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Abstract. Trapdoor claw-free functions (TCFs) are immensely valuable in cryptographic
interactions between a classical client and a quantum server. Typically, a protocol has the
quantum server prepare a superposition of two-bit strings of a claw and then measure it
using Pauli-X or Z measurements. In this paper, we demonstrate a new technique that uses
the entire range of qubit measurements from the XY -plane. We show the advantage of this
approach in two applications. First, building on (Brakerski et al. 2018, Kalai et al. 2022), we
show an optimized two-round proof of quantumness whose security can be expressed directly
in terms of the hardness of the LWE (learning with errors) problem. Second, we construct a
one-round protocol for blind remote preparation of an arbitrary state on the XY -plane up to
a Pauli-Z correction.

1 Introduction

The field of quantum cryptography has its origins [BB14,Wie83] in the idea that quantum
states can be transmitted between two parties (e.g., through free space or through an
optical fiber) to perform cryptographic tasks. Properties of the transmitted states, including
no-cloning and entanglement, are the basis for interactive protocols that enable a new and
qualitatively different type of security. However, a recent trend in the field has shown that
quantum cryptography can be done even when quantum communication is not available. If
one or more parties involved in a protocol possess a sufficiently powerful quantum computer,
then certain cryptographic tasks can be performed — while still taking advantage of uniquely
quantum properties — using strictly classical communication. This approach relieves the
users of the difficulties associated with reliable quantum communication, and puts the
focus instead on the problem of building a more powerful quantum computer, a goal that
has seen tremendous investments during the past several years [Nat19].

At the center of this new type of quantum cryptography are cryptographic hardness
assumptions. Certain problems, such as factoring numbers, are believed to be difficult for
classical computers but not for quantum computers. Other problems, such as finding the
shortest vector in a lattice, are believed to be hard for both types of computers. These
hardness assumptions are used to prove soundness claims for quantum interactive protocols.



Two of the seminal papers in quantum cryptography with classical communication
[Mah18,BCM+21] used trapdoor claw-free functions [GMR84] as the basis for their protocol
designs, and created a model that has been followed by many other authors. A trapdoor
claw-free function (TCF), roughly speaking, is a family of triples (f0, f1, t), where f0 and
f1 are injective functions with the same domain and same range, and t is a trapdoor that
allows efficient inversion of either function. To say that this family is claw-free means that
without the trapdoor t, it is believed to be hard for any (quantum or classical) adversary
to find values x0 and x1 such that f0(x0) = f1(x1).

The TCF construction illustrates how a cryptographic hardness assumption that is made
for both quantum and classical computers can nonetheless permit a quantum computer to
show its unique capabilities. A quantum computer can perform an efficient process that
will output a random element y in the range of f0, f1 together with a claw state of the form

|ψ⟩ = 1√
2
(|x0⟩ |0⟩+ |x1⟩ |1⟩) , (1)

where f0(x0) = f1(x1) = y (see section 2 of [Mah18]). If this state is measured in the
Z-basis, one obtains a pair (x, c) such that fc(x) = y. Alternatively, assuming that x0 and
x1 are expressed as bit strings of length ℓ, and thus |ψ⟩ is an (ℓ+ 1)-qubit state, one can
measure in the X-basis to obtain a bit string d that must satisfy

d · (x0 ⊕ x1||1) = 0. (2)

(Here, || denotes string concatenation.) This equation is significant because we have used a
quantum process to obtain information about both x0 and x1, even though we have assumed
that it would be impossible for any efficient computer to recover x0 and x1 entirely. This
fact is the basis for using TCFs to verify that a server that one is interacting with is able
to perform quantum computation [BCM+21,KMCVY22]. The same concept was also used
in cryptographic constructions that delegate the preparation of a quantum state to a server
without revealing its classical description [CCKW19,GV19] and in other cryptographic
protocols [MV21,Mah18].

The majority of papers utilizing TCFs in their cryptographic constructions have applied
only Pauli measurements and classical operations to the state |ψ⟩.3 What would happen
if we considered the full range of single-qubit measurements on the state |ψ⟩? We note
that since single-qubit rotation gates are physically native in some platforms (for example,
ion traps [NC10,DLF+16,Mas17]), realizing a continuous single-qubit rotation is not much
more difficult than realizing a single-qubit Clifford gate, and so this direction is a natural
one to study.

3 Two exceptions are as [GV19] and [CCKW21]. In [GV19], the server applies Fourier transforms to the
quantum state |ψ⟩. In [CCKW21], the server applies measurements from a small set in the XY -plane
and the protocol only provides security against honest-but-curious adversaries. See Section 1.2 for a
comparison.
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In this work, we use an infinite family of qubit measurements to prove new performance
and security claims for quantum server protocols. We discuss two applications: proofs of
quantumness and blind remote state preparation.

1.1 Our Contribution

Proof of Quantumness. With increasing efforts in recent years towards building quantum
computers, the task of verifying the quantum behavior of such computers is particularly
important. Integer factorization, one of the oldest theoretical examples of a quantum
advantage [Sho94], is one possible approach to this kind of verification. However, building
quantum computers that are able to surpass classical computers in factoring is experi-
mentally difficult and a far-off task. Hence, it is desirable to find alternative proofs of
quantumness4 that are easier for a quantum computer to perform.

The authors of [BCM+21] did groundbreaking work in this direction by offering an
interactive proof of quantumness based on the hardness of LWE (learning with errors).
Follow-up work [BKVV20,KMCVY22,KLVY22] used their technical ideas to optimize some
aspects or provide trade-offs under different assumptions. In this work we provide a proof
of quantumness that utilizes rotated measurements on claw states (Eq. (1)) to achieve some
new tradeoffs. The advantage achieved in our protocol by a quantum device is described in
the following theorem.

Theorem 1 (Informal). Let λ denote the security parameter. Suppose that n,m, q, σ, τ
are functions of λ that satisfy the constraints given in Fig. 1 from Section 3, and suppose
that the LWEn,q,G(σ,τ) problem is hard. Then, there exists a two round interactive protocol
between a verifier and a prover such that the following holds:

– For any efficient classical prover, the verifier accepts with probability at most 3
4+negl(λ).

– For any quantum prover that follows the protocol honestly, the verifier accepts with
probability at least cos2

(
π
8

)
− 5mσ2

q2
− mσ

2τ .

The protocol for this theorem is referred to as Protocol Q and is given in Fig. 4.
Noting that cos2(π/8) > 0.85 > 3

4 , we deduce that as long as the error term 5mσ2

q2
+ mσ

2τ
vanishes as λ→∞, a constant gap is achieved between the best possible quantum winning
probability and the best possible classical winning probability. In Section 3.3, we show
that this vanishing condition can be achieved while taking the modulus q to be only
slightly asymptotically larger than n2σ (where the parameter n is the dimension of the
LWE problem, and σ is the noise parameter). Our approach thus allows us to base the
security of our protocol on the LWE problem for a broad range of parameters, including
parameters that are comparable to those used in post-quantum lattice-based cryptography.

4 By proof of quantumness, we mean a specific test, administered by a classical verifier, which an efficient
quantum device can pass at a noticeably higher rate than any efficient classical device.
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(For example, in the public-key cryptosystem in [Reg09], the modulus is taken to be on
the order of n2.) Previous works on interactive lattice-based proofs of quantumness have
tended to use a modulus that is either very large or not explicitly given.

Our proof builds on recent previous work, and most directly builds on [KLVY22]. In
comparison to [KLVY22], our protocol involves preparing and measuring only one TCF
claw state at each iteration, whereas [KLVY22] requires preparing and measuring three
TCF claw states (while maintaining quantum memory throughout). Additionally, whereas
[KLVY22] requires the use of quantum homomorphic encryption schemes proved by other
authors, our proof is self-contained and directly relates the security of our protocol to
the hardness of the underlying LWE problem. At the same time, our approach inherits
the following merits from [KLVY22]: our protocol involves only 2 rounds of interaction, it
requires only one qubit to be stored in memory in between rounds, and it does not require
any cryptographic assumptions beyond LWE.

As far as we are aware, the combination of features in our work has not been achieved
before (see Section 1.2), and our results thus bring the community closer to establishing the
minimal requirements for a lattice-based proof of quantumness. As experimental progress
continues [ZKML+21], there is good reason to think that these proofs of quantumness may
be realizable in the near future.

Remote State Preparation. Remote state preparation (RSP) is a protocol where a compu-
tationally weak client delegates the preparation of a quantum state to a remote server. An
RSP protocol is blind if the server does not learn a classical description of the state in the
process of preparing it [DKL12]. Recently, [CCKW19] and [GV19] introduced blind RSP
with a completely classical client, based on the conjectured quantum hardness of the LWE
problem. Blind RSP has become an essential subroutine to dequantize the quantum channel
in various quantum cryptographic applications including blind and verifiable quantum
computations [BFK09,GV19,BCC+20], quantum money [Rad19], unclonable quantum en-
cryption [GMP22], quantum copy protection [GMP22], and proofs of quantumness [MY22].

All previous RSP protocols prepare a single-qubit state 1√
2
(|0⟩+eiθ |1⟩), where θ belongs

to some fixed set S ⊆ [0, 2π). However, a common feature among all the schemes is that
either the size of S must be small, or the basis determined by θ is not fixed a priori.
Therefore, a natural question in this context is:

Can a completely classical client delegate the preparation of arbitrary single-qubit
states to a quantum server while keeping the basis fixed?

