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Abstract. In this work, we first propose a new functional bootstrap-
ping with TFHE for evaluating any function of domain and codomain
the real torus T by using a small number of bootstrappings. This result
improves some aspects of previous approaches: like them, we allow for
evaluating any functions, but with better precision. In addition, we de-
velop more efficient multiplication and addition over ciphertexts building
on the digit-decomposition approach of [GBA21]. As a practical applica-
tion, our results lead to an efficient implementation of ReLU, one of the
most used activation functions in deep learning. The paper is concluded
by extensive experimental results comparing each building block as well
as their practical relevance and trade-offs.

1 Introduction

Machine learning application to the analysis of private data, such as health or
genomic data, has encouraged the use of homomorphic encryption for private
inference or prediction with classification or regression algorithms where the ML
models and/or their inputs are encrypted homomorphically [Xie+14; Cha+17;
Cha+19; Bou+18; ZCS20; ISZ19a; ZS21]. Even training machine learning models
with privacy guarantees on the training data has been investigated in the cen-
tralized [JA18; CKP19; Nan+19; Lou+20] and collaborative [Séb+21; Mad+21]
settings. In practice, machine learning algorithms and especially neural networks
require the computation of non-linear activation functions such as the sign, ReLU
or sigmoid functions. Computing non-linear functions homomorphically remains
challenging. For levelled homomorphic schemes such as BFV [Bra12; FV12] or
CKKS [Che+17], non-linear functions have to be approximated by polynomials.
However, the precision of this approximation differs with respect to the consid-
ered plaintext space (i.e., input range), approximation polynomial degree and
its coefficients size, and has a direct impact on the multiplicative depth and pa-
rameters of the cryptosystem. The more precise is the approximation, the larger
are the cryptosystem parameters and the slower is the computation. On the
other hand, homomorphic encryption schemes implementing bootstrapping such



as TFHE [Chi+16; Chi+19] or FHEW [DM15] can be tweaked to encode func-
tions via look-up table evaluations within their bootstrapping procedure. Hence,
rather than being just used for refreshing ciphertexts (i.e., reducing their noise
level), the boostrapping becomes functional [BST19] or programmable [CJP21]
by allowing the evaluation of arbitrary functions as a bonus.

In this work, we further investigate the capabilities of TFHE functional boot-
strapping. In 2016, the TFHE paper made a breakthrough by proposing an
efficient bootstrapping for homomorphic gate computation. Then, Bourse et al.,
[Bou+17] and Izabachene et al., [ISZ19b] used the same bootstrapping algorithm
for extracting the (encrypted) sign of an encrypted input. Boura et al., [Bou+19]
showed later that TFHE bootstrapping could be extended to support a wider
class of functionalities. Indeed, TFHE bootstrapping naturally allows to encode
function evaluation via their representation as look-up tables (LUTs). Recently,
different approaches have been investigated for functional bootstrapping im-
provement. In particular, Kluczniak and Schild [KS21] and Yang et al., [Yan+21]
proposed two methods that take into consideration the negacyclicity of the cy-
clotomic polynomial used within the bootstrapping, for encoding look-up tables
over the full real torus T. Meanwhile, Guimarães et al., [GBA21] extended the
ideas in Bourse et al., [BST19] to support the evaluation of certain activation
functions such as the sigmoid.

Contributions – In this paper, we review, unify and extend the capabilities of
TFHE functional bootstrapping. We strive to present the main existing methods
as well as new variants. We compare their relative accuracy and performance as
well as discuss their main pros and cons. Indeed, on top of the extensions that we
present, we aim for this paper to be a complete reference for anyone looking to
get a view of the state of functional bootstrapping. As such, several methods for
LUTs evaluation using functional bootstrapping are presented: the usual method
using one bit of padding (described clearly in [CJP21]), two methods coming from
recent papers that work without padding [KS21; Yan+21], one novel approach
also working without padding, and a method using digit decomposition of the
inputs in order to get an arbitrary large plaintext space (presented initially by
Bourse et al., [BST19] and generalized later by Guimarães et al. [GBA21]). The
first method encodes the plaintext space in [0, 1

2 [, i.e., the segment of the real
torus T corresponding to the positive numbers. Meanwhile, the other methods
use the full torus for encoding the plaintext space and propose various solutions
to cope with the negacyclicity of TFHE bootstrapping when used for evaluating
LUTs. A novel way we present to achieve this is to use several bootstrappings
one after the other to cancel the negacyclicity of a single bootstrapping. Finally,
the decomposition method allows working with larger plaintext spaces. Its main
idea is to decompose each plaintext into small digits which allows keeping TFHE
parameters small enough to lead to performance improvements. We generalize
the chaining method of [GBA21] in order to compute any function with any
chosen precision.



Paper organization – The remainder of this paper is organized as follows. Sec-
tion 2 reviews TFHE building blocks. Section 3 describes the functional boot-
strapping idea coming from the TFHE gate bootstrapping. Sections 4 and 5
detail several methods, including ours, for the intricate Look-Up Tables (LUTs)
encoding via the functional bootstrapping. Indeed, section 4 describes meth-
ods for LUTs evaluation when having a unique ciphertext as input. Meanwhile,
section 5 considers the case where LUTs are evaluated over several ciphertexts
encrypting separately the digits of a large plaintext. Finally, section 6 gives
unitary results comparing these methods for LUTs evaluation over encrypted
data.

2 TFHE

2.1 Notations

In the upcoming sections, we denote vectors by bold letters and so, each vector
x of n elements is described as: x = (x1, . . . , xn). 〈x,y〉 is the dot product
between two vectors x and y. We denote matrices by capital letters, and the set
of matrices with m rows and n columns with entries sampled in K byMm,n(K).

x
$←− K denotes sampling x uniformly from K, while x

N (µ,σ2)←−−−−− K refers to
sampling x from K following a Gaussian distribution of mean µ and variance
σ2.

We will refer to the real torus by T = R/Z. T is the additive group of real numbers
modulo 1 (R mod[1]) and it is a Z-module. That is, multiplication by scalars from
Z is well-defined over T. TN [X] denotes the Z-module R[X]/(XN + 1) mod[1] of
torus polynomials, where N is a power of 2. R is the ring Z[X]/(XN +1) and its
subring of polynomials with binary coefficients is BN [X] = B[X]/(XN + 1) (B =
{0, 1}). Finally, [x] will denote the encryption of x over T, TN [X] or R.

