
Putting up1

the swiss army knife of homomorphic calculations2

by means of TFHE functional bootstrapping3

Anonymous Submission4

Abstract. In this work, we first propose a new full domain functional bootstrapping5

method with TFHE for evaluating any function of domain and codomain the real torus6

T by using a small number of bootstrappings. This result improves some aspects of7

previous approaches: like them, we allow for evaluating any functions, but with better8

precision. In addition, we develop efficient multiplication and addition over ciphertexts9

building on the digit-decomposition approach of [GBA21]. As a practical application,10

our results lead to an efficient implementation of ReLU, one of the most used activation11

functions in deep learning. The paper is concluded by extensive experimental results12

comparing each building block as well as their practical relevance and trade-offs.13

Keywords: FHE · TFHE · functional bootstrapping14

1 Introduction15

Machine learning application to the analysis of private data, such as health or genomic16

data, has encouraged the use of homomorphic encryption for private inference or prediction17

with classification or regression algorithms where the ML models and/or their inputs are18

encrypted homomorphically [Xie+14; Cha+17; Cha+19; Bou+18; ZCS20b; ISZ19; ZS21].19

Even training machine learning models with privacy guarantees on the training data has been20

investigated in the centralized [JA18; CKP19; Nan+19; Lou+20] and collaborative [Séb+21;21

Mad+21] settings. In practice, machine learning algorithms and especially neural networks22

require the computation of non-linear activation functions such as the sign, ReLU or sigmoid23

functions. Computing non-linear functions homomorphically remains challenging. For24

levelled homomorphic schemes such as BFV [Bra12; FV12] or CKKS [Che+17], non-linear25

functions have to be approximated by polynomials. However, the precision of this approxima-26

tion differs with respect to the considered plaintext space (i.e., input range), approximation27

polynomial degree and its coefficients size, and has a direct impact on the multiplicative28

depth and parameters of the cryptosystem. The more precise is the approximation, the larger29

are the cryptosystem parameters and the slower is the computation. On the other hand,30

homomorphic encryption schemes having an efficient bootstrapping, such as TFHE [Chi+16;31

Chi+19] or FHEW [DM15], can be tweaked to encode functions via look-up table evaluations32

within their bootstrapping procedure. Hence, rather than being just used for refreshing33

ciphertexts (i.e., reducing their noise level), the bootstrapping becomes functional [BST19]34

or programmable [CJP21] by allowing the evaluation of arbitrary functions as a bonus. These35

capabilities results in promising new approaches for improving the overall performances of36

homomorphic calculations, making the FHE “API” better suited to the evaluation of mathe-37

matical operators which are difficult to express as low complexity arithmetic circuits. It is also38

important to note that FHE cryptosystems can be hybridized, for example BFV ciphertexts39

can be efficiently (and homomorphically) turned into TFHE ones [Bou+20; ZCS20a]. As40

such, the building blocks discussed in this paper are of relevance also in the setting where the41

desired encrypted-domain calculation can be split into a preprocessing step more efficiently42

2 FHE calculations by means of TFHE functional bootstrapping

done using BFV (e.g. several dot product or distance computations) followed by a nonlinear43

postprocessing step (such as an activation function or an argmin) which can then be more44

conveniently performed by exploiting TFHE functional bootstrapping. In this work, we thus45

systematize and further investigate the capabilities of TFHE functional bootstrapping.46

Contributions – In this paper, we review, unify and extend the capabilities of TFHE func-47

tional bootstrapping. We strive to present the main existing methods as well as new variants.48

We compare their relative accuracy and performance as well as discuss their main pros and49

cons. Indeed, on top of the extensions that we present, we aim for this paper to be a complete50

reference for anyone looking to get a view of the state of functional bootstrapping. As such,51

several methods for LUTs evaluation using functional bootstrapping are presented: the usual52

method using one bit of padding (described clearly in [CJP21]), two methods coming from53

recent papers that work without padding [KS21; Yan+21], one novel approach also working54

without padding, and a method using digit decomposition of the inputs in order to get an55

arbitrary large plaintext space (presented initially by Bourse et al., [BST19] and generalized56

later by Guimarães et al. [GBA21]). The first method encodes the plaintext space in [0, 12 [,57

i.e., the segment of the real torus T corresponding to the positive numbers. Meanwhile,58

the other methods use the full torus for encoding the plaintext space and propose various59

solutions to cope with the negacyclicity of TFHE bootstrapping when used for evaluating60

LUTs. A novel way we present to achieve this is to use several bootstrappings one after61

the other to cancel the negacyclicity of a single bootstrapping. Finally, the decomposition62

method allows working with larger plaintext spaces. Its main idea is to decompose each63

plaintext into small digits which allows keeping TFHE parameters small enough to lead64

to performance improvements. We generalize the chaining method of [GBA21] in order to65

compute any function with any chosen precision.66

Related works – In 2016, the TFHE paper made a breakthrough by proposing an effi-67

cient bootstrapping for homomorphic gate computation. Then, Bourse et al., [Bou+18]68

and Izabachene et al., [ISZ19] used the same bootstrapping algorithm for extracting the69

(encrypted) sign of an encrypted input. Boura et al., [Bou+19] showed later that TFHE70

bootstrapping could be extended to support a wider class of functionalities. Indeed, TFHE71

bootstrapping naturally allows to encode function evaluation via their representation as72

look-up tables (LUTs). Recently, different approaches have been investigated for func-73

tional bootstrapping improvement. In particular, Kluczniak and Schild [KS21] and Yang74

et al., [Yan+21] proposed two methods that take into consideration the negacyclicity of the75

cyclotomic polynomial used within the bootstrapping, for encoding look-up tables over the76

full real torus T. Meanwhile, Guimarães et al., [GBA21] extended the ideas in Bourse et77

al., [BST19] to support the evaluation of certain activation functions such as the sigmoid.78

One last method, presented in Chillotti et al., [Chi+21] achieves a functional bootstrapping79

over the full torus using a BFV type multiplication.80

Paper organization – The remainder of this paper is organized as follows. Section 281

reviews TFHE building blocks. Section 3 describes the functional bootstrapping idea coming82

from the TFHE gate bootstrapping. Sections 4 and 5 detail several methods, including ours,83

for the intricate Look-Up Tables (LUTs) encoding via the functional bootstrapping. Indeed,84

section 4 describes methods for LUTs evaluation when having a unique ciphertext as input.85

Meanwhile, section 5 considers the case where LUTs are evaluated over several ciphertexts86

encrypting separately the digits of a large plaintext. Finally, section 6 gives unitary results87

comparing these methods for LUTs evaluation over encrypted data.88

Anonymous Submission to IACR TCHES 3

2 TFHE89

2.1 Notations90

In the upcoming sections, we denote vectors by bold letters and so, each vector x of n91

elements is described as: x = (x1,...,xn). 〈x,y〉 is the dot product between two vectors x92

and y. We denote matrices by capital letters, and the set of matrices with m rows and n93

columns with entries sampled in K byMm,n(K). x $←−K denotes sampling x uniformly from94

K, while x N (µ,σ2)←−−−−−K refers to sampling x from K following a Gaussian distribution of mean95

µ and variance σ2.96

We will use the same notations for parameters as in the TFHE article [Chi+19].97

We will refer to the real torus by T=R/Z. T is the additive group of real numbers modulo98

1 (R mod[1]) and it is a Z-module. That is, multiplication by scalars from Z is well-defined99

over T. TN [X] denotes the Z-module R[X]/(XN +1) mod[1] of torus polynomials, where100

N is a power of 2. R is the ring Z[X]/(XN+1) and its subring of polynomials with binary101

coefficients is BN [X]=B[X]/(XN+1) (B={0,1}). Finally, [x] will denote the encryption102

of x over T, TN [X] or R. x is sampled from the plaintext setM of cardinality |M|.103

Given a function f :T→T, we define LUTN (f) to be Look-Up Table defined by the set of N104

pairs
(
i,f
(
i
N

))
. Wemaywrite LUT(f)when the valueN is implied. Given a function f :T→T,105

we define a polynomial Pf,N ∈TN [X] of degree N by writing Pf,N =
∑N−1
i=0 f

(
i

2N
)
·Xi. For106

simplicity sake, we may write Pf instead of Pf,N when the value N is implied.107

2.2 TFHE Structures108

The TFHE encryption scheme was proposed in 2016 [Chi+16]. It improves the FHEW109

cryptosystem [DM15] and introduces the TLWE problem as an adaptation of the LWE110

problem to T. It was updated later in [Chi+17] and both works were recently unified111

in [Chi+19]. The TFHE scheme is implemented as the TFHE library [Chi+]. TFHE relies112

on three structures to encrypt plaintexts defined over T, TN [X] or R:113

• TLWE Sample: (a,b) is a valid TLWE sample if a
$←−Tn and b∈T verifies b=〈a,s〉+e,114

where s
$←−Bn is the secret key, and e N (0,σ2)←−−−−−T. Then, (a,b) is a fresh encryption of 0.115

• TRLWE Sample: a pair (a, b) ∈ TN [X]k × TN [X] is a valid TRLWE sample if116

a
$←− TN [X]k, and b = 〈a,s〉+ e, where s

$←− BN [X]k is a TRLWE secret key and117

e
N (0,σ2)←−−−−−TN [X] is a noise polynomial. In this case, (a,b) is a fresh encryption of 0.118

The TRLWE decision problem consists of distinguishing TRLWE samples from ran-119

dom samples in TN [X]k×TN [X]. Meanwhile, the TRLWE search problem consists120

in finding the private polynomial s given arbitrarily many TRLWE samples. When121

N =1 and k is large, the TRLWE decision and search problems become the TLWE122

decision and search problems, respectively.123

LetM⊂TN [X] (orM⊂T) be the discrete message space1. To encrypt a message124

m∈M⊂TN [X], we add (0,m)∈TN [X]k×TN [X] to a TRLWE sample encrypting 0125

(or to a TLWE sample of 0 ifM⊂T). In the following, we refer to an encryption of126

m with the secret key s as a T(R)LWE ciphertext noted c∈ T(R)LWEs(m).127

To decrypt a sample c∈ T(R)LWEs(m), we compute its phase φ(c)=b−〈a,s〉=m+e.128

Then, we round to it to the nearest element ofM. Therefore, if the error ewas chosen to129

1In practice, we discretize the Torus with respect to our plaintext modulus. For example, if we want
to encrypt m∈Z4 ={0,1,2,3}, we encode it in T as one of the following value {0,0.25,0.5,0.75}.

