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Abstract

Attribute-based encryption (ABE) generalizes public-key encryption and enables fine-grained control to encrypted

data. However, ABE upends the traditional trust model of public-key encryption by requiring a single trusted authority
to issue decryption keys. A compromised central authority has the ability to decrypt every ciphertext in the system.

This work introduces registered ABE, a primitive that allows users to generate secret keys on their own and then

register the associated public key with a “key curator” along with their attributes. The key curator aggregates the

public keys from the different users into a single compact master public key. To decrypt, users occasionally need to

obtain helper decryption keys from the key curator which they combine with their own secret keys. We require that

the size of the aggregated public key, the helper decryption keys, the ciphertexts, as well as the encryption/decryption

times to be polylogarithmic in the number of registered users. Moreover, the key curator is entirely transparent and
maintains no secrets. Registered ABE generalizes the notion of registration-based encryption (RBE) introduced by

Garg et al. (TCC 2018), who focused on the simpler setting of identity-based encryption.

We construct a registered ABE scheme that supports an a priori bounded number of users and policies that can be

described by a linear secret sharing scheme (e.g., monotone Boolean formulas) from assumptions on composite-order

pairing groups (the same pairing-based assumptions previously used to construct vanilla ABE). Notably, our approach

deviates sharply from previous techniques for constructing RBE and only makes black-box use of cryptography. All
existing RBE constructions (a weaker notion than registered ABE) rely on heavy non-black-box techniques. In fact,

the encryption and decryption costs of our construction are comparable to those of vanilla pairing-based ABE. Finally,

as a feasibility result, we show how to construct a registered ABE scheme that supports general policies and an

arbitrary number of users from indistinguishability obfuscation and somewhere statistically binding hash functions.

1 Introduction
Attribute-based encryption (ABE) [SW05, GPSW06] extends traditional public-key encryption to enable fine-grained

access control to encrypted data. For instance, in a ciphertext-policy ABE, secret keys are associated with attributes,

and ciphertexts are associated with decryption policies. A secret key sk𝑥 for an attribute 𝑥 can decrypt a ciphertext ct𝑃
with policy 𝑃 only if the attribute satisfies the ciphertext’s policy (i.e., 𝑃 (𝑥) = 1). In contrast, with vanilla public-key

encryption, decryption is all-or-nothing: if a user has the secret key, she can decrypt every ciphertext encrypted

under the respective public key and if the user does not know the secret key, she cannot decrypt any ciphertext.

While ABE is a versatile cryptographic primitive for enabling fine-grained control to encrypted data, it significantly

changes the trust model compared to standard public-key encryption. In an ABE scheme, a central trusted authority
is required to issue the secret decryption keys associated with each user. If the central authority is compromised by

an adversary, then the adversary gains the ability to decrypt all ciphertexts in the system. In contrast, with standard

public-key encryption, users can generate their own public/secret keys, and they do not have to entrust their secret

keys to any central party. This key-escrow problem is inherent to the definition of ABE and in many scenarios, can

be a major impediment to using ABE.
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Registration-based encryption. Garg et al. [GHMR18] introduced the notion of registration-based encryption

(RBE) to address the key-escrow problem in the setting of identity-based encryption (IBE). In an IBE scheme [Sha84,

BF01, Coc01], secret keys and ciphertexts are associated with identities and decryption succeeds if the identities

associated with the secret key and ciphertexts match; an IBE scheme is a special case of ABE for the equality policy.

In an RBE scheme, the central authority is replaced by a “key curator.” The role of the key curator is not to issue secret
decryption keys, but instead, to aggregate public keys from registered users into a short master public key mpk.

In more detail, users in an RBE scheme generate their own public/secret keys (like in traditional public-key

encryption), and then register their public keys together with their identity with the key curator. The key curator

then updates the master public key of the scheme. Like IBE, the master public key can be used to encrypt a message

to any identity. If the identity corresponds to that of a registered user, then the user can decrypt the message using

their secret key and a publicly-computable helper decryption key that binds the user’s public key to the current master

public key. Since the master public key of the RBE scheme changes whenever new users join the system, users must

periodically refresh their helper decryption keys over the lifetime of the system. Note that the helper decryption

keys for each user can be computed publicly, and importantly, in an RBE system, the key curator does not possess
any secret information. The efficiency requirement is that if 𝐿 users register, then each user only needs to update

their decryption key at most 𝑂 (log𝐿) times over the lifetime of the system. The size of each update should also be

short (i.e., poly(_, log𝐿), where _ is a security parameter). In addition, like IBE, the master public key must be short:

|mpk| ≤ poly(_, log𝐿).

A challenge: non-black-box use of cryptography. In recent years, a number of works have constructed

registration-based encryption [GHMR18, GHM
+
19, GV20, CES21] from standard assumptions such as CDH, factoring,

or LWE assumptions. However, all of the existing constructions make heavy non-black-box use of cryptography.

Existing constructions either apply indistinguishability obfuscation to a cryptographic hash function [GHMR18] or

use a hash garbling scheme to traverse a Merkle tree [GHM
+
19, GV20, CES21]. The latter approach chains together

a sequence of garbled circuits (proportional to the length of the identity), where each garbled circuit reads one bit

of the input and outputs a set of labels for the next garbled circuit; the final garbled circuit is a garbling of the

encryption algorithm for a public-key encryption scheme. The heavy use of non-black-box cryptography in both

approaches render existing schemes completely impractical. Even in spite of recent optimization efforts [CES21], a

single ciphertext in a system supporting 2 billion users is estimated to be 4.5 terabytes.

This work: registered ABE. In this work, we introduce a generalization of RBE called registered ABE to address

the key escrow problem in the setting of ABE. We introduce a new set of techniques for realizing registered ABE with

only black-box use of cryptography. Our work extends registration-based encryption in two key ways:

• Functionality: Our scheme is attribute-based rather than identity-based, and is capable of supporting any

access control policy that can be described by a linear secret sharing scheme (which includes monotone Boolean

formulas). This matches the state-of-the-art in pairing-based ABE schemes. We refer to our new primitive

as a registered ABE scheme. Our scheme includes RBE as a special case if we instantiate the scheme for the

class of equality policies. Much like RBE provides a solution to the key-escrow problem for the setting of IBE,

registered ABE provides an analogous solution in the setting of ABE.

• Black-box use of cryptography: Our construction does not make any non-black-box use of cryptography. The

key-generation, encryption, and decryption algorithms in our scheme is comparable to that of existing pairing-

based ABE schemes (e.g., [LOS
+
10]). Our approach departs from the hash garbling approach used in all existing

constructions of RBE [GHMR18, GHM
+
19, GV20, CES21] and instead, takes an aggregation-based approach that

is conceptually similar to those used in the construction of pairing-based vector commitments [CF13, LM19]

and batch arguments [WW22].

We construct a registered ABE scheme from static assumptions on composite-order pairing groups (Assumption 5.2).

We rely on the same assumptions as those used previously to construct IBE [LW10] and ABE [LOS
+
10].

A limitation of our scheme is that it imposes an a priori bound 𝐿 on the number of users in the system, and

security relies on a one-time trusted sampling of a common reference string (CRS). We note that this setup only
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needs to be done once and the same CRS can be reused across different systems. The size of the CRS is quadratic in 𝐿

while the registration time is linear in 𝐿. However, the size of the master public key, the size of the helper decryption

keys, as well as the encryption and decryption times, all scale polylogarithmically with 𝐿. As with standard RBE, the

key curator is a deterministic algorithm and does not need to store any secret information. We summarize our main

instantiation with the following (informal) characterization of Corollary 6.9:

Theorem 1.1 (Informal). Let _ be a security parameter. LetU be an attribute space and P be a set of policies that can
be described by a linear secret sharing scheme overU. Let 𝐿 be a bound on the number of users. Then, under reasonable
assumptions on a composite-order pairing group, there exists a registered ABE scheme that supports up to 𝐿 users with
attribute universeU and policy space P with the following properties:

• The size of the CRS and the size of the auxiliary data maintained by the key curator is 𝐿2 · poly(_, |U|, log𝐿).

• The running time of key-generation and registration is 𝐿 · poly(_, |U|, log𝐿).

• The size of the master public key and the helper decryption keys are both |U| · poly(_, log𝐿).

• The size of a ciphertext is |𝑃 | · poly(_, log𝐿), where 𝑃 is the size of the ciphertext policy.

Note that only the key-generation, registration, and update algorithms depend on the (long) CRS. The running time of
encryption and decryption are all polylogarithmic in the number of users 𝐿.

In addition to the above scheme based on composite-order bilinear maps, we also show how to construct a

registered ABE scheme for an arbitrary number of users and supporting arbitrary policies (on a super-polynomial

size attribute space) using indistinguishability obfuscation [BGI
+
01, BGI

+
12] and somewhere statistically binding

hash functions [HW15]. Coupled with the work of Jain et al. [JLS21, JLS22], this yields a registered ABE scheme from

falsifiable assumptions. We view this latter result as primarily a feasibility result for constructing registered ABE

schemes capable of supporting general policies and an arbitrary number of users.

1.1 Related Work
Many previous works have explored mechanisms to address the key-escrow limitation inherent to IBE and ABE. One

approach is based on threshold cryptography [BF01, CHSS02, PS08, KG10] where the master secret key is secret-shared

across multiple independent authorities; this way, no single authority has the ability to decrypt ciphertexts. A similar

notion in the setting of ABE is multi-authority ABE [Cha07, LCLS08, MKE08, CC09, LW11, RW15, DKW21a, DKW21b,

WWW22] where anyone can become an authority and issue secret keys corresponding to the set of attributes within

their domain. Policies in a multi-authority ABE scheme are in turn formulated with respect to the attributes of one or

more authorities. Nonetheless, the keys in threshold and decentralized systems are still issued by entities other than

the user, and if a sufficient number of the key-issuing entities are compromised or corrupted, then the schemes no

longer ensure confidentiality.

Other techniques have focused on adding accountability to the central authority [Goy07, GLSW08] or introducing

hybrid notions that combine IBE and traditional public-key directories [AP03]. However, none of these approaches

completely eliminate the key-escrow problem inherent to notions like IBE and ABE.

Registration-based encryption was first introduced by Garg et al. [GHMR18] who also gave a construction from

indistinguishability obfuscation and somewhere statistically binding hash functions. They also gave a “weakly-efficient”

scheme (where registration runs in time that is polynomial in the number of registered users) from simpler assumptions

like CDH or LWE. Subsequently, [GHMR18] provided a fully-efficient construction (where registration runs in time

that is polylogarithmic in the number of registered users) from assumptions like CDH or LWE. Cong et al. [CES21]

subsequently improved the concrete efficiency of their scheme. Goyal and Vusirikala [GV20] then showed how

to augment RBE with protection against malicious key curators. All of these existing constructions (including the

weakly-efficient ones) rely on non-black-box use of cryptography (e.g., obfuscation or hash garbling techniques).
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2 Technical Overview
In this work, we construct a ciphertext-policy registered ABE scheme that supports any access policy that can be

described by a linear secret sharing scheme (see Section 2.1 and Definition 3.2). In the following description, we letU
be the universe of attributes. We will assume thatU is polynomial-size (i.e., we are in the small universe setting). We

additionally assume that there is an a priori bound 𝐿 on the maximum number of users that can be registered, and

moreover, that there is a (trusted) setup algorithm that samples a common reference string crs that will be used for

key-generation, registration, and computing the helper information for decryption. In our setting, we allow the size

of the crs to be poly(_, 𝐿). The key curator initializes the master public key mpk to the empty string.

When a user wants to join the system, it first samples a public/secret key-pair (pk, sk). To register, the user

provides their public key pk along with their set of attributes 𝑆 ⊆ U to the key curator.
1
The key curator then

aggregates the key into the master public key mpk and produces an updated key mpk′. In addition, the key curator

computes a helper decryption key hsk and gives it to the user. In our setting, we allow the key-generation and

registration process to be slow (i.e., running in time poly(_, 𝐿)).2 However, the size of the master public key mpk,
the secret key sk, and helper decryption key hsk for each user must be short (i.e., poly(_, log𝐿)). Each time a user

registers, the master public key needs to be updated; this means users will need to periodically obtain an updated

helper decryption key corresponding to the most recent master public key. As in RBE, we require that over the

lifetime of the system, the user only needs to request 𝑂 (log𝐿) many updates from the key curator.

In a registered ABE scheme, encryption only requires knowledge of the master public key mpk (and not the long
common reference string). The encryption algorithm takes in the master public key mpk, the access policy 𝑃 , and a

message ` and outputs a ciphertext ct. In turn, every registered user whose set of attributes 𝑆 satisfy the policy is

able to decrypt using their secret key sk and the helper decryption key hsk. Neither the encryption nor decryption

algorithms require knowledge of the crs, and the running time of all of these algorithms scale with poly(_, log𝐿, |𝑃 |).
Notably, in a registered ABE scheme, there is an initial slow one-time process for generating and registering keys.

Encryption and decryption are both fast (comparable to standard ABE).

Slotted registered ABE. Our construction of registered ABE proceeds in two steps. First, we define and construct

an intermediate primitive that we call “slotted registered ABE” (Section 4.1). We then show how to compile a slotted

registered ABE scheme into a registered ABE scheme (Section 6).

In a slotted registered ABE scheme, we specify a fixed number of users 𝐿 at setup, and moreover, each user is

associated with a slot index 𝑖 ∈ [𝐿]. Public keys in a slotted registered ABE scheme are generated with respect to a

particular slot. In addition, we replace the registration algorithm with an aggregation algorithm that takes as input a

collection of 𝐿 public keys pk
1
, . . . , pk𝐿 , one for each slot, along with their associated attribute sets 𝑆1, . . . , 𝑆𝐿 ⊆ U,

and outputs the master public key mpk together with the helper decryption keys hsk1, . . . , hsk𝐿 associated with each

slot. The main difference is that aggregation takes all 𝐿 keys at once and outputs the master public key (which is

then fixed). In contrast, in (non-slotted) registered ABE, the public keys are registered one at a time, and the master

public key is updated after each registration. We provide the formal definition of a slotted registered ABE scheme

in Section 4.1 and show how to construct a slotted registered ABE scheme from assumptions on a composite-order

pairing group in Section 5. We provide an overview of this construction in Section 2.1.

From slotted registered ABE to registered ABE. To go from a slotted registered ABE scheme to a registered ABE

scheme, we use a simple “powers-of-two” approach that was also used implicitly in previous constructions [GHMR18,

GHM
+
19]. Suppose we want to support a maximum of 𝐿 = 2

ℓ
users. Our construction uses ℓ + 1 copies of the slotted

registered ABE scheme, where the 𝑘 th copy is a slotted ABE with exactly 2
𝑘
slots (with 𝑘 ranging from 0 to ℓ). The

master public key mpk consists of ℓ + 1 master public keys mpk
0
, . . . ,mpkℓ , one for each of the underlying schemes.

Initially, mpk𝑡 = ⊥ for all 𝑘 . The first user registers to an empty slot in each of the ℓ + 1 instances. At this point, the
first slotted registered ABE scheme (with 1 slot) is full, and the key curator computes mpk

0
and updates its value

1
Just like in RBE, the key curator first verifies the attributes claimed by the user before proceeding. This step is analogous to the checks certificate

authorities perform in the public-key infrastructure before issuing a certificate or what the central authority would do in a standard ABE setting

before issuing a decryption key. A difference is that the key curator possesses no secret information.

2
This roughly coincides with the notion of weak efficiency in the work of Garg et al. [GHMR18].
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in mpk. When subsequent users join the system, they register to the next vacant slot in each of the ℓ + 1 instances
(if one exists). Whenever scheme 𝑘 fills up (i.e., there is a key associated with each of its 2

𝑘
slots), the key curator

updates mpk𝑘 in the master public key and then removes all registered keys from schemes 0, . . . , 𝑘 − 1 (since all of
those users’ public keys are now aggregated as part of mpk𝑘 ).

3
Whenever this update occurs, all of the users who are

now registered in the 𝑘 th scheme will need to obtain a decryption key update from the key curator. By design, this

process can only happen at most ℓ + 1 = 𝑂 (log𝐿) times, so this satisfies the efficiency requirements on the registered

ABE scheme. To encrypt a message with respect to mpk = (mpk
0
, . . . ,mpkℓ ), the encrypter encrypts the message

to each mpk𝑘 to obtain ct𝑘 . The ciphertext is ct = (ct0, . . . , ctℓ ). To decrypt, a user who is currently registered in

mpk𝑘 takes ct𝑘 and decrypts. Overall this powers-of-two approach incurs 𝑂 (log𝐿) overhead on the size of the public

parameters, the ciphertext size, and the encryption time compared to the slotted scheme, but now supports efficient

updates. We describe and analyze this transformation in Section 6 (Construction 6.1). We summarize the properties

of our final registered ABE scheme in Corollary 6.9 (and Theorem 1.1).

Registered ABE for unbounded users from obfuscation. Our pairing-based registered ABE construction only

supports a bounded number of users. A natural question is whether we can construct registered ABE that supports an

arbitrary number of users. In Section 7, we show the feasibility of such a scheme using indistinguishability obfusca-

tion [BGI
+
01, BGI

+
12] and somewhere statistically binding hash functions [HW15]. Our registered ABE (for arbitrary

circuit predicates) is a direct generalization of the RBE scheme of Garg et al. [GHMR18] from indistinguishability

obfuscation. Here, we describe a slotted version of the scheme. Given a collection of public keys pk
1
, . . . , pk𝐿 along

with their attribute sets 𝑆1, . . . , 𝑆𝐿 , we first construct a Merkle hash tree on values (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿). The master

public key is the root of the Merkle tree. A ciphertext consists of an obfuscated program that takes as input an index

𝑖 ∈ [𝐿], the public key pk𝑖 and its accompanying secret key sk𝑖 , the set of attributes 𝑆𝑖 , and a Merkle proof of opening

for the value (pk𝑖 , 𝑆𝑖 ) at index 𝑖 . The obfuscated program checks that (1) the opening with respect to the hash root

(hard-coded) is valid; (2) 𝑆𝑖 satisfies the ciphertext policy (also hard-coded); and (3) sk𝑖 is the secret key associated

with pk𝑖 . If all of these checks pass, it outputs the message𝑚. This approach directly yields a registered ABE for

an arbitrary number of users and which supports general circuit policies. We give the full construction in Section 7

(Construction 7.4). We leave the question of constructing registered ABE that supports an unbounded number of

users without obfuscation (or without needing non-black-box use of cryptography) as an intriguing open problem.

2.1 Constructing Slotted Registered ABE from Pairings
In this section, we provide a general overview of our slotted registered ABE scheme from composite-order pairing

groups. The full construction and analysis are provided in Section 5. Together with the slotted-to-full transformation

from Section 6, we obtain a registered ABE for an a priori bounded number of users.

Composite-order pairing groups. Our construction relies on composite-order pairing groups where the group

order 𝑁 is a product of three primes 𝑁 = 𝑝1𝑝2𝑝3. Then, a (symmetric) composite-order pairing group consists of

two cyclic groups G and G𝑇 , each of order 𝑁 . Let 𝑔 be a generator of G. By the Chinese remainder theorem, we can

write G � G1 × G2 × G3, where G𝑖 is the subgroup of G order 𝑝𝑖 and is generated by 𝑔𝑖 = 𝑔
𝑁 /𝑝𝑖

. Additionally, there

exists an efficiently-computable, non-degenerate bilinear map 𝑒 : G × G→ G𝑇 called the pairing. For all exponents
𝑎, 𝑏 ∈ Z𝑁 , we have that 𝑒 (𝑔𝑎, 𝑔𝑏) = 𝑒 (𝑔,𝑔)𝑎𝑏 . Again by the Chinese remainder theorem, the subgroups G1,G2,G3 are

orthogonal: namely 𝑒 (𝑔𝑖 , 𝑔 𝑗 ) = 1 for all 𝑖 ≠ 𝑗 where 𝑖, 𝑗 ∈ {1, 2, 3}.

Linear secret sharing schemes. Like numerous other pairing-based ABE schemes [GPSW06, LOS
+
10, LW11],

we design a (ciphertext-policy) ABE scheme that supports access policies which can be described by a linear secret

sharing scheme (LSSS). Very briefly, a linear secret sharing scheme is specified by a share-generating matrixM ∈ Z𝐾×𝑛
𝑁

,

where each row of M is associated with a distinct attribute 𝑥1, . . . , 𝑥𝐾 . We say a set of attributes {𝑥𝑖 }𝑖∈𝑆 is authorized
if and only if there exists a vector 𝝎𝑆 ∈ Z |𝑆 |𝑁 such that 𝝎T

𝑆
M𝑆 = eT

1
= [1, 0, · · · , 0], whereM𝑆 is the matrix formed by

taking the subset of rows indexed by 𝑆 ⊆ [𝐾]. In other words, the attributes {𝑥𝑖 }𝑖∈𝑆 satisfy the policy if and only if eT
1

3
For ease of notation in the formal description (Section 6 and Construction 6.1), we do not implement this “clearing out” step explicitly. However,

the construction is functionally behaving in this manner.
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is in the row-span of M𝑆 . Given an LSSS matrix M, we can secret share a value 𝑠 ∈ Z𝑁 by sampling 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 ,

constructing the vector v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T and computing the vector of shares u = Mv ∈ Z𝐾𝑞 . The 𝑖th component

𝑢𝑖 ∈ Z𝑁 is the share associated with attribute 𝑥𝑖 . Given an authorized set of attributes {𝑥𝑖 }𝑖∈𝑆 and the subset of shares
u𝑆 ∈ Z |𝑆 |𝑁 associated with 𝑆 , reconstructing the secret corresponds to computing 𝝎T

𝑆
u𝑆 = 𝝎T

𝑆
M𝑆v = eT

1
v = 𝑠 .

Slotted registered ABE overview. In a slotted registered ABE scheme with 𝐿 slots, users register a public key

pk along with a set of attributes 𝑆 ⊆ U to a particular slot 𝑖 ∈ [𝐿]. In our construction, the decryption algorithm

implicitly enforces the following two checks:

• Slot-specific check: The user possesses a secret key associated with some slot 𝑖 in the scheme.

• Attribute-specific check: The attributes associated with the slot 𝑖 satisfy the ciphertext policy. In our

construction, this check shares a similar structure to the Lewko et al. [LOS
+
10] ciphertext-policy ABE scheme.

Thus, when describing our scheme, we roughly partition the components of the CRS, the master public key, and the

ciphertext based on whether they are “slot-specific” or “attribute-specific.”

A single slot scheme. We start by describing a simple version of our scheme with just a single slot.4 The single-slot
scheme highlights the core components of our construction. Subsequently, we describe how to extend the single-slot

scheme into a multi-slot scheme. An important difference between registered ABE and vanilla ABE is the fact that

the master public keys in a registered ABE can depend on the set of attributes that have been registered so far. Thus,

in the single-slot setting that just supports a single user, the user’s attributes are directly embedded into the master

public key. Let U be a (polynomial-size) universe of attributes and let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) be a composite-order

pairing group with 𝑁 = 𝑝1𝑝2𝑝3. We now describe the main components of the scheme:

• The components of the common reference string crs can be partitioned into three general categories:

– General components: The general component is used for blinding the message and linking together

the slot-specific and attribute-specific decryption procedures. These components will subsequently be

included as part of the master public key. Concretely, we sample exponents 𝛼, 𝛽
r← Z𝑁 and include

𝑍 ← 𝑒 (𝑔1, 𝑔1)𝛼 and ℎ ← 𝑔
𝛽

1
in the CRS.

– Slot-specific components: Each slot in the CRS is associated with a set of group elements. In the

single-slot setting, we have two elements 𝐴← (𝑔1𝑔3)𝑡 and 𝐵 ← 𝑔𝛼
1
ℎ𝑡𝑔𝜏

3
, where 𝑡

r← Z𝑁 is a slot-specific

exponent, 𝛼 ∈ Z𝑁 is the “general” exponent from above, and 𝜏
r← Z𝑁 is a blinding factor.

– Attribute-specific components: For each attribute𝑤 ∈ U, the CRS contains a group element𝑈𝑤 ← 𝑔
𝑢𝑤
1

,

where 𝑢𝑤
r← Z𝑁 is the attribute-specific exponent associated with𝑤 .

Putting all the pieces together, the CRS in the single-slot setting consists of the following terms:

crs =
(
G , 𝑔1 , 𝑔3 , 𝑍 , ℎ , (𝐴, 𝐵) , {𝑈𝑤}𝑤∈U

)
.

• To sample a new public/secret key-pair, the user samples 𝑟
r← Z𝑁 and sets it as their secret key sk = 𝑟 . The

user sets the public key to be pk = 𝑇 = 𝑔𝑟
1
.

• When the user registers their public key pk = 𝑇 = 𝑔𝑟
1
along with their set of attributes 𝑆 ⊆ U, the key curator

sets 𝑇 = 𝑇 and𝑈𝑤 = 𝑈𝑤 if𝑤 ∉ 𝑆 and𝑈𝑤 = 1 if𝑤 ∈ 𝑆 . The key curator then outputs the master public key

mpk =
(
G , 𝑔1 , ℎ , 𝑍 , 𝑇 , {𝑈𝑤}𝑤∈U

)
. (2.1)

As we will see later on, 𝑇 is the attribute-independent key aggregated across all of the slots while𝑈𝑤 is the key

associated with attribute𝑤 aggregated across all of the slots.

4
Note that a single-slot scheme by itself is trivial to construct. We can simply define the master public key to be the public key and set of attributes

associated with the slot. However, for describing our construction, it is simpler to first illustrate the mechanics in the single-slot setting and then

build up to the full multi-slot construction.
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• The helper decryption key for the user is just the slot-specific components 𝐴 = (𝑔1𝑔3)𝑡 and 𝐵 = 𝑔𝛼
1
ℎ𝑡𝑔𝜏

3
from

the CRS.

• To encrypt a message ` ∈ G𝑇 to a policy (M, 𝜌), whereM ∈ Z𝐾×𝑛
𝑁

is the share-generating matrix associated

with the policy, and 𝜌 : [𝐾] → U is an injective row-labeling function that maps the rows of M onto the

particular attribute to which it corresponds, the encrypter samples 𝑠
r← Z𝑁 and ℎ1, ℎ2

r← G1 such that ℎ1ℎ2 = ℎ.

Namely, ℎ1 and ℎ2 function as a secret sharing of ℎ. The ciphertext then consists of the following:

– Message-embedding components: Let 𝐶1 ← ` · 𝑍𝑠 = ` · 𝑒 (𝑔1, 𝑔1)𝛼𝑠 . Let 𝐶2 ← 𝑔𝑠
1
.

– Attribute-specific components: Let v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T, where 𝑣2, . . . , 𝑣𝑛 r← Z𝑁 . For each 𝑘 ∈ [𝐾],
sample a blinding factor 𝑠𝑘

r← Z𝑁 and let 𝐶3,𝑘 ← ℎ
mT

𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘 ) and 𝐶4,𝑘 ← 𝑔

𝑠𝑘
1
.
5
Here mT

𝑘
∈ Z𝑛

𝑁
denotes the

𝑘 th row ofM.

– Slot-specific components: Sample 𝑠0
r← Z𝑁 and let 𝐶5 ← ℎ𝑠

1
𝑇 −𝑠0 and 𝐶6 ← 𝑔

𝑠0
1
.

The ciphertext is

ct =
(
(M, 𝜌) , 𝐶1 , 𝐶2 , {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾 ] , (𝐶5,𝐶6)

)
.

Note that if we ignore the slot-specific ciphertext components, then the structure of the ciphertexts in our

scheme coincides with those in the ciphertext-policy ABE scheme of Lewko et al. [LOS
+
10]. However, once

we move beyond the single-slot setting, we will need to introduce additional components into the aggregated
public key. This leads to a more complex decryption procedure and requires a more intricate security analysis

compared to [LOS
+
10]. We discuss some of these details below and refer to Section 5 for the complete details.

The decryption algorithm can be decomposed into two main components: the first ensures the user’s attributes satisfy

the policy, and the second ensures the user’s public key is bound to a specific slot. We describe these two steps below:

• Policy check: Let 𝑆 ′ = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆} be the subset of the user’s attributes that are associated with the

policy (M, 𝜌). Suppose 𝑆 ′ satisfies the policy (M, 𝜌). This means there exists a vector 𝝎𝑆 ′ ∈ Z |𝑆
′ |

𝑁
such that

𝝎T
𝑆 ′M𝑆 ′ = eT

1
. Moreover, by construction,𝑈𝑤 = 1 for all𝑤 ∈ 𝑆 ′. In particular, this means that 𝐶3,𝑘 = ℎ

mT
𝑘
v

2
for all

𝑘 ∈ 𝑆 ′. Using 𝝎𝑆 ′ and ℎ
mT

𝑘
v

2
, the decrypter can compute ℎ

𝝎T
𝑆′M𝑆′v

2
= ℎ

eT
1
v

2
= ℎ𝑠

2
. Finally, the decryption algorithm

can pair 𝐴 = (𝑔1𝑔3)𝑡 with ℎ𝑠2 to obtain

𝐷attrib = 𝑒 (ℎ𝑠2, 𝐴) = 𝑒 (ℎ𝑠2, (𝑔1𝑔3)𝑡 ) = 𝑒 (ℎ2, 𝑔1)𝑠𝑡 ,

since ℎ2 ∈ G1. Essentially, the decrypter should only be able to recover 𝑒 (ℎ2, 𝑔1)𝑠𝑡 if its set of attributes satisfy
the policy. We note here that if an attribute 𝜌 (𝑘) ∉ 𝑆 , then𝑈𝜌 (𝑘 ) ≠ 1; this property effectively “prevents” the

decrypter from using 𝐶3,𝑘 during decryption since it would not be able to remove the extra𝑈
−𝑠𝑘
𝜌 (𝑘 ) component.

The formal security analysis is more delicate and we defer to Section 5 for the exact analysis.

• Slot check: For the slot component, the decrypter takes its secret key 𝑟 and computes

𝐷slot = 𝑒 (𝐶5, 𝐴𝑖 ) · 𝑒 (𝐶6, 𝐴
𝑟
𝑖 ) = 𝑒

(
ℎ𝑠
1
𝑔
−𝑠0𝑟
1

, (𝑔1𝑔3)𝑡
)
· 𝑒

(
𝑔
𝑠0
1
, (𝑔1𝑔3)𝑟𝑡

)
= 𝑒 (ℎ1, 𝑔1)𝑠𝑡 · 𝑒 (𝑔1, 𝑔1)−𝑠0𝑟𝑡 · 𝑒 (𝑔1, 𝑔1)𝑠0𝑟𝑡

= 𝑒 (ℎ1, 𝑔1)𝑠𝑡 , (2.2)

since 𝑇 = 𝑔𝑟
1
and ℎ1 ∈ G1. Essentially, the decrypter should only be able to recover 𝑒 (ℎ1, 𝑔1)𝑠𝑡 if it knows the

secret key associated with the slot.

Recall now that ℎ1 and ℎ2 are a multiplicative secret sharing of ℎ (i.e., ℎ1ℎ2 = ℎ). This means that if both of the policy

check and the slot check passes (and in fact, only in this case), the decrypter is able to recover 𝑒 (ℎ,𝑔1)𝑠𝑡 . This can now

be combined with the message-embedding ciphertext components to recover the original message:

𝐶1 · 𝑒 (ℎ,𝑔1)𝑠𝑡
𝑒 (𝐶2, 𝐵)

=
` · 𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒

(
ℎ,𝑔1)𝑠𝑡

𝑒 (𝑔𝑠
1
, 𝑔𝛼

1
ℎ𝑡𝑔𝜏

3

) =
` · 𝑒 (𝑔1, 𝑔1)𝛼𝑠 · 𝑒

(
ℎ,𝑔1)𝑠𝑡

𝑒 (𝑔1, 𝑔1)𝛼𝑠 · 𝑒 (ℎ,𝑔1)𝑠𝑡
= `,

5
The single-slot version will not require𝐶

4,𝑘 , but this component will be necessary when we extend to multiple slots.
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again using the fact that ℎ ∈ G1.

Extending to multiple slots via key aggregation. To extend to an 𝐿-slot scheme, we essentially “concatenate” 𝐿

independent copies of the single-slot scheme in the CRS. Specifically, for each slot 𝑖 ∈ [𝐿], the CRS contains a set of
slot-specific components and a set of attribute-specific components (in addition to the same set of general components

from the single-slot scheme):

• Slot-specific components: Sample a slot-specific exponent 𝑡𝑖
r← Z𝑁 and a blinding factor 𝜏𝑖

r← Z𝑁 , and let

𝐴𝑖 ← (𝑔1𝑔3)𝑡 and 𝐵𝑖 ← 𝑔𝛼
1
ℎ𝑡𝑔

𝜏𝑖
3
.

• Attribute-specific components: For each attribute𝑤 ∈ U, sample an attribute-specific exponent 𝑢𝑖,𝑤
r← Z𝑁

and let𝑈𝑖,𝑤 ← 𝑔
𝑢𝑖,𝑤
1

.

The CRS consists of the general components, the slot-specific components, and the attribute-specific components for

each of the slots:

crs =
(
G , 𝑔1 , 𝑔3 , 𝑍 , ℎ , {(𝐴𝑖 , 𝐵𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤}𝑖∈[𝐿],𝑤∈U

)
.

Next, we need a way to aggregate the public keys for the different slots into a single compact master public key

mpk. Let {pk𝑖 }𝑖∈[𝐿] be a collection of public keys where pk𝑖 = 𝑇𝑖 = 𝑔
𝑟𝑖
1
is the public key associated with slot 𝑖 . Let

𝑆𝑖 ⊆ U be the set of attributes associated with pk𝑖 . Our aggregation mechanism is simple: the aggregated public key

components 𝑇,𝑈𝑤 simply correspond to the product of the components associated with each slot:

𝑇 =
∏
𝑗∈[𝐿]

𝑇𝑗 and 𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗,𝑤 .

The structure of the mpk is the same as in Eq. (2.1). Importantly, the size of the master public key is independent of
the number of slots. The encryption algorithm also remains the same as in the single-slot case.

Cross term cancellation for decryption. When a message is encrypted with respect to an aggregated key, the
ciphertext components are now a function of the exponents associated with all of the slots. However, the decrypter
only has a key for a single slot (e.g., 𝑟𝑖 ), so the decrypter needs additional helper information in order to decrypt. To

illustrate this, consider the decryption relation associated with the slot check (Eq. (2.2)):

𝐷slot = 𝑒 (𝐶5, 𝐴𝑖 ) · 𝑒
(
𝐶6, 𝐴

𝑟𝑖
𝑖
) = 𝑒 (ℎ𝑠

1
𝑇 −𝑠0 , (𝑔1𝑔3)𝑡𝑖

)
· 𝑒

(
𝑔
𝑠0
1
, (𝑔1𝑔3)𝑟𝑖𝑡𝑖

)
= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖 · 𝑒 (𝑔1, 𝑔1)−𝑠0𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔1, 𝑔1)−𝑠0𝑟 𝑗 𝑡𝑖 · 𝑒 (𝑔1, 𝑔1)𝑠0𝑟𝑖𝑡𝑖

= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖
∏
𝑗≠𝑖

𝑒 (𝑔1, 𝑔1)−𝑠0𝑟 𝑗 𝑡𝑖 , (2.3)

using the fact that 𝑇 =
∏

𝑗∈[𝐿] 𝑇𝑗 =
∏

𝑗∈[𝐿] 𝑔
𝑟 𝑗
1
. This is the same expression from Eq. (2.2) in the single-slot setting,

except we have an extra term

∏
𝑗≠𝑖 𝑒 (𝑔1, 𝑔1)−𝑠0𝑟 𝑗 𝑡𝑖 from the slots 𝑗 ≠ 𝑖 . We refer to these terms as the “cross-terms”

since they correspond to an interaction between the secret key for slot 𝑗 with the slot exponent for slot 𝑖 . We thus

require a way to eliminate the cross terms. Here, we take an approach that is often encountered when using pairings

for aggregation (e.g., aggregating openings for vector commitments [CF13, LM19] or aggregating proofs in the case

of batch arguments [WW22]). The strategy is to have the user for slot 𝑖 provide the cross-terms𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
= (𝑔1𝑔3)𝑟𝑖𝑡 𝑗

for each 𝑗 ≠ 𝑖 as part of its public key pk𝑖 . Given all of the cross-terms from all of the users, the key curator can

compute a helper decryption key component 𝑉𝑖 =
∏

𝑗≠𝑖 𝑉𝑖, 𝑗 =
∏

𝑗≠𝑖 (𝑔1𝑔3)𝑟 𝑗 𝑡𝑖 for each slot 𝑖 . Given 𝑉𝑖 , the decrypter

can now compute

𝑒 (𝐶6,𝑉𝑖 ) =
∏
𝑗≠𝑖

𝑒
(
𝑔
𝑠0
1
, (𝑔1𝑔3)𝑟 𝑗 𝑡𝑖

)
=

∏
𝑗≠𝑖

𝑒 (𝑔1, 𝑔1)𝑠0𝑟 𝑗 𝑡𝑖 ,

which precisely cancels out the extra term in Eq. (2.3). Finally, observe that the additional helper decryption

component is just a single group element and is again, independent of the number of slots. This means that the size of
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the master public key, the size of the helper decryption components, as well as the encryption and decryption times

are independent of the number of slots. Only the (one-time) key-generation and registration costs scale with the

number of slots. We introduce a similar cross-term cancellation approach for the attribute-specific components and

refer to Section 4.1 for the full description and analysis.