Ideally, we would like to achieve this task in a single round of interaction. Note that
the previous RSP protocols along with computing on encrypted data protocols such
as [BFK09,FBS+14] can realize this task in two rounds of interaction. In this work, we
provide a simple scheme for deterministic blind RSP that achieves this task without
incurring any additional cost compared to previous randomized RSP schemes. Our protocol
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only requires one round of interaction to prepare any single qubit state in the XY -plane
(modulo a phase flip). This is particularly helpful for applications which require a client to
delegate an encrypted quantum input, as it gives the client more control over the state
being prepared. The correctness and blindness of the protocol are summarized in the
theorem below.

Theorem 2 (Informal). Let λ denote the security parameter. Suppose that n,m, q, σ, τ
are functions of the security parameter λ that satisfy the constraints given in Fig. 1 from
Section 3 and τ ≥ 2mσ, and suppose that the LWEn,q,G(σ,τ) problem is hard. Then there
exists a one-round client-server remote state preparation protocol such that for any α ∈ Zq,
the client can delegate the preparation of the state |α⟩ = 1√

2

(
|0⟩+ ei 2πα/q |1⟩

)
with the

following guarantees:

– (Correctness) If the server follows the protocol honestly, then they prepare a state |β⟩
such that ∥∥∥|α⟩⟨α| − Zb |β⟩⟨β|Zb

∥∥∥
1
≤ 4πmσ

q
,

where ∥·∥1 denotes the trace norm and b ∈ {0, 1} is a random bit that the client can
compute after receiving the server’s response.

– (Blindness) The server gains no knowledge of α from interacting with the client.

1.2 Related Works

Proof of quantumness. The study of proofs of quantumness based on LWE was initiated by
Brakerski et al. [BCM+21] who proposed a four-message (two-round) interactive protocol
between a classical verifier and a prover. Their protocol also involves constructing only
a single TCF claw state (like in our protocol), although it requires holding the entire
claw state in memory between rounds, and it uses an exponentially large modulus.5 Later,
[BKVV20] gave a two-message (one-round) proof of quantumness with a simpler and more
general security proof, but at the cost of requiring the random oracle assumption. More
recently, [KMCVY22] introduced a proof of quantummness with some of the same features
as [BKVV20] without the random oracle assumption, but they require up to 6 messages in
their protocol (3 rounds of interaction). Both [AGKZ20] and [YZ22] present constructions
of publicly verifiable proofs of quantumness, albeit with different assumptions or models.
More recently, [KLVY22] presented a generic compiler that turns any non-local game into a
proof of quantumness and gave an explicit scheme that only requires 4 messages (2 rounds
of interaction). Our proof of quantumness builds on [KLVY22] — see Section 2. Further

5 One effect of using an exponentially large modulus is on hardness assumptions. If we phrase our hardness
asssumptions in terms of the shortest vector problem in a lattice, then [BCM+21] assumes the hardness
of sub-exponential approximation of the shortest vector, while in the current work we only assume that
polynomial approximation is hard. See Section 3.3.
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works have based proofs of quantumness on different assumptions [MY22], optimized
the depth required for implementing TCFs [LG22,HLG21], and even achieved prototype
experimental realization [ZKML+21].

Blind RSP. Remote state preparation over a classical channel comes in two security flavors
— blind RSP and blind-verifiable RSP (in this work, we give a protocol for the former). Such
a primitive was first introduced in [CCKW21] for honest-but-curious adversaries. This was
later extended to fully malicious adversaries in [CCKW19], where the authors present two
blind RSP protocols, one of which allows the client to delegate the preparation of a BB84
state ({|0⟩ , |1⟩ , |+⟩ , |−⟩}) and the other allows the client to delegate the preparation of one
of 8 states in the XY -plane. The former protocol has the advantage of allowing the client
to choose if the server is preparing a computational ({|0⟩ , |1⟩}) or a Hadamard ({|+⟩ , |−⟩})
basis state. However, it is not clear how to generalize the scheme to prepare quantum states
from a large set while maintaining control over the choice of basis. Independently, [GV19]
gives a blind-verifiable RSP scheme that generalizes [BCM+21], where the blindness is
based on the adaptive hardcore bit property. The protocol in [GV19] can prepare one of
10 states: 8 in the XY -plane and the two computational basis states. There is a natural
way to generalize [GV19] to prepare states of the form 1√

2
(|0⟩ + exp(i 2πx/q) |1⟩) with

x, q ∈ N. However, the naturally generalized protocol requires an honest quantum server to
apply a Fourier transform over Zq on the claw state, whereas we only require the server to
perform single-qubit gates on the claw state for any q. Moreover, the quantity x in the
prepared state is randomly chosen in [GV19] whereas our protocol allows the client to
choose x. More recently, [MY22] constructs an RSP protocol from different cryptographic
assumptions (full domain trapdoor permutations); however, the blindness is only shown
against classical adversaries.

Previous RSP protocols have proven to be immensely useful in several cryptographic
applications, ranging from proofs of quantumness [MY22] and verification of quantum
computation [GV19,Zha22] to computing on encrypted data [BCC+20,GMP22], secure
two-party quantum computation [CCKM20] and more. Finally, RSP protocols have been
extended to self-testing protocols [MV21,MTH+22,FWZ22]. A self-testing protocol char-
acterizes not only the state prepared but also the measurements made upon them.

1.3 Further Directions

In our results on RSP, we have focused on qubit states in the XY -plane. It would be
interesting to explore whether other continuous families of encrypted states could be
prepared using our technique.

In general, blind remote state preparation can be done via quantum fully homomorphic
encryption (QFHE) schemes [Mah18,Bra18]. An area where QFHE-based remote state
preparation has been helpful is quantum money over classical channels [Shm22a,Shm22b].
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It would be interesting to see if quantum money schemes can be made more efficient when
one uses our RSP protocol to delegate the state preparation.

The integration of rotated qubit measurements with [KLVY22] invites some further
development. In particular, one could see if the optimization carried out in this paper could
be applied to other non-local games besides the CHSH game, thus allowing a broader range
of protocols and more flexibility in implementation.

2 Technical Overview

Our protocol involves performing rotated measurements on the claw states put forward
by [BCM+21] to steer the final qubit of the claw state into a specific form, while keeping
this form secret by hiding it using LWE. Suppose that n,m, q are positive integers. The
Learning With Errors (LWE) hardness assumption implies that if a classical client chooses a
uniformly random vector s ∈ Zn

q and a uniformly random matrix A ∈ Zm×n
q , and computes

v := As+ e where e ∈ Zm
q is a small noise vector, then a quantum server cannot recover

s from (A, v). Following [BCM+21] the server can (for certain parameters) nonetheless
approximately prepare a superposed claw state of the form

|γ⟩ = 1√
2

(
|x1⟩ |1⟩+ |x0⟩ |0⟩

)
, (3)

where x0 ∈ Zn
q and x1 = x0+ s, along with a vector y ∈ Zm

q which is close to both Ax0 and
Ax1. We will assume that x0 and x1 are written out in base-2 using little-endian order.

At this point, rather than having the server measure |γ⟩ in the X-basis, we can go in a
different direction: suppose that the client instructs the server to measure the kth qubit of
|γ⟩ in the basis (cos θk)X + (sin θk)Y where θk are real numbers for k = 1, 2, . . . , n⌈log q⌉,
and report the result as a binary vector

u = (u1, . . . , un⌈log q⌉). (4)

Once this is done, the state of the final remaining qubit will be 1√
2
(|0⟩+ eiϕ |1⟩), where

ϕ := ⟨θ, [x0]⟩ − ⟨θ, [x1]⟩+ ⟨u, [x0]⊕ [x1]⟩ · π.

Here ⟨·, ·⟩ denotes the dot product, and [x0] and [x1] denote the base-2 representations of
x0 and x1. Since the quantum server cannot know both x0 and x1, they cannot compute
ϕ from this formula. However, if the client possesses a trapdoor to the original matrix A,
then they can recover x0 and x1 from y and compute ϕ.

We can go further: if the client chooses a vector t = (t1, . . . , tn) ∈ Zn
q and sets θ by the

formula θ(i−1)n+j := 2jtiπ/q for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , ⌈log q⌉}, then

ϕ = ⟨t, x0 − x1⟩ · (2π/q) + ⟨u, [x0]⊕ [x1]⟩ · π
= −⟨t, s⟩ · (2π/q) + ⟨u, [x0]⊕ [x1]⟩ · π.
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The server thus computes a qubit that encodes a prescribed linear function ⟨t, s⟩ of s,
modulo a possible phase flip that is known to the client – see Section 4. At the same time,
LWE-hardness guarantees that the vector s remains unknown to the server. (This can be
seen an enhancement of the approach described in subsection 1.4 in [CCKW21]. We have
used a different measurement strategy in order to gain more control over the prepared
qubit.)

We summarize our two applications of this idea, starting with blind remote state
preparation (blind RSP).

Blind RSP. We will denote the state that the client wants the server to prepare (modulo a
phase flip) as |α⟩ := 1√

2

(
|0⟩+ ei 2πα/q |1⟩

)
for some α ∈ Zq of the client’s choice. The way

we will ensure blindness with respect to α is by encrypting it using Regev’s encryption
scheme, described in Section 3.4, and having the server use the ciphertext to prepare the
state. To encrypt α as such the client requires, in addition to an LWE instance, a uniformly
sampled random vector f ← {0, 1}m. The client then computes f⊤(As+ e) + α and sends
(A,As+ e) and (a,w) :=

(
f⊤A, f⊤(As+ e) + α

)
to the server.

