
WrapQ: Side-Channel Secure Key Management
for Post-Quantum Cryptography

Markku-Juhani O. Saarinen[0000−0002−2555−235X]

PQShield Ltd. Oxford, UK
mjos@pqshield.com

Abstract. Transition to PQC brings complex challenges to builders of
secure cryptographic hardware. PQC keys usually need to be stored off-
module and protected via symmetric encryption and message authentica-
tion codes. Only a short, symmetric Key-Encrypting Key (KEK) can be
managed on-chip with trusted non-volatile key storage. For secure use,
PQC key material is handled in masked format; as randomized shares.
Due to the masked encoding of the key material, algorithm-specific tech-
niques are needed to protect the side-channel security of the PQC key
import and export processes.

In this work, we study key handling techniques used in real-life secure
Kyber and Dilithium hardware. We describe WrapQ, a masking-friendly
key-wrapping mechanism designed for lattice cryptography. On a high
level, WrapQ protects the integrity and confidentiality of key material
and allows keys to be stored outside the main security boundary of the
module. Significantly, its wrapping and unwrapping processes minimize
side-channel leakage from the KEK integrity/authentication keys as well
as the masked Kyber or Dilithium key material payload.

We demonstrate that masked Kyber or Dilithium private keys can be
managed in a leakage-free fashion from a compact WrapQ format without
updating its encoding in non-volatile (or read-only) memory. WrapQ has
been implemented in a side-channel secure hardware module. Kyber and
Dilithium wrapping and unwrapping functions were validated with 100K
traces of ISO 17825 / TVLA-type leakage assessment.

Keywords: Side-Channel Security · Masking Countermeasures · Key
Wrapping · Kyber · Dilithium

1 Introduction

With the standardization of CRYSTALS suite algorithms Kyber [3] and Dilithium
[5] as the preferred NIST Post-Quantum Cryptography (PQC) methods for key
agreement and digital signatures [1], their secure and efficient implementation
has become one of the most important engineering challenges in cryptography.
NSA has also selected these two algorithms for the CNSA 2.0 suite for protecting
classified information in National Security Systems [30].

1.1 Side-Channel Countermeasures for Lattice Cryptography

Kyber and Dilithium are gradually replacing older RSA and Elliptic Curve Cryp-
tography in systems where it is a requirement that a device (such as a mobile
phone, authentication token, or a smart card) does not leak sensitive informa-
tion even if an adversary has physical access to the device or its close proximity.
A related (System-on-Chip) PQC use case is platform security, where crypto-
graphic signatures and protocols are used to protect system firmware/bitstream
integrity and updates against unauthorized modification and other attacks.

Side-Channel Attacks (SCA) use external physical measurements to derive
information about the data being processed. Some of the most important consid-
erations are Timing Attacks (TA) [22], Differential Power Analysis (DPA) [23],
and Differential Electromagnetic Analysis (DEMA) [33]. Almost any implemen-
tation can be rapidly attacked with these methods if appropriate countermea-
sures are not in place. Mitigations against TA, DPA, DEMA non-invasive attacks
are required for FIPS 140-3/ISO 19790 certification [20,21] at higher levels.

Masking [12] has emerged as the most prominent and effective way to secure
lattice-based cryptography against side-channel attacks. Masking is based on
randomly splitting all secret variables into two or more shares.

Definition 1. Order-d masked encoding [[x]] of a group element x ∈ G consists
of a tuple of d+ 1 shares (x0, x1, · · · , xd), xi ∈ G with x0 + x1 + · · ·+ xd ≡ x.

The addition operation can be defined in an arbitrary finite group G; Boolean
masking uses the exclusive-or operation ⊕, while arithmetic masking uses mod-
ular addition. Vectors, matrices, and polynomials can be represented as shares.

A fundamental security requirement is that the shares are randomized so
that all d + 1 shares are required to reconstruct x, and any subset of only d
shares reveals no statistical information about x itself. There are |G|d possible
representations [[x]] for x;Mask refreshing refers to a re-randomization procedure
that maps [[x]] to another encoding [[x]]′ of x.

Computation of cryptographic functions [[y]] = f([[x]]) is organized in a way
that avoids directly combining the shares, thereby limiting leakage. Arbitrary
circuits can be transformed to use masking with quadratic O(d2) overhead [19].
It has been shown that the amount of side channel information required to learn
x or y grows exponentially in relation to masking order d [12]. Hence masking is
asymptotically efficient.

Several abstract models have been proposed for the purpose of providing
theoretical proofs of security for masked implementations, including the Ishai-
Sahai-Wagner probing model [19] and Prouff-Rivain noisy leakage model [32,35].
Designers often proceed by describing a set of generic “gadgets” that make up the
secured portion of the algorithm and then providing analysis for the composition.
The SNI (Strong Non-Interference) [6] property allows better composability.

In addition to theoretical soundness, an essential advantage of masking coun-
termeasures for PQC is that they are generally less dependent on the physical
details of the implementation when compared to logic-level techniques such as

dual-rail countermeasures [2]. However, it is essential to verify the leakage prop-
erties experimentally. There are standard approaches to physical leakage assess-
ment [14,21,38].

1.2 Sensitivity Analysis: Private Keys and Secret Variables

Side-channel leakage can be exploited in any component that handles secret
key material. In a broader sensitivity analysis (such as the one performed on
Dilithium in [18]), it is apparent that the key management processes must meet
the same security requirements as the key generation or private key operations.

Often the “zeroth” step of an asymmetric private-key operation such as sign-
ing or decapsulation is “load private key.” In SCA-protected implementation,
the private key clearly cannot really be stored in non-masked plaintext format.

Masking generally requires that the shares are refreshed (re-randomized) ev-
ery time they are used. A trivial solution is to write back the refreshed keys
to non-volatile memory after each usage. However, this is not practical with
ROM or Flash keys. Furthermore, masked representations significantly increase
the secret key storage requirement. Secure, non-volatile key storage is an ex-
pensive resource. Standard-format Kyber1024 private keys are 25,344 bits, while
Dilithium5 secret keys are 38,912 bits (Table 3.) This is an order of magnitude
more than typical RSA keys and two orders of magnitude more than the keys of
Elliptic Curve Cryptography schemes.

