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Abstract. We present a novel code-based digital signature scheme, called
enhanced pqsigRM for post-quantum cryptography (PQC). This scheme
is based on a modified Reed–Muller (RM) code, which reduces the sig-
nature size and verification time compared with existing code-based sig-
nature schemes. In fact, it strengthens pqsigRM submitted to NIST for
post-quantum cryptography standardization. The proposed scheme has
the advantage of the short signature size and fast verification and uses
public codes that are more difficult to distinguish from random codes.
We use (U,U + V )-codes with the high-dimensional hull to overcome
the disadvantages of code-based schemes. The proposed decoder samples
from coset elements with small Hamming weight for any given syndrome
and efficiently finds such an element. Using a modified RM code, the pro-
posed signature scheme resists various known attacks on RM-code-based
cryptography. It has advantages on signature size, verification time, and
proven security. For 128 bits of classical security, the signature size of the
proposed signature scheme is 512 bytes, which corresponds to 1/4.7 of
that of CRYSTALS-DILITHIUM, and the number of median verification
cycles is 759,248, which corresponds to the twice of that of CRYSTALS-
DILITHIUM.

Keywords: Code-based cryptography, digital signatures, error correc-
tion codes, post-quantum cryptography (PQC), Reed-Muller (RM) codes.

1 Introduction

A new digital signature scheme based on a modified Reed-Muller (RM) code
is proposed. This signature scheme improves the Goppa code-based signature
scheme developed by Courtois, Finiasz, and Sendrier (CFS) [1].

⋆ This work is submitted to ‘Korean Post-Quantum Cryptography Competition’
(www.kpqc.or.kr).
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The CFS signature scheme has certain drawbacks in terms of scaling of the
parameters and a lack of existential unforgeability under adaptive chosen mes-
sage attacks (EUF-CMA). Further, its error correction capability t has to be
small, because the signing time depends on t!. The public key size of the CFS
scheme is (n − k)n = tm2m and it is known that decoding attacks require
A = 2tm/2 operations. Thus the decoding attack complexity A is only a polyno-
mial function of the key size with small power, that is, A ≈ keysizet/2. Therefore,
because t should be kept as a relatively small value of up to 12 to reduce success-
ful signing time, but we need to significantly increase the key size itself for higher
security. Also, with small t, the rate of Goppa code is high. The parity check
matrix of high rate Goppa code can be distinguished from a random matrix and
thus the CFS signature scheme is insecure under the EUF-CMA [2].

In this paper, we replace the Goppa code with the RM code in the CFS
signature scheme. RM code can use complete decoding using well-known and ef-
ficient recursive decoding, called closest coset decoding [3], [4], that is, for a given
received vector, the closest codeword can be found. The closest coset decoding
method does not guarantee the exact error correction, but finds an error vector
(coset leader in the standard array) corresponding to the syndrome. However,
the exact error correction is not essential for signing in code-based signature
schemes, but we need to find the error vector with the smallest Hamming weight
in the coset corresponding to the syndrome. In this respect, the RM code-based
signature scheme can be considered as a solution to the small t constrained
problem of the Goppa code-based signature scheme.

However, the simple replacement of Goppa code with RM code in the CFS
signature scheme results in vulnerability to several attacks. The RM code-based
McEliece cryptosystem is insecure due to Minder–Shokrollahi’s attack [5] and
Chizhov–Borodin’s attack [6]. With these two attacks, the private keys S, G, and
Q can be revealed from the public key G′ = SGQ, where G is a generator matrix
and S and Q are a scrambling matrix and a permutation matrix, respectively.
The above-mentioned attacks can be similarly applied to the RM code-based
signature scheme. It is shown here that the proposed scheme is secure against
these attacks. It is also proved that the proposed enhanced pqsigRM is EUF-
CMA secure.

We propose a new code-based signature scheme by using a modified RM
code, called enhanced pqsigRM. We first partially permute the original RM code
and proceed three more modifications, which are replacing some parts of the
code, appending random rows, and padding a dual code’s codeword. There are
three enhanced pqsigRMs, that is, Enh-pqsigRM-412 constructed by RM(4,12)
for 128 bit-security, and Enh-pqsigRM-413 constructed by RM(4,13) for 256
bit-security. The proposed signature scheme is an improvement of pqsigRM [7]
submitted to NIST for PQC standardization, and it resolves the weaknesses of
early versions of pqsigRM by modifying the public code. Moreover, we ensure
the indistinguishability of the public code of the proposed signature scheme.
Further, the proposed signature scheme can compromise the security level by
adjusting the allowable maximum Hamming weight of error vectors, called the
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error weight parameter w. Our proposed scheme has advantages on the small
signature size, fast verifcation (for 128-bit security), and proven security. For
128 bits of classical security, the signature size of the proposed signature scheme
is 512 bytes, which corresponds to 1/4.7 of that of CRYSTALS-DILITHIUM,
and the number of median verification cycles is 759,248, which corresponds to
the twice of that of CRYSTALS-DILITHIUM.

1.1 Design rationale

We introduce a new signature scheme, called enhanced pqsigRM, based on mod-
ified RM codes with partial permutation as well as row appending and replace-
ment in the generator matrix. For any given syndrome, an error vector with a
small Hamming weight can be obtained. Moreover, the decoding method achieves
indistinguishability to some degree because it is collision-resistant. The proposed
signature scheme resists all known attacks against cryptosystems based on the
original RM codes. The partially permuted RM code improves the signature
success condition in previous signature schemes such as CFS and can improve
signing time and key size.