Given a function f : T → T, we define LUTN (f) to be Look-Up Table defined
by the set of N pairs

(
i, f
(
i
N

))
. We may write LUT(f) when the value N is

implied. Given a function f : T → T, we define a polynomial Pf,N ∈ TN [X]

of degree N by writing Pf,N =
∑N−1
i=0 f

(
i

2N

)
·Xi. For simplicity sake, we may

write Pf instead of Pf,N when the value N is implied.

2.2 TFHE Structures

The TFHE encryption scheme was proposed in 2016 [Chi+16]. It improves the
FHEW cryptosystem [DM15] and introduces the TLWE problem as an adap-
tation of the LWE problem to T. It was updated later in [Chi+17] and both
works were recently unified in [Chi+19]. The TFHE scheme is implemented as
the TFHE library [Chi+]. TFHE relies on three structures to encrypt plaintexts
defined over T, TN [X] or R:



– TLWE Sample: (a, b) is a valid TLWE sample if a
$←− Tn and b ∈ T verifies

b = 〈a, s〉+ e, where s
$←− Bn is the secret key, and e

N (0,σ2)←−−−−− T. In this case,
(a, b) is a fresh encryption of 0.

– TRLWE Sample: a pair (a, b) ∈ TN [X]k×TN [X] is a valid TRLWE sample

if a
$←− TN [X]k, and b = 〈a, s〉 + e, where s

$←− BN [X]k is a TRLWE secret

key and e
N (0,σ2)←−−−−− TN [X] is a noise polynomial. In this case, (a, b) is a fresh

encryption of 0.

The TRLWE decision problem consists of distinguishing TRLWE samples
from random samples in TN [X]k × TN [X]. Meanwhile, the TRLWE search
problem consists in finding the private polynomial s given arbitrarily many
TRLWE samples. When N = 1 and k is large, the TRLWE decision and
search problems become the TLWE decision and search problems, respec-
tively.

Let M ⊂ TN [X] (or M ⊂ T) be the discrete message space1. To encrypt a
message m ∈ M ⊂ TN [X], we add (0,m) ∈ TN [X]k × TN [X] to a TRLWE
sample encrypting 0 (or to a TLWE sample of 0 ifM⊂ T). In the following,
we refer to an encryption of m with the secret key s as a T(R)LWE ciphertext
noted c ∈ T(R)LWEs(m).

To decrypt a sample c ∈ T(R)LWEs(m), we compute its phase φ(c) =
b − 〈a, s〉 = m + e. Then, we round to it to the nearest element of M.
Therefore, if the error e was chosen to be small enough (and yet high enough
to ensure security), the decryption will be accurate.

– TRGSW Sample: is a vector of l TRLWE samples encrypting 0. To en-
crypt a message m ∈ R, we add m.H to a TRGSW sample of 0, where H is a
gadget matrix2. Chilotti et al., [Chi+19] defines an external product between
a TRGSW sample A encrypting ma ∈ R and a TRLWE sample b encrypting
mb ∈ TN [X]. This external product consists in multiplying A by the approx-
imate decomposition of b with respect to H (Definition 3.12 in [Chi+19]). It
yields an encryption of ma.mb i.e., a TRLWE sample c ∈ TRLWEs(ma.mb).
Otherwise, the external product allows also to compute a controlled MUX
gate (CMUX) where the selector is cb ∈ TRGSWs(b), b ∈ {0, 1}, and the
inputs are c0 ∈ TRLWEs(m0) and c1 ∈ TRLWEs(m1).

2.3 TFHE Bootstrapping

TFHE bootstrapping relies mainly on three building blocks:

1 In practice, we discretise the Torus with respect to our plaintext modulus. For ex-
ample, if we want to encrypt m ∈ Z4 = {0, 1, 2, 3}, we encode it in T as one of the
following value {0, 0.25, 0.5, 0.75}.

2 Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [Chi+19] for more information
about the gadget matrix H.



– Blind Rotate: rotates a plaintext polynomial encrypted as a TRLWE ci-
phertext by an encrypted position. It takes as inputs: a TRLWE ciphertext
c ∈ TRLWEk(m), a vector (a1, . . . , ap, ap+1 = b) where ∀i, ai ∈ Z2N and p
TRGSW ciphertexts encrypting (s1, . . . , sp) where ∀i, si ∈ B. It returns a
TRLWE ciphertext c′ ∈ TRLWEk(X〈a,s〉−b.m). In this paper, we will refer
to this algorithm by BlindRotate.

– TLWE Sample Extract: takes as inputs a ciphertext c ∈ TRLWEk(m) and
a position p ∈ J0, N − 1K, and returns a TLWE ciphertext c′ ∈ TLWEk(mp)
where mp is the pth coefficient of the polynomial m. In this paper, we will
refer to this algorithm by SimpleExtract.

– Public Functional Key Switching: transforms a set of p ciphertexts ci ∈
TLWEk(mi) into a ciphertext c′ ∈ T(R)LWEs(f(m1, . . . ,mp)), where f()
is a public linear morphism from Tp to TN [X]. Note that functional key
switching serves at changing encryption keys and parameters. In this paper,
we will refer to this algorithm by KeySwitch.

TFHE comes with two bootstrapping algorithms. The first one is the gate boot-
strapping. It aims at reducing the noise level of a TLWE sample that encrypts
the result of a boolean gate evaluation on two ciphertexts, each of them en-
crypting a binary input. The binary nature of inputs/outputs of this algorithm
is not due to inherent limitations of the TFHE scheme but rather to the fact
that the authors of the paper were building a bitwise set of operators for which
this bootstrapping operation was perfectly fitted.

TFHE gate bootstrapping steps are summarized in Algorithm 1. The step 1 con-
sists in selecting a value m̂ ∈ T which will serve later for setting the coefficients
of the test polynomial testv (in step 3). The step 2 rescales the components of
the input ciphertext c as elements of Z2N . The step 3 defines the test polyno-
mial testv. Note that for all p ∈ J0, 2NK, the constant term of testv · Xp is m̂
if p ∈KN2 ,

3N
2 J and −m̂ otherwise. The step 4 returns an accumulator ACC ∈

TRLWEs′(testv.X〈ā,s〉−b̄). Indeed, the constant term of ACC is −m̂ if c en-
crypts 0, or m̂ if c encrypts 1. Then, step 5 creates a new ciphertext c′ by
extracting the constant term of ACC and adding to it (0, m̂). That is, c′ either
encrypts 0 if c encrypts 0, or m if c encrypts 1 (By choosing m = 1

2 , we get a
fresh encryption of 1).

