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1 Introduction

It is well known that the security of many widely deployed digital signature
schemes (e.g., RSA, DSA, and ECDSA) will be compromised if large-scale
quantum computers are ever built [Sho99]. Hash-based signature scheme is one
important type of quantum-resistant cryptographic algorithms. Generally speak-
ing, there are two approaches for constructing signature schemes based on hash
functions. The first one signs messages by exposing the pre-images of certain
one-way functions [Lam79,Mer89,BDH11], the second one signs message by prov-
ing the possession of the pre-images with zero-knowledge techniques [CDG+17].
In this work, we restrict our attention to the former approach. Also, we only
consider hash-based stateful signature schemes, since these type of hash-based
signature schemes are actively standardized [MCF19,HBG+18,NIS20] and are
more appealing with regards to performance and resource consumption. For
the construction of stateless hash-based signature schemes, we refer the reader
to [BHH+15,BHK+19] for more information.

The study of hash-based signature schemes has a long history. The first such
scheme can be traced back to 1976 [DH76], where Diffie and Hellman proposed a
one-time signature scheme for signing a single bit. After more than 40 years of
development, the construction and implementation of hash-based signatures are
well studied and have benefited from renewed attention in the last decade due to
the concern of quantum attacks.

Hash-based stateful signatures have the following advantages. Firstly, hash-
based signatures are arguably the most conservative designs with respect to



security. They enjoy provable security which relies so solely on the (second)
pre-image resistance of the underlying hash functions. secondly, They are hash-
function-agnostic, meaning that any compatible hash function can be used to
instantiate the schemes. Therefore, when one hash function is insecure, we
can simply replace it with a secure one. Thirdly, it features small private and
public keys, and fast signature generation and verification, making it suitable
for compact verifier implementations. Finally, hash-based signatures have a rich
set of tunable parameters, and thus it is easy to tailor the designs for specific
application scenarios [WJW+19,HRB17,vdLPR+18,ZCY22]. The disadvantage
of stateful hash based signatures including large signature sizes, and the issue of
state management.

Outline. In section 2 we give some preliminaries and notations used later.
Section 3 describes the one-time signature scheme LM-OTS which is employed as a
building block for the many-time signature schemes LMS and HSS introduced in
Section 4 and Section 5, respectively. In Section 6, we instantiate these hash-based
signature schemes with SM3 and report on the results of the performance test on
some preliminary implementations without optimization.

2 Notations and Preliminaries

Let F2 = {0, 1} be the binary field and B = F8
2 be the set of all 8-bit binary strings.

Concrete values of byte strings are specified in binary or hexadecimal notations.
For example, we use 0x1F12 to denote the 2-byte string (0001 1111 0001 0010)2.
Sometimes, we need to convert a unsigned integer into a string of bytes, which is
done by applying the conversion functions u8str(·), u16str(·), and u32str(·). For
example, u8str(11) = 0x0B, u16str(6214) = 0xF2BC, and u32str(305441741) =
0x1234ABCD. Conversely, we use int32(·) to convert an integer i ∈ {0, 1, · · · , 232−
1} to a 4-byte string. For example, int32(0x1234ABCD) = 305441741. Also,
u32str(int32(S)) = S holds for any 4-byte string S.

Let S be a byte string. Then, byte(S, i) denotes the i-th byte of S, and
byte(S, i, j) denotes the range of bytes from the i-th to the j-th byte, inclusive.
For example, if S = 0xABCDFF01, then byte(S, 0) = 0xAB, byte(S, 3) = 0x01, and
byte(S, 1, 3) = 0xCDEF01. In addition, for w ∈ {1, 2, 4, 8}, we use coef(S, i, w) to
denote the unsigned integer represented by the i-th w-bit string of S. For example,
S = 0xABCDFF01, then coef(S, 0, 4) = 0xA = 10, coef(S, 6, 4) = 0x0 = 0, and
coef(S, 3, 2) = 3. Also, we always have coef(S, i, 8) = byte(S, i).

3 The Leighton-Micali One-Time Signature (LM-OTS)

LM-OTS is a ote-time signature scheme, meaning that each private key must be
used at most one time to sign any given message. Otherwise, the security of the
signature scheme is not guaranteed. In the sequel, an LM-OTS private and public

2



key pair is referred to as an LM-OTS instance. Therefore, to generate an LM-OTS
instance is to generate an LM-OTS key pair.