Key Wrapping [15, 37] is a process where Authenticated Encryption (AE)
is used to protect the confidentiality and integrity of other key material, such
as asymmetric keys. Key wrapping reduces much of the problem of secure key
management to that of protecting (or deriving) the shorter, symmetric AE wrap-
ping key(s). However, the standard AES-based techniques can’t easily protect
the plaintext payload from side-channel leakage, just the AES/KEK key itself.

1.3 Outline of this Work and our Contributions

There exists a body of work discussing the side-channel protection of lattice
cryptography schemes, including GLP [7], Dilithium [4, 26] and Kyber [11, 18].
The key management issue has not been addressed previously; keys have been
assumed to be immediately available in a dynamically refreshable masked form.

We define the side-channel secure key wrapping problem and outline the
WrapQ approach. Here the key import function performs a simultaneous un-
wrapping (symmetric decryption) and refreshing of PQC private key masks. No
write-back of refreshed keys is necessary. WrapQ enables compact storage of
PQC secret keys on an untrusted medium and their side-channel secure use.

We describe a real-life implementation of WrapQ for Kyber and Dilithium.
Side-channel security requires a sensitivity analysis and classification of these
algorithms’ Critical Security Parameters (CSPs) so that each variable in the
secret key is appropriately handled. We then describe an FPGA implementation
and perform a leakage assessment of masked Kyber and Dilithium key import
and key export functions. No leakage was found in 100K traces.

2 Masked Key Wrapping

Most works on side-channel secure implementations of symmetric ciphers (such
as AES) focus on protecting the symmetric key; in a standard model, the attacker
can observe and even choose both plaintext and ciphertext. For Key Wrapping,
we have an additional goal: its “plaintext” (i.e., the wrapped asymmetric key
payload) must also remain invisible to side-channel measurements.

For lattice-based secret keys, an approach that first decrypts a standard
serialization of a secret key and only then splits it into randomized shares (Def-
inition 1) will leak information in repeat observations; even partial information
about coefficients can be used to accelerate attacks. One can also consider en-
crypting the individual masked shares, which significantly increases the size of
the key blob. However, when importing the same static key blob multiple times,
the decrypted masked key is always the same: Not a unique, random represen-
tation as required for masking security.

A potential solution would be to write a refreshed, re-encrypted secret key
back every time the key is used, but this approach has severe practical disad-
vantages in addition to a much larger key blob, such as reliability risks.

2.1 High level interface

WrapQ implements masked Key Wrapping (protection of the confidentiality and
integrity of cryptographic keys [15]) for lattice cryptography with a special type
of Authenticated Encryption with Associated Data (AEAD) [36] mechanism. An
abstract high-level interface for a masked key wrapping and unwrapping is:

C ←WrapQ([[K]], [[P]], AD) (1)

{ [[P]],FAIL } ←WrapQ−1([[K]], C,AD). (2)

Double square brackets [[·]] denote masked variables:

[[K]] Key Encrypting Key (KEK): Symmetric secret for integrity
and confidentiality (short, Boolean-masked key.)

[[P]] Payload: Asymmetric key material to be encrypted (a set of
masked arithmetic and Boolean variables.)

AD Authenticated Associated Data: Additional elements that
only require integrity protection (e.g. the public key.)

C Wrapped key: Encrypted P , authentication information for AD
and P , and internal auxiliary information such as nonces.

Each unwrapping call WrapQ−1 produces a fresh, randomized masking repre-
sentation for [[P]] variables, or FAIL in case of authentication (integrity) failure.
In addition to standard AEAD security goals, the primitives guarantee that long-
term secrets K or P do not leak while operating WrapQ and WrapQ−1 thousands
of times.

3 WrapQ 1.0 Design Outline

Our solution makes several design choices motivated by its particular use case;
a side-channel secure hardware module that implements lattice-based cryptog-
raphy. It is hardware-oriented and is not intended as an “universal” format.

3.1 Design Choices

Key Import and Export Importing may occur during device start-up or if
there is a change of keys. Key export is required when new keys are generated or
if KEK changes. Side-channel considerations are equally important in both use
cases. The term “import” does not necessarily imply interaction with external
devices. The import function simply prepares and loads a private key from static
storage to be used by a cryptographic processor.

Key Encryption Key We primarily want to secure the process of local, au-
tomatic, unsupervised loading of secret keys for immediate use. For example,
some hardware devices may use a device-unique key or a Physically Unclonable
Function (PUF) to derive the KEK, with the idea that keys exported to a less
trusted storage can only be imported back into the same physical module [24].
Since the main goal is side-channel security, the storage format may be modified
to accommodate implementation-specific requirements.

Non-Determinism is Preferable Rogaway and Shrimpton [37] argue that a
key wrapping operation should be fully deterministic; the inputs K,P,A fully
determine C without randomization. Their motivation is that removing the ran-
domization nonce from C will save some bandwidth. We prioritize side-channel
security and observe that randomization helps to eliminate leakage in the export
function.

Secondary Encryption WrapQ only encrypts critical portions of the key ma-
terial. It is a “feature” that algorithm identifiers and the public key hash are
unencrypted; this makes it possible to retrieve a matching public key before vali-
dating the secret key blob. WrapQ key blobs do not have complete confidentiality
properties, such as indistinguishability from random. However, the resulting blob
is much safer to handle as critical variables are encrypted; a secondary confiden-
tiality step can use arbitrary mechanisms to re-encrypt it.

Not (necessarily) a key interchange format Export can also occur between
devices; sometimes, the term “Key Exchange Key” is used to export a key from
one HSM to another or from an on-premises system to the cloud [25]. In such
“one-off” manual use cases, side-channel protections may be less critical, and
mechanisms such as PKCS #12 [27] can be used (after additional authorization).

3.2 Masked XOF and Domain Separation

WrapQ uses a masked XOF (extensible output function [28]) as a building block
for all of its side-channel secure cryptographic functionality.

Definition 2. An Order-d masked extensible output function [[h]]← XOFn([[m]])
processes an arbitrary-length masked input [[m]] into n-byte output shares [[h]]
while maintaining Order-d security (under some applicable definition.)

