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Abstract. Timed commitment schemes, introduced by Boneh and Naor
(CRYPTO 2000), can be used to achieve fairness in secure computation
protocols in a simple and elegant way. The only known non-malleable
construction in the standard model is due to Katz, Loss, and Xu (TCC
2020). This construction requires general-purpose zero knowledge proofs
with specific properties, and it suffers from an inefficient commitment
protocol, which requires the committing party to solve a computationally
expensive puzzle.

We propose new constructions of non-malleable non-interactive timed
commitments, which combine (an extension of) the Naor-Yung paradigm
used to construct IND-CCA secure encryption with a non-interactive ZK
proofs for a simple algebraic language. This yields much simpler and more
efficient non-malleable timed commitments in the standard model.

Furthermore, our constructions also compare favourably to known con-
structions of timed commitments in the random oracle model, as they
achieve several further interesting properties that make the schemes very
practical. This includes the possibility of using a homomorphism for the
forced opening of multiple commitments in the sense of Malavolta and
Thyagarajan (CRYPTO 2019), and they are the first constructions to
achieve public verifiability, which seems particularly useful to apply the
homomorphism in practical applications.

1 Introduction

Timed commitments make it possible to commit to a message with respect to
some time parameter T ∈ N, such that (1) the commitment is binding for the
committing party, (2) it is hiding the committed message for T units of time
(e.g., seconds, minutes, days), but (3) it can also forcibly be opened after time
T in case the committing party refuses to open the commitment or becomes un-
available. This idea goes back to a seminal work by Rivest, Shamir, and Wagner
[RSW96] introducing the strongly related notion of time-lock puzzles, and Boneh
and Naor [BN00] extended this idea to timed commitments, which have the ad-
ditional feature that an opening to the commitment can be efficiently verified
(and thus the commitment can be opened efficiently).
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Achieving fairness via timed commitments. One prime application of timed com-
mitmens is to achieve fairness in secure two- or multi-party protocols. For in-
stance, consider a simple sealed-bid auction protocol with n bidders B1, . . . , Bn,
where every bidder Bi commits to its bid xi and publishes the commitment
ci = Com(xi, ri) using randomness ri. When all bidders have published their
commitments, everyone reveals their bid xi along with ri, such that everyone
can publicly verify that the claimed bid xi is indeed consistent with the initial
commitment ci. The bidder with the maximal bid wins the auction. For this to
be most practical, we want commitments to be non-interactive.

Now suppose that after the first (n − 1) bidders B1, . . . , Bn−1 have opened
their commitments (xi, ri), the last bidder Bn claims that it has “lost” its ran-
domness ri∗ , e.g., by accidentally deleting it. However, Bn also argues strongly
and quite plausibly that it has made the highest bid xi∗ . This is a difficult
situation to resolve in practice:

– Bn might indeed be honest. In this case, it would be fair to accept its highest
bid xi∗ . One could argue that it is Bn’s own fault and thus it should not win
the auction, but at the same time a seller might strongly argue to accept the
bid, as it is interested in maximising the price, and if Bn’s claim is indeed
true, then discarding the real highest bit could be considerd unfair by the
seller.

– However, Bn might also be cheating. Maybe it didn’t commit to the highest
bid, and now Bn tries to “win” the auction in an unfair way.

Timed commitments can resolve this situation very elegantly and without the
need to resort to a third party that might collude with bidders, and thus needs
to be trusted, or which might not even be available in certain settings, e.g., in
fully decentralized protocols, such as blockchain-based applications. In a timed
commitment scheme, the parties create their commitments ci = Com(xi, ri, T )
with respect to a suitable time parameter T for the given application. In case
one party is not able to or refuses to open its commitment, the other parties can
force the commitment open in time T and thus resolve a potential dispute.

1.1 Requirements on Practical Timed Commitments

Several challenges arise when constructing timed commitments that can be used
in practical applications.

Consistency of standard and forced opening. A first challenge to resolve
when constructing a timed commitment scheme is to guarantee that the
availability of an alternative way to open a commitment, by using the forced
decommitment procedure, does not break the binding property. Standard
and forced opening must be guaranteed to reveal the same message. Oth-
erwise, a malicious party could create a commitment where standard and
forced openings yields different values. Then it could decide in the opening
phase whether it provide the “real” opening, or whether it refuses to open,
such that the other parties will perform the forced opening.
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Non-interactivity. Having non-interactive commitments is generally desirable
to obtain protocols that do not require all parties to be online at the same
time. Furthermore, certain applications inherently require the commitment
scheme to be non-interactive. This includes, for example, protocols where
the commitments are published in a public ledger (e.g., a decentralized
blockchain). Several examples of such applications are described in [MT19].
Non-interactivity also avoids concurrent executions of the commitment pro-
tocol, which simplifies the security model significantly.

Non-malleability. Non-malleability of a commitment guarantees that no party
can turn a given commitment c that decommits to some value x into another
commitment c′ which decommits to a different value x′, such that x and x′

are related in some meaningful way. For instance, in the above example of
an auction, a malicious party Bn could first wait for all other parties to
publish their commitments. Then it would select the commitment ci which
most likely contains the highest bid xi, and exploit the malleability of to
create a new commitment cn, which is derived from ci and opens to xi + 1.
Hence, Bn would be able win the auction with a bid that is only slightly
larger than the 2nd highest bit, which does not meet the intuitive security
expectations on a secure auctioning protocol.
In order to achieve non-malleability for timed commitments, a recent line
of works has explored the idea of non-malleable time-locked commitments
and puzzles [KLX20,TCLM21,EFKP20,BDD+21]. Existing constructions of
timed commitments are either malleable, rely on the random oracle model,
have highly non-tight security proof, which constructs a reduction that solves
multiple instances of a puzzle, or require the sender of the commitment to
invest as much effort to commit to a value as for the receiver to forcibly open
the commitment. The only known standard model construction by Katz et al.
[KLX20] relies on non-interactive zero-knowledge proofs (NIZKs) for general
NP relations with very specific properties.

Force opening many commitments at once via homomorphism. Yet an-
other interesting property that can make timed commitments more practical
is a possibility to aggregate multiple commitments into a single one, such
that it is sufficient to force open only this commitment. The idea of homomor-
phic time-lock puzzles was introduced by Malavolta and Thyagarajan [MT19]
and later adopted to the setting of non-interactive timed commitments in
[TCLM21].
A homomorphic timed commitment scheme allows to efficiently evaluate a
circuit C over a set of commitments c1, . . . , cn, where ci is a commitment to
some value xi for all i, to obtain a commitment c to C(x1, . . . , xn). If there
are multiple parties Bi1 , . . . , Biz that refuse to open their commitments and
it is not necessary to recover the full committed messages xi1 , . . . , xiz , but
recovering C(xi1 , . . . , xiz ) is sufficient, then one can use the homomorphism
to compute a signle commitment c that needs to be opened. Malavolta and
Thyagarajan [MT19] describe several interesting applications, includings e-
voting and sealed-bid auctions over blockchains, multi-party coin flipping,
and multi-party contract signing.
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Public verifiability of commitments. Another property is public verifiabil-
ity of a timed commitment, which requires that one can efficiently check
whether a commitment is well-formed, such that a forced decommitment
will yield a correct result.

Without public verifiability, timed commitments might not provide practical
solutions for certain applications. For instance, a malicious party could out-
put a malformed commitment that cannot be opened in time T , such that
a protocol would fail again in case the malicious party refuses to open the
commitment. This could pose a problem in time-sensitive applications, in
particular if a large time parameter T is used, and also give rise do Denial-
of-Service attacks. Note that public verifiability is particularly relevant for
homomorphic commitments. When many commitments are aggregated into
a single one, then it is essentiall that all these commitments are well-formed,
as otherwise the forced opening may fail. Public verifiability allows to ef-
ficiently decide which subset of commitments is well-formed, and thus to
include only these in the homomorphic aggregate.

Note that the requirement of public verifiability rules out several natural
ways to achieve non-malleability, such as the Fujisaki-Okamoto transform
[FO99,FO13] used by Ephraim et al. [EFKP20]. It seems that even in the
random oracle model ZK proofs are required.

Public verifiability of forced opening. In scenarios when the forced open-
ing is executed by untrusted party, it is desirable to be able efficiently check
that forced opening has been executed properly without redoing an expen-
sive sequential computation. This particularly useful when the forced open-
ing computation is outsourced to untrusted server. This property was first
suggested for time-lock puzzles by [EFKP20].

1.2 Our Contributions

We provide a simpler and more efficient approach to construct practical non-
malleable timed commitments. We give the first constructions that simultane-
ously achieve non-interactivity, non-malleability, linear (i.e., additive) or multi-
plicative homomorphism, public verifiability of commitments and public verifi-
ability of forced opening. Moreover, all our reductions avoid the need to answer
decommitment queries using the slow forced decommitment algorithm, which
yields much tighter security. Instead of relying on expensive ZK proofs for gen-
eral NP languages as prior work, we show how to use Fiat-Shamir [FS87] NIZKs
derived from Sigma protocols for simple algebraic languages. Our constructions
can be instantiated in the standard model by leveraging techniques from Libert
et al. [LNPY21] and more efficiently in the random oracle model.

In more detail, we make the following contributions.

1. We begin by extending the formal definitions of prior work to cover public
verifiability of forced opening in the setting of non-malleable non-interactive
timed commitments.
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2. We then give four constructions of non-interactive non-malleable timed com-
mitments. All our constructions rely on a variation of the double encryption
paradigm by Naor and Yung [NY90], which was also used by Katz et al.
[KLX20] and Thyagarajan et al. [TCLM21].

However, in contrast to [KLX20], we do not start from a timed public key
encryption scheme, but build our timed commitment from scratch. This en-
ables us avoid two out of the three NIZK proofs in their construction, and
lets us replace the third by a proof for a variation of the DDH relation over
groups of unknown order. We are able to instantiate the given NIZK both
in the standard model and in the random oracle model [BR93]. Like the
construction from [KLX20] we support public verifiability of commitments.
Another important advantage of our constructions over that of Katz et al.
[KLX20] is that it allows for fast commitment, whereas [KLX20] requires
to execute an expensive sequential computation in order to commit to a
message. Additionally, we achieve public verifiability of forced opening and
homomorphic properties.

In comparison, the non-interactive construction of David et al. [BDD+21]
is in the programmable random oracle model, while ours can also be instanti-
ated in the standard model. David et al. achieve fast commitments, however the
construction does not provide public verifiability of commitments, public verifia-
bility of forced opening nor homomorphic properties. The work of Ephraim et al.
[EFKP20] does support fast commitments and public verifiability of forced open-
ing, but is also in the (auxiliary non-programmable) random oracle model and
does not support public verifiability of commitments and homomorphic proper-
ties. Thyagarajan et al. [TCLM21] construct the first CCA-secure non-interactive
timed commitment with transparent setup, meaning that randomness used in
the setup can be made public. Their construction relies on class groups and
CCA security is achieved using the Naor-Young paradigm. Additionally, the con-
struction is linearly homomorphic. This is very similar to our work. The main
disadvantage of this approach compared to our constructions is that the size of
the resulting commitments is linear in security parameter and the security proof
is extremely non-tight, since it relies on slow forced decommitment in several
steps of the security proof. Moreover, it supports a significantly smaller message
space and the construction is in the random oracle model. We provide a sum-
mary of the properties of our constructions in comparison to previous works in
Table 1. Additionally, in Table 2 we provide a comparison of an instantiation of
our construction of linearly homomorphic NITCs in the ROM with an instan-
tiation of the construction from [TCLM21] which is also linearly homomorphic
and in ROM. We compare the size of crs, commitments Com, proofs πCom, and
messages for security level λ = 128 bits and taking into account a security loss
in the security proofs. Since in the majority of game hops of the security proof
of [TCLM21] decommitment queries are answered using forced decommitment,
the corresponding security loss is Q ·T where Q is the number of decommitment
queries and T is the time parameter of NITC. As an example, we assume that
Q = T = 232, which results in the security loss of 264. Therefore to achieve 128
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bits of security, one has to instantiate assumptions in [TCLM21] for security
parameter λ = 192 bits.3 According to [BJS10] the fundamental discriminant
∆K for this security parameter has size of 3598 bits, and similarly to [TCLM21]
we define the message space Zq for q which is 256 bits. Hence, ∆q has size of
3588 + 2 × 256 = 4110 bits, size of q̃ is α = 3598/2 + 192 = 1991 bits, and Z∗p
is instantiated for a prime p of size 3072 bits. To instantiate our construction
it is sufficient to use recommended modulus size of 3072 bits, since our security
proof is tight. We remark, that our constructions provide significantly smaller
commitments and proofs and larger message space even if we don’t take the
security loss into account.

Construction Hom. Std. Setup Com? FDec? |Com| |πCom| tCom Tight

[EFKP20] — 7 — 7 3 O(1) — O(log T ) 3

[KLX20] — 3 priv. 3 7 O(1) O(1) O(T ) 3

[TCLM21] linear 7 pub. 3 7 O(λ) O(λ) O(1) 7

Section 3.3 linear 3 priv. 3 3 O(1) O(log λ) O(1) 3

Section 3.4 mult. 3 priv. 3 3 O(1) O(log λ) O(1) 3

Section 4.3 linear 7 priv. 3 3 O(1) O(1) O(1) 3

Section 4.4 mult. 7 priv. 3 3 O(1) O(1) O(1) 3

Table 1. Comparison of our constructions with related work. Column Hom. indi-
cates whether the construction provides a linear/multiplicative homomorphism, Std.
whether the construction has a standard-model proof, Com? whether it is publicly
verifiable that commitments are well-formed, FDec? efficient public verifiability of
forced decommitments, |Com| is the size of commitments, |πCom| the size of proofs,
tCom the running time of the commitment algorithm, and Tight whether the proof
avoids running the forced decommitment algorithm to respond to CCA queries.

Construction |crs| (kB) |Com| (kB) |πCom| (kB) |m| (bits)

[TCLM21] 2.32 3321.41 8846.96 256

Section 4.3 1.92 1.54 1.55 3072

Table 2. Comparison of our construction with [TCLM21] for security level λ = 128
bits and taking into account the security loss for Q = T = 232.

1.3 Technical Overview

The binding property of our commitment scheme will be relatively easy to ar-
gue, therefore let us focus on the hiding property and non-malleability. Like
in [KLX20], we prove this by considering an IND-CCA security experiment,

3 The choice of Q and T such that QT = 264 is convenient because it yields λ = 192
and [BJS10] provides concrete parameters for this security parameter.
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where the adversary has access to a forced decommitment oracle. Even though
the forced decommitment can be performed in polynomial time, this polyno-
mial may be very large, if the time parameter T is large. Since the experiment
needs to be perform a forced decommitment for every decommitment query of
the adversary, this would incur a very significant overhead and a highly lossy
reduction. Hence, following Katz et al. [KLX20], we aim to build commitment
schemes where a reduction can perform a fast decommitment.

Recall that a classical approach to achieve IND-CCA security is to apply the
Naor-Yung paradigm [NY90]. A natural approach to construct non-malleable
timed commitments is therefore to apply this paradigm as follows. A commit-
ment c = (c1, c2, π) to a message m consists of a time-lock puzzle c1 opening to
m, a public key encryption of m, and a simulation-sound zero knowledge proof
π that both contain the same message m, everything with respect to public
parameters contained in a public common reference string. This scheme may
potentially achieve all desired properties:

– Consistency of regular and forced opening can be achieved by using a suitable
time-lock puzzle and public-key encryption scheme.

– The commitment is non-interactive.
– IND-CCA security follows from the standard Naor-Yung argument.
– The time-lock puzzle in the above construction can be instantiated based

on repeated squaring [RSW96], possibly using the variant of [MT19] that
combines repeated squaring with Paillier encryption [Pai99] to achieve a
linear homomorphism.

– Public verifiability can be achieved by using a suitable proof system for π.

Furthermore, in the IND-CCA security proof, we can perform fast opening
by decrypting c2 with the secret key of the public key encryption scheme, which
is indistinguishable from a forced opening using c1 by the soundness of the
proof. However, it turns out that concretely instantiating this scheme in a way
that yields a practical construction is non-trivial and requires a very careful
combination of different techniques.

Triple Naor-Yung. First of all, note that repeated squaring modulo a composite
number N = PQ, where P and Q are different primes, is currently the only
available choice to achieve a practical time-lock puzzle, hence we are bound to
using this puzzle to instantiate c1. Conveniently, this puzzle allows for a linear
(i.e., additive) homomorphism by following [MT19]. Then, in order to be able
to instanatiate π efficiently, it would be convenient to use a standard Sigma
protocol, which can then be made non-interactive via the Fiat-Shamir transform
[FS87] in the random oracle model, or by leveraging techniques from Libert et al.
[LNPY21] in the standard model. Since practically efficient Sigma protocols are
only known for algebraic languages, such as that defined by the DDH relation,
for example, we have to choose c2 in a way which is “algebraically compatible”
with c1 and the available proofs π. If we instantiate c1 with the homomorphic
TLP from [MT19], then a natural candidate would be to instantiate c2 also with
Paillier encryption. Here we face the first technical difficulty:
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– Efficient proof systems for π are only available, if both c1 and c2 use the same
modulus N . Hence, we have to instantiate both with the same modulus.

– When arguing that c1 hides the committed message m in the Naor-Yung
argument of the security proof, we will have to replace c1 with a random
puzzle, using the strong sequential squaring (SSS) assumption. At the same
time, we have to be able to respond to decommitment queries using the
decryption key of c2. But this decryption key is the factorization P,Q of the
common modulus N , and we cannot reduce to the hardness of SSS while
knowing the factorization of N .