Before key generation, three system parameters must be determined, including
the employed hash function H(·), the number of bytes of the output of the hash
function, denoted by n, and the Winternitz parameter w ∈ {1, 2, 4, 8}.

3.1 LM-OTS Private Key Generation

First, set the 4-byte value otstype according to Table 1, which is compatible
with RFC 8554 [MCF19] and the Internet draft [FD22] work in progress. If we
instantiate the LM-OTS scheme with SM3, the value of otstype is set according to
Table 3 in this article. Then, set I to be a randomly chosen 16-byte string. Next,
we set q = 0.

Then, we need to generate x = (x[0], · · · , x[p − 1]) ∈ Bnp, where x[j] is an
n-byte string for 0 ≤ j < p. We call x the array of secret pre-images of the
LM-OTS secret key. The number p of pre-images in the array is determined by n
and w ∈ {1, 2, 4, 8}, and can be computed as p = u+ v with{

u = 8n
w

v =
⌈
⌊log2(u(2

w−1))⌋+1
w

⌉ , (1)

where u is the number of w-bit fields needed to hold the n-byte output of the
hash function and v is the number of w-bit fields needed to hold the checksum
described in Section 3.3.

To generate the array x, there are two methods. In the first method, we
can just independently set x[j] to be a uniformly random n-byte string for each
j ∈ {0, · · · , p− 1}. In the second method, we can generate x[j] pseudorandomly
from a secret seed SEED ∈ Bn such that

x[j] = H(I∥u32str(q)∥u16str(j)∥0xFF∥SEED)

for j ∈ {0, · · · , p − 1}. The private key of the generated LM-OTS instance is
sk = (otstype, I, q, x) ∈ B4 × B16 × B4 × Bnp, where (otstype, I, q) can be
published and x must be kept secret.

In the following, we will use sk.FieldName to access a particular field of the
given private key sk. For example, if

sk = (0x00000003, 0x00000000000000000000000000000000, q, x),

Then sk.otstype = 0x00000003.

3.2 LM-OTS Public Key Generation

From the LM-OTS secret key (otstype, I, q, x) with x = (x[0], · · · , x[p]) we can com-
pute the LM-OTS public key pk = (otstype, I, q,K) = GenPubKey(otstype, I, q, x)
with Algorithm 1, where the values of γn,w is given in Table 4 for different n and
w. Similarly, we will use pk.FieldName to access a particular field of the given
public key pk.
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Table 1: Values for otstype from RFC 8554

otstype name H n w otstype value

Reserved – – – 0x00000000

LMOTS SHA256 N32 W1 SHA256 32 1 0x00000001

LMOTS SHA256 N32 W2 SHA256 32 2 0x00000002

LMOTS SHA256 N32 W4 SHA256 32 4 0x00000003

LMOTS SHA256 N32 W8 SHA256 32 8 0x00000004

Unassigned – – – 0x00000005 – 0xDDDDDDDC

Reserved for private use – – – 0xDDDDDDDD – 0xFFFFFFFF

Table 2: Additional values for otstype from the Internet draft [FD22]