We further modify the RM code using row appending/replacement. The re-
sulting code is expected to be indistinguishable from random codes with the same
hull dimension; moreover, the decoding of the partially permuted RM code is
maintained. Assuming indistinguishability and the hardness of DOOM with a
high-dimensional hull, we achieve the EUF-CMA security of the proposed sig-
nature scheme.

1.2 Advantages and limitations

Enhanced pqsigRM signature scheme has advantages on signature size and ver-
ification time. It has the smallest signature size compared with the other digital
signature finalist algorithms. Also, it has a very short verification time for 128-
bit security. Moreover, the security level is controllable by the parameter setting.
The limitation of this scheme is the relatively large public key size. Since the code
in enhanced pqsigRM does not have a structure such as quasi-cyclic, the key size
of the public key is (n− k)× k. Besides, it has relatively large number of verifi-
cation cycles for 256-bit security. For 128 bits of classical security, the signature
size of the proposed signature scheme is 512 bytes, which corresponds to 1/4.7 of
that of CRYSTALS-DILITHIUM, and the number of median verification cycles
is 759,248, which corresponds to the twice of that of CRYSTALS-DILITHIUM.

2 Preliminaries

2.1 CFS Signature Scheme

CFS signature scheme is an algorithm that applies the FDH methodology to
the Niederreiter cryptosystem. The CFS signature scheme is based on Goppa
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codes, as McEliece cryptosystem. A summary of CFS signature scheme is given
in Algorithm 1.

As described in Algorithm 1, the signing process iterates until a decodable
syndrome is obtained. The probability that a given random syndrome can be

decoded is
∑t

i=0 (
n
i)

2n−k ≃ 1
t! . Hence, the error correction capability t = n−k

logn should
be sufficiently small to reduce the number of iterations. Thus, the high-rate
Goppa codes should be used. Regarding the key size, the complexity of the
decoding attack on the CFS signature scheme is known to be a small power of
the key size, namely, ≈ keysizet/2. Hence, the key size should be fairly large to
meet a certain security level. In summary, the CFS signature scheme is insecure
and inefficient owing to the use of Goppa codes.

Algorithm 1 CFS signature scheme [1]

Key generation:

H is the parity check matrix of an (n, k) Goppa code
The error correction capability t is n−k

logn

S and Q are an (n− k)× (n− k) scrambler matrix and n× n permutation matrix,
respectively
Secret key: H,S, and Q
Public key: H′ ← SHQ

Signing:

m is a message to be signed
i← 1
Do

i← i+ 1
Find syndrome s← h(h(m)|i)
Compute s′ ← S−1s

Until a decodable syndrome s′ is found
Find an error vector satisfying He′T ← s′

* Compute eT ← Q−1e′T , and then the signature is (m, e, i)

Verification:

Check wt(e) ≤ t and H′eT = h(h(m)|i)
If True, then return ACCEPT; else, return REJECT

2.2 Reed–Muller Codes and Recursive Decoding

RM codes were introduced by Reed and Muller [8, 9] and its decoding algorithm,
so-called recursive decoding, was proposed in [4]. There are various definitions
of RM codes, but we adopt a recursive definition here as recursive decoding is
defined by using this structure. An RM code RM(r,m) is a linear binary (n =
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2m, k =
∑r

i=0

(
m
i

)
) code, where r and m are integers. RM(r,m) is defined as

RM(r,m) := {(u|u + v)|u ∈ RM(r,m−1),v ∈ RM(r−1,m−1)}, where RM(0,m) :=

{(0, . . . , 0), (1, . . . , 1)} with code length 2m and RM(m,m) := F2m

2 . This is the
well-known Plotkin’s construction, and its generator matrix is given by

G(r,m) =

[
G(r,m−1) G(r,m−1)

0 G(r−1,m−1)

]
,

where G(r,m) is the generator matrix of RM(r,m).
Recursive decoding is a soft-decision decoding algorithm that depends on

the recursive structure of the RM codes; it is described in detail in Algorithm 2,
where y′ · y′′ denotes the component-wise multiplication of the vectors y′ and
y′′. In recursive decoding, a binary symbol a ∈ {0, 1} is mapped onto (−1)a, and
it is assumed that all codewords belong to {−1, 1}n.

First, y′′ (the second half of the received vector y) is component-wisely
multiplied by y′ (the first half of the received vector). Then, a codeword from
RM(r,m−1) (i.e., u) is removed from y′′ as it is both in y′ and y′′, and then only
v and the error vector remain. This is regarded as a codeword of RM(r−1,m−1)

added to an error vector and is referred to as v̂. Using v̂, we can remove the
codeword of RM(r−1,m−1) from the second half of the received vector. y′ is then
added to y′′ · v̂, and the sum is divided by 2. This is regarded as a codeword of
RM(r,m−1) added to the error vector, and then decoding is performed. Recur-
sively, the received vector is further divided into sub-vectors of length n/4, n/8,
etc. Finally, we reach RM(m,m) or RM(0,m), then the division terminates and
the minimum distance (MD) decoding of RM(m,m) or RM(0,m), which is trivial,
is performed. The decoding for the entire code is performed by reconstructing
these results into (U,U + V ) form.