The server uses (A,As+ e) to create a claw state, which also yields the image y of the
claw, and then measures the claw state using the vector a ∈ Zn

q as described above. Then
the server rotates the final qubit around the Z-axis of the Bloch sphere by 2πw/q. From
the discussion above we see that the resulting state will be 1√

2

(
|0⟩+ eiβ |1⟩

)
where

β :=− ⟨a, s⟩ · (2π/q) + ⟨u, [x0]⊕ [x1]⟩ · π + 2πw/q

=− 2πf⊤As/q + 2π
(
f⊤(As+ e) + α

)
/q + ⟨u, [x0]⊕ [x1]⟩ · π

≈ 2πα/q + b · π,

by denoting b := ⟨u, [x] ⊕ [x1]⟩ and letting e/q be small (a more explicit calculation is
provided in Section 6.1). The final state held by the server is Zb |α⟩, as desired. Finally,
the server sends the measurements y and u to the client who can use them along with the
trapdoor of A to learn b. Note that while the client has control over α, they do not have
control over the bit b as it is a function of the server’s measurements.

The blindness property of the protocol is derived from the security of Regev’s encryption
scheme, which is based on the hardness of LWE. The information that the server receives
during the protocol is (A,As+ e) and

(
f⊤A, f⊤(As+ e) + α

)
. The first pair is the public

key in Regev’s encryption scheme and the second pair is the ciphertext encrypting the
message α. Hence, if an adversary can guess α in our RSP protocol then they can break
Regev’s encryption scheme.

Proof of Quantumness. Our proof of quantumness is based on the CHSH game [CHSH69],
which is a game played with a referee and two players (Charlie and David) who cannot
communicate with each other. The referee sends bits b and b′ chosen uniformly at random
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to Charlie and David respectively. Charlie and David are required to return bits d and d′

to the referee, who decides that they win if and only if d⊕ d′ = b ∧ b′.
Recent work [KLVY22] has proposed a version of the nonlocal CHSH game that a single

server (Bob) can play with a classical client (Alice) to prove the quantumness of the server.
However, the protocol in [KLVY22] requires the server to evaluate a controlled-Hadamard
gate under a homomorphic encryption scheme, which requires preparing and measuring
three claw-states while maintaining qubits in quantum memory. By combining the ideas in
[KLVY22] with our RSP protocol, we obtain the following proof of quantumness protocol
that only requires preparing and measuring one claw-state.

Our central protocol (Fig. 4 and Fig. 5) is roughly the following. Alice begins by
choosing bits b and b′ uniformly at random. Then, Alice uses our RSP protocol to delegate
to Bob the preparation of a state of the form (I + (−1)dX)/2 (if b = 0) or of the form
(I + (−1)dY )/2 (if b = 1). From the RSP process, Bob obtains an encryption of the bit
d which he sends back to Alice for her to decrypt. Alice then sends b′ to Bob, and he
measures his state in the eigenbasis of 1√

2
(X + (−1)b′Y ) and returns the outcome bit d′ to

Alice. Alice considers Bob to have won the game if and only if d⊕ d′ = b ∧ b′.
It can be seen that the distribution over (b, b′, d, d′) in the procedure described above

is approximately the same as the distribution in the nonlocal CHSH game when the two
players implement the optimal quantum strategy. Therefore, a quantum Bob can win
with probability approximately cos2(π/8) ≈ 0.85 (Theorem 3). On the other hand, by
adapting reasoning from [KLVY22], we show that an efficient classical Bob cannot do much
better than the optimal classical winning probability for the CHSH game, which is 0.75
(Theorem 4). Therefore, with appropriate parameter choices (see Section 3.3), a constant
gap is achieved between the best possible classical and quantum winning probabilities.

3 Preliminaries

Let C,Z,N denote, respectively, the field of complex numbers, the ring of integers, and
the set of nonnegative integers. For any c ∈ N, let Zc denote the set {0, 1, . . . , c− 1} with
multiplication and addition defined modulo c. If x ∈ Zc, then |x| denotes the quantity

|x| := min{x, c− x}. (5)

If v = (v1, . . . , vs) is a vector with entries from any of C,Z, or Zc, we write ∥v∥∞ for the
infinity norm of v, defined by

∥v∥∞ := max
i
|vi|. (6)

We denote by {0, 1}∗ the set of all finite-length bit strings. For s ∈ {0, 1}∗ and k ∈ N,
let sk ∈ {0, 1}∗ denote s repeated k times. The symbol || denotes string concatenation. We
write MAJ for the function MAJ: {0, 1}∗ → {0, 1} defined by MAJ(s) = 1 if and only if
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the Hamming weight of s is at least half its length. If a, b are vectors of the same length,
we may write either ⟨a, b⟩ or a · b for the dot product of a and b.

For a finite set S, we write s← S to mean s is sampled uniformly at random from S. If
χ is a distribution on S, we write s← χ to mean s is sampled from S according to χ. The
expression χn denotes the distribution of n-length sequences of independent samples of χ.

The expression log always denotes the logarithm in base 2. If k ∈ Zc (viewed as
{0, 1, . . . , c − 1}), then [k] ∈ {0, 1}⌈log c⌉ denotes the binary representation of k in little-
endian order (i.e., with the least significant bits first). If x ∈ Zd

c , then [x] denotes the
concatenation of [x1], [x2], . . . , [xd].

For any finite set S, the expression CS denotes the Hilbert space of functions from S
to C. Let L(S) denote the set of linear maps from CS to itself. A quantum state on S is an
element of L(S) that is trace-1 and positive semidefinite (i.e., a density operator on CS).
A pure quantum state on S is a rank-1 quantum state. Any pure quantum state on S can
be written as ρ := |α⟩⟨α|, where |α⟩ is a unit vector in CS , and we may also refer to |α⟩ as
a pure quantum state. The trace distance between two quantum states ρ and σ on S is
defined by ∥ρ− σ∥1, where ∥·∥1 denotes the trace norm. When ρ = |α⟩⟨α| and σ = |β⟩⟨β|
are pure, we have ∥|α⟩⟨α| − |β⟩⟨β|∥1 = 2(1− |⟨α|β⟩|2)1/2. If T is another finite set, then a
quantum operation from S to T is a completely positive trace-preserving map from L(S)
to L(T ).

3.1 Models of Computation

We define terms related to quantum algorithms. A standard way to define a quantum
circuit is as a composition of gates drawn from some specified finite set of primitive gates.
Since we are concerned here with protocols that involve general single-qubit rotations, we
will use a larger set of primitive gates. Let X, Y , and Z denote the Pauli operators

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
. (7)

A quantum circuit is then a composition of the following primitive operations:

1. Any single qubit gate of the form eiπ(p/q)R, where p, q ∈ Z, q ̸= 0, and R ∈ {X,Y, Z}.
2. The Toffoli gate T :

(
C2

)⊗3 →
(
C2

)⊗3
, given by T |x⟩ |y⟩ |z⟩ = |x⟩ |y⟩ |z + xy⟩.

3. The gate which creates a single qubit in state |0⟩.
4. The gate which measures a single qubit in the computational basis.

If a quantum circuit Q has m input qubits, and n output qubits, and ℓ intermediate
primitive operations, then the size of Q is n+m+ ℓ. Such a circuit determines a function
from {0, 1}m to the set of probability distributions on {0, 1}n.

Throughout this work, λ ∈ N denotes the security parameter. A function f : N→ R≥0

of λ is negligible if it is O(λ−C) for all C > 0. For any c ∈ N, a register of size c is a finite

10



set Z with a fixed injection Z ↪→ {0, 1}c. A variable-sized register (or simply a register) is
an indexed family {Yλ | λ ∈ N} of registers of sizes ℓ(λ), where ℓ : N→ N is a function. For
a set A, D(A) denotes the set of probability distributions on A.

Let J := {Jλ : Aλ → Bλ | λ ∈ N} be a family of functions between registers. We
say that J is computable by a uniform deterministic polynomial-time algorithm if there
exists a poly(λ)-time classical Turing machine that on input 1λ, where λ ∈ N, outputs
the description of a classical circuit (with a fixed gate set) Mλ : Aλ → Bλ such that
Jλ(x) = M(x) for all x ∈ Aλ. Let F := {Fλ : Aλ → D(Bλ) | λ ∈ Z} be a family
of functions. We say that F is computable by a uniform probabilistic polynomial-time
algorithm if there exists a poly(λ)-time classical Turing machine that on input 1λ, where
λ ∈ N, outputs the description of a classical circuit Mλ : Aλ → D(Bλ) with poly(λ)
uniformly random bits as auxiliary input such that Pr[Mλ(x) = y] = Pr[Fλ(x) = y] for
all λ ∈ N, x ∈ Aλ, and y ∈ Bλ. We say that F is computable by a uniform quantum
polynomial-time algorithm if there exists a poly(λ)-time classical Turing machine that on
input 1λ, where λ ∈ N, outputs the description of a quantum circuit Mλ : Aλ → D(Bλ)
such that Pr[Mλ(x) = y] = Pr[Fλ(x) = y] for all λ ∈ N, x ∈ Aλ, and y ∈ Bλ. We also
define computability by non-uniform {deterministic, probabilistic, quantum}-polynomial
time algorithms in exactly the same way as their uniform counterparts, except we replace
the requirement that the circuits Mλ be computable by a poly(λ)-time Turing machine
by the requirement that Mλ is poly(λ)-sized. Note that we will often drop the index λ for
simplicity — i.e., the expression J : A → B will be used to refer to the family of maps
J = {Jλ : Aλ → Bλ | λ ∈ N}.