4 FHE calculations by means of TFHE functional bootstrapping

be small enough (yet high enough to ensure security), the decryption will be accurate.130

• TRGSW Sample: is a vector of l TRLWE samples encrypting 0. To encrypt a131

message m∈R, we add m·H to a TRGSW sample of 0, where H is a gadget matrix2.132

Chilotti et al., [Chi+19] defines an external product between a TRGSW sample A133

encrypting ma ∈R and a TRLWE sample b encrypting mb ∈TN [X]. This external134

product consists in multiplying A by the approximate decomposition of b with respect135

to H (Definition 3.12 in [Chi+19]). It yields an encryption of ma ·mb i.e., a TRLWE136

sample c∈ TRLWEs(ma ·mb). Otherwise, the external product allows also to compute137

a controlled MUX gate (CMUX) where the selector is Cb∈ TRGSWs(b),b∈{0,1}, and138

the inputs are c0∈ TRLWEs(m0) and c1∈ TRLWEs(m1).139

2.3 TFHE Bootstrapping140

TFHE bootstrapping relies mainly on three building blocks:141

• Blind Rotate: rotates a plaintext polynomial encrypted as a TRLWE ciphertext by142

an encrypted position. It takes as inputs: a TRLWE ciphertext c∈ TRLWEk(m), a143

vector (a1,...,ap,ap+1 =b) where ∀i, ai∈Z2N , and p TRGSW ciphertexts encrypting144

(s1,...,sp) where ∀i, si∈B. It returns a TRLWE ciphertext c′∈ TRLWEk(X〈a,s〉−b ·m).145

In this paper, we will refer to this algorithm by BlindRotate.146

• TLWE Sample Extract: takes as inputs a ciphertext c∈ TRLWEk(m) and a po-147

sition p∈ J0,NJ, and returns a TLWE ciphertext c′∈ TLWEk(mp) where mp is the148

pth coefficient of the polynomial m. In this paper, we will refer to this algorithm by149

SampleExtract.150

• Public FunctionalKeyswitching: transforms a set of p ciphertexts ci∈TLWEk(mi)151

into a ciphertext c′∈ T(R)LWEs(f(m1,...,mp)), where f() is a public linear morphism152

from Tp to TN [X]. Note that functional keyswitching serves at changing encryption153

keys and parameters. In this paper, we will refer to this algorithm by KeySwitch.154

TFHE comes with two bootstrapping algorithms. The first one is the gate bootstrapping. It155

aims at reducing the noise level of a TLWE sample that encrypts the result of a boolean gate156

evaluation on two ciphertexts, each of them encrypting a binary input. The binary nature157

of inputs/outputs of this algorithm is not due to inherent limitations of the TFHE scheme158

but rather to the fact that the authors of the paper were building a bitwise set of operators159

for which this bootstrapping operation was perfectly fitted.160

TFHE gate bootstrapping steps are summarized in Algorithm 1. The step 1 consists in161

selecting a value m̂∈T which will serve later for setting the coefficients of the test polynomial162

testv (in step 3). The step 2 rescales the components of the input ciphertext c as elements of163

Z2N . The step 3 defines the test polynomial testv. Note that for all p∈J0,2NJ, the constant164

term of testv ·Xp is m̂ if p∈KN2 ,
3N
2 K and −m̂ otherwise. The step 4 returns an accumulator165

ACC∈ TRLWEs′(testv ·X〈ā,s〉−b̄). Indeed, the constant term of ACC is −m̂ if c encrypts166

0, or m̂ if c encrypts 1. Then, step 5 creates a new ciphertext c by extracting the constant167

term of ACC and adding to it (0,m̂). That is, c either encrypts 0 if c encrypts 0, or m if168

c encrypts 1 (By choosing m= 1
2 , we get a fresh encryption of 1).169

TFHE specifies a second type of bootstrapping called circuit bootstrapping. It converts TLWE170

samples into TRGSW samples, and serves mainly for TFHE use in a levelled manner.171

2Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [Chi+19] for more information about the gadget
matrix H.

Anonymous Submission to IACR TCHES 5

Algorithm 1 TFHE gate bootstrapping [Chi+19]
Input: a constant m ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(x · 1

2) with x ∈ B, a
bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE
interpretation of a secret key s′

Output: a TLWE sample c∈ TLWEs(x.m)
1: Let m̂= 1

2m∈T (pick one of the two possible values)
2: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
3: Let testv :=(1+X+···+XN−1)·X N

2 ·m̂∈TN [X]
4: ACC←BlindRotate((0,testv),(ā1,...,ān,b̄),(BK1,...,BKn))
5: c=(0,m̂)+SampleExtract(ACC)
6: return KeySwitchs′→s(c)

2.4 Error Variance and Rate172

In this section, we remind results from [Chi+19] regarding the error’s variance for the173

BlindRotate andKeySwitch functions fromAlgorithm1. These results will serve later to bound174

the errors’ variance and rate for the discussed functional bootstrapping algorithms.175

Proposition 1. Let c be the output of Algorithm 1 when taking as input a TLWE ciphertext
c (without considering the KeySwitch i.e., without line 6 of Algorithm 1). Then, the variance
of the noise of c, Var(Err(c)), is bounded by:

Var(Err(c))≤n((k+1)`N(Bg2)2ϑBK+ (1+kN)
4·B2l

g

)

where ϑBK is the variance of the bootstrapping key, and Bg and l are the decomposition176

parameters of the gadget matrix H. Bg is the decomposition base and l serves to compute177

the decomposition precision ε= 1
2·Bl

g
.178

Proof. This result is a direct consequence of the noise analysis for BlindRotate. Please refer179

to [Chi+19] for the complete proof.180

In the following, we will refer to the error bound by EBS :

EBS=n((k+1)`N(Bg2)2ϑBK+ (1+kN)
4·B2l

g

)

Proposition 2. Given c a TLWE ciphertext encrypting a message m from the discrete
message spaceM, the probability of error for the bootstrapping algorithm, when taking as
input c verifies:

P (Err(c))=1−erf(1
2·|M|·

√
Vc+Vr ·

√
2

)

where erf(x)= 2√
π

∫ x
0 e
−t2dt is the Gaussian error function, Vc is the variance of Err(c), and181

Vr= n+1
48N2 is the variance of the error induced by the rounding operation in the bootstrapping182

algorithm (line 2 of Algorithm 1).183

Proof. The probability of bootstrapping error is the complementary to 1 of the probability184

of BlindRotate success. The latter is the probability that the sum of the input ciphertext185

noise with the rounding error (from line 2 of Algorithm 1) is smaller than half the interval186

allocated to a given value on the torus. That is, we need the noise of b2Nce
2N to be smaller than187

1
2|M| . Let’s consider that

b2Nce
2N = c+r where r is an error that comes from the rounding188

6 FHE calculations by means of TFHE functional bootstrapping

operation. The proposition result is obtained from the properties of the erf function and189

the fact that the variance of c+r is equal to the sum of their separate variances.190

The KeySwitch operation (line 6) at the end of the bootstrapping Algorithm 1 does not191

change the probability of error of the algorithm. However, it does change the resulting noise.192

The following proposition bounds the variance of the KeySwitch noise.193

Proposition 3. Let c be the output of the KeySwitch algorithm when it takes as input the
TLWE ciphertext c. Then, the variance of the noise of c is:

Var(Err(c))≤R2Var(Err(c))+n(tNϑKS+B−2t
KS

12)

where ϑKS is the variance of the keyswitching key, R is the Lipschitz constant of the linear194

application computed during the keyswitching operation. It will be always equal to 1 in our195

paper. BKS is a decomposition base, and t sets the decomposition precision to εKS= 1
2Bt

KS
.196

Proof. Please refer to [Chi+19] for a proof of this result with BKS=2 and to [GBA21] for197

a generalization to any decomposition base.198

In the following, we set the KeySwitch error bound to Var(Err(c))+EKS , where:

EKS=n(tNϑKS+B−2t
KS

12)

Proposition 4. Let c be the output of the bootstrapping Algorithm 1 when it takes as input
the TLWE ciphertext c. Then, the variance of the error of c verifies:

Var(Err(c))≤EBS+EKS

Proof. The result comes directly from the combination of propositions 1 and 3.199

3 TFHE Functional Bootstrapping200

3.1 Encoding and Decoding201

Our goal is to build an homomorphic LUT of any function f : I→O with varying precision202

and with input and output spaces I,O⊂R.203

Since we use TFHE as our homomorphic encryption scheme, every message from plaintext204

input or output space needs to be encoded in T. Therefore, in order to build our function205

f , we need to create a torus-to-torus function fT and appropriate encoding and decoding206

functions ι and ω.207

I f=ω◦fT◦ι−−−−−−→ O
ι↓ ↑ω
T −→

fT

T
208

In most cases, ι and ω are rescaling functions: a multiplication or a division by a single fixed209

value. In the following, we show several ways to build any Look-Up Table (LUT) evaluating210

function fT.211

Anonymous Submission to IACR TCHES 7

3.2 Functional Bootstrapping Idea212

The original bootstrapping algorithm from [Chi+16] had already all the tools to implement213

a LUT of any negacyclic function3 In particular, TFHE is well-suited for 1
2 -antiperiodic214

function, as the plaintext space for TFHE is T, where [0, 12 [corresponds to positive values215

and [1
2 ,1[to negative ones, and the bootstrapping step 2 of the Algorithm 1 encodes elements216

from T into powers of X modulus (XN + 1). Note that Xα+N ≡−Xαmod[XN + 1] and217

allows encoding negacylic functions as explained in the upcoming sections.218

Boura et al., [Bou+19] were the first to use the term functional bootstrapping for TFHE.219

They describe how TFHE bootstrapping computes a sign function. In addition, they state220

that bootstrapping can be used to build a Rectified Linear Unit (ReLU). However, they do221

not delve into the details of how to implement the ReLU in practice4.222

Algorithm 2 describes a sign computation with the TFHE bootstrapping. It returns µ if m223

is positive (i.e., m∈ [0, 12 [), and −µ if m is negative.224

Algorithm 2 Sign extraction with bootstrapping
Input: a constant µ ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T, a

bootstrapping key BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE
interpretation of a secret key s′

Output: a TLWE sample c∈ TLWEs(µ.sign(m))
1: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
2: Let testv :=(1+X+···+XN−1)·µ∈TN [X]
3: ACC←BlindRotate((0,testv),(ā1,...,ān,b̄),(BK1,...,BKn))
4: c=SampleExtract(ACC)
5: return KeySwitchs′→s(c)

Whenwe look at the building blocks ofAlgorithm2, we notice that there is some leeway to build225

more complex functions just by changing the coefficients of the test polynomial testv.226

Let t=
∑N−1
i=0 ti ·Xi where ti∈T and gt(x) the function:227

gt :
J−N,N−1K → T

i 7→
{

ti

− ti+N

if i∈J0,NJ
if i∈J−N,0J

228

Proposition 5. If we bootstrap a TLWE ciphertext [x] = (a,b) with the test polynomial229

testv= t, the output of the bootstrapping is [gt(φ(ā,b̄))], where (ā,b̄) is the rescaled version230

of (a,b) in Z2N (line 1 of Algorithm 2).231

Proof. First, we remind that for any positive integer i s.t. 0≤ i<N , we have:232

testv.X−i= ti+···−t0XN−i−···−ti−1X
N−1 mod[XN+1] (1)233

Then, we notice thatBlindRotate (line 3 of Algorithm 2) computes testv ·X−φ(ā,b̄). Therefore,234

we obtain the following results using equation (1):235

• if φ(ā,b̄)∈J0,NJ, the constant term of testv ·X−φ(ā,b̄) is tφ(ā,b̄).236

3Negacyclic functions are antiperiodic functions over T with period 1
2 , i.e., verifying f(x)=−f(x+ 1

2).
4The article does only mention that the function 2×ReLU can be built from an absolute value function

but does not explain how to divide by two to get the ReLU result.