Algorithm 2 Recursive decoding of RM code [4]

function RecursiveDecoding(y, r,m)
if r = 0 then

Perform MD decoding on RM(0,m)
else if r = m then

Perform MD decoding on RM(r, r)
else

(y′|y′′)← y
yv = y′ · y′′

v̂← RecursiveDecoding(yv, r − 1,m− 1)
yu ← (y′ + y′′ · v̂)/2
û← RecursiveDecoding(yu, r,m− 1)
Output (û|û · v̂)

end if
end function
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3 Specification

3.1 Basic Notation

A Vector is denoted in boldface in the form of a column vector. (x0|x1) denotes
the concatenation of two vectors x0 and x1. For example, h(m|r) means the
hash function h with input (m|r), where (m|r) represents the concatenation of
binary representation of vector m and a random value r. Matrices are denoted
by a boldfaced capital letter, for example,A. Matrix multiplication is denoted by
· or can be omitted when it is unnecessary. Codes and probability distributions
are denoted in calligraphic fonts, for example C, and it can be distinguished by
context. xσ denotes that a vector x is permuted by a permutation σ, for example,
xσ = (x1, x3, x2, x0), where x = (x0, x1, x2, x3) and σ = (1, 3, 2, 0). 12‘

3.2 Specification of Enhanced pqsigRM

Parameter Space We propose a new code-based digital signature scheme,
called enhanced pqsigRM. Each operation of enhanced pqsigRM has six param-
eters: (r,m) are positive integers of parameters of RM code, p is the number
of columns that are partially permuted, w is the Hamming weight of signature,
krep is the number of replacing rows, and kapp is the number of appending rows.

Private Key and Public Key 1-1) Partial permutation of generator
matrix of RM code: Let G(r,m) be a k × n generator matrix of the (n, k)
RM code, RM(r,m). We know that the generator matrix of RM(r,m) can be
expressed as follows:

G(r,m) =

[
G(r,m− 1) G(r,m− 1)

0 G(r − 1,m− 1)

]
(1)

=


G(r,m− 2) G(r,m− 2) G(r,m− 2) G(r,m− 2)

0 G(r − 1,m− 2) 0 G(r − 1,m− 2)
0 0 G(r − 1,m− 2) G(r − 1,m− 2)
0 0 0 G(r − 2,m− 2)

 .

(2)

The recursive decoding algorithm of RM code in [4] is possible from the recursive
structure of the RM code.

For example, the decoding for the second half of the RM codeword can be
done by decoding; i) the first half part of codeword by generator matrix G(r,m−
1), ii) the subcode generated by the lower right submatrix G(r − 1,m − 1)
in (1). Likewise, decoding for the first half of the second half of this code, i.e.,
(cn

2 +1, . . . , c 3
4n

) can be decoded by decoding the subcode generated by G(r −
1,m − 2), which are submatrices of G(r − 1,m − 1), i.e., two G(r − 1,m − 2)’s
in the third row in (2).
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𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '() 𝐺 𝑟,𝑚 − 2 '()

0 𝐺(𝑟 − 1,𝑚 − 2) 0 𝐺(𝑟 − 1,𝑚 − 2)

0 0 𝐺(𝑟 − 1,𝑚 − 2) 𝐺(𝑟 − 1,𝑚 − 2)

0 0 0 𝐺 𝑟 − 2,𝑚 − 2 '(.

Fig. 1. Partially permuted RM code’s generator matrix.

In other words, we can say that c = [u|u + v], for all c ∈ RM(r,m), where
u ∈ RM(r,m − 1) and v ∈ RM(r − 1,m − 1). Recursively, RM(r,m − 1) and
RM(r − 1,m− 1) are also [u|u+ v] structure codes until r = 0 or r = m. Here,
if the code corresponding to u or v is replaced with a code other than the RM
code, and the decoding of the replaced code is appropriately done, the entire
code c can be decoded [3].

The example of the generator matrix of such code is given in Fig. 1. We
define σ1

p and σ2
p as two independent partial permutations which are random

permutations of only p columns out of n/4 columns. This structure allows to
protect the codes from the attack using hull.

1-2) Modification by replacing, appending, and padding : When we
make the recursive structure of RM codes repeatedly, we obtain GRM(r,m)’s on
the first 2r rows. We replace these with 2m−r number of same (2r, krep)-codes as
in Figure 2. Additionally, the dual code of these (2r, krep) random codes should
include at least one non-zero codeword with an odd Hamming weight. This step
makes the code to be robust from the attack using its dual code. Then, we
append kapp number of independent random codewords which has at least one
non-zero codeword with an odd Hamming weight. By doing this, we can solve
the distinguishing problem of RM codes. Lastly, we pad a codeword of the dual
code of the whole code. This step prevents the leakage of the information of the
hull. With these steps, we can obtain the modified RM codes, which are strong
against all possible attacks or information leakage. Moreover, we can use a new
decoding algorithm for this code as in Algorithm 3.