The XOF (Definition 2) is instantiated with a masked Keccak[1600] [28] per-
mutation. Note that a masked SHA3/SHAKE (and hence a masked Keccak per-
mutation) is required to process secret variables in Kyber (G, PRF, KDF) and in
Dilithium (H, ExpandS, ExpandMask). Hence this primitive can be expected to
be available in masked Kyber and Dilithium implementations.

Frame Header. We construct a non-secret frame header for all XOF inputs
from four fixed-length components:

frame = (ID ∥ DS ∥ ctr ∥ IV) (3)

ID 32-bit identifier for algorithm type, parameter set, authentication frame
structure, key blob structure, WrapQ version; all serialization details.

DS 8-bit Domain Separation identifier. This specifies frame purpose: hash, keyed
MAC, encryption, etc.

ctr A 24-bit block index 0, 1, 2, . . . for encrypting multi-block material. Set to 0
for authentication (unless the authentication process is parallelized).

IV Nonce: a 256-bit Initialization Vector, chosen randomly for the key blob. Its
frames share the IV .

The main security property of the frame header is that it creates non-repeating,
domain-separated inputs for the XOF.

– For a fixed secret key protecting many key blobs, this is due to the random-
ization of IV . There is a birthday bound of 2128 wrapping operations for a
given key.

– Within a key blob (fixed IV , key), frames are made unique thanks to (DS , ctr)
being different.

– Across versions. Any functional change in WrapQ serialization requires a
new ID . This identifier unambiguously defines the structure of the key blob,
the interpretation of the contents, the frame header, etc.

There are predefined domain separation bytes; DShash and DSmac for au-
thentication (Algorithm 1) and DS enc for encryption/decryption (Algorithms 2
and 3.) Frame headers with these domain separation fields are denoted framehash,
framemac and frameenc.

Algorithm 1: T = AuthTag(A, [[K]], ID , ctr , IV)

Input: A, Authenticated data, including ciphertext.
Input: [[K]], Message Integrity Key (Boolean masked.)
Input: ID , ctr , IV : Used to construct frameDS headers.
Output: T , Resulting authentication tag/code.

1: h← Hash(framehash ∥ A)
2: [[T]]← XOF|T |(framemac ∥ [[K]] ∥ h)
3: [[K]]← Refresh([[K]])
4: return T = Decode([[T]])

3.3 Integrity Protection: Masked MAC Computation

Algorithm 1 describes the authentication tag computation process. The authen-
tication tag is always checked before any decryption is performed.

For performance reasons, we first use a non-masked hash function Hash() to
process A (Step 1) and only use a masked XOF to bind the hash result h with
the (masked) authentication key [[K]] and other variables (Step 2.) Furthermore,
randomized hashing [17] with a frame header containing the IV is used to make
the security of h more resilient to collision attacks. The random prefix IV is
included in the frame construction (Eq. (3)) and used again in the masked key
binding step. It is domain-separated via DS from encryption/decryption frames
in case the same [[K]] is used. After this single masked step, [[K]] is refreshed,
and the authentication tag [[T]] can be unmasked (collapsed) into T .

Cryptographic security notes. In the terminology of [9], WrapQ is an
Encrypt-then-MAC (EtM) scheme; ciphertext is authenticated rather than plain-
text. Upon a mismatch between the calculated T ′ and the tag T , a FAIL is
returned – no partial decrypted payload. Since WrapQ is an Authenticated En-
cryption with Associated Data (AEAD) [36] scheme, input tuple A includes data
items that do not need to be decrypted in addition to ciphertext C. Unambigu-
ous serialization is used to guarantee domain separation between data items. The
ID identifier in frame defines the contents and ordering of fixed-length fields in
A and all other variables.

3.4 Confidentiality Protection: Encrypting Masked Plaintext

We use the masked XOF in “counter mode” to encrypt/decrypt data. Data is
processed in blocks. For Sponge-based primitives such as SHA3/SHAKE [28],
the appropriate block size is related to the “rate” parameter, which depends on
the security level. Generally, one wants to minimize the number of permutation
invocations. SHAKE256 has a data rate of (1600 − 2 ∗ 256)/8 = 136 bytes for
each permutation, while SHAKE128 has a 168-byte rate.

Algorithm 2 outlines the process of encrypting a single block; using stream
cipher terminology, it uses the masked XOF to produce a block of keystream
shares (Step 1), which are exclusive-ored with the plaintext to produce ciphertext

(Step 2). Key blocks must be used only once before being refreshed (Step 3.)
Plaintext must also be refreshed unless it is discarded (Step 4.) The ciphertext
is no longer sensitive, so it can be decoded back into unmasked format (Step 5.)

Algorithm 2: C = EncBlock([[P]], [[K]], ID , ctr , IV)

Input: [[P]], Payload block (Boolean masked.)
Input: [[K]], Key Encryption Key (Boolean Masked).
Input: ID , ctr , IV : Used to construct header frameenc.
Output: C, Resulting ciphertext block.

1: [[x]]← XOF|P |(frameenc ∥ [[K]])
2: [[C]]← [[P]] ⊕ [[x]] ▷ “Stream cipher.”
3: [[K]]← Refresh([[K]])
4: [[P]]← Refresh([[P]]) ▷ (Unless discarded.)
5: return C = Decode([[C]])

Algorithm 3 describes the decryption process, which is also illustrated in
Fig. 1. A necessary feature of the block decryption (import) function (Algo-
rithm 3) is that the ciphertext C is first converted into masked encoding (Step
1). The secret cover [[x]] is also in randomized shares (Step 2). Hence decryption
occurs in masked form (Step 3), avoiding collapsing [[P]].

Algorithm 3: [[P]] = DecBlock(C, [[K]], ID , ctr , IV)

Input: C, Ciphertext block.
Input: [[K]], Key Encryption Key (Boolean Masked).
Input: ID , ctr , IV : Used to construct frameenc.
Output: [[P]], key material payload (Boolean masked.)

1: [[C]]← Encode(C)
2: [[x]]← XOF|P |(frameenc ∥ [[K]])
3: [[P]]← [[C]]⊕ [[x]] ▷ “Stream cipher.”
4: [[K]]← Refresh([[K]])
5: return [[P]] = Refresh([[P]])

Cryptographic security notes. Algorithms 2 and 3 are analogous to
counter-mode (CTR) encryption/decryption, except that the payload [[P]] is
masked. Confidentiality of ciphertext C follows from the one-wayness and random-
indistinguishability of the XOF function (as it would without masking), assuming
that the frame identifiers never repeat for the same secret key [[K]].