3.2 Learning With Errors

For any real number s > 0, let G(s) denote the discrete Gaussian probability distribution
on Z, defined as follows: if X is a random variable distributed according to G(s), and
x ∈ Z, then

P (X = x) =
e−x2/(2s2)∑

y∈Z
e−y2/(2s2)

. (8)

If t > 0, let G(s, t) denote the distribution obtained from G(s) by conditioning on the
event |X| ≤ t (that is, the Gaussian distribution with standard deviation s truncated at t).
To be explicit, if X is a random variable distributed according to G(s, t), and x ∈ Z, then

P (X = x) =


e−x2/(2s2)∑

y∈Z:|y|≤t

e−y2/(2s2)
if |x| ≤ t,

0 if |x| > t.

(9)

We will need the following lemma which gives some properties of G(s).

11



Lemma 1 (Corollary 9 of [CKS20]). Let X be distributed according to G(s). Then
E[X] = 0 and Var[X] ≤ s2. If C is a nonnegative real number, then Pr[X ≥ C] ≤ e−C2/(2s2).

In the following, χ denotes a probability distribution on Z (which in this paper will
always be a Gaussian or truncated Gaussian distribution).

The LWEc,d,χ Problem: Let D0 denote the probability distribution of (a, a · s+ e),
where a ← Zc

d, s ← Zn
q , and e ← χ. Let D1 denote the probability distribution of (a, v),

where a ← Zc
d and v ← Zd. Given oracle access to Db, where b ← {0, 1}, determine the

value of b.

3.3 Parameters and assumptions

Throughout this paper, we will assume m = m(λ), n = n(λ), q = q(λ), Q = Q(λ), σ =
σ(λ), τ = τ(λ) are real-valued functions of the security parameter λ which satisfy all of the
conditions in Fig. 1.

Parameter list:

q : modulus
Q : binary length of modulus

n,m : matrix dimensions
σ : standard deviation of Gaussian noise
τ : truncation factor for Gaussian noise

Assumptions:

– log q and log σ are polynomially bounded functions of λ
– σ ≥ 1
– q is always an odd prime
– Q = ⌈log q⌉
– n = λ
– m = n(2Q+ 1)
– τ = q/(4mQ)

Fig. 1. Parameters and assumptions.

The rationale for the conditions in Fig. 1 is the following.

– The quantity m, which specifies the number of rows in the LWE matrix A that we
will use, needs to be sufficiently large so that the single-bit encryption algorithm in
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Section 3.4 will be secure and that A can accommodate a trapdoor (Section 3.5). The
formula m = n(2Q+ 1) accomplishes both purposes.

– The truncation factor τ is chosen sufficiently small to allow LWE samples involving the
matrix A to be inverted, using a trapdoor, with probability 1.

We discuss more specific parameter choices in Section 5.3.

If we say that we assume that the LWEn,q,G(σ) problem is hard for particular parameter
functions n = n(λ), q = q(λ), σ = σ(λ), we mean that we assume that any non-uniform
quantum polynomial-time algorithm will solve the LWEn,q,G(σ) problem with probability at

most 1
2 +negl(λ). Note that if τ/σ = ω(log λ), then the distribution of G(σ, τ) is negligibly

different from G(σ) by Lemma 1, and so the hardness of LWEn,q,G(σ,τ) is equivalent to the
hardness of LWEn,q,G(σ).

As shown in [Reg09]6, we can assume that the LWEn,q,G(σ) problem is hard for n, q, σ =

αq with α ∈ (0, 1) and αq >
√

2/π ·
√
n if we assume that no non-uniform quantum

polynomial-time algorithm can solve the Shortest Independent Vectors Problem (SIVP) in
worst-case lattices of dimension n to within an approximation factor of Õ(n/α).

3.4 A Simple Encryption Algorithm

In Section 5 we will make use of a single-bit encryption algorithm which is very similar to the
original lattice-based encryption algorithm proposed by Regev in [Reg09]. This algorithm
is shown in Fig. 2, and consists of three algorithms: Gen (key generation), Encrypt, and
Decrypt. Essentially, the public key is an LWE matrix (A, v) := (A,As+ e), where s is a
secret vector and e is a Gaussian noise vector. Given a random bit b, a ciphertext ct is
computed by summing up a random subset of the rows of [A|v] and then adding a quantity
(dependent on b) to the last coordinate of the sum. There is one important and unique
feature of Protocol K: rather than adding b⌊q/2⌋ to the final coordinate of the ciphertext
(which would optimize decoding) we add b⌊q/4⌋ instead, which will aid us in Section 5.

The following result asserts the IND-CPA security (that is, security against chosen-
plaintext attacks) for Protocol K. The proof is standard and is given in Appendix B.

Proposition 1. If the LWEn,q,G(σ,τ) problem is hard, then for any non-uniform quantum
polynomial-time algorithm B, we have

Pr[b′ = b | pk ← GenK(), b← {0, 1}, ct← EncryptK(pk, b), b′ ← B(pk, ct)] ≤ 1

2
+ negl(λ) .

6 Strictly speaking, the next statement does not immediately follow from [Reg09] because the error
distributions Ψ̄α and Ψα defined there do not exactly correspond to discrete Gaussians. However, it does
follow after we first apply [Pei10, Theorem 1] to reduce LWEn,q,Ψ√

2πα
to LWEn,q,G(σ), where σ = αq.

13



K = (GenK ,EncryptK ,DecryptK)

– GenK() samples vectors s← Zn
q , e← G(σ, τ)m, samples a matrix A← Zm×n

q ,
computes v := As+ e, and returns (pk, s), where

pk := (A, v).

– EncryptK(pk, b) samples f ← {0, 1}m, computes a := f⊤A and w := f⊤v +
b⌊q/4⌋, and returns ct, where

ct := (a,w).

– DecryptK(sk, ct) computes

ℓ := ⟨a, s⟩ − w,

and returns 1 if |ℓ+ ⌊q/4⌋| ≤ |ℓ|, and returns 0 otherwise.

Fig. 2. The single-bit public-key encryption algorithm K. pk is the public key, s is the secret key, b is the
message, and ct is the ciphertext.

3.5 Trapdoors for LWE matrices

Both of the applications in this paper will rely on trapdoors for LWE samples. The following
is a slightly modified version of Theorem 2 from [MP12]. (The main difference is that we
bound the noise vector using the infinity-norm rather than the Euclidean norm.)

Proposition 2. There is a probabilistic polynomial-time algorithm GenTrap() and a de-
terministic polynomial-time algorithm Invert(A, v, t) satisfying the following.

1. GenTrap() accepts no input and returns a pair (A, t), where A is an m×n matrix with
entries in Zq. The matrix A is within statistical distance nQ2−n/2 from a uniformly
random matrix.

2. Given a pair (A, t) obtained from GenTrap() and vectors s ∈ Zn
q and e ∈ Zm

q satisfying
∥e∥∞ ≤ 2τ , the algorithm Invert(A,As+ e, t) returns the value s.

Proof. See Appendix C.

We make note of the following, which is an easy consequence of Proposition 2.

Proposition 3. If (A, t) is a sample obtained from GenTrap(), then for any nonzero
vector v ∈ Zn

q , we must have ∥Av∥∞ > 4τ .
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Proof. Suppose that v ̸= 0 were such that ∥Av∥∞ ≤ 4τ . Then, we can find vectors e, e′ of
infinity norm less than or equal to 2τ such that Av = e+ e′. We have

0 = Invert(A, 0 + e, t) = Invert(A,Av − e′, t) = v, (10)

which is a contradiction.

J = (GenJ ,EncryptJ ,DecryptJ)

– GenJ() samples s ← Zn
q , e ← G(σ, τ)m, (A, t) ← GenTrap(), computes

v := As+ e, and returns (pk, s, t), where

pk := (A, v).

The algorithms EncryptJ and DecryptJ are the same as the algorithms EncryptK
and DecryptK in Fig. 2.

Fig. 3. The single-bit public-key encryption algorithm J .

For the results in Section 5, it will be important to have a version of the encryption
algorithm from Fig. 2 that has a trapdoor for the encoding matrix A. See Fig. 3. (Only
the Gen() algorithm is different. The trapdoor is not used for encryption or decryption.)
The following proposition follows directly from Propositions 1 and 2.

Proposition 4. If the LWEn,q,G(σ,τ) problem is hard, then for any non-uniform quantum
polynomial-time algorithm B, we have

Pr[b′ = b | pk ← GenJ(), b← {0, 1}, ct← EncryptJ(pk, b), b
′ ← B(pk, ct)] ≤ 1

2
+ negl(λ) .

4 Rotated Measurements on Generalized GHZ States

The purpose of this section is to prove Proposition 5, which shows how rotated measurements
behave when applied to states that generalize GHZ states [GHZ89], defined below.

Definition 1 (Generalized GHZ state). Let d be a positive integer. A generalized GHZ
state on d+ 1 qubits is a state of the form

1√
2
(|x⟩ |1⟩+ |y⟩ |0⟩), (11)

where x, y ∈ {0, 1}d.
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Given any sequence of real numbers θ1, . . . , θn, we make use of an associated sequence
of real numbers r1, . . . , rnQ defined by

r1 = θ1 r2 = 2θ1 r3 = 4θ1 . . . rQ = 2Q−1θ1

rQ+1 = θ2 rQ+2 = 2θ2 rQ+3 = 4θ2 . . . r2Q = 2Q−1θ2
...

...
...

. . .
...

rnQ−Q+1 = θn rnQ−Q+2 = 2θn rnQ−Q+3 = 4θn . . . rnQ = 2Q−1θn.