1-3) Generation of S,Q, σ1
p, σ

2
p, E, and HM:

Let S be an (n− k)× (n− k) non-singular matrix and Q be an n×n permu-
tation matrix. To generate σ1

p and σ2
p, p elements are chosen from the index set

{0, 1, . . . , n/4−1}, the chosen elements are randomly permuted while others are
not. Let G be a generator matrix of RM code constructed in a recursive struc-
ture as in (2). Now, σ1

p is used to permute the submatrices of G corresponding to
RM(r,m− 2)’s in the first row, and σ2

p is used to permute the generator matrix
of RM(r − 2,m − 2) on the last row as in Fig. 1. Let G[a : b, c : d]σ be the
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𝜎𝑝
1 𝜎𝑝

1 𝜎𝑝
1 𝜎𝑝

1

𝜎𝑝
2

𝑘𝑟𝑒𝑝

A codeword from dual code

⋯

𝑘𝑎𝑝𝑝 Random independent rows

⋯⋯ ⋯⋯

: generator matrix of random 2𝑟 , 𝑘𝑟𝑒𝑝 code replacing RM(𝑟,𝑟)

⋯ ⋯ ⋯ ⋯

Fig. 2. Modified RM code’s generator matrix GM for the proposed signature scheme.

column permuted submatrix of G, where submatrix is composed of rows with
indices {a, a + 1, . . . , b} and columns with indices {c, c + 1, . . . , d}. Let GM be
the modified RM code’s generator matrix of RM(r,m) in Fig. 2.

Thus, the dual matrix of the partially permuted generator matrix GM be-
comes the parity check matrix, which is further modified into the row reduced
echelon form (RREF), denoted by HM to simplify signing. RREF of parity check
matrix is always possible because parity check matrix has always full rank. Then,
we compute H ′ = SHMQ, where the private keys are S,Q, σ1

p, andσ
2
p. Q is gen-

erated by a random shuffling algorithm using random numbers (such as Knuth’s
shuffling algorithm [11]) using random numbers generated by a random number
generator based on AES-256 (shortly, RNG-AES-256). The two partial column
permutations σ1

p and σ2
p are generated by i) permute {0, 1, . . . , n/4− 1} by any

shuffling algorithm ii) choose the first p elements of the permuted sets, iii) el-
ements other than these p elements are placed in their original positions, and
these p elements are placed in the shuffled order in the remaining positions. We
make this to be a systematic form as H ′

sys = (I | T ). Then we can just use T as
a new public key which has a size of (n−k)×k. This process reduces the public
key size, considerably.

Generation of Digital Signatures For a given message M , choose random
integer i generated by RNG-AES-256. Using the hash function h, the syndrome
s = h(M |i) is generated, which is similar to that of the CFS signature scheme.
Unlike CFS signature scheme, we use hash function once, instead of twice with
SHAKE-128, 256. Find the error vector e such that SHMQeT = s. Let e′T =
QeT and s′ = S−1s. Thus, HMe′T = s′ holds. Then, perform decoding algorithm
as in Algorithm 3 to find new error vector e′. If wt(e′) ≤ w, compute eT =
Q−1e′T , and the signature is then given as (M, e, i), where w is error weight
parameter given in Section 3.
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Algorithm 3 Decoding for modified RM code

function Decode(s;H)
r← Prange(H, s)
while True do

r← r+ random codeword
c← ModDec(r, r,M)
if wt(r+ c) ≤ w then

Output r+ c
end if

end while
end function

function ModDec(y, r,M)

y← yσ−1

if r = 0 then
Output MD decoding on RM(0,m)

else if r = m then
Output MD decoding on RM(r, r)
or replaced (2r, krep) code

else
(y′|y′′)← y
yv = y′ · y′′

v̂← ModDec(yv, r − 1,m− 1)
yu ← (y′ + y′′ · v̂)/2
û← ModDec(yu, r,m− 1)
y← (û|û · v̂)

end if
Output yσ

end function
*σ is σ1

p or σ2
p for permuted block and identity, otherwise.

Verification Check wt(e) ≤ w and H ′
syse

T = h(M |i). If TRUE, then return
ACCEPT; else, return REJECT.

The key generation, signing, and verification processes of the enhanced pqsi-
gRM are described in Algorithm 4.

3.3 Parameter sets

Parameter Set Enh-pqsigRM-612 Uses RM code RM(6,12) with w = 495
and p = 386 (128-bit security).

Parameter Set Enh-pqsigRM-613 Uses RM code RM(6,13) with w = 1370
and p = 562 (256-bit security).

The sizes of the public key and signature are given in Table 1. Comparing
with the finalist schemes [20–22], our scheme has the smallest signature size.
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Algorithm 4 Signature scheme of enhanced pqsigRM [12]

Key Generation :

GM: k × n generator matrix of modified RM codes
HM: (n− k)× n parity check matrix of modified RM codes

S
$←− F

(n−k)×(n−k)
2 ,Q

$←− Fn×n
2

H′ ← SHMQ
H′

sys = (I|T) : systematic form of H′

Public key: T
Secret key: HM,S,Q

Signing :

M : Message, i←↩ {0, 1}λ0 : Counter
s← h(M |i): Syndrome
s′T ← S−1sT

e′ ← Decode(s′;H)
eT ← Q−1e′T

Signature: (M, e, i)

Verification :

If wt(e) ≤ w and H ′
syse

T = h(M |i),
return ACCEPT

Else, return REJECT

*h: hash function SHAKE-128/256
*DECODE: Decoding algorithm of modified RM codes
*wt(a): Hamming weight of a vector a
*w: error correcting capability of modified RM codes

Table 1. Public key and signature sizes of enhanced pqsigRM(Bytes) compared with
the finalists