ID ∥ DS ∥ ctr ∥ IV [[K]] shares

frameenc K0 K1 K2

m0 m1 m2

XOF (Masked Keccak Permutation)

Ciphertext Block

C

Encode (Random)

C0 C1 C2 x0 x1 x2

P0 P1 P2

[[P]] shares

Fig. 1. The WrapQ−1 key import function uses a masked XOF in counter mode to
decrypt ciphertext blocks C into randomized Boolean shares [[P]]. The Keccak Permu-
tation (pictured here with three shares) exists in secure implementations of Dilithium
and Kyber; WrapQ just reuses the component.

4 Kyber and Dilithium Private Keys

Cryptographic module security standards (FIPS 140-3 [29] / ISO 19790 [20])
expect that implementors classify all variables based on the impact of their
potential compromise.

– CSP (Critical Security Parameter): Security-related information whose dis-
closure or modification can compromise the security of a cryptographic mod-
ule. CSPs require both integrity and confidentiality protection.

– PSP (Public Security Parameter): Security-related public information whose
modification can compromise the security of a cryptographic module. PSPs
require only integrity protection (authentication).

– SSP (Sensitive Security Parameter): Either a CSP or PSP, or a mixture of
both. Essentially all variables in a cryptographic module are SSPs.

The parts of secret key material whose disclosure can compromise cryptographic
security are CSPs. Additionally, all internally derived or temporary variables
whose leakage will compromise security are CSPs. In the FIPS 140-3 / ISO
19790 context, the (non-invasive) side-channel leakage protection requirement
only applies to CSPs [20, Sect 7.8], not PSPs.

Table 1. Kyber public and secret key components: Variable sensitivity classification
and WrapQ encoding for Kyber secret keys.

CRYSTALS-Kyber Public Key Secret Key

Standard encoding [3]: pk = (t̂, ρ) sk = (ŝ, pk, pkh), z)

Field Size (bits) Description

t̂ k × 12× 256 PSP: Public vector, NTT domain.
ρ 256 PSP: Seed for public A.
ŝ k × 12× 256 CSP: Secret vector, NTT domain.

pk |t̂|+ 256 PSP: Full public key.
pkh 256 PSP: Hash of the public key SHA3(pk).
z 256 CSP: Fujisaki-Okamoto rejection secret.

WrapQ Secret Key: skwq = (ID , T, IV , pkh, z, s)

Field Size (bits) Description
ID 32 Algorithm and serialization type identifier.
T 256 Authentication tag (Algorithm 1).
IV 256 Random nonce.
pkh 256 Authenticated: Public key hash SHA3(pk).
z 256 Encrypted: FO Transform secret.
s k × 4× 256 Encrypted: Secret key polynomials.

4.1 CRYSTALS-Kyber

Table 1 contains a classification of Kyber key variables. WrapQ encrypts and
authenticates masked CSPs (s, z) and only authenticates the rest of the param-
eters. For the underlying MLWE problem t = As+ e the public key consists of
(A, t) and the secret key is s (ephemeral error e is not stored.) In Kyber, the A
matrix is represented by a SHAKE128 seed ρ that deterministically generates it.

Kyber standard secret key encoding stores s in the NTT-domain represen-
tation ŝ. To conserve storage space and also Boolean-to-Arithmetic transforma-
tion effort, we instead store normal-domain s, where coefficients are in the range
[−η, η] and would fit into 3 bits (in Kyber, we have η ∈ {2, 3}, depending on
the security level.) However, WrapQ uses four bits per coefficient for Boolean
masking conversion convenience.

The z variable is a secret quantity used to generate a deterministic response
to an invalid ciphertext in the Fujisaki-Okamoto transform. The security proofs
assume it to be secret (we implement the entire FO transform as masked); hence,
this 256-bit quantity is handled as a Boolean masked secret.

In standard encoding, the Kyber secret key contains a full copy of the public
key. It also contains H(pk), purely as a performance optimization. We also retain
and authenticate the H(pk) quantity, but for a different reason: it can be used
to authenticate a separately supplied public key.

Table 2. Dilithium public and secret key components: Variable sensitivity classifica-
tion and WrapQ encoding for Dilithium secret keys.

CRYSTALS-Dilithium Public Key Secret Key
Standard encoding [5] pk = (ρ, t1) sk = (ρ,K, tr, s1, s2, t0)

Field Size (bits) Description
ρ 256 PSP: Seed for public A.
t1 k × 10× 256 PSP: Upper half of public t.
K 256 CSP: Seed for deterministic signing.
tr 256∗ PSP: Hash of public key tr = H(ρ ∥ t1).
s1 ℓ× dη × 256 CSP: Secret vector 1, coefficients [−η, η].
s2 k × dη × 256 CSP: Secret vector 2, coefficients [−η, η].
t0 k × 13× 256 PSP: Lower half of public t.

WrapQ Secret Key: skwq = (ID , T, IV , ρ,K, tr, s1, s2)

Field Size (bits) Description
ID 32 Algorithm and serialization type identifier.
T 256 Authentication tag (Algorithm 1).
IV 256 Random nonce.
ρ 256 Authenticated: Public seed for A.
K 256 Encrypted: Seed for deterministic signing.
tr 256∗ Authenticated: Hash tr = SHAKE256(pk).
t0 k × 13× 256 Authenticated: Lower half of public t.
s1 ℓ× 4× 256 Encrypted: Secret vector 1.
s2f k × 4× 256 Encrypted: Secret vector 2.

4.2 CRYSTALS-Dilithium

Table 2 contains a classification of Dilithium key variables. WrapQ encrypts and
authenticates masked CSPs (K, s1, s2) and only authenticates the rest of the
parameters. In the underlying equation t = As1+ s2, variables (A, t) are public
and (s1, s2) are secret. The A matrix is expanded from SHAKE128 seed ρ.

Note that Dilithium’s public variable t is split into two halves to minimize
the size of the public key, with t1 placed in the public key and the t0 in private
key (as high bits are sufficient for verification.) However, from a cryptanalytic
viewpoint, the entire t is a public variable. Hence t0 is placed within the secret
key blob but as a PSP. There is no need to encrypt t0; we just authenticate it.