TFHE specifies a second type of bootstrapping called circuit bootstrapping. It
converts TLWE samples into TRGSW samples, and serves mainly for TFHE use
in a levelled manner.

3 TFHE Functional Bootstrapping

3.1 Encoding and Decoding

Our goal is to build an homomorphic LUT of any function f : I → O with
varying precision and with input and output spaces I,O ⊂ R.



Algorithm 1 TFHE gate bootstrapping [Chi+19]

Input: a constant m ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(x · 1
2
) with x ∈ B,

a bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the
TRLWE interpretation of a secret key s′

Output: a TLWE sample c′ = (a′, b′) ∈ TLWEs(x.m)
1: Let m̂ = 1

2
m ∈ T (pick one of the two possible values)

2: Let b̄ = b2Nbe and āi = b2Naie ∈ Z,∀i ∈ J1, nK
3: Let testv := (1 +X + · · ·+XN−1) ·X

N
2 · m̂ ∈ TN [X]

4: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
5: c′ = (0, m̂) + SampleExtract(ACC)
6: return KeySwitchs′→s(c

′)

Since we use TFHE as our homomorphic encryption scheme, every message from
plaintext input or output space needs to be encoded in T. Therefore, in order
to build our function f , we need to create a torus-to-torus function fT and
appropriate encoding and decoding functions ι and ω.

I f=ω◦fT◦ι−−−−−−→ O
ι ↓ ↑ ω
T −→

fT

T

In most cases, ι and ω are rescaling functions: a multiplication or a division by a
single fixed value. In the following, we show several ways to build any Look-Up
Table (LUT) evaluating function fT.

3.2 Functional Bootstrapping Idea

The original bootstrapping algorithm from [Chi+16] had already all the tools to
implement a LUT of any negacyclic function3. In particular, TFHE is well-suited
for 1

2 -antiperiodic function, as the plaintext space for TFHE is T, where [0, 1
2 [

corresponds to positive values and [ 1
2 , 1[ to negative ones, and the bootstrapping

step 2 of the Algorithm 1 encodes elements from T into powers of X modulus
(XN + 1). Note that Xα+N ≡ −Xαmod[XN + 1] and allows encoding negacylic
functions as explained in the upcoming sections.

Bourse et al., [Bou+19] were the first to use the term functional bootstrapping
for TFHE. They describe how TFHE bootstrapping computes a sign function. In
addition, they state that bootstrapping can be used to build a Rectified Linear

3 Negacyclic functions are antiperiodic functions with period p, i.e., verifying f(x) =
−f(x + p). For example sine is antiperiodic with period π and of course, periodic
with period 2π.



Unit (ReLU). However, they do not delve into the details of how to implement
the ReLU in practice4.

Algorithm 2 describes a sign computation with the TFHE bootstrapping. It
returns µ if m is positive (i.e., m ∈ [0, 1

2 [), and −µ if m is negative.

Algorithm 2 Sign extraction with bootstrapping

Input: a constant µ ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T,
a bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the
TRLWE interpretation of a secret key s′

Output: a TLWE sample c′ = (a′, b′) ∈ TLWEs(µ.sign(m))
1: Let b̄ = b2Nbe and āi = b2Naie ∈ Z, ∀i ∈ J1, nK
2: Let testv := (1 +X + · · ·+XN−1) · µ ∈ TN [X]
3: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
4: c′ = SampleExtract(ACC)
5: return KeySwitchs′→s(c

′)

When we look at the building blocks of Algorithm 2, we notice that there is
some leeway to build more complex functions just by changing the coefficients
of the test polynomial testv.

Let t =
∑N−1
i=0 ti ·Xi where ti ∈ T and gt(x) the function:

gt :
J−N,N − 1K → T

i 7→
{

ti
− ti+N

if i ∈ J0, NJ
if i ∈ J−N, 0J

(1)

Proposition 1. If we bootstrap a TLWE ciphertext [x] = (a, b) with the test
polynomial testv = t, the output of the bootstrapping is [gt(φ(ā, b̄))], where (ā, b̄)
is the rescaled version of (a, b) in Z2N (line 1 of Algorithm 2).

Proof. First, we remind that for any positive integer i s.t. 0 ≤ i < N , we have:

testv.X−i = ti + · · · − t0XN−i − · · · − ti−1X
N−1 mod [XN + 1] (2)

Then, we notice that BlindRotate (line 3 of Algorithm 2) computes testv·X−φ(ā,b̄).
Therefore, we obtain the following results using equation (2):

– if φ(ā, b̄) ∈ J0, NJ, the constant term of testv ·X−φ(ā,b̄) is tφ(ā,b̄).

– if φ(ā, b̄) ∈ J−N, 0J, we have:

testv ·X−φ(ā,b̄) = −testv ·X−φ(ā,b̄)−Nmod[XN + 1]

4 The article does only mention that the function 2×ReLU can be built from an ab-
solute value function but does not explain how to divide by two to get the ReLU
result.



with (φ(ā, b̄) + N) ∈ J0, NJ. So, the constant term of testv · X−φ(ā,b̄) is
−tφ(ā,b̄)+N .

All that remains for the bootstrapping algorithm is extracting the previous con-
stant term (in line 4) and keyswitching (in line 5) to get the TLWE sample
[gt(φ(ā, b̄))].

We can use the previous proposition to build a discretized function evaluation
as follows. Let h : [0, 1

2 [→ T be any function, and gh the well-defined func-
tion:

gh :
J−N,N − 1K→ T

x 7→
{

h( x
2N )

− h(x+N
2N )

if x ∈ J0, NJ
if x ∈ J−N, 0J

(3)

Let’s call Ph the polynomial of degree N defined by: Ph =
∑N−1
i=0 h

(
i

2N

)
· Xi.

Now, if we apply the bootstrapping Algorithm 2 to a TLWE ciphertext [x] =
(a, b) with testv = Ph, it outputs [gh(φ(ā, b̄))] (by applying Proposition 1).
That is, Algorithm 2 allows encoding a discretized negacyclic version of h of
period 1

2 . By the way, it allows encoding a discretized version of any negacyclic
function.