The first candidate approach to overcome this difficulty is to replace the Paillier
encryption used in c2 with an encryption scheme that does not require knowledge
of the factorization of N , such as the “Paillier ElGamal” scheme from [MT19],
which is defined over the subgroup JN of elements of ZN having Jacobi symbol 1,
and which uses a discrete logarithm to decrypt but still requires the factorization
of N to be hidden in order to be secure.

However, now we run into another difficulty. In the Naor-Yung argument, we
will also have to replace c2 with an encryption of a random message, in order
to argue that our commitment scheme is hiding. In this part of the proof, we
cannot know the secret key of c2, that is, neither the aforementioned discrete
logarithm, nor the factorization of N . However, we also cannot use c1 to respond
to decommitment queries, because then we would have to solve the time-lock
puzzle, which cannot be done fast without knowledge of the factorization of N .

We resolve this problem by using “triple Naor-Yung”. In our linearly ho-
momorphic constructions, a commitment to m will have the form (c1, c2, c3, π),
where c1 and c2 are Paillier-ElGamal encryptions of m, and c3 is the Paillier-style
time-lock puzzle based on repeated squaring from [MT19]. All are with respect
to the same modulus N , and thus allow for an efficient Sigma-protocol-based
proof π that c1, c2, and c3 all contain the same message. In the Naor-Yung-style
IND-CCA security proof, we will first replace c3 with a random puzzle, while
using the discrete logarithm of the public key that corresponds to c1 to perform
fast decommitments. When we then replace c2 with an encryption of a random
message, we use the discrete logarithm of the public key that corresponds to c1 to
answer decommitment queries. Finally, we switch to using the discrete logarithm
of the secret key corresponding to c2 for decommitment queries, and replace c1
with an encryption of a random message. Hence, throughout the argument we
never require the factorization of N for fast decommitments.

Standard Naor-Yung works for multiplicative homomorphism. Next, we observe
that the standard (i.e., “two-ciphertext”) Naor-Yung approach works, if a mul-
tiplicative homomorphism (or no homomorphism at all) is required. Concretely,
a commitment will have the form (c1, c2, π), where c1 is an ElGamal encryption
and c2 uses the “sequential-squaring-with-ElGamal-encryption” idea of [MT19].
By replacing the underlying group to the subgroup QRN of quadratic residues
modulo N , we can rely on the DDH assumption in QRN and thus do not require
the factorization of N to be hidden when replacing the ElGamal encryption c1
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with an encryption of a random message. While the construction idea and high-
level arguments are very similar, the underlying groups and detailed arguments
are somewhat different, and thus we have to give a separate proof.

On separate proofs in the standard model and the ROM The constructions
sketched above can be instantiated relatively efficiently in the standard model,
using the one-shot Fiat-Shamir arguments in the standard model by Libert et al.
[LNPY21]. However, these proofs repeat the underlying Sigma protocol a log-
arithmic number of times, and thus it would be interesting to also consider
constructions in the random oracle model. Since the syntactical definitions and
properties of proof systems in the random oracle model are slightly different from
that in [LNPY21], we give separate proofs for both random oracle constructions
as well.

Shared randomness To obtain commitments of smaller size we additionally apply
the shared randomness technique from [BMV16], where instead of producing
two or three independent encryptions of the same message, we reuse the same
randomness for encryption. This allows to save one group element in case of the
standard Naor-Yung constructions and two group elements in the case of triple
Naor-Yung.

1.4 Further related work

Time-lock puzzles based on randomized encodings were introduced in [BDGM19],
but all known constructions of timed commitments rely on the repeated squaring
puzzles of [RSW96]. Timed commitments are also related to time-lock encryption
scheme [LJKW18] and time-released encryption [CJSS21], albeit with different
properties. The construction in [LJKW18] is based on an external “computa-
tional reference clock” (instantiated with a public block chain), whose output
can be used to decrypt, such that decrypting parties do not have to perform
expensive computations by solving a puzzle. The constructions of Chvojka et al.
[CJSS21] are based on repeated squaring, however, the main difference is that the
time needed for decryption starts to run from the point when setup is executed
and not from the point when ciphertext is created.

2 Preliminaries

We denote our security parameter by λ. For n ∈ N we write 1n to denote the

n-bit string of all ones. For any element x in a set X, we use x
$← X to indicate

that we choose x uniformly at random from X. For simplicity we model all algo-
rithms as Turing machines, however, all adversaries are modeled as non-uniform
polynomial-size circuits to simplify concrete time bounds in the security defini-
tions of non-interactive timed commitments and the strong sequential squaring
assumption. All algorithms are randomized, unless explicitly defined as deter-
ministic. For any PPT algorithm A, we define x ← A(1λ, a1, . . . , an) as the
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execution of A with inputs security parameter λ, a1, . . . , an and fresh random-
ness and then assigning the output to x. We write [n] to denote the set of integers
{1, . . . , n} and bxc to denote the greatest integer that is less than or equal to x.

Non-interactive timed commitments. The following definition of a non-interactive
timed commitment scheme is from [KLX20].

Definition 1. A non-interactive timed commitments scheme NITC with message
space M is a tuple of algorithms NITC = (PGen,Com,ComVrfy,DecVrfy,FDec)
with the following syntax.

– crs← PGen(1λ, T ) is a probabilistic algorithm that takes as input the security
parameter 1λ and a hardness parameter T and outputs a common reference
string crs and a secret key.

– (c, πCom, πDec)← Com(crs,m) is a probabilistic algorithm that takes as input
a common reference string crs and a message m and outputs a commitment
c and proofs πCom, πDec.

– 0/1← ComVrfy(crs, c, πCom) is a deterministic algorithm that takes as input
a common reference string crs, a commitment c and proof πCom and outputs
0 (reject) or 1 (accept).

– 0/1← DecVrfy(crs, c,m, πDec) is a deterministic algorithm that takes as input
a common reference string crs, a commitment c, a message m and proof πDec

and outputs 0 (reject) or 1 (accept).
– m ← FDec(crs, c, πCom) is a deterministic forced decommit algorithm that

takes as input a common reference string crs and a ciphertext c and outputs
m ∈M∪ {⊥} in time at most T · poly(λ).

We say NITC is correct if for all λ, T ∈ N and all m ∈M holds:

Pr

 FDec(crs, c) = m

∧ ComVrfy(crs, c, πCom) = 1

∧ DecVrfy(crs, c,m, πDec) = 1

:
crs← PGen(1λ, T )

(c, πCom, πDec)← Com(crs,m)

 = 1.

The following definition is based on [KLX20], however, adjusted to compu-
tational model considered by Bitansky et al. [BGJ+16].

Definition 2. A non-interactive timed commitment scheme NITC is IND-CCA
secure with gap 0 < ε < 1 if there exists a polynomial T̃ (·) such that for
all polynomials T (·) ≥ T̃ (·) and every non-uniform polynomial-size adversary
A = {(A1,λ,A2,λ)}λ∈N, where the depth of A2,λ is at most T ε(λ), there exists a
negligible function negl(·) such that for all λ ∈ N it holds

AdvNITC
A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

crs← PGen(1λ, T (λ))

(m0,m1, st)← ADEC(·,·)
1,λ (crs)

b
$← {0, 1}

(c∗, πCom, πDec)← Com(crs,mb)

b′ ← ADEC(·)
2,λ (c∗, π∗Com, st)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),
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where |m0| = |m1| and the oracle DEC(c, πCom) returns the result of FDec(crs, c)
if ComVrfy(crs, c, πCom) = 1, otherwise it returns ⊥, with the restriction that A2,λ

is not allowed to query the oracle DEC(·, ·) for a decommitment of the challenge
commitment (c∗, π∗Com).

As already observed in [KLX20], a challenge for a security proof of a concrete
timed commitment construction is that the reduction must be able to answer
decommitment queries to DEC(·, ·) in time which is independent of T , as other-
wise one is not able to obtain a sound proof when reducing to a time-sensitive
assumption, such as the strong sequential squaring assumption. This in partic-
ular means that decommitment queries in the security proof can not be simply
answered by executing the forced decommitment algorithm FDec, as its runtime
depends on T , but there must exist another way.

Remark 1. We note that our definition of the decommitment oracle DEC slightly
differs from the original definition in [KLX20], since we require that the oracle
at first checks if the commitment is well formed and only then returns the result
of FDec. All our constructions can achieve also the original definition, to this
end we would simply include the proof π that the commitment is well-formed
in the commitment and then directly perform the check if a commitment is well
formed in algorithm FDec. However, in that case πCom would be empty and the
whole idea of the separation of a commitment from a proof of well-formedness
would be meaningless. 4

Definition 3. We define the BND-CCAA(λ) experiment as follows:

1. crs← PGen(1λ, T (λ));

2. (m, c, πCom, πDec,m
′, π′Dec) ← ADEC(·,·)

λ (crs), where the oracle DEC(c, πCom)
returns FDec(crs, c) if ComVrfy(crs, c, πCom) = 1, otherwise it returns ⊥;

3. Output 1 iff ComVrfy(crs, c, πCom) = 1 and either:
– m 6= m′ ∧ DecVrfy(crs, c,m, πDec) = DecVrfy(crs, c,m′, π′Dec) = 1;
– DecVrfy(crs, c,m, πDec) = 1 ∧ FDec(crs, c) 6= m.

A non-interactive timed commitment scheme NITC is BND-CCA secure if for
all non-uniform polynomial-size adversaries A = {Aλ}λ∈N there is a negligible
function negl(·) such that for all λ ∈ N

AdvNITC
A = Pr [BND-CCAA(λ) = 1] ≤ negl(λ).

Next we define a new property of NITCs, which allows for efficient verification
that a forced decommitment was executed correctly, without the need to execute
expensive sequential computation. This property was first suggested for time-
lock puzzles by [EFKP20] and denoted as public verifiability.

Definition 4. A non-interactive timed commitments scheme NITC is publicly
verifiable if FDec additionally outputs a proof πFDec and has an additional algo-
rithm FDecVrfy with the following syntax:

4 Note that [KLX20] FDec also implicitly checks well-formedness, as it runs a decryp-
tion algorithm, which verifies the NIZK proof.
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– 0/1 ← FDecVrfy(crs, c,m, πFDec) is a deterministic algorithm that takes as
input a common reference string crs, a commitment c, a message m, and a
proof πFDec and outputs 0 (reject) or 1 (accept) in time poly(log T, λ).

Moreover, a publicly verifiable NITC must have the following properties:

– Completeness for all λ, T ∈ N and all m ∈M holds:

Pr

FDecVrfy(crs, c,m, πFDec) = 1 :

crs← PGen(1λ, T )

(c, πCom, πDec)← Com(crs,m)

(m,πFDec)← FDec(crs, c)

 = 1.

– Soundness for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N
there is a negligible function negl(·) such that for all λ ∈ N

Pr

FDecVrfy(crs, c,m′, π′FDec) = 1

∧ ComVrfy(crs, c, πCom) = 1

∧ m 6= m′
:

crs← PGen(1λ, T )

(c, πCom,m
′, π′FDec)← Aλ(crs)

(m,πFDec)← FDec(crs, c)

 ≤ negl(λ).

The following definition is inspired by the definition of homomorphic time-
lock puzzles of Malavolta et al. [MT19].

Definition 5. A non-interactive timed commitments scheme NITC is homomor-
phic with respect to a class of circuits C = {Cλ}λ∈N, if there is an additional
algorithm Eval with the following syntax:

– c ← Eval(crs, C, c1, . . . , cn) is a probabilistic algorithm that takes as input a
common reference string crs, a circuit C ∈ Cλ, and set of n commitments
(c1, . . . , cn). It outputs a commitment c.

Additionally, a homomorphic NITC fulfils the following properties:
Correctness: for all λ, T ∈ N, C ∈ Cλ, (m1, . . . ,mn) ∈Mn, all crs in the support
of PGen(1λ, T ), all ci in the support of Com(crs,mi) we have:

1. There exists a negligible function negl such that

Pr [FDec(crs,Eval(crs, C, c1, . . . , cn)) 6= C(m1, . . . ,mn)] ≤ negl(λ).

2. The exists a fixed polynomial poly such that the runtime of FDec(crs, c) is
bounded by poly(λ, T ), where c← Eval(crs, C, c1, . . . , cn).

Compactness: for all λ, T ∈ N, C ∈ Cλ, (m1, . . . ,mn) ∈ Mn, all crs in the
support of PGen(1λ, T ), all ci in the support of Com(crs,mi), the following two
conditions are satisfied:

1. The exists a fixed polynomial ˆpoly such that |c| = ˆpoly(λ, |C(m1, . . . ,mn)|),
where c← Eval(crs, C, c1, . . . , cn).

2. The exists a fixed polynomial ˜poly such that the runtime of Eval(crs, C, c1,
. . . , cn) is bounded by ˜poly(λ, |C|).
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Complexity assumptions. We base our constructions on the strong sequential
squaring assumption. Let p, q be safe primes (i.e., such that p = 2p′+1, q = 2q′+1
for primes p′, q′). We denote by ϕ(·) Euler’s totient function, by Z∗N the group
{x ∈ ZN : gcd(N, x) = 1} and by JN the cyclic subgroup of elements of Z∗N
with Jacobi symbol 1 which has order |JN | = ϕ(N)

2 = (p−1)(q−1)
2 . By QRN

we denote the cyclic group of quadratic residues modulo N which has order

|QRN | = ϕ(N)
4 = (p−1)(q−1)

4 . To efficiently sample a random generator g from
JN , it is sufficient to be able sample random element from JN \ QRN , since
with all but negligible probability a random element of JN \QRN is a generator.
Moreover, when the factors p, q are known, then it easy to check if the given
element is a generator of JN by testing possible orders.

To sample a random element of JN \ QRN , we can sample r
$← Z∗N and

let g := −r2 mod N . Now notice that r2 mod N is a random element in the
group of the quadratic residues and −1 mod N ∈ JN \QRN . To see this, notice
that for any safe prime p it holds that p = 3 mod 4. By Euler’s criterion we have(
x
p

)
= x

p−1
2 mod p for odd primes p and every x which is coprime to p. Therefore(

−1
p

)
=
(
−1
q

)
= −1, meaning that −1 mod N ∈ JN \ QRN . By multiplying a

fixed element of JN \QRN with a random element of QRN we obtain a random
element of JN \QRN .

As mentioned above, to sample a random element from QRN , we can sample

r
$← Z∗N and let g := r2 mod N . Again g is a generator of QRN with all but

negligible probability. When the factors p, q are known, then it easy to check if
the given element is a generator of QRN by checking if gp

′ 6= 1 mod N ∧ gq′ 6=
1 mod N . Therefore we are able to efficiently sample a random generator of
QRN .

Since our constructions relies on the strong sequential squaring assumption
either in the group JN [MT19] or in the group QRN [KLX20] for brevity we state
the strong sequential squaring assumption in the group G, where G is one of the
mentioned groups. Let GenMod be a probabilistic polynomial-time algorithm
which on input 1λ outputs two λ-bit safe primes p and q, modulus N = pq and
a random generator g of the group G.

ExpSSSbA(λ):

(p, q,N, g)← GenMod(1λ)
st← A1,λ(N,T (λ), g)

x
$← G

if b = 0 : y := x2
T (λ)

mod N

if b = 1 : y
$← G

return b′ ← A2,λ(x, y, st)

Fig. 1. Security experiment for the strong sequential squaring assumption.
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Definition 6 (Strong Sequential Squaring Assumption (SSS)). Con-
sider the security experiment ExpSSSbA(λ) in Figure 1. The strong sequential
squaring assumption with gap 0 < ε < 1 holds relative to GenMod if there ex-
ists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and for every
non-uniform polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where the depth
of A2,λ is at most T ε(λ), there exists a negligible function negl(·) such that for
all λ ∈ N

AdvSSS
A =

∣∣Pr[ExpSSS0
A(λ) = 1]− Pr[ExpSSS1

A(λ) = 1]
∣∣ ≤ negl(λ).

Next we define the DDH experiment in the group JN , as originally stated
by Castagnos et al. [CPP16]. Castagnos et al. have shown that this problem
is hard assuming that DDH is hard in the subgroups of Z∗N of order p′ and q′

and that the quadratic residuosity problem is hard in Z∗N . We also define DDH
experiment in the group of quadratic residues modulo N where the factors of
N are given to an adversary. Castagnos et al. [CPP16] have shown that DDH
problem is hard in QRN assuming that DDH is hard in the large prime-order
subgroups of Z∗N . This is shown as part of the proof of their Theorem 9. We
remark that even though in the mentioned proof the prime factors p, q are not
given to DDH adversary in the group QRN , but the proof relies on the fact that
the constructed reduction knows factors p, q. Therefore the proof is valid even if
p, q are given to DDH adversary in QRN as input.

ExpJNDDH
b
A(λ):

(p, q,N, g)← GenMod(1λ)

α, β
$← [ϕ(N)/2]

if b = 0 : γ = a · b mod ϕ(N)/2

if b = 1 : γ
$← [ϕ(N)/2]

return b′ ← Aλ(N, g, gα, gβ , gγ)

ExpQRNDDH
b
A(λ):

(p, q,N, g)← GenMod(1λ)

α, β
$← [ϕ(N)/4]

if b = 0 : γ = a · b mod ϕ(N)

if b = 1 : γ
$← [ϕ(N)/4]

return b′ ← Aλ(N, p, q, g, gα, gβ , gγ)

Fig. 2. Security experiments for DDH in JN and QRN .

Definition 7 (Decisional Diffie-Hellman in JN). Consider the security ex-
periment ExpJNDDHbA(λ) in Figure 2. The decisional Diffie-Hellman assumption
holds relative to GenMod in JN if for every non-uniform polynomial-size adver-
sary A = {Aλ}λ∈N there exists a negligible function negl(·) such that for all
λ ∈ N

AdvDDH
A =

∣∣Pr[ExpJNDDH0
A(λ) = 1]− Pr[ExpJNDDH1

A(λ) = 1]
∣∣ ≤ negl(λ).