otstype name H n w otstype value

LMOTS SHA256 N24 W1 SHA256-192 24 1 0x00000005

LMOTS SHA256 N24 W2 SHA256-192 24 2 0x00000006

LMOTS SHA256 N24 W4 SHA256-192 24 4 0x00000007

LMOTS SHA256 N24 W8 SHA256-192 24 8 0x00000008

LMOTS SHAKE N32 W1 SHAKE256-256 32 1 0x00000009

LMOTS SHAKE N32 W2 SHAKE256-256 32 2 0x0000000A

LMOTS SHAKE N32 W4 SHAKE256-256 32 4 0x0000000B

LMOTS SHAKE N32 W8 SHAKE256-256 32 8 0x0000000C

LMOTS SHAKE N24 W1 SHAKE256-192 24 1 0x0000000D

LMOTS SHAKE N24 W2 SHAKE256-192 24 2 0x0000000E

LMOTS SHAKE N24 W4 SHAKE256-192 24 4 0x0000000F

LMOTS SHAKE N24 W8 SHAKE256-192 24 8 0x00000010

Table 3: Values of otstype for LM-OTS instantiated with SM3

otstype name H n w otstype value

LMOTS SM3 N32 W1 SM3 24 1 0x00000011

LMOTS SM3 N32 W2 SM3 24 2 0x00000012

LMOTS SM3 N32 W4 SM3 24 4 0x00000013

LMOTS SM3 N32 W8 SM3 24 8 0x00000014

Table 4: The left shift offset γn,w

n w γn,w

32 1 7
32 2 6
32 4 4
32 8 0
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Algorithm 1: GenPubKey(·): Compute the LM-OTS public key from the
secret key

Input: The LM-OTS private key (otstype, I, q, x) ∈ B4 × B16 × B4 × Bnp

Output: The LM-OTS public key (otstype, I, q,K) ∈ B4 × B16 × B4 × Bn

1 for 0 ≤ i < p do
2 tmp← x[i]
3 for 0 ≤ j < 2w − 1 do
4 tmp← H(I || u32str(q) || u16str(i) || u8str(j) || tmp)

5 y[i]← tmp

6 K ← H(I ∥ u32str(q) ∥ 0x8080 ∥ y[0] ∥ · · · ∥ y[p− 1])
7 Return (otstype, I, q,K)

3.3 LM-OTS Signature Generation

In the signature generation process, we need to employ the following Cksm(·)
function described in Algorithm 2 as a subroutine. The signature

σ = otstype∥C∥y[0]∥ · · · ∥y[p− 1] ∈ B4 × Bn × Bnp

of a message M ∈ F∗
2 can be computed by the Algorithm 3 with the secret key

(otstype, I, q, x).

Algorithm 2: Cksmn,w(·): Compute the checksum of an n-byte string

Input: An n-byte string S
Output: A 16-bit unsigned integer

1 sum← 0
2 for 0 ≤ i < 8n

w
do

3 sum← sum+ (2w − 1)− coef(S, i, w)

4 Return sum≪ γn,w

3.4 LM-OTS Signature Verification

Given a message M ∈ F∗
2 and its LM-OTS signature σ, σ can be verified with

Algorithm 4. Note that according to Algorithm 4, a hypothetical public key can
be computed from the LM-OTS signature.

4 The LMS Signature Scheme

Basically, the LMS signature scheme provides a method for organizing a set of
2h LM-OTS instances in a perfect binary tree with height h such that each leaf

5



Algorithm 3: LMOTS GenSig(·): Compute the LM-OTS signature

Input: The message M ∈ F∗
2 and the private key sk = (otstype, I, q, x)

Output: The LM-OTS signature of M

1 C ← A random n-byte string

2 Q← H(I∥u32str(q)∥0x8181∥C∥M)
3 Q← Q∥Cksmn,w(Q)

4 for 0 ≤ i < p do
5 a← coef(Q, i, w)
6 tmp← x[i]

7 for 0 ≤ j < a do
8 tmp← H(I∥u32str(q)∥u16str(i)∥u8str(j)∥tmp)

9 y[i]← tmp

10 Return otstype∥C∥y[0]∥ · · · ∥y[p− 1]

node is associated with an LM-OTS instance, and the root node is employed to
authenticate the LM-OTS instances. We call this structure a Merkle tree or LMS
tree, which corresponds to an LMS instances. The LMS instance can sign at most
2h times in its life cycle, and each time a new signature is generated, one LM-OTS
instance is consumed. Moreover, these LM-OTS instances are consumed in order.
Figure 1 depicts an LMS tree with height 3, and the LM-OTS instances are consumed
in the order: T [8], T [9], · · · , T [15].

Before key generation, four system parameters must be determined, including
the employed hash function H(·), the number m of bytes associated with each
node of the underlying LMS tree, the height of the tree, and the otstype of the
underlying LM-OTS scheme employed.

4.1 LMS Private Key Generation

First, set the 4-byte value lmstype according to Table 5 and Table 6. If we
instantiate the LMS scheme with SM3, the value of lmstype can be set according
to Table 7. Then, set the 4-byte value otstype as described in Section 3. Then,
set I to be a randomly chosen 16-byte string. Then, we set q = 0.