3.3 Private Functional Bootstrapping

The functional bootstrapping algorithm can be adapted to compute an encrypted
negacyclic function. Indeed, given a function f : T→ T, we create [Pf ], a TRLWE
ciphertext whose ith coefficient is a TLWE ciphertext encrypting f( i

2N ). Such a
ciphertext can be created using the TFHE public functional key-switching oper-
ation (see Algorithm 2 of [Chi+19]) from N TLWE ciphertexts

[
f( i

2N )
]
.

Let [µ] = (a, b) be a ciphertext encrypting the message µ. Then, the Algorithm 3

outputs an encryption of f(φ(ā,b̄)
2N ).

Algorithm 3 Encrypted LUT

Input: a TLWE sample [µ] = (a, b) ∈ TLWEs(µ) with µ ∈ T, a bootstrapping key
BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE interpretation
of a secret key s′

Output: a TLWE sample c′ = (a′, b′) ∈ TLWEs(f(φ(ā,b̄)
2N

))
1: Let b̄ = b2Nbe and āi = b2Naie ∈ Z,∀i ∈ J1, nK
2: Let testv := [Pf ]
3: ACC ← BlindRotate(testv, (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
4: c′ = SampleExtract(ACC)
5: return KeySwitchs′→s(c

′)



3.4 Multi-Value Functional Bootstrapping

Carpov et al., [CIM19] introduced a nice method for evaluating k different LUTs
using one bootstrapping. Indeed, they factor the test polynomial Pfi associated
to the function fi into a product of two polynomials v0 and vi, where v0 is a
common factor to all Pfi . In fact, they notice that:

(1 +X + · · ·+XN−1) · (1−X) = 2 mod [XN + 1] (4)

Let’s write Pfi as: Pfi =
∑N−1
j=0 αi,jX

j with αi,j ∈ Z, we obtain using equa-
tion (4):

Pfi =
1

2
· (1 + · · ·+XN−1) · (1−X) · Pfi mod [XN + 1]

= v0 · vi mod [XN + 1]

where:

v0 =
1

2
· (1 + · · ·+XN−1)

vi = αi,0 − αi,N−1 + (αi,1 − αi,0) ·X + · · ·+ (αi,N−1 − αi,N−2) ·XN−1 (5)

Thanks to this factorization, we are able to compute many LUTs with one boot-
strapping. Indeed, we just have to set the initial test polynomial to testv = v0

during the bootstrapping. Then, after the BlindRotate, we multiply the obtained
ACC by each vi corresponding to LUT(fi) to obtain ACCi (for more details
about multi-value bootstrapping, refer to the Algorithm 7 in the Appendix sec-
tion A).

4 Look-Up-Tables over a Single Ciphertext

In section 3.2, we demonstrated that functional bootstrapping allows for the
computation of LUT(h) for any negacyclic function h. In this section, we de-
scribe 4 different ways to build homomorphic LUTs using any function (i.e.,
not necessarily negacyclic ones). We present 3 solutions from the state of the
art [CJP21; KS21; Yan+21] in sections 4.1, 4.2 and 4.3, and one that is novel to
our work in section 4.4.

As in section 3.1, we call fT : T→ T the function used to build our homomorphic
LUT, and f : I → O its corresponding function over the actual input and output
spaces.

4.1 Partial Domain Functional Bootstrapping

This method avoids the negacyclic restriction of functional bootstrapping by en-
crypting values from [0, 1

2 [ (i.e., half of the torus). Let’s set the test polynomial to



be Ph, the output of the bootstrapping operation is given by Equation 3:

gh :
J−N,N − 1K→ T

x 7→
{

h( x
2N )

− h(x+N
2N )

if x ∈ J0, NJ
if x ∈ J−N, 0J

If we restrict gh domain to J0, NJ, we ensure that gh is just a LUT based on
function h (h is not necessarily negacyclic). That is, we obtain a method to
evaluate a LUT in a single bootstrapping. However, we have to encode the
plaintext space over a smaller portion of the torus T, therefore increasing the
relative noise introduced by the TFHE encryption process. The overall result
will hence be less accurate.

4.2 Full Domain Functional Bootstrapping–FDFB

Kluczniak and Schild [KS21] proposed this method to evaluate encrypted LUTs
of domain the whole torus T. Let’s consider a TLWE ciphertext [m] encrypting
the messagem, and a function f of domain T. We denote by g the function:

g :
T→ T
x 7→ −f(x+ 1

2 )

We define the Heaviside function H as:

H : x 7→
{

1 if x ≥ 0
0 if x < 0

H can be expressed using the sign function as follows: H(x) = sign(x)+1
2 .

First, we compute [H(m)] with only one bootstrapping (using Algorithm 2) and
deduce (1 −H)([m]) = [(1 −H)(m)]. Then, we make a keyswitch to transform
the TLWE sample [(1−H)(m)] into a TRLWE sample. Finally, we define:

cLUT = [(1−H)(m)] · (0, Pg − Pf ) + (0, Pf )

cLUT =

{
[Pf ] if µ ≥ 0
[Pg] if µ < 0

Note that depending on the sign of m, cLUT is a TRLWE encryption of Pf or Pg,
the test polynomials of f or g, respectively. Indeed, after a bootstrapping of [m]
using cLUT as a test polynomial, we obtain [f(m)]. This functional bootstrapping
requires 2 BlindRotate during the bootstrapping: one to compute the Heaviside
function and the other to apply the encrypted LUT.



4.3 Full Domain Functional Bootstrapping–TOTA

Yan et al., [Yan+21] proposed this method to evaluate arbitrary functions over
the torus using a functional bootstrapping. Let’s consider a ciphertext [m1] =
(a, b = a.s+m1+e). Then, by dividing each coefficient of this ciphertext by 2, we
get a ciphertext [m2] = (a

2 ,
a
2 .s+m2+ e

2 ) where m2 = m1

2 + k
2 with k ∈ {0, 1} and

m1

2 ∈ [0, 1
2 ]. Using the original bootstrapping algorithm, we compute [ sign(m2)

4 ]

an encryption of sign(m2)
4 =

{
1
4 if k = 0
− 1

4 if k = 1
. Then [m2]− [ sign(m2)

4 ] + (0, 1
4 ) is an

encryption of m1

2 .

For any function f , let’s define f(2) such that f(2)(x) = f(2x). Since m1

2 ∈ [0, 1
2 ],

we can compute f(2)(
m1

2 ) with a single bootstrapping using the partial domain
solution from 4.1, and f(2)(

m1

2 ) = f(m1).