Definition 8 (Decisional Diffie-Hellman in QRN). Consider the security
experiment ExpQRNDDHbA(λ) in Figure 2. The decisional Diffie-Hellman as-
sumption holds relative to GenMod in QRN if for every non-uniform polynomial-
size adversary A = {Aλ}λ∈N there exists a negligible function negl(·) such that
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for all λ ∈ N

AdvDDH
A =

∣∣Pr[ExpQRNDDH0
A(λ) = 1]− Pr[ExpQRNDDH1

A(λ) = 1]
∣∣ ≤ negl(λ).

ExpDCRbA(λ):

(p, q,N, g)← GenMod(1λ)

y1
$← Z∗N2

y0 = yN1 mod N2

return b′ ← Aλ(N, yb)

Fig. 3. Security experiment for DCR.

Definition 9 (Decisional Composite Residuosity Assumption). Consider
the security experiment ExpDCRbA(λ) in Figure 3. The decisional composite resid-
uosity assumption holds relative to GenMod if for every non-uniform polynomial-
size adversary A = {Aλ}λ∈N there exists a negligible function negl(·) such that
for all λ ∈ N

AdvDCR
A =

∣∣Pr[ExpDCR0
A(λ) = 1]− Pr[ExpDCR1

A(λ) = 1]
∣∣ ≤ negl(λ).

When designing an efficient simulation sound NIZK for our scheme, we rely
on factoring assumption.

Definition 10 (Factoring Assumption). The factoring assumption holds rel-
ative to GenMod if for every non-uniform polynomial-size adversary A = {Aλ}λ∈N
there exists a negligible function negl(·) such that for all λ ∈ N

AdvFactor
A = Pr

N = p′q′ :

(p, q,N, g)← GenMod(1λ)

p′, q′ ← Aλ(N),

such that p′, q′ ∈ N; p′, q′ > 1

 ≤ negl(λ).

To argue that our proof system fulfils required properties, we make of use
the following lemma, which states that it is possible factorize N if a positive
multiple of ϕ(N) is known. The proof of this lemma is part of an analysis of
[KL14, Theorem 8.50].

Lemma 1. Let (p, q,N) ← GenMod(1λ) and let M = αϕ(N) for some positive
integer α ∈ Z+. There exists a PPT algorithm Factor(N,M) which, on input
(N,M), outputs p′, q′ ∈ N, p′, q′ > 1 such that N = p′q′ with probability at least
1− 2−λ.
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On sampling random exponents for JN and QRN . Since in our construction the
order ϕ(N)/2 of the group JN and the order ϕ(N)/4 of QRN are unknown,
we use the set [bN/2c], respectively [bN/4c], whenever we should sample from
the sets [ϕ(N)/2], respectively [ϕ(N)/4] without knowing the factorization of
N . Sampling from [bN/2c] is statistically indistinguishable from sampling from
[ϕ(N)/2] and similarly sampling from [bN/4c] is statistically indistinguishable
from sampling from [ϕ(N)/4].

Definition 11 (Statistical Distance). Let X and Y be two random variables
over a finite set S. The statistical distance between X and Y is defined as

SD(X,Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| .

Lemma 2. Let p, q be primes, N = pq, ` ∈ N such that gcd(`, ϕ(N)) = ` and
X and Y be random variables defined on domain [bN/`c] as follows:

Pr[X = r] = 1/ bN/`c ∀r ∈ [bN/`c] and Pr[Y = r] =

{
`/ϕ(N) ∀r ∈ [ϕ(N)/`]

0 otherwise.

Then

SD(X,Y ) ≤ 1

p
+

1

q
− 1

N
.

We defer the proof of this lemma to Supplementary Material A.

3 Standard Model Constructions

In this section we construct two non-malleable non-interactive timed commit-
ment schemes whose security can be proven in standard model and which are
either linearly (i.e., additively) or multiplicatively homomorphic. he construc-
tions rely on non-interactive zero-knowledge proofs in the common reference
string model.

3.1 Non-Interactive Zero-Knowledge Proofs

We recall the definition of a simulation-sound non-interactive proof system (SS-
NIZK) that we take from Libert et al. [LNPY21].

Definition 12. A non-interactive zero-knowledge proof system Π for an NP
language L associated with a relation R is a tuple of four PPT algorithms
(Genpar,GenL,Prove,Vrfy), which work as follows:

– crs ← Setup(1λ, L) takes a security parameter 1λ and the description of a
language L. It outputs a a common reference string crs.
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– π ← Prove(crs, s, w) is a PPT algorithm which takes as input the common
reference string crs, a statement s, and a witness w such that (s, w) ∈ R and
outputs a proof π.

– 0/1 ← Vrfy(crs, s, π) is a deterministic algorithm which takes as input the
common reference string crs, a statement s and a proof π and outputs either 1
or 0, where 1 means that the proof is “accepted” and 0 means it is “rejected”.

Moreover, Π should satisfy the following properties.

– Completeness: for all (s, w) ∈ R holds:

Pr[Vrfy(crs, s, π) = 1 : crs← Setup(1λ, L), π ← Prove(crs, s, w)] = 1.

– Soundness: for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N
there exists a negligible function negl(·) such that for all λ ∈ N

SndNIZK
A = Pr

[
s /∈ L∧

Vrfy(crs, s, π) = 1
:

(crs← Setup(1λ, L)

(π, s)← Aλ(crs, τL)

]
≤ negl(λ),

where τL is membership testing trapdoor.
– Zero-Knowledge: there is a PPT simulator (Sim1,Sim2), such that for all

non-uniform polynomial-size adversaries A = {Aλ}λ∈N there exists a negli-
gible function negl(·) such that for all λ ∈ N:

ZKNIZK
A =

∣∣∣Pr
[
AProve(crs,·,·),
λ (crs, τL) = 1 : crs← Setup(1λ, L)

]
−Pr

[
AO(crs,τ,·,·),
λ (crs, τL) = 1 : (crs, τ)← Sim1(1λ, L)

]∣∣∣ ≤ negl(λ).

Here τL is a membership testing trapdoor for language L; Prove(crs, ·, ·) is
an oracle that outputs ⊥ on input (s, w) /∈ R and outputs a valid proof
π ← Prove(crs, s, w) otherwise; O(crs, τ, ·, ·) is an oracle that outputs ⊥ on
input (s, w) /∈ R and outputs a simulated proof π ← Sim2(crs, τ, s) on input
(s, w) ∈ R. Note that the simulated proof is generated independently of the
witness w.

Remark 2. We have slightly modified the soundness and zero-knowledge defi-
nitions compared to [LNPY21]. Our soundness definition is adaptive and an
adversary is given as input also a membership testing trapdoor τL. This notion
is implied by the simulation-soundness as defined in Definition 13. Our zero-
knowledge definition provides a membership testing trapdoor τL as an input for
an adversary, whereas the definition of [LNPY21] lets an adversary generate the
language L itself. The definition of [LNPY21] works in our constructions too,
but we prefer to base our constructions on a slightly weaker definition.

Definition 13 (One-Time Simulation Soundness). A NIZK for an NP
language L with zero-knowledge simulator Sim = (Sim0,Sim1) is one-time sim-
ulation sound, if for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N
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there exists a negligible function negl(·) such that for all λ ∈ N

SimSndNIZK
A = Pr

 s /∈ L∧
(s, π) 6= (s′, π′)∧

Vrfy(crs, s, π) = 1

:
(crs, τ)← Sim1(1λ, L)

(s, π)← ASim2(crs,τ,·)
λ (crs, τL)

 ≤ negl(λ),

where τL is a membership testing trapdoor for language L and Sim2(crs, τ, ·) is a
single query oracle which on input s′ returns π′ ← Sim(crs, τ, s′).

Libert et al. [LNPY21] show that given an additively homomorphic encryp-
tion scheme, one can build a trapdoor Sigma protocol for the language defined
below. Moreover, any trapdoor Sigma protocol can be turned into an unbounded
simulation sound NIZK which directly implies existence of a one-time simulation
sound NIZK. Since we use the term trapdoor Sigma protocol only as intermedi-
ate notion and never instantiate it, we do not state formal definition and only
reference it for brevity. For more details about trapdoor Sigma protocols see e.g.
[LNPY21].

Lemma 3 (Lemma D.1 [LNPY21]). Let (Gen,Enc,Dec) be an additively
homomorphic encryption scheme where the message space M , randomness space
R and the ciphertext space C form groups (M,+), (R,+) and (C, ·). Let the
encryption scheme be such that for any public key pk generated using (pk, sk)←
Gen(1λ), any messages m1,m2 ∈M and randomness r1, r2 ∈ R holds

Enc(pk,m1; r1) · Enc(pk,m2; r2) = Enc(pk,m1 +m2; r1 + r2).

Let S be a finite set of public cardinality such that uniform sampling from S
is computationally indistinguishable from uniform sampling from R. Then there
is an trapdoor Sigma protocol for the language L := {c ∈ C|∃r ∈ R : c =
Enc(pk, 0; r)} of encryptions of zero, where pk is fixed by the language.

Remark 3. We note that Libert et al. required that the order of the group (R,+)
is public and that this group is efficiently samplable, which is used in their
proof of the zero-knowledge property. This is however, not necessary, since it
is sufficient to be able to sample from a distribution which is computationally
indistinguishable from the uniform distribution. This results in computational
indistinguishability of real and simulated transcripts. In case of our construc-
tions, we will sample randomness from a distribution which is statistically close
and hence indistinguishable from the uniform distribution over R, which yields
that the real and the simulated transcripts are statistically indistinguishable.

Additionally, Libert et al. construct a simulation sound non-interactive argu-
ment system from any trapdoor Sigma protocol relying on a strongly unforgeable
one-time signature, a lossy public-key encryption scheme, an admissible hash
function and a correlation intractable hash function.

Theorem 1 (Thm B.1, Thm. B.2 [LNPY21]). Let (Genpar,GenL,Prove,Vrfy)
be a trapdoor Sigma protocol for an NP language L. Then given a strongly un-
forgeable one-time signature scheme, R-lossy public-key encryption scheme, a
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correlation intractable hash function and an admissible hash function, there is
an unbounded simulation sound non-interactive zero-knowledge proof system for
the language L.

We note that in order to achieve negligible soundness error, it is needed
to run the underlying trapdoor Sigma protocol O(log λ) times in parallel. One
run of the trapdoor Sigma protocol of Libert et al. for L, as defined above,
corresponds to sending one ciphertext of the homomorphic encryption scheme
and one random element r ∈ R.

3.2 Standard-Model Instantiation of SS-NIZKs

In this section we provide simulation sound NIZK proof systems for languages
L1 and L2 that are used in our constructions. The languages are defined in the
following way:

L1 =

{
(c0, c1, c2, c3)|∃(m, r) :

(∧3i=1ci = hrNi (1 +N)m mod N2)∧
c0 = gr mod N

}
and

L2 =
{

(c0, c1, c2)|∃(m, r) : (∧2i=1ci = hrim mod N) ∧ c0 = gr mod N
}
,

where g, h1, h2, h3, N are parameters defining the languages.

Note that L1 consists of all ciphertexts (c0, c1 · (c2)−1, c3 · (c2)−1) that are en-
cryptions of zero, where the corresponding public key is defined as pk := (g, (h1 ·
(h2)−1), (h3 · (h2)−1), N) and encryption is defined as Enc(pk := (g, h, h′),m) :
c := gr mod N, c′ := hrN (1 + N)m mod N2, c′ := h′rN (1 + N)m mod N2. L2

consists of all ciphertexts (c0, c1 · (c2)−1) that are encryptions of zero, where the
corresponding public key is defined as pk := (g, (h1 · (h2)−1)), N) and encryp-
tion is defined as Enc(pk := (g, h),m) : c := gr, c′ := hgm mod N . Hence, both
encryption schemes are additively homomorphic and by Lemma 3 we obtain a
trapdoor Sigma protocol for the languages L1, L2. By Theorem 1 this yields
unbounded simulation-sound NIZKs for these languages.

3.3 Construction of Linearly Homomorphic Non-Malleable NITC

We start with a construction of linearly homomorphic non-malleable NITC. In
our construction depicted in Figure 4 we rely on a one-time simulation-sound
NIZK for the following language:

L =

{
(c0, c1, c2, c3)|∃(m, r) :

(∧3i=1ci = hrNi (1 +N)m mod N2)∧
c0 = gr mod N

}
,

where g, h1, h2, h3, N are parameters specifying the language.
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PGen(1λ, T ) Com(crs,m)

(p, q,N, g)← GenMod(1λ) r
$← [bN/2c]

ϕ(N) := (p− 1)(q − 1) c0 := gr mod N

k1, k2
$← [bN/2c] For i ∈ [3] : ci := hrNi (1 +N)m mod N2

t := 2T mod ϕ(N)/2 c := (c0, c1, c2, c3), w := (m, r)

For i ∈ [2] : hi := gki mod N πCom ← NIZK.Prove(crsNIZK, c, w)
h3 := gt mod N πDec := r

crsNIZK ← NIZK.Setup(1λ, L) return (c, πCom, πDec)
return crs := (N,T, g, h1, h2, h3, crsNIZK)

ComVrfy(crs, c, πCom) DecVrfy(crs, c,m, πDec)

return NIZK.Vrfy(crsNIZK, c, πCom) Parse c as (c0, c1, c2, c3)

if ∧3
i=1ci = h

πDecN
i (1 +N)m mod N2

∧c0 = gπDec mod N
return 1

return 0

FDec(crs, c) FDecVrfy(crs, c,m, πFDec)

Parse c as (c0, c1, c2, c3) Parse c as (c0, c1, c2, c3

Compute πFDec := c2
T

0 mod N if c3 = πNFDec(1 +N)m mod N2

m :=
c3·π−NFDec

( mod N2)−1

N
return 1

return (m,πFDec) return 0

Eval(crs,⊕N , c1, . . . , cn)

Parse ci as (ci,0, ci,1, ci,2, ci,3)
Compute c0 :=

∏n
i=1 ci,0 mod N, c1 := ⊥, c2 := ⊥, c3 :=

∏n
i=1 ci,3 mod N2

return c := (c0, c1, c2, c3)

Fig. 4. Construction of Linearly Homomorphic NITC in Standard Model.
⊕N refers to addition modN

Theorem 2. If (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) is a one-time simulation-
sound non-interactive zero-knowledge proof system for L, the strong sequen-
tial squaring assumption with gap ε holds relative to GenMod in JN , the De-
cisional Composite Residuosity assumption holds relative to GenMod, and the
Decisional Diffie-Hellman assumption holds relative to GenMod in JN , then
(PGen,Com,ComVrfy,DecVrfy,FDec) defined in Figure 4 is an IND-CCA-secure
non-interactive timed commitment scheme with gap ε, for any ε < ε.

Proof. Completeness is implied by the completeness of the NIZK and can be
verified by straightforward inspection.

To prove security we define a sequence of games G0−G12. For i ∈ {0, 1, . . . , 12}
we denote by Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs
b′ in the game Gi such that b = b′.
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Dec(crs, c, πCom, i)

Parse c as (c0, c1, c2, c3)
if NIZK.Vrfy(crsNIZK, (c0, c1, c2, c3), πCom) = 1

Compute y := cki0 mod N

return ci·y−N ( mod N2)−1
N

return ⊥

Fig. 5. Decommitment oracle

Game 0. Game G0 corresponds to the original security experiment where de-
commitment queries are answered using FDec.

Game 1. In game G1 decommitment queries are answered using the algorithm
Dec defined in Figure 5 with i := 1, meaning that secret key k1 and ciphertext
c1 are used, to answer decommitment queries efficiently.

Lemma 4.

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ SndNIZK
B .

Notice that if c1 and c3 contain the same message, both oracles answer de-
commitment queries consistently. Let E denote the event that the adversary A
asks a decommitment query (c, πCom) such that its decommitment using the key
k1 is different from its decommitment using FDec. Since G0 and G1 are identical
until E happens, we bound the probability of E. Concretely, we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[E].

We construct an adversary B that breaks soundness of the NIZK. It is given
as input crsNIZK together with a membership testing trapdoor τL := (k1, k2, t)
where t := 2T mod ϕ(N)/2. The adversary Bλ(crsNIZK, τL) proceeds as follows:

1. It computes h1 := gk1 mod N,h2 := gk2 mod N,h3 := gt mod N using the
membership testing trapdoor τL := (k1, k2, t) and sets crs := (N,T, g, h1, h2,
h3, crsNIZK).

2. Then it runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries
using k1.

3. It samples b
$← {0, 1}, r $← [bN/2c] and computes c∗0 := gr, c∗1 := hrN1 (1 +

N)mb , c∗2 := hrN2 (1 +N)mb , c∗3 := hrN3 (1 +N)mb . It sets (s := (c∗0, c
∗
1, c
∗
2, c
∗
3),

w := (m, r)) and runs π∗ ← NIZK.Prove(s, w).

4. It runs b′ ← A2,λ(s, π∗, st) and answers decommitment queries using k1.

5. Finally, it checks whether there exists a decommitment query (c, πCom) such
that DEC(crs, c, πCom) 6= Dec(crs, c, πCom, 2). If E occurs, then this is the case,
and it returns (c, πCom). Notice that this check can be done efficiently with
the knowledge of t, since instead of running FDec, B can verify the proof and
compute c3c

−t
0 mod N which produces the same output as FDec.
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B simulates G1 perfectly and if the event E happens, then it outputs a valid
proof for a statement which is not in the specified language L. Therefore we get

Pr[E] ≤ SndNIZK
B .

Game 2. Game G2 proceeds exactly as the previous game but we run the zero-
knowledge simulator (crs, τ) ← Sim1(1λ, L) in PGen and produce a simulated
proof for the challenge commitment as π∗ ← Sim2(crs, τ, (c∗0, c

∗
1, c
∗
2, c
∗
3)). By zero-

knowledge security of underlying NIZK we directly obtain

Lemma 5.