Security analysis. To prove security of our construction, we follow the dual-system methodology [Wat09, LW10].

While traditional dual-system proofs modify the distribution of the secret keys and the ciphertexts given out in the

security game, in the registered ABE setting, we modify the distribution of the slot parameters and the ciphertexts. In

more detail, in the security proof, we introduce modified ciphertexts (referred to as “semi-functional ciphertexts”)

and slot components (referred to as “semi-functional slots”). Keys registered to a semi-functional slot can be used to

decrypt normal ciphertexts (i.e., those output by the honest encryption algorithm) and keys registered to a normal slot

can be used to decrypt semi-functional ciphertexts. However, a key registered to a semi-functional slot is unable to

decrypt a semi-functional ciphertext. The proof then then proceeds via a hybrid argument where we first switch the

challenge ciphertext from a normal ciphertext to a semi-functional one. Then, we switch the parameters associated

with each slot from normal to semi-functional. In the final experiment then, all of the slots are semi-functional, as is

the challenge ciphertext. Since keys associated with semi-functional slots cannot be used to decrypt a semi-functional

ciphertext, arguing semantic security in the final experiment is straightforward. We give the full proof in Section 5.

Here, we highlight two of the technical challenges that arise in the proof:

• Malformed public keys: In registered ABE, the adversary is allowed to submit arbitrary public keys to the key
curator. In the security proof (and even for correctness), it will be important that the public keys are well-formed

(and in particular, that the cross-terms are properly constructed). To enable this, we introduce a validity-check

mechanism that uses the pairing to check that the components of the public key are properly computed. In the

security proof (Claim 5.12), we show that the only public keys an efficient adversary can construct that pass

the validity check are those in the support of the honest key-generation algorithm. Note that an alternative

approach to rule out malformed public keys is to have users include a non-interactive zero-knowledge proof of

knowledge of their public key that certifies well-formedness of the public key. However, doing so generically

would either bring in random oracles [FS86] or require making non-black-box use of cryptography. Hence, we

opt for a simpler algebraic mechanism that integrates directly with the rest of our construction.

• Arguing semantic security. A standard proof strategy for arguing security of an ABE scheme based on

linear secret sharing is to construct a sequence of hybrid experiments such that in the final experiment, the

challenge ciphertext information-theoretically hides the message by the security of the linear secret sharing

scheme. This strategy applies if all of the keys the adversary possesses do not satisfy the challenge policy, and

indeed, this property is enforced in the standard ABE security experiment. In registered ABE, the scenario is

slightly different since there are two possibilities we have to consider:

– The adversary knows the secret key associated with slot 𝑖 and the attributes associated with slot 𝑖 do not
satisfy the challenge policy; or

– The adversary does not know the secret key associated with slot 𝑖 . In this case, it could be the case that

the attributes associated with slot 𝑖 do satisfy the challenge policy.

Handling these two cases requires two different information-theoretic arguments: the first relies on the linear

secret sharing scheme while the second relies on the secret key 𝑟𝑖 for slot 𝑖 to be hidden from the view of the

adversary. Setting up these information-theoretic arguments requires slightly different distributions on the slot

components. Consequently, we rely on two different sequence of hybrid experiments to handle the two cases.

We refer to Section 5 (and specifically, the proof of Lemma 5.16) for more details.

We refer to Section 5 for the full construction and analysis of our slotted registered ABE scheme.
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3 Preliminaries
Throughout this work, we write _ to denote the security parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to
denote the set {1, . . . , 𝑛}, and [0, 𝑛] to denote the set {0, . . . , 𝑛}. We use bold uppercase letters (e.g., M) to denote

matrices and bold lowercase letters (e.g., v) to denote vectors. We use non-boldface letters to refer to their components

(e.g., v = [𝑣1, . . . , 𝑣𝑛]). For a positive integer 𝑁 ∈ N, we write Z𝑁 to denote the integers modulo 𝑁 .

We write poly(_) to denote a function that is 𝑂 (_𝑐 ) for some constant 𝑐 ∈ N and negl(_) to denote a function

that is 𝑜 (_−𝑐 ) for all 𝑐 ∈ N. We say that an event occurs with overwhelming probability if its complement occurs with

negligible probability. We say an algorithm is efficient if it runs in probabilistic polynomial time in its input length. We

say that two families of distributionsD1 = {D1,_}_∈N andD2 = {D2,_}_∈N are computationally indistinguishable if no

efficient algorithm can distinguish them with non-negligible probability. We say they are statistically indistinguishable

if the statistical distance Δ(D1,D2) is bounded by a negligible function in _.

Access structures and linear secret sharing. We also recall the definition of monotone access structures and

linear secret sharing which we will use in this work.

Definition 3.1 (Access Structure [Bei96]). Let 𝑆 be a set and let 2𝑆 denote the power set of 𝑆 (i.e., the set of all subsets
of 𝑆). An access structure on 𝑆 is a set A ⊆ 2

𝑆 \ ∅ of non-empty subsets of 𝑆 . We refer to the elements of A as the

authorized sets and those not in A as the unauthorized sets. We say an access structure is monotone if for all sets
𝐵,𝐶 ∈ 2𝑆 , if 𝐵 ∈ A and 𝐵 ⊆ 𝐶 , then 𝐶 ∈ A.

Definition 3.2 (Linear Secret Sharing Scheme [Bei96]). Let P be a set of parties. A linear secret sharing scheme over

a ring Z𝑁 for P is a pair (M, 𝜌), whereM ∈ Zℓ×𝑛
𝑁

is a “share-generating” matrix and 𝜌 : [ℓ] → P is a “row-labeling”

function. The pair (M, 𝜌) satisfy the following properties:

• Share generation: To share a value 𝑠 ∈ Z𝑁 , sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and define the vector v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T.

Then, u = Mv is the vector of shares where 𝑢𝑖 ∈ Z𝑁 belongs to party 𝜌 (𝑖) for each 𝑖 ∈ [ℓ].

• Share reconstruction: Let 𝑆 ⊆ P be a set of parties and let 𝐼𝑆 = {𝑖 ∈ [ℓ] : 𝜌 (𝑖) ∈ 𝑆} be the row indices

associated with 𝑆 . LetM𝑆 ∈ Z |𝐼𝑆 |×𝑛𝑁
be the matrix formed by taking the subset of rows inM that are indexed

by 𝐼𝑆 . If 𝑆 is an authorized set of parties, then there exists a vector 𝝎𝑆 ∈ Z |𝐼𝑆 |𝑁
such that 𝝎T

𝑆
M𝑆 = eT

1
, where

eT
1
= [1, 0, . . . , 0] denotes the first elementary basis vector. Conversely, if 𝑆 ⊆ is an unauthorized sets of parties,

then eT
1
is not in the row-span of M (i.e., there does not exist 𝝎𝑆 ∈ Z |𝑆 |𝑁 where 𝝎T

𝑆
M𝑆 = eT

1
).

Remark 3.3 (One-Use Restriction). In this work, we construct a registered ABE scheme (Section 5) that supports

any policy that can be described by a linear secret sharing scheme (Definition 3.2), with the restriction that each

attribute is associated with at most one row ofM. This corresponds to policies (M, 𝜌) where the row-labeling function
𝜌 is injective. As shown in Lewko et al. [LOS

+
10, §2.2], it is straightforward to extend a scheme with the one-use

restriction into one where attributes can be used up to 𝑘 times by expanding the public parameters and secret keys by

a factor of 𝑘 (i.e., split each attribute into 𝑘 independent copies).

Remark 3.4 (Monotone Boolean Formulas). Our pairing-based registered ABE construction (Section 5) supports

monotone access policies that can be described by any (one-use) linear secret sharing scheme. As a special case, this

captures the class of monotone Boolean formulas. There are multiple ways to take a monotone Boolean formula and

express it as a linear secret sharing scheme; we refer to [LW11, Appendix G] for one such approach.

4 Registered Attribute-Based Encryption
In this section, we introduce the notion of a registered attribute-based encryption scheme for a polynomial-size

attribute space. Our definition is an adaptation of the notion of registration-based encryption (RBE) [GHMR18] to the

more general attribute-based setting. We compare some features of our definition with RBE in Remark 4.6.
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Definition 4.1 (Registered Attribute-Based Encryption). Let _ be a security parameter. Let U = {U_}_∈N be

a universe of attributes and P = {P_}_∈N be a set of policies on U. LetM = {M_}_∈N be the message space.

A registered attribute-based encryption scheme with attribute universe U, policy space P, and message space

M consists of a tuple of efficient algorithms ΠR-ABE = (Setup,KeyGen,RegPK, Encrypt,Update,Decrypt) with the

following properties:

• Setup(1_, 1 |U | ) → crs: On input the security parameter _ and the size of the attribute universeU, the setup

algorithm outputs a common reference string crs.

• KeyGen(crs, aux) → (pk, sk): On input the common reference string crs, and a (possibly empty) state aux, the
key-generation algorithm outputs a public key pk and a secret key sk.

• RegPK(crs, aux, pk, 𝑆pk) → (mpk, aux′): On input the common reference string crs, a (possibly empty) state

aux, a public key pk, and a set of attributes 𝑆pk ⊆ U, the registration algorithm deterministically outputs the

master public key mpk and an updated state aux′.

• Encrypt(mpk, 𝑃, `) → ct: On input the master public key mpk, an access policy 𝑃 ∈ P, and a message ` ∈ M,

the encryption algorithm outputs a ciphertext ct.

• Update(crs, aux, pk) → hsk: On input the common reference string crs, a state aux, and a public key pk, the
update algorithm deterministically outputs a helper decryption key hsk.

• Decrypt(sk, hsk, ct) → M ∪ {⊥,GetUpdate}: On input the master public key mpk, a secret key sk, a helper
decryption key hsk, and a ciphertext ct, the decryption algorithm either outputs a message ` ∈ M, a special

symbol⊥ to indicate a decryption failure, or a special flagGetUpdate that indicates an updated helper decryption
key is needed to decrypt.

Correctness and efficiency. We now define the correctness and efficiency requirements on a registered ABE

scheme. At a high level, correctness says that if a user properly registers her public key along with a set of attributes,

then she can use her secret key to decrypt all future ciphertexts ct encrypted under the resulting (and any subsequent)
master public key, provided that her set of attributes satisfy the policy associated with the ciphertext. Notably, this

should hold even if malicious users register (possibly-malformed) keys. In other works, as long as the key curator is

semi-honest, an adversary cannot register “bad” keys to cause decryption to fail for an honest user. The main efficiency

requirements we impose is that the size of the master public key and the size of each user’s helper decryption key

should be compact (i.e., polylogarithmic in the total number of users). We compare our notion with the RBE definition

in Remark 4.6. We now give the formal definition:

Definition 4.2 (Correctness and Efficiency of Registered ABE). Let ΠR-ABE = (Setup,KeyGen,RegPK, Encrypt,
Update,Decrypt) be a registered ABE scheme with attribute universeU, policy space P, and message spaceM. For

a security parameter _ and an adversary A, we define the following game between A and the challenger:

• Setup phase: The challenger starts by sampling the common reference string crs← Setup(1_, 1 |U | ). It then
initializes the auxiliary input aux← ⊥ and initial master public key mpk

0
← ⊥. It also initializes a counter

ctr[reg] ← 0 to keep track of the number of registration queries and another counter ctr[enc] ← 0 to keep

track of the number of encryption queries. Finally, it initializes ctr[reg]∗ ←∞ as the index for the target key

(which will also be updated during the course of the game). Finally, it gives crs to A.

• Query phase: During the query phase, the adversary A is able to make the following queries:

– Register non-target key query: In a non-target-key registration query, the adversaryA specifies a public

key pk and a set of attributes 𝑆 ⊆ U. The challenger first increments the counter ctr[reg] ← ctr[reg] + 1
and then registers the key by computing (mpkctr[reg], aux

′) ← RegPK(crs, aux, pk, 𝑆). The challenger
updates its auxiliary data by setting aux← aux′ and replies to A with (ctr[reg],mpkctr[reg], aux).
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– Register target key query: In a target-key registration query, the adversary specifies a set of attributes

𝑆∗ ⊆ U. If the adversary has previously made a target-key registration query, then the challenger

replies with ⊥. Otherwise, the challenger increments the counter ctr[reg] ← ctr[reg] + 1, samples

(pk∗, sk∗) ← KeyGen(1_), and registers (mpkctr[reg], aux
′) ← RegPK(crs, aux, pk∗, 𝑆∗). It computes

the helper decryption key hsk∗ ← Update(crs, aux, pk∗). The challenger updates its auxiliary data by

setting aux← aux′, stores the index of the target identity ctr[reg]∗ ← ctr[reg], and replies to A with

(ctr[reg],mpkctr[reg], aux, pk
∗, hsk∗, sk∗).

– Encryption query: In an encryption query, the adversary submits the index ctr[reg]∗ ≤ 𝑖 ≤ ctr[reg] of
a public key,

6
a message `ctr[enc] ∈ M, and a policy 𝑃ctr[enc] ∈ P. If the adversary has not yet registered

a target key, or if the target set of attributes 𝑆∗ does not satisfy the policy 𝑃ctr[enc] , the challenger

replies with ⊥. Otherwise, the challenger increments the counter ctr[enc] ← ctr[enc] + 1 and computes

ctctr[enc] ← Encrypt(mpk𝑖 , 𝑃ctr[enc], `ctr[enc]). The challenger replies to A with (ctr[enc], ctctr[enc]).
– Decryption query: In a decryption query, the adversary submits a ciphertext index 1 ≤ 𝑗 ≤ ctr[enc].
The challenger computes 𝑚′𝑗 ← Decrypt(sk∗, hsk∗, ct𝑗 ). If 𝑚′𝑗 = GetUpdate, then the challenger

computes an updated helper decryption key hsk∗ ← Update(crs, aux, pk∗) and recomputes 𝑚′𝑗 ←
Decrypt(sk∗, hsk∗, ct𝑗 ). If𝑚′𝑗 ≠𝑚 𝑗 , the experiment halts with outputs 𝑏 = 1.

If the adversary has finished making queries and the experiment has not halted (as a result of a decryption

query), then the experiment outputs 𝑏 = 0.

We say that ΠR-ABE is correct and efficient if for all (possibly unbounded) adversariesA making at most a polynomial

number of queries, the following properties hold:

• Correctness: There exists a negligible function negl(·) such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the

above game. We say the scheme satisfies perfect correctness if Pr[𝑏 = 1] = 0.

• Compactness: Let 𝑁 be the number of registration queries the adversary makes in the above game. There

exists a universal polynomial poly(·, ·, ·) such that for all 𝑖 ∈ [𝑁 ], |mpk𝑖 | = poly(_, |U|, log 𝑖). We also require

that the size of the helper decryption key hsk∗ satisfy |hsk∗ | = poly(_, |U|, log𝑁 ) (at all points in the game).

• Update efficiency: Let 𝑁 be the number of registration queries the adversary makes in the above game. Then,

in the course of the above game, the challenger invokes the update algorithm Update at most 𝑂 (log𝑁 ) times,

where each invocation runs in poly(log𝑁 ) time in the RAM model of computation. Specifically, we model

Update as a RAM program that has random access to its input; thus, the running time of Update in the RAM

model can be smaller than the input length.

Registered ABE security. The security requirement for a registered ABE scheme is analogous to the standard

ABE security notion. Namely, semantic security should hold for a ciphertext associated with a policy 𝑃 if the user

only has keys registered to attribute sets 𝑆1, . . . , 𝑆𝑘 which do not satisfy the policy. In the security game, we allow

the adversary the ability to register users with a set of attributes that do satisfy the challenge policy, provided the

adversary does not know the user’s secret key (i.e., they are generated honestly by the challenger). In addition, the

adversary is allowed to register (arbitrary) public keys for attribute sets of its choosing, provided that none of them

satisfy the challenge policy. We give the formal definition below:

Definition 4.3 (Security of Registered ABE). Let ΠR-ABE = (Setup,KeyGen,RegPK, Encrypt,Update,Decrypt) be a
registered ABE scheme with attribute universeU, policy space P, and message spaceM. For a security parameter _,

an adversary A, and a bit 𝑏 ∈ {0, 1}, we define the following game between A and the challenger:

• Setup phase: The challenger samples the common reference string crs← Setup(1_, 1 |U | ). It then initializes

the auxiliary input aux ← ⊥, the initial master public key mpk ← ⊥, a counter ctr ← 0 for the number

of honest-key-registration queries the adversary has made, an empty set of keys C ← ∅ (to keep track of

6
Since we are requiring correctness to hold with respect to the target key, we only consider ciphertexts encrypted to master public keys constructed

after the target key has been registered.
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corrupted public keys), and an empty dictionary mapping public keys to registered attribute sets D← ∅. For
notational convenience, if pk ∉ D, then we define D[pk] B ∅. to be the empty set. The challenger gives the crs
to A.

• Query phase: Adversary A can now issue the following queries:

– Register corrupted key query: In a corrupted-key-registration query, the adversaryA specifies a public

key pk and a set of attributes 𝑆 ⊆ U. The challenger registers the key by computing (mpk′, aux′) ←
RegPK(crs, aux, pk, 𝑆). The challenger updates its copy of the public key mpk← mpk′, its auxiliary data

aux← aux′, adds pk to C, and updates 𝐷 [pk] ← 𝐷 [pk] ∪ {𝑆}. It replies to A with (mpk′, aux′).
– Register honest key query: In an honest-key-registration query, the adversary specifies a set of attributes
𝑆 ⊆ U. The challenger increments the counter ctr← ctr+1 and samples (pkctr, skctr) ← KeyGen(1_), and
registers (mpk′, aux′) ← RegPK(crs, aux, pkctr, 𝑆). The challenger updates its public key mpk← mpk′,
its auxiliary data aux← aux′, and 𝐷 [pkctr] ← 𝐷 [pkctr] ∪ {𝑆}. It replies toA with (ctr,mpk′, aux′, pkctr).

– Corrupt honest key query: In a corrupt-honest-key query, the adversary specifies an index 1 ≤ 𝑖 ≤ ctr.
Let (pk𝑖 , sk𝑖 ) be the 𝑖th public/secret key the challenger samples when responding to the 𝑖th honest-key-

registration query. The challenger adds pk𝑖 to C and replies to A with sk𝑖 .

• Challenge phase: The adversary A chooses two messages `∗
0
, `∗

1
∈ M and an access policy 𝑃∗ ∈ P. The

challenger replies with the challenge ciphertext ct∗ ← Encrypt(mpk, 𝑃∗, `∗
𝑏
).

• Output phase: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

Let S = {𝑆 ∈ D[pk] : pk ∈ C} be the set of corrupted attributes. We say that an adversary A is admissible if the

challenge policy 𝑃∗ is not satisfied by any attribute set 𝑆 ∈ S. Note that it could be the case that 𝑃∗ is satisfied by the

attributes 𝑆 from an honest key query (that was not subsequently corrupted). We say that a registered ABE scheme

is secure if for all efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all

_ ∈ N, we have that | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(_) in the above security game.

Definition 4.4 (Bounded Registered ABE). We say a registered ABE scheme ΠR-ABE is bounded if there is an a
priori bound on the number of registered users in the system. In this setting, we modify Setup to takes as input an

additional bound parameter 1
𝐿
which specifies the maximum number of registered users. In the correctness and

security definitions (Definitions 4.2 and 4.3), we allow the adversary to specify the bound 1
𝐿
at the beginning, and

in the games themselves, the adversary can make up to 𝐿 queries (the challenger answers subsequent registration

queries with ⊥).

Remark 4.5 (Adaptive Corruptions). We could also consider a version of registered ABE which allows for corruption

queries after the challenge phase. However, such a definition is in fact equivalent to the current definition, since

the adversary can always make all admissible corruption queries in the pre-challenge phase before submitting the

challenge policy. This step relies on the fact that the registration algorithm is deterministic, so its behavior can

be entirely simulated by the adversary. In the slotted setting (Section 4.1), we give a formal proof of equivalence

for these two notions (see Lemma 4.10). The analogous argument applies to the full registered ABE security game

(Definition 4.3).

Remark 4.6 (Comparison with Registration-Based Encryption). The correctness and security definitions of our

registered ABE scheme are essentially generalizations of the corresponding definitions for registration-based encryp-

tion introduced by Garg et al. [GHM
+
19] to the setting of attribute-based encryption. The main difference is that

we do not impose efficiency requirements on the running time of the key-generation and registration algorithms

whereas Garg et al. require that they run in time poly(_, log𝑛), where 𝑛 is the number of registered users. In the

case of our main pairing-based construction (Corollary 6.9), the running time of key-generation and registration

scale with the bound on the maximum number of registered users. This roughly corresponds to the notion of “weak

efficiency” in the language of Garg et al. Our obfuscation-based registered ABE scheme in Section 7 supports efficient

key-generation and registration. It is an interesting question to construct a registered ABE scheme with efficient

key-generation and registration without obfuscation (or making non-black-box use of cryptographic primitives).
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A difference in the security definition is we additionally allow the adversary to register an honest user, and then

later on corrupt the user and learn its secret key. Registration-based encryption did not allow for corruption queries.

Remark 4.7 (Transparent Key Curator). When using a registered ABE scheme, a key curator is responsible for

maintaining the auxiliary data and processing user registrations. Just like in RBE, the key curator in a registered

ABE scheme is entirely transparent and maintains no secrets. Indeed, both the registration and update algorithms

are deterministic, so an independent party (or a user) can audit the key curator and verify whether it is behaving

honestly or not. Note however that we cannot prevent a malicious key curator from registering a set of attributes

that allow it to decrypt all ciphertexts (this is analogous to a malicious key curator registering a key for a target user

of its choosing in the setting of RBE). However, such activity is always detectable by an external auditor.

Remark 4.8 (Universe Size). Definition 4.2 allows the size of the CRS, the master public key and the helper decryption

keys (and by extension, the size of the ciphertext) to scale with the size of the attribute universeU. This means our

definition is currently tailored for a polynomial-size attribute space. We could define an analogous “large-universe”

version of our definition where the size of the CRS, the master public key and helper decryption keys scale with

poly(log |U|); in this case, the Setup algorithm would take the universe size in binary rather than unary. Our

pairing-based construction (Section 5) only supports a polynomial-size attribute universe while our obfuscation-based

construction (Section 7) supports an arbitrary universe size. It is an interesting question to extend our pairing-based

construction to the large-universe setting where the set of attributes can be an arbitrary bit-string. Note that even a

small-universe ABE captures notions like identity-based encryption (e.g., the number of attributes would be linear in

the bit-length of the identity).

4.1 Slotted Registered Attribute-Based Encryption
In this section, we formally introduce the notion of a slotted registered ABE scheme which is the core building

block underlying our pairing-based construction (Section 5) and obfuscation-based construction (Section 7). Then in

Section 6, we show how to compile a slotted registered ABE scheme into a standard registered ABE scheme.

Definition 4.9 (Slotted Registration-Based Encryption). Let _ be a security parameter. Let U = {U_}_∈N be a

universe of attributes and P = {P_}_∈N be a set of policies on U. LetM = {M_}_∈N be the message space. A

slotted registered ABE scheme with attribute universeU, policy space P, and message spaceM is a tuple of efficient

algorithms ΠsRBE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,Decrypt) with the following properties:

• Setup(1_, 1 |U | , 1𝐿) → crs: On input the security parameter _, the size of the universeU, and the number of

slots 𝐿, the setup algorithm outputs a common reference string crs.

• KeyGen(crs, 𝑖) → (pk𝑖 , sk𝑖 ): On input the common reference string crs, a slot index 𝑖 ∈ [𝐿], the key-generation
algorithm outputs a public key pk𝑖 and a secret key sk𝑖 for slot 𝑖 .

• IsValid(crs, 𝑖, pk𝑖 ) → {0, 1}: On input the common reference string crs, a slot index 𝑖 ∈ [𝐿], and a public key

pk𝑖 , the key-validation algorithm outputs a bit 𝑏 ∈ {0, 1} indicating whether pk𝑖 is valid or not. This algorithm

is deterministic.

• Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)) → (mpk, hsk1, . . . , hsk𝐿): On input the common reference string crs

and a list of public keys and the associated attributes (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿), the aggregate algorithm outputs the

master public keympk and a collection of helper decryption keys hsk1, . . . , hsk𝐿 . This algorithm is deterministic.

• Encrypt(mpk, 𝑃, `) → ct: On input the master public key mpk, an access policy 𝑃 ∈ P, and a message ` ∈ M,

the encryption algorithm outputs a ciphertext ct.

• Decrypt(sk, hsk, ct) → 𝑚: On input a decryption key sk, the helper decryption key hsk, and a ciphertext ct,
the decryption algorithm outputs a message ` ∈ M ∪ {⊥}. This algorithm is deterministic.

Moreover, the above algorithms should satisfy the following properties:
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• Completeness: For all parameters _ ∈ N, 𝐿 ∈ N, all attribute universesU, and all indices 𝑖 ∈ [𝐿],

Pr

[
IsValid(crs, 𝑖, pk𝑖 ) = 1 : crs← Setup(1_, 1 |U | , 1𝐿); (pk𝑖 , sk𝑖 ) ← KeyGen(crs, 𝑖)

]
= 1.

• Correctness: We say ΠsRBE is correct if for all security parameters _ ∈ N, all attribute universesU, all slot

lengths 𝐿 ∈ N, all indices 𝑖 ∈ [𝐿], if we sample crs ← Setup(1_, 1 |U | , 1𝐿), (pk𝑖 , sk𝑖 ) ← KeyGen(crs, 𝑖), then
for all collections of public keys {pk𝑗 } 𝑗≠𝑖 (which may be correlated with pk𝑖 ) where IsValid(crs, 𝑗, pk𝑗 ) = 1,

all messages ` ∈ M, all sets of attributes 𝑆1, . . . , 𝑆𝐿 ⊆ U, all policies 𝑃 ∈ P where 𝑆𝑖 satisfies policy 𝑃 , the

following holds:

Pr

[
Decrypt(sk𝑖 , hsk𝑖 , ct) = ` :

(mpk, hsk1, . . . , hsk𝐿) ← Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿))

ct← Encrypt(mpk, 𝑃, `)

]
= 1,

where the probability is taken over the randomness in Setup, KeyGen, and Encrypt.

• Compactness: There exists a universal polynomial poly(·, ·, ·) such that the length of the master public key

and individual helper secret keys output by Aggregate are poly(_, |U|, log𝐿).

• Security: Let 𝑏 ∈ {0, 1} be a bit. For an adversary A, define the following security game between A and a

challenger:

– Setup phase: The adversary A sends a slot count 1
𝐿
to the challenger. The challenger then samples

crs← Setup(1_, 1 |U | , 1𝐿) and gives crs toA. The challenger also initializes a counter ctr← 0, a dictionary

D, and a set of slot indices C ← ∅.
– Pre-challenge query phase: Adversary A can now issue the following queries:

∗ Key-generation query: In a key-generation query, the adversary specifies a slot index 𝑖 ∈ [𝐿].
The challenger responds by incrementing the counter ctr ← ctr + 1, sampling (pkctr, skctr) ←
KeyGen(crs, 𝑖) and replieswith (ctr, pkctr) toA. The challenger adds themapping ctr ↦→ (𝑖, pkctr, skctr)
to the dictionary D.

∗ Corruption query: In a corruption query, the adversary specifies an index 1 ≤ 𝑐 ≤ ctr. In response,

the challenger looks up the tuple (𝑖′, pk′, sk′) ← D[𝑐] and replies to A with sk′.

– Challenge phase: For each slot 𝑖 ∈ [𝐿], adversary A specifies a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ) where either 𝑐𝑖 ∈
{1, . . . , ctr} to reference a challenger-generated key or 𝑐𝑖 = ⊥ to reference a key outside this set. The

adversary also specifies a challenge policy 𝑃∗ ∈ P and two messages `∗
0
, `∗

1
∈ M. The challenger responds

by first constructing pk𝑖 as follows:

∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, then the challenger looks up the entry D[𝑐𝑖 ] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, then the

challenger sets pk𝑖 ← pk′. Moreover, if the adversary previously issued a “corrupt identity” query on

index 𝑐𝑖 , then the challenger adds the slot index 𝑖 to C. Otherwise, if 𝑖 ≠ 𝑖′, then the experiment halts.

∗ If 𝑐𝑖 = ⊥, then the challenger checks that IsValid(crs, 𝑖, pk∗𝑖 ) outputs 1. If not, the experiment halts. If

the key is valid, the challenger sets pk𝑖 ← pk∗𝑖 and adds the slot index 𝑖 to C.
The challenger computes (mpk, hsk1, . . . , hsk𝐿) ← Aggregate(crs, (pk

1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)) and replies

with the challenge ciphertext ct∗ ← Encrypt(mpk, 𝑃∗, `∗
𝑏
). Note that because Aggregate is deterministic

and can be run by A itself, there is no need to additionally provide (mpk, hsk1, . . . , hsk𝐿) to A. Similarly,

there is no advantage to allowing the adversary to select the challenge policy and messages after seeing
the aggregated key.

– Post-challenge query phase: Adversary A can now issue the following queries:

∗ Corruption query: In a corruption query, the adversary specifies an index 𝑐 ∈ {1, . . . , ctr}. In
response the challenger looks up the tuple (𝑖′, pk′, sk′) ← D[𝑐] and replies to A with sk′. Moreover,

if the adversary registered a tuple of the form (𝑐, 𝑆, pk∗) in the challenge phase for some choice of

𝑆 ⊆ U and pk∗, then the challenger adds the slot index 𝑖′ ∈ [𝐿] to C.

15



– Output phase: At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output

of the experiment.

We say an adversaryA is admissible if for all corrupted slot indices 𝑖 ∈ C, the set 𝑆𝑖 does not satisfy 𝑃∗ (i.e., the
attributes associated with a corrupted slot does not satisfy the challenge policy). Finally, we say that a slotted

registration-based encryption scheme is secure if for all polynomials 𝐿 = 𝐿(_) and all efficient and admissible

adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

|Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(_)

in the above security experiment.

The security requirement in Definition 4.9 allows the adversary to issue additional corruption queries in a post-

challenge query phase. However, as we show below, it suffices to argue security in the simpler setting where there

are no post-challenge queries. Security in the setting without post-challenge queries implies security in the setting

with post-challenge queries.

Lemma 4.10 (Security without Post-Challenge Queries). Suppose a slotted registered ABE scheme ΠsRBE = (Setup,
KeyGen, IsValid,Aggregate, Encrypt,Decrypt) is secure against all efficient adversaries A that does not make any
post-challenge queries. Then it is also a secure slotted registered ABE scheme (in the sense of Definition 4.9).

Proof. Let A be an efficient adversary that wins the slotted registered ABE security game with non-negligible

probability Y. We use A to construct an adversary B for the slotted registered ABE security game that wins with the

same advantage, but makes no post-challenge queries:

• Setup phase: AlgorithmA outputs a slot count 1
𝐿
. Algorithm B forwards 1

𝐿
to the challenger. The challenger

replies to B with a crs ← Setup(1_, 1 |U | , 1𝐿). Algorithm B gives crs to A. Algorithm B also initializes an

(empty) dictionary D.

• Pre-challenge query phase: Adversary A can now issue the following queries:

– Key-generation query: When algorithm A makes a key-generation query on a slot index 𝑖 ∈ [𝐿],
algorithm B forwards the same key-generation query to its challenger. Let (ctr, pkctr) be the challenger’s
response to the query. Algorithm B then adds the mapping ctr ↦→ (𝑖, pkctr,⊥) to its dictionary D. It replies
with (ctr, pkctr) to A.

– Corruption query: When algorithm A makes a corruption query on an index 𝑐 , algorithm B forwards

the same query to its challenger. Let skctr be the challenger’s response. Algorithm B then looks up the

value (𝑖, pkctr, sk′) ← D[ctr] and updates D[ctr] to (𝑖, pkctr, skctr). It then replies to A with skctr.

• Challenge phase: For each slot 𝑖 ∈ [𝐿], adversary A outputs a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ) where either 𝑐𝑖 ∈ [𝑁 ] or
𝑐𝑖 = ⊥, where 𝑁 is the number of key-generation queries the adversary made. In addition, algorithmA outputs

a challenge policy 𝑃∗ ∈ P and two messages `∗
0
, `∗

1
∈ M. For each 𝑐 ∈ [𝑁 ], algorithm B then checks if for all

slot indices 𝑖 ∈ [𝐿] where 𝑐𝑖 = 𝑐 , the associated set of of attributes 𝑆𝑖 does not satisfy 𝑃
∗
(i.e., 𝑃∗ (𝑆𝑖 ) = 0). If

this holds, then B submits a corrupt-identity query on 𝑐 to obtain a secret key sk𝑐 . Algorithm B looks up the

mapping (𝑖, pk𝑐 , sk′) ← D[𝑐] and updates its value to (𝑖, pk𝑐 , sk𝑐 ). At this point, algorithm B issues a challenge

query on the same challenge

(
`∗
0
, `∗

1
, 𝑃∗, {(𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 )}𝑖∈[𝐿]

)
. Let ct∗ be the challenge ciphertext. Algorithm B

forwards ct∗ to A.

• Post-challenge query phase: Adversary A can now issue additional corruption queries. On input an index 𝑐 ,

algorithm B looks up the value (𝑖, pk𝑐 , sk𝑐 ) ← D[𝑐]. If sk𝑐 = ⊥, algorithm B aborts. Otherwise, it replies to A
with sk𝑐 .

• Output phase: At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.
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By construction, algorithm B is a slotted registered ABE adversary that does not make any post-challenge corruption

queries. Moreover, algorithm B perfectly simulates an execution of the security game for A, provided that A does

not issue any post-challenge queries that cause B to abort. Now, algorithm B aborts only if the value D[𝑐] is of the
form (𝑖, pk,⊥). This will be the case only if A submits a post-challenge corrupt-identity query on an index 𝑐 ∈ [𝑁 ]
and there exists a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ) in the challenge tuple where 𝑐𝑖 = 𝑐 and 𝑆𝑖 satisfies the challenge policy 𝑃 . Such

queries are not allowed if A is admissible. Thus, B perfectly simulates the security game for A. Moreover, if A’s

pre-challenge queries are admissible, then all of algorithm B’s queries are admissible. This is because the additional

queries algorithm B makes in the security game (after A outputs the challenge) are admissible by construction. □

5 Slotted Registered ABE from Pairings
In this section, we show how to construct a slotted registered ABE scheme for policies describable by a linear secret

sharing scheme using composite-order bilinear maps.