The tr quantity is a 256-bit∗ hash of the public key tr = SHAKE256(ρ ∥ t1).
Only the hash is required for signature generation (as a collision-resilient message
processing). Since tr is an authenticated part of the key blob, we also use this
quantity to verify that a separately supplied public key is valid.

∗ The size of tr is 256 bits in Dilithium 3.1 [5]. It may change to 512 bits in a future
revision of Dilithium [31].

The distribution of both s1 and s2 is uniform in [−η,+η]. Depending on
the security parameters, we have η ∈ {2, 4}. While the standard encoding uses
dη = ⌈log2(2η + 1)⌉ bits (either 3 or 4), WrapQ uses 4 Boolean masked bits per
coefficient with all security parametrizations.

The K variable is a secret “seed” value used in deterministic signing (making
the signature a deterministic, non-randomized function of the private key and
the message to be signed). We treat K as a 256-bit Boolean-masked quantity.
However, from a side-channel security perspective, it is preferable to randomize
the signing process, in which case K is not used.

5 Parameter Selection and Algorithm Analysis

Cryptography in WrapQ is entirely built from SHA3/SHAKE (FIPS 202 [28])
components, which in turn are based on the Keccak permutation. The XOF()
function (Definition 2) uses a masked version while Hash() (Section 3.3) is non-
masked. A straightforward first-order threshold implementation of masked Kec-
cak is roughly three times larger [10] than the unmasked one, and the complexity
grows quadratically with the masking order [6]. Other operations in the process
are related to mask refreshing or trivial ones such as linear XORs, packing of
bits, etc.

Algorithm 1 requires ⌈(|frame|+ |A|+ |padding|)/r⌉ unmasked Keccak per-
mutations to compute h with Hash(), where r is the block rate. For SHAKE256,
we have r = 136 bytes. Additionally, there is a single invocation of masked XOF()
permutation to compute [[T]].

Algorithms 2 and 3 require ⌈|P |/r⌉ invocations of the masked permutation in
XOF(). This is also the minimum when computation is organized in a “counter
mode” fashion where [[P]] is split into block-sized chunks and ctr is used as an
input index. It is not economical to encrypt blocks substantially smaller than
r, as that will result in an increased number of permutations and slower speed.
However, for some parameters, we sacrifice optimality for the logical separation
of data items, simplifying implementation.

5.1 Wrapping Process

In the implementation of the key wrapping operation WrapQ (Eq. (1)), all CSPs
are converted to Boolean shares (Tables 1 and 2). For internal secret [[̂s]] shares,
this involves Inverse-NTT operations to [[s]] since 4-bit packing is used, followed
by an Arithmetic-to-Boolean conversion.

After conversions required for the construction of [[P]], we choose a random
IV for the entire key blob. The [[P]] input, comprising of CSP data, is divided
into blocks and fed to Algorithm 2 to produce ciphertext C.

For Dilithium and Kyber, we can process one polynomial at a time since the
resulting (4×256)/8 = 128-byte block fits the 136-byte data rate of SHAKE256.
This has the advantage of “random access” – each secret polynomial can be
decrypted only when needed, reducing the RAM requirement. The 4-bit encoding

is not optimal of all [−η,+η] ranges present in these algorithms but is simpler
to decode.

The Boolean CSPs (K or z) have ctr = 0, block and polynomial CSPs are
1 ≤ ctr ≤ k with Kyber and 1 ≤ ctr ≤ k + ℓ with Dilithium. The ciphertext
blocks and the PSP data items are then combined into blob A; their serialization
is the same as given in Tables 1 and 2, although ID , T, IV are omitted.

Finally, A is passed to Algorithm 1 to produce T ; then the final WrapQ key
blob is combined from (ID , T, IV , A).

5.2 Unwrapping Process

The unwrapping operation WrapQ−1 (Eq. (2)) starts with consistency checks; we
parse ID from the beginning of the blob and see if the size of the blob matches
with it. We also check that the pkh (Kyber) or tr (Dilithium) fields match with
a hash of the public key that is separately provided.

The rest of unwrapping proceeds in inverse order from wrapping; authenti-
cation first, then decryption. We extract IV and A (the remaining part after
IV in the blob) and pass those to Algorithm 1 to obtain a check value T ′. If we
have a mismatch T ̸= T ′, we return FAIL and abort.

Upon success, we proceed to decrypt CSP fields into payload shares [[P]]
using Algorithm 3. The conversion of arithmetic CSPs also follows an inverse
route; Boolean-to-Arithmetic conversion, followed by an NTT transform as the
implementation keeps secret keys “ready” in the NTT domain.

5.3 Size Metrics

Table 3 summarizes the sizes of both standard encodings for Kyber and Dilithium
keypairs. We observe that each randomized arithmetic CSP share would be larger
than the WrapQ format (even if packed to ⌈log2 q⌉ bits per coefficient). For sev-
eral parameter sizes, the WrapQ size could be further reduced by encoding the
[−η,+η] coefficients in less than 4 bits, but this would complicate the implemen-
tation.

Note that the NIST standardization process will likely bring some changes
to Kyber 3.02 [3] and Dilithium 3.1 [5].

6 Implementation and Leakage Assessment

WrapQ grew out of a need to be able to manage Kyber and Dilithium private keys
in a commercial side-channel secure hardware module. For leakage testing, the
hardware platform was instantiated on an FPGA target. A secret key conversion
program was written in Python for interoperability testing.

Table 3. The size of a WrapQ secret key (Tables 1 and 2) does not depend on the
masking order. Each individual internal (unpacked) masking share is larger, as are
Kyber’s “standard serialization” secret keys due to a lack of bit packing.

Algorithm Masking Std. Encoding WrapQ
Parameters k ℓ Per Share |pk| |sk| |skwq|
Kyber512 2 768 800 1,632 388
Kyber768 3 1,152 1,184 2,400 516

Kyber1024 4 1,536 1,568 3,168 644
Dilithium2 4 4 5,888 1,312 2,528 2,852
Dilithium3 6 5 8,096 1,952 4,000 4,068
Dilithium5 8 7 11,040 2,592 4,864 5,412

6.1 FPGA Platform Overview

A first-order implementation of WrapQ was tested with an FPGA module that
also implements first-order masked Dilithium and Kyber. We outline its relevant
components.