Thus, this technique allows computing any function with only 2 bootstrappings.
Keep in mind that the torus is actually discretized, so some noise and some
loss of precision are introduced after dividing by 2 due to the rounding of the
coefficients.

4.4 Full Domain Functional Bootstrapping with Composition

In this section, we present a novel method to compute any function using the
full torus as plaintext space. In this regard, it uses the same plaintext space as
solutions presented in Sections 4.2 and 4.3.

This solution can only work if computations are exact. We therefore assume
that it is implemented with a parameter set large enough and an input space
small enough that computing the phase of any ciphertext returns its equivalent
plaintext. This means we are limited to exact computations whereas all other
methods presented in this paper allow for approximate computations.

Odd functions Let’s have fT : T → T be an odd function. This means that,
∀x ∈ T, fT(−x) = −fT(x).

Let’s set h = Id to be the identity function. Then we can define a functional
bootstrapping with an output function gId as such:

gId : x 7→
{

x
2N

−x+N
2N

if x ∈ J0, NJ
if x ∈ J−N, 0J

Let’s now set h to be the restriction of fT over positive values [0, 1
2 [. Then we

can define gfT+ as such:

gfT+ : x 7→
{
fT

(
x

2N

)
−fT

(
x+N
2N

) if x ∈ J0, NJ
if x ∈ J−N, 0J (6)



We now can compose gfT+ with gId (we assume the outputs of gId are rescaled
up to J−N,NJ).

gfT+ ◦ gId : x 7→

fT

(
x

2N

)
fT

(
x

2N

)
fT (0)

if x ∈ J0, NJ
if x ∈]]−N, 0]]
if x = N

Therefore gfT+ ◦ gId evaluates a LUT based on fT for the whole torus except for

values around 1
2 (when x = N). While this can be corrected for certain specific

functions fT (the identity function for instance) with specific tricks, we have yet
to find a way to correct it in the general case.

Absolute value function Let’s have fT : T → T be the absolute value
function: fT(x) = |x|.

Then let’s set h0 : x 7→ x− 1
4 . We can define a functional bootstrapping with an

output function gh0 as such:

gh0
: x 7→

{
x

2N −
1
4

− x
2N −

1
4

if x ∈ J0, NJ
if x ∈ J−N, 0J

Therefore, gh0
+ 1

4 is a LUT based on the absolute value function over the whole
torus.

Even functions We want to build an homomorphic LUT based on any even
function over the whole torus. Let fT : T→ T be an even function. This means
that, ∀x ∈ T, fT(−x) = fT(x). Most importantly, it means that ∀x ∈ T, fT(x) =
fT(|x|). We can now compose two LUTs: the absolute value LUT built in Section
4.4 (gh0 + 1

4 ); and the LUT based on the restriction of fT over positive values
described in Equation 6 (gfT+ ). We have:

gfT+ ◦
(
gh0

+
1

4

)
: x 7→

fT

(
x

2N

)
fT

(
x

2N

)
fT (0)

if x ∈ J0, NJ
if x ∈]]−N, 0]]
if x = N

As is the case with odd functions, this implementation of a LUT over any even
function cannot compute a correct result for inputs around 1

2 .

Any function Any function fT can be written as a sum of an even function

and an odd function: fT(x) = fT(x)+fT(−x)
2 + fT(x)−fT(−x)

2 . Sections 4.4 and 4.4
showed we can build an homomorphic LUT based on any odd or even function
with at most 2 functional bootstrapping operations. This means that we can
build one over any kind of function with at most 4 functional bootstrapping
operations. There are a host of useful functions however (sigmoid, monomial



functions, trigonometric functions, identity, ..) which can be computed using
only 2 bootstrapping operations because they are one sum away from an odd or
even function.

No approximate arithmetic allowed. As stated, this solution is only suitable for
precise arithmetic. This means that the size of the input space and the the
size of the parameters have to be chosen so that every functional bootstrapping
operation is certain to return the correct result. If it were not to be so, input
plaintext values around 0 can be computed correctly by the first bootstrapping
operation but incorrectly by the second. This would mean a result translated
exactly by 1

2 from the correct result.

5 Look-Up-Tables over Multiple Ciphertexts

In section 4, we discussed several functional bootstrapping methods that take as
input one ciphertext. These methods have a limited plaintext space and preci-
sion, and allow evaluating look-up tables with a size bounded by the degree of
the used cyclotomic polynomial (N). In addition, these methods are not suited
for computing a LUT for a multivariate function f that takes as inputs two or
more ciphertexts. In order to overcome these issues, we describe in this section
a method for computing functions using multiple ciphertexts as inputs.

Our proposed solution improves the results of Guimarães et al., [GBA21]. They,
themselves, generalize the ideas of Boura et al. [BST19] and discuss two methods
for homomorphic computation with digits: a tree-based approach and a chaining
approach. We expand on the chaining method in order to obtain any function
through its use as opposed to the subset of function previously allowed.

Subsequently, we use this method to apply a LUT to a single message decom-
posed over multiple ciphertexts. That is, we decompose each plaintext into sev-
eral digits in a certain base B and encrypt these digits separately. Decomposition
allows working with a larger plaintext space I while using an acceptable param-
eters set for an efficient computation.

In this section, we first review the tree-based method and then improve the
chaining method to make it fit any function. We show how those methods can
be used as building blocks in order to compute additions and multiplications of
messages decomposed over multiple ciphertexts. We then show how to compute
the ReLU function over a single, decomposed, plaintext. The choice of ReLU as
a worthy application of our novel method was made because it is the most used
activation function in modern convolutional neural networks.