8 FHE calculations by means of TFHE functional bootstrapping

• if φ(ā,b̄)∈J−N,0J, we have:237

testv ·X−φ(ā,b̄) =−testv ·X−φ(ā,b̄)−Nmod[XN+1]238

with (φ(ā,b̄)+N)∈J0,NJ. So, the constant term of testv ·X−φ(ā,b̄) is −tφ(ā,b̄)+N .239

All that remains for the bootstrapping algorithm is extracting the previous constant term240

(in line 4) and keyswitching (in line 5) to get the TLWE sample [gt(φ(ā,b̄))].241

We can use the previous proposition to build a discretized function evaluation as follows.242

Let h : [0, 12 [→T be any function, and gh the well-defined function:243

gh :
J−N,N−1K→ T

x 7→
{

h(x
2N)

− h(x+N
2N)

if x∈J0,NJ
if x∈J−N,0J

(2)244

Let’s call Ph the polynomial of degree N defined by: Ph =
∑N−1
i=0 h

(
i

2N
)
·Xi. Now, if we245

apply the bootstrapping Algorithm 2 to a TLWE ciphertext [x]=(a,b) with testv=Ph, it246

outputs [gh(φ(ā,b̄))] (by applying Proposition 5). That is, Algorithm 2 allows encoding a247

discretized negacyclic version of h. In that way, it allows encoding a discretized version of248

any negacyclic function.249

3.3 Private Functional Bootstrapping250

The functional bootstrapping algorithm can be adapted to compute an encrypted negacyclic251

function. Indeed, given a function f :T→T, we create [Pf], a TRLWE ciphertext whose ith252

coefficient is a TLWE ciphertext encrypting f(i
2N). Such a ciphertext can be created using253

the TFHE public functional key-switching operation (see Algorithm 2 of [Chi+19]) from254

N TLWE ciphertexts
[
f(i

2N)
]
.255

Let c=(a,b) be a ciphertext encrypting the message µ. Then, the Algorithm 3 outputs an256

encryption of f(φ(ā,b̄)
2N).

Algorithm 3 Encrypted LUT
Input: a TLWE sample c = (a, b) ∈ TLWEs(µ) with µ ∈ T, a bootstrapping key

BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE interpretation of a
secret key s′, an encryption [Pf] of the polynomial Pf

Output: a TLWE sample c∈ TLWEs(f(φ(ā,b̄)
2N))

1: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
2: Let testv :=[Pf]
3: ACC←BlindRotate(testv,(ā1,...,ān,b̄),(BK1,...,BKn))
4: c=SampleExtract(ACC)
5: return KeySwitchs′→s(c)

257

Proposition 6. Let c be the output of the private functional bootstrapping algorithm when
given as input c. Then, the variance of the noise of c verifies:

Var(Err(c))≤Var(Err([Pf]))+EBS+EKS

Proof. This result corresponds to the combination of the variance of the errors of BlindRotate258

and KeySwitch. The term Var(Err([Pf])) comes from the BlindRotate error [Chi+19].259

Anonymous Submission to IACR TCHES 9

Note that the term Var(Err([Pf])) was equal to 0 for Algorithms 1 and 2 as we were using260

a noiseless and trivial TRLWE sample (0,testv) as input for the BlindRotate.261

Proposition 7. Let c be a TLWE ciphertext, and suppose that we apply a negacyclic LUT
which differentiates |M| possible input values, the probability of error of the private functional
bootstrapping algorithm with c as input verifies:

P (Err(c))=1−erf(1
2·|M|·

√
Vc+Vr ·

√
2

)

where Vr= n+1
48N2 is the variance of the error induced by the rounding operation in line 1 of262

Algorithm 3.263

Proof. The proof is the same as for Proposition 2.264

3.4 Multi-Value Functional Bootstrapping265

Carpov et al., [CIM19] introduced a nice method for evaluating k different LUTs using one266

bootstrapping. Indeed, they factor the test polynomial Pfi
associated to the function fi into267

a product of two polynomials v0 and vi, where v0 is a common factor to all Pfi
. In fact, they268

notice that:269

(1+X+···+XN−1)·(1−X)=2 mod[XN+1] (3)270

Let’s write Pfi
as: Pfi

=
∑N−1
j=0 αi,jX

j with αi,j ∈Z. We obtain using equation (3):271

Pfi
= 1

2 ·(1+···+XN−1)·(1−X)·Pfi
mod[XN+1]272

=v0 ·vi mod[XN+1]273

where:274

v0 = 1
2 ·(1+···+XN−1)275

vi=αi,0+αi,N−1+(αi,1−αi,0)·X+···+(αi,N−1−αi,N−2)·XN−1
276

277

Thanks to this factorization, we are able to compute many LUTs with one bootstrapping.278

Indeed, we just have to set the initial test polynomial to testv= v0 during the bootstrap-279

ping. Then, after the BlindRotate, we multiply the obtained ACC by each vi corresponding280

to LUT(fi) to obtain ACCi (for more details about multi-value bootstrapping and error281

analysis, refer to Algorithm 7 in Appendix Section A).282

4 Look-Up-Tables over a Single Ciphertext283

In Section 3.2, we demonstrated that functional bootstrapping allows for the computation of284

LUT(h) for any negacyclic function h. In this section, we describe 4 different ways to build285

homomorphic LUTs using any function (i.e., not necessarily negacyclic ones). We present286

3 solutions from the state of the art [CJP21; KS21; Yan+21] in Sections 4.1, 4.2 and 4.3,287

and one that is novel to our work in Section 4.4.288

As in Section 3.1, we call fT : T→T the function used to build our homomorphic LUT, and289

f : I→O its corresponding function over the actual input and output spaces.290

10 FHE calculations by means of TFHE functional bootstrapping

4.1 Partial Domain Functional Bootstrapping291

This method avoids the negacyclic restriction of functional bootstrapping by encrypting292

values from [0, 12 [(i.e., half of the torus). Let’s set the test polynomial to be Ph, the output293

of the bootstrapping operation is given by Equation 2:294

gh :
J−N,N−1K→ T

x 7→
{

h(x
2N)

− h(x+N
2N)

if x∈J0,NJ
if x∈J−N,0J

295

If we restrict gh domain to J0,NJ, we ensure that gh is just a LUT based on function h (h296

is not necessarily negacyclic). That is, we obtain a method to evaluate a LUT in a single297

bootstrapping. However, we have to encode the plaintext space over a smaller portion of the298

torus T, therefore increasing the relative noise introduced by the TFHE encryption process.299

The overall result will hence be less accurate.300

Proposition 8. Let c be the output of the partial domain functional bootstrapping algorithm
for a given input. Then, the variance of the error of c verifies:

Var(Err(c))≤EBS+EKS

Proof. This result is a direct application of Proposition 1.301

Proposition 9. Let c be a TLWE ciphertext, and suppose that we differentiate |M| possible
input values over half of the torus. The probability of error of the partial domain functional
bootstrapping algorithm with input c verifies:

P (Err(c))=1−erf(1
4·|M|·

√
Vc+Vr ·

√
2

)

where Vr= n+1
48N2 is the standard deviation of the error induced by the rounding operation in302

the bootstrapping algorithm.303

Proof. This result is a direct application of Proposition 2.304

4.2 Full Domain Functional Bootstrapping–FDFB305

Kluczniak and Schild [KS21] proposed this method to evaluate encrypted LUTs of domain306

the whole torus T. Let’s consider a TLWE ciphertext [m] encrypting the message m, and307

a function f of domain T. We denote by g the function:308

g : T→ T
x 7→ −f(x+ 1

2)309

We define the Heaviside function H as:310

H :x 7→
{

1 if x≥0
0 if x<0

H can be expressed using the sign function as follows: H(x)= sign(x)+1
2 .311

First, we compute [H(m)] with only one bootstrapping (using Algorithm 2) and deduce312

[(1−H)(m)]=[1]−[H(m)], where [1] is a noiseless and trivial TLWE sample encrypting 1.313

Anonymous Submission to IACR TCHES 11

Keep in mind that 1 is represented over the torus by 1
M . Then, we make a keyswitch to314

transform the TLWE sample [(1−H)(m)] into a TRLWE sample. Finally, we define:315

cLUT =(Pg−Pf)·[(1−H)(m)]+(0,Pf)
316

cLUT =
{

[Pf] if m≥0
[Pg] if m<0

Note that depending on the sign of m, cLUT is a TRLWE encryption of Pf or Pg, the test317

polynomials of f or g, respectively. Indeed, after a functional bootstrapping of [m] using318

cLUT as a test polynomial, we obtain [f(m)]. This functional bootstrapping requires 2319

BlindRotate during the bootstrapping: one to compute the Heaviside function and the other320

to apply the encrypted LUT. In addition, we can reduce the noise of cLUT by using the321

factorization idea presented in 3.4.322

Proposition 10. Let c be the output of the FDFB algorithm with input [m]. Then, the
variance of the noise of c verifies:

Var(Err(c))≤(||Pg−Pf ||22+1)·EBS+(2·||Pg−Pf ||22+1)·EKS

Proof. The result corresponds to the error of a ciphertext computed from a private functional323

bootstrapping (section 3.3) with a test vector that is obtained with a public functional324

bootstrapping, followed by a KeySwitch and a multiplication by a clear polynomial. Thus,325

we can compose the errors’ formulas of each of these operations and get the final result.326

Proposition 11. Let c be a TLWE ciphertext, and suppose that we differentiate |M| possible
input values, the probability of error of the FDFB bootstrapping algorithm with input c verifies:

P (Err(c))=1−erf(1
2·|M|·

√
Vc+Vr ·

√
2

)

where Vr = n+1
48N2 is the variance of the error induced by the rounding operation in the327

bootstrapping algorithm.328

Proof. For the first BlindRotate to succeed in computing the Heaviside function H, the noise329

of b2Nce
2N has to be smaller than 1

4 . Then, for the second BlindRotate to succeed and get the330

final result, the noise of b2Nce
2N has to be smaller than 1

2|M| . Since |M|≥ 2, we just need331

to take into account the probability of error of the second BlindRotate. Finally, we get this332

probability of error thanks to the properties of erf.333

4.3 Full Domain Functional Bootstrapping–TOTA334

Yan et al., [Yan+21] proposed this method to evaluate arbitrary functions over the torus using335

a functional bootstrapping. Let’s consider a ciphertext [m1]=(a,b=a.s+m1+e). Then, by336

dividing each coefficient of this ciphertext by 2, we get a ciphertext [m2]=(a
2 ,

a
2 .s+m2+ e

2)337

where m2 = m1
2 + k

2 with k ∈ {0,1} and m1
2 ∈ [0, 1

2 [. Using the original bootstrapping338

algorithm, we compute [sign(m2)
4] an encryption of sign(m2)

4 =
{ 1

4 if k=0
− 1

4 if k=1 . Then,339

[m2]−[sign(m2)
4]+(0, 14) is an encryption of m1

2 .340

For any function f , let’s define f(2) such that f(2)(x) = f(2x). Since m1
2 ∈ [0, 1

2], we can341

compute f(2)(m1
2) with a single bootstrapping using the partial domain solution from 4.1,342

and f(2)(m1
2)=f(m1).343

12 FHE calculations by means of TFHE functional bootstrapping

Thus, this method allows computing any function with only 2 bootstrappings. Keep in mind344

that the torus is actually discretized, so some noise and some loss of precision are introduced345

after dividing by 2 due to the rounding of the coefficients.346

Proposition 12. Let c be the output of the TOTA functional bootstrapping algorithm for
a given input. Then, the variance of the noise of c verifies:

Var(Err(c))≤EBS+EKS

Proof. The algorithm ends with a functional bootstrapping which directly gives the re-347

sult.348

Proposition 13. Let c be a TLWE ciphertext, and suppose that we differentiate |M| possible
input values, the probability of error of the TOTA algorithm with input c verifies:

P (Err(c))=1−erf(1
4
√
Vc+Vr ·

√
2

)·erf(1

4·|M|·
√

Vc

4 +Vr+Vsign ·
√

2
)

where Vr= n+1
48N2 is the variance of the error induced by the rounding operation in the boot-349

strapping algorithm, and Vsign is the variance of the sign functional bootstrapping (i.e.,350

Vsign=EBS+EKS).351

Proof. We need to apply two BlindRotate over inputs. In order to compute the sign suc-352

cessfully, we need the noise of b2Nce
2N to be smaller than 1

4 . In order to compute the second353

BlindRotate successfully, we need the noise of bNc+2N ·[sign
4]e

2N to be smaller than 1
4|M| . Thus,354

the probability of success for the algorithm is the product of the probability of success for355

each BlindRotate. Knowing that the probability of error is the complementary to one of this356

product gives us the result.357

4.4 Full Domain Functional Bootstrapping with Composition358

In this section, we present a novel method to compute any function using the full (discretized)359

torus as plaintext space. In this regard, it uses the same plaintext space as solutions presented360

in Sections 4.2 and 4.3.361

4.4.1 Pseudo odd functions362

We call pseudo odd function a function f that verifies ∀x∈T,f(−x− 1
|M|)=−f(x). We note363

bxeM the rounding function which discretizes the torus over |M| values, and fT a pseudo364

odd function over the discretized torus.365

Let h be the following function:366

h : [0, 12 [→ T
x 7→ bxeM+ 1

2|M|

Then we can define a functional bootstrapping with an output function gh as such:367

gh : x 7→
{
b x2N eM+ 1

2|M|
−b x2N eM−

1
2−

1
2|M|

if x∈J0,NJ
if x∈J−N,0J368

Anonymous Submission to IACR TCHES 13

We now consider the restriction of fT over positive values [0, 12 [. Then we can define gfT+369

as such:370

gfT+ : x 7→
{
fT

(
x

2N
)

−fT

(
x+N
2N
) if x∈J0,NJ

if x∈J−N,0J371

We can compose gfT+ with 2Ngh− N
|M| .372

gfT+ ◦(2Ngh−
N

|M|
) : x 7→

{
fT

(
b x2N eM

)
−fT

(
−b x2N eM−

1
|M|

) if b x2N eM∈ [0, 12 [
if b x2N eM∈ [− 1

2 ,0[373

Considering that fT is pseudo odd, we get:374

∀x∈T,gfT+ ◦(2Ngh−
N

|M|
)(x)=fT(b x2N eM)

Therefore gfT+ ◦ (2Ngh − N
|M|) evaluates a LUT based on fT for the whole discretized375

torus.376

4.4.2 Pseudo even functions377

We call pseudo even function a function f that verifies ∀x∈T,f(−x− 1
|M|)=f(x).378

We note fT a pseudo even function over the discretized torus.379

We set h as:380

h : [0, 12 [→ T
x 7→ bxeM+ 1

4 + 1
2|M|

Then we can define a functional bootstrapping with an output function gh as such:381

gh : x 7→
{
b x2N eM+ 1

4 + 1
2|M|

−b x2N eM+ 1
4−

1
2|M|

if x∈J0,NJ
if x∈J−N,0J382

We now can compose gfT+ with 2Ngh−N
2 −

N
|M| .383

gfT+ ◦(2Ngh−
N

2 −
N

|M|
) : x 7→

{
fT

(
b x2N eM

)
fT

(
−b x2N eM−

1
|M|

) if b x2N eM∈ [0, 12 [
if b x2N eM∈ [− 1

2 ,0[384

Considering that fT is pseudo even, we get:385

∀x∈T,gfT+ ◦(2Ngh−
N

|M|
)(x)=fT(b x2N eM)

Therefore, gfT+ ◦(2Ngh− N
|M|) is a LUT based on fT over the whole discretized torus.386

14 FHE calculations by means of TFHE functional bootstrapping

4.4.3 Any function387

Any function fT can be written as a sum of a pseudo even function and a pseudo odd function:388

fT(x)= fT(x)+fT(−x− 1
|M|)

2 + fT(x)−fT(−x− 1
|M|)

2 . Sections 4.4.1 and 4.4.2 showed we can build389

an homomorphic LUT based on any pseudo odd or pseudo even function with at most 2390

functional bootstrapping operations. This means that we can build one over any kind of391

function with at most 4 functional bootstrapping operations. In practice, since both the392

pseudo odd and the pseudo even functions are evaluated on the same input, a multi-value393

functional bootstrapping (see Section 3.4) can be used to reduce the maximum amount of394

bootstrapping operations to 3. Besides, odd functions and even functions can be computed395

in a very similar way to their pseudo equivalent with only 2 bootstrappings. There are also396

a host of useful functions (sigmoid, monomial functions, trigonometric functions, identity,···)397

which can be computed using only 2 bootstrapping operations because they are one sum398

away from an odd or even function.399

Note that this solution is only suitable for precise arithmetic. Indeed, because of the negacyclic400

nature of the bootstrapping operation, we are actually composing discontinuous functions.401

This can lead to unexpected behaviors if the noise of the ciphertext is too big.402

Proposition 14. Let c be the output of the composition functional bootstrapping algorithm
for a given input. Then, the variance of the noise of c verifies:

Var(Err(c))≤2·(EBS+EKS)

Proof. The result comes from the addition of two independent bootstrapped ciphertexts.403

Proposition 15. Let c be a TLWE ciphertext, and suppose that we differentiate |M| possible
input values. The probability of error of the composition functional bootstrapping algorithm
with c verifies:

P (Err(c))=1−erf
(

1
2·|M|·

√
Vc+Vr ·

√
2

)
·

(
erf
(

1
2·|M|·

√
Vf+Vr ·

√
2

))2

where Vr= n+1
48N2 is the variance of the error induced by the rounding operation in the boot-404

strapping algorithm, and Vf is the variance of the result of the first functional bootstrapping405

(i.e., Vf =EBS+EKS).406

Proof. The proof is similar to the proof of Proposition 13.407

5 Look-Up-Tables over Multiple Ciphertexts408

In section 4, we discussed several functional bootstrapping methods that take as input one409

ciphertext. These methods have a limited plaintext space and precision, and allow evaluating410

look-up tables with a size bounded by the degree of the used cyclotomic polynomial (N).411

In addition, these methods are not suited for computing a LUT for a multivariate function f412

that takes as inputs two or more ciphertexts. In order to overcome these issues, we describe413

in this section a method for computing functions using multiple ciphertexts as inputs.414

Our proposed solution improves the results of Guimarães et al., [GBA21]. They, themselves,415

generalize the ideas of Boura et al. [BST19] and discuss two methods for homomorphic416

computation with digits: a tree-based approach and a chaining approach. We expand on417

the chaining method in order to obtain any function through its use as opposed to the subset418

of function previously allowed.419

Anonymous Submission to IACR TCHES 15

Subsequently, we use this method to apply a LUT to a single message decomposed over420

multiple ciphertexts. That is, we decompose each plaintext into several digits in a certain base421

B and encrypt these digits separately. Decomposition allows working with a larger plaintext422

space I while using an acceptable parameters set for an efficient computation.423

In this section, we first review the tree-based method and then improve the chaining method424

to make it fit any function. We show how those methods can be used as building blocks425

in order to compute additions and multiplications of messages decomposed over multiple426

ciphertexts. We then show how to compute the ReLU function over a single, decomposed,427

plaintext. The choice of ReLU as a worthy application of our novel method was made because428

it is the most used activation function in modern convolutional neural networks.429

5.1 Tree-based Method430

We consider d TLWE ciphertexts (c0,...,cd−1) encrypting the messages (m0,...,md−1) over431

half of the torus and B∈N, such that each ciphertext ci corresponds to an encryption of432

mi ∈ J0,B−1K. We denote by f : J0,B−1Kd→ J0,B−1K our target function and by g the433

bijection:434

g : J0,B−1Kd → J0,Bd−1K
(a0,...,ad−1) 7→

∑d−1
i=0 ai ·Bi

We encode the LUT for f in Bd−1 TRLWE ciphertexts. Each ciphertext encrypts a poly-435

nomial Pi where:436

Pi(X)=
B−1∑
j=0

N
B−1∑
k=0

f ◦g−1(j ·Bd−1+i)·Xj·NB +k

Then, we apply the BlindRotate algorithm to cd−1 and each TRLWE(Pi), and use the437

SampleExtract algorithm to extract the first coefficient of the result. We end up with Bd−1
438

TLWE ciphertexts each encrypting a message f ◦g−1(md−1 ·Bd−1+i) for i∈ J0,Bd−1−1K.439