– A low-area 64-bit RISC-V control processor.
– Lattice accelerator that can support Kyber and Dilithium Zq polynomials

and NTT ring arithmetic. The unit can also perform vectorized bit manip-
ulation operations for tasks such as masking conversions (A2B, B2A).

– Ascon-based random mask generator. This is used by the lattice unit for
refreshing Boolean and Arithmetic (mod q) shares. The unit can be contin-
uously seeded from an entropy source.

– A compact first-order, three-share Threshold Implementation [10,13] of the
masked Keccak permutation. See discussion in Section 3.

– A faster, non-masked 1600-bit Keccak permutation used for public A matrix
generation and also to compute PSP hashes (e.g., the h value in Algorithm 1).

For first-order security, we use trivial refresh gadgets Refresh([[x]]) = (x0 ⊕
r, x1 ⊕ r) with r = Random() and Encode(x) = (x ⊕ r, r) with r = Random().
The function Decode([[x]]) = x0 ⊕ x1 ⊕ · · ·xd = x simply unmasks x.

6.2 Implementation Overview

The implementation supported all main versions of Kyber and Dilithium (Ta-
ble 3). In the internal representation, the algorithms hold two copies of the secret
CSP variables in Tables 1 and 2 either in compressed or uncompressed format.
Kyber polynomials are manipulated at 16 bits per coefficient for arithmetic op-
erations, while Dilithium polynomials use 32 bits. Hence a two-share unpacked
Kyber1024 [[s]] requires 4 kB of internal storage while Dilithium5 ([[s1]], [[s2]])
needs 30 kB. These polynomials are handled using (mod q) arithmetic masking.
The 256-bit quantities z (Kyber) and K (Dilithium) were Boolean masked in
the internal representation.

The confidentiality algorithm used in the test target matches the details of
Algorithms 2 and 3 in Section 2.1. Authentication was enabled in the import
and export functions, but the tests were performed using a “platform security”
parameterization; 128-bit IV and T fields, and a slightly different arrangement
of hashes in Algorithm 1.

6.3 Leakage Assessment: Fixed-vs-Random Experiments

Our methodology broadly follows the ISO/IEC WD 17825:2021(E) “General
Testing Procedure,” [21, Figure 7] with statistical corrections. This, in turn, was
based on Test Vector Leakage Assessment (TVLA) proposed by CRI / Rambus
in 2011 [16] and refined in [14,38].

Traditionally a critical value C of ±4.5 has been used for L = 1, which
matches an α < 10−5 in that case [8, 34]. Since we have long traces (large L),
this choice would cause false positives. We adjust the critical value C based on
L using the Mini-p procedure from Zhang et al. [14]. Let αL = 1− (1− α)(1/L)

be the adjusted significance level. Since the degrees of freedom are very large,
we can approximate using the normal distribution: C = CDF−1(1− αL

2).

KEK Leakage Testing. The test aims to find leakage from the key K itself, and
its set-up is similar to “fixed-vs-random key” TVLA tests performed on block
ciphers such as AES [21, 34]. Set A has a fixed K, while set B has a random
K. Note that the plaintext payload data (i.e., Kyber and Dilithium keys) is
randomized in this test; only the symmetric keys are manipulated.

CSP Leakage Testing. For fixed-vs-random testing, confidentiality (encryption)
is only provided in WrapQ for CSP (actually non-public) variables. Kyber has
two CSPs: ring vector s (decryption key), and FO secret z (Table 1) while
Dilithium’s CSPs are the ring vectors s1, s2 (signing key) and the deterministic
seed K (Table 2.) All other variables are PSPs (public.)

6.4 Trace Acquisition and Results

The experiments were performed with XC7A100T2FTG256 Artix 7 FPGA chip
on a ChipWhisperer CW305-A100 board, clocked at 50 MHz. The processor
and coprocessor bitstreams were synthesized with Xilinx Vivado 2021.2. The C
language firmware was with complied GCC, under -Os size optimization and
-mabi=lp64 -march=rv64imac architectural flags.

Signal acquisition was performed with Picoscope 6434E oscilloscopes with
a 156.25 MHz sampling rate connected to the SMA connectors on the CW305
board. The DUT generated a cycle-precise trigger.

Table 4 summarizes the various Fixed-vs-Random tests performed on the
implementation. The tests were carried out on all three proposed security levels
of Kyber and Dilithium, but due to space constraints, we only include graphs
for the (highest) Category 5 versions, Kyber1024 and Dilithium5.

Table 4. Summary of Random-vs-Fixed tests on WrapQ key import and export
functions. The tests were designed to test leakage from both the KEK (Key-Encrypting
Key) and the payload CSPs (PQC Secret Keys.) See traces in Fig. 2.

Test Function Set A Set B Both A&B

#1 Kyber Import Fix CSP Rand CSP Fix KEK
#2 Kyber Import Fix KEK Rand KEK Rand CSP
#3 Dilithium Import Fix CSP Rand CSP Fix KEK
#4 Dilithium Import Fix KEK Rand KEK Rand CSP
#5 Kyber Export Fix CSP Rand CSP Fix KEK
#6 Kyber Export Fix KEK Rand KEK Rand CSP
#7 Dilithium Export Fix CSP Rand CSP Fix KEK
#8 Dilithium Export Fix KEK Rand KEK Rand CSP

The functions passed the tests with 100,000 traces. Even though the critical
value C has been adjusted for long traces (as discussed above), from Fig. 2,
we can see that the t values are generally bound at a much smaller range. The
target unit also performs side-channel secure Kyber and Dilithium operations
(key generation, signatures, encapsulation, decapsulation), but those tests are
out of scope for the present work.

7 Conclusions and Future Work

When building side-channel secure implementations of asymmetric algorithms, it
is easy to sidestep the key management problem. Academic works have generally
focused on protecting the private key operations, assuming that refreshed key
shares can be kept in working memory. However, many real-life devices do not
have the option of having refreshable non-volatile memory for keys.