(12)

Proposition 5. Let x, y ∈ Zn
q , let |ψ⟩ denote the (nQ+ 1)-qubit generalized GHZ state

|ψ⟩ := 1√
2

(
|[x]⟩ ⊗ |1⟩+ |[y]⟩ ⊗ |0⟩

)
, (13)

and let θ1, . . . , θn ∈ Z · (2π/q). Let r1, . . . , rnQ be the sequence defined in Eq. (12). Suppose
that for each i ∈ {1, 2, . . . , nQ}, the ith qubit of |ψ⟩ is measured in the eigenbasis of

(cos ri)X + (sin ri)Y (14)

and that the outcome is (−1)ui ∈ {−1, 1}. Then the state of the remaining qubit is

1√
2

(
|0⟩+ eiθ |1⟩

)
, (15)

where

θ :=

n∑
i=1

(yi − xi)θi + π

n∑
i=1

Q∑
j=1

([yi]j − [xi]j)u(i−1)Q+j . (16)

Proof. The eigenvectors of the matrix in Eq. (14) are given by

|+ri⟩ :=
1√
2
(|0⟩+ eiri |1⟩) and |−ri⟩ :=

1√
2
(|0⟩ − eiri |1⟩), (17)

where |+ri⟩ is the +1 eigenvector and |−ri⟩ is the −1 eigenvector. For a string s ∈ {0, 1}nQ
and t ∈ {1, 2, . . . , nQ}, let s≥t denote the suffix of s starting at index t (when t > |s|, s≥t

denotes the empty string). Define ϕt by

ϕt :=

{∑t−1
j=1([y]j − [x]j)(rj + πuj) if t > 1,

0 if t = 1.
(18)

We want to show that measuring the first qubit of the nQ− t+ 2 qubit state

|ψt⟩ :=
1√
2

(
eiϕt |[x]≥t⟩ |1⟩+ |[y]≥t⟩ |0⟩

)
16



in the eigenbasis of cos(θt)X + sin(θt)Y yields the state |ψt+1⟩. The description of the
post-measurement state is given by

1√
2
⟨±rt |1 (e

iϕt |[x]≥t⟩ |1⟩+ |[y]≥t⟩ |0⟩)

=
1√
2
(eiϕt ⟨±rt |[x]t⟩ |[x]≥t+1⟩ |1⟩+ ⟨±rt |[y]t⟩ |[y]≥t+1⟩ |0⟩) (19)

=
1√
2

(
e−i[y]t(rt+πut) |[y]≥t+1⟩ |0⟩+ eiϕte−i[x]t(rt+πut) |[x]≥t+1⟩ |1⟩

)
(20)

=
1√
2

(
|[y]≥t+1⟩ |0⟩+ ei(ϕt+([y]t−[x]t)(rt+πut)) |[x]≥t+1⟩ |1⟩

)
(21)

=
1√
2

(
|[y]≥t+1⟩ |0⟩+ eiϕt+1 |[x]≥t+1⟩ |1⟩

)
. (22)

Since |ψ1⟩ = |ψ⟩, then after performing all of the nQ measurements described in
the proposition statement we are left with the state |ψnQ+1⟩. It remains to show that
ϕnQ+1 = θ:

ϕnQ+1 =

nQ∑
j=1

([y]j − [x]j)(rj + πuj) (23)

=
n∑

i=1

Q∑
j=1

([yi]j − [xi]j)(r(i−1)Q+j + πu(i−1)Q+j) (24)

=
( n∑
i=1

Q∑
j=1

([yi]j − [xi]j)2
j−1θi

)
+
(
π

n∑
i=1

Q∑
j=1

([yi]j − [xi]j)u(i−1)Q+j

)
(25)

=
( n∑
i=1

(yi − xi)θi
)
+
(
π

n∑
i=1

Q∑
j=1

([yi]j − [xi]j)u(i−1)Q+j

)
= θ. (26)

This completes the proof.

5 An Optimized Proof of Quantumness

This section constructs a proof of quantumness based on the assumed hardness of the LWE
problem. Our central protocol in this section, Protocol Q in Fig. 4, follows the form of
the CHSH protocol from [KLVY22], although [KLVY22] uses a quantum homomomorphic
encryption scheme and we instead use the encryption scheme J from Fig. 3. First the
single prover is given an encrypted version of the first input bit b, and returns an encrypted
version of the first output bit d (steps 1–2). Then, the prover is given the second input
bit b′ as plaintext and returns d′ (steps 3–4). Finally, the verifier decrypts d (step 5) and
scores the result (step 6).

17



Protocol Q:

1. Alice samples (pk = (A, v), s, t)← GenJ(), b← {0, 1}, and computes

ct = (a,w)← EncryptJ(pk, b).

Alice broadcasts (pk, ct) to Bob.
2. Bob returns a pair (y, u) where y ∈ Zm

q and u ∈ {0, 1}nQ.
3. Alice samples b′ ← {0, 1} and broadcasts b′ to Bob.
4. Bob returns a bit d′.
5. Alice computes x0 := Invert(A, y, t) and x1 := Invert(A, y + v, t) and

d := u · ([x0]⊕ [x1]). (27)

6. If d⊕ d′ = b ∧ b′, then Bob succeeds. If d⊕ d′ ̸= b ∧ b′, then Bob fails.

Fig. 4. The proof of quantumness protocol, including the behavior of the verifier (Alice).

5.1 Completeness

The ideal behavior for the prover (Bob) is given in Fig. 5. The primary difference between
Bob’s strategy in Fig. 5 when compared to [BCM+21,KMCVY22,KLVY22] is the use of
rotated measurements to compute u.

The optimal quantum score for the ordinary CHSH game is cos2(π/8) = (1/2 +
√
2/4).

The next theorem implies that an honest quantum prover will approach that score, provided
that certain ratios between the parameters q,m, σ and τ vanish as λ tends to infinity.

Theorem 3. If Alice and Bob follow the process given in Figs. 4 and 5, then

Pr[success] ≥ cos2
(π
8

)
− 5mσ2

q2
− mσ

2τ
. (32)

Proof. Let T := {e ∈ Zq | |e| ≤ τ}. Consider the map

S : Zn
q × {0, 1} × Tm → Zm

q (33)

defined by

S(x, c, g) = Ax− cv + g. (34)

Proposition 3 implies that any y can have at most one pre-image in the set

Zn
q × {0} × Tm (35)
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Step 2. Bob prepares the state

|ϕ⟩ := 1√
2qn(2τ + 1)m

∑
x∈Zn

q

∑
c∈{0,1}

∑
g∈Zm

q

∥g∥∞≤τ

|x⟩ |c⟩ |Ax− cv + g⟩ (28)

Bob measures the third register of this state to obtain a state of the form |ψ⟩ |y⟩.

Bob computes r1, . . . , rnQ via the formulas

r(i−1)Q+j := 2jπai/q for i ∈ {1, . . . , n}, j ∈ {1, . . . , Q}, (29)

and measures the kth qubit of |ψ⟩ in the eigenbasis of

(cos rk)X + (sin rk)Y (30)

to obtain outcomes (−1)u1 , (−1)u2 , . . . , (−1)unQ . Bob rotates the remaining
qubit (which we denote by L) by the unitary operator |0⟩ 7→ |0⟩ , |1⟩ 7→ e2πiw/q |1⟩.

Bob broadcasts (y, u1, . . . , unQ) to Alice.

Step 4. Bob sets ξ = (−1)b′(π/4), measures L in the eigenbasis of

(cos ξ)X + (sin ξ)Y, (31)

obtains outcome (−1)d′ , and broadcasts d′ to Alice.

Fig. 5. The behavior of an honest quantum prover in Protocol Q in Fig. 4.
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and at most one pre-image in the set

Zn
q × {1} × Tm. (36)

Moreover, when y has two pre-images (x′0, 0, g0) and (x′1, 1, g1) under S, we have

1. x′0 = x0 by Proposition 2 since ∥Ax′0 − y∥∞ = ∥g0∥∞ ≤ τ .
2. x′1 = x1 by Proposition 2 since ∥Ax′1 − (y + v)∥∞ = ∥g1∥∞ ≤ τ .
3. x′1 = x′0 + s by Proposition 3 since ∥A(x′1 − (x′0 + s))∥∞ ≤ 2τ + ∥v −As∥∞ ≤ 3τ .

Let U0 denote the set of all values of y ∈ Zm
q that have a pre-image under S in (35)

and let U1 denote the set of all values of y ∈ Zm
q that have a pre-image under S in set (36).

A simple counting argument shows that, conditioned on the value of e := v −As ∈ Zm
q , we

have

Pr[y ∈ U0 ∩ U1 | e] =
∏m

i=1(2τ + 1− |ei|)
(2τ + 1)m

. (37)

Therefore we have the following, in which we apply Lemma 5.

Pr[y ∈ U0 ∩ U1] = E

[∏m
i=1(2τ + 1− |ei|)

(2τ + 1)m

∣∣∣ e← G(σ, τ)m
]

= E

[
m∏
i=1

(
1− |ei|

(2τ + 1)m

) ∣∣∣ e← G(σ, τ)m

]

≥ E

[
1−

m∑
i=1

|ei|
(2τ + 1)

∣∣∣ e← G(σ, τ)m

]

= 1−
E
[∑m

i=1 |ei| | e← G(σ, τ)m
]

(2τ + 1)

≥ 1− mσ

2τ + 1
≥ 1− mσ

2τ
. (38)

The following lemma upper bounds the probability of failure when y ∈ U0 ∩ U1.