Next, we need to generate 2h LM-OTS arrays x0, · · · , x2h−1 of secret pre-images
with xi = (xi[0], · · · , xi[p − 1]) ∈ Bmp. There are two methods for generating
these arrays. In the first method, we can just independently set xj to be a
uniformly random mp-byte string for each i ∈ {0, · · · , 2h − 1}. In the second
method, we can generate xi[j] pseudorandomly from a secret seed SEED ∈ Bm

such that xi[j] = H(I∥u32str(i)∥u16str(j)∥0xFF∥SEED) for j ∈ {0, · · · , p− 1}.
Let x = (x0, · · · , x2h−1), the LMS secret key is

(lmstype, otstype, I, q,x) ∈ B4 × B4 × B16 × B4 × B(2h−1)mp.
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Algorithm 4: LMOTS VerifySig(·): Verify the LM-OTS signature

Input: The message M ∈ F∗
2, signature σ, and public key

pk = (otstype, I, q,K)
Output: True is the signature is valid

1 Determine n, I, q, p and K from the public key

2 if byte(σ, 0, 3) ̸= pk.otstype then
3 Return INVALID

4 if σ is not 4 + n(p+ 1)-byte long then
5 Return INVALID

6 C ← byte(σ, 4, 4 + n− 1)
7 y[0]← byte(σ, 4 + n, 4 + 2n− 1)
8 · · · · · ·
9 y[p− 1]← byte(σ, 4 + pn, 4 + (p+ 1)n− 1)

10 /* Compute the hypothetical public key K′ */

11 Q← H(I∥u32str(q)∥0x8181∥C∥M)
12 Q← Q∥Cksmn,w(Q)

13 for 0 ≤ i < p do
14 a← coef(Q, i, w)
15 tmp← y[i]

16 for a ≤ j < 2w − 1 do
17 tmp← H(I∥u32str(q)∥u16str(i)∥u8str(j)∥tmp)

18 z[i]← tmp

19 K′ =← H(I ∥ u32str(q) ∥ 0x8080 ∥ z[0] ∥ · · · ∥ z[p− 1])

20 if pk.K = K′ then
21 Return TRUE

22 else
23 Return INVALID
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Table 5: The values for lmstype from RFC 8554

lmstype name H m h lmstype value

Reserved – – – 0x00000000 – 0x00000004

LMS SHA256 M32 H5 SHA256 32 1 0x00000005

LMS SHA256 M32 H10 SHA256 32 2 0x00000006

LMS SHA256 M32 H15 SHA256 32 4 0x00000007

LMS SHA256 M32 H20 SHA256 32 8 0x00000008

LMS SHA256 M32 H25 SHA256 32 8 0x00000009

Unassigned – – – 0x0000000A – 0xDDDDDDDC

Reserved for private use – – – 0xDDDDDDDD – 0xFFFFFFFF

Table 6: The values for lmstype from the Internet draft [FD22]