Thanks to TLWE to TRLWE keyswitching, we batch them into Bd−2 TRLWE ciphertexts440

corresponding to the LUT of h where:441

h : J0,B−1Kd−1 → J0,B−1K
(a0,...,ad−2) 7→ f(a0,...,ad−2,md−1)

We iterate this operation until getting only one TLWE ciphertext encrypting f(m0,...,md−1).442

Since a function from J0,B− 1Kd to J0,B− 1Kk can be decomposed in k functions from443

J0,B−1Kd to J0,B−1K, we can actually build any function between any inputs, once they444

are decomposed in base B then encrypted.445

Note that the BlindRotate algorithm is costly and we have to call it
∑d−1
i=0B

i= Bd−1
B−1 times.446

Fortunately, we can make it faster by encoding the first LUTs in plaintext polynomials rather447

than TRLWE ciphertexts. Then, we use the multi-value bootstrapping given in [CIM19]448

to compute only one bootstrapping instead of Bd−1 in the first step of the algorithm. Thus449

we end-up by running 1+
∑d−2
i=0B

i=1+Bd−1−1
B−1 BlindRotate.450

Proposition 16. Let c be the output of the tree-based functional bootstrapping algorithm
for a given input on d digits. Then, if we don’t use the multi-value bootstrapping for the first
level of the tree, the variance of the noise of c will verify:

Var(Err(c))≤d·(EBS+EKS)

If we use the multi-value bootstrapping with polynomials Pi we get:

Var(Err(c))≤(d−1+max(||Pi||22))·EBS+d·EKS

16 FHE calculations by means of TFHE functional bootstrapping

Proof. The result comes from the composition of the formulas for multi-value functional451

bootstrapping, keyswitching, and private functional bootstrapping.452

Proposition 17. Let (ci)i∈J1,dK be d TLWE ciphertexts corresponding to d digits of a plain-
text message. Suppose that we differentiate |M| possible input values, the probability of error
of the tree-based bootstrapping algorithm with inputs (ci)i∈J1,dK verifies:

P (Err((ci)i∈J1,dK))=1−
d∏
i=1

erf(1
4·|M|·

√
Vci +Vr ·

√
2

)

where Vr = n+1
48N2 is the variance of the error induced by the rounding operation in the453

bootstrapping algorithm.454

Proof. The result comes from the fact that for each i, ci must have a noise low enough to455

allow for a successful BlindRotate.456

5.2 Chaining Method457

The chaining method has a much lower complexity and a lower error growth than the458

tree-based method but, as presented in [GBA21], works only for a more restricted set of459

functions.460

We consider n TLWE ciphertexts (c0, ... ,cn−1) encrypting the messages (m0, ... ,mn−1)461

respectively and denote by LC(a,b) any linear combination of a and b. Given some functions462

(fi)i∈J0,n−1K so that fi :J0,B−1K→J0,B−1K, we can build a function f :J0,B−1Kn→J0,B−1K463

following Algorithm 4. Each fi can be implemented in the homomorphic domain using any464

functional bootstrapping method described in Section 4. The result of this algorithm has465

the same noise as a simple functional bootstrapping, thus much less than the noise output466

of the tree method.467

Algorithm 4 Chaining method
Input: A vector (c0, ... ,cn−1) of TLWE ciphertexts encrypting the vector of messages

(m0,...,mn−1).
Output: A ciphertext encrypting f(m0, ... , mn−1). f is defined here by the linear
combinations chosen at every step and the different single-input functions fi.
c0←f0(c0)
for i∈J0,n−2K do

ci+1←fi+1(LC(ci,ci+1))
return cn−1

Most functions cannot be computed in such a simplistic way, which greatly restricts its use468

even though it can be effective for functions with carry-like logic as stated in [GBA21].469

Generalization. It is possible to build any function f using a similar method. We introduce470

the function g such that:471

g : J0,B−1K2 → J0,B2−1K
(a0,a1) 7→ a0+a1 ·B

That function is a bijection, which means that if a ciphertext can hold any message in472

J0,B2−1K, then we can compute any function of two ciphertexts c1 and c2 by applying one473

functional bootstrapping over g(c1,c2).474

Anonymous Submission to IACR TCHES 17

Note that when using base 2, we can easily build any logic gate with this method. We can475

then build a circuit with these gates for any functions. The same idea works for any base B.476

However, this generalization comes at the cost of multiple bits of padding and the conception477

of the proper circuit.478

Proposition 18. Let c be the output of the chaining functional bootstrapping algorithm for479

given encrypted d digits. Then, the variance of the error of c follows the same formula as480

the last functional bootstrapping method used in the chain.481

Proof. We get the result by applying the noise formula associated to the last functional boot-482

strapping in the chain and by noticing that it does not depend on the noise of the input.483

The probability of error is highly dependent on the choice of: the encoded LUT in the484

functional bootstrapping applied to each digit, the linear combinations between the inputs485

and outputs of the chained bootstrappings, and the structure of the circuit corresponding486

to the target function. Thus, a general formula cannot be given.487

5.3 Addition488

We expect additions of two messages to be computed in linear time with respect to the489

number of digits of each message. Thus the tree-based method is ill-suited for this operation,490

since the tree-based method computing time grows exponentially with the number of digits491

used as inputs. Meanwhile, the chaining method is not exactly adapted to this operation492

if applied directly. Nonetheless, we show that we can still use any of the two methods to493

compute the addition effectively.494

Let m1 =
∑n
i=0m1,i ·Bi and m2 =

∑n
i=0m2,i ·Bi be two messages expressed in base B.495

For each pair (i, j), let ci,j be the ciphertext encrypting the message mi,j . We define496

ci=(ci,0,...,ci,n) as the vector of ciphertexts encrypting mi in base B. Finally, we denote497

by h the half adder function, and by f the full adder one:498

h : J0,B−1K2 → J0,B−1K2

(a,b) 7→ ((a+b)[B],b(a+b)/Bc)
499

f : J0,B−1K2×{0,1} → J0,B−1K2

(a,b,c) 7→ ((a+b+c)[B],b(a+b+c)/Bc)

These two functions are the only requirements to build the addition operation. But, in order500

to be able to create those two adders, we need to create the following sub-functions:501

mod : J0,2B−1K → J0,B−1K
x 7→ x[B]

502

carry : J0,2B−1K → {0,1}
x 7→ bx/Bc

We can use either the tree-based method or the chaining method to compute mod or carry503

functions. The chaining method needs one bit of padding to work, while the tree-based504

method is slower, especially for the full adder which is a three inputs function. Finally, we505

present Algorithm 5 for computing addition between two vectors of ciphertexts.506

The time complexity of Algorithm 5 is linear with respect to the number of digits of the507

entries. The noise of each output ciphertext is the same as the noise of a simple bootstrapping508

if we use the chaining method for computing the sub-functions mod and carry. Meanwhile,509

with the tree-based method, we end-up with the noise of a simple bootstrapping followed510

by two BlindRotate.511

18 FHE calculations by means of TFHE functional bootstrapping

Algorithm 5 Addition
Input: Two vectors of ciphertexts c1 =(c1,i)i∈J0,n−1K and c2 =(c2,i)i∈J0,m−1K encrypting
two messages m1 and m2 written in base B. We suppose here that n≥m.

Output: An encryption of m1+m2 in base B.
(c1,0,c2,0)←h(c1,0,c2,0)
for i∈J0,m−2K do

(c1,i+1,c2,i+1)←f(c1,i+1,c2,i+1,c2,i)
for i∈Jm−1,n−2K do

(c1,i+1,c2,i+1)←h(c1,i+1,c2,i)
return (c1,0,...,c1,n−1,c2,n−1)

5.4 Multiplication512

As we expected linear computation time to be achievable for the homomorphic addition,513

we expect to achieve quadratic time complexity for homomorphic multiplication. Let m1514

andm2 be two messages and c1 =(c1,i)i∈J0,n−1K and c2 =(c2,i)i∈J0,m−1K be their encryption515

in base B. In order to evaluate m1 ·m2 in the encrypted domain, we first multiply each digit516

of m1 by each digit of m2. Then, we have just to add the obtained elements properly using517

half and full adders to get the final result.518

Since we have already introduced homomorphic adders, we only need to describe how to519

multiply two digits. Given two messages a and b in J0,B−1K, we need to compute a·b[B]520

and a·b/B in the encrypted domain. If we use the tree-base method, we can compute both521

functions with three LUTs since both functions will use the same selector in the first step.522

Otherwise, we can also use the generalized chainingmethod to compute both needed functions523

using two LUTs, but this method comes at the cost of using multiple bits of padding.524

We denote by MultDigits(ca,cb) a method for computing a·b[B]. In the same way, we denote525

by CarryMult(ca,cb) a method for computing a·b/B. Then the multiplication of m1 and m2526

can be done with Algorithm 6.527

Algorithm 6Multiplication
Input: Two vectors of ciphertexts c1 =(c1,i)i∈J0,n−1K and c2 =(c2,i)i∈J0,m−1K encrypting
two messages m1 and m2 written in base B.

Output: An encryption c=(ci)i∈J0,n+m−1K of m1 ·m2 in base B.
for i∈J0,n+m−1K do

SubMuli←empty vector
for i∈J[0,n−1K do

for j∈J0,m−1K do
Put MultDigits(c1,i,c2,j) in vector SubMuli+j
Put CarryMult(c1,i,c2,j) in vector SubMuli+j+1

c0←SubMul0[0]
for i∈J1,n+m−1K do

ci←(
∑size(SubMuli)−1
j=0 SubMuli[j])[B] using adders

Put the carries in SubMuli+1
return (c0,...,cn+m−1)

The time complexity of Algorithm 6 is quadratic with respect to the number of digits of the528

entries. The noise of the outputs is similar to the noise of the adder sub-functions.529

Anonymous Submission to IACR TCHES 19

5.5 ReLU530

In this section, we describe how to avoid using the tree-basedmethod, as it is, for the implemen-531

tation of the ReLU activation function. Let’s considerm=
∑n
i=0mi ·Bi a message written us-532

ing radix complement representation in baseB, and (ci)i∈J0,nK =(TLWEs(mi))i∈J0,nK.533

In order to use the tree-based method to evaluate intermediate functions on each encrypted534

digit, we use a functional bootstrapping to create a selector S from cn that encrypts the535

torus element 0 if 0≤mn<
B
2 and 1

4 if B2 ≤mn<B. Note that (0≤mn<
B
2)⇐⇒ (m≥0),536

so the value of S depends on the sign of m. Then, for each ci, we create using keyswitching537

a TRLWE ciphertext LUT(ci) so that for j ∈ J0,N2 −1K, SampleExtract(LUT(ci),j) is an538

encryption of mi, and for j ∈ JN2 ,N−1K, SampleExtract(LUT(ci),j) is an encryption of 0.539