Security
Enhanced
pqsigRM

CRYSTALS-
DILITHIUM

FALCON SPHINCS+

Public
key

Signature
Public
key

Signature
Public
key

Signature
Public
key

Signature

128 474,445 512 1,312 2,420 897 666 32 7,856

256 2,000,000 1,024 2,592 4,595 1,793 1,280 64 29,792
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4 Performance analysis

4.1 Description of platform

The following measurements are collected using a desktop computer with CPU
—i7-8700 CPU @ 3.20GHz— running at 3.40GHz. Turbo Boost is disabled.
This machine has 32GB of RAM. Benchmarks have run on one core of the CPU.
Since the signing algorithm is a probabilistic algorithm, the number of iteration
at signing varies. The following result is the average of 100 experiments. For
detailed descriptions of the success probability of the signing, see 2.B.1.

NIST said that the “NIST PQC Reference Platform” is “an Intel x64 run-
ning Windows or Linux and supporting the GCC compiler”. Our system is an
x64 running Linux and supporting the GCC compiler. Beware, however, that
different Intel CPUs can output different results.

4.2 Number of Cycles

The following measurements are CPU cycler for running Enh-pqsigRM-612,
Enh-pqsigRM-613 at —i7-8700 CPU @ 3.20GHz—. The measurements com-
pared with the finalists are given in Table 2. The data of the finalists are from
the submission papers and these can be little bit different because they im-
plementation conditions are different [20–22]. However, it is almost same with
CRYSTALS-DILITHIUM. Comparing with CRYSTALS-DILITHIUM, we have
about a twice of verification cycles for 128-bit security. However, we have about
ten times larger cycles for 256-bit security. This implementation result is for the
proof of concept, and the optimization will be carried out as further work.

Table 2. CPU cycles of enhanced pqsigRM compared with the finalists

Security
Enhanced
pqsigRM

Verification Cycles

Avg Median
CRYSTALS-
DILITHIUM

FALCON SPHINCS+

128 Enh-pqsigRM-612 791,755 759,248 327,362 82,340 308,774

256 Enh-pqsigRM-613 7,123,917 6,951,035 871,609 168,498 696,980

5 Design Rationale

5.1 Parameter Sets

The constraint here is that n is a power of two. We can numerically find the
feasible ranges of w once n and k are determined. If the security level λ is
achieved in this range, we accept the value; otherwise, we increase n. Considering
decoding one out of many (DOOM) problem, which is explained in Section 6.2,
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a smaller value of w implies higher security. If w is so small that a large number
of decoding iterations are required, we could reduce the partial permutation
parameter p. p is at most n/4, and the characteristics of the codes are retained
by lowering p to a certain degree. The method for obtaining the minimum values
is described in the following subsection. The discussed state-of-the-art algorithm
for DOOM is used as a basis for the parameters.

Regarding the key size, the public key is a parity check matrix given in the
systematic form and requires (n− k)k bits. The secret key includes matrices H,
S, andQ. Moreover,H can be represented by σ1

p, σ
2
p, krep = 2r−2 (the maximum

value), and kapp = 2(the minimum value).

5.2 Statistical Analysis for Determining Number of Partial
Permutations

The number p of columns permuted in the partial permutation varies from 0 to
n/4. From numerical analysis, it is demonstrated that small values of p result in
low Hamming weight of the decoding output. However, it should be noted that
when p = 0, the (U,U + V ) part of the modified RM codes becomes identical
to the RM code except that RM(r,r) is replaced. Hence, we propose the lower
bound of p that does not affect the randomness of the hull.

Regarding the modified RM code, its hull overlaps with (but is not a subset
of) the original RM code. If the hull is a subset of the original RM code, and its di-
mension is large, the codeword of minimum Hamming weight of the original RM
code may be included in the hull. Then, attacks such as the Minder–Shokrollahi
attack may be applied using codewords with minimum Hamming weight. There-
fore, to prevent attacks, the hull of the public code should not be a subset of the
original RM code, and hull(Cpub) ∖ (RM(r,m) permuted by Q) should occupy a
large portion of the hull, where Cpub denotes the public code, and ∖ denotes the
relative complement.

As the permutation Q is not important for determining the parameter p,
we ignore it in this subsection, and the term permutation refers to the par-
tial permutations σ1

p and σ2
p. When p = n/4, which implies that σ1

p and σ2
p

are full permutations, the average dimension of the hull and the dimension of
hull(Cpub) ∖ RM(r,m) are given in Table 3. The values may slightly change ac-
cording to the permutation.

If p is small, the Hamming weight of the errors decreases. Hence, the signing
time can be reduced by using a partial permutation with p rather than a full
permutation. The aim is to find a smaller value for p maintaining the dimension
of hull(Cpub)∖RM(r,m) as large as that by the full permutation. It can be seen
that the average of the dimension of hull(Cpub) ∖ RM(r,m) tends to increase as
p increases, and it is saturated when p is above a certain value, as in Figure 3.
Specifically, the dimension of hull(Cpub) ∖ RM(r,m) is saturated when p is ap-
proximately equal to the average dimension of hull(Cpub) ∖ RM(r,m) with full
permutation. Hence, we determine p as 386, and 562.
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Fig. 3. Dimension of hull(Cpub)∖ RM(6,12) for 128-bit security parameters.