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ ZKNIZK
B .

We construct an adversary B = {Bλ}λ∈N against the zero-knowledge security
of NIZK as follows: Bλ(crsNIZK, τL) :

1. It sets crs := (N,T (λ), g, h1, h2, h3, crsNIZK) and runs (m0,m1, st)← A1,λ(crs)
and answers decommitment queries using k1, which is included in τL =
(k1, k2, t).

2. It samples b
$← {0, 1}, r $← [bN/2c] and computes c∗0 := gr, c∗1 := hrN1 (1 +

N)mb , c∗2 := hrN2 (1 +N)mb , c∗3 := hrN3 (1 +N)mb . It submits (s := (c∗0, c
∗
1, c
∗
2,

c∗3), w := (m, r)) to its oracle and obtains proof π∗ as answer.
3. Then it runs b′ ← A2,λ((c∗0, c

∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment

queries using k1.
4. Finally, it returns the truth value of b = b′.

If the proof π∗ is generated using NIZK.Prove, then B simulates G1 perfectly.
Otherwise π∗ is generated using Sim1 and B simulates G2 perfectly. This proves
the lemma.

Game 3. In G3 we sample r uniformly at random from [ϕ(N)/2].

Lemma 6.

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which we
sample r, to upper bound the advantage of adversary we can use Lemma 2 with
` := 2, which directly yields the required bound.

Game 4. In G4 we sample y3
$← JN and compute c∗3 as yN3 (1 +N)mb .

Let T̃SSS(λ) be the polynomial whose existence is guaranteed by the SSS as-
sumption. Let polyB(λ) be the fixed polynomial which bounds the time required
to execute Steps 1–2 and answer decommitment queries in Step 3 of the ad-
versary B2,λ defined below. Set T := (polyB(λ))1/ε. Set T̃NITC := max(T̃SSS, T ).
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Lemma 7. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
depth of A2,λ is at most T ε(λ) for some T (·) ≥ T (·) we can construct a polynomial-
size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ is at most T ε(λ)
with

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ AdvSSS
B .

The adversary B1,λ(N,T (λ), g) proceeds as follows:

1. It samples k1, k2
$← [bN/2c], computes h1 := gk1 mod N,h2 := gk2 mod

N,h3 := g2
T (λ)

mod N , runs (crsNIZK, τ) ← NIZK.Sim1(1λ, L) and sets crs :=
(N,T (λ), g, h1, h2, h3, crsNIZK). Notice that value h3 is computed by repeated
squaring.

2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using
k1.

3. Finally, it outputs (N, g, k1, k2, h1, h2, h3, crsNIZK, τ,m0,m1, st)

The adversary B2,λ(x, y, (N, g, k1, k2, h1, h2, h3, crsNIZK, τ,m0,m1, st)) :

1. Samples b
$← {0, 1}, computes c∗0 := x, c∗1 := xk1N (1 +N)mb , c∗2 := xk2N (1 +

N)mb , c∗3 := yN (1 +N)mb .
2. Runs π∗ ← Sim2(crsNIZK, τ, (c

∗
0, c
∗
1, c
∗
2, c
∗
3)).

3. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗), st) and answers decommitment queries

using k1.
4. Returns the truth value of b = b′.

Since g is a generator of JN and x is sampled uniformly at random from JN
there exists some r ∈ [ϕ(N)/2] such that x = gr. Therefore when y = x2

T

=

(g2
T

)r mod N , then B simulates G3 perfectly. Otherwise y is random value and
B simulates G4 perfectly.

Now we analyse the running time of the constructed adversary. Adversary
B1 computes h3 by T (λ) consecutive squarings and because T (λ) is polynomial
in λ, B1 is efficient. Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃NITC(·) ≥ T̃SSS(·) as required.

Game 5. In G5 we sample y3
$← Z∗N2 such that it has Jacobi symbol 1 and

compute c∗3 as y3(1 +N)mb .

Lemma 8.
|Pr[G4 = 1]− Pr[G5 = 1]| ≤ AdvDCR

B .

We construct an adversary B = {Bλ}λ∈N against DCR. Bλ(N, y) works as fol-
lows:

1. It samples g, y3, x
$← JN , k1, k2

$← [bN/2c], computes h1 := gk1 mod N,h2 :=

gk2 mod N,h3 := g2
T

mod N , runs (crsNIZK, τ) ← NIZK.Sim1(1λ, L) and sets
crs := (N,T (λ), g, h1, h2, h3, crsNIZK). Notice that value h3 is computed by
repeated squaring.
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2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using
k1.

3. Then it samples b
$← {0, 1}, w $← Z∗N2 such that

(
y
N

)
=
(
w
N

)
. We remark

that computing Jacobi symbol can be done efficiently without knowing fac-
torization of N.

4. It computes c∗0 := x, c∗1 := xk1N (1 + N)mb , c∗2 := xk2N (1 + N)mb , c∗3 :=
ywN (1 +N)mb . Runs π∗ ← Sim2(crsNIZK, τ, (c

∗
0, c
∗
1, c
∗
2, c
∗
3)).

5. It runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1.
6. Then it returns the truth value of b = b′.

If y = vN mod N2 then ywN = vNwN = (vw)N and hence ywN is N -th residue.
Moreover, the Jacobi symbol of yw is 1, since the Jacobi symbol is multiplica-
tively homomorphic. Therefore B simulates G4 perfectly.

Otherwise, if y is uniform random element in Z∗N2 , then ywN is also uni-
form among all elements of Z∗N2 that have Jacobi symbol 1 and B simulates G5

perfectly. This proves the lemma.
We remark that at this point c∗3 does not reveal any information about b. Here

we use that if x = y mod N then
(
x
N

)
=
(
y
N

)
and that there is an isomorphism

f : Z∗N ×ZN → Z∗N2 given by f(u, v) = uN (1 +N)v = uN (1 + vN) mod N2 (see
e.g. [KL14, Proposition 13.6]). Since f(u, v) mod N = uN + uNvN mod N =

uN mod N , that means that Jacobi symbol
(
f(u,v)
N

)
depends only on u. Hence

if
(
f(u,v)
N

)
= 1, then it must hold that

(
f(u,r)
N

)
= 1 for all r ∈ ZN . This implies

that a random element f(u, v) in Z∗N2 with
(
f(u,v)
N

)
= 1 has a uniformly random

distribution of v in ZN . Therefore if ywN = uN (1 +N)v mod N2 then ywN (1 +
N)mb = uN (1 + N)mb+v mod N2. Since v is uniform in ZN , (mb + v) is also
uniform in ZN , which means that ciphertext c∗3 does not reveal any information
about b.

Game 6. In G6 we sample k2 uniformly at random from [ϕ(N)/2].

Lemma 9.

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Again using a statistical argument this lemma directly follows from Lemma 2
with ` := 2.

Game 7. In G7 we sample y2
$← JN and compute c∗2 as yN2 (1 +N)mb .

Lemma 10.

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ AdvDDH
B .

We construct an adversary B = {Bλ}λ∈N against DDH in the group JN .
Bλ(N, g, gα, gβ , gγ) proceeds as follows:
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1. It samples k1
$← [bN/2c], computes h1 := gk1 mod N,h3 := g2

T

mod N ,
runs (crsNIZK, τ) ← NIZK.Sim1(1λ, L) and sets crs := (N,T, g, h1, h2 := gα,
h3, crsNIZK).

2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using
k1.

3. It samples b
$← {0, 1}, y3

$← Z∗N2 such that it has Jacobi symbol 1 and
computes (c∗0, c

∗
1, c
∗
2, c
∗
3) := (gβ , (gβ)k1N (1 + N)mb , (gγ)N (1 + N)mb , y3(1 +

N)mb). Runs π∗ ← Sim2(crsNIZK, τ, (c
∗
0, c
∗
1, c
∗
2, c
∗
3)).

4. It runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1.
5. It returns the truth value of b = b′.

If γ = αβ, then B simulates G6 perfectly. Otherwise gγ is uniform random
element in JN and B simulates G7 perfectly. This proves the lemma.

Game 8. In G8 we sample k2 uniformly at random from [bN/2c]. Again by
Lemma 2 with ` := 2 we get

Lemma 11.

|Pr[G7 = 1]− Pr[G8 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Game 9. In G9 we sample y2
$← Z∗N2 such that it has Jacobi symbol 1 and

compute c∗2 as y2(1 +N)mb .

Lemma 12.
|Pr[G8 = 1]− Pr[G9 = 1]| ≤ AdvDCR

B .

This can be proven in similar way as Lemma 8. We remark that at this point
c∗2 does not reveal any information about b, with the same argument as in the
transition from G4 to G5.

Game 10. In G10 we answer decommitment queries using Dec (Figure 5) with
i := 2 which means that secret key k2 and ciphertext c2 are used.

Lemma 13.
|Pr[G9 = 1]− Pr[G10 = 1]| ≤ SimSndNIZK

B .

Let E denote the event that adversaryA asks a decommitment query (c, πCom)
such that its decommitment using the key k1 is different from its decommitment
using the key k2. Since G9 and G10 are identical until E happens, it is sufficient
to bound the probability of E. Concretely,

|Pr[G9 = 1]− Pr[G10 = 1]| ≤ Pr[E].

We construct an adversary B that breaks one-time simulation soundness of
the NIZK. It is given as input crsNIZK together with a membership testing trap-
door τL := (k1, k2, t), where t := 2T mod ϕ(N)/2. The adversary BSim2

λ (crsNIZK, τL)
proceeds as follows:
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1. It computes h1 := gk1 mod N,h2 := gk2 mod N,h3 := gt mod N using the
membership testing trapdoor τL and sets crs := (N,T, g, h1, h2, h3, crsNIZK).

2. It runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using
k2.

3. It samples b
$← {0, 1}, x $← JN , y2, y3

$← Z∗N2 and computes (c∗0, c
∗
1, c
∗
2, c
∗
3) :=

(x, xk1N (1 + N)mb , y2(1 + N)mb , y3(1 + N)mb). Forwards (c∗0, c
∗
1, c
∗
2, c
∗
3) to

simulation oracle Sim2 and obtains a proof π∗.

4. It runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k2.

5. If there exists a decommitment query (c, πCom) such that Dec(crs, c, πCom, 1) 6=
Dec(crs, c, πCom, 2), then it returns (c, πCom). Note that such a query exists
iff E happens.

B simulates G10 perfectly and if the event E happens, it outputs a valid proof
for a statement which is not in the specified language L. Therefore we get

Pr[E] ≤ SimSndNIZK
B .

Game 11. In G11 we sample k1 uniformly at random from [ϕ(N)/2]. The follow-
ing again follows directly from Lemma 2 with ` := 2 .

Lemma 14.

|Pr[G10 = 1]− Pr[G11 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Game 12. In G12 we sample y1
$← JN and compute c∗1 as yN1 (1 +N)mb .

Lemma 15.

|Pr[G11 = 1]− Pr[G12 = 1]| ≤ AdvDDH
B .

This can be proven in similar way as Lemma 10.

Game 13. In G13 we sample y1
$← Z∗N2 such that it has Jacobi symbol 1 and

compute c∗1 as y1(1 +N)mb .

Lemma 16.

|Pr[G12 = 1]− Pr[G13 = 1]| ≤ AdvDCR
B .

This can be proven in similar way as Lemma 8. We remark that at this point c∗1
does not reveal any information about b, with the same arguments as above.

Lemma 17.

Pr[G13 = 1] =
1

2
.
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Clearly, c∗0 is uniform random element in JN and hence it does not contain any
information about the challenge message. Since y1, y2, y3 are sampled uniformly
at random from Z∗N2 the ciphertexts c∗1, c

∗
2, c
∗
3 are also uniform random elements

in Z∗N2 and hence do not contain any information about the challenge message
mb. Therefore, an adversary can not do better than guessing.

By combining Lemmas 4 - 17 we obtain the following:

AdvNITC
A =

∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣ ≤ 12∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]|+
∣∣∣∣Pr[G13 −

1

2

∣∣∣∣
≤ SndNIZK

B + ZKNIZK
B + AdvSSS

B + SimSndNIZK
B + 2AdvDDH

B + 3AdvDCR
B

+ 4

(
1

p
+

1

q
− 1

N

)
.

Theorem 3. (PGen,Com,ComVrfy,DecVrfy,FDec) defined in Figure 4 is a BND-
CCA-secure non-interactive timed commitment scheme.

Proof. We show that the construction is actually perfectly binding. This is
straightforward to show since Paillier encryption is perfectly binding. Therefore
there is exactly one message/randomness pair (m, r) which can pass the check
in DecVrfy. Therefore the first winning condition of the BND-CCA experiment
happens with probability 0. Moreover, since PGen is executed by the challenger,
the value h3 is computed correctly and therefore FDec reconstructs always the
correct message m. Therefore the second winning condition of BND-CCA exper-
iment happens with probability 0 as well.

Theorem 4. If NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) is a non-interactive
zero-knowledge proof system for L, then (PGen,Com,ComVrfy,DecVrfy,FDec,
FDecVrfy) defined in Figure 4 is a publicly verifiable non-interactive timed com-
mitment scheme.

Proof. Completeness is straightforward to verify. To prove soundness, notice that
if the commitment verifies, then we know that c0 = gr and c3 = hr3(1 +N)m for
honestly generated g and h3 and some r and m. Otherwise, an adversary would
be able to break soundness of the proof system. Since there is an isomorphism
f : Z∗N × ZN → Z∗N2 given by f(a, b) = aN (1 + N)b mod N2 (see e.g. [KL14,
Proposition 13.6]) there exist unique values πFDec and m such that c3 = πNFDec(1+
N)m mod N2. Therefore adversary is not able to provide a different message m′

fulfilling the required equation.
Finally, note that FDecVrfy is efficient, with a running time which is inde-

pendent of T .

It is straightforward to verify that considering the Eval algorithm, our con-
struction yields a linearly homomorphic NITC, which follows from the linear
homorphism of Paillier, as also used in [MT19].

Theorem 5. The NITC (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy,Eval) de-
fined in Figure 4 is a linearly homomorphic non-interactive timed commitment
scheme.
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3.4 Construction of Multiplicatively Homomorphic Non-Malleable
NITC

The construction described in this section is similar to that from Section 3.3, ex-
cept that we replace Paillier encryption with ElGamal to obtain a multiplicative
homomorphism and the construction is based on standard Naor-Yung paradigm.
Our construction is given in Figure 6 and we rely on a one-time simulation sound
NIZK for the following language:

L =
{

(c0, c1, c2)|∃(m, r) : (∧2i=1ci = hrim mod N) ∧ c0 = gr mod N
}
,

where g, h1, h2, N are parameters specifying the language.

PGen(1λ, T ) Com(crs,m)

(p, q,N, g)← GenMod(1λ) r
$← [bN/4c]

ϕ(N) := (p− 1)(q − 1) c0 := gr mod N

k1
$← [bN/4c] For i ∈ [2] : ci := hrim mod N

t := 2T mod ϕ(N)/4 c := (c0, c1, c2), w := (m, r)

h1 := gk1 mod N πCom ← NIZK.Prove(crsNIZK, c, w)
h2 := gt mod N πDec := r

crsNIZK ← NIZK.Setup(1λ, L) return (c, πCom, πDec)
return crs := (N,T, g, h1, h2, crsNIZK)

ComVrfy(crs, c, πCom) DecVrfy(crs, c,m, πDec)

return NIZK.Vrfy(crsNIZK, c, π) Parse c as (c0, c1, c2)
if ∧2

i=1ci = h
πDec
i m mod N ∧ c0 = gπDec mod N

return 1
return 0

FDec(crs, c) Eval(crs,⊗N , c1, . . . , cn)

Parse c as (c0, c1, c2) Parse ci as (ci,0, ci,1, ci,2)

Compute y := c2
T

0 mod N Compute c0 :=
∏n
i=1 ci,0 mod N, c1 := ⊥

m := c2 · y−1 mod N Compute c2 :=
∏n
i=1 ci,2 mod N

return m return c := (c0, c1, c2)

Fig. 6. Construction of Multiplicatively Homomorphic NITC in Standard Model.
⊗N refers to multiplication modN

Theorem 6. If (NIZK.Setup, NIZK.Prove, NIZK.Vrfy) is a one-time simulation-
sound non-interactive zero-knowledge proof system for L, the strong sequential
squaring assumption with gap ε holds relative to GenMod in QRN , and the Deci-
sional Diffie-Hellman assumption holds relative to GenMod in QRN , then (PGen,
Com,ComVrfy,DecVrfy,FDec) defined in Figure 6 is an IND-CCA-secure non-
interactive timed commitment scheme with ε, for any ε < ε.
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The proof can be found in Supplementary Material B.

Theorem 7. (PGen,Com,ComVrfy,DecVrfy,FDec) defined in Figure 6 is a BND-
CCA-secure non-interactive timed commitment scheme.

Proof. We show that the construction is perfectly binding. This is straightfor-
ward to show since ElGamal encryption is perfectly binding. Therefore there
is exactly one message/randomness pair (m, r) which can pass the check in
DecVrfy. Therefore the first winning condition of BND-CCA experiment hap-
pens with probability 0. Moreover, since PGen is executed by the challenger,
the value h3 is computed correctly and therefore FDec reconstructs always the
correct message m. Therefore the second winning condition of BND-CCA exper-
iment happens with probability 0 as well.

It is straightforward to verify that considering Eval algorithm, our construc-
tion yields multiplicatively homomorphic NITC.

Theorem 8. The NITC (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy,Eval) de-
fined in Figure 6 is a multiplicatively homomorphic non-interactive timed com-
mitment scheme.