Then, SampleExtract(BlindRotate(S,LUT(ci),0) outputs:540

ci=
{

TLWE(0,s) if m<0
TLWE(mi,s) if m≥0

Thus, (ci)i∈J0,nK encrypts ReLU(m) using radix complement representation in base B.541

Otherwise, we can compute the ReLU function using the chaining method. Then, each cipher-542

text has to encrypt a value in J0,2BJ. First, let’s compute a selectorS from cn such that:543

S=
{

TLWE(0,s) if m≥0
TLWE(B,s) if m<0

Then, let’s define:544

f :
J0,2B−1K → J0,2B−1K

x 7→
{
x if x<B
0 if x≥B

This function can be computed with one functional bootstrapping. For each ci, we compute545

ci=f(ci+S). We obtain (ci)i∈J0,nK an encryption using radix complement representation546

in base B of ReLU(m).547

6 Experimental Results548

In this section, we compare time and accuracy performances for each of the functional549

bootstrapping presented above.550

Parameters. We considered a wide panel of parameters’ sets with either λ=80 or 120 bits of551

security. Considering that λ only depends on the parameters n,N and σmin which is the stan-552

dard deviation of fresh ciphertexts, we set those parameters as shown in Table 1. We set the553

parameters t and BKS relative to key switching to t=3 and BKS=128. This way, KeySwitch554

operations are fast enough to be negligible compared to bootstrappings and the resulting555

noise has a very low impact compared to the other sources of noise. The other parameters are556

chosen to give a good representation of the ability of each method and can be seen with the557

results of the experiment in Tables 2, 3, 4, and 5 (which are at the end of the paper).558

Accuracy. In the tables mentioned earlier, we computed the probability of error ε of each559

method for every set of parameters considered, allowing for a comparison between them.560

Note that the probability of error of each method does not depend on the function applied561

by the bootstrapping except for FDFB. In this particular case, we gave the probability of562

error using the functions Id and ReLU as well as the worst case. The experiment shows that563

for any given set of parameters, the probability of error is identical between TOTA and564

the partial domain method, or slightly in favor of the latter. Meanwhile, the composition565

method gets much better results than any other method in every case. In the case of FDFB,566

20 FHE calculations by means of TFHE functional bootstrapping

we can see that the smaller the parameter l is, the worst it is compared to the others. On the567

opposite, when l becomes bigger, its results become much better and even compete with the568

composition method. In addition, the choice of the function has a big impact on ε, and in569

simple cases such as the ReLU and Id function, even the worst set of parameters get similar570

result to the partial domain method and TOTA.571

Time performance. In every case, the speed of each method can be closely approximated572

by the speed of one simple bootstrapping multiplied by the number of bootstrapping needed.573

This result in the partial domain method being the fastest with only 1 bootstrapping needed.574

Then, TOTA is slightly faster than FDFB as it requires less key switching operations. As575

far as the composition method is concerned, the number of bootstrapping depends on the576

function evaluated. Thus, for a simple function such as the absolute value, its speed is577

identical to that of the partial domain method. Meanwhile, the ReLU function needs 3578

bootstrappings which leads to it being about 3
2 times slower than TOTA and FDFB.579

7 Conclusion580

Through the use of several bootstrapping operations and - in some cases - additional oper-581

ations, every full domain method (Sections 4.2, 4.3 and 4.4) adds some output noise when582

compared to the simpler and quicker partial domain method (Section 4.1). The question583

is: does a larger initial plaintext space make up for the added noise and computation time?584

Table 2 and Table 3 shows us that the Yan et al., [Yan+21] (TOTA) method is both less585

accurate and twice as time-consuming than the partial domain method. Kluczniak and586

Schild’s [KS21] (FDFB) method, gets a better accuracy for well chosen parameters but is587

still twice as time-consuming as the partial domain method. Our novel composition method588

(Section 4.4) is more accurate than any of the previously mentioned methods, however thrice589

as time consuming as the partial-domain method. As for our digit-decomposition method590

(Section 5), it allows for an arbitrary precision, though with a corresponding running time591

always much higher than the partial domain solution.592

Given these experimental measures, our recommendations on the use of these functional593

bootstrapping methods are the following, given specific applicative scenarios:594

• Precise integer arithmetic above all else. In some cases, precision is the only cri-595

teria that matters. Then, our generalized digit-decomposition functional boot-596

strapping method is the appropriate choice as it is the only method with unbounded597

precision for functional bootstrapping computation of any function in the literature.598

• Efficient approximate or precise integer arithmetic. In the case where we need599

either an approximate or a precise arithmetic computation in a limited amount of time,600

the partial domain method is an obvious choice. Its precision is only constantly601

toped by our Composition method, but the speed difference is the decisive factor here.602

• Efficient precise modular arithmetic. There is a case where one wishes to use603

modular arithmetic instead of integer arithmetic. In this case, the partial domain604

method cannot be used as plaintexts are encoded on only half of the torus which is605

not an additive group. In this case one of the full domain methods must be used. If606

the computation must be precise then our novel composition method is the most607

precise among the options.608

• Efficient approximate modular arithmetic. In the case where the arithmetic609

is modular but the computation is approximate due to large noises in ciphertexts,610

the composition method should be avoided as its behavior becomes unpredictable.611

Therefore the preferred option becomes FDFB [KS21].612

Furthermore, the operators presented in this paper provide key building blocks for enabling613

advanced deep learning functions over encrypted data.614

Anonymous Submission to IACR TCHES 21

References615

[Bou+20] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.616

“CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption617

Schemes”. In: Journal of Mathematical Cryptology 14.1 (1Jan. 2020), pp. 316–618

338. doi: https://doi.org/10.1515/jmc-2019-0026. url: https://www.619

degruyter.com/view/journals/jmc/14/1/article-p316.xml.620

[Bou+19] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. “Sim-621

ulating Homomorphic Evaluation of Deep Learning Predictions”. In: Cyber622

Security Cryptography and Machine Learning. Ed. by Shlomi Dolev, Danny623

Hendler, Sachin Lodha, and Moti Yung. Cham: Springer International Publish-624

ing, 2019, pp. 212–230.625

[Bou+18] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. “Fast Homomorphic Evalu-626

ation of Deep Discretized Neural Networks”. In: Proceedings of CRYPTO 2018.627

Springer, 2018.628

[BST19] Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved Secure Integer629

Comparison via Homomorphic Encryption. Cryptology ePrint Archive, Report630

2019/427. https://ia.cr/2019/427. 2019.631

[Bra12] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switching632

from Classical GapSVP”. In: Advances in Cryptology – CRYPTO 2012. Ed. by633

Reihaneh Safavi-Naini and Ran Canetti. Berlin, Heidelberg: Springer Berlin634

Heidelberg, 2012, pp. 868–886. isbn: 978-3-642-32009-5.635

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. “New Techniques636

for Multi-value Input Homomorphic Evaluation and Applications”. In: Top-637

ics in Cryptology – CT-RSA 2019. Ed. by Mitsuru Matsui. Cham: Springer638

International Publishing, 2019, pp. 106–126. isbn: 978-3-030-12612-4.639

[Cha+19] Herve Chabanne, Roch Lescuyer, Jonathan Milgram, Constance Morel, and640

Emmanuel Prouff. “Recognition Over Encrypted Faces: 4th International Con-641

ference, MSPN 2018, Paris, France”. In: 2019.642

[Cha+17] Hervé Chabanne, Amaury deWargny, JonathanMilgram, ConstanceMorel, and643

Emmanuel Prouff. Privacy-Preserving Classification on Deep Neural Network.644

Cryptology ePrint Archive, Report 2017/035. 2017.645

[Che+17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. “Homomor-646

phic Encryption for Arithmetic of Approximate Numbers”. In: (2017). Ed. by647

Tsuyoshi Takagi and Thomas Peyrin.648

[CKP19] Jung Hee Cheon, Duhyeong Kim, and Jai Hyun Park. “Towards a Practical649

Clustering Analysis over Encrypted Data”. In: IACR Cryptology ePrint Archive650

(2019).651

[Chi+16] IlariaChillotti, NicolasGama,MariyaGeorgieva, andMalika Izabachène. “Faster652

Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds”. In:653

Advances in Cryptology – ASIACRYPT 2016. Ed. by Jung Hee Cheon and654

Tsuyoshi Takagi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 3–33.655

isbn: 978-3-662-53887-6.656

[Chi+17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.657

“Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping658

for TFHE”. In: ASIACRYPT. 2017.659

[Chi+] Ilaria Chillotti, NicolasGama,MariyaGeorgieva, andMalika Izabachène.TFHE:660

Fast Fully Homomorphic Encryption Library. url: https://tfhe.github.io/661

tfhe/.662

https://doi.org/https://doi.org/10.1515/jmc-2019-0026
https://www.degruyter.com/view/journals/jmc/14/1/article-p316.xml
https://www.degruyter.com/view/journals/jmc/14/1/article-p316.xml
https://www.degruyter.com/view/journals/jmc/14/1/article-p316.xml
https://ia.cr/2019/427
https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/

22 FHE calculations by means of TFHE functional bootstrapping

[Chi+19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.663

“TFHE: Fast Fully Homomorphic Encryption Over the Torus”. In: Journal664

of Cryptology 33 (Apr. 2019). doi: 10.1007/s00145-019-09319-x.665

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. “Programmable Bootstrapping666

Enables Efficient Homomorphic Inference of Deep Neural Networks”. In: Cyber667

Security Cryptography and Machine Learning. Ed. by Shlomi Dolev, Oded Mar-668

galit, Benny Pinkas, andAlexander Schwarzmann. Cham: Springer International669

Publishing, 2021, pp. 1–19. isbn: 978-3-030-78086-9.670

[Chi+21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved671

Programmable Bootstrapping with Larger Precision and Efficient Arithmetic672

Circuits for TFHE. Cryptology ePrint Archive, Report 2021/729. https://ia.673

cr/2021/729. 2021.674

[DM15] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic675

Encryption in Less Than a Second”. In:Advances in Cryptology – EUROCRYPT676

2015. Ed. by Elisabeth Oswald and Marc Fischlin. Berlin, Heidelberg: Springer677

Berlin Heidelberg, 2015, pp. 617–640. isbn: 978-3-662-46800-5.678

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic679

Encryption. Cryptology ePrint Archive, Report 2012/144. https://ia.cr/680

2012/144. 2012.681

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. “Revisiting the func-682

tional bootstrap in TFHE”. In: IACR Transactions on Cryptographic Hardware683

and Embedded Systems 2021.2 (Feb. 2021), pp. 229–253. doi: 10.46586/tches.684

v2021.i2.229-253. url: https://tches.iacr.org/index.php/TCHES/685

article/view/8793.686

[ISZ19] M. Izabachène, R. Sirdey, and M. Zuber. “Practical Fully Homomorphic Encryp-687

tion for Fully Masked Neural Networks”. In: Cryptology and Network Security -688

18th International Conference, CANS 2019, Proceedings. Vol. 11829. Lecture689

Notes in Computer Science. Springer, 2019, pp. 24–36.690

[JA18] Angela Jäschke and Frederik Armknecht. “Unsupervised Machine Learning on691