WrapQ is a method for handling masked secret key material between a hard-
ware security module and potentially untrusted storage. Its encryption, decryp-
tion, and authentication modes can manage wrapped key material in masked
format, significantly increasing resilience to side-channel attacks.

We detail a version of WrapQ that supports CRYSTALS-Kyber 3.02 Key
Encapsulation Mechanism and CRYSTALS-Dilithium 3.1 signature scheme. The
implementation leverages a masked implementation of FIPS 202 / SHAKE256
(the Keccak permutation) in a mode that prevents leakage even when an at-
tacker can acquire thousands of side-channel measurements from importing and
exporting secret keys and also access the resulting WrapQ data itself. The size
of the WrapQ secret key is independent of the masking order and is often even
smaller than the standard encoding.

We have performed a TVLA leakage assessment and validation of a WrapQ
implementation for Kyber and Dilithium. The leakage of payload CSP variables
and the KEK (key encryption key) was tested. Import and export functions for
both algorithms pass TVLA testing for up to 100K traces.

Our experimental work has focused on first-order protections. However, the
file format works also with higher-order masking. As the masking order grows,
so does the complexity of all nonlinear operations and refresh gadgets. We ac-
knowledge that the construction of higher-order gadgets for WrapQ (Section 2.1)
requires further investigation. Furthermore, the formal SNI security of the gad-
gets remains to be shown.

Acknowledgments

The author wishes to thank Ben Marshall for running the leakage assessment
tests and Oussama Danba and Kevin Law for helping to make the FPGA test
target operational. Further thanks to Thomas Prest, Rafael del Pino, and Melissa
Rossi for the technical and theoretical discussions. The author is to blame for
all errors and omissions.

References

1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Liu, Y.K., Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-
Tone, D.: Status report on the third round of the NIST post-quantum cryptography
standardization process. Interagency or internal report, National Institute of Stan-
dards and Technology (September 2022). https://doi.org/10.6028/NIST.IR.

8413-upd1, https://csrc.nist.gov/publications/detail/nistir/8413/final
2. Alioto, M., Bongiovanni, S., Djukanovic, M., Scotti, G., Trifiletti, A.: Effective-

ness of leakage power analysis attacks on DPA-resistant logic styles under process
variations. IEEE Transactions on Circuits and Systems I: Regular Papers 61(2),
429–442 (2014). https://doi.org/10.1109/TCSI.2013.2278350

3. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber: Algorithm specifi-
cations and supporting documentation (version 3.02). NIST PQC Project, 3rd
Round Submission Update (August 2021), https://pq-crystals.org/kyber/

data/kyber-specification-round3-20210804.pdf

4. Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes,
J., Schönauer, M., Schneider, T., Standaert, F.X., van Vredendaal, C.: Leveling
Dilithium against leakage: Revisited sensitivity analysis and improved implemen-
tations. Cryptology ePrint Archive, Paper 2022/1406 (2022), https://eprint.

iacr.org/2022/1406, fourth PQC Standardization Conference, NIST (Virtual) 29
Nov – 1 Dec 2022

5. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P.,
Seiler, G., Stehlé, D.: CRYSTALS-Dilithium: Algorithm specifications and sup-
porting documentation (version 3.1). NIST PQC Project, 3rd Round Sub-
mission Update (February 2021), https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf

6. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P., Zuc-
chini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
CCS ’16: Proceedings of the 2016 ACM SIGSAC Conference on Computer and

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://doi.org/10.1109/TCSI.2013.2278350
https://doi.org/10.1109/TCSI.2013.2278350
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://eprint.iacr.org/2022/1406
https://eprint.iacr.org/2022/1406
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf

Kyber1024 WrapQ Key Import Random-vs-Fixed CSP (#1 left), KEK (#2 right).

Dilithium5 WrapQ Key Import Random-vs-Fixed CSP (#3 left), KEK (#4 right).

Kyber1024 WrapQ Key Export Random-vs-Fixed CSP (#5 left), KEK (#6 right).

Dilithium5 WrapQ Key Export Random-vs-Fixed CSP (#7 left), KEK (#8 right).

Fig. 2. Kyber and Dilithium average power traces and TVLA t-traces for WrapQ key
import and export functions (See Table 4.) 100,000 traces were measured for each test.
The TVLA results were well within leakage assessment boundaries (red lines.)

Communications Security, Vienna, Austria, October 24-28, 2016. pp. 116–129.
ACM (2016). https://doi.org/10.1145/2976749.2978427, http://dl.acm.org/
citation.cfm?id=2976749

7. Barthe, G., Beläıd, S., Espitau, T., Fouque, P., Grégoire, B., Rossi, M., Tibouchi,
M.: Masking the GLP lattice-based signature scheme at any order. In: Nielsen,
J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018 - 37th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II. Lecture
Notes in Computer Science, vol. 10821, pp. 354–384. Springer (2018). https://
doi.org/10.1007/978-3-319-78375-8_12, https://eprint.iacr.org/2018/381

8. Becker, G., Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G.,
Kouzminov, T., Leiserson, A., Marson, M., Rohatgi, P., Saab, S.: Test vector leak-
age assessment (TVLA) methodology in practice (2013), presented at International
Cryptography Module Conference – ICMC 2013

9. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008). https://doi.org/10.1007/s00145-008-9026-x

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Building power analysis resis-
tant implementations of Keccak (August 2010), https://csrc.nist.gov/Events/
2010/The-Second-SHA-3-Candidate-Conference

11. Bos, J.W., Gourjon, M., Renes, J., Schneider, T., van Vredendaal, C.: Masking ky-
ber: First- and higher-order implementations. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.
i4.173-214

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener [39], pp. 398–412. https://doi.org/10.
1007/3-540-48405-1_26

13. Daemen, J.: Changing of the guards: A simple and efficient method for achiev-
ing uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) Cryp-
tographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10529, pp. 137–153. Springer (2017). https://doi.org/
10.1007/978-3-319-66787-4_7

14. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F., Fei, Y.: Towards sound and opti-
mal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) Smart Card
Research and Advanced Applications - 16th International Conference, CARDIS
2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 10728, pp. 105–122. Springer (2017). https:
//doi.org/10.1007/978-3-319-75208-2_7