5.1 Tree-based Method

We consider n TLWE ciphertexts c0, . . . , cn−1 encrypting the messagesm0, . . . ,mn−1

over half of the torus and B ∈ N, such that each ciphertext ci corresponds to



an encryption of mi ∈ [[0, B − 1]]. We denote by f : [[0, B − 1]]n → [[0, B − 1]] our
target function and by g the bijection:

g :
[[0, B − 1]]n → [[0, Bn − 1]]

(a0, ..., an−1) 7→
∑n−1
i=0 ai.B

i

We encode the LUT for f in Bn−1 TRLWE ciphertexts. Each ciphertext encrypts
a polynomial Pi where:

Pi(X) =

B−1∑
j=0

N
B−1∑
k=0

f ◦ g−1(j.Bn−1 + i)Xj.NB +k

Then, we apply the BlindRotate algorithm to cn−1 and each TRLWE(Pi), and use
the SampleExtract algorithm to extract the first coefficient of the result. We end
up withBn−1 TLWE ciphertexts each encrypting a message f◦g−1(mn−1.B

n−1+
i) for i ∈ [[0, Bn−1 − 1]]. Thanks to TLWE to TRLWE keyswitching, we batch
them intoBn−2 TRLWE ciphertexts corresponding to the LUT of h where:

h :
[[0, B − 1]]n−1 → [[0, B − 1]]
(a0, ..., an−2) 7→ f(a0, ..., an−2,mn−1)

We iterate this operation until getting only one TLWE ciphertext encrypting
f(m0, ...,mn−1). Since a function from [[0, B − 1]]n to [[0, B − 1]]k can be de-
composed in k functions from [[0, B − 1]]n to [[0, B − 1]], we can actually build
any function between any inputs, once they are decomposed in base B then
encrypted.

Note that the BlindRotate algorithm is costly and we have to recall it
∑n−1
i=0 B

i =
Bn−1
B−1 times. Fortunately, we can make it faster by encoding the first LUTs

in plaintext polynomials rather than TRLWE ciphertexts. Then, we use the
multi-value bootstrapping given in [CIM19] to compute only one bootstrapping
instead of Bn−1 in the first step of the algorithm. Thus we end-up by running

1 +
∑n−2
i=0 B

i = 1 + Bn−1−1
B−1 BlindRotate.

The order in which the blind rotations are performed can be represented by a tree
of depth n−1. Even if we ignore the noise added by the keyswitching operations,
we end up with a noise about n times bigger than a simple bootstrapping.

5.2 Chaining Method

The chaining method has a much lower complexity and lower error growth than
the tree-based method but, as presented in [GBA21], works only for a more
restricted set of functions.

Let’s consider n TLWE ciphertexts c0, . . . , cn−1 encrypting the messagesm0, . . . ,mn−1

and denote by LC(a, b) any linear combination of a and b. Given some func-
tions (fi)i∈[[0,n−1]] so that fi : [[0, B − 1]] → [[0, B − 1]], we can build a function



f : [[0, B − 1]]n → [[0, B − 1]] following Algorithm 4. Each fi can be implemented
in the homomorphic domain using the partial-domain functional bootstrapping
method described in Section 4.1. The result of this algorithm has the same noise
as a simple functional bootstrapping, thus much less than the noise output of
the tree method.

Algorithm 4 Chaining method

Input: A vector (c0, . . . , cn−1) of TLWE ciphertexts encrypting the vector of messages
(m0, . . . ,mn−1).

Output: A ciphertext encrypting f(m0, . . . ,mn−1). f is defined here by the linear
combinations chosen at every step and the different single-input functions fi.
c0 ← f0(c0)
for i ∈ [[0, n− 2]] do

ci+1 ← fi+1(LC(ci, ci+1))
return cn−1

Most functions cannot be computed in such a simplistic way, which greatly
restricts its use even though it can be effective for functions with carry-like logic
as stated in [GBA21].

Generalization. It is possible to build any function f using a similar method.
We introduce the function g as such:

g :
[[0, B − 1]]2 → [[0, B2 − 1]]

(a0, a1) 7→ a0 + a1.B

That function is a bijection, which means that if a ciphertext can hold any
message in [[0, B2 − 1]], then we can compute any function of two ciphertexts c1
and c2 by applying one functional bootstrapping over g(c1, c2).

Note that when using base 2, we can easily build any logic door with this method.
We can then build a circuit with those doors to build any functions. The same
idea works for any base B.

That generalization comes at the cost of multiple bits of padding and the con-
ception of the proper circuit.

5.3 Addition

We expect additions of two messages to be computed in linear time with respect
to the number of digits of each message. Thus the tree-based method is ill-
suited for this operation, since the tree-based method computing time grows
exponentially with the number of digits used as inputs. Meanwhile, the chaining
method is not exactly adapted to this operation if applied directly. Nonetheless,
we show that we can still use any of the two methods to compute the addition
effectively.



Let m1 =
∑n
i=0m1,i.B

i and m2 =
∑n
i=0m2,i.B

i be two messages expressed in
base B. For each pair (i, j), let ci,j be the ciphertext encrypting the message
mi,j . We define ci = (ci,0, . . . , ci,n) as the vector of ciphertexts encrypting mi in
base B. Finally, we denote by h the half adder function, and by f the full adder
one:

h :
[[0, B − 1]]2 → [[0, B − 1]]2

(a, b) 7→ ((a+ b)[B], b(a+ b)/Bc)

f :
[[0, B − 1]]2 × {0, 1} → [[0, B − 1]]2

(a, b, c) 7→ ((a+ b+ c)[B], b(a+ b+ c)/Bc)

These two functions are the only requirements to build the addition operation.
But, in order to be able to create those two adders, we need to create the following
sub-functions:

mod :
[[0, 2B − 1]]→ [[0, B − 1]]

x 7→ x[B]

carry :
[[0, 2B − 1]]→ {0, 1}

x 7→ bx/Bc

Algorithm 5 Addition

Input: Two vectors of ciphertexts c1 = (c1,i)i∈[[0,n−1]] and c2 = (c2,i)i∈[[0,m−1]] en-
crypting two messages m1 and m2 written in base B. We suppose here that n ≥ m.

Output: An encryption of m1 +m2 in base B.
(c1,0, c2,0)← h(c1,0, c2,0)
for i ∈ [[0,m− 2]] do

(c1,i+1, c2,i+1)← f(c1,i+1, c2,i+1, c2,i)

for i ∈ [[m− 1, n− 2]] do
(c1,i+1, c2,i+1)← h(c1,i+1, c2,i)

return (c1,0, ..., c1,n−1, c2,n−1)

We can use either the tree-based method or the chaining method to compute
mod or carry functions. The chaining method needs one bit of padding to work,
while the tree-based method is slower, especially for the full adder which is a
three inputs function. Finally, we present Algorithm 5 for computing addition
between two vectors of ciphertexts.

The time complexity of Algorithm 5 is linear with respect to the number of digits
of the entries. The noise of each output ciphertext is the same as the noise of
a simple bootstrapping if we use the chaining method for computing the sub-
functions mod and carry. Meanwhile, with the tree-based method, we end-up
with the noise of a simple bootstrapping followed by two BlindRotate.