Lemma 2. If Alice and Bob follow the process in Figs. 4 and 5, then

Pr[failure | y ∈ U0 ∩ U1] ≤ sin2
(π
8

)
+

5mσ2

q2
+

1

q
. (39)

Proof. When y ∈ U0 ∩ U1, by arguments made earlier in the proof, we have

|ψ⟩ = 1√
2
(|x1⟩ |1⟩+ |x0⟩ |0⟩), (40)

where x1 = x0 + s.
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After Bob measures qubits 1, 2, . . . , nQ of |ψ⟩ to obtain outcomes

(−1)u1 , (−1)u2 , . . . , (−1)unQ , (41)

the remaining qubit L (by Proposition 5) is in state

1√
2

(
|0⟩+ eiθ |1⟩

)
, (42)

where

θ :=
2πa · (x0 − x1)

q
+ π([x0]− [x1]) · (u1, . . . , unQ)

= −2π(a · s)
q

+ π([x0]⊕ [x1]) · (u1, . . . , unQ) mod 2π.

(43)

Bob then rotates this state by the unitary operator |0⟩ 7→ |0⟩ , |1⟩ 7→ ei 2πw/q |1⟩, where
w = a · s+ f⊤e+ b⌊q/4⌋, to obtain the state

1√
2

(
|0⟩+ eiβ |1⟩

)
, (44)

where

β :=
2π(f⊤e+ b⌊q/4⌋)

q
+ π([x0]⊕ [x1]) · (u1, . . . , unQ). (45)

Measuring this qubit with the observable (cos γ)X+(sin γ)Y , for any γ ∈ R, yields outcome
+1 with probability cos2((γ − β)/2) and outcome −1 with probability sin2((γ − β)/2). We
therefore obtain the following formula for the failure probability:

Pr[failure | y ∈ U0 ∩ U1]

=
1

4
E

[
sin2

(
πf⊤e

q
− π

8

)
+ sin2

(
πf⊤e

q
+
π

8

)

+ sin2
(
π(f⊤e+ ⌊q/4⌋)

q
− π

8

)
+ cos2

(
π(f⊤e+ ⌊q/4⌋)

q
+
π

8

)]
,

(46)

where the expectation is over e ← G(σ, τ)m and f ← {0, 1}m. For the rest of this proof,
we consider all expectations to be over the conditions e← G(σ, τ)m and f ← {0, 1}m.

We can obtain an upper bound on the above expression for Pr[failure] by replacing both
instances of ⌊q/4⌋ with q/4, and adding a term at the end of the expression to account for
any increase that these replacements may cause. Since the derivative of sin2(·) is always
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between −1 and 1, inserting the term (1/q) suffices. Therefore,

Pr[failure | y ∈ U0 ∩ U1] ≤
1

4
E

[
sin2

(
πf⊤e

q
− π

8

)
+ sin2

(
πf⊤e

q
+
π

8

)

+ sin2
(
πf⊤e

q
+
π

8

)
+ cos2

(
πf⊤e

q
+

3π

8

)]
+

1

q

= 4 · 1
4
E

[
sin2

(
πf⊤e

q
+
π

8

)]
+

1

q
.

(47)

Using Lemma 7, we get that

Pr[failure | y ∈ U0 ∩ U1] ≤ sin2
(π
8

)
+ sin

(π
4

)
E

[
πf⊤e

q

]
+ E

[(
πf⊤e

q

)2
]
+

1

q
. (48)

It is clear that E[f⊤e] = 0, while

E[(f⊤e)2] =

m∑
i=1

E[(fiei)
2] =

m∑
i=1

1

2
E[e2i ] ≤ mσ2/2, (49)

where the first equality follows from Lemma 8 and the last inequality follows from Lemma 4.
Therefore,

Pr[failure | y ∈ U0 ∩ U1] ≤ sin2
(π
8

)
+
π2σ2m

2q2
+

1

q
≤ sin2

(π
8

)
+

5σ2m

q2
+

1

q
, (50)

as desired.

Now we conclude the proof of Theorem 3. When the event (y ∈ U0 ∩ U1) does not
occur, Bob merely measures a computational basis state on nQ+ 1 qubits using nQ+ 1
observables of the form (cos γ)X+(sin γ)Y . Therefore, the bits u1, . . . , unQ and d′ that Bob
returns to Alice are distributed uniformly at random, and Bob thus succeeds at Protocol
Q with probability 1/2. Therefore, by Lemma 2 and inequality (38), the overall probability
that Bob fails in the protocol is upper bounded by

sin2
(π
8

)
+

5mσ2

q2
+

1

q
+

1

2
· mσ
2τ

. (51)

Since τ ≤ q/4 and mσ ≥ 1, we can combine the last two summands above to obtain

Pr[failure] ≤ sin2
(π
8

)
+

5mσ2

q2
+
mσ

2τ
, (52)

which implies the desired result.
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5.2 Soundness

The goal of this subsection is to put an upper bound on the probability that a classical
prover could succeed at Protocol Q in Fig. 4. We model the behavior of a classical prover
in Fig. 6. Bob responds to Alice’s queries in two rounds using efficient classical algorithms
while holding a private register p in memory between the two rounds.

Step 2. Bob receives input (pk, ct) and computes

(y, u, p)← FirstResponse(pk, ct),

where FirstResponse is a non-uniform probabilistic polynomial-time algorithm.

Step 4. Bob receives b′ from Alice and computes

d′ ← SecondResponse(b′, p),

where SecondResponse is a non-uniform probabilistic polynomial-time algorithm.

Fig. 6. A model of a classical adversary for Protocol Q in Fig. 4. The register p denotes internal memory
held by the adversary between the rounds of communication.

Theorem 4. Suppose that the LWEn,q,G(σ,τ) problem is hard. If Alice and Bob follow the
process in Figs. 4 and 6, then

Pr[success] ≤ 3

4
+ negl(λ) . (53)

Our proof method comes from subsection 3.1 of [KLVY22]. We first make the following
elementary observation. Suppose that T () is a non-uniform probabilistic polynomial-time
algorithm that outputs a single bit, and that one wishes to optimally guess the output of
T (). Clearly, the highest probability with which this can be done is

κ := max {ξ, 1− ξ} , (54)

where ξ denotes the expected value of T (). Consider the following procedure, which uses
the majority function (see Section 3).

1. Sample z1, z2, . . . , zλ ← T ().
2. Output MAJ(z1, z2, . . . , zλ).

The Chernoff bound implies that if z is obtained from this procedure and z′ ← T () is a new
sample, then P (z = z′) is within exp

(
−Ω(λ1/2)

)
of the optimal guessing probability κ.
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Proof of Theorem 4. Suppose, for the sake of contradiction, that there exists a classical
adversary

A = (FirstResponse, SecondResponse)

that achieves a success probability at Protocol Q that is non-negligibly higher than 3
4 .

Consider Experiment C, shown in Fig. 7, in which two parties play a modified version of
the CHSH game. The Referee encrypts the first input bit b using the scheme from Figure 3,
and transmits the resulting encryption to both Charlie and David while also giving Charlie
the trapdoor t. Then, Charlie and David play the CHSH game by doing a simulation of
the behavior of the adversary A. The winning probability in Experiment C is the same as
the success probability for A in Protocol Q.

Experiment C:

Participants: Referee, Charlie, David

1. Referee chooses input bits b, b′ ← {0, 1}. She computes (pk, s, t) ← GenJ()
and ct← EncryptJ(pk, b) and sends (pk, ct) to Charlie and David. The referee
also sends the trapdoor t to Charlie.

2. David computes (y, u, p) ← FirstResponse(pk, ct) and shares (y, u, p) with
Charlie.

3. Referee transmits b to Charlie and transmits b′ to David.
4. David computes d′ ← SecondResponse(b′, p) and transmits d′ back to the

Referee.
5. Charlie computes x0 := Invert(A, y, t) and x1 := Invert(A, y − v, t) and

d = u · ([x0]⊕ [x1]). (55)

Charlie transmits d to the Referee.
6. If d⊕ d′ = b ∧ b′, then Charlie and David win; if not, they lose.

Fig. 7. Two players (Charlie and David) play a modified version of the CHSH game using procedures
FirstResponse and SecondResponse from Fig. 6.

Next consider Experiment C′, shown in Fig. 8, which has two changes from Experi-
ment C. First, Charlie is not given the trapdoor t at step 1. Also, at step 5, rather than
attempt to compute the output bit d directly, Charlie performs a sampling procedure to
estimate the response d that will maximize Charlie and David’s winning probability. The
winning probability in Experiment C′ can be at most negligibly lower (specifically, no more
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than exp
(
−Ω(λ1/2)

)
lower) than that of Experiment C. Therefore, the winning probability

in Experiment C′ is also non-negligibly higher than 3
4 .

Experiment C′:

Participants: Referee, Charlie, David

1. Referee chooses input bits b, b′ ← {0, 1}. She computes (pk, s, t) ← GenJ()
and ct← EncryptJ(pk, b) and sends (pk, ct) to Charlie and David.

2. David computes (y, u, p) ← FirstResponse(pk, ct) and shares (y, u, p) with
Charlie.

3. Referee transmits b to Charlie and transmits b′ to David.
4. David computes d′ ← SecondResponse(b′, p) and transmits d′ back to the

Referee.
5. Charlie samples b′1, . . . , b

′
λ ← {0, 1}, samples d′k ← SecondResponse(b′k, p) for

each k ∈ {1, 2, . . . , λ}, and computes

d := MAJ
{
d′k ⊕ (b ∧ b′k) | k ∈ {1, 2, . . . , λ}

}
. (56)

Charlie transmits d to the referee.
6. If d⊕ d′ = b ∧ b′, then Charlie and David win; if not, they lose.

Fig. 8. Experiment C′ is the same as Experiment C, except for steps 1 and 5.