15. Dworkin, M.: Recommendation for block cipher modes of operation: Methods for
key wrapping. NIST Special Publication SP 800-38F (December 2012). https:
//doi.org/10.6028/NIST.SP.800-38F

16. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for sidechannel
resistance validation. CMVP & AIST Non-Invasive Attack Testing Workshop
(NIAT 2011) (September 2011), https://csrc.nist.gov/csrc/media/events/

non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
17. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-

ing. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4117, pp. 41–59.
Springer (2006). https://doi.org/10.1007/11818175_3

https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
http://dl.acm.org/citation.cfm?id=2976749
http://dl.acm.org/citation.cfm?id=2976749
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://eprint.iacr.org/2018/381
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/s00145-008-9026-x
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.46586/tches.v2021.i4.173-214
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.6028/NIST.SP.800-38F
https://doi.org/10.6028/NIST.SP.800-38F
https://doi.org/10.6028/NIST.SP.800-38F
https://doi.org/10.6028/NIST.SP.800-38F
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://doi.org/10.1007/11818175_3
https://doi.org/10.1007/11818175_3

18. Heinz, D., Kannwischer, M.J., Land, G., Pöppelmann, T., Schwabe, P., Sprenkels,
D.: First-order masked Kyber on ARM Cortex-M4. IACR ePrint 2022/058 (2022),
https://eprint.iacr.org/2022/058

19. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against
probing attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2729, pp.
463–481. Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_27

20. ISO: Information technology – security techniques – security requirements for cryp-
tographic modules. Standard ISO/IEC WD 19790:2022(E), International Organi-
zation for Standardization (2022)

21. ISO: Information technology – security techniques – testing methods for the mit-
igation of non-invasive attack classes against cryptographic modules. Draft In-
ternational Standard ISO/IEC DIS 17825:2022(E), International Organization for
Standardization (2023)

22. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 18-22, 1996, Proceedings. Lecture Notes in Computer
Science, vol. 1109, pp. 104–113. Springer (1996). https://doi.org/10.1007/

3-540-68697-5_9
23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [39], pp.

388–397. https://doi.org/10.1007/3-540-48405-1_25
24. Menhorn, N.: External secure storage using the PUF. Application Note: Zynq

UltraScale+ Devices, XAPP1333 (v1.2) (April 2022), https://docs.xilinx.com/
r/en-US/xapp1333-external-storage-puf

25. Microsoft: Bring your own key specification. Online documentation: Azure Key
Vault / Microsoft Learn. Accessed 2022-Oct-12 (February 2022), https://learn.
microsoft.com/en-us/azure/key-vault/keys/byok-specification

26. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.: Masking Dilithium - efficient
implementation and side-channel evaluation. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) Applied Cryptography and Network Security - 17th
International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11464, pp. 344–362. Springer (2019).
https://doi.org/10.1007/978-3-030-21568-2_17

27. Moriarty, K.M., Nystrom, M., Parkinson, S., Rusch, A., Scott, M.: PKCS #12:
Personal information exchange syntax v1.1. IETF RFC 7292 (July 2014). https:
//doi.org/10.17487/RFC7292

28. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication FIPS 202 (August 2015).
https://doi.org/10.6028/NIST.FIPS.202

29. NIST: Security requirements for cryptographic modules. Federal Information Pro-
cessing Standards Publication FIPS 140-3 (March 2019). https://doi.org/10.
6028/NIST.FIPS.140-3

30. NSA: Announcing the commercial national security algorithm suite 2.0.
National Security Agency, Cybersecurity Advisory (September 2022),
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_

2.0_ALGORITHMS_.PDF
31. Perlner, R.: Planned changes to the Dilithium spec. Posting on PQC Fo-

rum (April 2023), https://groups.google.com/a/list.nist.gov/g/pqc-forum/
c/3pBJsYjfRw4/m/GjJ2icQkAQAJ

https://eprint.iacr.org/2022/058
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf
https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf
https://learn.microsoft.com/en-us/azure/key-vault/keys/byok-specification
https://learn.microsoft.com/en-us/azure/key-vault/keys/byok-specification
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.1007/978-3-030-21568-2_17
https://doi.org/10.17487/RFC7292
https://doi.org/10.17487/RFC7292
https://doi.org/10.17487/RFC7292
https://doi.org/10.17487/RFC7292
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/3pBJsYjfRw4/m/GjJ2icQkAQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/3pBJsYjfRw4/m/GjJ2icQkAQAJ

32. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7881, pp. 142–159. Springer (2013).
https://doi.org/10.1007/978-3-642-38348-9_9

33. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) Smart Card
Programming and Security, International Conference on Research in Smart Cards,
E-smart 2001, Cannes, France, September 19-21, 2001, Proceedings. Lecture Notes
in Computer Science, vol. 2140, pp. 200–210. Springer (2001). https://doi.org/
10.1007/3-540-45418-7_17

34. Rambus: Test vector leakage assessment (TVLA) derived test requirements (DTR)
with AES. Rambus CRI Technical Note (February 2015), https://www.rambus.
com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf

35. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F. (eds.) Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6225, pp. 413–427. Springer
(2010). https://doi.org/10.1007/978-3-642-15031-9_28

36. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, Washington, DC, USA, November 18-22, 2002. pp. 98–
107. ACM (2002). https://doi.org/10.1145/586110.586125, http://dl.acm.

org/citation.cfm?id=586110

37. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4004, pp. 373–390. Springer (2006).
https://doi.org/10.1007/11761679_23

38. Schneider, T., Moradi, A.: Leakage assessment methodology - A clear roadmap
for side-channel evaluations. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings. Lecture Notes in Com-
puter Science, vol. 9293, pp. 495–513. Springer (2015). https://doi.org/10.1007/
978-3-662-48324-4_25

39. Wiener, M.J. (ed.): Advances in Cryptology - CRYPTO ’99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, Lecture Notes in Computer Science, vol. 1666. Springer (1999).
https://doi.org/10.1007/3-540-48405-1

https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://www.rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf
https://www.rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
http://dl.acm.org/citation.cfm?id=586110
http://dl.acm.org/citation.cfm?id=586110
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/3-540-48405-1
https://doi.org/10.1007/3-540-48405-1

	WrapQ: Side-Channel Secure Key Management for Post-Quantum Cryptography