Remark 4 (Public Verifiability). It is natural to ask if it is possible to make the
construction in Figure 6 publicly verifiable. Since the output m of FDec is per-

fectly determined by value y := c2
T

0 mod N , it is possible to achieve public veri-

fiability if one can efficiently check that indeed y equals to c2
T

0 mod N without
executing T squarings. However, this is exactly what proofs of exponentiation of
Pietrzak [Pie19] and Wesolowski [Wes19] do. Concretely, [Pie19,Wes19] propose

efficient proofs systems for the language L′ := {(G, a, b, T )|a, b ∈ G ∧ b = a2
T }

where G is some group where low order assumption [Pie19] or adaptive root
assumption [Wes19] hold. We remark, that for both suggested proof systems G
can be instantiated for example as Z∗N/{−1, 1} [Wes19,BBF18] or as it is pro-
posed by Pietrzak G can be instantiated as a group of signed quadratic residues
QR+

N := {|x| : x ∈ QRN}. One can argue that the strong sequential squaring
assumption holds in QR+

N (see e.g. [Pie19,EFKP20]). Therefore by adjusting the
construction in Figure 6 to work in the group QR+

N , one can obtain publicly
verifiable NITC by outputing in FDec the value y together with a proof of ex-

ponentiation that y = c2
T

0 mod N and FDecVrfy just checks that the proof of
exponentiation is valid and at the same time c2 = y ·m mod N . For complete-
ness we provide a description of these algorithms in Figure 7, where we use
(PoE.Prover, PoE.Vrfy) to denote a proof system for language L′. Both Pietrzak’s
and Wesolowski’s proof system are interactive protocols which might be made
non-interactive using Fiat-Shamir transformation. Thus we obtain a publicly
verifiable NITC in ROM.
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FDec(crs, c) FDecVrfy(crs, c,m, πFDec)

Parse c as (c0, c1, c2) Parse c as (c0, c1, c2)

y := c2
T

0 mod N , πPoE = PoE.Prove(c0, y) if c2 = m · y mod N ∧ PoE.Vrfy((c0, y), πPoE)
πFDec := (y, πPoE),m := c2 · y−1 mod N return 1
return (m,πFDec) return 0

Fig. 7. FDec and FDecVrfy of Publicly Verifiable NITC

4 Random Oracle Model Constructions

We are able to obtain more efficient construction of non-malleable non-interactive
timed commitments when we instantiate the non-interactive zero-knowledge
proof systems in the random oracle model [BR93]. Since the underlying lan-
guages and proofs differ in some subtle but crucial ways from the standard
model constructions, we provide the constructions together with proofs in full
detail.

4.1 Non-Interactive Zero-Knowledge Proofs in the Random Oracle
Model

Definition 14. A non-interactive proof system for an NP language L with re-
lation R is a pair of algorithms (Prove,Vrfy), which work as follows:

– π ← Prove(s, w) is a PPT algorithm which takes as input a statement s and
a witness w such that (s, w) ∈ R and outputs a proof π.

– Vrfy(s, π) ∈ {0, 1} is a deterministic algorithm which takes as input a state-
ment s and a proof π and outputs either 1 or 0, where 1 means that the proof
is “accepted” and 0 means it is “rejected”.

We say that a non-interactive proof system is complete, if for all (s, w) ∈ R
holds:

Pr[Vrfy(s, π) = 1 : π ← Prove(s, w)] = 1.

We say that a non-interactive proof system is sound if for all non-uniform
polynomial-size adversaries A = {Aλ}λ∈N there exists a negligible function negl(·)
such that for all λ ∈ N

SndNIZK
A = Pr

[
s /∈ L ∧ Vrfy(s, π) = 1 : (π, s)← Aλ

]
≤ negl(λ).

Next we define the zero-knowledge property for non-interactive proof sys-
tem in the random oracle model. The simulator Sim of a non-interactive zero-
knowledge proof system is modelled as a stateful algorithm which provides two
modes, namely (π, st) ← Sim(1, st, s) for answering proof queries and (v, st) ←
Sim(2, st, u) for answering random oracle queries. The common state st is up-
dated after each operation.
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Definition 15 (Zero-Knowledge in the ROM). Let (Prove,Vrfy) be a non-
interactive proof system for a relation R which may make use of a hash function
H : U → V. Let Funs[U ,V] be the set of all functions from the set U to the set V.
We say that (Prove,Vrfy) is non-interactive zero-knowledge proof in the random
oracle model (NIZK), if there exists an efficient simulator Sim such that for all
non-uniform polynomial-size adversaries A = {Aλ}λ∈N there exists a negligible
function negl(·) such that for all λ ∈ N

ZKNIZK
A =

∣∣∣Pr
[
AProveH(·,·),H(·)
λ = 1

]
− Pr

[
ASim1(·,·),Sim2(·)
λ

]
= 1
∣∣∣ ≤ negl(λ),

where

– H is a function sampled uniformly at random from Funs[U ,V],
– ProveH corresponds to the Prove algorithm, having oracle access to H,
– π ← Sim1(s, w) takes as input (s, w) ∈ R, and outputs the first output of

(π, st)← Sim(1, st, s),
– v ← Sim2(u) takes as input u ∈ U and outputs the first output of (v, st) ←

Sim(2, st, u).

Definition 16 (One-Time Simulation Soundness). Let (Prove,Vrfy) be a
non-interactive proof system for an NP language L with zero-knowledge simula-
tor Sim. We say that (Prove,Vrfy) is one-time simulation sound in the random
oracle model, if for all non-uniform polynomial-size adversaries A = {Aλ}λ∈N
there exists a negligible function negl(·) such that for all λ ∈ N

SimSndNIZK
A = Pr

[
s /∈ L ∧ (s, π) 6= (s′, π′)

∧VrfySim2(·)(s, π) = 1
: (s, π)← ASim1(·),Sim2(·)

λ

]
≤ negl(λ),

where Sim1(·) is a single query oracle which on input s′ returns the first out-
put of (π′, st) ← Sim(1, st, s′) and Sim2(u) returns the first output of (v, st) ←
Sim(2, st, u).

4.2 Efficient Instantiation of SS-NIZK in the ROM

In this section we provide efficient simulation sound NIZK proof systems in the
ROM for languages L3 and L4 that are used in our constructions. The languages
are defined in the following way:

L3 =

{
(h1, h2, c0, c1, c2, c3)|∃(m, r) :

(∧3i=1ci = hrNi (1 +N)m mod N2)∧
c0 = gr mod N

}
and

L4 =
{

(h1, h2, c0, c1, c2)|∃(m, r) : (∧2i=1ci = hrim mod N) ∧ c0 = gr mod N
}
,

where g, h3, N are parameters defining the language. For the language L3 this
is equivalent to proving that (cN0 , (h1 · (h2)−1)N , (c1 · (c2)−1)) and (cN0 , (h3 ·
(h2)−1)N , (c3 · (c2)−1)) are two DDH tuples where all computations are done
modN2. Similarly, for the language L4 this is equivalent to proving that (c0, (h1 ·
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(h2)−1), (c1 · (c2)−1)) is a DDH tuple where all computations are done mod
N . Therefore, we can instantiate the required NIZKs using Sigma protocols
that prove that given tuples are DDH tuples. These Sigma protocols can be
turned into efficient simulation-sound NIZKs in the ROM using the Fiat-Shamir
transformation [FS87]. We remark that we have to design a Sigma protocols
in a hidden order group setting, since the orders of the groups JN and QRN
are known neither by the prover, nor by the verifier. Current constructions of
Sigma protocols in hidden order groups are far less efficient than standard Sigma
protocols. However, we observe that to obtain simulation-sound NIZKs, it is
sufficient to design a Sigma protocol which has a negligible soundness error
and we do not have to care about special soundness. Therefore we are able to
avoid the strong RSA assumption which is often needed in Sigma protocols in
hidden order groups to prove special soundness. As a result we are able to avoid
both using an unnecessary large modulus N and a large number of sequential
repetitions as discussed in [BKS+09]. This results in particularly short proofs.

We recall at first definition of a Sigma protocol.

Definition 17. A Sigma protocol for an NP language L and a corresponding
binary relation R is an interactive 3-move protocol Σ between two interactive
algorithms which we will call Prover and Verifier. Prover is given input a state-
ment and a witness (s, w) and the Verifier is given as input a statement s. The
protocol works as follows:

1. Prover starts the protocol by computing a message a, called the commitment,
and sends a to Verifier. commitment, and a state st. The message a is sent
to the Verifier.

2. Verifier receives a and samples a challenge c uniformly from a finite challenge
space C and sends it to the Prover.

3. Prover receives the challenge c end computes a response z ∈ Z. It sends the
response z to Verifier.

4. Verifier runs a deterministic function V(s, a, c, z) which outputs 0 or 1 mean-
ing reject or accept, respectively.

A triple (a, c, z) is called a transcript of the Sigma protocol. A transcript (a, c, z)
is called an accepting transcript for s if it cause V(s, a, c, z) = 1. We say that
a Sigma protocol is complete if for all (s, w) ∈ R it holds that whenever a
Prover(s, w) and a Verifier(s) interact, then the Verifier always accepts.

Definition 18 (Honest Verifier Zero-Knowledge). We say that a Sigma
protocol for an NP language L is honest verifier zero-knowledge (HVZK), if there
exists a PPT simulator Sim which takes as input s ∈ L and outputs transcript
(a, c, z) that that has the same distribution as honest transcript resulting from
interactions between Prover and Verifier on common input s.

Definition 19 (Soundness). We say that a Sigma protocol for an NP language
L is sound, if a proof for a statement x /∈ L output by any (even unbounded)
adversary is accepted only with negligible probability.
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We define also slightly stronger soundness definition where adversary is given an
auxiliary input.

Definition 20 (Soundness with respect to auxiliary input). We say that
a Sigma protocol for an NP language L is sound with respect to auxiliary input
aux, if a proof for a statement x /∈ L output by any (even unbounded) adversary
which is given aux as input is accepted only with negligible probability. We use
SndσA to denote the advantage of A.

Definition 21 (Quasi Unique Responses). Let Σ be a Sigma protocol. We
say that Σ has quasi unique responses if for every non-uniform polynomial-size
adversary A = {Aλ}λ∈N there exists a negligible function negl(·) such that for
all λ ∈ N

OURΣ
B = Pr

[
V(s, a, c, z) = V(s, a, c, z′) = 1

∧z 6= z′
: (s, a, c, z, z′)← Aλ

]
≤ negl(λ).

Definition 22 (Unpredictable Commitments). Let Σ be a Sigma protocol
for a relation R with transcripts (a, c, z) ∈ A × C × Z. We say that Σ has δ-
unpredictable commitments if for all (s, w) ∈ R and for all a∗ ∈ A holds that
with probability at most δ, an interaction between Prover(s, w) and Verifier(s)
produce a transcript (a, c, z) with fm∗ = a.

Faust et al. [FKMV12] have shown that Sigma protocols fulfilling the above
definitions can be turned into simulation-sound NIZK via the Fiat-Shamir trans-
form.

Theorem 9 ([FKMV12]). Consider a non-trivial three-round public-coin hon-
est verifier zero-knowledge interactive proof system (Prover,Verifier) for an NP
language L, with quasi unique responses. In the random oracle model, the proof
system (Prove,Vrfy) derived from (Prover,Verifier) via the Fiat-Shamir transform
is a simulation-sound NIZK with respect to its canonical simulator Sim.

Now we are ready to describe our Sigma protocol Σ = (Prover,Verifier) for
language L3. At first, we recall that f : Z∗N × ZN → Z∗N2 defined as f(x, y) =
xN (1+N)y is an isomorphism. Since g is generator of JN and has order ϕ(N)/2,
also gN mod N2 has order ϕ(N)/2.

1. Prover samples α
$← [bN/2c], computes a0 := gNα, a1 := (h1 · h−12 )Nα, a2 :=

(h3 · h−12 )Nα mod N2 and sends (a0, a1, a2) to Verifier.

2. Verifier samples v
$← [2d] and sends v to Prover.

3. Prover computes the response z := α+ v · r and sends it to Verifier.
4. Verifier accepts if and only if gNz = a0 · cNv0 ∧ (h1 ·h−12 )Nz = a1 · (c1 · c−12 )v ∧

(h3 · h−12 )Nz = a2 · (c3 · c−12 )v where all computation are done modN2 and
z ∈ [bN/2c+ v bN/2c].

Theorem 10. If the factoring assumption holds relative GenMod, then the above
defined protocol Σ = (Prover,Verifier) is a Sigma protocol for language L3 that is
perfectly complete, honest verifier zero-knowledge, sound with respect to auxiliary
input aux = (p, q) and has quasi-unique responses.
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Proof. Completeness is straightforward to verify:

1. gNz = gN(α+v·r) = gNα + (gr)Nv = a0 · cNv0 mod N2;
2. (h1 · h−12 )Nz = (h1 · h−12 )N(α+v·r) = (h1 · h−12 )Nα · (hNr1 · (hNr2 )−1)v = a1 ·

(hNr1 ·m · (hNr2 ·m)−1)v = a1 · (c1 · c−12 )v mod N2;
3. (h3 · h−12 )Nz = (h3 · h−12 )N(α+v·r) = (h3 · h−12 )Nα · (hNr3 · (hNr2 )−1)v = a1 ·

(hNr3 ·m · (hNr2 ·m)−1)v = a2 · (c3 · c−12 )v mod N2;
4. Since r, α ∈ [bN/2c] and v ∈ [2d], therefore z := α+v ·r ∈ [bN/2c+v bN/2c].

HVZK. The simulator Sim((h1, h2, c0, c1, c2, c3)) works as follows:

1. Samples v
$← [2d], z

$← [bN/2c+ v bN/2c].
2. Computes a0 := gNz ·c−v0 , a1 := (h1 ·h−12 )Nz · (c1 ·c−12 )−v, a2 := (h3 ·h−12 )Nz ·

(c3 · c−12 )−v mod N2 and returns ((a0, a1, a2), v, z).

It is easy to verify that the produced transcript is valid and has the same dis-
tribution as an honest transcript.

Soundness. Let ((a0, a1, a2), v, z) is accepting transcript for (h1, h2, c0, c1, c2, c3) /∈
L3. That means c0 = gNr0 , (c1 · (c2)−1) = (h1 · (h2)−1)Nr1 mod N, (c3 · (c2)−1) =
(h3 · (h2)−1)Nr2 mod N and r0 6= r1 mod ϕ(N)/2 or r0 6= r2 mod ϕ(N)/2. Let
a0 = gNα0 mod N2, a1 = (h1 · (h2)−1)Nα1 mod N2, a2 = (h3 · (h2)−1)Nα2 mod
N2. Considering the first verification equation, taking discrete logarithms to base
gN , the second verification equation with discrete logarithms to base (h1 ·h−12 )N ,
and the third verification equation with discrete logarithms to base (h3 · h−12 )N ,
we obtain following equations:

z = α0 + r0v mod ϕ(N)/2 (1)

z = α1 + r1v mod ϕ(N)/2 (2)

z = α2 + r2v mod ϕ(N)/2 (3)

Computing (1)-(2) we obtain

0 = (α0 − α1) + (r0 − r1)v mod ϕ(N)/2

v =
α1 − α0

r0 − r1
mod ϕ(N)/2

Computing (1)-(3) we obtain

0 = (α0 − α2) + (r0 − r2)v mod ϕ(N)/2

v =
α2 − α0

r0 − r2
mod ϕ(N)/2

Now notice that at least one of (r0 − r1) and (r0 − r2) is not zero and values
α0, α1, α2, r0, r1, r2 are fixed before challenge v is provided by Verifier. Therefore,
in order to provide an accepting proof, the adversary has to predict value v. If
we choose 2d < ϕ(N)/2, then v is unique and therefore the probability that the
adversary produces an accepting transcript for a statement that is not in L3 is at
most 2−d, which can be set to be negligible in λ. This holds even for unbounded
adversaries.
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Soundness with auxiliary input aux = (p, q) Notice that proof of soundness holds
even if an adversary is given as input factorization of N .

Quasi Unique Responses. We show that our Sigma protocol has quasi unique
responses, otherwise we are able to factorize N . Assume that an adversary can
output a statement ((h1, h2, c0, c1, c2, c3), (a0, a1, a2), v, z, z′) such that ((a0, a1,
a2), v, z) and ((a0, a1, a2), v, z′) are accepting transcripts for (h1, h2, c0, c1, c2, c3)
and z 6= z′. Therefore using the first verification equation it holds gNz = a0 ·
cv0 = gNz

′
mod N =⇒ z = z′ mod ϕ(N)/2. Hence, z − z′ = α · ϕ(N)/2 =⇒

2(z − z′) = α · ϕ(N) for some α 6= 0. Applying Lemma 1 for M = 2(z − z′) we
are able to factorize N .

This concludes the proof.

Next we describe our Sigma protocol Σ = (Prover,Verifier) for language L4:

1. Prover samples α
$← [bN/4c], computes a0 := gα mod N, a1 := (h1·h−12 )α mod

N and sends (a0, a1) to Verifier.

2. Verifier samples v
$← [2d] and sends v to Prover.

3. Prover computes the response z := α+ v · r and sends it to Verifier.

4. Verifier accepts if and only if gz = a0 · cv0 mod N ∧ (h1 · h−12 )z = a1 · (c1 ·
c−12 )v mod N ∧ z ∈ [bN/4c+ v bN/4c].

Theorem 11. If the factoring assumption holds relative GenMod, then the above
defined protocol Σ = (Prover,Verifier) is a Sigma protocol for language L4 that
is perfectly complete, honest verifier zero-knowledge, sound with auxiliary input
aux := (p, q), has quasi-unique responses and 2

p′q′ -unpredictable commitments.

Proof. We prove required properties.