5.1 Preliminaries: Composite-Order Pairing Groups
Our pairing-based construction of slotted registered ABE will rely on composite-order pairing groups [BGN05]. We

recall the formal definition below:

Definition 5.1 (Three-Prime Composite-Order Bilinear Group [BGN05]). A (symmetric) three-prime composite-order

bilinear group generator is an efficient algorithm CompGroupGen that takes as input the security parameter _ and

outputs a description (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑔, 𝑒) of a bilinear group where 𝑝1, 𝑝2, 𝑝3 are distinct primes, G andG𝑇 are cyclic

groups of order 𝑁 = 𝑝1𝑝2𝑝3, 𝑔 is a generator of G, and 𝑒 : G × G→ G𝑇 is a non-degenerate bilinear map (called the

“pairing”). We require that the group operation in G and G𝑇 as well as the pairing operation be efficiently computable.

Notation. Let G be a cyclic group with order 𝑁 = 𝑝1𝑝2𝑝3 and generator 𝑔. In the following, we will write

G1 = ⟨𝑔𝑝2𝑝3⟩ to denote the subgroup of G of order 𝑝1. We define G2 and G3 analogously. By the Chinese Remainder

Theorem, if 𝑔1, 𝑔2, 𝑔3 are generators of G1,G2,G3, respectively, then 𝑔1𝑔2𝑔3 ∈ G is a generator of G, and moreover,

every element ℎ ∈ G can be uniquely written as 𝑔
𝑥1
1
𝑔
𝑥2
2
𝑔
𝑥3
3
where 𝑥1 ∈ Z𝑝1 , 𝑥2 ∈ Z𝑝2 , and 𝑥3 ∈ Z𝑝3 . In the following

description, we will say ℎ ∈ G has a non-trivial component in the G𝑖 subgroup if 𝑥𝑖 ≠ 0.

Generalized subgroup assumptions. Security of our construction relies on several variants of the subgroup

decision assumptions introduced by Lewko and Waters [LW10] for constructing adaptively-secure (hierarchical)

identity-based encryption, and subsequently by Lewko et al. [LOS
+
10] for constructing adaptively-secure attribute-

based encryption. The first two assumptions are special cases of the generalized subgroup decision assumption from

Bellare et al. [BWY11]. Lewko and Waters previously showed that all of the assumptions hold in the generic bilinear

group model. Finally, we state a simple implication (Lemma 5.3) from [LW10] of the assumptions that will be useful

in our security analysis.

Assumption 5.2 (Subgroup Decision Assumptions [LW10]). Let CompGroupGen be a three-prime composite-order

bilinear group generator. Let (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑔, 𝑒) ← CompGroupGen(1_), 𝑁 = 𝑝1𝑝2𝑝3, G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), and
𝑔1

r← G1, 𝑔2
r← G2, and 𝑔3

r← G3. We now define several pairs of distributions D0,D1 where each distribution

D𝑏 = (𝐷,𝑇𝑏) consists of a set of common components 𝐷 and a challenge element 𝑇𝑏 . We say that each assumption

below holds with respect to CompGroupGen if for all efficient adversariesA, there exists a negligible function negl(·)
such that for all _ ∈ N,

|Pr[A(𝐷,𝑇0) = 1] − Pr[A(𝐷,𝑇1) = 1] | = negl(_).
Assumption 5.2a: Sample 𝑟

r← Z𝑁 , and let

𝐷 = (G, 𝑔1, 𝑔3) , 𝑇0 = 𝑔
𝑟
1
, 𝑇1 = (𝑔1𝑔2)𝑟 .

Assumption 5.2b: Sample 𝑠12, 𝑠23, 𝑟
r← Z𝑁 , and let

𝐷 = (G, 𝑔1, 𝑔3, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔3)𝑠23 ) , 𝑇0 = (𝑔1𝑔3)𝑟 , 𝑇1 = 𝑔
𝑟 .
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Assumption 5.2c: Sample 𝛼, 𝑠, 𝑡1, 𝑡2, 𝑟
r← Z𝑁 , and let

𝐷 =
(
G, 𝑔1, 𝑔2, 𝑔3, 𝑔𝛼1𝑔

𝑡1
2
, 𝑔𝑠

1
𝑔
𝑡2
2

)
, 𝑇0 = 𝑒 (𝑔1, 𝑔1)𝛼𝑠 , 𝑇1 = 𝑒 (𝑔,𝑔)𝑟 .

Lemma 5.3 (Hardness of Factoring [LW10, Lemma 5]). Let CompGroupGen be a composite-order bilinear group
generator where Assumption 5.2b holds. Then, for all efficient adversaries A, there exists a negligible function negl(·)
such that for all _ ∈ N,

Pr

1 < gcd(𝑥, 𝑁 ) < 𝑁 :

(G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑔, 𝑒) ← CompGroupGen(1_),
𝑁 ← 𝑝1𝑝2𝑝3,G ← (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1

r← G1, 𝑔3
r← G3, 𝑠12, 𝑠23

r← Z𝑁
𝑥 ← A

(
G, 𝑔1, 𝑔3, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔3)𝑠23

)
,

 = negl(_).

In words, given
(
G, 𝑔1, 𝑔3, (𝑔1𝑔2)𝑠12 , (𝑔2𝑔3)𝑠23

)
, no efficient adversary can output a non-trivial factor of 𝑁 .

5.2 Slotted Registered ABE from Composite-Order Pairing Groups
In this section, we show how to construct a slotted registered ABE scheme from composite-order pairing groups.

Construction 5.4 (Slotted Attribute-Based Registration-Based Encryption). Let CompGroupGen be a composite-

order bilinear group generator, letU = {U_}_∈N be a (polynomial-size) attribute space, and let P = {P_}_∈N be a set

of policies that can be described by a (one-use) linear secret sharing scheme (Definition 3.2 and Remark 3.3) over

U. We construct a slotted attribute-based registration-based encryption scheme ΠR-ABE = (Setup,KeyGen, IsValid,
Aggregate, Encrypt,Decrypt) with message spaceM = G𝑇 , attribute spaceU, and policy space P as follows:

• Setup(1_, 1 |U | , 1𝐿): On input the security parameter _, the size of the attribute spaceU, and the number of slots

𝐿, the setup algorithm starts by sampling (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑔, 𝑒) ← CompGroupGen(1_). Let G1,G2,G3 be the

subgroups of G of orders 𝑝1, 𝑝2, 𝑝3, respectively. The setup algorithm now constructs the following quantities:

– Let 𝑁 = 𝑝1𝑝2𝑝3 and let G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) be the (public) group description.

– Sample generators 𝑔1
r← G1, 𝑔3

r← G3 and exponents 𝛼, 𝛽
r← Z𝑁 . Let ℎ ← 𝑔

𝛽

1
.

– For each slot index 𝑖 ∈ [𝐿], sample exponents 𝑡𝑖 , 𝛿𝑖
r← Z𝑁 and a slot blinding factor 𝜏𝑖

r← Z𝑁 . Construct
the slot components as follows:

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3

, 𝑃𝑖 ← (𝑔1𝑔3)𝛿𝑖 .

Then, for each attribute𝑤 ∈ U and each slot 𝑖 ∈ [𝐿], sample an exponent𝑢𝑖,𝑤
r← Z𝑁 , and for each 𝑗 ∈ [𝐿]

with 𝑗 ≠ 𝑖 , sample a blinding factor 𝛾𝑖, 𝑗,𝑤
r← Z𝑁 . Construct the attribute components 𝑈𝑖,𝑤 and𝑊𝑖, 𝑗,𝑤 as

follows:

𝑈𝑖,𝑤 ← 𝑔
𝑢𝑖,𝑤
1

, 𝑊𝑖, 𝑗,𝑤 ← 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.

– Finally, compute 𝑍 ← 𝑒 (𝑔1, 𝑔1)𝛼 and output the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
(5.1)

• KeyGen(crs, 𝑖): On input the common reference string crs (with components given by Eq. (5.1)) and a slot index

𝑖 ∈ [𝐿], the key-generation algorithm samples 𝑟𝑖
r← Z𝑁 and computes

𝑇𝑖 ← 𝑔
𝑟𝑖
1

, 𝑄𝑖 ← 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 ← 𝑔
𝑟𝑖
3
.

Then for each 𝑗 ≠ 𝑖 , it computes the cross terms 𝑉𝑗,𝑖 ← 𝐴
𝑟𝑖
𝑗
. Finally, it outputs the public key pk𝑖 and the secret

key sk𝑖 defined as follows:

pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) and sk𝑖 = 𝑟𝑖 .

Note that this particular key-generation algorithm does not depend on the set of attributes.
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• IsValid(crs, 𝑖, pk𝑖 ): On input the common reference string crs (with components given by Eq. (5.1)), a slot index

𝑖 ∈ [𝐿], and a purported public key pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ), the key-validation algorithm first affirms that

each of the components in pk𝑖 is a valid group element (i.e., an element in G). If so, it then checks

𝑒 (𝑔3,𝑇𝑖 ) = 1 = 𝑒 (𝑔1, 𝑅𝑖 ) and 𝑒 (𝑇𝑖 , 𝑃𝑖 ) = 𝑒 (𝑔1, 𝑄𝑖 ) and 𝑒 (𝑅𝑖 , 𝑃𝑖 ) = 𝑒 (𝑔3, 𝑄𝑖 ).

Next, for each 𝑗 ≠ 𝑖 , the algorithm checks that

𝑒
(
𝑔1,𝑉𝑗,𝑖

)
= 𝑒 (𝑇𝑖 , 𝐴 𝑗 ) and 𝑒

(
𝑔3,𝑉𝑗,𝑖

)
= 𝑒 (𝑅𝑖 , 𝐴 𝑗 ).

If all checks pass, it outputs 1; otherwise, it outputs 0.

• Aggregate(crs, (pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)): On input the common reference string crs (with components given by

Eq. (5.1)), a collection of 𝐿 public keys pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) together with their attribute sets 𝑆𝑖 ⊆ U, the

aggregation algorithm starts by computing the attribute-independent public key𝑇 and the attribute-independent

slot key 𝑉𝑖 for each 𝑖 ∈ [𝐿]:
𝑇 =

∏
𝑗∈[𝐿]

𝑇𝑗 , 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Next, for each attribute𝑤 ∈ U, it computes the attribute-specific public key𝑈𝑤 and the attribute-specific slot

key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿]:
𝑈𝑤 =

∏
𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗,𝑤 , �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑖, 𝑗,𝑤

Finally, it outputs the master public key mpk and the slot-specific helper decryption keys hsk𝑖 where

mpk =
(
G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U

)
.

• Encrypt(mpk, (M, 𝜌), `): On input the master public key mpk = (G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U), a policy (M, 𝜌)
whereM ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U is an injective row-labeling function, and a message ` ∈ G𝑇 , the encryption
algorithm starts by sampling a secret exponent 𝑠

r← Z𝑁 and ℎ1, ℎ2
r← G1 such that ℎ = ℎ1ℎ2. Then, it constructs

the ciphertext components as follows:

– Message-embedding components: First, let 𝐶1 ← ` · 𝑍𝑠 and 𝐶2 ← 𝑔𝑠
1
.

– Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 for the linear secret sharing scheme and let

v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], sample 𝑠𝑘
r← Z𝑁 and let 𝐶3,𝑘 ← ℎ

mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘 ) and 𝐶4,𝑘 ← 𝑔

𝑠𝑘
1
,

where mT
𝑘
∈ Z𝑛𝑝 denotes the 𝑘 th row of M.

– Slot-specific components: Sample 𝑠0
r← Z𝑁 and let 𝐶5 ← ℎ𝑠

1
𝑇 −𝑠0 and 𝐶6 ← 𝑔

𝑠0
1
.

It then outputs the ciphertext

ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾 ], (𝐶5,𝐶6)

)
.

• Decrypt(sk, hsk, ct): On input the secret key sk = 𝑟 , the helper key hsk =
(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U

)
,

wherempk = (G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U), and the ciphertext ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾 ], (𝐶5,𝐶6)

)
where

M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U is an injective row-labeling function, the decryption algorithm proceeds as follows:

– If the set of attributes 𝑆𝑖 is not authorized by (M, 𝜌), then the decryption algorithm outputs ⊥.
– Otherwise, let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M associated with the attributes

𝑆𝑖 ⊆ U. Write the elements as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }.
– LetM𝑆𝑖 be the matrix formed by taking the subset of rows inM indexed by 𝐼 . Since 𝑆𝑖 is authorized, let

𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑁

be a vector such that 𝝎T
𝑆𝑖
M𝑆𝑖 = eT

1
.
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– Then, compute and output

𝐶1 · 𝑒 (𝐶5, 𝐴𝑖 ) · 𝑒 (𝐶6, 𝐴
𝑟
𝑖𝑉𝑖 )︸                      ︷︷                      ︸

𝐷slot

·
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖 ) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗 ) )

)𝜔𝑆𝑖 ,𝑗

︸                                                  ︷︷                                                  ︸
𝐷attrib

/𝑒 (𝐶2, 𝐵𝑖 ). (5.2)

Wewill refer to𝐷slot as the slot-specific decryption component and𝐷attrib as the attribute-specific decryption
component.

Correctness and security analysis. We now provide the correctness (Theorems 5.6 to 5.8) and security analysis

(Theorem 5.9) of Construction 5.4. Taken together, we obtain the following corollary:

Corollary 5.5 (Slotted Registered ABE from Pairings). Let _ be a security parameter, 𝐿 = 𝐿(_) be the number of slots,
andM, U, P, be the message space, attribute space, and policy space from Construction 5.4, respectively. Assuming
Assumption 5.2 holds with respect to CompGroupGen, Construction 5.4 is a secure slotted registered ABE scheme with
the following efficiency properties:

• The size of the CRS is 𝐿2 · |U| · poly(_).

• The size of the master public key mpk and each helper decryption key hsk𝑖 for any slot 𝑖 ∈ [𝐿] is |U| · poly(_).
Notably, this is independent of the number of slots (i.e., registered users).

• The size of a ciphertext associated with policy 𝑃 = (M, 𝜌) ∈ P is |𝑃 | · poly(_).

Theorem 5.6 (Completeness). Construction 5.4 is complete.

Proof. Fix a security parameter _ the number of slots 𝐿. Let crs← Setup(1_, 1 |U | , 1𝐿). Take any index 𝑖 ∈ [𝐿] and let

(pk𝑖 , sk𝑖 ) ← KeyGen(crs, 𝑖). By construction of KeyGen, we can write pk𝑖 =
(
𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
, where

𝑇𝑖 = 𝑔
𝑟𝑖
1

, 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 = 𝑔
𝑟𝑖
3

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗

for some 𝑟𝑖 ∈ Z𝑁 and where 𝐴𝑖 and 𝑃𝑖 are elements from crs. We now consider each of the pairing checks in IsValid
and appeal to orthogonality:

• 𝑒 (𝑔3,𝑇𝑖 ) = 𝑒 (𝑔3, 𝑔𝑟𝑖
1
) = 𝑒 (𝑔3, 𝑔1)𝑟𝑖 = 1.

• 𝑒 (𝑔1, 𝑅𝑖 ) = 𝑒 (𝑔1, 𝑔𝑟𝑖
3
) = 𝑒 (𝑔1, 𝑔3)𝑟𝑖 = 1.

• 𝑒 (𝑇𝑖 , 𝑃𝑖 ) = 𝑒 (𝑔𝑟𝑖
1
, 𝑃𝑖 ) = 𝑒 (𝑔1, 𝑃𝑟𝑖𝑖 ) = 𝑒 (𝑔1, 𝑄𝑖 ).

• 𝑒 (𝑅𝑖 , 𝑃𝑖 ) = 𝑒 (𝑔𝑟𝑖
3
, 𝑃𝑖 ) = 𝑒 (𝑔3, 𝑃𝑟𝑖𝑖 ) = 𝑒 (𝑔3, 𝑄𝑖 ).

• 𝑒 (𝑔1,𝑉𝑗,𝑖 ) = 𝑒 (𝑔1, 𝐴𝑟𝑖𝑗 ) = 𝑒 (𝑔
𝑟𝑖
1
, 𝐴 𝑗 ) = 𝑒 (𝑇𝑖 , 𝐴 𝑗 ).

• 𝑒 (𝑔3,𝑉𝑗,𝑖 ) = 𝑒 (𝑔3, 𝐴𝑟𝑖𝑗 ) = 𝑒 (𝑔
𝑟𝑖
3
, 𝐴 𝑗 ) = 𝑒 (𝑅𝑖 , 𝐴 𝑗 ).

Since all of the pairing checks pass, IsValid(crs, 𝑖, pk𝑖 ) outputs 1 and completeness holds. □

Theorem 5.7 (Correctness). Construction 5.4 is correct.

Proof. Take any security parameter _ ∈ N, attribute space U, slot length 𝐿 ∈ N, and index 𝑖 ∈ [𝐿]. Consider the
following components in the correctness experiment:

• Let crs ← Setup(1_, 1 |U | , 1𝐿) where crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
. By

construction, the slot components can be written as𝐴𝑖 = (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 = 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3
, and 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 . The attribute

components can be written as𝑈𝑖,𝑤 = 𝑔
𝑢𝑖,𝑤
1

and𝑊𝑖, 𝑗,𝑤 = 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.
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• Let (pk𝑖 , sk𝑖 ) ← KeyGen(crs, 𝑖). Then, we can write sk𝑖 = 𝑟𝑖 and pk𝑖 =
(
𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖

)
where

𝑇𝑖 = 𝑔
𝑟𝑖
1

, 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 = 𝑔
𝑟𝑖
3

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
= (𝑔1𝑔3)𝑡 𝑗𝑟𝑖 . (5.3)

• Take any set of public keys {pk𝑗 } 𝑗≠𝑖 where IsValid(crs, 𝑗, pk𝑗 ) holds. Since pk𝑗 satisfies the IsValid predicate,

we can write pk𝑗 =
(
𝑇𝑗 , 𝑄 𝑗 , 𝑅 𝑗 , {𝑉ℓ, 𝑗 }ℓ∈[𝐿]\{ 𝑗 }

)
.

• For each 𝑗 ∈ [𝐿], let 𝑆 𝑗 ⊆ U be the attributes associated with pk𝑗 .

• The master public key mpk and 𝑖th slot-specific helper decryption key hsk𝑖 can then be written as follows:

mpk =
(
G, 𝑔1, ℎ, 𝑍,𝑇 , {𝑈𝑤}𝑤∈U

)
and hsk𝑖 =

(
mpk, 𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐵𝑖 ,𝑉𝑖 , {�̂�𝑖,𝑤}𝑤∈U

)
,

where 𝑇 =
∏

𝑗∈[𝐿] 𝑇𝑗 , 𝑉𝑖 =
∏

𝑗≠𝑖 𝑉𝑖, 𝑗 , and

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗,𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑔
𝑢 𝑗,𝑤

1

�̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑖, 𝑗,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

(𝑔1𝑔3)𝑡𝑖𝑢 𝑗,𝑤𝑔
𝛾𝑖,𝑗,𝑤
3

• Let (M, 𝜌) be the challenge policy whereM ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U is an injective row-labeling function. Take

anymessage ` ∈ M. The challenge ciphertext ct can bewritten as ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾 ], (𝐶5,𝐶6)

)
where P = (M, 𝜌) is the challenge policy, 𝐶1 = ` · 𝑍𝑠 , 𝐶2 = 𝑔𝑠

1
, 𝐶3,𝑘 = ℎ

mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘 ) , 𝐶4,𝑘 = 𝑔

𝑠𝑘
1
, 𝐶5 = ℎ𝑠

1
𝑇 −𝑠0 ,

𝐶6 = 𝑔
𝑠0
1
, ℎ1ℎ2 = ℎ, and ` ∈ G𝑇 is the challenge message.

We now show that Decrypt(sk𝑖 , hsk𝑖 , ct) outputs `. Let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆𝑖 } be the indices of the rows of M
associated with the attributes 𝑆𝑖 . Write the elements of 𝐼 as 𝐼 = {𝑘1, . . . , 𝑘 |𝐼 | }. Let M𝑆𝑖 be the matrix formed by taking

the subset of rows inM indexed by 𝐼 , and let 𝝎𝑆𝑖 ∈ Z
|𝐼 |
𝑁

be a vector such that 𝝎T
𝑆𝑖
M𝑆𝑖 = eT

1
. We break up the decryption

relation (Eq. (5.2)) into several pieces and analyze them individually:

• Policy check: First, consider 𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |
(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖 ) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗 ) )

)𝜔𝑆𝑖 ,𝑗
. By definition,

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖 ) = 𝑒
(
ℎ
mT

𝑘𝑗
v

2
𝑈
−𝑠𝑘𝑗
𝜌 (𝑘 𝑗 ) , (𝑔1𝑔3)

𝑡𝑖

)
= 𝑒 (ℎ2, 𝑔1)

𝑡𝑖mT
𝑘𝑗
v ∏
ℓ∈[𝐿]:𝜌 (𝑘 𝑗 )∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)−𝑡𝑖𝑠𝑘𝑗𝑢ℓ,𝜌 (𝑘𝑗 )

𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗 )

)
=

∏
ℓ∈[𝐿]\{𝑖 }:𝜌 (𝑘 𝑗 )∉𝑆ℓ

𝑒

(
𝑔
𝑠𝑘𝑗
1
,𝑊𝑖,ℓ,𝜌 (𝑘 𝑗 )

)
=

∏
ℓ∈[𝐿]\{𝑖 }:𝜌 (𝑘 𝑗 )∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)𝑡𝑖𝑠𝑘𝑗𝑢ℓ,𝜌 (𝑘𝑗 )

since ℎ2,𝑈𝜌 (𝑘 𝑗 ) ∈ G1. By construction, 𝜌 (𝑘 𝑗 ) ∈ 𝑆𝑖 , so∏
ℓ∈[𝐿]:𝜌 (𝑘 𝑗 )∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)−𝑡𝑖𝑠𝑘𝑗𝑢ℓ,𝜌 (𝑘𝑗 ) =
∏

ℓ∈[𝐿]\{𝑖 }:𝜌 (𝑘 𝑗 )∉𝑆ℓ

𝑒 (𝑔1, 𝑔1)−𝑡𝑖𝑠𝑘𝑗𝑢ℓ,𝜌 (𝑘𝑗 ) ,

and so we can write

𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖 )𝑒
(
𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗 )

)
= 𝑒 (ℎ2, 𝑔1)

𝑡𝑖mT
𝑘𝑗
v
.

Finally noting that eT
1
v = 𝑠 , we have

𝐷attrib =
∏

1≤ 𝑗≤ |𝐼 |

(
𝑒 (𝐶3,𝑘 𝑗 , 𝐴𝑖 ) · 𝑒 (𝐶4,𝑘 𝑗 ,�̂�𝑖,𝜌 (𝑘 𝑗 ) )

)𝜔𝑆𝑖 ,𝑗 = 𝑒 (ℎ2, 𝑔1)
𝑡𝑖

∑
1≤ 𝑗≤|𝐼 | 𝜔𝑆𝑖 ,𝑗

mT
𝑘𝑗
v

= 𝑒 (ℎ2, 𝑔1)𝑡𝑖𝝎
T
𝑆𝑖
M𝑆𝑖

v

= 𝑒 (ℎ2, 𝑔1)𝑡𝑖e
T
1
v = 𝑒 (ℎ2, 𝑔1)𝑠𝑡𝑖 .
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• Slot check: Next, consider the component 𝐷slot = 𝑒 (𝐶5, 𝐴𝑖 )𝑒 (𝐶6, 𝐴
𝑟𝑖
𝑖
𝑉𝑖 ). By definition

𝑒 (𝐶5, 𝐴𝑖 ) = 𝑒
(
ℎ𝑠
1
𝑇 −𝑠0 , (𝑔1𝑔3)𝑡𝑖

)
= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖

∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝑔1𝑔3)−𝑠0𝑡𝑖 = 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖
∏
𝑗∈[𝐿]

𝑒 (𝑇𝑗 , 𝐴𝑖 )−𝑠0

𝑒 (𝐶6, 𝐴
𝑟𝑖
𝑖
𝑉𝑖 ) = 𝑒

(
𝑔
𝑠0
1
, (𝑔1𝑔3)𝑟𝑖𝑡𝑖𝑉𝑖

)
= 𝑒 (𝑔1, 𝑔1)𝑠0𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔1,𝑉𝑖, 𝑗 )𝑠0 .

since ℎ1 ∈ G1. Now, since we know for all 𝑗 ∈ [𝐿], IsValid(crs, 𝑗, pk𝑗 ) = 1, we have that for all 𝑗 ≠ 𝑖 ,

𝑒 (𝑔1,𝑉𝑖, 𝑗 ) = 𝑒 (𝑇𝑗 , 𝐴𝑖 ). Thus, using Eq. (5.3), we can now write

𝐷slot = 𝑒 (𝐶5, 𝐴𝑖 )𝑒 (𝐶6, 𝐴
𝑟𝑖
𝑖
𝑉𝑖 ) =

(
𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖 )−𝑠0

∏
𝑗≠𝑖

𝑒 (𝑇𝑗 , 𝐴𝑖 )−𝑠0
) (
𝑒 (𝑔1, 𝑔1)𝑠0𝑟𝑖𝑡𝑖

∏
𝑗≠𝑖

𝑒 (𝑔1,𝑉𝑖, 𝑗 )𝑠0
)

= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖𝑒 (𝑇𝑖 , 𝐴𝑖 )−𝑠0𝑒 (𝑔1, 𝑔1)𝑠0𝑟𝑖𝑡𝑖

= 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖𝑒 (𝑔𝑟𝑖
1
, (𝑔1𝑔3)𝑡𝑖 )−𝑠0𝑒 (𝑔1, 𝑔1)𝑠0𝑟𝑖𝑡𝑖 = 𝑒 (ℎ1, 𝑔1)𝑠𝑡𝑖

• Message reconstruction: Using the fact that ℎ = ℎ1ℎ2, and combining the above relations, we have that

𝐷slot · 𝐷attrib = 𝑒 (ℎ1, 𝑔)𝑠𝑡𝑖𝑒 (ℎ2, 𝑔1)𝑠𝑡𝑖 = 𝑒 (ℎ, 𝑠)𝑠𝑡𝑖 .

Next, using the fact that ℎ = 𝑔
𝛽

1
, we have

𝑒 (𝐶2, 𝐵𝑖 ) = 𝑒 (𝑔𝑠1, 𝑔𝛼1𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3
) = 𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒 (𝑔𝑠1, (𝑔1𝑔3)𝛽𝑡𝑖 ) = 𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒 (ℎ,𝑔1)𝑠𝑡𝑖 .

Thus, putting everything together, Eq. (5.2) becomes

𝐶1 · 𝐷slot · 𝐷attrib

𝑒 (𝐶2, 𝐵𝑖 )
=
` · 𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒 (ℎ,𝑔1)𝑠𝑡𝑖
𝑒 (𝑔1, 𝑔1)𝛼𝑠𝑒 (ℎ,𝑔1)𝑠𝑡𝑖

= `. □

Theorem 5.8 (Compactness). Construction 5.4 is compact.

Proof. This follows by inspection. The master public key mpk consists of the group description and 𝑂 ( |U|) group
elements. Since the group description and each individual group element can be represented in poly(_) bits, the size
of the master public key is bounded by poly(_, |U|, log𝐿) bits. Likewise, the helper decryption key consists of the

master public key along with 𝑂 ( |U|) group elements. Thus, the size of hsk𝑖 is also poly(_, |U|, log𝐿) bits. □

Theorem 5.9 (Security). Suppose Assumption 5.2 holds with respect to CompGroupGen. Then, Construction 5.4 is
secure.

Proof. Our proof follows the dual-system methodology [Wat09, LW10], where we introduce modified ciphertexts

(referred to as “semi-functional ciphertexts”) and slot components (referred to as “semi-functional slots”). Keys

registered to a semi-functional slot can be used to decrypt normal ciphertexts (i.e., those output by the honest

encryption algorithm) and keys registered to a normal slot can be used to decrypt semi-functional ciphertexts.

However, a key registered to a semi-functional slot is unable to decrypt a semi-functional ciphertext. The proof

then proceeds via a sequence of games where we first switch the challenge ciphertext from a normal ciphertext to a

semi-functional one. Then, we switch the parameters associated with each slot from normal to semi-functional. In

the final experiment, all of the slots are semi-functional, as is the challenge ciphertext. Since keys associated with

semi-functional slots cannot be used to decrypt a semi-functional ciphertext, arguing semantic security in the final

experiment is straightforward. We now specify the structure of our semi-functional slots and ciphertexts.

• Semi-functional ciphertext: Semi-functional ciphertexts contain additional components in the G2 subgroup.

Specifically, suppose ct =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾 ], (𝐶5,𝐶6)

)
← Encrypt(crs,mpk, id, `). Then, a semi-

functional ciphertext has the following structure:

ct′ =
(
(M, 𝜌) , 𝐶1 , 𝐶2𝑔

Z2
2
,
{
𝐶3,𝑘𝑔

Z3,𝑘
2

, 𝐶4,𝑘𝑔
Z4,𝑘
2

}
𝑘∈[𝐾 ] ,

(
𝐶5𝑔

Z5
2
, 𝐶6𝑔

Z6
2

) )
,
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for some choice of exponents Z2, Z3,𝑘 , Z4,𝑘 , Z5, Z6 ∈ Z𝑁 . Note that this is not how we construct the semi-functional

ciphertexts in the actual security proof and is primarily meant to illustrate which ciphertext elements contain

a component in the G2 subgroup. We refer to the specific hybrid argument for the precise structure of

semi-functional ciphertexts.

• Semi-functional slot: The slot components for a semi-functional slot at index 𝑖 ∈ [𝐿] are generated exactly

as the normal slot components except we change the distribution of 𝐵𝑖 and 𝑃𝑖 :

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
(𝑔2𝑔3)𝜏𝑖 , 𝑃𝑖 ← 𝑔𝛿𝑖 .

We now define our sequence of hybrid experiments. Note that by Lemma 4.10, we can assume without loss of

generality that the adversary submits all of its queries before submitting the challenge ciphertext. Let 𝑏 ∈ {0, 1} be a
bit.

• Hyb(𝑏 )real: This is the real security game where the challenger encrypts message `∗
𝑏
. We recall the main steps here:

– Setup phase: In the setup phase, the adversary A sends a slot count 1
𝐿
the challenger, who samples the

common reference string crs according to the specification of the real setup algorithm:

∗ The challenger initializes a counter ctr ← 0 and an (empty) dictionary D to keep track of the

key-generation queries.

∗ Let (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑔, 𝑒) ← CompGroupGen(1_). Let 𝑁 = 𝑝1𝑝2𝑝3 and G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) be the
group description.

∗ Sample generators 𝑔1
r← G1, 𝑔3

r← G3, exponents 𝛼, 𝛽
r← Z𝑁 , and let ℎ ← 𝑔

𝛽

1
.

∗ For each slot 𝑖 ∈ [𝐿], sample 𝑡𝑖 , 𝛿𝑖 , 𝜏𝑖
r← Z𝑁 . Construct the slot components as follows:

𝐴𝑖 = (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3

, 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 .

Then, for each attribute𝑤 ∈ U and each slot 𝑖 ∈ [𝐿], sample an exponent𝑢𝑖,𝑤
r← Z𝑁 . For each 𝑗 ∈ [𝐿]

with 𝑗 ≠ 𝑖 , sample a blinding factor 𝛾𝑖, 𝑗,𝑤
r← Z𝑁 and construct the attribute-specific components𝑈𝑖,𝑤

and𝑊𝑖, 𝑗,𝑤 as follows:

𝑈𝑖,𝑤 = 𝑔
𝑢𝑖,𝑤
1

, 𝑊𝑖, 𝑗,𝑤 = 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.

∗ Finally, compute 𝑍 ← 𝑒 (𝑔1, 𝑔1)𝛼 and output the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
(5.4)

– Query phase: The challenger responds to the adversary’s queries as follows:

∗ Key-generation query: When algorithm A makes a key-generation query on a slot 𝑖 , the chal-

lenger starts by incrementing the counter ctr ← ctr + 1 and samples 𝑟𝑖
r← Z𝑁 . It then com-

putes 𝑇𝑖 ← 𝑔
𝑟𝑖
1
, 𝑄𝑖 ← 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 ← 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 ← 𝐴

𝑟𝑖
𝑗
. The challenger sets the public key to be

pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the mapping

ctr ↦→ (𝑖, pkctr, skctr) to the dictionary D.
∗ Corruption query: If the adversary makes a corruption query on an index 1 ≤ 𝑖 ≤ ctr, the challenger
looks up the entry (𝑖′, pk′, sk′) ← D[𝑖] and replies to A with sk′.

– Challenge phase: In the challenge phase, the adversary specifies a challenge policy 𝑃∗ = (M, 𝜌), where
M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U is an injective row-labeling function, two messages `∗

0
, `∗

1
∈ G𝑇 , and for each

slot 𝑖 ∈ [𝐿], a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ). The challenger sets up the public keys pk𝑖 as follows:

∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry D[𝑐𝑖 ] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, the challenger sets
pk𝑖 ← pk′. Otherwise, the challenger aborts with output 0.

∗ If 𝑐𝑖 = ⊥, then the challenger checks that IsValid(crs, 𝑖, pk∗𝑖 ) outputs 1. If not, the challenger aborts
with output 0. Otherwise, it sets pk𝑖 ← pk∗𝑖 .
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For each public key pk𝑖 , the challenger parses it as pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ). Next, the challenger

computes the attribute-independent public key 𝑇 and the attribute-independent slot key 𝑉𝑖 for each

𝑖 ∈ [𝐿]:
𝑇 =

∏
𝑗∈[𝐿]

𝑇𝑗 , 𝑉𝑖 =
∏
𝑗≠𝑖

𝑉𝑖, 𝑗 .

Then, for each attribute𝑤 ∈ U, it computes the attribute-specific public key𝑈𝑤 and the attribute-specific

slot key �̂�𝑖,𝑤 for each 𝑖 ∈ [𝐿] as follows:

𝑈𝑤 =
∏

𝑗∈[𝐿]:𝑤∉𝑆 𝑗

𝑈 𝑗,𝑤 , �̂�𝑖,𝑤 =
∏

𝑗≠𝑖:𝑤∉𝑆 𝑗

𝑊𝑖, 𝑗,𝑤 .

The challenger then constructs the challenge ciphertext by sampling a secret exponent 𝑠
r← Z𝑁 and

ℎ1, ℎ2
r← G1 such that ℎ = ℎ1ℎ2. It then constructs the challenge ciphertext components as follows:

∗ Message-embedding components: First, let 𝐶1 ← `∗
𝑏
· 𝑍𝑠 and 𝐶2 ← 𝑔𝑠

1
.

∗ Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 for the linear secret sharing scheme

and let v = [𝑠, 𝑣2, . . . , 𝑣𝑛]T. Then, for each 𝑘 ∈ [𝐾], sample 𝑠𝑘
r← Z𝑁 and let 𝐶3,𝑘 ← ℎ

mT
𝑘
v

2
𝑈
−𝑠𝑘
𝜌 (𝑘 ) and

𝐶4,𝑘 ← (𝑔1𝑔3)𝑠𝑘 , where mT
𝑘
denotes the 𝑘 th row ofM.

∗ Slot-specific components: Sample 𝑠0
r← Z𝑁 and let 𝐶5 ← ℎ𝑠

1
𝑇 −𝑠0 and 𝐶6 ← 𝑔

𝑠0
1
.

It replies to A with the challenge ciphertext

ct∗ =
(
(M, 𝜌),𝐶1,𝐶2, {𝐶3,𝑘 ,𝐶4,𝑘 }𝑘∈[𝐾 ], (𝐶5,𝐶6)

)
.

– Output phase: At the end of the game, the adversary outputs a bit 𝑏′ ∈ {0, 1}, which is also the output of

the experiment.

• Hyb(𝑏 )
1

: Same as Hyb(𝑏 )real except for the following (primarily syntactic) changes:

– Setup phase: The challenger samples 𝛽1, 𝛽2
r← Z𝑁 and sets 𝛽 ← 𝛽1 + 𝛽2. It sets ℎ ← 𝑔

𝛽

1
as in Hyb(𝑏 )real. In

addition, instead of sampling the secret exponent 𝑠 during the challenge phase, the challenger samples

𝑠
r← Z𝑁 during the setup phase and then sets 𝑃𝑖 ← (𝑔𝑠1𝑔3)𝛿𝑖 for all 𝑖 ∈ [𝐿].