Encrypted Data”. In: IACR Cryptology ePrint Archive (2018).692

[KS21] Kamil Kluczniak and Leonard Schild. FDFB: Full Domain Functional Boot-693

strapping Towards Practical Fully Homomorphic Encryption. Cryptology ePrint694

Archive, Report 2021/1135. https://ia.cr/2021/1135. 2021.695

[Lou+20] Qian Lou, Bo Feng, Geoffrey Charles Fox, and Lei Jiang. “Glyph: Fast and696

Accurately Training Deep Neural Networks on Encrypted Data”. In: Advances697

in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato,698

R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020,699

pp. 9193–9202. url: https://proceedings.neurips.cc/paper/2020/file/700

685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf.701

[Mad+21] AbbassMadi, Oana Stan, AurélienMayoue, ArnaudGrivet-Sébert, Cédric Gouy-702

Pailler, and Renaud Sirdey. “A Secure Federated Learning framework using703

Homomorphic Encryption and Verifiable Computing”. In: 2021 Reconciling704

Data Analytics, Automation, Privacy, and Security: A Big Data Challenge705

(RDAAPS). 2021, pp. 1–8. doi: 10.1109/RDAAPS48126.2021.9452005.706

[Nan+19] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi. “To-707

wards Deep Neural Network Training on Encrypted Data”. In: 2019 IEEE/CVF708

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).709

2019, pp. 40–48. doi: 10.1109/CVPRW.2019.00011.710

https://doi.org/10.1007/s00145-019-09319-x
https://ia.cr/2021/729
https://ia.cr/2021/729
https://ia.cr/2021/729
https://ia.cr/2012/144
https://ia.cr/2012/144
https://ia.cr/2012/144
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.46586/tches.v2021.i2.229-253
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://tches.iacr.org/index.php/TCHES/article/view/8793
https://ia.cr/2021/1135
https://proceedings.neurips.cc/paper/2020/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/685ac8cadc1be5ac98da9556bc1c8d9e-Paper.pdf
https://doi.org/10.1109/RDAAPS48126.2021.9452005
https://doi.org/10.1109/CVPRW.2019.00011

Anonymous Submission to IACR TCHES 23

[Séb+21] Arnaud Grivet Sébert, Rafael Pinot, Martin Zuber, Cédric Gouy-Pailler, and711

Renaud Sirdey. “SPEED: secure, PrivatE, and efficient deep learning”. In:Mach.712

Learn. 110.4 (2021), pp. 675–694. doi: 10.1007/s10994-021-05970-3. url:713

https://doi.org/10.1007/s10994-021-05970-3.714

[Xie+14] PengtaoXie,Misha Bilenko, TomFinley, RanGilad-Bachrach, Kristin E. Lauter,715

and Michael Naehrig. “Crypto-Nets: Neural Networks over Encrypted Data”.716

In: CoRR (2014).717

[Yan+21] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. TOTA:718

Fully Homomorphic Encryption with Smaller Parameters and Stronger Security.719

Cryptology ePrint Archive, Report 2021/1347. https://ia.cr/2021/1347.720

2021.721

[ZCS20a] Martin Zuber, Sergiu Carpov, and Renaud Sirdey. “Towards Real-Time Hid-722

den Speaker Recognition by Means of Fully Homomorphic Encryption”. In:723

Information and Communications Security. Ed. by Weizhi Meng, Dieter Goll-724

mann, Christian D. Jensen, and Jianying Zhou. Cham: Springer International725

Publishing, 2020, pp. 403–421. isbn: 978-3-030-61078-4.726

[ZCS20b] Martin Zuber, Sergiu Carpov, and Renaud Sirdey. “Towards real-time hidden727

speaker recognition by means of fully homomorphic encryption”. In: Interna-728

tional Conference on Information and Communications Security. Springer. 2020,729

pp. 403–421.730

[ZS21] Martin Zuber and Renaud Sirdey. “Efficient homomorphic evaluation of k-NN731

classifiers”. In: Proc. Priv. Enhancing Technol. 2021.2 (2021), pp. 111–129. doi:732

10.2478/popets-2021-0020. url: https://doi.org/10.2478/popets-733

2021-0020.734

https://doi.org/10.1007/s10994-021-05970-3
https://doi.org/10.1007/s10994-021-05970-3
https://ia.cr/2021/1347
https://doi.org/10.2478/popets-2021-0020
https://doi.org/10.2478/popets-2021-0020
https://doi.org/10.2478/popets-2021-0020
https://doi.org/10.2478/popets-2021-0020

24 FHE calculations by means of TFHE functional bootstrapping

A Multi-value Bootstrapping735

We remind that any test polynomial for a LUT(fi) can be factorized as:736

LUT(fi)=
N−1∑
i=0

αiX
i =v0 ·vi mod[XN +1]737

v0 =
1
2
.(1+···+XN−1)738

vi =α0+αN−1+(α1−α0).X+···+(αN−1−α0).XN−1739

Algorithm 7Multi-value bootstrapping
Input: a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T, a bootstrapping key

BKs→s′ = (BKi ∈ TRGSWS′(si))i∈J1,nK where S′ is the TRLWE interpretation of a
secret key s′, k LUTs s.t. LUT(fi)=v0.vi,∀i∈J1,kK

Output: a list of k TLWE samples ci∈ TLWEs(fi(φ(ā,b̄)
2N))

1: Let b̄=b2Nbe and āi=b2Naie∈Z,∀i∈J1,nK
2: Let testv :=v0
3: ACC←BlindRotate((0,testv),(ā1,...,ān,b̄),(BK1,...,BKn))
4: for i←1 to k do
5: ACCi :=ACC·vi
6: ci =SampleExtract(ACCi)
7: return KeySwitchs′→s(ci)

740

Proposition 19. Let ci be the ith output of the multi-value functional bootstrapping algo-
rithm with input c. Then, the variance of the noise of ci verifies:

Var(Err(ci))≤||vi||22 ·EBS+EKS

Proof. The result comes from the fact that we simply multiply the result of a functional741

bootstrapping with a clear polynomial.742

Proposition 20. Given c a TLWE ciphertext, and suppose that we discretize the torus over
|M| values, the probability of error of the multi-value bootstrapping algorithm with c as an
input verifies:

P (Err(c))=1−erf(1
2·|M|

√
Vc+Vr ·

√
2

)

where Vr= n+1
48N2 is the variance of the error induced by the rounding operation in line 1 of743

Algorithm 7.744

Proof. The multiplication by a plaintext polynomial has no impact on the probability of745

error. Thus, the probability of error is the same as a simple functional bootstrapping.746

Anonymous Submission to IACR TCHES 25

Table 1: Parameters and security

n N σmin λ
1024 1024 7.8e−09 120
900 1024 8.4e−08 120
800 1024 5.9e−07 120
700 1024 4e−06 120
600 1024 2.8e−05 120
1024 1024 1.05e−11 80
900 1024 5e−11 80
800 1024 3.5e−10 80
700 1024 5.5e−09 80
600 1024 9.4e−08 80
500 1024 1.5e−06 80

26 FHE calculations by means of TFHE functional bootstrapping

Table 2: Parameters and probability of error for half Torus method

n N l Bgbit σmin ε |M| λ time (ms)
1024 1024 3 7 7.8e−09 ≤2−10 16 120 81.4
1024 1024 3 7 7.8e−09 ≤2−35 8 120 80.8
1024 1024 4 5 7.8e−09 ≤2−37 8 120 92.0
1024 1024 5 5 7.8e−09 ≤2−37 8 120 105.2
1024 1024 3 7 7.8e−09 ≤2−132 4 120 80.8
900 1024 5 4 8.4e−08 ≤2−10 16 120 92.5
900 1024 4 5 8.4e−08 ≤2−25 8 120 82.5
900 1024 5 4 8.4e−08 ≤2−34 8 120 92.0
900 1024 4 5 8.4e−08 ≤2−93 4 120 81.8
900 1024 5 4 8.4e−08 ≤2−130 4 120 92.3
800 1024 9 2 5.9e−07 ≤2−20 8 120 119.7
800 1024 4 4 5.9e−07 ≤2−15 4 120 72.3
800 1024 6 3 5.9e−07 ≤2−41 4 120 91.8
800 1024 13 2 5.9e−07 ≤2−65 4 120 156.5
1024 1024 3 7 1.05e−11 ≤2−10 16 80 80.0
1024 1024 4 7 1.05e−11 ≤2−10 16 80 93.5
1024 1024 3 7 1.05e−11 ≤2−37 8 80 80.7
1024 1024 3 7 1.05e−11 ≤2−142 4 80 81.3
900 1024 3 7 5e−11 ≤2−12 16 80 70.9
900 1024 4 7 5e−11 ≤2−12 16 80 81.4
900 1024 3 7 5e−11 ≤2−42 8 80 70.6
900 1024 3 7 5e−11 ≤2−161 4 80 70.7
800 1024 3 7 3.5e−10 ≤2−13 16 80 63.0
800 1024 4 7 3.5e−10 ≤2−13 16 80 72.4
800 1024 3 7 3.5e−10 ≤2−47 8 80 63.4
800 1024 3 7 3.5e−10 ≤2−180 4 80 64.3
700 1024 3 7 5.5e−09 ≤2−14 16 80 54.9
700 1024 12 2 5.5e−09 ≤2−15 16 80 129.7
700 1024 3 7 5.5e−09 ≤2−51 8 80 55.7
700 1024 4 6 5.5e−09 ≤2−53 8 80 63.3
700 1024 3 7 5.5e−09 ≤2−198 4 80 54.9
600 1024 3 6 9.4e−08 ≤2−17 8 80 48.1
600 1024 4 5 9.4e−08 ≤2−33 8 80 55.1
600 1024 13 2 9.4e−08 ≤2−59 8 80 119.5
600 1024 3 6 9.4e−08 ≤2−62 4 80 47.5
600 1024 4 5 9.4e−08 ≤2−125 4 80 55.1