Completeness. We verify the given requirements:

1. gz = gα+v·r = gα + (gr)v = a0 · cv0 mod N ;

2. (h1 · h−12 )z = (h1 · h−12 )α+v·r = (h1 · h−12 )α · (hr1 · (hr2)−1)v = a1 · (hr1 ·m · (hr2 ·
m)−1)v = a1 · (c1 · c−12 )v;

3. since r, α ∈ [bN/4c] and v ∈ [2d], therefore z := α+v ·r ∈ [bN/4c+v bN/4c].

HVZK. The simulator Sim((h1, h2, c0, c1, c2)) works as follows:

1. Samples v
$← [2d], z

$← [bN/4c+ v bN/4c].
2. Computes a0 := gz·c−v0 , a1 := (h1·h−12 )z·(c1·c−12 )−v and returns ((a0, a1), v, z).

It is easy to verify that produced transcript is accepting and moreover it has the
same distribution as a honest transcript.
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Soundness. Let ((a0, a1), v, z) be an accepting transcript for (h1, h2, c0, c1, c2) /∈
L4. That means c0 = gr0 , (c1 · (c2)−1) = (h1 · (h2)−1)r1 mod N, and r0 6= r1
mod ϕ(N)/4. Let a0 = gα0 mod N, a1 = (h1 · (h2)−1)α1 mod N . Considering
the first verification equation with discrete logarithms to base g and the second
verification equation with discrete logarithm to base (h1·h−12 ) we obtain following
equations:

z = α0 + r0v mod ϕ(N)/4 (4)

z = α1 + r1v mod ϕ(N)/4 (5)

(6)

Computing (1)-(2) we obtain

0 = (α0 − α1) + (r0 − r1)v mod ϕ(N)/4

v =
α1 − α0

r0 − r1
mod ϕ(N)/4

Now notice that (r0−r1) is not zero and values α0, α1, r0, r1, are fixed before
challenge v is provided by Verifier. Therefore in order to provide accepting proof,
the adversary has to correctly guess value v. If we choose 2d < ϕ(N)/4 value v
is unique and therefore probability the adversary produce accepting transcript
for a statement that is not in L4 is at most 2−d which can be set to be negligible
in λ. This holds even for unbounded adversaries.

Soundness with auxiliary input aux = (p, q) Notice that proof of soundness holds
even if an adversary is given as input factorization of N .

Quasi Unique Responses. We show that our Sigma protocol has quasi unique
responses, otherwise we are able to factorize N . Assume that an adversary can
output a statement ((h1, h2, c0, c1, c2), (a0, a1), v, z, z′) such that ((a0, a1), v, z)
and ((a0, a1), v, z′) are accepting transcripts for (h1, h2, c0, c1, c2) and z 6= z′.
Therefore using the first verification equation it holds gz = a0 · cv0 = gz

′
mod

N =⇒ z = z′ mod ϕ(N)/4. Hence, z−z′ = α·ϕ(N)/4 =⇒ 4(z−z′) = α·ϕ(N)
for some α 6= 0. Applying Lemma 1 for M = 4(z − z′) we are able to factorize
N .

Unpredictable Commitments . Elements a0, a1 are essentially random elements
in QRN . But since we sample exponent α from [bN/4c] which is slightly bigger
than ϕ(N)/4 some elements are twice so likely to be sampled. Therefore δ =
2 4
ϕ(N)/4 = 2

p′q′ .

By Theorem 9 our Sigma protocols can be turned into simulation-sound
NIZKs with alogrithms (Prove,Vrfy) in the random oracle model via the Fiat-
Shamir transform. Moreover since the underlying sigma protocols are sound with
respect to auxiliary input aux := (p, q) the NIZKs obtained via Fiat-Shamir
transformation are also sound with respect to auxiliary input in the sense of
Definition 20.

36



4.3 Construction of Linearly Homomorphic Non-Malleable NITC

We define language for our construction of a linearly homomorphic NITC de-
picted in Figure 8 which relies on a one-time simulation sound NIZKs in the
ROM in the following way:

L =

{
(h1, h2, c0, c1, c2, c3)|∃(m, r) :

(∧3i=1ci = hrNi (1 +N)m mod N2)∧
c0 = gr mod N

}
,

where g, h3, N are parameters specifying the language.

PGen(1λ, T ) Com(crs,m)

(p, q,N, g)← GenMod(1λ) r
$← [bN/2c]

ϕ(N) := (p− 1)(q − 1) c0 := gr mod N

k1, k2
$← [bN/2c] For i ∈ [3] : ci := hrNi (1 +N)m mod N2

t := 2T mod ϕ(N)/2 Φ := (h1, h2, c0, c1, c2, c3), w := (m, r)

For i ∈ [2] : hi := gki mod N πCom ← NIZK.Prove(Φ,w)
h3 := gt mod N c := (c0, c1, c2, c3)
return crs := (N,T, g, h1, h2, h3) πDec := r

return (c, πCom, πDec)

ComVrfy(crs, c, πCom) DecVrfy(crs, c,m, πDec)

Parse c as (c0, c1, c2, c3) Parse c as (c0, c1, c2, c3)

return NIZK.Vrfy((h1, h2, c0, c1, c2, c3), π) if ∧3
i=1ci = h

πDecN
i (1 +N)m mod N2

∧c0 = gπDec mod N
return 1

return 0

FDec(crs, c) FDecVrfy(crs, c,m, πFDec)

Parse c as (c0, c1, c2, c3) Parse c as (c0, c1, c2, c3)

Compute πFDec := c2
T

0 mod N if c3 = πNFDec(1 +N)m mod N2

m :=
c3·π−NFDec

( mod N2)−1

N
return 1

return (m,πFDec) return 0

Eval(crs,⊕N , c1, . . . , cn)

Parse ci as (ci,0, ci,1, ci,2, ci,3)
Compute c0 :=

∏n
i=1 ci,0 mod N, c1 := ⊥, c2 := ⊥, c3 :=

∏n
i=1 ci,3 mod N2

return c := (c0, c1, c2, c3, π)

Fig. 8. Construction of Linearly Homomorphic NITC in ROM.
⊕N refers to addition modN

Theorem 12. If NIZK = (NIZK.Prove, NIZK.Vrfy) is a one-time simulation-sound
non-interactive zero-knowledge proof system for L which is sound with respect
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to auxiliary input aux := (p, q), the strong sequential squaring assumption with
gap ε holds relative to GenMod in JN , the Decisional Composite Residuosity as-
sumption holds relative to GenMod, and the Decisional Diffie-Hellman assump-
tion holds relative to GenMod in JN , then (PGen,Com,ComVrfy,DecVrfy,FDec)
defined in Figure 8 is an IND-CCA-secure non-interactive timed commitment
scheme with ε, for any ε < ε.

The proof can be found in Supplementary Material C.

Theorem 13. (PGen,Com,ComVrfy,DecVrfy,FDec) defined in Figure 8 is a BND-
CCA-secure non-interactive timed commitment scheme.

Proof. This can be proven in the same way as Theorem 3.

Theorem 14. If NIZK = (NIZK.Prove, NIZK.Vrfy) is a non-interactive zero-knowledge
proof system for L, then (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy) defined
in Figure 8 is a publicly verifiable non-interactive timed commitment scheme.

Proof. This can be proven in the same way as Theorem 4.

It is straightforward to verify that considering Eval algorithm, our construc-
tion yields linearly homomorphic NITC.

Theorem 15. The NITC (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy,Eval)
defined in Figure 8 is a linearly homomorphic non-interactive timed commitment
scheme.

4.4 Construction of Multiplicatively Homomorphic Non-Malleable
NITC

We define language for our construction of a multiplicatively homomorphic NITC
which relies on a Sigma protocol in the following way:

L =
{

(h1, h2, c0, c1, c2)|∃(m, r) : (∧3i=1ci = hrim mod N) ∧ c0 = gr mod N
}
,

where g,N are parameters specifying the language.
Our construction is given in Figure 9 where (NIZK.Prove, NIZK.Vrfy) is the

Fiat-Shamir transform of a Sigma protocol for language L. Since it is not straight-
forward to provide a security proof directly with respect to standard definition
of one-time simulation sound NIZK, we provide the security proof in the random
oracle model relying on the properties of the underlying Sigma protocol.

Theorem 16. If Σ = (Prover,Verifier) is a Sigma protocol for L with quasi
unique responses and δ-unpredictable commitments which is sound with respect
to auxiliary input aux = (p, q) and is honest verifier zero-knowledge, H : QR7

N →
[2d] is a hash function modelled as a random oracle, the strong sequential squar-
ing assumption with gap ε holds relative to GenMod in QRN , and the Deci-
sional Diffie-Hellman assumption holds relative to GenMod in QRN , then (PGen,
Com,ComVrfy,DecVrfy,FDec) defined in Figure 9 is an IND-CCA-secure non-
interactive timed commitment scheme with ε, for any ε < ε.
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PGen(1λ, T ) Com(crs,m)

(p, q,N, g)← GenMod(1λ) r
$← [bN/2c]

ϕ(N) := (p− 1)(q − 1) c0 := gr mod N

k1
$← [bN/4c] For i ∈ [2] : ci := hrim mod N

t := 2T mod ϕ(N)/4 Φ := (h1, h2, c0, c1, c2), w := (m, r)

h1 := gk1 mod N πCom ← NIZK.Prove(Φ,w)
h2 := gt mod N c := (c0, c1, c2)
return crs := (N,T, g, h1, h2) πDec := r

return (c, πCom, πDec)

ComVrfy(crs, c, πCom) DecVrfy(crs, c,m, πDec)

Parse c as (c0, c1, c2) Parse c as (c0, c1, c2)
return NIZK.Vrfy((h1, h2, c0, c1, c2), πCom) if ∧2

i=1ci = h
πDec
i m mod N ∧ c0 = gπDec mod N

return 1
return 0

FDec(crs, c) Eval(crs,⊗N , c1, . . . , cn)

Parse c as (c0, c1, c2) Parse ci as (ci,0, ci,1, ci,2)

Compute y := c2
T

0 mod N Compute c0 :=
∏n
i=1 ci,0 mod N, c1 := ⊥

m := c2 · y−1 mod N Compute c2 :=
∏n
i=1 ci,2 mod N

return m return c := (c0, c1, c2)

Fig. 9. Construction of Multiplicatively Homomorphic NITC in ROM.
⊗N refers to multiplication modN

The proof can be found in Supplementary Material D.

Theorem 17. (PGen,Com,ComVrfy,DecVrfy,FDec) defined in Figure 9 is a BND-
CCA-secure non-interactive timed commitment scheme.

Proof. This can be proven in the same way as Theorem 7.

It is straightforward to verify that considering Eval algorithm, our construc-
tion yields multiplicatively homomorphic NITC.

Theorem 18. The NITC (PGen,Com,ComVrfy,DecVrfy,FDec,FDecVrfy,Eval)
defined in Figure 9 is a multiplicatively homomorphic non-interactive timed com-
mitment scheme.

Remark 5 (Public Verifiability). The construction can be made publicly verifi-
able in the same way as suggested in Remark 4.
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Lemma 2. Let p, q be primes, N = pq, ` ∈ N such that gcd(`, ϕ(N)) = ` and
X and Y be random variables defined on domain [bN/`c] as follows:

Pr[X = r] = 1/ bN/`c ∀r ∈ [bN/`c] and Pr[Y = r] =

{
`/ϕ(N) ∀r ∈ [ϕ(N)/`]

0 otherwise.

Then

SD(X,Y ) ≤ 1

p
+

1

q
− 1

N
.

Proof. The following computation proves the lemma:

SD(X,Y ) =
1

2

∑
r∈[bN/`c]

|Pr[X = r]− Pr[Y = r]| =

1

2

ϕ(N)/`∑
r=1

|Pr[X = r]− Pr[Y = r]|+
bN/`c∑

r=ϕ(N)/`+1

|Pr[X = r]− Pr[Y = r]|

 =

1

2

ϕ(N)/`∑
r=1

∣∣∣∣ 1

bN/`c
− `

ϕ(N)

∣∣∣∣+

bN/`c∑
r=ϕ(N)/`+1

∣∣∣∣ 1

bN/`c
− 0

∣∣∣∣
 ≤

1

2

ϕ(N)/`∑
r=1

∣∣∣∣ `N − `

ϕ(N)

∣∣∣∣+

bN/`c∑
r=ϕ(N)/`+1

∣∣∣∣ 1

bN/`c
− 0

∣∣∣∣
 =

1

2

(
ϕ(N)/`

∣∣∣∣`(ϕ(N)−N)

ϕ(N)N

∣∣∣∣+ (bN/`c − ϕ(N)/`)
1

bN/`c

)
=

1

2

(
(N − ϕ(N))

N
+ 1− ϕ(N)/`

bN/`c

)
≤ 1

2

(
(N − ϕ(N))

N
+ 1− ϕ(N)/`

N/`

)
=

1

2

2(N − ϕ(N))

N
=

(N − (N − p− q + 1))

N
=
p+ q − 1

N
=

1

p
+

1

q
− 1

N
.

B Proof of Theorem 6

Completeness is implied by the completeness of the NIZK and can be verified
by inspection.

To prove security we define a sequence of games G0−G8. For i ∈ {0, 1, . . . , 8}
we denote by Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs
b′ in the game Gi such that b = b′.

Game 0. Game G0 corresponds to the original security experiment where de-
commitment queries are answered using FDec.

Game 1. In game G1 decommitment queries are answered using the algorithm
Dec defined in Figure 10 with i := 2, sk := t which means that secret key t and
ciphertext c2 are used, to answer decommitment queries efficiently.
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Dec(crs, c, πCom, i, sk)

Parse c as (c0, c1, c2)
if NIZK.Vrfy(crsNIZK, (c0, c1, c2), πCom) = 1

Compute y := csk0 mod N
return ci · y−1 mod N

return ⊥

Fig. 10. Decommitment oracle

Lemma 18.

Pr[G0 = 1] = Pr[G1 = 1].

Notice that both DEC and Dec answer decommitment queries in the exactly
same way, hence the change is only syntactical.

Game 2. Game G2 proceeds exactly as the previous game but we run the zero-
knowledge simulator (crs, τ) ← Sim1(1λ, L) in PGen and produce a simulated
proof for the challenge commitment as π∗ ← Sim2(crs, τ, (c∗0, c

∗
1, c
∗
2)). By the

zero-knowledge security of the NIZK we directly obtain

Lemma 19.

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ ZKNIZK
B .

We construct an adversary B = {Bλ}λ∈N against the zero-knowledge security
of NIZK as follows: Bλ(crsNIZK, τL) :

1. Set crs := (N,T (λ), g, h1, h2, crsNIZK), run (m0,m1, st) ← A1,λ(crs), and an-
swer decommitment queries using t which is included in τL = (k1, t).

2. Sample b
$← {0, 1}, r $← [bN/4c] and compute c∗0 := gr, c∗1 := hr1mb, c

∗
2 :=

hr2mb mod N . Then submit (s := (h1, h2, c
∗
0, c
∗
1, c
∗
2), w := (m, r)) to the oracle

to obtain proof π∗.

3. Run b′ ← A2,λ((c∗0, c
∗
1, c
∗
2), π∗, st), answering decommitment queries using t.

4. Return the truth value of b = b′.

If the proof π∗ is generated using NIZK.Prove, then B simulates G1 perfectly.
Otherwise, π∗ is generated using Sim1 and B simulates G2 perfectly. This proves
the lemma.

Game 3. In G3 we sample k1 uniformly at random from [ϕ(N)/4].

Lemma 20.

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 1

p
+

1

q
− 1

N
.

This lemma directly follows from Lemma 2 with ` := 4.
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Game 4. In G4 we sample y1
$← QRN and compute c∗1 as y1mb.

Lemma 21.
|Pr[G3 = 1]− Pr[G4 = 1]| ≤ AdvDDH

B .

We construct an adversary B = {Bλ}λ∈N against DDH in the group QRN .
Bλ(N, p, q, g, gα, gβ , gγ) :

1. Computes ϕ(N) := (p− 1)(q− 1), t := 2T mod ϕ(N)/4, h2 := gt mod N and
sets crs := (N,T, g, h1 := gα, h2).

2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using t.

3. Samples b
$← {0, 1} and computes (c∗0, c

∗
1, c
∗
2) := (gβ , gγ ·mb, (g

β)t ·mb). Runs
π∗ ← Sim(1, st′, (c∗0, c

∗
1, c
∗
2)).

4. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2), π∗, st) and answers decommitment queries using

t.
5. Returns the truth value of b = b′. We remark that at this point c∗1 does not

reveal any information about mb.

If γ = αβ then B simulates G3 perfectly. Otherwise gγ is uniform random element
in QRN and B simulates G4 perfectly. This proofs the lemma. We remark that
at this point c∗1 does not reveal any information about mb.

Game 5. In G5 we sample k1 uniformly at random from [bN/4c].

Lemma 22.

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ 1

p
+

1

q
− 1

N
.

This lemma directly follows from Lemma 2 with ` := 4.

Game 6. In G6 we answer decommitment queries using Dec (Figure 10) with
i := 1, sk := k1 which means that secret key k1 and ciphertext c1 are used.

Lemma 23.
|Pr[G5 = 1]− Pr[G6 = 1]| ≤ SimSndNIZK

B .

Let E denote the event that adversaryA asks a decommitment query (c, πCom)
such that its decommitment using the key k1 is different from its decommitment
using the key t. Since G5 and G6 are identical until E does not happen, by the
standard argument it is sufficient to upper bound the probability of happening
E. Concretely,

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ Pr[E].

We construct an adversary B that breaks one-time simulation soundness of
the NIZK and it is given as input crsNIZK together with a membership testing
trapdoor τL := (k1, t) where t := 2T mod ϕ(N)/4.

The adversary BSim2

λ (crsNIZK, τL) :

1. Computes h1 := gk1 mod N,h2 := gt mod N using the membership testing
trapdoor τL and sets crs := (N,T, g, h1, h2, crsNIZK).
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2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k1.