– Challenge phase: When simulating the challenge ciphertext, the challenger sets ℎ1 ← 𝑔
𝛽1
1

and ℎ2 ← 𝑔
𝛽2
1
,

where 𝛽1, 𝛽2 ∈ Z𝑁 are the exponents sampled during the setup phase. Then it constructs the challenge

ciphertext components as follows:

∗ Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for

each 𝑘 ∈ [𝐾], sample 𝑠′
𝑘

r← Z𝑁 and set

𝐶3,𝑘 ← (𝑔𝑠1)𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) , 𝐶4,𝑘 ← (𝑔𝑠1)𝑠

′
𝑘 .

∗ Slot-specific components: Sample 𝑠′
0

r← Z𝑁 and set

𝐶5 ← (𝑔𝑠1)𝛽1
©«
∏
𝑖∈[𝐿]

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

, 𝐶6 ← (𝑔𝑠1)𝑠
′
0 .

• Hyb(𝑏 )
2,0

: Same as Hyb(𝑏 )
1

, except the challenge ciphertext is replaced by a semi-functional ciphertext, and

simultaneously, we lift the 𝑃𝑖 component to be in the full group (rather than G1 × G3). Namely, during the

setup phase, the challenger constructs 𝑃𝑖 as follows for each 𝑖 ∈ [𝐿]:

𝑃𝑖 ← ((𝑔1𝑔2)𝑠𝑔3)𝛿𝑖 .

Then, in the challenge phase, after the adversary has chosen its attribute sets 𝑆𝑖 and corresponding public keys

pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) for each slot 𝑖 ∈ [𝐿], the challenger constructs the challenge ciphertext components

as follows:
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– Message-embedding components: Let 𝐶1 ← `∗
𝑏
· 𝑍𝑠 and 𝐶2 ← (𝑔1𝑔2)𝑠 .

– Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. Then, for each

𝑘 ∈ [𝐾], sample 𝑠′
𝑘

r← Z𝑁 and set

𝐶3,𝑘 ← ((𝑔1𝑔2)𝑠 )𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) , 𝐶4,𝑘 ← ((𝑔1𝑔2)𝑠 )𝑠

′
𝑘 .

– Slot-specific components: Sample 𝑠′
0

r← Z𝑁 and set

𝐶5 ← ((𝑔1𝑔2)𝑠 )𝛽1
©«
∏
𝑖∈[𝐿]

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

, 𝐶6 ← ((𝑔1𝑔2)𝑠 )𝑠
′
0 .

• Hyb(𝑏 )
2,ℓ

: Same as Hyb(𝑏 )
2,ℓ−1, except we change slot ℓ to a semi-functional slot. Specifically, during the setup phase,

the challenger samples the slot components 𝐴ℓ , 𝐵ℓ , and 𝑃ℓ as follows:

𝐴ℓ ← (𝑔1𝑔3)𝑡ℓ , 𝐵ℓ ← 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ , 𝑃ℓ ← ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ .

• Hyb(𝑏 )rand: Same as Hyb
2,𝐿 except when constructing the challenge ciphertext, the challenger samples 𝐶1

r← G𝑇 .
Importantly, this distribution is independent of the message.

For an adversary A and a hybrid experiment Hyb, we write Hyb(A) to denote the output of an execution of Hyb
with adversary A. We now show that the output distributions of each adjacent pair of hybrid experiments are

computationally indistinguishable.

Lemma 5.10. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversariesA and
all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(𝑏 )real (A) = 1] − Pr[Hyb(𝑏 )
1
(A) = 1]

�� = negl(_).

Proof. As we show below, the two experiments are statistically indistinguishable if all of the public keys pk∗𝑖 the
adversary specifies in the challenge phase either satisfy pk∗𝑖 = ⊥ or pk∗𝑖 is in the support of the honest key-generation

algorithm (i.e., for every 𝑖 ∈ [𝐿], there exists 𝑟𝑖 such that pk∗𝑖 is the public key output by KeyGen(crs, 𝑖)). We now

show that under Assumption 5.2a, the only public keys pk∗𝑖 that an efficient adversary can construct and which satisfy

the validity check IsValid(crs, 𝑖, pk𝑖 ) are those that are in the support of the honest key-generation algorithm. To do

so, we start by characterizing the set of possible strategies available to an efficient adversary.

Claim 5.11. For a security parameter _, define the following game between an adversary A and a challenger:

1. The challenger starts by sampling (G,G𝑇 , 𝑝1, 𝑝2, 𝑝3, 𝑔, 𝑒) ← CompGroupGen(1_). It sets 𝑁 = 𝑝1𝑝2𝑝3, G =

(G,G𝑇 , 𝑁 , 𝑔, 𝑒) and samples 𝑔1
r← G1, 𝑔3

r← G3, 𝑠
r← Z𝑁 , and 𝑍 ← (𝑔1𝑔3)𝑠 . The challenger gives the tuple

(G, 𝑔1, 𝑔3, 𝑍 ) to A.

2. Algorithm A outputs a tuple (𝐴, 𝐵,𝐶) ∈ G3.

3. The game outputs 𝑏 = 1 if the following relations are satisfied:

𝑒 (𝑔3, 𝐴) = 1 = 𝑒 (𝑔1, 𝐵) and 𝑒 (𝐴,𝑍 ) = 𝑒 (𝑔1,𝐶) and 𝑒 (𝐵, 𝑍 ) = 𝑒 (𝑔3,𝐶),

and moreover, there does not exist 𝑟 ∈ Z𝑁 such that 𝐴 = 𝑔𝑟
1
, 𝐵 = 𝑔𝑟

3
, and 𝐶 = 𝑍 𝑟 .

Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversaries A, there exists a
negligible function negl(·) such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the above security game.

Proof. Suppose there exists an efficient adversary A such that Pr[𝑏 = 1] = Y for some non-negligible Y. We use A to

construct an adversary B that breaks Assumption 5.2a:
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1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔3,𝑇 ), where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, and either 𝑇 = 𝑔𝑟

1
or 𝑇 = (𝑔1𝑔2)𝑟

2. Algorithm B samples exponents 𝛾𝐴, 𝛾𝐵
r← Z𝑁 and computes 𝑍 = 𝑔

𝛾𝐴
1
𝑔
𝛾𝐵
3
.

3. Algorithm B starts running algorithm A on input (G, 𝑔1, 𝑔3, 𝑍 ) to obtain a triple (𝐴, 𝐵,𝐶).

4. Algorithm B computes 𝑍 ′ ← 𝐶/(𝐴𝛾𝐴𝐵𝛾𝐵 ) and outputs 1 if 𝑒 (𝑍 ′,𝑇 ) = 1 and 0 otherwise.

In the real security game (Claim 5.11), the element 𝑍 = (𝑔1𝑔3)𝑠 = 𝑔𝑠 mod 𝑝1
1

𝑔
𝑠 mod 𝑝3
3

. Since 𝑠
r← Z𝑁 , by the Chinese

Remainder Theorem, the individual exponents 𝑠 mod 𝑝1 and 𝑠 mod 𝑝3 are independent and uniform over Z𝑝1 and
Z𝑝3 , respectively. Thus, algorithm B perfectly simulates the security game for A. Thus, with probability at least Y,

algorithm A outputs a tuple (𝐴, 𝐵,𝐶) such that 𝑒 (𝑔1, 𝐵) = 1 = 𝑒 (𝑔3, 𝐴), 𝑒 (𝐴,𝑍 ) = 𝑒 (𝑔1,𝐶), and 𝑒 (𝐵, 𝑍 ) = 𝑒 (𝑔3,𝐶).
Moreover, there does not exist 𝑟 ∈ Z𝑁 such that 𝐴 = 𝑔𝑟

1
, 𝐵 = 𝑔𝑟

3
, and 𝐶 = 𝑍 𝑟 . We now argue that in this case, over the

choice of 𝛾𝐴, 𝛾𝐵
r← Z𝑁 , it will be the case that 𝑍 ′ ∈ G2 \ {1} with overwhelming probability.

• First, we show that 𝑍 ′ does not have any non-trivial component in the G1 and G3 subgroups (i.e., 𝑍
′ ∈ G2). This

is equivalent to checking that 𝑒 (𝑔1𝑔3, 𝑍 ′) = 1. First, using the fact that 𝑒 (𝑔1,𝐶) = 𝑒 (𝐴,𝑍 ), 𝑒 (𝑔3,𝐶) = 𝑒 (𝐵, 𝑍 ),
and 𝑍 = 𝑔

𝛾𝐴
1
𝑔
𝛾𝐵
3
, we can write

𝑒 (𝑔1𝑔3, 𝑍 ′) =
𝑒 (𝑔1𝑔3,𝐶)

𝑒 (𝑔1𝑔3, 𝐴𝛾𝐴 )𝑒 (𝑔1𝑔3, 𝐵𝛾𝐵 )
=

𝑒 (𝐴,𝑍 )𝑒 (𝐵, 𝑍 )
𝑒 (𝑔1𝑔3, 𝐴𝛾𝐴 )𝑒 (𝑔1𝑔3, 𝐵𝛾𝐵 )

=
𝑒 (𝐴,𝑔𝛾𝐴

1
𝑔
𝛾𝐵
3
)𝑒 (𝐵,𝑔𝛾𝐴

1
𝑔
𝛾𝐵
3
)

𝑒 (𝑔1𝑔3, 𝐴𝛾𝐴 )𝑒 (𝑔1𝑔3, 𝐵𝛾𝐵 )

Next, since 𝑒 (𝑔1, 𝐵) = 1 = 𝑒 (𝑔3, 𝐴), we have

𝑒 (𝑔1𝑔3, 𝑍 ′) =
𝑒 (𝐴,𝑔𝛾𝐴

1
𝑔
𝛾𝐵
3
)𝑒 (𝐵,𝑔𝛾𝐴

1
𝑔
𝛾𝐵
3
)

𝑒 (𝑔1𝑔3, 𝐴𝛾𝐴 )𝑒 (𝑔1𝑔3, 𝐵𝛾𝐵 )
=
𝑒 (𝐴,𝑔1)𝛾𝐴𝑒 (𝐵,𝑔3)𝛾𝐵
𝑒 (𝑔1, 𝐴)𝛾𝐴𝑒 (𝑔3, 𝐵)𝛾𝐵

= 1.

• Next, at least one of the group elements 𝐴, 𝐵,𝐶 must contain a non-trivial component in the G2 subgroup.

Suppose otherwise: namely that 𝐴 = (𝑔1𝑔3)𝑟𝐴 , 𝐵 = (𝑔1𝑔3)𝑟𝐵 , and 𝐶 = (𝑔1𝑔3)𝑟𝐶 for some 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 ∈ Z𝑁 . Then,
the conditions imply the following:

– Since 𝑒 (𝑔3, 𝐴) = 𝑒 (𝑔3, 𝑔3)𝑟𝐴 mod 𝑝3 = 1, it must be the case that 𝑟𝐴 mod 𝑝3 = 0. Thus, 𝐴 = 𝑔
𝑟𝐴 mod 𝑝1
1

.

– Since 𝑒 (𝑔1, 𝐵) = 𝑒 (𝑔1, 𝑔1)𝑟𝐵 mod 𝑝1 = 1, it must be the case that 𝑟𝐵 mod 𝑝1 = 0. Thus, 𝐵 = 𝑔
𝑟𝐵 mod 𝑝3
3

.

– Finally, 𝑒 (𝑔1,𝐶) = 𝑒 (𝐴,𝑍 ) means that 𝑒 (𝑔1, 𝑔1)𝑟𝐶 mod 𝑝1 = 𝑒 (𝐴,𝑍 ) = 𝑒 (𝑔1, 𝑔1)𝛾𝐴𝑟𝐴 mod 𝑝1
. Analogously,

𝑒 (𝑔3,𝐶) = 𝑒 (𝐵, 𝑍 ) means that 𝑒 (𝑔3, 𝑔3)𝑟𝐶 mod 𝑝3 = 𝑒 (𝐵, 𝑍 ) = 𝑒 (𝑔3, 𝑔3)𝛾𝐵𝑟𝐵 mod 𝑝3
. Putting these together, this

means that 𝑟𝐶 = 𝛾𝐴𝑟𝐴 mod 𝑝1 and 𝑟𝐶 = 𝛾𝐵𝑟𝐵 mod 𝑝3. Take any 𝑟 ∈ Z𝑁 such that 𝑟 = 𝑟𝐴 mod 𝑝1 and

𝑟 = 𝑟𝐵 mod 𝑝3. Then, we can write

𝐶 = (𝑔1𝑔3)𝑟𝐶 = 𝑔
𝑟𝐶 mod 𝑝1
1

𝑔
𝑟𝐶 mod 𝑝3
3

= 𝑔
𝛾𝐴𝑟𝐴 mod 𝑝1
1

𝑔
𝛾𝐵𝑟𝐵 mod 𝑝3
3

= (𝑔𝛾𝐴
1
𝑔
𝛾𝐵
3
)𝑟 = 𝑍 𝑟 .

This contradicts the assumption that there does not exist 𝑟 ∈ Z𝑁 such that 𝐴 = 𝑔𝑟
1
, 𝐵 = 𝑔𝑟

3
, and 𝐶 = 𝑍 𝑟 .

• Thus, at least one of 𝐴, 𝐵,𝐶 must contain a non-trivial component in the G2 subgroup. We consider two cases:

– Suppose that at least one of 𝐴 or 𝐵 has a non-trivial component in the G2 subgroup. By the Chinese

Remainder Theorem, 𝛾𝐴 and 𝛾𝐵 are uniform over Z𝑁 , so 𝛾𝐴 mod 𝑝2 and 𝛾𝐵 mod 𝑝2 are uniform over Z𝑝2
and more importantly, independent of the view of the adversary. Thus, 𝛾𝐴 mod 𝑝2 and 𝛾𝐵 mod 𝑝2 are

uniform over Z𝑝2 even given 𝐴, 𝐵,𝐶 . Since at least one of 𝐴 or 𝐵 contains a component in G2, this means

that 𝑍 ′ = 𝐶/(𝐴𝛾𝐴𝐵𝛾𝐵 ) is uniform overG2. Correspondingly, 𝑍
′ ≠ 1with probability 1−1/𝑝2 = 1−negl(_).

– Suppose that 𝐴 and 𝐵 do not have a component in the G2 subgroup. Then, 𝐶 must have a non-trivial

component in the G2 subgroup, and correspondingly, 𝑍 ′ = 𝐶/(𝐴𝛾𝐴𝐵𝛾𝐵 ) must also have a non-trivial

component in the G2 subgroup.
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Putting the pieces together, if algorithm A succeeds, then with overwhelming probability, 𝑍 ′ ∈ G2 \ {1}. In this case,

if 𝑇 = 𝑔𝑟
1
, then 𝑒 (𝑍 ′,𝑇 ) = 1 and if 𝑇 = (𝑔1𝑔2)𝑟 , then 𝑒 (𝑍 ′,𝑇 ) ≠ 1 (unless 𝑟 = 0). Correspondingly, algorithm B breaks

Assumption 5.2a with probability Y − negl(_). □

Using Claim 5.11, we now show that the only public keys pk∗𝑖 the efficient adversary can construct that pass the

validity check are those in the support of the honest key-generation algorithm.

Claim 5.12. For each index 𝑖 ∈ [𝐿], let pk∗𝑖 be the public key algorithm A outputs for slot 𝑖 in the challenge phase
in Hyb(𝑏 )real. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all indices 𝑖 ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, if IsValid(crs, 𝑖, pk𝑖 ) = 1, then with probability 1 − negl(_), there exists 𝑟𝑖 ∈ Z𝑁 such
that pk∗𝑖 is the public key output of KeyGen(crs, 𝑖; 𝑟𝑖 ).

Proof. Take any index 𝑖 ∈ [𝐿]. Let pk∗𝑖 be the public key algorithm A chooses for index 𝑖 in Hyb(𝑏 )real. Parse pk
∗
𝑖 =(

𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖
)
. Suppose IsValid(crs, 𝑖, pk∗𝑖 ) = 1.

• We first show that there exists 𝑟𝑖 ∈ Z𝑁 such that 𝑇𝑖 = 𝑔
𝑟𝑖
1
, 𝑅𝑖 = 𝑔

𝑟𝑖
3
, and 𝑄𝑖 = 𝑃

𝑟𝑖
𝑖
where 𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 is the

component in the CRS. Suppose otherwise. Then, we use A to construct an efficient algorithm B that wins the

game in Claim 5.11:

1. At the beginning of the game, algorithm B receives a tuple (G, 𝑔1, 𝑔3, 𝑍 ) from the challenger, where

G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒) and 𝑍 = (𝑔1𝑔3)𝛿 for some 𝛿
r← Z𝑁 .

2. Algorithm B guesses an index 𝑖∗ r← [𝐿] and uses (G, 𝑔1, 𝑔3) to construct the CRS components according

to Setup(1_, 1 |U | , 1𝐿). It uses element 𝑍 in place of element 𝑃𝑖∗ . All of the other components are sampled

according to the procedure in Setup.

3. Algorithm B gives crs to A.

4. After A outputs (𝑖, pk𝑖 ), algorithm B aborts if 𝑖 ≠ 𝑖∗. Otherwise, it parses pk𝑖∗ =
(
𝑇𝑖∗ , 𝑄𝑖∗ , 𝑅𝑖∗ , {𝑉𝑗,𝑖∗ } 𝑗≠𝑖∗

)
and outputs (𝑇𝑖∗ , 𝑅𝑖∗ , 𝑄𝑖∗ ).

By construction, algorithm B perfectly simulates the distribution of the common reference string, and moreover,

the index 𝑖∗ is perfectly hidden from A. Thus, with probability 1/𝐿, 𝑖 = 𝑖∗. In this case, if IsValid(crs, 𝑖∗, pk∗𝑖∗ )
holds, then

𝑒 (𝑔3,𝑇𝑖∗ ) = 1 = 𝑒 (𝑔1, 𝑅𝑖∗ ) and 𝑒 (𝑇𝑖∗ , 𝑃𝑖∗ ) = 𝑒 (𝑔1, 𝑄𝑖∗ ) and 𝑒 (𝑅𝑖∗ , 𝑃𝑖∗ ) = 𝑒 (𝑔3, 𝑄𝑖∗ ).

Suppose now that there does not exist 𝑟𝑖∗ ∈ Z𝑁 where 𝑇𝑖∗ = 𝑔
𝑟𝑖∗
1
, 𝑅𝑖∗ = 𝑔

𝑟𝑖∗
3
, and 𝑄𝑖∗ = 𝑃

𝑟𝑖∗
𝑖∗ . This means that

algorithm B wins the game in Claim 5.11. Correspondingly, if algorithm A outputs a malformed key with

probability Y, then algorithm B succeeds with probability Y/𝐿, which proves the claim.

• Next, we show that for all 𝑗 ≠ 𝑖 , there exists 𝑟 𝑗,𝑖 ∈ Z𝑁 such that𝑇𝑖 = 𝑔
𝑟 𝑗,𝑖
1

, 𝑅𝑖 = 𝑔
𝑟 𝑗,𝑖
3

,𝑉𝑗,𝑖 = 𝐴
𝑟 𝑗,𝑖
𝑗
, and𝐴 𝑗 = (𝑔1, 𝑔3)𝑡 𝑗

is the component in the CRS. This follows by a similar argument as in the previous case and appealing again to

Claim 5.11.

Thus, we have shown that for all tuples (𝑖, pk∗𝑖 ) satisfying IsValid(crs, 𝑖, pk∗𝑖 ) = 1 output by an efficient adversary A,

it must be the case that there exists 𝑟𝑖 , 𝑟 𝑗,𝑖 ∈ Z𝑁 for all 𝑗 ≠ 𝑖 such that

𝑇𝑖 = 𝑔
𝑟𝑖
1
= 𝑔

𝑟 𝑗,𝑖
1

and 𝑅𝑖 = 𝑔
𝑟𝑖
3
= 𝑔

𝑟 𝑗,𝑖
3

and 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

and 𝑉𝑗,𝑖 = 𝐴
𝑟 𝑗,𝑖
𝑗
.

The requirement on 𝑇𝑖 ensures that 𝑟𝑖 = 𝑟 𝑗,𝑖 mod 𝑝1 for all 𝑗 ≠ 𝑖 . Similarly, the requirement on 𝑅𝑖 ensures that

𝑟𝑖 = 𝑟 𝑗,𝑖 mod 𝑝3. By construction, each of the 𝐴 𝑗 ’s are contained in G1 × G3. Then,

𝑇𝑖 = 𝑔
𝑟𝑖
1

and 𝑅𝑖 = 𝑔
𝑟𝑖
3

and 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

and 𝑉𝑗,𝑖 = 𝐴
𝑟 𝑗,𝑖
𝑗

= 𝐴
𝑟 𝑗,𝑖 mod 𝑝1𝑝3
𝑗

= 𝐴
𝑟𝑖 mod 𝑝1𝑝3
𝑗

= 𝐴𝑟𝑗 ,

for all 𝑗 ≠ 𝑖 , and the claim follows. □
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Returning now to the proof of Lemma 5.10, we can first appeal to Claim 5.12 to conclude that for all efficient adversaries

A, in Hyb(𝑏 )real, the public keys pk
∗
1
, . . . , pk∗𝐿 chosen byA in the challenge phase are either ⊥, do not satisfy the IsValid

predicate, or are in the support of the honest key-generation algorithm. Thus, if the challenger does not abort, then it

must be the case that for all 𝑖 ∈ [𝐿], there exists 𝑟𝑖 ∈ Z𝑁 such that pk𝑖 is the public key output of KeyGen(crs, 𝑖; 𝑟𝑖 ).
In particular, all of the keys pk𝑖 sampled by the challenger in an (honest) key-generation query already satisfy this

property. Thus, for each 𝑖 ∈ [𝐿], we can write

𝑇𝑖 = 𝑔
𝑟𝑖
1

, 𝑄𝑖 = 𝑃
𝑟𝑖
𝑖

, 𝑅𝑖 = 𝑔
𝑟𝑖
3

, 𝑉𝑗,𝑖 = 𝐴
𝑟𝑖
𝑗
. (5.5)

Then, in both Hyb(𝑏 )real and Hyb(𝑏 )
1

, the following relations hold:

𝑇 =
∏
𝑖∈[𝐿]

𝑇𝑖 =
∏
𝑖∈[𝐿]

𝑔
𝑟𝑖
1

and 𝑈𝜌 (𝑘 ) =
∏

𝑖∈[𝐿]:𝜌 (𝑘 )∉𝑆𝑖

𝑈𝑖,𝜌 (𝑘 ) = 𝑔
∑

𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 )
1

. (5.6)

We now consider the components in the two experiments:

• In both experiments, ℎ,ℎ1, ℎ2 is uniform overG1 subject to the constraintℎ = ℎ1ℎ2. Moreover, since 𝛽1, 𝛽2
r← Z𝑁 ,

𝛽 = 𝛽1 + 𝛽2 is also uniform over Z𝑁 in Hyb(𝑏 )
1

, so the distribution of 𝛽 matches that in Hyb(𝑏 )real.

• Consider the distribution of 𝑃𝑖 in the two experiments. In Hyb(𝑏 )real,

𝑃𝑖 = (𝑔1𝑔3)𝛿𝑖 = 𝑔𝛿𝑖 mod 𝑝1
1

𝑔
𝛿𝑖 mod 𝑝3
3

.

Since 𝛿𝑖 is uniform over Z𝑁 (and independent of all other quantities), 𝛿𝑖 mod 𝑝1 and 𝛿𝑖 mod 𝑝3 are independently

uniform over Z𝑝1 and Z𝑝3 , respectively, by the Chinese remainder theorem. In Hyb(𝑏 )
1

,

𝑃𝑖 = (𝑔𝑠1𝑔3)𝛿𝑖 = 𝑔
𝑠𝛿𝑖 mod 𝑝1
1

𝑔
𝛿𝑖 mod 𝑝3
3

.

Since 𝛿𝑖 is still uniform over Z𝑁 (and independent of all other quantities), the distribution of 𝑠𝛿𝑖 mod 𝑝1 is

uniform over Z𝑝1 as long as 𝑠 ≠ 0 mod 𝑝1 (which holds with overwhelming probability since 𝑠
r← Z𝑁 ). As such,

the distribution of 𝑃𝑖 in these two experiments is statistically indistinguishable.

• Consider the attribute-specific components in the challenge ciphertext. By Eq. (5.6), in Hyb(𝑏 )
1

, for each 𝑘 ∈ [𝐾],

𝐶3,𝑘 = (𝑔𝑠
1
)𝛽2mT

𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) = ℎ

𝑠mT
𝑘
v′

2
𝑈
−𝑠′

𝑘
𝑠

𝜌 (𝑘 ) = ℎ
mT

𝑘
v′′

2
𝑈
−𝑠′

𝑘
𝑠

𝜌 (𝑘 ) ,

where v′′ = 𝑠v′ = [𝑠, 𝑠𝑣2, . . . , 𝑠𝑣𝑛]T. Similarly, 𝐶4,𝑘 = 𝑔
𝑠′
𝑘
𝑠

1
. Now, 𝑣2, . . . , 𝑣𝑛

r← Z𝑁 and 𝑠′
𝑘

r← Z𝑁 in Hyb(𝑏 )
1

. This

matches the distribution in Hyb(𝑏 )real with the substitution v ↦→ v′′ and 𝑠𝑘 ↦→ 𝑠′
𝑘
𝑠 .

• Finally, consider the slot-specific components in the challenge ciphertext in Hyb(𝑏 )
1

. By Eq. (5.5),

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖
=
𝑃
𝑟𝑖𝛿
−1
𝑖

𝑖

𝑔
𝑟𝑖
3

=
𝑔
𝑠𝑟𝑖
1
𝑔
𝑟𝑖
3

𝑔
𝑟𝑖
3

= 𝑔
𝑠𝑟𝑖
1
.

By Eq. (5.6), in Hyb(𝑏 )
1

,

𝐶5 = (𝑔𝑠1)𝛽1
©«
∏
𝑖∈[𝐿]

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

= ℎ𝑠
1

∏
𝑖∈[𝐿]

𝑔
−𝑠′

0
𝑠𝑟𝑖

1
= ℎ𝑠

1
𝑇 −𝑠

′
0
𝑠 .

Next 𝐶6 = 𝑔
𝑠′
0
𝑠

1
in Hyb(𝑏 )

1
. Since 𝑠′

0

r← Z𝑁 , the components 𝐶5 and 𝐶6 are distributed identically to those in

Hyb(𝑏 )real with the substitution 𝑠0 ↦→ 𝑠′
0
𝑠 . □
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Lemma 5.13. Suppose Assumption 5.2a holds with respect to CompGroupGen. Then, for all efficient adversariesA and
𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(𝑏 )
1
(A) = 1] − Pr[Hyb(𝑏 )

2,0
(A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversaryA that distinguishes betweenHyb(𝑏 )
1

andHyb(𝑏 )
2,0

with non-negligible

advantage Y. We use A to construct an adversary B that breaks Assumption 5.2a with the same advantage:

1. At the beginning of the game, algorithmB receives a challenge (G, 𝑔1, 𝑔3,𝑇 ) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒), 𝑔1 ∈ G1,

𝑔3 ∈ G3, and either 𝑇 = 𝑔𝑠
1
or 𝑇 = (𝑔1𝑔2)𝑠 for some 𝑠

r← Z𝑁 . The components that depend on the challenge

element 𝑇 is colored for clarity.

2. Algorithm B starts by sampling 𝛼, 𝛽1, 𝛽2
r← Z𝑁 . It sets 𝑍 ← 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 ← 𝛽1 + 𝛽2, and ℎ ← 𝑔

𝛽

1
.

3. For each slot 𝑖 ∈ [𝐿], sample 𝑡𝑖 , 𝛿𝑖 , 𝜏𝑖
r← Z𝑁 . Algorithm B constructs the slot components as follows:

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3

, 𝑃𝑖 ← (𝑇𝑔3)𝛿𝑖 .

Then, for each attribute𝑤 ∈ U and each slot 𝑖 ∈ [𝐿], algorithm B samples 𝑢𝑖,𝑤
r← Z𝑁 . In addition, for each

𝑗 ≠ 𝑖 , it samples 𝛾𝑖, 𝑗,𝑤
r← Z𝑁 . It constructs the attribute components𝑈𝑖,𝑤 and𝑊𝑖, 𝑗,𝑤 as follows:

𝑈𝑖,𝑤 ← 𝑔
𝑢𝑖,𝑤
1

, 𝑊𝑖, 𝑗,𝑤 ← 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
to the adversary A. It also initializes a counter ctr ← 0 and an (empty) dictionary D to keep track of the

key-generation queries.

4. In the query phase, algorithm B responds to the adversary’s queries as in Hyb(𝑏 )
1

and Hyb(𝑏 )
2,0

. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr← ctr + 1 and
samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 ← 𝑔
𝑟𝑖
1
, 𝑄𝑖 ← 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 ← 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 ← 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary D. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) ← D[𝑖] and replies to A with sk′.

5. In the challenge phase, after A specifies the challenge policy 𝑃∗, the messages `∗
0
, `∗

1
, and for each slot 𝑖 ∈ [𝐿],

a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ). For each 𝑖 ∈ [𝐿], algorithm B constructs pk𝑖 as in Hyb(𝑏 )
1

and Hyb(𝑏 )
2,0

:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry D[𝑐𝑖 ] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 ← pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖 ) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 ← pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ).

6. Algorithm B parses the challenge policy as 𝑃∗ = (M, 𝜌) where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U. Algorithm B
constructs the challenge ciphertext as follows:

• Message-embedding components: Set 𝐶1 ← `∗
𝑏
· 𝑒 (𝑔1,𝑇 )𝛼 and 𝐶2 ← 𝑇 .

• Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. For each 𝑘 ∈ [𝐾],

sample 𝑠′
𝑘

r← Z𝑁 and set

𝐶3,𝑘 ← 𝑇 𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) , 𝐶4,𝑘 ← 𝑇 𝑠

′
𝑘 .
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• Slot-specific components: Sample 𝑠′
0

r← Z𝑁 and set

𝐶5 ← 𝑇 𝛽1
©«
∏
𝑖∈[𝐿]

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

, 𝐶6 ← 𝑇 𝑠
′
0

7. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

Observe that 𝑒 (𝑔1,𝑇 )𝛼 = 𝑒 (𝑔1, 𝑔1)𝛼𝑠 regardless of whether𝑇 = 𝑔𝑠
1
or𝑇 = (𝑔1𝑔2)𝑠 . If𝑇 = 𝑔𝑠

1
, then algorithm B perfectly

simulates an execution of Hyb(𝑏 )
1

. Alternatively, when 𝑇 = (𝑔1𝑔2)𝑠 , algorithm B perfectly simulates Hyb(𝑏 )
2,0

. Thus,

algorithm B breaks Assumption 5.2a with the same advantage Y. □

Lemma 5.14. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(𝑏 )
2,ℓ−1 (A) = 1] − Pr[Hyb(𝑏 )

2,ℓ
(A) = 1]

�� = negl(_).

Proof. We introduce an intermediate hybrid iHyb(𝑏 )
ℓ

:

• iHyb(𝑏 )
ℓ

: Same as Hyb(𝑏 )
2,ℓ−1, except we change the distribution of 𝐴ℓ in the CRS. Specifically, during the setup

phase, the challenger samples 𝐴ℓ , 𝐵ℓ , 𝑃ℓ as

𝐴ℓ ← 𝑔𝑡ℓ , 𝐵ℓ ← 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

, 𝑃ℓ ← ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ .

In the previous hybrid Hyb(𝑏 )
2,ℓ−1, we have that 𝐴ℓ ← (𝑔1𝑔3)𝑡ℓ .

We now show that for all efficient adversaries A, the output distributions of Hyb(𝑏 )
2,ℓ−1 (A) and iHyb(𝑏 )

ℓ
(A) are

computationally indistinguishable, as are those of iHyb(𝑏 )
ℓ
(A) and Hyb(𝑏 )

2,ℓ
(A).

Lemma 5.15. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(𝑏 )
2,ℓ−1 (A) = 1] − Pr[iHyb(𝑏 )

ℓ
(A) = 1]

�� = negl(_).

Proof. By construction, the only difference between these two hybrids is component 𝐴ℓ in the CRS. Suppose that

there exists an efficient adversary A that can distinguish these two experiments with non-negligible probability Y.

We use A to construct an adversary B that breaks Assumption 5.2b with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔3, 𝑋,𝑌 ,𝑇 ) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑋 = (𝑔1𝑔2)𝑠12 , 𝑌 = (𝑔2𝑔3)𝑠23 for some 𝑠12, 𝑠23

r← Z𝑁 , and either 𝑇 = (𝑔1𝑔3)𝑡 or 𝑇 = 𝑔𝑡 for some

𝑡
r← Z𝑁 . The components that depend on the challenge elements 𝑋,𝑌,𝑇 are colored for clarity.

2. Algorithm B starts by sampling 𝛼, 𝛽1, 𝛽2
r← Z𝑁 . It sets 𝑍 ← 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ ← 𝑔

𝛽

1
.

3. For each 𝑖 ∈ [𝐿], algorithm B samples 𝑡𝑖 , 𝛿𝑖 , 𝜏𝑖
r← Z𝑁 .

• For 𝑖 < ℓ , algorithm B sets

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑌𝜏𝑖 , 𝑃𝑖 ← (𝑋𝑔3)𝛿𝑖 .

• For 𝑖 = ℓ , algorithm B sets

𝐴ℓ ← 𝑇 , 𝐵ℓ ← 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

, 𝑃ℓ ← (𝑋𝑔3)𝛿ℓ .
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• For 𝑖 > ℓ , algorithm B sets

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3

, 𝑃𝑖 ← (𝑋𝑔3)𝛿𝑖 .

Then, for each attribute 𝑤 ∈ U and slot 𝑖 ∈ [𝐿], sample 𝑢𝑖,𝑤
r← Z𝑁 and for each 𝑗 ≠ 𝑖 , sample 𝛾𝑖, 𝑗,𝑤

r← Z𝑁 .
Algorithm B then constructs the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑖, 𝑗,𝑤 as in Hyb(𝑏 )

2,ℓ−1,2 and iHyb
(𝑏 )
ℓ

:

𝑈𝑖,𝑤 = 𝑔
𝑢𝑖,𝑤
1

, 𝑊𝑖, 𝑗,𝑤 = 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
to the adversary A. It also initializes a counter ctr ← 0 and an (empty) dictionary D to keep track of the

key-generation queries.

4. In the query phase, algorithm B responds to the adversary’s queries as in Hyb(𝑏 )
2,ℓ−1 and iHyb

(𝑏 )
ℓ

. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr← ctr + 1 and
samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 ← 𝑔
𝑟𝑖
1
, 𝑄𝑖 ← 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 ← 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 ← 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary D. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) ← D[𝑖] and replies to A with sk′.

5. In the challenge phase, after A specifies the challenge policy 𝑃∗, the messages `∗
0
, `∗

1
, and for each slot 𝑖 ∈ [𝐿],

a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ). For each 𝑖 ∈ [𝐿], algorithm B constructs pk𝑖 as in Hyb(𝑏 )
2,ℓ−1 and iHyb(𝑏 )

ℓ
:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry D[𝑐𝑖 ] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 ← pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖 ) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 ← pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ).

6. Algorithm B parses the challenge policy as 𝑃∗ = (M, 𝜌) where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U. Algorithm B
constructs the challenge ciphertext as follows:

• Message-embedding components: Set 𝐶1 ← `∗
𝑏
· 𝑒 (𝑔1, 𝑋 )𝛼 and 𝐶2 ← 𝑋 .

• Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. For each 𝑘 ∈ [𝐾],

sample 𝑠′
𝑘

r← Z𝑁 and set

𝐶3,𝑘 ← 𝑋 𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) , 𝐶4,𝑘 ← 𝑋 𝑠

′
𝑘 .