lmstype name H m h lmstype value

LMS SHA256 M24 H5 SHA256-192 24 5 0x0000000A

LMS SHA256 M24 H10 SHA256-192 24 10 0x0000000B

LMS SHA256 M24 H15 SHA256-192 24 15 0x0000000C

LMS SHA256 M24 H20 SHA256-192 24 20 0x0000000D

LMS SHA256 M24 H25 SHA256-192 24 25 0x0000000E

LMS SHAKE M32 H5 SHAKE256-256 32 5 0x0000000F

LMS SHAKE M32 H10 SHAKE256-256 32 10 0x00000010

LMS SHAKE M32 H15 SHAKE256-256 32 15 0x00000011

LMS SHAKE M32 H20 SHAKE256-256 32 20 0x00000012

LMS SHAKE M32 H25 SHAKE256-256 32 25 0x00000013

LMS SHAKE M24 H5 SHAKE256-192 24 5 0x00000014

LMS SHAKE M24 H10 SHAKE256-192 24 10 0x00000015

LMS SHAKE M24 H15 SHAKE256-192 24 15 0x00000016

LMS SHAKE M24 H20 SHAKE256-192 24 20 0x00000017

LMS SHAKE M24 H25 SHAKE256-192 24 25 0x00000018

Table 7: The values of lmstype for LMS instantiated with SM3

lmstype name H m h lmstype value

LMS SM3 M32 H5 SM3 32 5 0x00000019

LMS SM3 M32 H10 SM3 32 10 0x0000001A

LMS SM3 M32 H15 SM3 32 15 0x0000001B

LMS SM3 M32 H20 SM3 32 20 0x0000001C

LMS SM3 M32 H25 SM3 32 25 0x0000001D

4.2 LMS Public Key Generation

Given the secret key (lmstype, otstype, I, q,x), one can derive 2h LM-OTS secret
key skq = (otstype, I, q, xq) for 0 ≤ q < 2h. Then, for each q ∈ {0, · · · , 2h − 1},
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we can derive its corresponding public key pkq with Algorithm 1, from which we
can derive pkq.K.

T [1]

T [2]

T [4]

T [8] T [9]

T [5]

T [10] T [11]

T [3]

T [6]

T [12] T [13]

T [7]

T [14] T [15]

Fig. 1: An LMS tree with height 3

Let Kq = pkq.K. With these 2h Ki’s, we can construct a height-h perfect

binary tree with 2h+1 − 1 nodes labeled by T [1], T [2], · · · , T [2h+1 − 1]. Figure 1
depicts a LMS tree with height 3. The values of T [j]’s are computed according to
the following formula:

T [r] =

{
H(I∥u32str(r)∥0x8282∥Kr−2h), r ≥ 2h

H(I∥u32str(r)∥0x8383∥T [2r]∥T [2r + 1]), 0 ≤ r < 2h
. (2)

The LMS public key is (lmstype, otstype, I, T [1]) ∈ B4 × B4 × B16 × Bm,
where T [1] is the root of the associated LMS tree.

4.3 LMS Signature Generation

Given a message M ∈ F∗
2 and an LMS secret key (lmstype, otstype, I, q,x), the

signature of M is

(u32str(q), σq(M), lmstype, (path[0], path[1], · · · , path[h− 1])),

where
sigmaq(M) = LMOTS GenSig(M, (lmstype, otstype, I, q,x)), and

(path[0], · · · , path[h− 1])

is the authentication path of T [2h + q]. For example, if h = 3 and q = 1, then
(path[0], path[1], path[2]) = (T [8], T [5], T [3]) as shown in Figure 2.

4.4 LMS Signature Verification

Let (u32str(q), σq(M), lms type, (path[0], path[1], · · · , path[h− 1])) be the LMS
signature of a message M . Then, we can compute the hypothetical value of the
q-th leaf node T ′[2h + q] from σq(M). Then, with the information provided in

(path[0], path[1], · · · , path[h− 1]),
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T [1]

T [2]

T [4]

T [8] T [9]

T [5]

T [10] T [11]

T [3]

T [6]

T [12] T [13]

T [7]

T [14] T [15]

M

Fig. 2: An LMS tree with height 3

we can compute the hypothetical value T ′[1] of the root. The signature is valid
if and only if T [1] = T ′[1]. After generating the signature, the signing process
increments the q value in the private key by 1. This is why we say that LMS is a
stateful signature scheme.

5 The Hierarchical Signature Scheme HSS

Like LMS, The HSS scheme is another method for organizing a large set of LM-OTS
instances. The time complexity for generating an LMS key pair can be very high
if the height of the corresponding LMS tree is large, since all of the tree nodes
have to be computed to obtain the root.

The HSS signature scheme can be employed if we want to reduce the time
taken by the key generation process. In HSS, LM-OTS instances are associated
with the leaves of many LMS trees placed at different levels. The LMS trees are
“connected” in the sense that the roots of the LMS trees are signed by the LM-OTS
instances associated with the leaves of the LMS trees in the upper level. The leaves
of the lowest level LMS trees are used to sign the messages. We call this structure
an HSS tree or HSS instance. A 3-level HSS tree signing a message M is illustrated
in Figure 3, where only the involved LMS trees are displayed.