3. Samples b
$← {0, 1}, x, y1

$← QRN and computes (c∗0, c
∗
1, c
∗
2) := (x, y1mb,

xtmb). Forwards (c∗0, c
∗
1, c
∗
2) to simulation oracle Sim2 and obtains a proof

π∗.
4. Runs b′ ← A2,λ((c∗0, c

∗
1, c
∗
2), π∗, st) and answers decommitment queries using

k1.
5. Find a decommitment query (c, πCom) such that Dec(crs, c, πCom, 1, k1) 6=

Dec(crs, c, πCom, 2, t) and returns (c, πCom).

B simulates G6 perfectly and if the event E happens, it outputs a valid proof
for a statement which is not in the specified language L. Therefore

Pr[E] ≤ SimSndNIZK
B ,

which concludes the proof of the lemma.

Game 7. In G7 we sample r uniformly at random from [ϕ(N)/4].

Lemma 24.

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which we
sample r, to upper bound the advantage of adversary we can use Lemma 2 with
` := 4, which directly yields required upper bound.

Game 8. In G8 we sample y2
$← QRN and compute c∗2 as y2mb.

Let T̃SSS(λ) be the polynomial whose existence is guaranteed by the SSS as-
sumption. Let polyB(λ) be the fixed polynomial which bounds the time required
to execute Steps 1–2 and answer decommitment queries in Step 3 of the ad-
versary B2,λ defined below. Set T := (polyB(λ))1/ε. Set T̃NITC := max(T̃SSS, T ).

Lemma 25. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
depth of A2,λ is at most T ε(λ) for some T (·) ≥ T (·) we can construct a polynomial-
size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ is at most T ε(λ)
with

|Pr[G7 = 1]− Pr[G8 = 1]| ≤ AdvSSS
B .

The adversary B1,λ(N,T (λ), g) :

1. Samples k1
$← [bN/4c], computes h1 := gk1 mod N,h2 := g2

T (λ)

mod N ,
runs (crsNIZK, τ)← NIZK.Sim1(1λ, L) and sets crs := (N,T (λ), g, h1, h2, crsNIZK).
Notice that value h2 is computed by repeated squaring.

2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k1.
3. Outputs (N, g, k1, h1, h2, crsNIZK, τ,m0,m1, st)

The adversary B2,λ(x, y, (N, g, k1, h1, h2, crsNIZK, τ,m0,m1, st)) :

1. Samples b
$← {0, 1}, y1

$← QRN , computes c∗0 := x, c∗1 := y1mb, c
∗
2 := ymb.
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2. Runs π∗ ← Sim(crsNIZK, τ, (c
∗
0, c
∗
1, c
∗
2)).

3. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2), π∗), st) and answers decommitment queries using

k1.
4. Returns the truth value of b = b′.

Since g is a generator of QRN and x is sampled uniformly at random from QRN
there exists some r ∈ [ϕ(N)/4] such that x = gr. Therefore when y = x2

T

=

(g2
T

)r mod N , then B simulates G7 perfectly. Otherwise y is random value and
B simulates G8 perfectly. We remark that at this point c∗2 does not reveal any
information about mb.

Now we analyse the running time of the constructed adversary. Adversary
B1 computes h2 by T (λ) consecutive squarings and because T (λ) is polynomial
in λ, B1 is efficient. Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃NITC(·) ≥ T̃SSS(·) as required.

Lemma 26.

Pr[G8 = 1] =
1

2
.

Clearly, c∗0 is uniform random element in QRN and hence it does not contain
any information about the challenge message. Since y1, y2 are sampled uniformly
at random from QRN the ciphertexts c∗1, c

∗
2 are also uniform random elements

in QRN and hence do not contain any information about the challenge message
mb. Therefore, an adversary can not do better than guessing.

By combining Lemmas 18 - 26 we obtain the following:

AdvNITC
A =

∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣ ≤ 7∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]|+
∣∣∣∣Pr[G8 −

1

2

∣∣∣∣
≤ ZKNIZK

B + AdvSSS
B + SimSndNIZK

B + AdvDDH
B + 3

(
1

p
+

1

q
− 1

N

)
,

which concludes the proof.

C Proof of Theorem 12

Completeness is implied by the completeness of the NIZK and can be verified
by inspection.

To prove security we define a sequence of games G0−G13. For i ∈ {0, 1, . . . , 13}
we denote by Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs
b′ in the game Gi such that b = b′.

Game 0. Game G0 corresponds to the original security experiment where de-
commitment queries are answered using FDec.

46



Dec(crs, c, πCom, i)

Parse c as (c0, c1, c2, c3)
if NIZK.Vrfy((h1, h2, c0, c1, c2, c3), πCom) = 1

Compute y := cki0 mod N

return ci·y−N ( mod N2)−1
N

return ⊥

Fig. 11. Decommitment oracle

Game 1. In game G1 decommitment queries are answered using the algorithm
Dec defined in Figure 11 with i := 1, meaning that secret key k1 and ciphertext
c1 are used, to answer decommitment queries efficiently.

Lemma 27.
|Pr[G0 = 1]− Pr[G1 = 1]| ≤ SndNIZK

B .

Notice that if c1 and c3 contain the same message, both oracles answer de-
commitment queries consistently. Let E denote the event that the adversary A
asks a decommitment query (c, πCom) such that its decommitment using the key
k1 is different from its decommitment using FDec. Since G0 and G1 are identical
until E happens, we bound the probability of E. Concretely, we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[E].

We construct an adversary B that breaks soundness with respect to auxiliary
input aux := (p, q) of the NIZK. The adversary Bλ(p, q) proceeds as follows:
1. Samples k1, k2

$← [bN/2c], computes h1 := gk1 mod N,h2 := gk2 mod N,
ϕ(N) := (p−1)(q−1), t := 2T mod ϕ(N)/2 and sets crs := (N,T, g, h1, h2, h3)
where h3 is given by L.

2. Then it runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries
using k1.

3. It samples b
$← {0, 1}, r $← [bN/2c] and computes c∗0 := gr, c∗1 := hrN1 (1 +

N)mb , c∗2 := hrN2 (1 +N)mb , c∗3 := hrN3 (1 +N)mb . It sets (s := (h1, h2, c
∗
0, c
∗
1,

c∗2, c
∗
3), w := (m, r)) and runs π∗ ← NIZK.Prove(s, w).

4. Next, it runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment

queries using k1.
5. Finally, it checks whether there exists a decommitment query (c, πCom) such

that DEC(c, πCom, 1) 6= Dec(crs, c, πCom, 1). If E occurs, then this is the case,
and it returns ((h1, h2, c0, c1, c2, c3), πCom). Notice that finding such a query
can be done efficiently with the knowledge of t since instead of running FDec

it is possible to verify the proof and simply compute
c3·(ct0)

−N ( mod N2)−1
N

which produce the same result as FDec.

B simulates G1 perfectly and if the event E happens, then it outputs a valid
proof for a statement which is not in the specified language L. Therefore we get

Pr[E] ≤ SndNIZK
B .
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Game 2. Game G2 proceeds exactly as the previous game but we use the zero-
knowledge simulator (π∗, st)← Sim(1, st, (h1, h2, c

∗
0, c
∗
1, c
∗
2, c
∗
3)) to produce a sim-

ulated proof for the challenge commitment and Sim(2, st, ·) to answer random
oracle queries. By zero-knowledge security of underlying NIZK we directly obtain

Lemma 28.
|Pr[G1 = 1]− Pr[G2 = 1]| ≤ ZKNIZK

B .

We construct an adversary B = {Bλ}λ∈N against zero-knowledge security of
NIZK as follows:

1. Samples k1, k2
$← [bN/2c], computes h1 := gk1 mod N,h2 := gk2 mod N and

sets crs := (N,T (λ), g, h1, h2, h3).
2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k1.

3. Samples b
$← {0, 1}, r $← [bN/2c] and computes c∗0 := gr, c∗1 := hrN1 (1 +

N)mb , c∗2 := hrN2 (1 +N)mb , c∗3 := hrN3 (1 +N)mb . It submits (s := (h1, h2, c
∗
0,

c∗1, c
∗
2, c
∗
3), w := (m, r)) to its oracle and obtains proof π∗ as answer.

4. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1.
5. Returns the truth value of b = b′.

If the proof π∗ is generated using NIZK.Prove, then B simulates G1 perfectly.
Otherwise π∗ is generated using Sim1 and B simulates G2 perfectly. This proofs
the lemma.

Game 3. In G3 we sample r uniformly at random from [ϕ(N)/2].

Lemma 29.

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which we
sample r, to upper bound the advantage of adversary we can use Lemma 2 with
` := 2, which directly yields required upper bound.

Game 4. In G4 we sample y3
$← JN and compute c∗3 as yN3 (1 +N)mb .

Let T̃SSS(λ) be the polynomial whose existence is guaranteed by the SSS as-
sumption. Let polyB(λ) be the fixed polynomial which bounds the time required
to execute Steps 1–2 and answer decommitment queries in Step 3 of the ad-
versary B2,λ defined below. Set T := (polyB(λ))1/ε. Set T̃NITC := max(T̃SSS, T ).

Lemma 30. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
depth of A2,λ is at most T ε(λ) for some T (·) ≥ T (·) we can construct a polynomial-
size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ is at most T ε(λ)
with

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ AdvSSS
B .

The adversary B1,λ(N,T (λ), g) :
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1. Samples k1, k2
$← [bN/2c], computes h1 := gk1 mod N,h2 := gk2 mod N,

h3 := g2
T (λ)

mod N and sets crs := (N,T (λ), g, h1, h2, h3). Notice that value
h3 is computed by repeated squaring.

2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k1.
3. Outputs (N, g, k1, k2, h1, h2, h3,m0,m1, st)

The adversary B2,λ(x, y, (N, g, k1, k2, h1, h2, h3,m0,m1, st)) :

1. Samples b
$← {0, 1}, computes c∗0 := x, c∗1 := xk1N (1 +N)mb , c∗2 := xk2N (1 +

N)mb , c∗3 := yN (1 +N)mb .
2. Runs π∗ ← Sim(1, st′, (h1, h2, c

∗
0, c
∗
1, c
∗
2, c
∗
3)).

3. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1.
4. Returns the truth value of b = b′.

Since g is a generator of JN and x is sampled uniformly at random from JN
there exists some r ∈ [ϕ(N)/2] such that x = gr. Therefore when y = x2

T

=

(g2
T

)r mod N , then B simulates G3 perfectly. Otherwise y is random value and
B simulates G4 perfectly.

Now we analyse the running time of the constructed adversary. Adversary
B1 computes h3 by T (λ) consecutive squarings and because T (λ) is polynomial
in λ, B1 is efficient. Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃NITC(·) ≥ T̃SSS(·) as required.

Game 5. In G5 we sample y3
$← Z∗N2 such that it has Jacobi symbol 1 and

compute c∗3 as y3(1 +N)mb .

Lemma 31.
|Pr[G4 = 1]− Pr[G5 = 1]| ≤ AdvDCR

B .

We construct an adversary B = {Bλ}λ∈N against DCR.
Bλ(N, y) :

1. Samples g, y3, x
$← JN , k1, k2

$← [bN/2c], computes h1 := gk1 mod N,h2 :=

gk2 mod N,h3 := g2
T

mod N and sets crs := (N,T, g, h1, h2, h3). Notice that
value h3 is computed by repeated squaring.

2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k1.

3. Samples b
$← {0, 1}, w $← Z∗N2 such that

(
y
N

)
=
(
w
N

)
. We remark that com-

puting Jacobi symbol can be done efficiently without knowing factorization
of N.

4. Computes c∗0 := x, , c∗1 := xk1N (1 + N)mb , c∗2 := xk2N (1 + N)mb , c∗3 :=
ywN (1 +N)mb . Runs π∗ ← Sim(1, st′, (h1, h2, c

∗
0, c
∗
1, c
∗
2, c
∗
3)).

5. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1.
6. Returns the truth value of b = b′.
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If y = vN mod N2 then ywN = vNwN = (vw)N and hence ywN is N -th
residue. Moreover, the Jacobi symbol of yw is 1, since the Jacobi symbol is
multiplicatively homomorphic. Therefore B simulates G4 perfectly.

Otherwise, if y is uniform random element in Z∗N2 , then ywN is also uni-
form among all elements of Z∗N2 that have Jacobi symbol 1 and B simulates G5

perfectly. This proves the lemma.
We remark that at this point c∗3 does not reveal any information about b. Here

we use that if x = y mod N then
(
x
N

)
=
(
y
N

)
and that there is an isomorphism

f : Z∗N ×ZN → Z∗N2 given by f(u, v) = uN (1 +N)v = uN (1 + vN) mod N2 (see
e.g. [KL14, Proposition 13.6]). Since f(u, v) mod N = uN + uNvN mod N =

uN mod N , that means that Jacobi symbol
(
f(u,v)
N

)
depends only on u. Hence

if
(
f(u,v)
N

)
= 1 then it must hold that

(
f(u,r)
N

)
= 1 for all r ∈ ZN . This implies

that a random element f(u, v) in Z∗N2 with
(
f(u,v)
N

)
= 1 has a uniformly random

distribution of v in ZN . Therefore if ywN = uN (1 +N)v mod N2 then ywN (1 +
N)mb = uN (1 + N)mb+v mod N2. Since v is uniform in ZN , (mb + v) is also
uniform in ZN , which means that ciphertext c∗3 does not reveal any information
about b.

Game 6. In G6 we sample k2 uniformly at random from [ϕ(N)/2].

Lemma 32.

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Again using a statistical argument this lemma directly follows from Lemma 2
with ` := 2.

Game 7. In G7 we sample y2
$← JN and compute c∗2 as yN2 (1 +N)mb .

Lemma 33.
|Pr[G6 = 1]− Pr[G7 = 1]| ≤ AdvDDH

B .

We construct an adversary B = {Bλ}λ∈N against DDH in the group JN .
Bλ(N, g, gα, gβ , gγ) :

1. Samples k1
$← [bN/2c], computes h1 := gk1 mod N,h3 := g2

T

mod N and
sets crs := (N,T, g, h1, h2 := gα, h3).

2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k1.

3. Samples b
$← {0, 1}, y3

$← Z∗N2 such that it has Jacobi symbol 1 and computes
(c∗0, c

∗
1, c
∗
2, c
∗
3) := (gβ , (gβ)k1N (1+N)mb , (gγ)N (1+N)mb , y3(1+N)mb). Runs

π∗ ← Sim(1, st′, (h1, h2, c
∗
0, c
∗
1, c
∗
2, c
∗
3)).

4. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k1.
5. Returns the truth value of b = b′.

If γ = αβ, then B simulates G6 perfectly. Otherwise gγ is uniform random
element in JN and B simulates G7 perfectly. This proofs the lemma.
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Game 8. In G8 we sample k2 uniformly at random from [bN/2c].

Lemma 34.

|Pr[G7 = 1]− Pr[G8 = 1]| ≤ 1

p
+

1

q
− 1

N
.

This lemma directly follows from Lemma 2.

Game 9. In G9 we sample y2
$← Z∗N2 such that it has Jacobi symbol 1 and

compute c∗2 as y2(1 +N)mb .

Lemma 35.
|Pr[G8 = 1]− Pr[G9 = 1]| ≤ AdvDCR

B .

This can be proven in similar way as Lemma 31. We remark that at this point
c∗2 does not reveal any information about mb.

Game 10. In G10 we answer decommitment queries using Dec (Figure 11) with
i := 2 which means that secret key k2 and ciphertext c2 are used.

Lemma 36.
|Pr[G9 = 1]− Pr[G10 = 1]| ≤ SimSndNIZK

B .

Let E denote the event that adversaryA asks a decommitment query (c, πCom)
such that its decommitment using the key k1 is different from its decommitment
using the key k2. Since G9 and G10 are identical until E does not happen, by the
standard argument it is sufficient to upper bound the probability of happening
E. Concretely,

|Pr[G9 = 1]− Pr[G10 = 1]| ≤ Pr[E].

We construct an adversary B which breaks one-time simulation soundness of
the NIZK.

The adversary BSim1,Sim2

λ :
1. Computes crs← PGen(1λ, T ) as defined in the construction where the value
h3 is computed using repeated squaring instead.

2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k2.

3. Samples b
$← {0, 1}, x $← JN , y2, y3

$← Z∗N2 and computes (c∗0, c
∗
1, c
∗
2, c
∗
3) :=

(x, xk1N (1+N)mb , y2(1+N)mb , y3(1+N)mb). Forwards (h1, h2, c
∗
0, c
∗
1, c
∗
2, c
∗
3)

to simulation oracle Sim1 and obtains a proof π∗.
4. Runs b′ ← A2,λ((c∗0, c

∗
1, c
∗
2, c
∗
3), π∗, st) and answers decommitment queries

using k2.
5. Find a decommitment query (c, πCom) such that Dec(crs, c, πCom, 1) 6= Dec(crs,
c, πCom, 2) and returns ((h1, h2, c0, c1, c2, c3), πCom).

B simulates G10 perfectly and if the event E happens, it outputs a valid proof
for a statement which is not in the specified language L. Therefore

Pr[E] ≤ SimSndNIZK
B ,

which concludes the proof of the lemma.
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Game 11. In G11 we sample k1 uniformly at random from [ϕ(N)/2].

Lemma 37.

|Pr[G10 = 1]− Pr[G11 = 1]| ≤ 1

p
+

1

q
− 1

N
.

This lemma directly follows from Lemma 2 with ` := 2.

Game 12. In G12 we sample y1
$← JN and compute c∗1 as yN1 (1 +N)mb .

Lemma 38.
|Pr[G11 = 1]− Pr[G12 = 1]| ≤ AdvDDH

B .