• Slot-specific components: Sample 𝑠′
0

r← Z𝑁 and set

𝐶5 ← 𝑋 𝛽1
©«
∏
𝑖∈[𝐿]

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

, 𝐶6 ← 𝑋 𝑠
′
0

7. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

In the reduction, the exponent 𝑠12
r← Z𝑁 plays the role of 𝑠

r← Z𝑁 in Hyb(𝑏 )
2,ℓ−1 and iHyb

(𝑏 )
ℓ

. Note that in the reduction,

𝐶1 = `
∗
𝑏
· 𝑒 (𝑔1, (𝑔1𝑔2)𝑠12 )𝛼 = `∗

𝑏
· 𝑒 (𝑔1, 𝑔1)𝛼𝑠12 = 𝑍𝑠12 ,
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which matches the distribution in Hyb(𝑏 )
2,ℓ−1 and iHyb(𝑏 )

ℓ
. Next, consider the distribution of 𝐵𝑖 for 𝑖 < ℓ . As long as

𝑠23 ≠ 0 mod 𝑝2 and 𝑠23 ≠ 0 mod 𝑝3 (which holds with overwhelming probability over the choice of 𝑠23
r← Z𝑁 ), then

the distributions

{𝑌𝜏𝑖 = (𝑔2𝑔3)𝑠23𝜏𝑖 : 𝜏𝑖 r← Z𝑁 } and {(𝑔2𝑔3)𝜏𝑖 : 𝜏𝑖 r← Z𝑁 }
are identical. Consider now the distribution of 𝐴ℓ :

• If 𝑇 = (𝑔1𝑔3)𝑡 for some 𝑡
r← Z𝑁 , then this is exactly the distribution in Hyb(𝑏 )

2,ℓ−1.

• If 𝑇 = 𝑔𝑡 for some 𝑡
r← Z𝑁 , then this is exactly the distribution in iHyb(𝑏 )

ℓ
.

Thus, we conclude that algorithm B breaks Assumption 5.2b with advantage at least Y − negl(_). □

Lemma 5.16. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,���Pr[iHyb(𝑏 )ℓ (A) = 1] − Pr[Hyb(𝑏 )

2,ℓ
(A) = 1]

��� = negl(_). (5.7)

Proof. Our analysis will depend on whether the adversary knows the secret key associated with slot ℓ or not. Let

(𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ) be the tuples adversary A outputs for each slot 𝑖 ∈ [𝐿] in the challenge phase. Let ctr be the number of

key-generation queries the adversary has made at the beginning of the challenge phase. We say that eventNonCorrupt
occurs if

𝑐ℓ ∈ {1, . . . , ctr} and A did not make a corruption query on index 𝑐ℓ ,

Let pk
1
, . . . , pk𝐿 be the public keys the challenger constructs during the challenge phase. If event NonCorrupt occurs,

then the public key pkℓ was honestly sampled by the challenger in a key-registration query, and moreover, the

adversary did not corrupt the key to learn its associated secret key. We write NonCorrupt to denote the complement

of event NonCorrupt. Now, we can write

Pr

[
iHyb(𝑏 )

ℓ
(A) = 1

]
= Pr

[
iHyb(𝑏 )

ℓ
(A) = 1 ∧ NonCorrupt

]
+ Pr

[
iHyb(𝑏 )

ℓ
(A) = 1 ∧ NonCorrupt

]
Pr

[
Hyb(𝑏 )

2,ℓ
(A) = 1

]
= Pr

[
Hyb(𝑏 )

2,ℓ
(A) = 1 ∧ NonCorrupt

]
+ Pr

[
Hyb(𝑏 )

2,ℓ
(A) = 1 ∧ NonCorrupt

]
.

It suffices then to show that���Pr [
iHyb(𝑏 )

ℓ
(A) = 1 ∧ NonCorrupt

]
− Pr

[
Hyb(𝑏 )

2,ℓ
(A) = 1 ∧ NonCorrupt

] ��� = negl(_) (5.8)���Pr [
iHyb(𝑏 )

ℓ
(A) = 1 ∧ NonCorrupt

]
− Pr

[
Hyb(𝑏 )

2,ℓ
(A) = 1 ∧ NonCorrupt

] ��� = negl(_). (5.9)

Eq. (5.7) then follows by the triangle inequality.

General proof strategy. As surveyed in Section 2, the proof strategy for showing Eqs. (5.8) and (5.9) will construct

a sequence of hybrid experiment culminating in an information-theoretic step that ensures the adversary cannot tell

that ℓ th slot has switched from normal mode to semi-functional mode. These two information-theoretic components

critically relies on different admissibility properties on the adversary:

• If event NonCorrupt occurs, then the adversary does not know the secret key skℓ = 𝑟ℓ associated with slot

ℓ (i.e., 𝑟ℓ
r← Z𝑁 is the secret exponent the challenger sampled when responding to the 𝑐 thℓ key-generation

query). The final information-theoretic argument (Lemma 5.21) in the proof of Eq. (5.8) critically relies on

the distribution of 𝑟ℓ mod 𝑝2 being uniform and hidden from the view of the adversary. The full sequence of

hybrids is described in the proof of Claim 5.17.

• If event NonCorrupt occurs, then the adversary may know the secret key skℓ = 𝑟ℓ associated with slot ℓ , and

as such, we cannot rely on the same information-theoretic argument as above. In this case, the admissibility

requirement ensures that the set of attributes 𝑆ℓ associated with slot ℓ do not satisfy the challenge policy. The

final information-theoretic argument (Lemma 5.29) in the proof of Eq. (5.9) relies on information-theoretic

security of the underlying linear secret sharing scheme. The full sequence of hybrids is described in the proof

of Claim 5.26.
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Analysis for the case where slot ℓ is not corrupted. We now show that Eq. (5.8) holds. As noted previously,

when the public key pkℓ associated with slot ℓ is not corrupted, our analysis will (eventually) rely on the secret key

skℓ = 𝑟ℓ associated with slot ℓ being hidden to argue that the semi-functional slot components look computationally

indistinguishable from normal slot components. We state the precise claim below:

Claim 5.17. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[iHyb(𝑏 )
ℓ
(A) = 1 ∧ NonCorrupt] − Pr[Hyb(𝑏 )

2,ℓ
(A) = 1 ∧ NonCorrupt]

�� = negl(_).

Proof. To prove this claim, we introduce an additional sequence of (simpler) hybrid experiments:

• ncHyb(𝑏 )
ℓ,0

: Same as iHyb(𝑏 )
ℓ

except during the challenge phase, the challenger constructs the challenge ciphertext

as follows:

– If event NonCorrupt did not occur, then the experiment halts with output 0.

– Otherwise, if event NonCorrupt occurs, let pkℓ be the public key associated with slot ℓ . Since NonCorrupt
occurs, the public key pkℓ was constructed by the challenger in response to the 𝑐 thℓ key-generation query

the adversary made in the query phase. Let 𝑟ℓ ∈ Z𝑁 be the randomness the challenger used to construct

pkℓ (i.e., this is the secret key stored in D[𝑐ℓ ]). Then, pkℓ = KeyGen(crs, ℓ ; 𝑟ℓ ). The challenger constructs
the challenge ciphertext exactly as in iHyb(𝑏 )

ℓ
, except it computes 𝐶5 as follows:

𝐶5 ← (𝑔1𝑔2)𝑠𝛽1 (𝑔1𝑔2)−𝑠𝑠
′
0
𝑟ℓ ©«

∏
𝑖∈[𝐿]\{ℓ }

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

.

The other components of the challenge ciphertext are constructed as in iHyb(𝑏 )
ℓ

. The output of the

experiment is the output of A, exactly as in iHyb(𝑏 )
ℓ

.

Importantly, in this experiment, the only component that depends on the exponent 𝛿ℓ ∈ Z𝑁 is 𝑃ℓ . The challenge

ciphertext no longer depends on 𝛿ℓ .

• ncHyb(𝑏 )
ℓ,1

: Same as ncHyb(𝑏 )
ℓ,0

, except the challenger samples 𝑃ℓ ← 𝑔𝛿ℓ in the setup phase.

• ncHyb(𝑏 )
ℓ,2

: Same as ncHyb(𝑏 )
ℓ,1

except the challenger samples 𝑃ℓ ← (𝑔1𝑔3)𝛿ℓ in the setup phase.

• ncHyb(𝑏 )
ℓ,3

: Same as ncHyb(𝑏 )
ℓ,2

except the challenger samples 𝐵ℓ ← 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ in the setup phase.

• ncHyb(𝑏 )
ℓ,4

: Same as ncHyb(𝑏 )
ℓ,3

except the challenger samples 𝐴ℓ ← (𝑔1𝑔3)𝑡ℓ in the setup phase.

• ncHyb(𝑏 )
ℓ,5

: Same as ncHyb(𝑏 )
ℓ,4

except the challenger samples 𝑃ℓ ← 𝑔𝛿ℓ in the setup phase

• ncHyb(𝑏 )
ℓ,6

: Same as ncHyb(𝑏 )
ℓ,5

except the challenger samples 𝑃ℓ ← ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ in the setup phase

We provide a summary of the hybrid experiments in Table 1. We now show that each pair of adjacent hybrids are

computationally indistinguishable.

Lemma 5.18. For all adversaries A and 𝑏 ∈ {0, 1}, Pr[iHyb(𝑏 )
ℓ
(A) = 1 ∧ NonCorrupt] = Pr[ncHyb(𝑏 )

ℓ,0
(A) = 1].

Proof. By construction, the output of ncHyb(𝑏 )
ℓ,0
(A) is 1 only if eventNonCorrupt occurs. Then, pkℓ =

(
𝑇ℓ , 𝑄ℓ , 𝑅ℓ , {𝑉𝑗,ℓ } 𝑗≠ℓ

)
=

KeyGen(crs, ℓ ; 𝑟ℓ ). By construction of KeyGen, this means that

𝑄ℓ = 𝑃
𝑟ℓ
ℓ

= ((𝑔1𝑔2)𝑠 )𝑔3)𝛿ℓ𝑟ℓ
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Hybrid 𝑨ℓ 𝑩ℓ 𝑷ℓ Justification

Hyb(𝑏 )
2,ℓ−1 (𝑔1𝑔3)𝑡ℓ 𝑔𝛼

1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ

iHyb(𝑏 )
ℓ

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ Assumption 5.2b Lemma 5.15

ncHyb(𝑏 )
ℓ,0

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ Identical Lemma 5.18

ncHyb(𝑏 )
ℓ,1

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

𝑔𝛿ℓ Statistical Lemma 5.19

ncHyb(𝑏 )
ℓ,2

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

(𝑔1𝑔3)𝛿ℓ Assumption 5.2b Lemma 5.20

ncHyb(𝑏 )
ℓ,3

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ (𝑔1𝑔3)𝛿ℓ Statistical Lemma 5.21

ncHyb(𝑏 )
ℓ,4

(𝑔1𝑔3)𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ (𝑔1𝑔3)𝛿ℓ Assumption 5.2b Lemma 5.22

ncHyb(𝑏 )
ℓ,5

(𝑔1𝑔3)𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ 𝑔𝛿ℓ Assumption 5.2b Lemma 5.23

ncHyb(𝑏 )
ℓ,6

(𝑔1𝑔3)𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ Statistical Lemma 5.24

Hyb(𝑏 )
2,ℓ

(𝑔1𝑔3)𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ ((𝑔1𝑔2)𝑠𝑔3)𝛿ℓ Identical Lemma 5.25

Table 1: Structure of slot parameters 𝐴ℓ , 𝐵ℓ , 𝑃ℓ in the hybrid experiments for analyzing the NonCorrupt branch
(Claim 5.17). For each pair of adjacent hybrids, we indicate whether they are identically distributed, statistically

indistinguishable, or computationally indistinguishable. The highlighted row is the information-theoretic step that

relies on event NonCorrupt occurring (i.e., that the adversary does not know the secret key for slot ℓ).

and 𝑅ℓ = 𝑔
𝑟ℓ
3
. In particular, this means that

𝑄
𝛿−1ℓ

ℓ

𝑅ℓ
=
(𝑔1𝑔2)𝑟ℓ𝑠𝑔𝑟ℓ

3

𝑔
𝑟ℓ
3

= (𝑔1𝑔2)𝑟ℓ𝑠 .

Thus, if event NonCorrupt occurs, then 𝐶5 in ncHyb(𝑏 )
ℓ,0

satisfies

𝐶5 = (𝑔1𝑔2)𝑠𝛽1 (𝑔1𝑔2)−𝑠𝑠
′
0
𝑟ℓ ©«

∏
𝑖∈[𝐿]\{ℓ }

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

= (𝑔1𝑔2)𝑠𝛽1
©«
𝑄
𝛿−1ℓ

ℓ

𝑅ℓ

ª®¬
−𝑠′

0 ©«
∏

𝑖∈[𝐿]\{ℓ }

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

= (𝑔1𝑔2)𝑠𝛽1
©«
∏
𝑖∈[𝐿]

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

.

This is exactly the distribution of𝐶5 in iHybℓ (A). Therefore, conditioned on eventNonCorrupt, the output distribution
of ncHyb(𝑏 )

ℓ,0
(A) is identical to the output distribution of iHybℓ (A). Correspondingly,

Pr[ncHyb(𝑏 )
ℓ,0
(A) = 1] = Pr[NonCorrupt] · Pr[iHybℓ (A) = 1 | NonCorrupt]

= Pr[iHybℓ (A) = 1 ∧ NonCorrupt],

and the claim follows. □

Lemma 5.19. For all ℓ ∈ [𝐿], all adversariesA and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for
all _ ∈ N,

��
Pr[ncHyb(𝑏 )

ℓ,0
(A) = 1] − Pr[ncHyb(𝑏 )

ℓ,1
(A) = 1]

�� = negl(_).

Proof. The only difference between ncHyb(𝑏 )
ℓ,0

and ncHyb(𝑏 )
ℓ,1

is the distribution of 𝑃ℓ . In ncHyb(𝑏 )
ℓ,1

, 𝑃ℓ is uniform over

G. In ncHyb(𝑏 )
ℓ,0

, 𝑃ℓ = 𝑔
𝛿ℓ𝑠
1
𝑔
𝛿ℓ𝑠
2
𝑔
𝛿ℓ
3
. Since 𝛿ℓ

r← Z𝑁 , as long as 𝑠 mod 𝑝1 and 𝑠 mod 𝑝2 are both non-zero, then the

marginal distribution of 𝑃ℓ is uniform over G (over the choice of 𝛿ℓ ). Since 𝑠
r← Z𝑁 , 𝑠 mod 𝑝1 and 𝑠 mod 𝑝2 are

non-zero with probability at least 1 − 1/𝑝1 − 1/𝑝2 = 1 − negl(_). Thus, the marginal distribution of 𝑃ℓ is statistically

indistinguishable in ncHyb(𝑏 )
ℓ,0

and ncHyb(𝑏 )
ℓ,1

. None of the other components in ncHyb(𝑏 )
ℓ,0

and ncHyb(𝑏 )
ℓ,1

depend on

the exponent 𝛿ℓ , so the outputs of the two experiments are statistically indistinguishable. □
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Lemma 5.20. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ncHyb(𝑏 )
ℓ,1
(A) = 1] − Pr[ncHyb(𝑏 )

ℓ,2
(A) = 1]

�� = negl(_).

Proof. We use a similar argument as the proof of Lemma 5.15, except we use the challenge to program 𝑃ℓ instead of

𝐴ℓ . More formally, suppose there exists an efficient adversary A where��
Pr[ncHyb(𝑏 )

ℓ,1
(A) = 1] − Pr[ncHyb(𝑏 )

ℓ,2
(A) = 1]

�� = Y
for some non-negligible Y. We use A to construct an adversary B for Assumption 5.2b:

1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔3, 𝑋,𝑌 ,𝑇 ) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑋 = (𝑔1𝑔2)𝑠12 , 𝑌 = (𝑔2𝑔3)𝑠23 for some 𝑠12, 𝑠23

r← Z𝑁 , and either𝑇 = (𝑔1𝑔3)𝛿 or𝑇 = 𝑔𝛿 for some

𝛿
r← Z𝑁 . The components that depend on the challenge components 𝑋,𝑌,𝑇 are colored for clarity.

2. Algorithm B starts by sampling 𝛼, 𝛽1, 𝛽2
r← Z𝑁 . It sets 𝑍 ← 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ ← 𝑔

𝛽

1
.

3. For each 𝑖 ∈ [𝐿], algorithm B samples 𝑡𝑖 , 𝛿𝑖 , 𝜏𝑖
r← Z𝑁 .

• For 𝑖 < ℓ , algorithm B sets

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑌𝜏𝑖 , 𝑃𝑖 ← (𝑋𝑔3)𝛿𝑖 .

• For 𝑖 = ℓ , algorithm B sets

𝐴ℓ ← 𝑔𝑡ℓ , 𝐵ℓ ← 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

, 𝑃ℓ ← 𝑇 .

• For 𝑖 > ℓ , algorithm B sets

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3

, 𝑃𝑖 ← (𝑋𝑔3)𝛿𝑖 .

Then, for each attribute 𝑤 ∈ U and slot 𝑖 ∈ [𝐿], sample 𝑢𝑖,𝑤
r← Z𝑁 and for each 𝑗 ≠ 𝑖 , sample 𝛾𝑖, 𝑗,𝑤

r← Z𝑁 .
Algorithm B then constructs the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑖, 𝑗,𝑤 as in Hyb(𝑏 )

2,ℓ−1,2 and iHyb
(𝑏 )
ℓ

:

𝑈𝑖,𝑤 = 𝑔
𝑢𝑖,𝑤
1

, 𝑊𝑖, 𝑗,𝑤 = 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
to the adversary A. It also initializes a counter ctr ← 0 and an (empty) dictionary D to keep track of the

key-generation queries.

4. In the query phase, algorithm B responds to the adversary’s queries as in ncHyb(𝑏 )
ℓ,1

and ncHyb(𝑏 )
ℓ,2

. Namely,

when algorithmA makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr← ctr + 1
and samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 ← 𝑔
𝑟𝑖
1
, 𝑄𝑖 ← 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 ← 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 ← 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary D. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) ← D[𝑖] and replies to A with sk′.

5. In the challenge phase, after A specifies the challenge policy 𝑃∗, the messages `∗
0
, `∗

1
, and for each slot 𝑖 ∈ [𝐿],

a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ). For each 𝑖 ∈ [𝐿], algorithm B constructs pk𝑖 as in ncHyb(𝑏 )
ℓ,1

and ncHyb(𝑏 )
ℓ,2

:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry D[𝑐𝑖 ] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 ← pk′. Otherwise, algorithm B aborts with output 0.
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• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖 ) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 ← pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ).

6. Algorithm B parses the challenge policy as 𝑃∗ = (M, 𝜌) where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U. Algorithm B
constructs the challenge ciphertext as follows:

• Message-embedding components: Set 𝐶1 ← `∗
𝑏
· 𝑒 (𝑔1, 𝑋 )𝛼 and 𝐶2 ← 𝑋 .

• Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. For each 𝑘 ∈ [𝐾],

sample 𝑠′
𝑘

r← Z𝑁 and set

𝐶3,𝑘 ← 𝑋 𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) , 𝐶4,𝑘 ← 𝑋 𝑠

′
𝑘 .

• Slot-specific components: Sample 𝑠′
0

r← Z𝑁 and set

𝐶5 ← 𝑋 𝛽1−𝑠
′
0
𝑟ℓ ©«

∏
𝑖∈[𝐿]\{ℓ }

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

, 𝐶6 ← 𝑋 𝑠
′
0

7. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

As in the proof of Lemma 5.15, the exponent 𝑠12
r← Z𝑁 plays the role of 𝑠

r← Z𝑁 in ncHyb(𝑏 )
ℓ,1

and ncHyb(𝑏 )
ℓ,2

.

Next, consider the distribution of 𝐵𝑖 for 𝑖 < ℓ . As long as 𝑠23 ≠ 0 mod 𝑝2 and 𝑠23 ≠ 0 mod 𝑝3 (which holds with

overwhelming probability over the choice of 𝑠23
r← Z𝑁 ), then the distributions

{𝑌𝜏𝑖 = (𝑔2𝑔3)𝑠23𝜏𝑖 : 𝜏𝑖 r← Z𝑁 } and {(𝑔2𝑔3)𝜏𝑖 : 𝜏𝑖 r← Z𝑁 }

are identical. Consider now the distribution of 𝑃ℓ :

• If 𝑇 = 𝑔𝛿 for some 𝛿
r← Z𝑁 , then the components coincide with the distribution in ncHyb(𝑏 )

ℓ,1
.

• If 𝑇 = (𝑔1𝑔3)𝛿 for some 𝛿
r← Z𝑁 , then the components coincide with the distribution in ncHyb(𝑏 )

ℓ,2
.

Thus, we conclude that algorithm B breaks Assumption 5.2b with advantage at least Y − negl(_). □

Lemma 5.21. For all ℓ ∈ [𝐿], all adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N,

��
Pr[ncHyb(𝑏 )

ℓ,2
(A) = 1] − Pr[ncHyb(𝑏 )

ℓ,3
(A) = 1]

�� = negl(_).

Proof. We show that the distributions ncHyb(𝑏 )
ℓ,2
(A) and ncHyb(𝑏 )

ℓ,3
(A) are statistically close. Let (𝑐ℓ , 𝑆ℓ , pk∗ℓ ) be the

tuple the adversary chooses for slot ℓ during the challenge phase. Let 𝑟ℓ
r← Z𝑁 be the randomness the challenger

used to answer the 𝑐 thℓ key-generation query. For either experiment to output 1, event NonCorrupt must occur, which

means the adversary does not issue a corruption query on index 𝑐ℓ . Correspondingly, the challenger never gives 𝑟ℓ to
the adversary. This property will be critical for arguing that the two distributions are statistically indistinguishable.

Consider the distributions ncHyb(𝑏 )
ℓ,2
(A) and ncHyb(𝑏 )

ℓ,3
(A). By construction, the only difference between them is

the distribution of component 𝐵ℓ in theG2 subgroup. In ncHyb
(𝑏 )
ℓ,2

, 𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3
while in ncHyb(𝑏 )

ℓ,3
, 𝐵ℓ = 𝑔

𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ ,

where 𝐴ℓ = 𝑔𝑡ℓ . Write 𝐴ℓ = 𝑔
𝑡 ′ℓ,1
1
𝑔
𝑡 ′ℓ,2
2
𝑔
𝑡 ′ℓ,3
3

where 𝑡 ′ℓ,1 ∈ Z𝑝1 , 𝑡 ′ℓ,2 ∈ Z𝑝2 , and 𝑡 ′ℓ,3 ∈ Z𝑝3 . Suppose that 𝑡 ′ℓ,2 ≠ 0 and

𝑠′
0
≠ 0 mod 𝑝2. Since 𝑡ℓ , 𝑠

′
0

r← Z𝑁 , this holds with probability 1− 2/𝑝2 = 1−negl(_). Consider the following relabeling
of the variables 𝛽1 and 𝑟ℓ in ncHyb(𝑏 )

ℓ,2
:

• Let 𝜎1 ∈ Z𝑁 be the unique value where 𝜎1 = 0 mod 𝑝1𝑝3 and 𝜎1 = (𝑡 ′ℓ,2)−1𝜏ℓ mod 𝑝2. Then, write 𝛽1 = 𝛽
′
1
+ 𝜎1,

for some 𝛽 ′
1

r← Z𝑁 .
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• Let 𝜎2 ∈ Z𝑁 be the unique value where 𝜎2 = 0 mod 𝑝1𝑝3 and 𝜎2 = (𝑠′0)−1𝜎1 mod 𝑝2. Then write 𝑟ℓ ← 𝑟 ′ℓ + 𝜎2
for some 𝑟 ′ℓ

r← Z𝑁 .

By construction, observe that the distributions of 𝛽1 and 𝑟ℓ remain uniform over Z𝑁 in ncHyb(𝑏 )
ℓ,2

. Consider the

other components in the adversary’s view with the above relabeling. It suffices to only consider components that

depend on either 𝛽1 or 𝑟ℓ since the other components are unchanged. Note also that by design, 𝛽1 = 𝛽
′
1
mod 𝑝1𝑝3 and

𝑟ℓ = 𝑟
′
ℓ mod 𝑝1𝑝3.

• Consider the components in the common reference string. First, ℎ = 𝑔
𝛽1+𝛽2
1

= 𝑔
𝛽 ′
1
+𝛽2

1
. Next 𝐴𝑖 = (𝑔1𝑔3)𝑡𝑖 for all

𝑖 ≠ ℓ and 𝐴ℓ = 𝑔
𝑡 ′ℓ,1
1
𝑔
𝑡 ′ℓ,2
2
𝑔
𝑡 ′ℓ,3
3

. Consider the distribution of each 𝐵𝑖 :

– If 𝑖 < ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖
(𝑔2𝑔3)𝜏𝑖 = 𝑔𝛼

1
𝐴
𝛽 ′
1
+𝛽2

𝑖
(𝑔2𝑔3)𝜏𝑖 .

– If 𝑖 = ℓ , then

𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
ℓ

𝑔
𝜏ℓ
3
= 𝑔𝛼

1
𝑔
𝑡 ′ℓ,1 (𝛽1+𝛽2 )
1

𝑔
𝑡 ′ℓ,2 (𝛽1+𝛽2 )
2

𝑔
𝑡 ′ℓ,3 (𝛽1+𝛽2 )
3

𝑔
𝜏ℓ
3
= 𝑔𝛼

1
𝐴
𝛽 ′
1
+𝛽2

ℓ
(𝑔2𝑔3)𝜏ℓ ,

since 𝛽1 = 𝛽
′
1
mod 𝑝1𝑝3 and 𝛽1 = 𝛽

′
1
+ (𝑡 ′ℓ,2)−1𝜏ℓ mod 𝑝2.

– If 𝑖 > ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖

𝑔
𝜏𝑖
3
= 𝑔𝛼

1
𝐴
𝛽 ′
1
+𝛽2

𝑖
𝑔
𝜏𝑖
3
.

The remaining components in the CRS do not depend on either 𝛽1 or 𝑟ℓ and are thus unchanged.

• Consider the components in the key-generation queries. The only key-generation query that is affected by this

change of variables is the 𝑐 thℓ query. When the adversary makes the 𝑐 thℓ key-generation query, the challenger

constructs the public key pkℓ = (𝑇ℓ , 𝑄ℓ , 𝑅ℓ , {𝑉𝑗,ℓ } 𝑗≠ℓ ) using randomness 𝑟ℓ . Under the above substitution this

means 𝑇ℓ = 𝑔
𝑟ℓ
1
= 𝑔

𝑟 ′ℓ
1
, 𝑄ℓ = 𝑃

𝑟ℓ
ℓ

= 𝑃
𝑟 ′ℓ
ℓ
, 𝑅ℓ = 𝑔

𝑟ℓ
3
= 𝑔

𝑟 ′ℓ
3
, and 𝑉𝑗,ℓ = 𝐴

𝑟ℓ
𝑗
= 𝐴

𝑟 ′ℓ
𝑗
for all 𝑗 ≠ ℓ since 𝑟ℓ = 𝑟

′
ℓ mod 𝑝1𝑝3,

and the components 𝑃ℓ and 𝐴 𝑗 for 𝑗 ≠ ℓ do not contain any non-trivial components in the G2 subgroup. Here,

it is critical that 𝑃ℓ = (𝑔1𝑔3)𝛿ℓ in ncHyb(𝑏 )
ℓ,2

does not contain any components in G2.

• Finally, consider the components in the challenge ciphertext. The components 𝐶1,𝐶2,𝐶3,𝑘 ,𝐶4,𝑘 ,𝐶6 for 𝑘 ∈ [𝐾]
are all unchanged (i.e., they are independent of 𝛽1 and 𝑟ℓ ). Consider now ciphertext component𝐶5. In ncHyb

(𝑏 )
ℓ,2

,

𝐶5 = (𝑔1𝑔2)𝑠𝛽1 (𝑔1𝑔2)−𝑠𝑠
′
0
𝑟ℓ ©«

∏
𝑖∈[𝐿]\{ℓ }

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

= (𝑔1𝑔2)𝑠𝛽
′
1 (𝑔1𝑔2)−𝑠𝑠

′
0
𝑟 ′ℓ ©«

∏
𝑖∈[𝐿]\{ℓ }

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

,

since 𝛽1 = 𝛽
′
1
mod 𝑝1 and 𝑟ℓ = 𝑟

′
ℓ mod 𝑝1, and

𝑠𝛽1 − 𝑠𝑠′0𝑟ℓ = 𝑠 (𝛽 ′1 + 𝜎1) − 𝑠𝑠′0 (𝑟 ′ℓ + (𝑠′0)−1𝜎1)) = 𝑠𝛽 ′1 − 𝑠𝑠′0𝑟 ′ℓ mod 𝑝2 .

Observe now that this is precisely the distribution in ncHyb(𝑏 )
ℓ,3

(with the relabeling 𝛽1 ↦→ 𝛽 ′
1
and 𝑟ℓ ↦→ 𝑟 ′ℓ ). Thus,

whenever 𝑡 ′ℓ,2 ≠ 0 and 𝑠′
0
≠ 0 mod 𝑝2, hybrids ncHyb

(𝑏 )
ℓ,2

and ncHyb(𝑏 )
ℓ,3

are identically distributed. Since this holds

with probability 1 − negl(_) over the choice of 𝑡ℓ and 𝑠′0, the claim holds. Note that this argument critically relies on

the fact that 𝑟ℓ is not given to the adversary in the game, as this allows us to reinterpret 𝑟ℓ as 𝑟
′
ℓ = 𝑟ℓ + 𝜎2. □

Lemma 5.22. Suppose Assumption 5.2b holds with respect of CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ncHyb(𝑏 )
ℓ,3
(A) = 1] − Pr[ncHyb(𝑏 )

ℓ,4
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as the proof of Lemma 5.15. □
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Lemma 5.23. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[ncHyb(𝑏 )
ℓ,4
(A) = 1] − Pr[ncHyb(𝑏 )

ℓ,5
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as the proof of Lemma 5.20. □

Lemma 5.24. For all ℓ ∈ [𝐿], all adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N,

��
Pr[ncHyb(𝑏 )

ℓ,5
(A) = 1] − Pr[ncHyb(𝑏 )

ℓ,6
(A) = 1]

�� = negl(_).

Proof. This follows by the same argument as the proof of Lemma 5.19. □

Lemma 5.25. For all ℓ ∈ [𝐿], all adversaries A, and all 𝑏 ∈ {0, 1},

Pr[ncHyb(𝑏 )
ℓ,6
(A) = 1] = Pr[Hyb

2,ℓ (A) = 1 ∧ NonCorrupt] .

Proof. This follows by the same argument as the proof of Lemma 5.18. □

Combining Lemmas 5.18 to 5.25, Claim 5.17 now follows by a hybrid argument. □

Analysis for the case where slot ℓ is corrupted. Next, we show that Eq. (5.9) holds. As noted previously, when

slot ℓ is corrupted (and the adversary knows the associated secret key), we are guaranteed that the set of attributes 𝑆ℓ
associated with slot ℓ does not satisfy the challenge policy. Our analysis here will (eventually) rely on the security

of the linear secret sharing scheme to argue that that the semi-functional slot components look computationally

indistinguishable from normal slot components. We state the precise claim below:

Claim 5.26. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,���Pr[iHyb(𝑏 )ℓ (A) = 1 ∧ NonCorrupt] − Pr[Hyb(𝑏 )

2,ℓ
(A) = 1 ∧ NonCorrupt]

��� = negl(_).

Proof. Similar to the proof of Claim 5.17, we introduce an additional sequence of hybrid experiments:

• cHyb(𝑏 )
ℓ,0

: Same as iHyb(𝑏 )
ℓ

except during the challenge phase, when constructing the challenge ciphertext, the

challenger performs several additional checks:

– If event NonCorrupt occurs, then the experiment halts with output 0.

– Let pkℓ be the public key associated with slot ℓ and 𝑆ℓ ⊆ U be the set of associated attributes. Let

𝑃∗ = (M, 𝜌) be the challenge policy where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U is an injective row-labeling

function. Let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆ℓ } be the indices of the rows ofM associated with the attributes in

𝑆ℓ , and let M𝐼 be the corresponding submatrix of M. Since event NonCorrupt does not occur, this means

that 𝑆ℓ does not satisfy the policy (M, 𝜌), so eT
1
is not in the row-span of M𝐼 . This means that there exists

a vector v∗ ∈ Z𝑛
𝑁
such that M𝐼v∗ = 0 mod 𝑁 and eT

1
v∗ ≠ 0 mod 𝑁 . In this experiment, the challenger

computes v∗ ∈ Z𝑛
𝑁
using Gaussian elimination.

– If eT
1
v∗ = 0 mod 𝑝2, the experiment halts with output 0.

The rest of the experiment proceeds as in iHyb(𝑏 )
ℓ

.

• cHyb(𝑏 )
ℓ,1

: Same as cHyb(𝑏 )
ℓ,0

except the challenger changes how it constructs the𝐶3,𝑘 components in the challenger

ciphertext:

– Sample b
r← Z𝑁 and 𝑣 ′

2
, . . . , 𝑣 ′𝑛

r← Z𝑁 and let v̂′ = [𝛽2 − b𝑣∗1, 𝑣 ′2, . . . , 𝑣 ′𝑛]T.

– For each 𝑘 ∈ [𝐾], sample 𝑠′
𝑘

r← Z𝑁 and set 𝐶3,𝑘 ← ((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) .
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Hybrid 𝑨ℓ 𝑩ℓ 𝑪3,𝒌 Justification

Hyb(𝑏 )
2,ℓ−1 (𝑔1𝑔3)𝑡ℓ 𝑔𝛼

1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

((𝑔1𝑔2)𝑠 )𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 )

iHyb(𝑏 )
ℓ

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

((𝑔1𝑔2)𝑠 )𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) Assumption 5.2b Lemma 5.15

cHyb(𝑏 )
ℓ,0

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

((𝑔1𝑔2)𝑠 )𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) Assumption 5.2b Lemma 5.27

cHyb(𝑏 )
ℓ,1

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) Identical Lemma 5.28

cHyb(𝑏 )
ℓ,2

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ ((𝑔1𝑔2)𝑠 )m

T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) Statistical Lemma 5.29

cHyb(𝑏 )
ℓ,3

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ ((𝑔1𝑔2)𝑠 )𝛽2m

T
𝑘
v′−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) Statistical Lemma 5.30

cHyb(𝑏 )
ℓ,4

𝑔𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ ((𝑔1𝑔2)𝑠 )𝛽2m

T
𝑘
v′−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) Assumption 5.2b Lemma 5.31

Hyb(𝑏 )
2,ℓ

(𝑔1𝑔3)𝑡ℓ 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ ((𝑔1𝑔2)𝑠 )𝛽2m

T
𝑘
v′−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) Assumption 5.2b Lemma 5.32

Table 2: Structure of slot parameters 𝐴ℓ , 𝐵ℓ and challenge ciphertext component 𝐶3,𝑘 in the hybrid experiments for

analyzing the NonCorrupt branch (Claim 5.26). For each pair of adjacent hybrids, we indicate whether they are

identically distributed, statistically indistinguishable, or computationally indistinguishable. The highlighted row is

the information-theoretic step that relies on event NonCorrupt occurring (i.e., that the set of attributes 𝑆ℓ associated

with slot ℓ does not satisfy the challenge policy 𝑃∗). Note that two of the hybrid experiments either introduce or

remove an abort condition (cHyb(𝑏 )
ℓ,0

and cHyb(𝑏 )
ℓ,4

) without changing the distribution of 𝐴ℓ , 𝐵ℓ , and 𝐶3,𝑘 .

All of the other components are constructed exactly as in cHyb(𝑏 )
ℓ,0

.

• cHyb(𝑏 )
ℓ,2

: Same as cHyb(𝑏 )
ℓ,1

except the challenger samples 𝐵ℓ ← 𝑔𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ in the setup phase.

• cHyb(𝑏 )
ℓ,3

: Same as cHyb(𝑏 )
ℓ,2

, except the challenger changes how it constructs the𝐶3,𝑘 components in the challenge

ciphertext:

– Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T.

– For each 𝑘 ∈ [𝐾], sample 𝑠′
𝑘

r← Z𝑁 and set 𝐶3,𝑘 ← ((𝑔1𝑔2)𝑠 )𝛽2m
T
𝑘
v′−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) .

• cHyb(𝑏 )
ℓ,4

: Same as cHyb(𝑏 )
ℓ,3

, except the experiment no longer halts with output 0 if eT
1
v∗ = 0 mod 𝑝2.