In HSS, we have L layers of LMS instances, including layer 0, · · · , layer L− 1.
The LMS instances in the same layer have the same height. Let hi be the height of
the LMS trees in layer i. In the 0-th layer, there is only 1 LMS tree. For 1 ≤ i < L,

there are 2
∑i−1

j=0 hj LMS trees in the i-th layer. Let H =
∑L−1

j=0 hj , then there are

2H leaves in the (L− 1)-th layer, which correspond to 2H LM-OTS keys. Such an
HSS instance can sign at most 2H times, and we call 2h is the capacity. Note that
a 1-level HSS instances is essentially an LMS instance.
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T [1]

T [2]

T [4]

T [8] T [9]

T [5]

T [10] T [11]

T [3]

T [6]

T [12] T [13]

T [7]

T [14] T [15]

T [1]

T [2]

T [4]

T [8] T [9]

T [5]

T [10] T [11]

T [3]

T [6]

T [12] T [13]

T [7]

T [14] T [15]

T [1]

T [2]

T [4]

T [8] T [9]

T [5]

T [10] T [11]

T [3]

T [6]

T [12] T [13]

T [7]

T [14] T [15]

M

Fig. 3: A 3-level HSS tree

5.1 HSS Key Generation

First, using the method described in Section 4, we generate one LMS key pair. We
store the private key into prv[0] and store the public key into pub[0].

For each i ∈ {1, 2, · · · , L − 1}, we independently generate an LMS key pair.
We store the private key into prv[i] and store the public key into pub[i]. Also,
we sign pub[i] with prv[i− 1], and store the signature into sig[i− 1]. Now, we
have 3 arrays.

prv = (prv[0], prv[1], · · · , prv[L− 2], prv[L− 1])

pub = (pub[0], pub[1], · · · , pub[L− 2], pub[L− 1])

sig = (sig[0], sig[1], · · · , sig[L− 2])

. (3)
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The HSS private key is (prv, pub, sig), and the HSS public key is u32str(L) ∥ pub[0].

5.2 HSS Signature Generation

There are 3 cases for different values of L. When L = 0, the signature is
u32str(0) ∥ sig[0]. When L > 0, the signature is

u32str(Nspk) ∥ signed pub key[0] ∥ · · · ∥ signed pub key[Nspk−1] ∥ sig[Nspk],

where Nspk = L − 1 (Number of Signed Public Keys) denotes the number of
signed LMS public keys. The above signature can be obtained by Algorithm 5.

Algorithm 5: Compute the HSS signature of a message M

1 d← L

2 while prv[d− 1].q = 2prv[d−1].h do
3 d← d− 1
4 if d = 0 then
5 return FAILURE

6 while d < L do
7 Randomly generate pub[d] and prv[d]
8 sig[d− 1]← The LMS signature of pub[d] signed with prv[d− 1]
9 d← d+ 1

10 sig[L− 1]← The LMS signature of M signed with prv[L− 1]

11 for 0 ≤ i < L− 1 do
12 signed pub key[i]← sig[i]∥pub[i+ 1]

13 return u32str(L− 1) ∥ signed pub key[0] ∥ · · · ∥ signed pub key[L−
2] ∥ sig[L− 1]

5.3 Signature Verification

The signature is valid if and only if all of

signed pub key[0], · · · , signed pub key[L− 2]

and sig[L− 1] are valid.

6 Preliminary Implementations and Performance Test

We instantiate the hash-based signature schemes described in previous sections
with SM3, and we name them as LMS-SM3 and HSS-SM3. We implement LMS-SM3 and
HSS-SM3 based on the code provided at https://github.com/cisco/hash-sigs
by substituting the underlying hash function with an implementation of SM3. The
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performance of the implementation is provided in Table 8, which are obtained
on a server machine with 32 cores running Linux ubuntu 18.04 on 2.9GHz AMD
EPYC-Rome Processor.

In Table 8, the “Height” column records the heights of the LMS trees in
LMS-SM3 or HSS-SM3, where a single number h means a LMS-SM3 instance with
height h, and h0/h1 means a two level HSS-SM3 instance with height h0 in the
0-th level and height h1 in the 1st level.

7 Conclusion

In this work, we instantiate the hash-based signature schemes LMS and HSS

described in RFC 8554 with SM3 and conduct some preliminary performance
test. In the future, we will provide implementations of LMS-SM3, HSS-SM3, and
XMSS-SM3 on various platforms and deploy them in real application scenarios to
test the applicability of hash-based signature schemes.
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