This can be proven in similar way as Lemma 33.

Game 13. In G13 we sample y1
$← Z∗N2 such that it has Jacobi symbol 1 and

compute c∗1 as y1(1 +N)mb .

Lemma 39.
|Pr[G12 = 1]− Pr[G13 = 1]| ≤ AdvDCR

B .

This can be proven in similar way as Lemma 31. We remark that at this point
c∗1 does not reveal any information about mb.

Lemma 40.

Pr[G13 = 1] =
1

2
.

Clearly, c∗0 is uniform random element in JN and hence it does not contain any
information about the challenge message. Since y1, y2, y3 are sampled uniformly
at random from Z∗N2 the ciphertexts c∗1, c

∗
2, c
∗
3 are also uniform random elements

in Z∗N2 and hence do not contain any information about the challenge message
mb. Therefore, an adversary can not do better than guessing.

By combining Lemmas 27 - 40 we obtain the following:

AdvNITC
A =

∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣ ≤ 12∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]|+
∣∣∣∣Pr[G13 −

1

2

∣∣∣∣
≤ SndNIZK

B + ZKNIZK
B + AdvSSS

B + SimSndNIZK
B + 2AdvDDH

B + 3AdvDCR
B

+ 4

(
1

p
+

1

q
− 1

N

)
.

which concludes the proof.

D Proof of Theorem 16

Completeness is implied by the completeness of the NIZK and can be verified
by inspection.

To prove security we define a sequence of games G0−G8. For i ∈ {0, 1, . . . , 8}
we denote by Gi = 1 the event that the adversary A = {(A1,λ,A2,λ)}λ∈N outputs
b′ in the game Gi such that b = b′.

In the following we assume that the underlying sigma protocol produces
transcripts of the form (a, v, z), where any of these values can be vectors.
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Dec(crs, c, πCom, i, sk)

Parse c as (c0, c1, c2)
if NIZK.Vrfy((h1, h2, c0, c1, c2), πCom) = 1

Compute y := csk0 mod N
return ci · y−1 mod N

return ⊥

Fig. 12. Decommitment oracle

Game 0. Game G0 corresponds to the original security experiment where de-
commitment queries are answered using FDec.

Game 1. In game G1 decommitment queries are answered using the algorithm
Dec defined in Figure 12 with i := 1, sk := k1 which means that secret key k1
and ciphertext c1 are used, to answer decommitment queries efficiently.

Lemma 41.
|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Q · SndΣB .

Notice that if c1 and c2 contain the same message, both oracles answer de-
commitment queries consistently. Let E denote the event that the adversary A
asks a decommitment query (c := (c0, c1, c2), πCom := (a, z)) such that its de-
commitment using the key k1 is different from its decommitment using FDec.
Since G0 and G1 are identical until E happens, we bound the probability of E.
Concretely, we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[E].

We construct an adversary B that breaks soundness with respect to auxiliary
input aux := (p, q) of the Sigma protocol. W.l.o.g. we assume that whenever event
E happens,A previously asked the random oracleH on input (h1, h2, c0, c1, c2, a).
The argument for this is that it is straightforward to transform any adversary
that violates this condition into an adversary that makes one additional query
to H and wins with the same probability. Let A makes at most Q random oracle
queries. The adversary Bλ(p, q) proceeds as follows:

1. Samples k1
$← [bN/4c], computes h1 := gk1 mod N,ϕ(N) := (p − 1)(q −

1), t := 2T mod ϕ(N)/4, h2 := gt mod N and sets crs := (N,T (λ), g, h1, h2).
2. Then it runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries

using k1.

3. Samples i
$← [Q] and answers random oracle queries (hj1, h

j
2, c

j
0, c

j
1, c

j
2, a

j) in
the following way:
– If i = j it runs the protocol with the honest verifier Verifier for statement

(hj1, h
j
2, c

j
0, c

j
1, c

j
2) using as a commitment value aj . It obtains challenge v

from Verifier and it programs the oracle H(hj1, h
j
2, c

j
0, c

j
1, c

j
2, a

j) := v if .
Answer the query with v.
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– Otherwise, it returns H(hj1, h
j
2, c

j
0, c

j
1, c

j
2, a

j) if it is set. If this is not the

case samples vj , sets H(hj1, h
j
2, c

j
0, c

j
1, c

j
2, a

j) := vj and returns vj .

4. It samples b
$← {0, 1}, r $← [bN/4c] and computes c∗0 := gr, c∗1 := hr1mb, c

∗
2 :=

hr2mb. It sets (s := (h1, h2, c
∗
0, c
∗
1, c
∗
2), w := (m, r)) and produces honest proof

π∗.
5. Next, it runs b′ ← A2,λ((c∗0, c

∗
1, c
∗
2), π∗, st) and answers decommitment queries

using k1.
6. Finally, it checks whether there exists a decommitment query (c := (c0, c1,
c2), πCom = (a, z)) such that DEC(crs, c, πCom) 6= Dec(crs, c, πCom, 1, k1). This
check can be done efficiently with the knowledge of t. If E occurs and Bλ has
guessed index i correctly, then value z allows Bλ succeed in the attack game.

Suppose that the query (h1, h2, c0, c1, c2, a) has been asked to the random
oracle as i∗-th query and that i = i∗. Then it holds

SndΣB = Pr[E ∧ i = i∗] = Pr[E] Pr[i = i∗] =
1

Q
Pr[E],

where the first equality holds since the events are independent.

Game 2. Game G2 proceeds exactly as the previous game but we use the
HVZK simulator Sim to produce a simulated proof for the challenge commit-
ment (h1, h2, c

∗
0, c
∗
1, c
∗
2) and upon receiving simulated transcript (a∗, v∗, z∗) from

the simulator we try to program the random oracle in the following way: if H(h1,
h2, c

∗
0, c
∗
1, c
∗
2, a
∗) = ⊥ then H(h1, h2, c

∗
0, c
∗
1, c
∗
2, a
∗) := v∗ and setting π∗ = (a∗, z∗).

Now notice that, since the transcripts have the exactly same distributions, the
games proceeds exactly the same until our programming of random oracle is
successful. Let denote by E the event that we are not able to set correct value
for H. E happens only in the case that adversary already asked a random oracle
query at the point H(h1, h2, c

∗
0, c
∗
1, c
∗
2, a
∗). Let Q is the number of random oracle

queries asked by A. Since the Sigma protocol has δ-unpredictable commitments
the probability of this event is by union bound is less than Qδ. Hence we obtain

Lemma 42.

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ Qδ.

Game 3. In G3 we sample r uniformly at random from [ϕ(N)/4].

Lemma 43.

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 1

p
+

1

q
− 1

N
.

Since the only difference between the two games is in the set from which we
sample r, to upper bound the advantage of adversary we can use Lemma 2 with
` := 4, which directly yields required upper bound.
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Game 4. In G4 we sample y2
$← QRN and compute c∗2 as y2mb.

Let T̃SSS(λ) be the polynomial whose existence is guaranteed by the SSS as-
sumption. Let polyB(λ) be the fixed polynomial which bounds the time required
to execute Steps 1–2 and answer decommitment queries in Step 3 of the ad-
versary B2,λ defined below. Set T := (polyB(λ))1/ε. Set T̃NITC := max(T̃SSS, T ).

Lemma 44. From any polynomial-size adversary A = {(A1,λ,A2,λ)}λ∈N, where
depth of A2,λ is at most T ε(λ) for some T (·) ≥ T (·) we can construct a polynomial-
size adversary B = {(B1,λ,B2,λ)}λ∈N where the depth of B2,λ is at most T ε(λ)
with

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ AdvSSS
B .

The adversary B1,λ(N,T (λ), g) :

1. Samples k1
$← [bN/4c], computes h1 := gk1 mod N,h2 := g2

T (λ)

mod N and
sets crs := (N,T (λ), g, h1, h2). Notice that value h2 is computed by repeated
squaring.

2. Runs (m0,m1, st)← A1,λ(crs) and answers decommitment queries using k1.
Random oracle queries are answered as before.

3. Outputs (N, g, k1, h1, h2,m0,m1, st)

The adversary B2,λ(x, y, (N, g, k1, h1, h2,m0,m1, st)) :

1. Samples b
$← {0, 1}, computes c∗0 := x, c∗1 := xk1mb, c

∗
2 := ymb.

2. Runs (a∗, v∗, z∗)← Sim(h1, h2, c
∗
0, c
∗
1, c
∗
2). If H(h1, h2, c

∗
0, c
∗
1, c
∗
2, a
∗) = ⊥ sets

H(h1, h2, c
∗
0, c
∗
1, c
∗
2, a
∗) = v∗. Sets π∗ = (a∗, z∗).

3. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2), π∗, st) and answers decommitment queries using

k1. Random oracle queries are answered as before.
4. Returns the truth value of b = b′.

Since g is a generator of QRN and x is sampled uniformly at random from QRN
there exists some r ∈ [ϕ(N)/2] such that x = gr. Therefore when y = x2

T

=

(g2
T

)r mod N , then B simulates G3 perfectly. Otherwise y is random value and
B simulates G4 perfectly. We remark that at this point c∗2 does not reveal any
information about mb.

Now we analyse the running time of the constructed adversary. Adversary
B1 computes h3 by T (λ) consecutive squarings and because T (λ) is polynomial
in λ, B1 is efficient. Moreover, B2 fulfils the depth constraint:

depth(B2,λ) = polyB(λ) + depth(A2,λ) ≤ T ε(λ) + T ε(λ) ≤ 2T ε(λ) = o(T ε(λ)).

Also T (·) ≥ T̃NITC(·) ≥ T̃SSS(·) as required.

Game 5. Let (c∗, π∗com = (a∗, z∗)) is the challenge commitment. In G5 we abort
experiment if adversary asks any decommitment query (c, πCom = (a, z)) such
that c = c∗, a = a∗ and z 6= z∗. We denote this event by E.

Lemma 45.
|Pr[G4 = 1]− Pr[G5 = 1]| ≤ OURσ

B.
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Since G4 and G5 are identical until E does not happen, by the standard argu-
ment it is sufficient to upper bound the probability of happening E. Concretely,

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ Pr[E].

We construct an adversary B which breaks quasi unique responses property
of the Sigma protocol. The adversary Bλ proceeds as follows:

1. Samples k1
$← [bN/4c], computes h1 := gk1 mod N,h2 := g2

T

mod N and
sets crs := (N,T (λ), g, h1, h2). Notice that h2 is computed by repeated squar-
ing.

2. Then it runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries
using k1. Random oracle queries are answered as before.

3. Samples b
$← {0, 1}, computes c∗0 := x, c∗1 := xk1mb, c

∗
2 := ymb.

4. Runs (a∗, v∗, z∗)← Sim(h1, h2, c
∗
0, c
∗
1, c
∗
2). If H(h1, h2, c

∗
0, c
∗
1, c
∗
2, a
∗) = ⊥ sets

H(h1, h2, c
∗
0, c
∗
1, c
∗
2, a
∗) = v∗. Sets π∗ = (a∗, z∗).

5. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2), π∗, st) and answers decommitment queries using

k1. Random oracle queries are answered as before.
6. Returns the truth value of b = b′.
7. Finally, it checks whether there is a decommitment query (c, π = (a, z))

such that c = c∗, a = a∗ and z 6= z∗. If E occurs, then this is the case, and it
returns ((h1, h2, c

∗
0, c
∗
1, c
∗
2), a∗, v∗, z∗, z) where v∗ = H(h1, h2, c

∗
0, c
∗
1, c
∗
2, a
∗).

Notice, that if E happens that Bλ indeed provides two transcripts which has
different responses which yields

Pr[E] ≤ OURΣ
B .

Game 6. In game G6 decommitment queries are answered using the algorithm
Dec defined in Figure 12 with i := 2, sk := t which means that secret key t and
ciphertext c2 are used, to answer decommitment queries efficiently.

Lemma 46.
|Pr[G5 = 1]− Pr[G6 = 1]| ≤ Q · SndΣB .

Let E denote the event that adversaryA asks a decommitment query (c, πCom =
(a0, a1, z)) such that its decommitment using the key k1 is different from its de-
commitment using the key t. Since G5 and G6 are identical until E does not
happen, by the standard argument it is sufficient to upper bound the probabil-
ity of happening E. Concretely,

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ Pr[E].

We construct an adversary B that breaks soundness with respect to auxiliary
input aux := (p, q) of the Sigma protocol. W.l.o.g. we assume that whenever event
E happens,A previously asked the random oracleH on input (h1, h2, c0, c1, c2, a).
The argument for this is that it is straightforward to transform any adversary
that violates this condition into an adversary that makes one additional query
to H and wins with the same probability. Let A makes at most Q random oracle
queries. The adversary Bλ(p, q) proceeds as follows:
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1. Samples k1
$← [bN/4c], computes h1 := gk1 mod N,ϕ(N) := (p − 1)(q −

1), t := 2T mod ϕ(N)/4, h2 := gt mod N and sets crs := (N,T (λ), g, h1, h2).
2. Then it runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries

using k1.

3. Samples i
$← [Q] and answers random oracle queries (hj1, h

j
2, c

j
0, c

j
1, c

j
2, a

j , ) in
the following way:

– If i = j it runs the protocol with the honest verifier Verifier for statement
(hj1, h

j
2, c

j
0, c

j
1, c

j
2) using as a commitment value aj . It obtains challenge

v from Verifier and it programs the oracle H(hj1, h
j
2, c

j
0, c

j
1, c

j
2, a

j) := v.
Answer the query with v.

– Otherwise, if H(hj1, h
j
2, c

j
0, c

j
1, c

j
2, a

j) 6= ⊥ returns H(hj1, h
j
2, c

j
0, c

j
1, c

j
2, a

j).

Else it samples vj , sets H(hj1, h
j
2, c

j
0, c

j
1, c

j
2, a

j) := vj and returns vj .

4. Samples b
$← {0, 1}, x, y2

$← QRN and computes (c∗0, c
∗
1, c
∗
2) := (x, xk1mb,

y2mb).
5. Runs (a∗, v∗, z∗)← Sim(h1, h2, c

∗
0, c
∗
1, c
∗
2). If H(h1, h2, c

∗
0, c
∗
1, c
∗
2, a
∗) = ⊥ sets

H(h1, h2, c
∗
0, c
∗
1, c
∗
2, a
∗) = v∗. Sets π∗ = (a∗, z∗).

6. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2), π∗, st) and answers decommitment queries using

k1 and random oracle queries in the same way as before.
7. Finally, it checks whether there exists a decommitment query (c, πCom =

(a, z)) such that Dec(crs, c, πCom, 1, k1) 6= Dec(crs, c, πCom, 2, t). If E occurs,
then this is the case and it returns z as a response to the challenge v.

Suppose that the query (h1, h2, c0, c1, c2, a) has been asked to the random
oracle as i∗-th query and that i = i∗. Then Bλ guesses a correct index for
which A asks decommitment query for a statement which is not in the specified
language L. Therefore we get

SndΣB = Pr[E ∧ i = i∗] = Pr[E] Pr[i = i∗] =
1

Q
Pr[E],

where the first equality holds since the events are independent.

Game 7. In G7 we sample k1 uniformly at random from [ϕ(N)/4].

Lemma 47.

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 1

p
+

1

q
− 1

N
.

This lemma directly follows from Lemma 2 with ` := 4.

Game 8. In G8 we sample y1
$← QRN and compute c∗1 as y1mb.

Lemma 48.

|Pr[G7 = 1]− Pr[G8 = 1]| ≤ AdvDDH
B .

We construct an adversary B = {Bλ}λ∈N against DDH in the group QRN .
Bλ(N, p, q, g, gα, gβ , gγ) :
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1. Computes ϕ(N) := (p− 1)(q− 1), t := 2T mod ϕ(N)/4, h2 := gt mod N and
sets crs := (N,T, g, h1 := gα, h2).

2. Runs (m0,m1, st) ← A1,λ(crs) and answers decommitment queries using t.
Random oracle queries are answered as before.

3. Samples b
$← {0, 1} and computes (c∗0, c

∗
1, c
∗
2) := (gβ , gγ ·mb, (g

β)t ·mb).
4. Runs (a∗, v∗, z∗)← Sim(h1, h2, c

∗
0, c
∗
1, c
∗
2). If H(h1, h2, c

∗
0, c
∗
1, c
∗
2, a
∗) = ⊥ sets

H(h1, h2, c
∗
0, c
∗
1, c
∗
2, a
∗) = v∗. Sets π∗ = (a∗, z∗).

5. Runs b′ ← A2,λ((c∗0, c
∗
1, c
∗
2), π∗, st) and answers decommitment queries using

t. Random oracle queries are answered as before.
6. Returns the truth value of b = b′. We remark that at this point c∗1 does not

reveal any information about mb.

If γ = αβ then B simulates G7 perfectly. Otherwise gγ is uniform random element
in QRN and B simulates G8 perfectly. This proofs the lemma. We remark that
at this point c∗1 does not reveal any information about mb.

Lemma 49.

Pr[G8 = 1] =
1

2
.

Clearly, c∗0 is uniform random element in QRN and hence it does not contain
any information about the challenge message. Since y1, y2 are sampled uniformly
at random from QRN the ciphertexts c∗1, c

∗
2 are also uniform random elements

in QRN and hence do not contain any information about the challenge message
mb. Therefore, an adversary can not do better than guessing.

By combining Lemmas 41 - 49 we obtain the following:

AdvNITC
A =

∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣ ≤ 7∑
i=0

|Pr[Gi = 1]− Pr[Gi+1 = 1]|+
∣∣∣∣Pr[G8 −

1

2

∣∣∣∣
≤ 2Q · SndΣB +Qδ + AdvSSS

B + OURΣ
B + AdvDDH

B + 2

(
1

p
+

1

q
− 1

N

)
,

which concludes the proof.
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