We provide a summary of the hybrid experiments in Table 2. We now show that each pair of adjacent hybrids are

computationally indistinguishable.

Lemma 5.27. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that��

Pr[iHyb(𝑏 )
ℓ
(A) = 1 ∧ NonCorrupt] − Pr[cHyb(𝑏 )

ℓ,0
(A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversary A where��
Pr[iHyb(𝑏 )

ℓ
(A) = 1 ∧ NonCorrupt] − Pr[cHyb(𝑏 )

ℓ,0
(A) = 1]

�� = Y
for some non-negligible Y. Since these two experiments are identical except the additional check of whether eT

1
v∗ =

0 mod 𝑝2, this means that with probability at least Y, algorithmA outputs a challenge (M, 𝜌) such that eT
1
v∗ ≠ 0 mod 𝑁

but eT
1
v∗ = 0 mod 𝑝2, where v∗ is the vector derived from (M, 𝜌) according to the specification of cHyb(𝑏 )

ℓ,0
. We use A

to construct an adversary B that breaks Assumption 5.2b via Lemma 5.3:
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1. At the beginning of the game, algorithm B is given a challenge (G, 𝑔1, 𝑔3, 𝑋,𝑌 ) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔3 ∈ G3, 𝑋 = (𝑔1𝑔2)𝑠12 , 𝑌 = (𝑔2𝑔3)𝑠23 for some 𝑠12, 𝑠23

r← Z𝑁 . The components that depend on the

challenge elements 𝑋,𝑌 are colored for clarity.

2. Algorithm B starts by sampling 𝛼, 𝛽1, 𝛽2
r← Z𝑁 . It sets 𝑍 ← 𝑒 (𝑔1, 𝑔1)𝛼 , 𝛽 = 𝛽1 + 𝛽2, and ℎ ← 𝑔

𝛽

1
.

3. For each 𝑖 ∈ [𝐿], algorithm B samples 𝑡𝑖 , 𝛿𝑖 , 𝜏𝑖
r← Z𝑁 .

• For 𝑖 < ℓ , algorithm B sets

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑌𝜏𝑖 , 𝑃𝑖 ← (𝑋𝑔3)𝛿𝑖 .

• For 𝑖 = ℓ , algorithm B sets

𝐴ℓ ← 𝑔𝑡ℓ , 𝐵ℓ ← 𝑔𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3

, 𝑃ℓ ← (𝑋𝑔3)𝛿ℓ .

• For 𝑖 ≥ ℓ , algorithm B sets

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑔𝛼
1
𝐴
𝛽

𝑖
𝑔
𝜏𝑖
3

, 𝑃𝑖 ← (𝑋𝑔3)𝛿𝑖 .

Then, for each attribute 𝑤 ∈ U and slot 𝑖 ∈ [𝐿], sample 𝑢𝑖,𝑤
r← Z𝑁 and for each 𝑗 ≠ 𝑖 , sample 𝛾𝑖, 𝑗,𝑤

r← Z𝑁 .
Algorithm B then constructs the attribute-specific slot components𝑈𝑖,𝑤 and𝑊𝑖, 𝑗,𝑤 as in Hyb(𝑏 )

2,ℓ−1,2 and iHyb
(𝑏 )
ℓ

:

𝑈𝑖,𝑤 = 𝑔
𝑢𝑖,𝑤
1

, 𝑊𝑖, 𝑗,𝑤 = 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
to the adversary A.

4. In the query phase, algorithm B responds to the adversary’s queries exactly as described in iHyb(𝑏 )
ℓ

and cHyb(𝑏 )
ℓ,0

.

5. In the challenge phase, after A specifies the challenge policy 𝑃∗, the messages `∗
0
, `∗

1
, and for each slot 𝑖 ∈ [𝐿],

a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ). Algorithm B parses 𝑃∗ = (M, 𝜌) whereM ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U, and computes v∗ as
described in cHyb(𝑏 )

ℓ,0
, and outputs gcd(𝑁, eT

1
v∗).

6. In the query phase, algorithm B responds to the adversary’s queries as in iHyb(𝑏 )
ℓ

and cHyb(𝑏 )
ℓ,0

.

Like in the proof of Lemma 5.15, the exponent 𝑠12
r← Z𝑁 plays the role of 𝑠

r← Z𝑁 in iHyb(𝑏 )
ℓ

and cHyb(𝑏 )
ℓ,0

. Next,

consider the distribution of 𝐵𝑖 for 𝑖 < ℓ . As long as 𝑠23 ≠ 0 mod 𝑝2 and 𝑠23 ≠ 0 mod 𝑝3 (which holds with overwhelming

probability over the choice of 𝑠23
r← Z𝑁 ), then the distributions

{𝑌𝜏𝑖 = (𝑔2𝑔3)𝑠23𝜏𝑖 : 𝜏𝑖 r← Z𝑁 } and {(𝑔2𝑔3)𝜏𝑖 : 𝜏𝑖 r← Z𝑁 }

are identical. The other components are simulated exactly as in iHyb(𝑏 )
ℓ

and cHyb(𝑏 )
ℓ,0

, so with probability at least

Y − negl(_), algorithm A outputs (M, 𝜌) such that eT
1
v∗ ≠ 0 mod 𝑁 but eT

1
v∗ = 0 mod 𝑝2. In this case, gcd(𝑁, eT

1
v∗)

yields a non-trivial factor of 𝑁 (and wins the game in Lemma 5.3). □

Lemma 5.28. For all ℓ ∈ [𝐿], all adversaries A, and all 𝑏 ∈ {0, 1}, Pr[cHyb(𝑏 )
ℓ,0
(A) = 1] = Pr[cHyb(𝑏 )

ℓ,1
(A) = 1].

40



Proof. Without loss of generality, we can assume that NonCorrupt does not occur and moreover, eT
1
v∗ ≠ 0 mod 𝑝2.

Otherwise, the output in both experiments is 0. The only difference between the two distributions is the distribution

of the challenge ciphertext components 𝐶3,𝑘 . In cHyb(𝑏 )
ℓ,1

, 𝐶3,𝑘 = ((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) . By definition,

v̂′ + bv∗ = [𝛽2, 𝑣 ′2 + b𝑣∗2, . . . , 𝑣 ′𝑛 + b𝑣∗𝑛] = 𝛽2v̂′′,

where v̂′′ = [1, 𝑣 ′′
2
, . . . , 𝑣 ′′𝑛 ], and the distribution of 𝑣 ′′2 , . . . , 𝑣 ′′𝑛 are independent and uniform over Z𝑁 (since 𝑣 ′

2
, . . . , 𝑣 ′𝑛

r←
Z𝑁 ). Thus, we can equivalently write 𝐶3,𝑘 as

𝐶3,𝑘 = ((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) = ((𝑔1𝑔2)𝑠 )𝛽2m

T
𝑘
v̂′′−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) .

This is precisely the distribution of 𝐶3, 𝑗 in cHyb(𝑏 )
ℓ,0

. □

Lemma 5.29. For all ℓ ∈ [𝐿], all adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N, ���Pr[cHyb(𝑏 )ℓ,1 (A) = 1] − Pr[cHyb(𝑏 )

ℓ,2
(A) = 1]

��� = negl(_) .

Proof. We show that the distributions cHyb(𝑏 )
ℓ,1
(A) and cHyb(𝑏 )

ℓ,2
(A) are statistically indistinguishable. This argument

will rely on the fact that the attributes 𝑆ℓ associated with slot ℓ do not satisfy the challenge policy. By construction,

the only difference between the two experiments is the distribution of component 𝐵ℓ in the G2 subgroup. In cHyb(𝑏 )
ℓ,1

,

𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽

ℓ
𝑔
𝜏ℓ
3
while in cHyb(𝑏 )

ℓ,2
, 𝐵ℓ = 𝑔

𝛼
1
𝐴
𝛽

ℓ
(𝑔2𝑔3)𝜏ℓ , where 𝐴ℓ = 𝑔𝑡ℓ in both experiments. We start by defining a few

quantities that will be useful in our analysis:

• Write 𝐴ℓ = 𝑔
𝑡 ′ℓ,1
1
𝑔
𝑡 ′ℓ,2
2
𝑔
𝑡 ′ℓ,3
3

where 𝑡 ′ℓ,1 ∈ Z𝑝1 , 𝑡 ′ℓ,2 ∈ Z𝑝2 , and 𝑡 ′ℓ,3 ∈ Z𝑝3 .

• Let 𝑃∗ = (M, 𝜌) be the challenge policy where M ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U is the row-labeling function.

• Let 𝑆ℓ ⊆ U be the set of attributes associated with slot ℓ , and let 𝐼 = {𝑘 ∈ [𝐾] : 𝜌 (𝑘) ∈ 𝑆ℓ } be the indices of the
rows ofM associated with the attributes in 𝑆ℓ . LetM𝐼 be the corresponding submatrix ofM.

• Let v∗ ∈ Z𝑛
𝑁
be the vector where M𝐼v∗ = 0 mod 𝑝2 and eT

1
v∗ ≠ 0 mod 𝑝2.

Suppose that 𝑡 ′ℓ,2 ≠ 0 mod 𝑝2 and 𝑠
′
𝑘
≠ 0 mod 𝑝2 for all 𝑘 ∈ 𝐼 . Since 𝑡ℓ r← Z𝑁 and 𝑠′

𝑘

r← Z𝑁 , this holds with probability

at least 1 − (𝐾 + 1)/𝑝2 = 1 − negl(_) since 𝐾 = poly(_). Consider the following relabeling of the variables in cHyb(𝑏 )
ℓ,1

:

• Let 𝜎 (𝛽 ) ∈ Z𝑁 be the unique value where 𝜎 (𝛽 ) = 0 mod 𝑝1𝑝3 and 𝜎
(𝛽 ) = (𝑡 ′ℓ,2)−1𝜏ℓ mod 𝑝2. Suppose we write

𝛽2 = 𝛽
′
2
+ 𝜎 (𝛽 ) for some 𝛽 ′

2

r← Z𝑁 .

• Let 𝜎 (b ) ∈ Z𝑁 be the unique value where 𝜎 (b ) = 0 mod 𝑝1𝑝3 and 𝜎
(b ) = (𝑣∗

1
)−1𝜎 (𝛽 ) mod 𝑝2. Suppose we write

b = b ′ + 𝜎 (b ) for some b ′ r← Z𝑁 .

• For each 𝑘 ∈ [𝐾] where 𝜌 (𝑘) ∉ 𝑆ℓ , let 𝜎
(𝑢 )
𝑘

be the unique value where 𝜎
(𝑢 )
𝑘

= 0 mod 𝑝1𝑝3 and 𝜎
(𝑢 )
𝑘

=

(𝑠′
𝑘
)−1𝜎 (b )mT

𝑘
v∗ mod 𝑝2. Suppose we write 𝑢ℓ,𝜌 (𝑘 ) = 𝑢

′
ℓ,𝜌 (𝑘 ) + 𝜎

(𝑢 )
𝑘

for some 𝑢′
ℓ,𝜌 (𝑘 )

r← Z𝑁 .

By construction, observe that these substitutions preserve the distribution of 𝛽2, b , and 𝑢ℓ,𝜌 (𝑘 ) in cHyb(𝑏 )
ℓ,1

. Consider

the remaining components in the adversary’s view with this variable substitution:

• Consider the components in the common reference string. First, ℎ = 𝑔
𝛽1+𝛽2
1

= 𝑔
𝛽1+𝛽 ′

2

1
. Next 𝐴𝑖 = (𝑔1𝑔3)𝑡𝑖 for all

𝑖 ≠ ℓ and 𝐴ℓ = 𝑔
𝑡 ′ℓ,1
1
𝑔
𝑡 ′ℓ,2
2
𝑔
𝑡 ′ℓ,3
3

. Consider the distribution of each 𝐵𝑖 :

– If 𝑖 < ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖
(𝑔2𝑔3)𝜏𝑖 = 𝑔𝛼

1
𝐴
𝛽1+𝛽 ′

2

𝑖
(𝑔2𝑔3)𝜏𝑖 .
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– If 𝑖 = ℓ , then

𝐵ℓ = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
ℓ

𝑔
𝜏ℓ
3
= 𝑔𝛼

1
𝑔
𝑡 ′ℓ,1 (𝛽1+𝛽2 )
1

𝑔
𝑡 ′ℓ,2 (𝛽1+𝛽2 )
2

𝑔
𝑡 ′ℓ,3 (𝛽1+𝛽2 )
3

𝑔
𝜏ℓ
3
= 𝑔𝛼

1
𝐴
𝛽1+𝛽 ′

2

ℓ
(𝑔2𝑔3)𝜏ℓ ,

since 𝛽2 = 𝛽
′
2
mod 𝑝1𝑝3 and 𝛽2 = 𝛽

′
2
+ (𝑡 ′ℓ,2)−1𝜏ℓ mod 𝑝2.

– If 𝑖 > ℓ , then 𝐵𝑖 = 𝑔
𝛼
1
𝐴
𝛽1+𝛽2
𝑖

𝑔
𝜏𝑖
3
= 𝑔𝛼

1
𝐴
𝛽1+𝛽 ′

2

𝑖
𝑔
𝜏𝑖
3
.

Consider the slot components𝑈ℓ,𝜌 (𝑘 ) and𝑊𝑖,ℓ,𝜌 (𝑘 ) for all 𝑘 ∈ [𝐾] where 𝜌 (𝑘) ∉ 𝑆ℓ and 𝑖 ≠ ℓ . By definition,

𝑈ℓ,𝜌 (𝑘 ) = 𝑔
𝑢ℓ,𝜌 (𝑘 )
1

= 𝑔
𝑢′
ℓ,𝜌 (𝑘 )

1

𝑊𝑖,ℓ,𝜌 (𝑘 ) = 𝐴
𝑢ℓ,𝜌 (𝑘 )
𝑖

𝑔
𝛾𝑖,ℓ,𝜌 (𝑘 )
3

= 𝐴
𝑢′ℓ,𝑤
𝑖

𝑔
𝛾𝑖,ℓ,𝜌 (𝑘 )
3

,

since 𝐴𝑖 = (𝑔1𝑔3)𝑡𝑖 for all 𝑖 ≠ ℓ . The remaining components in the CRS do not depend on 𝛽2, b , or 𝑢ℓ,𝜌 (𝑘 ) , and
are thus unchanged.

• Next, the components the challenger constructs when responding to key-generation queries do not depend on

the exponents 𝛽2, b , or 𝑢ℓ,𝜌 (𝑘 ) , so their distributions (given the components in the CRS) are unchanged with

this substitution.

• Finally, consider the components in the challenge ciphertext. The components 𝐶1,𝐶2,𝐶4,𝑘 ,𝐶5,𝐶6 for 𝑘 ∈ [𝐾]
are all unchanged (i.e., they are independent of 𝛽2, b,𝑢ℓ,𝜌 (𝑘 ) ). It suffices to consider the ciphertext components

𝐶3,𝑘 . First, since 𝛽2 = 𝛽
′
2
+ 𝜎 (𝛽 ) and b = b ′ + (𝑣∗

1
)−1𝜎 (𝛽 ) , we have

v̂′ = [𝛽2 − b𝑣∗1, 𝑣 ′2, . . . , 𝑣 ′𝑛] = [𝛽 ′2 − b ′𝑣∗1, 𝑣 ′2, . . . , 𝑣 ′𝑛] mod 𝑁 .

We now consider two possibilities:

– Suppose 𝜌 (𝑘) ∈ 𝑆ℓ . By definition, mT
𝑘
v∗ = 0 in this case, so we can write 𝐶3,𝑘 as

𝐶3,𝑘 = ((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) = ((𝑔1𝑔2)𝑠 )m

T
𝑘
v̂′−𝑠′

𝑘
·∑𝑖≠ℓ :𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) .

– Suppose 𝜌 (𝑘) ∉ 𝑆ℓ . Then, we can write 𝐶3,𝑘 as

𝐶3,𝑘 = ((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 )

= ((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+bv∗ )−𝑠′

𝑘
·∑𝑖≠ℓ :𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 )−𝑠

′
𝑘
𝑢ℓ,𝜌 (𝑘 )

= ((𝑔1𝑔2)𝑠 )m
T
𝑘
(v̂′+b ′v∗ )−𝑠′

𝑘
·∑𝑖≠ℓ :𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 )−𝑠

′
𝑘
𝑢′
ℓ,𝜌 (𝑘 ) ,

since

bmT
𝑘
v∗ − 𝑠′

𝑘
𝑢ℓ,𝜌 (𝑘 ) = b ′mT

𝑘
v∗ − 𝑠′

𝑘
𝑢′
ℓ,𝜌 (𝑘 ) mod 𝑝1𝑝3

bmT
𝑘
v∗ − 𝑠′

𝑘
𝑢ℓ,𝜌 (𝑘 ) =

(
b ′ + 𝜎 (b )

)
mT
𝑘
v∗ − 𝑠′

𝑘

(
𝑢′
ℓ,𝜌 (𝑘 ) + (𝑠

′
𝑘
)−1𝜎 (b )mT

𝑘
v∗

)
mod 𝑝2

= b ′mT
𝑘
v∗ − 𝑠′

𝑘
𝑢′
ℓ,𝜌 (𝑘 ) mod 𝑝2 .

Observe now with this relabeling of variables, we have recovered the ciphertext distribution in cHyb(𝑏 )
ℓ,2

(with

randomness 𝛽 ′
2
, b ′ and 𝑢′

ℓ,𝜌 (𝑘 ) ). Thus, as long as 𝑡 ′ℓ,2 ≠ 0 and 𝑠′
𝑘
≠ 0 mod 𝑝2 for all 𝑘 ∈ 𝐼 , the distributions cHyb(𝑏 )ℓ,2 and

cHyb(𝑏 )
ℓ,3

are identically distributed. This holds with probability 1 − negl(_) over the choice of 𝑡ℓ and 𝑠′𝑘 . □

Lemma 5.30. For all ℓ ∈ [𝐿], all adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that
for all _ ∈ N,

��
Pr[cHyb(𝑏 )

ℓ,2
(A) = 1] − Pr[cHyb(𝑏 )

ℓ,3
(A) = 1]

�� = negl(_).

Proof. This follows by the same argument as in the proof of Lemma 5.28. □
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Lemma 5.31. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that��

Pr[cHyb(𝑏 )
ℓ,3
(A) = 1] − Pr[cHyb(𝑏 )

ℓ,4
(A) = 1]

�� = negl(_).

Proof. This follows by a similar argument as in the proof of Lemma 5.27. □

Lemma 5.32. Suppose Assumption 5.2b holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,���Pr[cHyb(𝑏 )ℓ,4 (A) = 1] − Pr[Hyb(𝑏 )

2,ℓ
(A) = 1 ∧ NonCorrupt]

��� = negl(_).

Proof. By construction, when event NonCorrupt does not occur, the only difference between cHyb(𝑏 )
ℓ,4

and Hyb(𝑏 )
2,ℓ

is

the distribution of 𝐴ℓ in the common reference string. Namely, in cHyb(𝑏 )
ℓ,4

, the challenger samples 𝐴ℓ ← 𝑔𝑡ℓ while in

Hyb(𝑏 )
2,ℓ

, the challenger samples 𝐴ℓ ← (𝑔1𝑔3)𝑡ℓ . The argument now follows from a similar argument as in the proof of

Lemma 5.15. □

Combining Lemmas 5.27 to 5.32, Claim 5.26 now follows by a hybrid argument. □

By Claim 5.17, we have that Eq. (5.8) holds (i.e., the case where slot ℓ was not corrupted). Similarly, by Claim 5.26, we

have that Eq. (5.9) holds (i.e., the case where slot ℓ was corrupted but the attributes 𝑆ℓ do not satisfy the challenge

policy). The main claim (Eq. (5.7)) now follows by the triangle inequality. □

Lemma 5.14 now follows by combining Lemmas 5.15 and 5.16. □

Lemma 5.33. Suppose Assumption 5.2c holds with respect to CompGroupGen. Then, for all ℓ ∈ [𝐿], all efficient
adversaries A, and all 𝑏 ∈ {0, 1}, there exists a negligible function negl(·) such that for all _ ∈ N,��

Pr[Hyb(𝑏 )
2,𝐿
(A) = 1] − Pr[Hyb(𝑏 )rand (A) = 1]

�� = negl(_).

Proof. Suppose there exists an efficient adversaryA where

��
Pr[Hyb(𝑏 )

2,𝐿
(A) = 1] − Pr[Hyb(𝑏 )rand (A) = 1]

�� = Y for some

non-negligible Y. We use A to construct an adversary B that breaks Assumption 5.2c with the same advantage:

1. At the beginning of the game, algorithm B receives a challenge (G, 𝑔1, 𝑔2, 𝑔3, 𝑋,𝑌 ,𝑇 ) where G = (G,G𝑇 , 𝑁 , 𝑔, 𝑒),
𝑔1 ∈ G1, 𝑔2 ∈ G2, 𝑔3 ∈ G3, 𝑋 = 𝑔𝛼

1
𝑔
𝛾1
2
, 𝑌 = 𝑔𝑠

1
𝑔
𝛾2
2

for some 𝛼,𝛾1, 𝛾2
r← Z𝑁 , and either 𝑇 = 𝑒 (𝑔1, 𝑔1)𝛼𝑠 or

𝑇 = 𝑒 (𝑔,𝑔)𝑟 , where 𝑟 r← Z𝑁 . The components that depend on the challenge elements 𝑋,𝑌,𝑇 are colored for

clarity.

2. Algorithm B starts by sampling 𝛽1, 𝛽2
r← Z𝑁 and sets 𝑍 ← 𝑒 (𝑔1, 𝑋 ), 𝛽 ← 𝛽1 + 𝛽2, and ℎ ← 𝑔

𝛽

1
.

3. For each slot 𝑖 ∈ [𝐿], sample 𝑡𝑖 , 𝛿𝑖 , 𝜏𝑖
r← Z𝑁 . Algorithm B constructs the (semi-functional) slot components as

follows:

𝐴𝑖 ← (𝑔1𝑔3)𝑡𝑖 , 𝐵𝑖 ← 𝑋𝐴
𝛽

𝑖
(𝑔2𝑔3)𝜏𝑖 , 𝑃𝑖 ← (𝑌𝑔3)𝛿𝑖 .

Then, for each attribute𝑤 ∈ U and each slot 𝑖 ∈ [𝐿], algorithm B samples 𝑢𝑖,𝑤
r← Z𝑁 . In addition, for each

𝑗 ≠ 𝑖 , it samples 𝛾𝑖, 𝑗,𝑤
r← Z𝑁 . It then constructs the attribute components𝑈𝑖,𝑤 and𝑊𝑖, 𝑗,𝑤 as follows:

𝑈𝑖,𝑤 ← 𝑔
𝑢𝑖,𝑤
1

, 𝑊𝑖, 𝑗,𝑤 ← 𝐴
𝑢 𝑗,𝑤

𝑖
𝑔
𝛾𝑖,𝑗,𝑤
3

.

Algorithm B gives the common reference string

crs =
(
G , 𝑍 , 𝑔1 , ℎ , 𝑔3 , {(𝐴𝑖 , 𝐵𝑖 , 𝑃𝑖 )}𝑖∈[𝐿] , {𝑈𝑖,𝑤,𝑊𝑖, 𝑗,𝑤}𝑖≠𝑗,𝑤∈U

)
to the adversary A. It also initializes a counter ctr ← 0 and an (empty) dictionary D to keep track of the

key-generation queries.
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4. In the query phase, algorithm B responds to the adversary’s queries as in Hyb(𝑏 )
2,𝐿

and Hyb(𝑏 )rand. Namely, when

algorithm A makes a key-generation query on a slot 𝑖 , algorithm B increments the counter ctr← ctr + 1 and
samples 𝑟𝑖

r← Z𝑁 . It then computes 𝑇𝑖 ← 𝑔
𝑟𝑖
1
, 𝑄𝑖 ← 𝑃

𝑟𝑖
𝑖
, 𝑅𝑖 ← 𝑔

𝑟𝑖
3
, and 𝑉𝑗,𝑖 ← 𝐴

𝑟𝑖
𝑗
. The challenger sets the

public key to be pkctr = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ) and responds with (ctr, pkctr). It defines skctr = 𝑟𝑖 and adds the

mapping ctr ↦→ (𝑖, pkctr, skctr) to the dictionary D. If the adversary A makes a corruption query on an index

1 ≤ 𝑖 ≤ ctr, the challenger looks up the entry (𝑖′, pk′, sk′) ← D[𝑖] and replies to A with sk′.

5. In the challenge phase, after A specifies the challenge policy 𝑃∗, the messages `∗
0
, `∗

1
, and for each slot 𝑖 ∈ [𝐿],

a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ). For each 𝑖 ∈ [𝐿], algorithm B constructs pk𝑖 as in ncHyb(𝑏 )
ℓ,1

and ncHyb(𝑏 )
ℓ,2

:

• If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry D[𝑐𝑖 ] = (𝑖′, pk′, sk′). If 𝑖 = 𝑖′, algorithm B sets

pk𝑖 ← pk′. Otherwise, algorithm B aborts with output 0.

• If 𝑐𝑖 = ⊥, then algorithm B checks that IsValid(crs, 𝑖, pk∗𝑖 ) outputs 1. If not, it aborts with output 0.

Otherwise, it sets pk𝑖 ← pk∗𝑖 .

Finally, for each 𝑖 ∈ [𝐿], algorithm B parses pk𝑖 = (𝑇𝑖 , 𝑄𝑖 , 𝑅𝑖 , {𝑉𝑗,𝑖 } 𝑗≠𝑖 ).

6. Algorithm B parses the challenge policy as (M, 𝜌) whereM ∈ Z𝐾×𝑛𝑝 and 𝜌 : [𝐾] → U. Algorithm B constructs

the challenge ciphertext as follows:

• Message-embedding components: Set 𝐶1 ← `∗
𝑏
·𝑇 and 𝐶2 ← 𝑌 .

• Attribute-specific components: Sample 𝑣2, . . . , 𝑣𝑛
r← Z𝑁 and let v′ = [1, 𝑣2, . . . , 𝑣𝑛]T. For each 𝑘 ∈ [𝐾],

sample 𝑠′
𝑘

r← Z𝑁 and set

𝐶3,𝑘 ← 𝑌 𝛽2m
T
𝑘
v′−𝑠′

𝑘

∑
𝑖∈ [𝐿]:𝜌 (𝑘 )∉𝑆𝑖 𝑢𝑖,𝜌 (𝑘 ) , 𝐶4,𝑘 ← 𝑌 𝑠

′
𝑘 .

• Slot-specific components: Sample 𝑠′
0

r← Z𝑁 and set

𝐶5 ← 𝑌 𝛽1
©«
∏
𝑖∈[𝐿]

𝑄
𝛿−1𝑖

𝑖

𝑅𝑖

ª®¬
−𝑠′

0

, 𝐶6 ← 𝑌 𝑠
′
0 .

7. At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

We now show that depending on the challenge 𝑇 , algorithm B either simulates an execution of Hyb(𝑏 )
2,𝐿

or Hyb(𝑏 )rand
where 𝛾2 mod 𝑝2 plays the role of 𝑠 mod 𝑝2:

• First, 𝑍 = 𝑒 (𝑔1, 𝑋 ) = 𝑒 (𝑔1, 𝑔𝛼
1
𝑔
𝛾1
2
) = 𝑒 (𝑔1, 𝑔1)𝛼 .

• Consider the components of the CRS:

𝐴𝑖 = (𝑔1𝑔3)𝑡𝑖

𝐵𝑖 = 𝑋𝐴
𝛽

𝑖
(𝑔2𝑔3)𝜏𝑖 = 𝑔𝛼1𝑔

𝛾1
2
𝐴
𝛽

𝑖
(𝑔2𝑔3)𝜏𝑖 = 𝑔𝛼1𝐴

𝛽

𝑖
𝑔
𝛾1+𝜏𝑖
2

𝑔
𝜏𝑖
3

𝑃𝑖 = (𝑌𝑔3)𝛿𝑖 = ((𝑔𝑠1𝑔
𝛾2
2
)𝑔3)𝛿𝑖 ,

where 𝜏𝑖 , 𝛿𝑖
r← Z𝑁 . Since 𝜏𝑖 r← Z𝑁 , the distribution of 𝜏𝑖 + 𝛾1 and 𝜏𝑖 is identical. Thus, we conclude that these

components of the CRS are distributed identically to those in Hyb(𝑏 )
2,𝐿

or Hyb(𝑏 )rand, with 𝛾2 mod 𝑝2 playing the

role of 𝑠 mod 𝑝2 in Hyb(𝑏 )
2,𝐿

and Hyb(𝑏 )rand. The remaining CRS components are sampled as in Hyb(𝑏 )
2,𝐿

or Hyb(𝑏 )rand.

• Algorithm B answers the queries using the same procedure as Hyb(𝑏 )
2,𝐿

and Hyb(𝑏 )rand.

• Next, the challenge ciphertext components 𝐶2,𝐶3,𝑘 ,𝐶4,𝑘 ,𝐶5,𝐶6 are distributed exactly as in Hyb(𝑏 )
2,𝐿

or Hyb(𝑏 )rand

where 𝛾2 mod 𝑝2 plays the role of 𝑠 mod 𝑝2. Since 𝑠
r← Z𝑁 in Hyb(𝑏 )

2,𝐿
or Hyb(𝑏 )rand, the distribution of 𝑠 mod 𝑝2

and 𝛾2 mod 𝑝2 are identical.
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Consider now the distribution of the challenge 𝑇 :

• If 𝑇 = 𝑒 (𝑔1, 𝑔2)𝛼,𝑠 , then 𝐶1 = `
∗
𝑏
·𝑇 = `∗

𝑏
· 𝑍𝑠 . In this case, algorithm B correctly simulates experiment Hyb(𝑏 )

2,𝐿
.

• If 𝑇 = 𝑒 (𝑔1, 𝑔2)𝑟 , where 𝑟 r← Z𝑁 , the distribution of 𝐶1 is uniform in G𝑇 , and algorithm B correctly simulates

experiment Hyb(𝑏 )rand.

Thus, algorithm B breaks Assumption 5.2c with the same distinguishing advantage as A and the claim follows. □

By construction, the distribution Hyb(𝑏 )rand is independent of the message `∗
𝑏
. Thus, for all adversariesA, Hyb(0)rand (A) ≡

Hyb(1)rand (A). Security now follows by combining Lemmas 5.10, 5.13, 5.14 and 5.33. □

6 From Slotted Registered ABE to Registered ABE
In this section, we show how to generically transform a slotted registered ABE scheme (Definition 4.9) to a standard

registered ABE scheme (Definition 4.1). We refer to Section 2 for an overview of thhe construction.

Construction 6.1 (Slotted Registered ABE to Registered ABE). Let _ be a security parameter. Let ΠsRBE =

(sRBE.Setup, sRBE.KeyGen, sRBE.IsValid, sRBE.Aggregate, sRBE.Encrypt, sRBE.Decrypt) be a slotted registered ABE
scheme with attribute universeU = {U_}_∈N, policy space P = {P_}_∈N, and message spaceM = {M_}_∈N. We

now construct a registered ABE scheme ΠR-ABE = (Setup,KeyGen,RegPK, Encrypt,Update,Decrypt) that supports a
bounded number of users and over the same attribute spaceU, policy space P, and message spaceM as follows. In

the description, we adopt the following conventions:

• Without loss of generality, we assume that the bound on the number of users 𝐿 = 2
ℓ
is a power of two. Rounding

the bound to the next power of two incurs at most a factor of 2 overhead.

• The registered ABE scheme will internally maintain ℓ + 1 slotted ABE schemes, where the 𝑘 th scheme is a

slotted scheme with 2
𝑘
slots (for 𝑘 ∈ [0, ℓ]).

• The auxiliary data aux = (ctr,D1,D2,mpk) consists of the following components:

– A counter ctr that keeps track of the number of registered users in the system.

– A dictionary D1 that maps a scheme index 𝑘 ∈ [0, ℓ] and a slot index 𝑖 ∈ [2𝑘 ] to a pair (pk, 𝑆) which
specifies the public key and attribute set currently assigned to slot 𝑖 of scheme 𝑘 .

– A dictionary D2 that maps a scheme index 𝑘 ∈ [0, ℓ] and a user index 𝑖 ∈ [𝐿] to the helper decryption key

associated with scheme 𝑘 and user 𝑖 .

– The current master public key mpk = (ctr,mpk
0
, . . . ,mpkℓ ).

If aux = ⊥, we parse it as (ctr,D1,D2,mpk) where ctr = 0, D1,D2 = ∅, and mpk = (0,⊥, . . . ,⊥). This

corresponds to a fresh scheme with no registered users.

We construct our registered ABE scheme as follows:

• Setup(1_, 1 |U | , 1𝐿): On input the security parameter _, the attribute universeU, and a bound on number of

registrants 𝐿 = 2
ℓ
, the setup algorithm runs the setup algorithm for ℓ + 1 copies of the slotted RBE scheme.

Specifically, for each 𝑘 ∈ [0, ℓ], it samples crs𝑘 ← sRBE.Setup(1_, 1 |U | , 12𝑘 ) and outputs crs = (crs0, . . . , crsℓ ).

• KeyGen(crs, aux): On input the common reference string crs = (crs0, . . . , crsℓ ) and the auxiliary data aux =

(ctr,D1,D2,mpk), the key-generation algorithm generates a public/secret key-pair for each of the ℓ+1 underlying
schemes. Specifically, for each 𝑘 ∈ [0, ℓ], let 𝑖𝑘 ← (ctr mod 2

𝑘 ) +1 ∈ [2𝑘 ] be a slot index for the 𝑘 th scheme, and

sample a key (pk𝑘 , sk𝑘 ) ← sRBE.KeyGen(crs𝑘 , 𝑖𝑘 ). Output pk = (ctr, pk
0
, . . . , pkℓ ) and sk = (ctr, sk0, . . . , skℓ ).
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• RegPK(crs, aux, pk, 𝑆pk): On input the common reference string crs = (crs0, . . . , crsℓ ), the auxiliary data aux =
(ctraux,D1,D2,mpk), where mpk = (ctraux,mpk

0
, . . . ,mpkℓ ), a public key pk = (ctrpk, pk0, . . . , pkℓ ), and an

associated set of attributes 𝑆pk), the registration algorithm proceeds as follows:

– For each 𝑘 ∈ [0, ℓ], let 𝑖𝑘 = (ctraux mod 2
𝑘 ) + 1 ∈ [2𝑘 ] be the slot index for the 𝑘 th scheme.

– For each 𝑘 ∈ [0, ℓ], check that sRBE.IsValid(crs𝑘 , 𝑖𝑘 , pk𝑘 ) = 1. In addition, check that ctraux = ctrpk. If any
check fails, the algorithm halts and outputs the current auxiliary data aux and master public key mpk.

– Then for each 𝑘 ∈ [0, ℓ], the registration algorithm updates D1 [𝑘, 𝑖𝑘 ] ← (pk, 𝑆pk). In addition, if 𝑖𝑘 = 2
𝑘

(i.e., all of the slots in scheme 𝑘 are filled), the registration algorithm additionally does the following:

∗ Compute (
mpk′

𝑘
, hsk′

𝑘,1
, . . . , hsk′

𝑘,2𝑘

)
← sRBE.Aggregate

(
crs𝑘 ,D1 [𝑘, 1], . . . ,D1 [𝑘, 2𝑘 ]

)
.

∗ Update D2 [ctr + 1 − 2𝑘 + 𝑖, 𝑘] ← hsk′
𝑘,𝑖

for each 𝑖 ∈ [2𝑘 ].
∗ If 𝑖𝑘 ≠ 2

𝑘
, mpk′

𝑘
= mpk𝑘 is unchanged.

– Define the new master public key mpk′ = (ctraux + 1,mpk′
1
, . . . ,mpk′ℓ ).

– Finally, the registration algorithm outputs the new master public key mpk′ and auxiliary data aux′ =
(ctraux + 1,D1,D2,mpk′).