Table 3. Average dimension of hull(Cpub) and hull(Cpub)∖ RM(r,m) with p = n/4

(r,m) (6,12) (6,13)

n 4096 8192
k 2511 4097

dim(hull(Cpub)) 1236 2974
dim(hull(Cpub)∖ RM(r,m)) 386 562

6 Security Analysis and Indistinguishability

6.1 RM Code Structure Attack

Minder-Shokrollahi’s attack [5] and Chizhov-Borodin’s attack [6] are well-known
attacks for RM code-based cryptosystem, which decomposes the public key H ′ =
SHQ into the private keys S,H, and Q. In addition, square code attack [10] can
also be applied to RM code-based cryptosystem with insertion. However, we
will show below that our proposed algorithm is secure against the above attack
methods.

Security Against Minder-Shokrollahi’s Attack enhanced pqsigRM can be
proven to be secure against this attack in the same way with pqsigRM in [7].

Security Against Chizhov-Borodin’s Attack enhanced pqsigRM can be
proven to be secure against this attack in the same way with pqsigRM in [7].

Security Against Square Code Attack enhanced pqsigRM can be proven
to be secure against this attack in the same way with pqsigRM in [7].
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Other Cryptanalyses of the Signature Scheme Based on Modified RM
Code 1) An attack that finds punctured/inserted elements using hull
of public code

In public key encryption or digital signature algorithm using punctured RM
code with random insertion, the punctured/inserted position in the public code
and its dual intersection, i.e., hull, is revealed by the fact that they have no
support [14, 15]. enhanced pqsigRM can be proven to be secure against this
attack in the same way with pqsigRM in [7].

2) Attack using the probability of 1 for each element of signature
If the punctured RM code with random insertion is used as a public key, there

is a higher probability that the inserted elements of signature to be 1 [13]. In
case of puncturing/insertion, the punctured/inserted elements of the error vector
are newly computed and replaced in order to generate an error vector with the
same syndrome for the shortened/lengthened parity check matrix. Then, it can
be used as a signature. In this case, the probability of 1 in the replaced part is
relatively high because the other part of the signature is part of the coset leader
of the RM code, which is less probably 1. enhanced pqsigRM can be proven to
be secure against this attack in the same way with pqsigRM in [7].

3) Attack using the probability of 1 for each element of near min-
imum weight codewords

In public key encryption or digital signature algorithms using punctured RM
code with random insertion, the inserted part has a larger average Hamming
weight in the near minimum weight codeword of the public code [16]. This at-
tack is also valid because the RM code has greater than or equal to 2mr−r(r−1)

minimum weight codes [5]. enhanced pqsigRM can be proven to be secure against
this attack in the same way with pqsigRM in [7].

6.2 Security Analysis

Decoding One Out of Many

Problem 1. (DOOM)

Instance: A parity check matrix H ∈ F(n−k)×n
2 of an (n, k) linear code, syn-

dromes s1, s2, · · · , sq ∈ Fn−k
2 , and an integer w.

Output: (e, i) ∈ Fn
2 × [1, q] such that wt(e) ≤ w and HeT = sTi .

We consider the case in which the adversary has q instances and M =
max (1,

(
n
w

)
/2n−k) solutions for each instance. Of course, in our case, w is not

small, and thus M is
(
n
w

)
/2n−k. In [17], the work factor of solving DOOM is

given as

WFM
q = min

p,l

(
Cq(p, l)

PqM (p, l)

)
,

where

Cq(p, l) = max

(√
q

(
k + l

p

)
,
q
(
k+l
p

)
2l

)
, q ≤

(
k + l

p

)
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is the complexity of solving the DOOM problem using Dumer’s algorithm and

PqM (p, l) = 1−

(
1−

(
n−k−l
w−p

)(
k+l
p

)(
n
w

) )qM

is the success probability. This work factor is the reference for choosing the
parameters of the signature scheme. There are more explanations in [12].

Security Against Key Substitution Attacks In a key substitution attack,
the adversary attempts to find a valid key that is different from the correct key
and can be used for signature verification. In the enhanced pqsigRM, the syn-
drome is given as s = h(M |i), and thus it is also secure against key substitution
attacks. There are more explanations in [12].

EUF-CMA Security

Definition 1. (EUF-CMA Security)
Let S be a signature scheme. We define the EUF-CMA success probability against
S as

SuccEUF−CMA
S (t, qH, qΣ) := max(ϵ|∃(t, qH, qΣ , ϵ)-adversary).

The signature scheme S is called (t, qH, qΣ)-secure in EUF-CMA if the above
success probability is a negligible function of the security parameter λ.

The EUF-CMA security of the enhanced pqsigRM is reduced to the modified
RM code distinguishing problem and DOOM with a high-dimensional hull.

Problem 2. (Modified RM code distinguishing problem)

Instance: A code C with a high-dimensional hull.

Output: A bit b ∈ {0, 1}, where b = 1 if C is a permutation of the modified RM
code; otherwise, b = 0.

Problem 3. (DOOM with a high-dimensional hull)

Instance: A parity check matrix H′ ∈ F(n−k)×n
2 of an (n, k) code with a high-

dimensional hull, syndromes s1, s2, · · · , sq ∈ F(n−k)
n , and an integer w.

Output: (e, i) ∈ Fn
2 × [1, q] such that wt(e) ≤ w and HeT = sTi .