Lastly, let Experiment C′′ denote a modified version of the Experiment C′ in which,
at step 1, the Referee generates ct via the procedure ct ← EncryptJ(pk, 0) instead of
ct ← EncryptJ(pk, b). In Experiment C′′, Charlie and David are playing the original
version of the CHSH game, in which both must compute their own outputs without any
information about the other player’s inputs. In this case, we know that Charlie and David
cannot win with probability more than 3

4 . Therefore, the winning probabilities in Protocol
C′ and Protocol C′′ are non-negligibly different. But this is a contradiction, because it
provides an efficient way to distinguish the probability distributions

[(b, ct, pk) | (pk, s, t)← GenJ(), b← {0, 1}, ct← EncryptJ(pk, b)] (57)

and

[(b, ct, pk) | (pk, s, t)← GenJ(), b← {0, 1}, ct← EncryptJ(pk, 0)] (58)

which violates Proposition 4.
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5.3 Parameter Choices

Let c, ϵ be constant positive real numbers, and let the functions q = q(λ) and σ = σ(λ) be
as follows:

– σ is equal to nc.
– q is an odd prime number between n2+ϵσ and 2n2+ϵσ.

(See Fig. 1 for the definitions of the other parameters.) Then,

q = Θ(n2+ϵ+c), Q = Θ(log n), m = Θ(n log n), and τ = Θ(n1+c+ϵ/(log n)2).

The lower bound (32) from the previous completeness theorem for Protocol Q then satisfies

cos2
(π
8

)
− 5mσ2

q2
− mσ

2τ
≥ cos2

(π
8

)
−O

(
(n log n)(n2c)

n4+2c+2ϵ

)
−O

(
(n log n)(nc)

n1+c+ϵ(log n)−2

)
=cos2

(π
8

)
−O

(
log n

n3+2ϵ

)
−O

(
(log n)3

nϵ

)
,

which tends to cos2(π/8) as n tends to infinity. Meanwhile, assuming that LWEn,q,G(σ) is
hard (noting that G(σ, τ) is negligibly different from G(σ) with these parameters), the
upper bound in inequality (53) applies and tends to 3

4 as n tends to infinity. Therefore,
a constant gap is achieved between the best quantum success probability and our upper
bound on the classical success probability.

6 Blind Single-Qubit State Preparation

This section constructs Protocol P in Fig. 9 which allows a classical client to instruct a
quantum server to prepare a single-qubit state of the form 1√

2
Zb(|0⟩+ ei 2πα/q |1⟩), where

α ∈ Zq and b ∈ {0, 1}. Here, α is chosen by the client but kept hidden from the server
while b is a random bit that depends on the outcomes of the server’s measurements. The
client can compute b after receiving the server’s response.

To prepare the desired state in a secure manner, a classical client, Alice, interacts
with the quantum server, Bob, in the following way. First, Alice sends an encoding of
the (partial) classical description of the quantum state to Bob. As in Section 5, we use
ideas from the LWE-based public key encryption scheme introduced by Regev [Reg09] to
design an encoding. Upon receiving the public key and the encoded message, Bob performs
a quantum circuit and a series of measurements on the resulting state to steer the final
qubit as described in Section 4. Bob rotates the last qubit, according to the information
sent by Alice, to prepare the desired state up to a Pauli-Z pad. The Pauli-Z padding
is partially determined by the measurement outcomes on Bob’s end. Finally, Bob sends
the measurement outcomes to Alice and she computes the full classical description of the
prepared state. Namely, Bob’s message allows Alice to learn b.
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Throughout this section, we assume τ ≥ 2mσ, which is required to bound the com-
pleteness error of Protocol P. In terms of the parameters n, q, σ, this means we require
q/σ ≥ 8n2(2⌈log q⌉+ 1)2⌈log q⌉ (see Fig. 1), which can be satisfied for, e.g., q = Ω(n3) and
σ = O(1).

6.1 Completeness

The purpose of this subsection is to prove Theorem 5 which shows that the state |β⟩
produced by Protocol P in Fig. 9 is close to the state |α, b⟩, whose classical description is
held by Alice. We first prove a technical lemma.

Lemma 3. If Alice and Bob follow the process in Fig. 9, then

E[∥e∥1 | no abort] ≤ 2mσ, (62)

where the expectation is over the distribution on (A, t, s, e, f, y) defined by Fig. 9.

Proof. x Since e ← G(σ, τ)m, by Lemma 5, we have that E[∥e∥1] = E[
∑m

i=1 |ei|] ≤ mσ.
But,

E[∥e∥1] = E[∥e∥1 | abort] Pr[abort] + E[∥e∥1 | no abort] Pr[no abort]

≥ E[∥e∥1 | no abort] Pr[no abort]

≥
(
1− mσ

2τ

)
E[∥e∥1 | no abort],

(63)

where the last inequality uses inequality (38) from Section 5.

Therefore, as τ ≥ 2mσ, we obtain E[∥e∥1 | no abort] ≤ mσ(1 − 1
4)

−1 ≤ 2mσ, as
required.

Theorem 5. If Alice and Bob follow the process given in Fig. 9, then the expected trace
distance between |α, b⟩ and |β⟩, conditioned on Alice not aborting, satisfies

E[∥|α, b⟩⟨α, b| − |β⟩⟨β|∥1 | no abort] ≤ 4πmσ

q
, (64)

where the expectation is over the distribution on (A, t, s, e, f, y) defined by Fig. 9.

Proof. Throughout this proof, we use the notation defined in Fig. 9. In step 3, by using
arguments similar to those in our proof of Theorem 3, we see that

|ψ⟩ = 1√
2

(
|x1⟩ |1⟩+ |x0⟩ |0⟩

)
, (65)

where x0, x1 ∈ Zn
q and x1 = x0 + s, when Alice does not abort.
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Protocol P:

Input: Alice: α ∈ Zq.
Output: Alice: classical description of |α, b⟩. Bob: |β⟩.

1. Alice samples (A, t) ← GenTrap(), s ← Zn
q , e ← G(σ, τ)m, and f ← {0, 1}m.

Then Alice broadcasts (A, v) := (A,As+ e) and (a,w) := (f⊤A, f⊤v+α) to Bob.
2. Bob prepares the state

|ϕ⟩ := 1√
2
√
qn(2τ + 1)m

∑
x∈Zn

q

∑
c∈{0,1}

∑
g∈Zm

q

∥g∥∞≤τ

|x⟩ |c⟩ |Ax− cv + g⟩ , (59)

Bob measures the third register of |ϕ⟩ to obtain a state of the form |ψ⟩ |y⟩. Note
that |ψ⟩ is an (nQ+ 1)-qubit state.

Bob computes r(i−1)Q+j := 2jπai/q for all i ∈ {1, . . . , n}, j ∈ {1, . . . , Q}, and
r := 2πw/q.

For each i ∈ [nQ], Bob measures the ith qubit of the state |ψ⟩ in the eigenbasis
of (cos ri)X + (sin ri)Y and obtains outcome (−1)ui .

Let |ψ′⟩ denote the state of the last (unmeasured) qubit of |ψ⟩. Bob prepares

|β⟩ :=
[
1 0
0 eir

] ∣∣ψ′〉 . (60)

Bob broadcasts the vector y ∈ Zm
q and the bit string u ∈ {0, 1}nQ to Alice.

3. Alice computes whether y belongs to the set

{Ax+ g | x ∈ Zn
q , g ∈ Zm

q , ∥g∥∞ ≤ τ}∩{Ax− v+ g | x ∈ Zn
q , g ∈ Zm

q , ∥g∥∞ ≤ τ}.

If not, Alice aborts. Otherwise, Alice computes x0 := Invert(A, y, t) ∈ Zn
q , x1 :=

x0 + s ∈ Zn
q , z := [x0] ⊕ [x1] ∈ {0, 1}nQ, and b := z · u ∈ {0, 1}. Finally, Alice

computes the classical description of the single-qubit state

|α, b⟩ := Zb 1√
2

(
|0⟩+ ei 2πα/q |1⟩

)
. (61)

Fig. 9. The one-round (two-message) blind remote state preparation protocol, including the behavior of
the client (Alice) and an honest server (Bob).
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Then, using Proposition 5, we see that∣∣ψ′〉 = 1√
2

(
|0⟩+ eiθ |1⟩

)
, (66)

where

θ :=
2πa · (x0 − x1)

q
+ π([x0]− [x1])u

=− 2πa · s
q

+ πb mod 2π.

(67)

Then, since r := 2πw/q = 2π(a · s+ f⊤e+ α)/q, we deduce

|β⟩ :=
[
1 0
0 eir

] ∣∣ψ′〉 = Zb 1√
2
(|0⟩+ eiϕ |1⟩), (68)

where

ϕ :=
2πf⊤e

q
+

2πα

q
. (69)

Therefore, the trace distance between |α, b⟩ and |β⟩ is

∥|α, b⟩⟨α, b| − |β⟩⟨β|∥1 = 2(1− |⟨α, b|β⟩|2)1/2 = 2

∣∣∣∣sin(1

2
· 2πf

⊤e

q

)∣∣∣∣ ≤ 2π
∣∣f⊤e∣∣
q

, (70)

where the last inequality uses Lemma 6. Therefore,

E[∥|α, b⟩⟨α, b| − |β⟩⟨β|∥1 | no abort] ≤ E

[
2π

∣∣f⊤e∣∣
q

∣∣∣∣∣ no abort

]
≤ 2π

q
E
[
∥e∥1

∣∣ no abort
]
≤ 4πmσ

q
,

where the last inequality uses Lemma 3, as desired.