• Encrypt(mpk, 𝑃, `): On input the master public key mpk = (ctr,mpk
0
, . . . ,mpkℓ ), the access policy 𝑃 ∈ P, and

a message ` ∈ M, the encryption algorithm computes ct𝑘 ← sRBE.Encrypt(mpk𝑘 , 𝑃, `) for each 𝑘 ∈ [0, ℓ]; if
mpk𝑘 = ⊥, then it sets ct𝑘 ← ⊥. Then it outputs ct = (ctr, ct0, . . . , ctℓ ).

• Update(crs, aux, pk): On input the common reference string crs = (crs0, . . . , crsℓ ), the auxiliary data aux =

(ctraux,D1,D2,mpk), and a public key pk = (ctrpk, pk0, . . . , pkℓ ), the update algorithm outputs⊥ if ctrpk ≥ ctraux.
Otherwise, for each 𝑘 ∈ [0, ℓ], it sets hsk𝑘 ← D2 [ctrpk + 1, 𝑘] and replies with hsk = (hsk0, . . . , hskℓ ).

• Decrypt(sk, hsk, ct): On input a secret key sk = (ctrsk, sk0, . . . , skℓ ), a helper key hsk = (hsk0, . . . , hskℓ ),
and a ciphertext ct = (ctrct, ct0, . . . , ctℓ ), the decryption algorithm outputs ⊥ if ctrct ≤ ctrsk. Otherwise,

it computes the largest index 𝑘 on which ctr and ctr′ differ (where bits are 0-indexed starting from the

least significant bit). If hsk𝑘 = ⊥, then the decryption algorithm outputs GetUpdate. Otherwise, it outputs
sRBE.Decrypt(sk𝑘 , hsk𝑘 , ct𝑘 ).

Correctness, compactness, and efficiency. Recall the correctness game from Definition 4.2. We will show that

that perfect correctness, compactness, and efficiency of the slotted registered ABE scheme ΠsRBE implies perfect

correctness, compactness, and efficiency of the registered ABE scheme from Construction 6.1.

Theorem 6.2 (Correctness). Suppose ΠsRBE is complete and perfectly correct. Then Construction 6.1 is perfectly correct.

Proof. Let crs = (crs0, . . . , crsℓ ) ← Setup(1_, 1 |U | , 1𝐿). Consider the challenger’s behavior in the correctness game.

Let aux = (ctraux,D1,D2,mpk) be the auxiliary data maintained by the challenger at some point during the correctness

game. Here, mpk = (ctrmpk,mpk
0
, . . . ,mpkℓ ). By design, the counter ctrmpk associated with the master public key

mpk always coincides with the counter ctraux embedded in aux. Thus, in the following description, we will often

write ctraux to denote both counters. Let (pk∗, sk∗) be the target key sampled by the challenger in response to a

target-key registration query. We start by showing the following invariant:

Lemma 6.3. Let aux = (ctraux,D1,D2,mpk) be the auxiliary data (maintained by the challenger) at any point in the
correctness game after the adversary has made a target-key registration query. Write mpk = (ctraux,mpk

0
, . . .mpkℓ ).

Let pk∗ = (ctr∗, pk∗
0
, . . . , pk∗ℓ ) be the target key the challenger sampled when responding to the target-key registration

query. Let 𝑘 ′ ∈ [0, ℓ] be the most significant bit on which the binary representations of ctr∗ and ctraux differ (indexed as
in Decrypt). Then the master public key mpk𝑘∗ was the output of a call to sRBE.Aggregate(crs𝑘 ′ , ·) on a tuple of keys
and attributes that included the target key (pk∗

𝑘 ′ , 𝑆
∗).
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Proof. We start by showing the following simple observation on the position of the most significant differing bit

between two integers.

Claim 6.4. Let 𝑥,𝑦 < 2
ℓ+1 − 1 be nonnegative integers with binary representations 𝑥 = 𝑥ℓ · · · 𝑥1𝑥0 and 𝑦 = 𝑦ℓ · · ·𝑦1𝑦0.

Suppose 𝑥 < 𝑦. Let 𝑘𝑥,𝑦 = max{𝑘 ∈ [0, ℓ] : 𝑥𝑘 ≠ 𝑦𝑘 }. Namely, 𝑘𝑥,𝑦 is the index of the most significant bit on which 𝑥 and
𝑦 differ. Then 𝑘𝑥,𝑦 ≤ 𝑘𝑥,𝑦+1. Moreover, if 𝑘𝑥,𝑦 < 𝑘𝑥,𝑦+1, then 𝑦 + 1 = 0 mod 2

𝑘𝑥,𝑦+1

Proof. Let 𝑦′ℓ · · ·𝑦′1𝑦′0 = 𝑦 + 1 be the binary representation of 𝑦′ = 𝑦 + 1. We show the two properties individually:

• By construction, since 𝑥 < 𝑦, we have 𝑥𝑘𝑥,𝑦 = 0 and 𝑦𝑘𝑥,𝑦 = 1. Assume for contradiction that 𝑘𝑥,𝑦 > 𝑘𝑥,𝑦+1.
Since 𝑘𝑥,𝑦+1 is the most significant differing bit between 𝑥 and 𝑦 + 1, this means that 𝑥𝑘𝑥,𝑦+1 = 0 and 𝑦′

𝑘𝑥,𝑦+1
= 1.

Moreover, 𝑘𝑥,𝑦+1 is the most significant differing bit between 𝑥 and 𝑦 + 1, so if 𝑘𝑥,𝑦 > 𝑘𝑥,𝑦+1 and 𝑥𝑘𝑥,𝑦 = 0, then

it must be the case that 𝑦′
𝑘𝑥,𝑦

= 0. However, we also have that 𝑦𝑘𝑥,𝑦 = 1. Since 𝑦′ = 𝑦 + 1, the only way 𝑦𝑘𝑥,𝑦 = 1

and 𝑦′
𝑘𝑥,𝑦

= 0 is if 𝑦𝑘 = 1 for all 𝑘 ≤ 𝑘𝑥,𝑦 . This means that 𝑦′
𝑘
= 0 for all 𝑘 ≤ 𝑘𝑥,𝑦 . When 𝑘𝑥,𝑦+1 < 𝑘𝑥,𝑦 , this now

contradicts the previous deduction that 𝑦′
𝑘𝑥,𝑦+1

= 1.

• For the second part of the claim, suppose that 𝑘𝑥,𝑦 < 𝑘𝑥,𝑦+1. By definition of 𝑘𝑥,𝑦+1, this means 𝑥𝑘𝑥,𝑦+1 = 0 and

𝑦′
𝑘𝑥,𝑦+1

= 1. Since 𝑘𝑥,𝑦 is the most significant bit on which 𝑥 and 𝑦 differ and 𝑘𝑥,𝑦 < 𝑘𝑥,𝑦+1, this means that

𝑦𝑘𝑥,𝑦+1 = 𝑥𝑘𝑥,𝑦+1 = 0. Otherwise 𝑘𝑥,𝑦+1 is a more significant bit on which 𝑥 and 𝑦 differ. Since 𝑦′ = 𝑦 + 1 and 𝑦′
and 𝑦 differ on bit 𝑘𝑥,𝑦+1, this means that for all 𝑘 < 𝑘𝑥,𝑦+1, 𝑦𝑘 = 1. Correspondingly, for all 𝑘 < 𝑘𝑥,𝑦+1, 𝑦′𝑘 = 0.

This means that 𝑦′ = 𝑦 + 1 = 0 mod 2
𝑘𝑥,𝑦+1

. □

We now prove Lemma 6.3 via induction. The base case corresponds to the state of the challenger immediately after

the adversary registers the target key. Let aux = (ctr,D1,D2,mpk) be the auxiliary data at the beginning of the

adversary’s first target key query. We start by showing the invariant holds immediately following the query:

• On a target-key registration query, algorithm A sends an attribute set 𝑆∗ ⊆ U_ to the challenger.

• The challenger samples (pk∗, sk∗) ← KeyGen(crs, aux). By construction, for each 𝑘 ∈ [0, ℓ], the challenger
computes 𝑖∗

𝑘
← (ctr mod 2

𝑘 ) + 1 and samples a key (pk∗
𝑘
, sk∗

𝑘
) ← sRBE.KeyGen(crs𝑘 , 𝑖∗𝑘 ). The public key is

then pk∗ = (ctr, pk∗
0
, . . . , pk∗ℓ ).

• Next, the challenger runs (mpk′, aux′) ← RegPK(crs, aux, pk∗, 𝑆∗). By completeness of ΠsRBE, we have that for

all 𝑘 ∈ [0, ℓ], sRBE.IsValid
(
crs𝑘 , 𝑖∗𝑘 , pk𝑘

)
= 1. This means the challenger sets D1 [𝑘, 𝑖∗𝑘 ] ← (pk

∗, 𝑆∗).

• For an index 𝑘 ∈ [0, ℓ], let ctr𝑘 ∈ {0, 1} denote the 𝑘 th bit of ctr (starting from 0 for the least significant bit and

ℓ for the most significant bit). Let 𝑘 ′ ∈ [0, ℓ] be the index of the most significant bit on which ctr and ctr + 1
differ. By construction, this means that ctr𝑘 ′ = 0 and for all 𝑘 < 𝑘 ′, ctr𝑘 = 1. Thus, ctr = 2

𝑘 ′ − 1 mod 2
𝑘 ′
. In this

case, 𝑖𝑘 ′ = (ctr mod 2
𝑘 ′ ) + 1 = 2

𝑘 ′
and the registration algorithm will compute(

mpk′
𝑘 ′ , hsk

′
𝑘 ′,1, . . . , hsk

′
𝑘 ′,2𝑘′

)
← sRBE.Aggregate

(
crs𝑘 ′ ,D1 [𝑘 ′, 1], . . . ,D1 [𝑘 ′, 2𝑘

′ ]
)
.

By construction, the updated master public key mpk′ contains mpk′
𝑘 ′ .

• At the end of the target-key registration query, the counter ctraux associated with aux satisfies ctraux = ctr∗ + 1.
By construction, we have that ctr∗ and ctraux = ctr∗ + 1 differ on position 𝑘 ′. But by construction, the master

public key mpk′
𝑘 ′ was the output to sRBE.Aggregate(crs𝑘 ′ ,D1 [𝑘 ′, 1], . . . ,D1 [𝑘 ′, 2𝑘

′ ]), and moreover,

D1

[
𝑘 ′, 𝑖∗

𝑘 ′
]
= D1 [𝑘 ′, 2𝑘

′ ] = (pk∗, 𝑆∗).

Thus, the challenge key pk∗ was aggregated into mpk′
𝑘 ′ , and the invariant holds.

Next, we consider the auxiliary state aux after each subsequent non-target-key registration query made by A. Since

the only queries that affect aux are non-target-key registration queries, we ignore the encryption and decryption

queries in the following analysis.
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• Let aux = (ctraux,D1,D2,mpk) and mpk = (ctraux,mpk
0
, . . . ,mpkℓ ) be the auxiliary state and master public

key at the time of the key-generation query. The inductive hypothesis is that the invariant holds for aux.

• In a non-target-key registration query, algorithm A sends a public key pk = (ctrpk, pk0, . . . , pkℓ ) and an

associated attribute set 𝑆pk to the challenger. The challenger then runs (mpk′, aux′) ← RegPK(crs, aux, pk, 𝑆pk)
and updates aux ← aux′, mpk ← mpk′. It replies to A with the updated parameters mpk′ and aux′. In the

following, we will write mpk′ = (ctrmpk′ ,mpk′
0
, . . . ,mpk′ℓ ).

• Let 𝑖𝑘 = (ctraux mod 2
𝑘 ) + 1 for each 𝑘 ∈ [0, ℓ]. First, if ctrpk ≠ ctraux or sRBE.IsValid(crs𝑘 , 𝑖𝑘 , pk𝑘 ) = 0, then

the challenger does not update aux or mpk (i.e., aux′ = aux and mpk′ = mpk). Since the invariant holds for
aux, it also holds for aux′.

• Consider the case where ctrpk = ctraux and moreover, sRBE.IsValid(crs𝑘 , 𝑖𝑘 , pk𝑘 ) = 1 for all 𝑘 ∈ [0, ℓ]. Let
𝑘old ∈ [0, ℓ] be the index of the most significant bit on which ctr∗ and ctraux differ, and let 𝑘new ∈ [0, ℓ] be the
index of the most significant bit on which ctr∗ and ctraux + 1 differ. By Claim 6.4, 𝑘old ≤ 𝑘new. In addition, since

ctraux > ctr∗, this means ctraux,𝑘
old

= 1. We now consider two possibilities:

– Suppose 𝑘old = 𝑘new. This means that the 𝑘 th
old

bit of ctr and ctr + 1 are the same. Correspondingly, this

means that (ctr mod 2
𝑘
old ) + 1 < 2

𝑘
old
. This means that mpk′

𝑘
old

= mpk𝑘
old

is unchanged by the registration

algorithm. By the inductive hypothesis, the challenge key pk∗ was aggregated inmpk𝑘
old

. Correspondingly,

the challenge key pk∗ is aggregated in mpk′
𝑘new

, and the invariant holds.

– Suppose 𝑘old < 𝑘new. By Claim 6.4, this means that ctraux + 1 = 0 mod 2
𝑘new

. This means that 𝑖𝑘new = 2
𝑘new

.

In this case, the challenger updates mpk′
𝑘new
← sRBE.Aggregate(crs𝑘new ,D1 [𝑘new, 1], . . . ,D1 [𝑘new, 2𝑘new ]).

By construction of the registration algorithm, the entries D1 [𝑘new, 1], . . . ,D1 [𝑘new, 2𝑘new ] correspond to

(pk𝑖 , 𝑆𝑖 ) for 𝑖 ∈ [ctraux − 2𝑘new + 1, ctraux], where (pk𝑖 , 𝑆𝑖 ) denotes the key that was registered in the 𝑖th

successful invocation of RegPK (in response to either a target-key registration query or a non-target-key

registration query). Since the most significant differing bit between ctraux and ctr∗ is 𝑘old, we have that
ctraux − ctr∗ ≤ 2

𝑘
old
+1 − 1 ≤ 2

𝑘new − 1. This means that ctr∗ ∈ [ctraux − 2𝑘new + 1, ctraux], and so (pk∗, 𝑆∗)
is aggregated in mpk′

𝑘new
. Finally, since mpk′ = (ctraux + 1,mpk′

0
, . . . ,mpk′ℓ ) where mpk′

𝑘
= mpk𝑘 for all

𝑘 ≠ 𝑘new, the invariant again holds.

The above argument shows that if the invariant holds at the beginning of a non-target-key registration query, then it

continues to hold after the query. The claim now follows by induction. □

To complete the proof, we now argue that the output on each of the decryption queries is correct. Let (𝑖𝑡 ,𝑚𝑡 , 𝑃𝑡 ) be
the 𝑡 th encryption query made by the adversary A, and let ct𝑡 ← Encrypt(mpk𝑖𝑡 , 𝑃𝑡 ,𝑚𝑡 ) be the resulting ciphertext.

Consider a decryption query on any index 𝑗 ∈ [𝑡]. Here, the challenger computes𝑚′𝑗 ← Decrypt(sk∗, hsk∗, ct𝑗 ):
• By construction, we can write sk∗ = (ctr∗, sk∗

0
, . . . , sk∗ℓ ), ct𝑗 = (ctrct, ct𝑗,0, . . . , ct𝑗,ℓ ), hsk∗ = (hsk∗0, . . . , hsk∗ℓ ),

and aux = (ctraux,D1,D2,mpk) where mpk = (ctraux,mpk
0
, . . . ,mpkℓ ).

• Let 𝑘∗ ∈ [0, ℓ] be the index of the most significant bit on which which ctrct and ctr∗ differ.

• If hsk∗
𝑘∗ ≠ ⊥, the challenger replies with𝑚′𝑗 ← sRBE.Decrypt(sk𝑘∗ , hsk𝑘∗ , ct𝑗,𝑘∗ ).

• If hsk∗
𝑘∗ = ⊥, the challenger first computes hsk∗ ← Update(crs, aux, pk∗). By construction, this sets hsk∗

𝑘∗ ←
D2 [𝑘∗, ctr∗ + 1]. The challenger then replies with𝑚′𝑗 ← sRBE.Decrypt(sk∗, hsk∗, ct𝑗,𝑘∗ ).

We now show that𝑚′𝑗 = 𝑚 𝑗 . Recall that ct𝑗 is the output of Encrypt(mpk𝑖𝑡 , 𝑃𝑡 ,𝑚𝑡 ) from an encryption query. Let

mpk𝑖𝑡 = (ctr𝑖𝑡 ,mpk𝑖𝑡 ,0, . . . ,mpk𝑖𝑡 ,ℓ ). By definition of the encryption algorithm, it must be the case that ctr𝑖𝑡 = ctrct.
The correctness game requires that the 𝑖th𝑡 master public keympk𝑖𝑡 is constructed after the target key pk

∗
is registered,

so ctrct ≥ ctr∗. By Lemma 6.3, this means that the target key-attribute pair (pk∗, 𝑆∗) was aggregated in mpk𝑖𝑡 ,𝑘∗ via a
call to sRBE.Aggregate. By construction of sRBE.Aggregate, this means that D2 [ctr∗ + 1, 𝑘∗] = hsk𝑘∗,ctr∗ . Moreover,

by construction of RegPK, the value of D2 [ctr∗ + 1, 𝑘∗] will never be updated after the first time it is assigned in a

call to RegPK (since the counter ctraux is monotonically increasing). Now, by correctness of ΠsRBE, we have that

sRBE.Decrypt(sk𝑘∗,ctr∗ , hsk𝑘∗ , ct𝑗,𝑘∗ ) =𝑚𝑡 , and correctness follows. □
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Theorem 6.5 (Compactness). Suppose ΠsRBE is a compact slotted registered ABE scheme. Then Construction 6.1 is
compact.

Proof. Observe that the master public key mpk simply consists of an ℓ-bit counter indicating the current number of

registered users along with ℓ+1master public keysmpk
0
, . . . ,mpkℓ for the underlying slotted scheme. Since eachmpk𝑖

is a public key for a slotted scheme with at most 𝐿 = 2
ℓ
slots, the length of eachmpk𝑖 is bounded by poly(_, |U|, log𝐿)

by compactness of ΠsRBE. Thus, the overall public parameters mpk have size at most poly(_, |U|, log𝐿). □

Theorem 6.6 (Update Efficiency). Suppose ΠsRBE is a compact slotted registered ABE scheme. Then, Construction 6.1
satisfies update efficiency.

Proof. We consider each requirement separately:

• Number of updates: The number of updates is at most ℓ + 1 = log𝐿 since each helper decryption key hsk
contains at most ℓ + 1 helper decryption keys hsk0, . . . , hskℓ , one for each of the underlying schemes. The

Update algorithm is only invoked when one of the underlying helper decryption keys hsk𝑖 is ⊥, and after the

update, the key is no longer ⊥ in hsk.

• Running time of update: By construction, the GetUpdate operation simply looks up and updates the ℓ + 1
helper decryption keys hsk0, . . . , hskℓ . By compactness of ΠsRBE, each helper decryption key hsk𝑖 has size
poly(_, |U|, log𝐿). Since the auxiliary data maintains a dictionary D2 mapping each index slot index 𝑘 to its

set of helper decryption keys, the update operation can be implemented in poly(_, |U|, log𝐿) time in the RAM

model of computation. □

Theorem 6.7 (Security). Suppose ΠsRBE is a secure slotted registered ABE scheme. Then Construction 6.1 is secure.

Proof. LetA be an adversary for the registered ABE scheme, and let 𝐿 = 2
ℓ
be a bound on the number of slots algorithm

A selects. We start by defining a sequence of hybrid experiments, each parameterized by an index 𝑘∗ ∈ [0, ℓ]:

• Hyb𝑘∗ : This is the (bounded) registered ABE security game, except when generating the challenge ciphertext

ct∗ = (ctrct∗ , ct∗0, . . . , ct∗ℓ ), the first 𝑘∗ ciphertexts ct∗
0
, . . . , ct∗

𝑘∗−1 are encryptions of `∗
1
while the remaining

ciphertexts ct∗
𝑘∗ , . . . , ct

∗
ℓ are encryptions of `

∗
0
. More specifically, the game proceeds as follows:

– Setup phase: At the beginning of the game, algorithmA chooses a bound 1
𝐿
and sends it to the challenger.

The challenger then samples crs← Setup(1_, 1 |U | , 1𝐿). It then initializes the auxiliary input aux← ⊥, an
initial master public keympk← ⊥, a counter 𝑡 ← 0, an empty set of keys C = ∅, and an empty dictionary

D mapping public keys to registered attribute sets (with default value ∅). It gives crs to A.

– Query phase: Adversary A can now issue the following queries:

∗ Register corrupt key: In a corrupted-key-registration query, algorithm A specifies a public key

pk and a set of attributes 𝑆 ⊆ U_ . The challenger registers the key by computing (mpk′, aux′) ←
RegPK(crs, aux, pk, 𝑆). The challenger updates its copy of the public key mpk ← mpk′ and its

auxiliary data aux← aux′, adds pk to C, and updates D[pk] ← D[pk] ∪ {𝑆}. It replies to A with

(mpk′, aux′).
∗ Register honest key: In an honest-key-registration query, algorithm A specifies a set of attributes

𝑆 ⊆ U_ . The challenger increments the counter 𝑡 ← 𝑡 + 1 and samples (pk𝑡 , sk𝑡 ) ← KeyGen(1_),
(pk𝑡 , sk𝑡 ) ← KeyGen(1_), and (mpk′, aux′) ← RegPK(crs, aux, pk𝑡 , 𝑆). The challenger updates its
public key mpk ← mpk′, its auxiliary data aux ← aux′, and D[pk𝑡 ] ← D[pk𝑡 ] ∪ {𝑆}. Finally, it
replies to A with (𝑡,mpk′, aux′, pk𝑡 ).

∗ Corrupt honest key: In a corrupt-honest-key query, algorithm A specifies an index 𝑖 ∈ [𝑡].
Let (pk𝑖 , sk𝑖 ) be the 𝑖th public/secret key-pair the challenger sampled when responding to the 𝑖th

honest-key-registration query. The challenger adds pk𝑖 to C and replies to A with sk𝑖 .

– Challenge phase: In the challenge phase, algorithmA chooses two messages `∗
0
, `∗

1
∈ M and a challenge

policy 𝑃∗. The challenger then generates the challenge ciphertext ct∗ as follows:
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∗ Let the current auxiliary data be aux = (ctraux,D1,D2,mpk) where mpk = (ctraux,mpk
0
, . . .mpkℓ ).

∗ For each 𝑘 ∈ [0, ℓ], if mpk𝑘 = ⊥, then set ct𝑘 ← ⊥. Otherwise, if 𝑘 < 𝑘∗, compute ct𝑘 ←
sRBE.Encrypt(mpk𝑘 , 𝑃, `

∗
1
), and if 𝑘 ≥ 𝑘∗, compute ct𝑘 ← sRBE.Encrypt(mpk𝑘 , 𝑃, `

∗
0
).

∗ The challenger replies to A with the ciphertext ct = (ctraux, ct0, . . . , ctℓ ).
– Output phase: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is also the output of

the experiment.

Lemma 6.8. If ΠsRBE is secure, then for all efficient adversariesA, there exists a negligible function negl(·) such that for
all _ ∈ N, all 𝑘∗ ∈ [0, ℓ − 1], | Pr[Hyb𝑘∗ (A) = 1] − Pr[Hyb𝑘∗+1 (A) = 1] | = negl(_).

Proof. Suppose A is an efficient algorithm such that | Pr[Hyb𝑘∗ (A) = 1] − Pr[Hyb𝑘∗+1 (A) = 1] | = Y for some

non-negligible Y. We use A to construct an efficient algorithm B for the underlying slotted scheme ΠsRBE:

• Setup phase: Algorithm B starts running A, who starts by outputting the number of slots 1
𝐿
. Algorithm B

then proceeds as follows:

– Algorithm B sends 1
2
𝑘∗

to the challenger, who replies with a common reference string crs𝑘∗ . Note that by
construction, 2

𝑘∗ ≤ 𝐿, so if 𝐿 is polynomially-bounded, so is 2
𝑘∗
.
7

– Algorithm B internally initializes the auxiliary input aux = ⊥, the master public key mpk = ⊥, and
an (initially empty) dictionary D to keep track of the secret keys associated with each key-generation

query. In addition, algorithm B maintains two ordered lists 𝑆cur, 𝑆new which will track the public keys and

attribute sets aggregated as part of mpk𝑘∗ . Initially, 𝑆cur ← ⊥ and 𝑆new = (⊥, . . . ,⊥) is an (uninitialized)

list of length 2
𝑘∗
. For an index 𝑖 ∈ [2𝑘∗ ], we write 𝑆new [𝑖] to denote the 𝑖th element of 𝑆new.

– Then, for each𝑘 ∈ [0, ℓ]\{𝑘∗}, algorithmB samples a common reference string crs𝑘 ← Setup(1_, 1 |U | , 12𝑘 ).
– Finally, algorithm B sets crs = (crs0, . . . , crsℓ ) and gives crs to A.

• Query phase: In the query phase, algorithm B simulates the queries A makes as follows:

– Register corrupt key: When algorithm A issues a corrupt-key-generation query on public key pk
and attribute set 𝑆 , let ctr be the current counter associated with aux. Let 𝑖𝑘∗ = (ctr mod 2

𝑘 ) + 1.

Algorithm B first runs (mpk′, aux′) ← RegPK(aux,mpk, pk, 𝑆) and replies to A with mpk′ and aux′.
In addition, if aux′ ≠ aux (i.e., the registration process updated the auxiliary input), then B updates

𝑆new [𝑖𝑘∗ ] ← (⊥, 𝑆, pk). Moreover, if 𝑖𝑘∗ = 2
𝑘∗
, then algorithm B sets 𝑆cur ← 𝑆new. Finally, algorithm B

updates its local state by assigning mpk′ ← mpk and aux′ ← aux.

– Register honest key: When algorithmA makes an honest-key-registration query on a set of attributes 𝑆 ,

algorithm B proceeds as follows:

∗ Let ctr be the current counter in aux. For each 𝑘 ∈ [0, ℓ], let 𝑖𝑘 ← (ctr mod 2
𝑘 ) + 1.

∗ For each 𝑘 ≠ 𝑘∗, sample (pk𝑘 , sk𝑘 ) ← sRBE.KeyGen(crs𝑘 , 𝑖𝑘 ).
∗ Next, algorithm B makes a key-generation query on slot 𝑖𝑘∗ to obtain a public key (𝑡, pk𝑘∗ ). It sets the
public key to pk = (ctr, pk

0
, . . . , pkℓ ) and adds the mapping 𝑡 ↦→ (ctr, sk0, . . . , sk𝑘∗−1, sk𝑘∗+1, . . . , skℓ )

to the dictionaryD. Here, 𝑡 is the counter on the number of honest-key-generation queries maintained

by the challenger (which coincides with the number of honest-key-generation queries made by A).

Next, algorithm B runs (mpk′, aux′) ← RegPK(crs, aux, pk, 𝑆) and updatesmpk← mpk′ and aux = aux′.
It replies with (𝑡,mpk′, aux′, pk) to A. In addition, algorithm B updates 𝑆new [𝑖𝑘∗ ] ← (𝑡, 𝑆,⊥). Moreover,

if 𝑖𝑘∗ = 2
𝑘∗
, then algorithm B sets 𝑆cur ← 𝑆new. Finally, algorithm B updates its local state by assigning

mpk′ ← mpk and aux′ ← aux.

7
Note that if the underlying slotted registered ABE scheme has an efficient setup that runs polylogarithmically in the number of slots 𝐿, then we

can allow the adversary A to output the number of slots 𝐿 encoded in binary instead. In this case, the reduction algorithm would also output 2
𝑘∗

in binary. In other words, if the underlying slotted scheme supports an arbitrary polynomial number of users, then the transformed scheme also

does. We provide additional discussion on this in Remark 6.10.
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– Corrupt honest key: When algorithm A makes a corruption query on index 𝑖 , algorithm B first looks

up (ctrsk, sk0, . . . , sk𝑘∗−1, sk𝑘∗+1, . . . , skℓ ) ← D1 [𝑖]. Algorithm B makes a corruption query on index 𝑖 to

obtain a secret key sk𝑘∗ . It replies with the secret key sk = (ctrsk, sk0, . . . , skℓ ).

• Challenge phase: After algorithm A outputs a pair of messages `∗
0
, `∗

1
along with the challenge policy 𝑃∗,

algorithm B constructs the challenge ciphertext ct∗ as follows. Let mpk = (ctr,mpk
0
, . . . ,mpkℓ ) be the current

master public key. Algorithm B gives the challenge ciphertext ct∗ = (ctraux, ct∗0, . . . , ct∗ℓ ) to A where the

components ct∗
𝑘
are constructed as follows:

– If mpk𝑘 = ⊥, then ct∗
𝑘
← ⊥.

– If mpk𝑘 ≠ ⊥ and 𝑘 < 𝑘∗, let ct∗
𝑘
← sRBE.Encrypt(mpk𝑘 , 𝑃

∗, `∗
1
).

– If mpk𝑘 ≠ ⊥ and 𝑘 > 𝑘∗, let ct∗
𝑘
← sRBE.Encrypt(mpk𝑘 , 𝑃

∗, `∗
0
).

– If mpk𝑘 ≠ ⊥ and 𝑘 = 𝑘∗, algorithm B makes a challenge query using the components of 𝑆cur as the

attribute/public-keys for the slots, 𝑃∗ as the challenge attribute, and `∗
0
, `∗

1
as the pair of challenge messages.

Algorithm B sets ct∗
𝑘∗ to be the challenger’s response.

• Output phase: At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

First, we show that if A is an admissible adversary, then B is also admissible. By construction, the set 𝑆cur exactly

tracks the public keys currently aggregated in mpk𝑘∗ . If mpk𝑘∗ = ⊥, then B does not make a challenge query, and

is admissible by definition. Suppose mpk𝑘∗ ≠ ⊥. In this case, 𝑆cur ≠ ⊥. Consider each component 𝑆cur [𝑖] in the

challenge phase:

• Suppose 𝑆cur [𝑖] = ( 𝑗, 𝑆,⊥). By construction, this corresponds to the case where algorithm A made an honest-

key-generation query with attribute 𝑆 . Since A is admissible, either 𝑆 does not satisfy the challenge policy 𝑃∗,
or alternatively, if 𝑆 satisfies 𝑃∗, then algorithmA did notmake a corruption query on index 𝑗 . Correspondingly,

this means that either 𝑆 does not satisfy 𝑃∗ or algorithm B does not make a corruption query on index 𝑗 . In

both cases, this is an admissible input for slot 𝑖 .

• Suppose 𝑆cur [𝑖] = (⊥, 𝑆, pk). By construction, this happens if algorithm A made a corrupt-key-registration

query with public key pk and attribute 𝑆 . Since A is admissible, it must be the case 𝑆 does not satisfy the

challenge policy 𝑃∗.

Next, algorithm B perfectly simulates an execution of the registered ABE security game for A. In the case where

ct∗
𝑘∗ ← sRBE.Encrypt(mpk𝑘∗ , 𝑃

∗, `∗
0
), algorithm B simulates an execution of Hyb𝑘∗ whereas in the case where

ct∗
𝑘∗ ← sRBE.Encrypt(mpk𝑘∗ , 𝑃

∗, `∗
1
), algorithm B simulates an execution of Hyb𝑘∗+1. Correspondingly, algorithm B

wins the registered ABE security game with the same non-negligible advantage Y. □

To conclude the proof, observe that in Hyb
0
, the challenge ciphertext is an encryption of `∗

0
and corresponds to the

registered ABE security gamewith𝑏 = 0, while inHybℓ , the challenge ciphertext is an encryption of `
∗
1
and corresponds

to the registered ABE security game with 𝑏 = 1. Since ℓ = poly(_), the claim now follows by Lemma 6.8. □

Registered ABE from pairings. Combining Construction 6.1 with our slotted registered ABE scheme (Construc-

tion 5.4) from Section 5, we now obtain the following corollary:

Corollary 6.9 (Bounded Registered ABE from Pairings). Let _ be a security parameter. Let U = {U_}_∈N be any
(polynomial-size) attribute space, and let P = {P_}_∈N be a set of policies that can be described by a one-use linear secret
sharing scheme overU. Then, under Assumption 5.2, for every polynomial 𝐿 = 𝐿(_), there exists a bounded registered
ABE scheme with attribute universeU, policy space P, and supporting up to 𝐿 users with the following properties:

• The size of the CRS and the size of the auxiliary data maintained by the key curator is 𝐿2 · poly(_, |U|, log𝐿).

• The running time of key-generation and registration is 𝐿 · poly(_, |U|, log𝐿).

• The size of the master public key and the helper decryption keys are both |U| · poly(_, log𝐿).
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• The size of a ciphertext is 𝐾 · poly(_, log𝐿), where 𝐾 denotes the number of rows in the linear secret sharing matrix
M associated with the access policy.

Remark 6.10 (Efficiency Preserving). Our transformation in Construction 6.1 preserves the efficiency of the underly-

ing slotted registered ABE scheme with respect to the following properties:

• Large universe: If the underlying slotted registered ABE scheme supports a large universe (i.e., |U| = 2
𝜔 (log_)

),

then the transformed scheme also supports a large universe. As discussed in Remark 4.8, we would formally

model this by having the Setup algorithm take as input the bit-length of the attributes rather than the size

of the attribute space in both the slotted scheme and the full scheme. Our obfuscation-based construction in

Section 7 (Construction 7.4) supports a large universe.

• Arbitrary number of users: If the running time of Setup in the underlying slotted scheme is polylogarithmic
in the bound on the number of users 𝐿, then the running time of Setup in the transformed scheme is also

polylogarithmic in the number of users 𝐿. Note that if Setup runs in time that is polylogarithmic in 𝐿, the size

of the CRS must also be polylogarithmic in 𝐿. In this case, we can set 𝐿 = 2
_
to support an arbitrary polynomial

number of users. Formally, we would model this setting by having Setup take the bound 𝐿 in binary rather than
unary in both the slotted scheme and the full registered ABE scheme. While our pairing-based construction

(Construction 5.4) does not support this notion, our obfuscation-based construction (Construction 7.4) does.

7 Registered ABE from Indistinguishability Obfuscation
In this section, we show how to build a registered ABE scheme that does not impose an a priori bound on the

number of users in the system (in contrast to the pairing-based construction from Section 5 (Corollaries 5.5 and 6.9))

using indistinguishability obfuscation (𝑖O) [BGI+12, GGH+13], a somewhere statistically binding (SSB) hash func-

tion [HW15] and a pseudorandom generator (PRG). Our approach is similar to but generalizes the RBE construction

of Garg et al. [GHMR18] which uses 𝑖O, SSB hash functions and public-key encryption.

7.1 Construction Building Blocks
Our construction uses three main building blocks: an indistinguishability obfuscation scheme, a pseudorandom

generator, and an SSB hash function [HW15]. We specifically require SSB hash functions that satisfy a local opening
property; which can be built from standard number-theoretic assumption including DDH, 𝜙-Hiding, DCR, and

LWE [HW15, OPWW15]. We review each of these notions below:

Definition 7.1 (Indistinguishability Obfuscation [BGI
+
12, GGH

+
13]). Let C = {C_}_∈N be a family of polynomial-size

circuits. An indistinguishability obfuscator 𝑖O is an efficient algorithm that takes as input the security parameter _, a

circuit 𝐶 ∈ C_ and outputs a circuit 𝐶′. An 𝑖O scheme should satisfy the following properties:

• Functionality-preserving: For all security parameters _ ∈ N, all 𝐶 ∈ C_ , and all inputs 𝑥 , we have that

𝐶′ (𝑥) = 𝐶 (𝑥) where 𝐶′ ← 𝑖O(1_,𝐶).

• Security: For all efficient (possibly non-uniform) adversariesA = (Samp,A′), there exists a negligible function
negl(·) such that the following holds: if for all security parameters _ ∈ N,

Pr[∀𝑥,𝐶0 (𝑥) = 𝐶1 (𝑥) : (𝐶0,𝐶1, st) ← Samp(1_)] = 1 − negl(_),

then ��
Pr[A′ (st, 𝑖O(1_,𝐶0)) = 1] − Pr[A′ (st, 𝑖O(1_,𝐶1)) = 1]

�� = negl(_),
where (𝐶0,𝐶1, st) ← Samp(1_).