There are more explanations and proof of EUF-CMA security in [12]. Con-
sidering these, we obtain the parameters for each security level as in Table 4.
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Table 4. Parameters for each security level

λ (security) 128 256

(r,m) (6,12) (6,13)
n 4096 8192
k 2511 4097
w 495 1370
p ≥386 ≥562

krep 62 62
kapp 2 2

6.3 Indistinguishability of Code and Signature in the Proposed
Scheme

Modifications of Public Code Cryptanalysis using hulls is widely used in
code-based cryptography. However, this is valid if the hull has a specific structure
that allows information leakage about the secret key. Therefore, using only the
fact that the dimension of the hull is large, it is difficult to distinguish whether
the code is public or random code with a high-dimensional hull. The EUF-CMA
security proof requires the indistinguishability between public and random codes.
We will discuss the design methodology and how these modifications can ensure
indistinguishability. Considering the key recovery attack in [18], a (U,U + V )-
code used in code-based crypto-algorithms should have a high-dimensional hull
for security. Even though the public code of the proposed signature scheme is not
a (U,U +V )-code, it should contain a (U,U +V ) subcode for efficient decoding.
The attack on SURF in [18] uses the fact that for any (U,U + V )-code, the
hull of the public code is highly probable to have a (u|u) structure when U⊥ ∩
V = {0}, dim(U) ≥ dim(V ). This (u|u) reveals information about the secret
permutation Q and enables the attacker to locate the U and U + V codes. To
avoid this, we should maintain the high dimension of U⊥ ∩V , implying that the
public code should have a high-dimensional hull. Hence, we define DOOM with
a high-dimensional hull and assume that the public code of enhanced pqsigRM
is indistinguishable from a random code with a hull of the same dimension as
that of the public code, rather than any random linear code.

Moreover, kapp random rows are appended to the generator matrix, and 2r

rows of the generator matrix, that is the repeated RM(r,r), are replaced by
krep random rows; furthermore, a codeword from the dual code is appended
to the generator matrix. These modifications are equivalent to increasing the
dimension of the code itself, the hull, and the dual of the code, respectively, by
appending random codewords. Moreover, by adding random codewords, the code
is no longer a (U,U +V )-code, and thus distinguishing attacks are more difficult
to perform. We now explain the rationale for the aforementioned modifications,
which are applied in addition to partial permutation.

1) kapp random rows are appended to the generator matrix The
Hamming weights of a random code are distributed. However, the partially per-



Enhanced pqsigRM 17

muted RM code has only codewords with even Hamming weight. This is because
the Hamming weights of codewords of RM(r,m) are even numbers, and partial
permutations do not affect parity.

By appending a random row with odd Hamming weight to the generator
matrix, the Hamming weights of the public code become distributed binomially.
The problem is that if only one row with an odd Hamming weight is appended,
it can easily be extracted. This can be resolved by appending more than one
codeword. Hence, we append kapp random rows such that at least one has an
odd Hamming weight. By the nature of the decoding process, it is still possible
to decode the resulting code.

2) Appending a random codeword of the dual code to the generator
matrix The Hamming weights of the codewords in the hull of the partially
permuted RM code are only multiples of four. However, the Hamming weight of
the codewords in the hull of a random code may be an arbitrary even number,
not only a multiple of four. As in the previous modification, a random codeword
is appended to the hull. Thereby, we force the codewords of the hull of the public
code to have arbitrary even Hamming weights. As a randomly appended row to
the generator matrix is unlikely to be appended to its hull, appending a codeword
to the hull is more complicated. The following is the process for appending a
random codeword to the hull.

Let hull(C) be the hull of a code C. We define C′ and C′′ by C = hull(C) + C′

and C⊥ = hull(C) + C′′, where hull(C), C′, and C′′ are linearly independent. We
can then generate a code with a hull with dimension dim(hull(C)) + 1 by the
following procedure:

i) Find a codeword cdual ∈ C′′ such that cdual · cdual = 0. This is easy because
a codeword with even Hamming weight satisfies it.

ii) Let Cinc = C + {cdual} = (hull(C) + {cdual}) + C′.
iii) As cdual ·(hull(C)+{cdual}) = {0} and cdual ·C′ = {0}, we have cdual ∈ C⊥

inc,
where for a vector x and a set of vectors A, x·A is the set of all inner products
of x and elements of A.

iv) It can be seen that Cinc ∩ C⊥
inc = (hull(C) + {cdual}). Hence, Cinc is a code

that has a hull of which dimension is dim(hull(C)) + 1.

If the Hamming weights of the codewords of the hull are only multiples of 4,
then another cdual is selected, and the above process is repeated.

3) Repeated RM(r,r) is replaced with random (2r, krep) codes We note
that by replacing repeated RM(r,r) by random (2r, krep) codes, the dimension
of the code is reduced by 2r − krep; this is equivalent to appending 2r − krep
rows to the parity check matrix. The codewords of the dual code of the partially
permuted RM code have only codewords of even Hamming weight owing to a
subcode of the partially permuted RM code. This can be resolved by replacing
this subcode with another random code such that its MD decoder exists. The
partially permuted RM code includes (RM(r,r)| . . . |RM(r,r)), and the dual code
of this has only codewords of even Hamming weight by the proposition below.
It is easy to verify that the dual code of the partially permuted RM code is a
subset of the dual code of (RM(r,r)| . . . |RM(r,r)). That is, (RM(r,r)| . . . |RM(r,r))
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causes the dual code of the partially permuted RM code to have only codewords
of even Hamming weight. By replacing the repeated RM(r,r) with a random code
such that its dual code has codewords of odd Hamming weight, we can force the
dual of the public code to have codewords with odd Hamming weight.