6.2 Blindness

The purpose of this subsection is to prove Theorem 6, which shows that a non-uniform
quantum polynomial-time adversary can compute the value of α in Protocol P in Fig. 9
with at most negligible advantage over random guessing. In other words, such an adversary
is blind to the value of α. Intuitively, this is because the value (a,w) = (f⊤A, f⊤v + α)
sent by Alice in her first message can be seen as an encryption of α ∈ Zq under the public
key (A, v).

To state Theorem 6, we define the following distributions. For x ∈ Zq, we define Dx to
be the distribution on Zm×n

q × Zm
q × Zn

q × Zq such that an element (A, v, a, w) is sampled
as follows:
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1. (A, t)← GenTrap(),
2. v := As+ e, where s← Zn

q and e← G(σ, τ)m,

3. a := f⊤A, where f ← {0, 1}m, and
4. w := f⊤v + x.

We define D̃x to be the same as Dx except with the first step replaced by A← Zm×n
q . We

define D to be the distribution on Zm×n
q × Zm

q × Zn
q × Zq such that an element (A, v, a, w)

is sampled as follows:

A← Zm×n
q , v ← Zn

q , a← Zn
q , and w ← Zq. (71)

We can now state and prove Theorem 6. The proof is essentially the same as that of
Proposition 1 but we include it for completeness.

Theorem 6 (Blindness with respect to α). Let Guess : Zm×n
q ×Zm

q ×Zn
q ×Zq → D(Zq)

be a non-uniform quantum polynomial-time algorithm. Suppose that the LWEn,q,G(σ,τ)

problem is hard. Then for all x, y ∈ Zq, we have

|Pr[Guess(A, v, a, w) = x | (A, v, a, w)← Dy]

− Pr[Guess(A, v, a, w) = x | (A, v, a, w)← D]| ≤ negl(λ) .
(72)

Proof. For two real functions of λ, a = a(λ) and b = b(λ), we write a ≃ b to mean
|a− b| ≤ negl(λ). Then, we have

Pr[Guess(A, v, a, w) = x | (A, v, a, w)← Dy]

≃ Pr[Guess(A, v, a, w) = x | (A, v, a, w)← D̃y]

≃ Pr[Guess(A, v, a, w) = x | A← Zm×n
q , v ← Zn

q , f ← {0, 1}m, a = f⊤A, w = f⊤v + y]

≃ Pr[Guess(A, v, a, w) = x | A← Zm×n
q , v ← Zn

q , a← Zn
q , u← Zq, w = u+ y]

= Pr[Guess(A, v, a, w) = x | (A, v, a, w)← D],

where the first approximation follows from Proposition 2 (under our parameter settings in
Fig. 1), the second approximation follows from the LWE hardness assumption and Guess
being a non-uniform quantum polynomial-time algorithm, and the third approximation
follows from the leftover hash lemma (see Lemma 2.1 in [AP11]). The theorem follows by
the triangle inequality.
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A Mathematical Lemmas

Lemma 4. For any σ ∈ N, τ > 0,

E[X2 | X ← G(σ, τ)] ≤ σ2. (73)

Proof. For notational convenience, for x ∈ Z, we write

Pr1[x] := Pr[x← G(σ)] and Pr2[x] := Pr[x← G(σ, τ)]. (74)

We also write

Z :=
∑

x∈Z:|x|≤τ

Pr1[x] and L := E[X2 | X ← G(σ, τ)]. (75)

Note that L is the quantity we need to upper bound and

L =
∑

x∈Z:|x|≤τ

x2 Pr2[x] =
∑

x∈Z:|x|≤τ

x2
Pr1[x]

Z
≤ τ2. (76)

We upper bound L as follows.

L = L(1− Z) + LZ

≤ τ2(1− Z) +
∑

x∈Z:|x|≤τ

x2 Pr1[x] (by Eq. (76))

= τ2
∑

x∈Z:|x|>τ

Pr1[x] +
∑

x∈Z:|x|≤τ

x2 Pr1[x]

≤
∑

x∈Z:|x|>τ

x2 Pr1[x] +
∑

x∈Z:|x|≤τ

x2 Pr1[x]

=
∑
x∈Z

x2 Pr1[x]

= E[X2 | X ← G(σ)],

but, by Lemma 1, we have

E[X2 | X ← G(σ)] = Var[X | X ← G(σ)] ≤ σ2. (77)

Therefore, L ≤ σ2, as required.

Lemma 5. For any σ ∈ N, τ > 0,

E[ |X| | X ← G(σ, τ)] ≤ σ. (78)
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Proof. This lemma follows immediately from Lemma 4. We have

E[ |X| | X ← G(σ, τ)] ≤
√
E[|X|2 | X ← G(σ, τ)] ≤ σ, (79)

as desired.

Lemma 6. The following inequality holds for any real value t: |sin t| ≤ |t|.

Proof. We have sin2 t =
∫ t
0

∫ s
0 2 cos(2r) dr ds ≤

∫ t
0

∫ s
0 2(1) dr ds = t2.

Lemma 7. The following inequality holds for any real values t, s:

sin2(t+ s) ≤ sin2 s+ t sin(2s) + t2. (80)

Proof. Let f(x) = sin2(x + s). We have f(0) = sin2 s, f ′(0) = sin 2s, and f ′′(x) =
2 cos(2x+ 2s). If we let

g(x) = sin2 s+ x sin 2s+ x2, (81)

then g(0) = f(0), g′(0) = f ′(0), and g′′(x) ≥ f ′′(x) for all x, which yields g(x) ≥ f(x) for
all x as desired.

Lemma 8. Suppose that X1, . . . , Xℓ are independent real-valued random variables and
that E[X1] = E[X2] = . . . = E[Xℓ−1] = 0. Then,

E[(X1 + . . .+Xℓ)
2] = E[X2

1 ] + E[X2
2 ] + . . .+ E[X2

ℓ ]. (82)

Proof. We have

E[(X1 + . . .+Xℓ)
2] =

∑
i

E[X2
i ] +

∑
i ̸=j

E[Xi] E[Xj ]. (83)

All terms in the second summation are clearly zero.

B Proof of Proposition 1

Let Gen′() denote an algorithm that merely outputs a uniformly random pair pk = (A, v)
and does not output a secret key. By the LWE assumption, the quantity on the left-hand
side of Proposition 1 is negligibly different from

Pr[b′ = b | pk ← Gen′(), b← {0, 1}, ct← EncryptK(pk, b), b′ ← B(pk, ct)]

Meanwhile, the leftover hash lemma (see Lemma 2.1 in [AP11]) implies that the distribution
of (A, v, f⊤A, f⊤v), when f ∈ {0, 1}m, A ∈ Zm×n

q , v ∈ Zm
q are all sampled uniformly, is itself

negligibly close to uniform. Therefore the quantity on the left-hand side of Proposition 1 is
also negligibly close to

Pr[b′ = b | pk ← Gen′(), ct← Zn+1
q , b← {0, 1}, b′ ← B(pk, ct)].

Since ct and pk are independent of b in this expression, the quantity above is obviously
equal to 1

2 . This completes the proof.
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C Trapdoors for LWE matrices

Proof of Proposition 2. Our proof is essentially the same as the proof in [MP12]. The main
difference is that we use the infinity norm, rather than the Euclidean norm, to bound error
vectors. We define GenTrap() as follows.

Algorithm GenTrap():

1. Let

g =


1
2
4
...

2Q−1

 (84)

and let G be the nQ× n matrix

G =


g
g
g
. . .

g

 . (85)

2. Sample a matrix M ∈ Z(Q+1)n×n
q with entries chosen uniformly from Zq, and a matrix

N ∈ ZQn×(Q+1)n
q with entries chosen uniformly from {0, 1}. Let

A =

[
G+NM

M

]
. (86)

3. Let t = N . Return (A, t).

By the leftover hash lemma (see Lemma 2.1 in [AP11]) if z ∈ {0, 1}(Q+1)n is chosen
uniformly at random, then the distribution of[

M

z⊤M

]

is within statistical distance 2−n/2 from uniformly random. Iterating this fact, we find that
the matrix [

M

NM

]
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is within statistical distance nQ2−n/2 from uniformly random, and the same applies to the
matrix A. This proves the first claim of Proposition 2.

We sketch a method for the Invert algorithm (see [MP12] for more details). The
algorithm Invert receives as input the matrix A, a vector v := As + e where e satisfies
∥e∥∞ ≤ 2τ , and the trapdoor matrix N . Let v1 denote the vector consisting of the first Qn
entries of v, and let v2 denote the vector consisting of the remaining entries of v. We have

v1 = (G+NM)s+ e1 and v2 =Ms+ e2, (87)

where e1, e2 have infinity norm upper bounded by 2τ . Letting

v′ := v1 −Nv2, (88)

we find
v′ = Gs+ (e1 −Ne2). (89)

Let e′ := e1 −Ne2. Then, v′ = Gs+ e′, and ∥e′∥∞ ≤ τ + (Q+ 1)n(2τ) < q/(2Q). Let

S :=


2 −1

2 −1
. . .

2 −1
[q]1 [q]2 [q]3 · · · [q]Q

 (90)

and let Y be the Q2 × Q2 matrix which consists of Q diagonal blocks, each equal to S.
Then, Y G = 0, and therefore if we compute w := Y v′, we have

w = Y (Gs+ e′) = Y e′. (91)

Since each entry of e′ has absolute value less than q/(2Q) and each row of Y has trace-norm
less than or equal to Q, the equation Y e′ = w can be solved for e′ simply by inverting
the matrix Y over the real numbers. Then, we compute Gs = v′ − e′ and recover s. If no
solution exists, we assume that Invert returns the vector 0n.
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