5.4 Multiplication

As we expected linear computation time to be achievable for the homomor-
phic addition, we expect to achieve quadratic time complexity for homomorphic
multiplication. Let m1 and m2 be two messages and c1 = (c1,i)i∈[[0,n−1]] and
c2 = (c2,i)i∈[[0,m−1]] be their encryption in base B. In order to evaluate m1.m2

in the encrypted domain, we first multiply each digit of m1 by each digit of m2.
Then, we have just to add the obtained elements properly using half and full
adders to get the final result.

Since we have already introduced homomorphic adders, we only need to describe
how to multiply two digits. Given two messages a and b in [[0, B − 1]], we need
to compute a.b[B] and a.b/B in the encrypted domain. If we use the tree-base
method, we can compute both functions with three LUTs since both functions
will use the same selector in the first step. Otherwise, we can also use the gener-
alized chaining method to compute both needed functions using two LUTs, but
this method comes at the cost of using multiple bits of padding.

Let’s denote by MultDigits(ca, cb) a method for computing a.b[B] and by CarryMult(ca, cb)
a method for computing a.b/B. Then the multiplication of m1 and m2 can be
done with Algorithm 6.

Algorithm 6 Multiplication

Input: Two vectors of ciphertexts c1 = (c1,i)i∈[[0,n−1]] and c2 = (c2,i)i∈[[0,m−1]] en-
crypting two messages m1 and m2 written in base B.

Output: An encryption c = (ci)i∈[[0,n+m−1]] of m1.m2 in base B.
for i ∈ [[0, n+m− 1]] do

SubMuli ← empty vector

for i ∈ [[0, n− 1]] do
for j ∈ [[0,m− 1]] do

Put MultDigits(c1,i, c2,j) in vector SubMuli+j
Put CarryMult(c1,i, c2,j) in vector SubMuli+j+1

c0 ← SubMul0[0]
for i ∈ [[1, n+m− 1]] do

ci ← (
∑size(SubMuli)−1
j=0 SubMuli[j])[B] using adders

Put the carries in SubMuli+1

return (c0, . . . , cn+m−1)

The time complexity of Algorithm 6 is quadratic with respect to the number of
digits of the entries. The noise of the outputs is similar to the noise of the adder
sub-functions.

5.5 ReLU

In this section, we describe how to avoid using the tree-based method, as it
is, for the implementation of the ReLU activation function. Let’s consider µ =



∑n
i=0 µi.B

i a message written using radix complement representation in base B,
and (ci)i∈[[0,n]] = (TLWEs(µi))i∈[[0,n]].

In order to use the tree-based method to evaluate intermediate functions on each
encrypted digit, we use a functional bootstrapping to create a selector S from
cn that encrypts the torus element 0 if 0 ≤ µn < B

2 and 1
4 if B

2 ≤ µn < B. Note

that (0 ≤ µn <
B
2 ) ⇐⇒ (µ ≥ 0), so the value of S depends on the sign of µ.

Then, for each ci, we create using keyswitching a TRLWE ciphertext LUT(ci)
so that for j ∈ [[0, N2 − 1]], SampleExtract(LUT(ci), j) is an encryption of µi,

and for j ∈ [[N2 , N − 1]], SampleExtract(LUT(ci), j) is an encryption of 0. Then,
SampleExtract(BlindRotate(S,LUT(ci)), 0) outputs:

ci =

{
TLWE(0, s) if µ < 0
TLWE(µi, s) if µ ≥ 0

Thus, (ci)i∈[[0,n]] is an encryption of ReLU(µ) using radix complement represen-
tation in base B.

Otherwise, we can compute the ReLU function using the chaining method. In this
case, each ciphertext has to encrypt a value in [[0, 2B − 1]]. First, let’s compute
a selector S from cn such that:

S =

{
TLWE(0, s) if µ ≥ 0
TLWE(B, s) if µ < 0

Then, let’s define:

f :
[[0, 2B − 1]]→ [[0, 2B − 1]]

x 7→
{
x if x < B
0 if x ≥ B

This function can be computed with one functional bootstrapping. For each ci,
we compute ci = f(ci + S). We obtain (ci)i∈[[0,n]] an encryption using radix
complement representation in base B of ReLU(µ).

6 Experimental Results

In this section, we compare unitary time and accuracy performances for all of the
functional bootstrapping variations presented above. For this, we choose a precise
set of parameters given in Table 1. These parameters allow us to have a security
parameter of λ = 120 according to the latest iteration of the LWE estimator5

[APS15; Pla18]. Note several things however about this security estimate. First,
these parameters will probably need to change in time for the security to remain
stable. Second, we estimate the security of our scheme using a standard, non-
quantum cost model as defined by the developers of the TFHE library6.

5 https://bitbucket.org/malb/lwe-estimator/ using commit a2a6e84
6 https://tfhe.github.io/tfhe/security_and_params.html



In Table 1, N and α are used both for the initial encryption of the plaintext
and for the encryption of the key when creating the different bootstrapping
keys needed. In practice, any of those encryptions can be done with a different
set of parameters if needed. Parameters Bg and l determine the precision of
a bootstrapping operation and necessarily impact its running time. We choose
them here so that we get a good accuracy at the expense of a slower running
time than could be obtained otherwise.

Table 1. Parameters used for accuracy evaluations on all of the functional bootstrap-
ping methods.

λ N α l Bg
120 1024 10−8 13 22

Accuracy. Although most of the functional bootstrapping methods described in
Sections 4 and 5 allow for approximate arithmetic (with the notable exception
of the composition solution in Section 4.4), we choose to evaluate their precision
using precise arithmetic. We also choose to evaluate the precision of the imple-
mentation of the ReLU function. Both of these choices are made for simplicity
sake but our results can be generalized to approximate arithmetic: a method
which is shown to be more accurate here will be so as well when using approx-
imate arithmetic; the same is true for another function. The protocol for our
accuracy evaluation is the following.

Start with a plaintext space size of |I| = 1. Create encryption and evaluation
keys. Create the plaintext space and encode it into the torus. Make 10000

|I| encryp-

tions of each value in I for a total of 10000 encryptions. Run all of the ciphertexts
through an identity functional bootstrapping operation first. Indeed, we don’t
want to evaluate accuracy on fresh ciphertexts since most operations in real-
world scenarios will not happen on fresh ciphertexts. This means accuracy will
be lower than that presented in most other papers, but will more closely match
the accuracy seen in real world scenarios. Then, run them all through a ReLU
operation. Decipher and check the results. If all results are correct, increment the
plaintext space size and repeat. Otherwise return the previous plaintext space
size.