Anonymous Submission to IACR TCHES 27

Table 3: Parameters and probability of error for TOTA

n N l Bgbit σmin ε M λ time (ms)
1024 1024 3 7 7.8e−09 ≤2−10 16 120 160.9
1024 1024 3 7 7.8e−09 ≤2−34 8 120 162.2
1024 1024 4 5 7.8e−09 ≤2−36 8 120 184.7
1024 1024 5 5 7.8e−09 ≤2−37 8 120 209.4
1024 1024 3 7 7.8e−09 ≤2−129 4 120 161.1
900 1024 5 4 8.4e−08 ≤2−9 16 120 183.7
900 1024 4 5 8.4e−08 ≤2−23 8 120 164.1
900 1024 5 4 8.4e−08 ≤2−33 8 120 183.4
900 1024 4 5 8.4e−08 ≤2−84 4 120 162.9
900 1024 5 4 8.4e−08 ≤2−124 4 120 242.6
800 1024 9 2 5.9e−07 ≤2−18 8 120 238.8
800 1024 4 4 5.9e−07 ≤2−13 4 120 144.3
800 1024 6 3 5.9e−07 ≤2−35 4 120 183.0
800 1024 13 2 5.9e−07 ≤2−56 4 120 312.5
1024 1024 3 7 1.05e−11 ≤2−10 16 80 159.9
1024 1024 4 7 1.05e−11 ≤2−10 16 80 185.8
1024 1024 3 7 1.05e−11 ≤2−37 8 80 160.7
1024 1024 3 7 1.05e−11 ≤2−141 4 80 160.4
900 1024 3 7 5e−11 ≤2−12 16 80 140.9
900 1024 4 7 5e−11 ≤2−12 16 80 162.0
900 1024 3 7 5e−11 ≤2−42 8 80 146.7
900 1024 3 7 5e−11 ≤2−161 4 80 141.6
800 1024 3 7 3.5e−10 ≤2−13 16 80 125.6
800 1024 4 7 3.5e−10 ≤2−13 16 80 144.3
800 1024 3 7 3.5e−10 ≤2−47 8 80 126.0
800 1024 3 7 3.5e−10 ≤2−180 4 80 125.8
700 1024 3 7 5.5e−09 ≤2−14 16 80 109.9
700 1024 12 2 5.5e−09 ≤2−15 16 80 259.0
700 1024 3 7 5.5e−09 ≤2−51 8 80 110.6
700 1024 4 6 5.5e−09 ≤2−53 8 80 127.2
700 1024 3 7 5.5e−09 ≤2−196 4 80 109.7
600 1024 3 6 9.4e−08 ≤2−15 8 80 95.2
600 1024 4 5 9.4e−08 ≤2−30 8 80 109.2
600 1024 13 2 9.4e−08 ≤2−59 8 80 236.4
600 1024 3 6 9.4e−08 ≤2−53 4 80 94.9
600 1024 4 5 9.4e−08 ≤2−112 4 80 109.4

28 FHE calculations by means of TFHE functional bootstrapping

Table 4: Parameters and probability of error for FDFB

n N l Bgbit σmin ε |M| λ time (s)
worst case Id ReLU

1024 1024 3 7 7.8e−09 ≤2−1 ≤2−11 ≤2−8 16 120 178.9
1024 1024 3 7 7.8e−09 ≤2−10 ≤2−62 ≤2−71 8 120 178.1
1024 1024 4 5 7.8e−09 ≤2−33 ≤2−109 ≤2−115 8 120 202.3
1024 1024 5 5 7.8e−09 ≤2−56 ≤2−125 ≤2−129 8 120 225.0
1024 1024 3 7 7.8e−09 ≤2−224 ≤2−326 ≤2−451 4 120 176.6
900 1024 5 4 8.4e−08 ≤0.72 ≤2−6 ≤2−4 16 120 198.6
900 1024 4 5 8.4e−08 ≤2−2 ≤2−13 ≤2−17 8 120 177.7
900 1024 5 4 8.4e−08 ≤2−5 ≤2−33 ≤2−40 8 120 198.2
900 1024 4 5 8.4e−08 ≤2−44 ≤2−84 ≤2−196 4 120 177.1
900 1024 5 4 8.4e−08 ≤2−115 ≤2−200 ≤2−367 4 120 247.4
800 1024 9 2 5.9e−07 ≤2−1 ≤2−8 ≤2−10 8 120 252.4
800 1024 4 4 5.9e−07 ≤2−4 ≤2−8 ≤2−21 4 120 157.5
800 1024 6 3 5.9e−07 ≤2−12 ≤2−23 ≤2−62 4 120 196.2
800 1024 13 2 5.9e−07 ≤2−21 ≤2−42 ≤2−109 4 120 322.4
1024 1024 3 7 1.05e−11 ≤2−7 ≤2−34 ≤2−32 16 80 176.1
1024 1024 4 7 1.05e−11 ≤2−37 ≤2−37 ≤2−37 16 80 201.6
1024 1024 3 7 1.05e−11 ≤2−91 ≤2−135 ≤2−137 8 80 177.9
1024 1024 3 7 1.05e−11 ≤2−529 ≤2−544 ≤2−553 4 80 177.6
900 1024 3 7 5e−11 ≤2−8 ≤2−39 ≤2−36 16 80 156.1
900 1024 4 7 5e−11 ≤2−42 ≤2−42 ≤2−42 16 80 177.5
900 1024 3 7 5e−11 ≤2−103 ≤2−154 ≤2−155 8 80 155.3
900 1024 3 7 5e−11 ≤2−601 ≤2−618 ≤2−629 4 80 157.0
800 1024 3 7 3.5e−10 ≤2−8 ≤2−43 ≤2−40 16 80 138.5
800 1024 4 7 3.5e−10 ≤2−35 ≤2−47 ≤2−47 16 80 157.7
800 1024 3 7 3.5e−10 ≤2−114 ≤2−172 ≤2−174 8 80 139.3
800 1024 3 7 3.5e−10 ≤2−674 ≤2−694 ≤2−707 4 80 138.6
700 1024 3 7 5.5e−09 ≤2−1 ≤2−24 ≤2−17 16 80 121.4
700 1024 12 2 5.5e−09 ≤2−40 ≤2−53 ≤2−53 16 80 271.1
700 1024 3 7 5.5e−09 ≤2−25 ≤2−123 ≤2−135 8 80 122.1
700 1024 4 6 5.5e−09 ≤2−60 ≤2−170 ≤2−177 8 80 138.5
700 1024 3 7 5.5e−09 ≤2−458 ≤2−595 ≤2−725 4 80 121.2
600 1024 3 6 9.4e−08 ≤2−1 ≤2−6 ≤2−7 8 80 104.8
600 1024 4 5 9.4e−08 ≤2−2 ≤2−16 ≤2−20 8 80 119.4
600 1024 13 2 9.4e−08 ≤2−25 ≤2−133 ≤2−148 8 80 246.2
600 1024 3 6 9.4e−08 ≤2−19 ≤2−37 ≤2−98 4 80 104.7
600 1024 4 5 9.4e−08 ≤2−53 ≤2−103 ≤2−250 4 80 118.9

Anonymous Submission to IACR TCHES 29

Table 5: Parameters and probability of error for the composition method

n N l Bgbit σmin ε |M| λ time (s)
abs ReLU

1024 1024 3 7 7.8e−09 ≤2−32 16 120 80.6 241.3
1024 1024 3 7 7.8e−09 ≤2−123 8 120 80.7 241.0
1024 1024 4 5 7.8e−09 ≤2−137 8 120 92.1 277.4
1024 1024 5 5 7.8e−09 ≤2−139 8 120 105.5 312.1
1024 1024 3 7 7.8e−09 ≤2−482 4 120 80.6 240.9
900 1024 5 4 8.4e−08 ≤2−29 16 120 91.8 274.7
900 1024 4 5 8.4e−08 ≤2−66 8 120 81.4 247.7
900 1024 5 4 8.4e−08 ≤2−109 8 120 91.9 275.1
900 1024 4 5 8.4e−08 ≤2−255 4 120 81.5 243.6
900 1024 5 4 8.4e−08 ≤2−427 4 120 94.8 276.9
800 1024 9 2 5.9e−07 ≤2−48 8 120 120.1 358.9
800 1024 4 4 5.9e−07 ≤2−30 4 120 72.2 216.5
800 1024 6 3 5.9e−07 ≤2−89 4 120 91.5 273.9
800 1024 13 2 5.9e−07 ≤2−154 4 120 157.1 469.7
1024 1024 3 7 1.05e−11 ≤2−36 16 80 80.0 239.3
1024 1024 4 7 1.05e−11 ≤2−36 16 80 93.0 276.2
1024 1024 3 7 1.05e−11 ≤2−140 8 80 80.1 240.3
1024 1024 3 7 1.05e−11 ≤2−554 4 80 80.2 241.3
900 1024 3 7 5e−11 ≤2−40 16 80 70.6 210.8
900 1024 4 7 5e−11 ≤2−41 16 80 81.1 242.8
900 1024 3 7 5e−11 ≤2−159 8 80 70.8 211.0
900 1024 3 7 5e−11 ≤2−630 4 80 70.8 212.3
800 1024 3 7 3.5e−10 ≤2−45 16 80 62.8 188.1
800 1024 4 7 3.5e−10 ≤2−45 16 80 72.2 216.3
800 1024 3 7 3.5e−10 ≤2−179 8 80 63.4 188.9
800 1024 3 7 3.5e−10 ≤2−708 4 80 63.4 189.7
700 1024 3 7 5.5e−09 ≤2−49 16 80 54.8 165.9
700 1024 12 2 5.5e−09 ≤2−52 16 80 130.1 388.4
700 1024 3 7 5.5e−09 ≤2−191 8 80 55.4 165.9
700 1024 4 6 5.5e−09 ≤2−201 8 80 63.4 190.0
700 1024 3 7 5.5e−09 ≤2−753 4 80 54.9 164.3
600 1024 3 6 9.4e−08 ≤2−37 8 80 47.8 142.6
600 1024 4 5 9.4e−08 ≤2−85 8 80 54.9 163.8
600 1024 13 2 9.4e−08 ≤2−220 8 80 119.0 354.5
600 1024 3 6 9.4e−08 ≤2−139 4 80 47.7 142.0
600 1024 4 5 9.4e−08 ≤2−331 4 80 54.9 163.8

	Introduction
	TFHE
	Notations
	TFHE Structures
	TFHE Bootstrapping
	Error Variance and Rate

	TFHE Functional Bootstrapping
	Encoding and Decoding
	Functional Bootstrapping Idea
	Private Functional Bootstrapping
	Multi-Value Functional Bootstrapping

	Look-Up-Tables over a Single Ciphertext
	Partial Domain Functional Bootstrapping
	Full Domain Functional Bootstrapping–FDFB
	Full Domain Functional Bootstrapping–TOTA
	Full Domain Functional Bootstrapping with Composition

	Look-Up-Tables over Multiple Ciphertexts
	Tree-based Method
	Chaining Method
	Addition
	Multiplication
	ReLU

	Experimental Results
	Conclusion
	Multi-value Bootstrapping

