(xn −
xn−2) and β = −xn−1α accordingly to previous lemma.

Noteworthy that conditions x2 6= 0 xi 6= xi+2, i = 1, 2, . . . , n− 2 insure that
all vertices of the path are different. The cycle C of length 2n − 2 has to be
complited by adding the chainn with starting vertex [y1, 0, . . . , 0] and elements
of colour y2, y3, . . . , yn−2. We can check that last vertex u of this chain will be
the vertex with list of coordinates of kind yn−2, . . . , 0, 0. To make a cycle we need
u = v but n− 1-th coordinate of v differs from zero. So we get a contrudiction.
We prove absence of cycles of kind C2n−2 in A(n,K).

Noteworthy that absence of Cycles C2n−2s in A(n−s,K) insures that A(n,K)
does not have cycles of length 2n− 2s.

So girth of A(n,K) is > 2n− 2. Let us assume that K is a field and girth of
graph A(n,K) is > 2n+ 2. Then codim(A(n,K) < [(g − 1)/2] and it contradict
to Theorem 2.1. So g(A(n,K) is 2n or 2n+ 2.

REMARK. Theorems 1.1 and 2.2 follow directly from Theorem 3.1.

4 On Extremal Algebraic Graphs and Cryptography
based on multivariate maps over commutative rings

Extremal algebraic graphs were traditionally used for the construction of stream
ciphers of multivariate nature (see [18] and further references, [19] and [22] where
multivariate maps of unbounded degree used). Described above graphs D(n,K)
and A(n,K) were intensively used. Later first graph based multivariate public
keys with injective encryption maps were suggested in [20],[21]. These construc-
tions use graphs A(n,K) and Eulerian transformation of Kn to produce public
rule as multivariate transformation of linear degree and polynomial density. So
they differs from classical constructions of multivariate public rules of degre 2 or
3 which were investigated during NIST standartisation project started in 2017.

This project starts the standardisation process of possible Post-Quantum
Public keys aimed for purposes to be (i) encryption tools, (ii) tools for digital
signatures (see [15]).

In July 2020 the Third Round of the competition started. In the category of
Multivariate Cryptography (MC) remaining candidates are easy to observe. For
the task (i) multivariate algorithm was not selected, single multivariate candidate
is ”The Rainbow Like Unbalanced Oil and Vinegar” (RUOV) digital signature
method. As you see RUOV algorithm was investigated as appropriate instrument
for the task (ii). Due to this investigation RUOV was not selected for the next.



8 New results of Extremal Graph Theory

4th round of NIST competition. In 2022 first 4 winners of the NIST competition
were selected. So NIST certification do not select any of algorithm of Multivariare
Cryptography.

Noteworthy that all multivariate NIST candidates were presented by multi-
variate rule of degree bounded by constant (2 or 3) of kind x1 → f1(x1, x2, . . . , xn),
x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn). In fact RUOV is given by
quadratic system of polynomial equations.

We think that NIST outcomes motivate investigations of alternative options
in Multivariate Cryptography oriented on encryption tools for

(a) the work with the space of plaintexts Fq
n and its transformation G of

linear degree cn, c > 0 on the level of stream ciphers or public keys

(b) the usage of protocols of Noncommutative Cryptography with platforms
of multivariate transformations for the secure elaboration of multivariate map G
from End(Fq[x1, x2, . . . , xn]) of linear or superlinear degree and density bounded
below by function of kind cnr, where c > 0 and r > 1.

We hope that these alternative options together with classical multivariate
public key approach are able to bring reliable encryption algorithms.

Recall that the density is the number of all monomial terms in a standard
form xi → gi(x1, x2, . . . , xn), i = 1, 2, . . . , n of multivariate map G, where poly-
nomials gi are given via the lists of monomial terms in the lexicographical order.

We use presented above family of small world graphs A(n.q) and their analogs
A(n,K) defined over finite commutative ring K with unity for the construction
of multivariate group GA(n,K) of transformations of Kn.

It can be used as platform for postquantum protocols of Noncommutative
Cryptography (see [16]) and creation of multivariate protocol based cryptosys-
tems. This approach allows to convert graph based symmetric ciphers to protocol
based asymmetric algorithms of El Gamal type (see [17]).

Presented above results on the girth of linguistic graphs A(n,K) over com-
mutative integrity ring can be used for investigation of groups GA(n,K) and
other subgroups and subsemigroups of transformations of Kn defined via walks
in graphs A(n,K) and A(n,K[x1, x2, . . . , xn]). Some statements about degrees
of elements of these semigroups are already obtained. So studies of girth of graph
A(n,K) make essential impact on studies of A(n,K) based ciphers of Multivari-
ate nature and properties of Asymmetric Cryptosystems which use these graphs.
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