Clearly, the dual code of RM(r,r) is {0}. We replace RM(r,r) with a random
(2r, krep) code. We note that the dual code of this (2r, krep) code must have
codewords with odd Hamming weight. The generator matrix is modified in this
manner, rather than by appending rows to the parity check matrix, to ensure
that the entire code is decodable.

Public Code Indistinguishability In the EUF-CMA security proof, the mod-
ified RM code distinguishing problem should be hard. As it is challenging to find
the computational distance between public and random codes, in this section,
we study the randomness of the public code and consider possible attacks.

1) Public code is not a (U,U + V )-code After random rows have been
appended to the generator matrix of a (U,U + V )-code, the resulting code is
unlikely to be a (U,U + V )-code. Considering the following proposition, it can
be seen that with probability O(2kU−n/2), a (U,U+V )-code remains a (U,U+V )-
code after a row has been appended to its generator matrix.

Proposition 1. Let C be a (U,U + V )-code. Then, for all codewords (c′|c′′) ∈
C, (0|c′ − c′′) ∈ C.

It is expected that attacking the modified RM code is difficult because the ap-
pended codewords change the algebraic structure of the code (i.e., the (U,U+V )
structure), there is considerable randomness, and there is currently no recovery
algorithm.

2) Distinguishing using hull When a random row is appended to the
generator matrix, it is unlikely to be included in the hull. To achieve this, the
appended row should be a codeword of the dual code, and its square should be
zero. Hence, we append a codeword from the dual code to the generator matrix.

The appended row can be omitted when the attacker collects several indepen-
dent codewords with Hamming weight 4 from the hull. However, for any random
code with a high-dimensional hull, the same process can be applied, and finally,
there only remain codewords of which the Hamming weight is a multiple of 4.
Hence, this is not a valid distinguishing attack.

The hull of a random (U,U + V )-code is {0} when kU < kV and is highly
probable to have codewords of (u|u) form when kU ≥ kV . However, the hull of an
RM code is also an RM code, and in our case, the partial permutation randomizes
its hull and retains its large dimension. The hull is neither a subcode of the RM
code nor a (U,U + V )-code. Moreover, most of the hull depends on the secret
partial permutations σ1

p and σ2
p.

Signature Leaks In the EUF-CMA security proof, the indistinguishability be-
tween public and random codes should be guaranteed. If this is true, then the
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signature does not leak information. In several signature schemes, such as Du-
randal, SURF, and Wave, this is achieved and proved. In SURF and Wave, the
rejection sampling method is applied to render the public code’s indistinguisha-
bility.

To apply rejection sampling, the distribution of the decoding output should
be known. In SURF and Wave, a simple and efficient decoding algorithm is used,
and thus it is easy to find the distribution of the decoding output. However,
in our case, the decoding output exhibits a high degree of randomness, and
the structure of the decoder is complex. Therefore, it is difficult to analyze
the distribution of the decoding output. Instead, we conduct a proof-of-concept
implementation of the enhanced pqsigRM using SageMath. Then, we perform
statistical randomness tests under NIST SP 800-22 [19] on the decoding output,
and we compare the results with random errors in Fn

2 with Hamming weight
w. No significant difference is observed. However, it should be noted that the
success of a statistical randomness test does not imply indistinguishability. Thus,
the indistinguishability of the signature should be rigorously studied in future
work.

7 Summary or Conclusion

We introduced a new signature scheme, called enhanced pqsigRM, based on
modified RM codes with partial permutation as well as row appending and re-
placement in the generator matrix. For any given syndrome, an error vector
with a small Hamming weight can be obtained. Moreover, the decoding method
achieves indistinguishability to some degree because it is collision-resistant. The
proposed signature scheme resists all known attacks against cryptosystems based
on the original RM codes. The partially permuted RM code improves the sig-
nature success condition in previous signature schemes such as CFS and can
improve signing time and key size.

We further modified the RM code using row appending/replacement. The
resulting code is expected to be indistinguishable from random codes with the
same hull dimension; moreover, the decoding of the partially permuted RM code
is maintained. Assuming indistinguishability and the hardness of DOOM with a
high-dimensional hull, we could achieve the EUF-CMA security of the proposed
signature scheme.

Moreover, enhanced pqsigRM signature scheme has advantages on signature
size and verification time. It has the smallest signature size compared with the
other digital signature finalist algorithms. Also, it has a very short verification
time for 128-bit security. Moreover, the security level is controllable by the pa-
rameter setting. The limitation of this scheme is the relatively large public key
size. Since the code in enhanced pqsigRM does not have a structure such as
quasi-cyclic, the key size of the public key is (n − k) × k. Besides, it has rel-
atively large number of verification cycles for 256-bit security. For 128 bits of
classical security, the signature size of the proposed signature scheme is 512
bytes, which corresponds to 1/4.7 of that of CRYSTALS-DILITHIUM, and the
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number of median verification cycles is 759,248, which corresponds to the twice
of that of CRYSTALS-DILITHIUM.
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