In the end, we return the biggest plaintext space size for which the operation
returns correct results for the 10000 encryptions. Results are presented in Table
6.

This method measures the accuracy of all of the different methods in the case of
their use for precise arithmetic. It is reasonable to expect that the most precise
method for exact arithmetic will be the most precise for approximate arithmetic
if we exclude the composition method which is only suited for precise operations.
This however deserves more experimentation.



Section 4.1 4.2 4.3 4.4 5.5

Article [CJP21] [KS21] [Yan+21] us us

|I|max 23 22 14 27 24n

# of BlindRotate 1 2 2 3 n+ 1
Table 2. In this table we present the accuracy and time performance of all of the
methods presented above. The accuracy is measured with the same parameters and is
defined by the largest plaintext space size that allows for precise error-less arithmetic
over a set of 10000 tests. The corresponding article is given for reference, though in the
case of [CJP21], the article is not the one that introduced the method (as it was never
formally introduced) but rather the one that formalized it best thus far.

Time performance. The Blind Rotate operation is by very far the most expen-
sive of all those used in the functional bootstrapping algorithms. Extractions
and polynomial multiplications are essentially free operations compared with
the very heavy Blind Rotation. Therefore we will not talk in terms of precise
time here but rather in terms of number of Blind Rotations to evaluate the time
performance of each method. This is because depending on the parameters cho-
sen, the time for a given Blind Rotation can change drastically. Know however
that given our parameters, a single Blind Rotation takes approximately 0.19s.
The partial domain (or half torus) solution presented in Section 4.1 only takes 1
Blind Rotation for any operation. FDFB and TOTA, presented respectively in
Sections 4.2 and 4.3 take 2 Blind Rotations and therefore twice the time. The
composition solution we introduce in Section 4.4 has a variable number of Blind
Rotations depending on the function: for instance, 1 for an absolute value, 2
for an identity, 3 for the ReLU (the one we evaluate here), and 4 for the more
complex functions.

7 Conclusion

Through the use of several bootstrapping operations and - in some cases - ad-
ditional operations, every full domain method (Sections 4.2, 4.3 and 4.4) adds
some output noise when compared to the simpler and quicker partial domain
method (Section 4.1). The question is: does a larger initial plaintext space make
up for the added noise ? Table 6 shows us that the Yan et al., [Yan+21] (TOTA)
method is both less accurate and twice as time-consuming than the partial do-
main method. Kluczniak and Schild [KS21] (FDFB) method, though closer in
accuracy - is less accurate than the partial domain method and still twice as time-
consuming. Our novel composition method (Section 4.4) is more accurate than
any of the previously mentioned methods, however thrice as time consuming as
the partial-domain method. As for our digit-decomposition method (Section 5),
it allows for an arbitrary precision, though with a corresponding running time
always much higher than the partial domain solution.



Given these experimental measures, our recommendations on the use of these
functional bootstrapping methods are the following, given specific applicative
scenarios:

– Precise integer arithmetic above all else. In some real-world applica-
tive cases, precision is the only criteria that matters. In the case of offline
computations for instance that can take hours, days or weeks, one wants
to increase the precision of the result as much as possible. For this applica-
tive scenario, our generalized digit-decomposition functional boot-
strapping method is the appropriate choice. It is the only method with
unbounded precision for functional bootstrapping computation of any func-
tion in the literature.

– Efficient approximate or precise integer arithmetic. In the case where
we need either an approximate or a precise arithmetic computation in a
limited amount of time, the partial domain method is an obvious choice.
Its precision difference with other ”no-decomposition” methods is too small
to ever justify their use in this case.

– Efficient precise modular arithmetic. There is a case where one wishes
to use modular arithmetic instead of integer arithmetic. In this case, the
partial domain method cannot be used as plaintexts are encoded on only
half of the torus which is not an additive group. In this case one of the full
domain methods must be used. If the computation must be precise then our
novel composition method is the most precise among the options.

– Efficient approximate modular arithmetic. In the case where the arith-
metic is modular but the computation can be approximate, the composition
method cannot be used as it only works with precise arithmetic. Therefore
the preferred option becomes FDFB [KS21].

Furthermore, the operators presented in this paper provide key building blocks
for enabling advanced deep learning functions over encrypted data.



A Multi-value Bootstrapping Algorithm

We remind that any test polynomial for a LUT(fi) can be factorized as:

LUT(fi) =

N−1∑
i=0

αiX
i = v0 · vi mod[XN + 1]

v0 =
1

2
.(1 + · · ·+XN−1)

vi = α0 − αN−1 + (α1 − α0).X + · · ·+ (αN−1 − α0).XN−1

Algorithm 7 Multi-value bootstrapping

Input: a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T, a bootstrapping key
BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE interpretation
of a secret key s′, k LUTs s.t. LUT(fi) = v0.vi,∀i ∈ J1, kK

Output: a list of k TLWE samples c′i = (a′
i, b
′
i) ∈ TLWEs(fi(

φ(ā,b̄)
2N

))
1: Let b̄ = b2Nbe and āi = b2Naie ∈ Z,∀i ∈ J1, nK
2: Let testv := v0

3: ACC← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
4: for i← 1 to k do
5: ACCi := ACC · vi
6: c′i = SampleExtract(ACCi)
7: return KeySwitchs′→s(c

′
i)
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cure Integer Comparison via Homomorphic Encryption. Cryptology
ePrint Archive, Report 2019/427. https://ia.cr/2019/427. 2019.



[Bra12] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP”. In: Advances in Cryptology –
CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 868–886.
isbn: 978-3-642-32009-5.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. “New
Techniques for Multi-value Input Homomorphic Evaluation and Ap-
plications”. In: Topics in Cryptology – CT-RSA 2019. Ed. by Mit-
suru Matsui. Cham: Springer International Publishing, 2019, pp. 106–
126. isbn: 978-3-030-12612-4.

[Cha+19] Herve Chabanne, Roch Lescuyer, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. “Recognition Over Encrypted Faces: 4th In-
ternational Conference, MSPN 2018, Paris, France”. In: 2019.
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