Definition 7.2 (Pseudorandom Generator). Let _ be a security parameter, 𝑛 = 𝑛(_) be a seed length, and ℓ = ℓ (_) be
an output length. A pseudorandom generator PRG : {0, 1}𝑛 → {0, 1}ℓ is an efficiently-computable function such that

for all efficient adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr
[
A(PRG(𝑠)) = 1 : 𝑠

r← {0, 1}𝑛
]
− Pr

[
A(𝑟 ) = 1 : 𝑟

r← {0, 1}ℓ
]
| = negl(_).
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Definition 7.3 (Somewhere Statistically Binding Hash Function [HW15, OPWW15]). Let _ be a security parameter.

A somewhere statistically binding (SSB) hash function with block length ℓblk = ℓblk (_), output length ℓhash = ℓhash (_),
and opening length ℓopen = ℓopen (_) is a tuple of efficient algorithms ΠSSB = (Setup,Hash,Open,Verify) with the

following properties:

• Setup(1_, 1ℓblk , 𝑁 , 𝑖∗) → hk: On input the security parameter _, the block size ℓblk, the message length 𝑁 ≤ 2
_
,

and an index 𝑖∗ ∈ [𝑁 ], the setup algorithm outputs a hash key hk. Both 𝑁 and 𝑖∗ are encoded in binary; in
particular, this means that |hk| = poly(_, ℓblk, log𝑁 ). We let Σ = {0, 1}ℓblk denote the block alphabet.

• Hash(hk, x) → ℎ: On input the hash key hk and a message x ∈ Σ𝑁 , the hash algorithm deterministically outputs
a hash ℎ ∈ {0, 1}ℓhash .

• Open(hk, x, 𝑖) → 𝜋𝑖 : On input the hash key hk, an input x ∈ Σ𝑁 , and an index 𝑖 ∈ [𝐿], the open algorithm

outputs an opening 𝜋𝑖 ∈ {0, 1}ℓopen .

• Verify(hk, ℎ, 𝑖, 𝑥𝑖 , 𝜋𝑖 ) → {0, 1}: On input the hash key hk, a hash value ℎ ∈ {0, 1}ℓhash , an index 𝑖 ∈ [𝑁 ], a value
𝑥𝑖 ∈ Σ, and an opening 𝜋𝑖 ∈ {0, 1}ℓopen , the verification algorithm outputs a bit 𝑏 ∈ {0, 1} indicating whether it

accepts or rejects.

We require the following properties:

• Correctness: For all security parameters _ ∈ N, all block sizes ℓblk = ℓblk (_), all integers 𝑁 ≤ 2
_
, all indices

𝑖, 𝑖∗ ∈ [𝑁 ], and any x ∈ Σ𝑁 ,

Pr

[
Verify(hk, ℎ, 𝑖, 𝑥𝑖 , 𝜋𝑖 ) = 1 :

hk← Setup(1_, 1ℓblk , 𝑁 , 𝑖∗);
ℎ ← Hash(hk, x);𝜋𝑖 ← Open(hk, x, 𝑖)

]
= 1.

• Index hiding: For a bit 𝑏 ∈ {0, 1} and an adversary A, define the index hiding game ExptIHA (_,𝑏) as follows:

1. Algorithm A(1_) chooses an integer 𝑁 and two indices 𝑖0, 𝑖1 ∈ [𝑁 ].
2. The challenger samples hk← Setup(1_, 1ℓblk , 𝑁 , 𝑖𝑏) and gives hk to A.

3. Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all polynomials ℓblk = ℓblk (_) and all efficient adversariesA, there exists a negligible function

negl(·) such that for all _ ∈ N,��
Pr[ExptIHA (_, 0) = 1] − Pr[ExptIHA (_, 1) = 1]

�� = negl(_).

• Somewhere statistically binding: We say that a hash key hk is statistically binding for an index 𝑖∗ ∈ [𝑁 ] if
there does not exist ℎ ∈ {0, 1}ℓhash , 𝑥 ≠ 𝑥 ′ ∈ Σ, and 𝜋, 𝜋 ′ where Verify(hk, ℎ, 𝑖∗, 𝑥, 𝜋) = 1 = Verify(hk, ℎ, 𝑖∗, 𝑥 ′, 𝜋 ′).
We require that for all polynomials ℓblk = ℓblk (_) and all 𝑁 ≤ 2

_
, there exists a negligible function negl(·) such

that for all _ ∈ N and all 𝑖 ∈ [𝑁 ],

Pr[hk is statistically binding for index 𝑖 : hk← Setup(1_, 1ℓblk , 𝑁 , 𝑖)] = 1 − negl(_).

• Succinctness: The hash length ℓhash, and opening length ℓopen are all fixed polynomials in the security parameter

_ and the block size ℓblk (and independent of 𝑁 ).

7.2 Registered ABE from Indistinguishability Obfuscation
Our construction follows the slotted RBE specification from Definition 4.9. It can be compiled into a standard RBE

scheme using the generic transformation in Section 6 (Construction 6.1). Our slotted construction here supports

a large universe (Remark 4.8) and moreover, the running time of the Setup algorithm is polylogarithmic in the

number of users 𝐿. Formally, the Setup algorithm in the following slotted construction takes only the bit-length of
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the attributes and the bit-length of 𝐿 as input. As such, when we apply Construction 6.1 to the construction, we

obtain a large-universe registered ABE for general circuit policies that supports an arbitrary polynomial of users

(Remark 6.10). Our construction below supports arbitrary (possibly non-monotone) policies that can be computed

by a Boolean circuit. Following the convention for circuit ABE [GVW13, BGG
+
14], we model the attributes as an

arbitrary bit-string of length ℓ𝑐 = ℓ𝑐 (_) and the policy as a Boolean circuit 𝐶 : {0, 1}ℓ𝑐 → {0, 1}. In particular, instead

of associating users with a set of attributes 𝑆 ⊆ U = {0, 1}ℓ𝑐 , in the circuit-based setting below, we associate each user

with a bit-string 𝑆 ∈ U = {0, 1}ℓ𝑐 .

Construction 7.4 (Slotted Registered ABE from iO). Let _ be a security parameter. Let PRG : {0, 1}_ → {0, 1}2_
be a length-doubling pseudorandom function. Let ℓ𝑐 = ℓ𝑐 (_) be the attribute length and let U = {0, 1}ℓ𝑐 be the

attribute space. Let P = {P_} be a family of Boolean circuits on inputs of length ℓ𝑐 . Let ΠSSB = (SSB.Setup,
SSB.Hash, SSB.Open, SSB.Verify) be a somewhere statistically binding hash function. We construct a slotted registered

attribute-based encryption scheme ΠsRBE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,Decrypt) with message

spaceM = {0, 1}_ , attribute spaceU, and policy space P as follows:

• Setup(1_, 1ℓ𝑐 , 𝐿): On input the security parameter _, the bit-length ℓ𝑐 of the attributes, and the number of users

𝐿 (in binary), the setup algorithm sets ℓblk = 2_ + ℓ𝑐 and samples a hash key hk← SSB.Setup(1_, 1ℓblk , 𝐿, 1). It
outputs crs← hk.

• KeyGen(crs, 𝑖): On input the common reference string crs = hk, the key-generation algorithm samples a

random seed 𝑠 ← {0, 1}_ . It outputs the public key pk = PRG(𝑠) and the secret key sk = 𝑠 .

• IsValid(crs, 𝑖, pk𝑖 ): On input the common reference string crs, an index 𝑖 , and a public key pk, the validation
algorithm outputs 1 if pk ∈ {0, 1}2_ .

• Aggregate(crs, (pk
1
, 𝑆1) . . . , (pk𝐿, 𝑆𝐿)): On input the common reference string crs = hk and a collection of

public keys pk𝑖 along with their associated attributes 𝑆𝑖 ∈ {0, 1}ℓ𝑐 , the aggregation algorithm computes the

master public key

mpk←
(
hk, SSB.Hash

(
hk,

(
(pk

1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)

) ) )
.

Here we treat each pair (pk𝑖 , 𝑆𝑖 ) as a binary string of length {0, 1}2_+ℓ𝑐 , which is the length of an SSB hash

block. Then, for each user 𝑖 ∈ [𝐿], the aggregate algorithm computes

𝜋𝑖 ← SSB.Open
(
hk,

(
(pk

1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)

)
, 𝑖
)
,

which is the local opening of the SSB hash for index 𝑖 , and sets the helper secret key to hsk𝑖 ← (𝑖, pk𝑖 , 𝑆𝑖 , 𝜋𝑖 ).
Finally, it outputs mpk and hsk𝑖 for all 𝑖 ∈ [𝐿].

• Encrypt(mpk,𝐶, `): On input the master public key mpk = (hk, ℎ), the ciphertext policy 𝐶 ∈ P and a message

` ∈ {0, 1}_ , the encryption algorithm sets 𝑗 = 0 and defines the following program:

Constants: mpk = (hk, ℎ), Boolean circuit 𝐶 : {0, 1}ℓ𝑐 → {0, 1}, message ` ∈ {0, 1}_ , index 𝑗 ∈ [0, 𝐿 + 1]
Inputs: index 𝑖 ∈ [𝐿], public key pk𝑖 ∈ {0, 1}2_ , attribute 𝑆𝑖 ∈ {0, 1}ℓ𝑐 , opening 𝜋𝑖 ∈ {0, 1}ℓopen , and secret key

sk𝑖 ∈ {0, 1}_ .

1. If SSB.Verify(hk, ℎ, 𝑖, (pk𝑖 , 𝑆𝑖 ), 𝜋𝑖 ) = 1 and 𝐶 (𝑆𝑖 ) = 1 and pk𝑖 = PRG(sk𝑖 ) and 𝑖 > 𝑗 , output `.

2. Otherwise, output ⊥.

Figure 1: Program Embed[mpk,𝐶, `, 𝑗].

Here we assume that the circuit Embed[mpk,𝐶, `, 𝑗] is padded to the maximum size of any program ap-

pearing in the proof of Theorem 7.6. The encryption algorithm then computes the obfuscated program

𝐶′ ← 𝑖O(Embed[mpk,𝐶, `, 𝑗]) and outputs ct = 𝐶′.

• Decrypt(sk, hsk, ct): On input the the secret key sk, the helper secret key hsk = (𝑖, pk𝑖 , 𝑆𝑖 , 𝜋𝑖 ), and a ciphertext

ct = 𝐶′, the decryption algorithm outputs 𝐶′ (𝑖, pk𝑖 , 𝑆𝑖 , 𝜋𝑖 , sk).
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Theorem 7.5 (Completeness, Correctness, and Compactness). Suppose 𝑖O is functionality-preserving and ΠSSB is
correct and succinct. Then, Construction 7.4 is complete, correct and compact.

Proof. We consider each property separately:

• Completeness: Completeness holds since RBE.IsValid always outputs 1 on all public keys pk ∈ {0, 1}2_ , and
by construction, the public keys output by KeyGen are 2_-bit strings.

• Correctness: For correctness, take any security parameter _ ∈ N, any attribute length ℓ𝑐 = ℓ𝑐 (_), any number

of slots 𝐿 ∈ N, and index 𝑖 ∈ [𝐿]. Consider the following components in the correctness experiment:

– Let crs← Setup(1_, 1ℓ𝑐 , 𝐿). In this case crs = hk, where hk← SSB.Setup(1_, 1ℓblk , 𝐿, 1).
– Let (pk𝑖 , sk𝑖 ) ← KeyGen(crs, 𝑖). Then sk𝑖 = 𝑠 ∈ {0, 1}_ and pk𝑖 = PRG(𝑠).
– Take any set of public keys {pk𝑗 } 𝑗≠𝑖 where each pk𝑗 ∈ {0, 1}2_ . For each 𝑗 ∈ [𝐿], let 𝑆 𝑗 ∈ {0, 1}ℓ𝑐 be the

attribute associated with pk𝑗 .

– Let (mpk, hsk1, . . . , hsk𝐿) ← Aggregate
(
crs,

(
(pk

1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)

) )
. By construction, mpk = (hk, ℎ)

and hsk𝑖 = (𝑖, pk𝑖 , 𝑆𝑖 , 𝜋𝑖 ) where

ℎ = SSB.Hash(hk, ((pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)))

𝜋𝑖 = SSB.Open(hk, ((pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿)), 𝑖).

– Take any Boolean circuit 𝐶 : {0, 1}ℓ𝑐 → {0, 1} where 𝐶 (𝑆𝑖 ) = 1 and message ` ∈ {0, 1}. Let ct ←
Encrypt(mpk,𝐶, `), and consider Decrypt(sk𝑖 , hsk𝑖 , ct). By construction ct = 𝐶′ where 𝐶′ is an obfusca-

tion of the program Embed[mpk,𝐶, `, 0]. By correction of the obfuscation scheme, 𝐶′ (𝑖, pk𝑖 , 𝑆𝑖 , 𝜋𝑖 , sk) =
Embed[mpk,𝐶, `, 0] (𝑖, pk𝑖 , 𝑆𝑖 , 𝜋𝑖 , sk). We consider each of the conditions:

∗ By correctness of the SSB scheme, SSB.Verify(hk, ℎ, (pk𝑖 , 𝑆𝑖 ), 𝜋𝑖 ) = 1.

∗ By assumption, 𝐶 (𝑆𝑖 ) = 1. By construction, pk𝑖 = PRG(𝑠) = PRG(sk𝑖 ).
∗ Since 𝑗 = 0 and 𝑖 ∈ [𝐿], 𝑖 > 𝑗 .

By construction, Embed outputs `, and decryption succeeds.

• Compactness: Consider the length of the master public key mpk and helper decryption keys hsk𝑖 output
by RBE.Aggregate. The mpk consists of the SSB hash key hk and the SSB hash ℎ. Since SSB.Setup is an

efficient algorithm it must be the case that |hk| = poly(_, ℓblk, log𝐿). Moreover, by succinctness of the SSB

hash function, the size of the SSB hash ℎ is poly(_, ℓblk). Finally ℓblk = 2_ + ℓ𝑐 = 2_ + log |U|. Correspondingly,
|mpk| = poly(_, log |U| , log𝐿). Next, hsk𝑖 = (𝑖, pk𝑖 , 𝑆𝑖 , 𝜋𝑖 ). Again by succinctness of the SSB hash function,

|𝜋𝑖 | = poly(_, ℓblk) = poly(_, log |U|). Thus, |hsk𝑖 | = poly(_, log |U|, log𝐿), as required. □

Theorem 7.6 (Security). If 𝑖O is secure and ΠSSB is correct and secure, then Construction 7.4 is secure.

Proof. We prove this theorem via a sequence of games (parameterized by a bit 𝑏 ∈ {0, 1} and an index 𝑖 ∈ [0, 𝐿 + 1]):

• Hyb(𝑏 )
0

: This is the real security experiment where the challenger encrypts message `∗
𝑏
. We recall the main

steps here:

– Setup phase: In the setup phase, the adversary A chooses a slot count 𝐿 who then samples hk ←
SSB.Setup(1_, 1ℓblk , 𝐿, 1), where ℓblk = 2_ + ℓ𝑐 . The challenger gives crs = hk to A. The challenger also

initializes a counter ctr← 0 and an (empty) dictionary D to keep track of the key-generation queries.

– Query phase: In the query phase, the challenger responds to queries as follows:

∗ Key-generation query: WhenAmakes a key-generation query on a slot 𝑖 , the challenger increments

its counter ctr← ctr + 1 and samples a seed 𝑠
r← {0, 1}_ . It responds with the counter value ctr and

the public key pk = PRG(𝑠). The challenger adds the mapping ctr ↦→ (𝑖, pk, 𝑠) to D.
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∗ Corruption query: Whenever the adversary makes a corruption query on an index 𝑐 ∈ {1, . . . , ctr},
the challenger looks up the tuple (𝑖, pk, 𝑠) ← D[𝑐] and replies to A with 𝑠 .

– Challenge phase: In the challenge phase, the adversary A outputs a tuple (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ) for each slot

𝑖 ∈ [𝐿], a challenge policy 𝑃∗ = 𝐶 : {0, 1}ℓ𝑐 → {0, 1} and two messages `∗
0
, `∗

1
∈ {0, 1}_ . The challenger

now proceeds as follows:

∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, the challenger looks up the entry (𝑖′, pk′, sk′) ← D[𝑐𝑖 ]. If 𝑖 ≠ 𝑖′, then the

challenger aborts. Otherwise, the challenger sets pk𝑖 ← pk′.
∗ If 𝑐𝑖 = ⊥, then the challenger checks that pk∗𝑖 ∈ {0, 1}2_ . If not, the challenger aborts. Otherwise, the
challenger sets pk𝑖 ← pk∗𝑖 .

The challenger then sets 𝑗 = 0 and constructs the obfuscated program 𝐶′ ← 𝑖O(Embed[mpk,𝐶, `∗
𝑏
, 𝑗]),

where Embed is the program in Fig. 1. The challenger gives ct = 𝐶′ to the adversary A.

– Output phase: At the end of the game, the adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.

• Hyb(𝑏 )
𝑖

: Same as Hyb(𝑏 )
𝑖−1 except when constructing the challenge ciphertext, the challenger sets 𝑗 = 𝑖 and

computes 𝐶′ ← 𝑖O(Embed[mpk,𝐶, `∗
𝑏
, 𝑗]) as before.

• Hyb(𝑏 )
𝐿+1: Same as Hyb(𝑏 )

𝐿
, except when constructing the challenge ciphertext, the challenger computes 𝐶′ ←

𝑖O(𝐶reject), where 𝐶reject is the program that takes an index 𝑖 ∈ [𝐿], a public key pk𝑖 ∈ {0, 1}2_ , an attribute

𝑆𝑖 ∈ {0, 1}ℓ𝑐 , an opening 𝜋𝑖 ∈ {0, 1}ℓopen , and a secret key sk𝑖 ∈ {0, 1}_ , and outputs ⊥. We assume that the

circuit 𝐶reject is padded to the maximum size of any program appearing in the proof of Theorem 7.6.

For an adversary A, we write Hyb(𝑏 )
𝑖
(A) to denote the output of game Hyb(𝑏 )

𝑖
with adversary A. We now show

that the outputs of each adjacent pair of hybrid experiments are computationally indistinguishable.

Lemma 7.7. If 𝑖O is secure, PRG is secure, and ΠSSB satisfies index hiding and somewhere statistical binding, then for
all efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1},
and 𝑖 ∈ [0, 𝐿 − 1],

| Pr[Hyb(𝑏 )
𝑖
(A) = 1] − Pr[Hyb(𝑏 )

𝑖+1 (A) = 1] | = negl(_).

Proof. We begin by introducing an intermediate experiment:

• iHyb(𝑏 )
𝑖

: Same asHyb(𝑏 )
𝑖

, except during the setup phase, the challenger samples hk← SSB.Setup(1_, 1ℓblk , 𝐿, 𝑖+1)
(i.e., the hash key binds on index 𝑖 + 1 instead of index 1).

We now show thatHyb(𝑏 )
𝑖

and iHyb(𝑏 )
𝑖

are computationally indistinguishable (Claim 7.8) and that iHyb(𝑏 )
𝑖

and iHyb(𝑏 )
𝑖+1

are computationally indistinguishable (Claim 7.9) for all 𝑏 ∈ {0, 1} and 𝑖 ∈ [0, 𝐿 − 1].

Claim 7.8. If ΠSSB satisfies index hiding, then for all efficient and admissible adversaries A, there exists a negligible
function negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],��

Pr

[
Hyb(𝑏 )

𝑖
(A) = 1

]
− Pr

[
iHyb(𝑏 )

𝑖
(A) = 1

] �� = negl(_).

Proof. The only difference between Hyb(𝑏 )
𝑖

and iHyb(𝑏 )
𝑖

is the hash key hk is binding on index 0 in Hyb(𝑏 )
𝑖

and it

is binding on index 𝑖 + 1 in iHyb(𝑏 )
𝑖

. The claim thus holds by index hiding of ΠSSB. Formally, suppose there exists

an efficient and admissible adversary A such that

��
Pr

[
Hyb(𝑏 )

𝑖
(A) = 1

]
− Pr

[
iHyb(𝑏 )

𝑖
(A) = 1

] �� = Y. for some

non-negligible Y. We use A to construct an adversary B that breaks index hiding of ΠSSB:

1. Algorithm B starts by running algorithm A. Algorithm A outputs the number of slots 𝐿 ∈ N.

2. Algorithm B outputs the message length 𝐿 and (1, 𝑖 + 1) as its challenge indices. It receives a hash key hk from

the challenger.
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3. Algorithm B sets crs = hk and gives crs to A.

4. Algorithm B simulates the rest of Hyb(𝑏 )
𝑖

and Hyb(𝑏 )
𝑖,1

exactly as prescribed. At the end of the game, adversary

A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

By construction, if hk← SSB.Setup(1_, 1ℓblk , 𝐿, 1), then algorithm B perfectly simulates Hyb(𝑏 )
𝑖

for A. Likewise, if

hk← SSB.Setup(1_, 1ℓblk , 𝐿, 𝑖 + 1), algorithm B perfectly simulates iHyb(𝑏 )
𝑖

for A. Thus, algorithm B succeeds with

the same advantage Y, and the claim follows. □

Claim 7.9. If 𝑖O is secure, PRG is secure, and ΠSSB is somewhere statistically binding, then for all efficient and admissible
adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],��

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1

]
− Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1

] �� = negl(_). (7.1)

Proof. As in Lemma 5.16, our analysis will depend on whether the adversary knows the secret key associated with

slot 𝑖 + 1 or not. Let (𝑐𝑖+1, 𝑆𝑖+1, pk∗𝑖+1) be the tuple the adversary provided for slot 𝑖 + 1 in the challenge phase. We say

that event NonCorrupt occurs if both of the following conditions hold:

• The index 𝑐𝑖+1 satisfies 𝑐𝑖+1 ∈ {1, . . . , ctr}. This means that pk𝑖+1 was generated by the challenger on the 𝑐 th
𝑖+1

key-generation query.

• Adversary A does not make a corruption query on index 𝑐𝑖+1.

We write NonCorrupt to denote the complement of event NonCorrupt. Now, we can write

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1

]
= Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
+ Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1

]
= Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
]
+ Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
]

It suffices then to show that��
Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
− Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
] �� = negl(_) (7.2)��

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
− Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
] �� = negl(_). (7.3)

Eq. (7.1) then follows by the triangle inequality. We now show Eqs. (7.2) and (7.3) in Claims 7.10 and 7.16, respectively.

Analysis for the case where slot 𝑖 + 1 is not corrupted. We now show that Eq. (7.2) holds. Our analysis relies on

the secret key 𝑠𝑖+1 associated with slot 𝑖 + 1 being hidden (and uniform) from the view of the adversary. We state the

precise claim below:

Claim 7.10. Suppose 𝑖O is secure, PRG is secure, and ΠSSB is somewhere statistically binding. Then, for all efficient and
admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],
we have that ��

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
− Pr

[
iHyb(𝑏 )

𝑖+1 = 1 ∧ NonCorrupt
] �� = negl(_).

Proof. We proceed via a sequence of games:

• ncHyb(𝑏 )
𝑖,1

: Same as iHyb(𝑏 )
𝑖

except at the beginning of the game, the challenger samples 𝑘
r← [𝐾], where

𝐾 = 𝐾 (_) is a bound on the the number of key-generation queries algorithm A makes during the query phase.

Let pk𝑘 be the public key the challenger samples in response to the 𝑘 th key-generation query (if there is one).

The challenger now aborts with output 0 if either of the following events occurs:

– In the challenge phase, the tuple (𝑐𝑖+1, 𝑆𝑖+1, pk∗𝑖+1) the adversary provides for slot 𝑖 + 1 satisfies 𝑐𝑖+1 ≠ 𝑘 .
– The adversary makes a corruption query on index 𝑘 .
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Otherwise, the experiment proceeds exactly as in iHyb(𝑏 )
𝑖

.

• ncHyb(𝑏 )
𝑖,2

: Same as ncHyb(𝑏 )
𝑖,1

except on the 𝑘 th key-generation query, the challenger samples pk𝑘
r← {0, 1}2_ .

Note that in this experiment, the challenger does not need to answer a corrupt query on index 𝑘 (since the

challenger immediately aborts if the adversary were to make such a query).

• ncHyb(𝑏 )
𝑖,3

: Same as ncHyb(𝑏 )
𝑖,2

, except during the challenge phase, the challenger sets 𝑗 = 𝑖 + 1 instead of 𝑗 = 𝑖

when constructing the challenge ciphertext.

• ncHyb(𝑏 )
𝑖,4

: Same as ncHyb(𝑏 )
𝑖,3

except on the 𝑘 th key-generation query, the challenger reverts to sampling

𝑠𝑘
r← {0, 1}_ and sets pk𝑘 ← PRG(𝑠𝑘 ).

As usual, for an adversary A, we write ncHyb(𝑏 ) (A) to denote the output of an execution of ncHyb(𝑏 ) (A) with
adversary A. We now show that the outputs of each adjacent pair of hybrid experiments are computationally

indistinguishable.

Lemma 7.11. For all admissible adversaries A and all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
= 𝐾 · Pr

[
ncHyb(𝑏 )

𝑖,1
(A) = 1

]
.

Proof. By construction, iHyb(𝑏 )
𝑖

and ncHyb(𝑏 )
𝑖,1

are identical experiments except for the additional abort condition in

ncHyb(𝑏 )
𝑖,1

. If ncHyb(𝑏 )
𝑖,1

outputs 1, then it must be the case that the output in iHyb(𝑏 )
𝑖

is also 1, and moreover, 𝑐𝑖+1 = 𝑘 ,
and the adversary does not make a corruption query on index 𝑘 = 𝑐𝑖+1. By definition, this means event NonCorrupt
must also occur. Thus, we can write

Pr[ncHyb(𝑏 )
𝑖,1
(A) = 1] = Pr[iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt ∧ 𝑘 = 𝑐𝑖+1]

= Pr[𝑘 = 𝑐𝑖+1 | iHyb(𝑏 )𝑖 (A) = 1 ∧ NonCorrupt] · Pr[iHyb(𝑏 )
𝑖
(A) = 1 ∧ NonCorrupt]

= 1/𝐾 · Pr[iHyb(𝑏 )
𝑖
(A) = 1 ∧ NonCorrupt],

since if event NonCorrupt occurs, then 𝑐𝑖+1 ∈ {1, . . . , ctr} ⊆ [𝐾], and the challenger in iHyb(𝑏 )
𝑖

samples 𝑘
r← [𝐾]. □

Lemma 7.12. If PRG is secure, then for all efficient and admissible adversaries A, there exists a negligible function
negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],��

Pr

[
ncHyb(𝑏 )

𝑖,1
(A) = 1

]
− Pr

[
ncHyb(𝑏 )

𝑖,2
(A) = 1

] �� = negl(_).

Proof. Suppose there exists an efficient adversary A such that��
Pr

[
ncHyb(𝑏 )

𝑖,1
(A) = 1

]
− Pr

[
ncHyb(𝑏 )

𝑖,2
(A) = 1

] �� ≥ Y,
for some non-negligible Y. We use A to construct an adversary B that breaks security of PRG:

1. At the beginning of the game, algorithm B receives a PRG challenge 𝑡 ∈ {0, 1}2_ .

2. Algorithm B now starts to simulate an execution of ncHyb(𝑏 )
𝑖,1

and ncHyb(𝑏 )
𝑖,2

for A. In particular, at the

beginning of the game, algorithm B samples an index 𝑘
r← [𝐾]. It then simulates the setup phase and the

query phase exactly as prescribed in ncHyb(𝑏 )
𝑖,1

and ncHyb(𝑏 )
𝑖,2

. On the 𝑘 th key-generation query, algorithm B
responds with pk𝑘 = 𝑡 . If algorithm A ever makes a corruption query on index 𝑘 , algorithm B aborts with

output 0 as in ncHyb(𝑏 )
𝑖,1

and ncHyb(𝑏 )
𝑖,2

.

3. When A enters the challenge phase with output (𝑐𝑖 , 𝑆𝑖 , pk∗𝑖 ) for each 𝑖 ∈ [𝐿], algorithm B aborts with output 0

if 𝑐𝑖+1 ≠ 𝑘 . Otherwise, algorithm constructs mpk, hsk1, . . . , hsk𝐿 , as well as the challenge ciphertext ct exactly
according to the specification of ncHyb(𝑏 )

𝑖,1
and ncHyb(𝑏 )

𝑖,2
.
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4. At the end of the game, algorithm B outputs whatever A outputs.

By construction, algorithm B does not need to know the PRG seed 𝑠 ∈ {0, 1}_ (the only quantity in the game that

would depend on 𝑠 is the response to a corruption query on index 𝑘 , but if A makes such a query, the output in both

experiments is 0). By construction, if 𝑡 = 𝐺 (𝑠) where 𝑠 r← {0, 1}_ , then algorithm B perfectly simulates ncHyb(𝑏 )
𝑖,0

whereas if 𝑡
r← {0, 1}2_ , algorithmB perfectly simulates ncHyb(𝑏 )

𝑖,1
forA. Thus algorithmB breaks pseudorandomness

of PRG with the same advantage Y. □

Lemma 7.13. Suppose 𝑖O is secure and ΠSSB is somewhere statistically binding. Then, for all efficient and admissible
adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],��

Pr

[
ncHyb(𝑏 )

𝑖,2
(A) = 1

]
− Pr

[
ncHyb(𝑏 )

𝑖,3
(A) = 1

] �� = negl(_).

Proof. The only difference between ncHyb(𝑏 )
𝑖,2

and ncHyb(𝑏 )
𝑖,3

is that during the challenge phase, the challenger sets

the challenge ciphertext to be an obfuscation of Embed[mpk,𝐶, `∗
𝑏
, 𝑖 + 1] instead of Embed[mpk,𝐶, `∗

𝑏
, 𝑖]. We argue

that with overwhelming probability over the choice of hk and the public key pk𝑘 , these two programs have identical

input/output behavior. The claim then follows by 𝑖O security. Take any input (𝑥, pk𝑥 , 𝑆𝑥 , 𝜋𝑥 , sk𝑥 ) and consider the

behavior of the two programs on this input:

• Suppose 𝑥 ≠ 𝑖 + 1. Then the logic in the two programs is identical (i.e., 𝑥 > 𝑖 if and only if 𝑥 > 𝑖 + 1 when
𝑥 ≠ 𝑖 + 1 and 𝑥 is an integer).

• Suppose 𝑥 = 𝑖 + 1 but (pk𝑥 , 𝑆𝑥 ) ≠ (pk𝑖+1, 𝑆𝑖+1). In ncHyb(𝑏 )
𝑖,2

and ncHyb(𝑏 )
𝑖,3

, the hash key hk is sampled to be

binding on index 𝑖 + 1. Moreover, in both experiments, the challenger computes the hash value ℎ as

ℎ ← SSB.Hash(hk, ((pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿))) .

Since ΠSSB is somewhere statistically binding, with overwhelming probability over the choice of hk, there does
not exist any (pk∗, 𝑆∗) ≠ (pk𝑖+1, 𝑆𝑖+1) and 𝜋∗ where SSB.Verify(hk, ℎ, 𝑖 + 1, (pk∗, 𝑆∗), 𝜋∗) = 1. In particular, this

means that SSB.Verify(hk, ℎ, 𝑥, (pk𝑥 , 𝑆𝑥 ), 𝜋𝑥 ) = 0, and both programs output ⊥.

• Suppose 𝑥 = 𝑖 + 1 and (pk𝑥 , 𝑆𝑥 ) = (pk𝑖+1, 𝑆𝑖+1). Assuming ncHyb(𝑏 )
𝑖,2

and ncHyb(𝑏 )
𝑖,3

does not abort, this means

that pk𝑥 = pk𝑖+1 = pk𝑘 , where pk𝑘
r← {0, 1}2_ is the public key sampled on the 𝑘 th key-generation query.

Over the randomness of pk𝑘 , the probability that there exists sk∗ ∈ {0, 1}_ such that PRG(sk∗) = pk𝑘 is at

most 2
_/22_ = 2

−_
. Thus, with overwhelming probability over the choice of pk𝑘 , for all inputs sk

∗ ∈ {0, 1}_ ,
PRG(sk∗) ≠ pk𝑘 . Correspondingly, this means that PRG(sk𝑥 ) ≠ pk𝑥 , and once more, both programs output ⊥.

Thus, with overwhelming probability over the choice of hk and pk𝑘 , the input/output behavior of Embed[mpk,𝐶, `∗
𝑏
, 𝑖]

or Embed[mpk,𝐶, `∗
𝑏
, 𝑖 + 1] is identical. The claim now follows by 𝑖O security. □

Lemma 7.14. If PRG is secure, then for all efficient and admissible adversaries A, there exists a negligible function
negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],��

Pr

[
ncHyb(𝑏 )

𝑖,3
(A) = 1

]
− Pr

[
ncHyb(𝑏 )

𝑖,4
(A) = 1

] �� = negl(_).

Proof. This follows by the same argument as the proof of Lemma 7.12. □

Lemma 7.15. For all admissible adversaries A and all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],

Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
]
= 𝐾 · Pr

[
ncHyb(𝑏 )

𝑖,4
(A) = 1

]
.

Proof. This follows by the same argument as the proof of Lemma 7.11. □
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Combining Lemmas 7.11 to 7.15, we now have the following relations:

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
= 𝐾 · Pr

[
ncHyb(𝑏 )

𝑖,1
(A) = 1

]
Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
]
= 𝐾 · Pr

[
ncHyb(𝑏 )

𝑖,4
(A) = 1

]���Pr [
ncHyb(𝑏 )

𝑖,4
(A) = 1

]
− Pr

[
ncHyb(𝑏 )

𝑖,1
(A) = 1

] ��� = negl(_).

Thus, we conclude that���Pr [
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
− Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
] ��� ≤ 𝐾 · negl(_),

which is negligible since the adversary can make at most 𝐾 = poly(_) queries. Eq. (7.2) holds. □

Analysis for the case where slot 𝑖 + 1 is corrupted. We now show that Eq. (7.3) holds. Our analysis here will

require that the set of attributes 𝑆𝑖+1 do not satisfy the challenge policy. We state the precise claim below:

Claim 7.16. Suppose 𝑖O is secure and ΠSSB function is somewhere statistically binding. Then, for all efficient and
admissible adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1}, and 𝑖 ∈ [0, 𝐿 − 1],��

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
− Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
] �� = negl(_) .

Proof. We proceed via a sequence of games:

• cHyb(𝑏 )
𝑖,1

: Same as iHyb(𝑏 )
𝑖

except the challenger aborts with output 0 if event NonCorrupt occurs. For an
admissible adversary, this condition ensures that the experiment outputs 1 only if the attribute 𝑆𝑖+1 chosen by

the adversary for slot 𝑖 + 1 does not satisfy the challenge policy.

• cHyb(𝑏 )
𝑖,2

: Same as cHyb(𝑏 )
𝑖,1

except during the challenge phase, the challenger sets 𝑗 = 𝑖 + 1 instead of 𝑗 = 𝑖 when
constructing the challenge ciphertext.

By definition, we have that

Pr

[
iHyb(𝑏 )

𝑖
(A) = 1 ∧ NonCorrupt

]
= Pr[cHyb(𝑏 )

𝑖,1
(A) = 1]

Pr

[
iHyb(𝑏 )

𝑖+1 (A) = 1 ∧ NonCorrupt
]
= Pr[cHyb(𝑏 )

𝑖,2
(A) = 1] .

Thus, it suffices to argue that for all efficient and admissible adversaries A,���Pr [
cHyb(𝑏 )

𝑖,1
(A) = 1

]
− Pr

[
cHyb(𝑏 )

𝑖,2
(A) = 1

] ��� = negl(_).

This follows by security of 𝑖O and the somewhere statistically binding property of ΠSSB. The only difference

between cHyb(𝑏 )
𝑖,1

and cHyb(𝑏 )
𝑖,2

is that during the challenge phase, the challenger sets the challenge ciphertext to

be an obfuscation of Embed[mpk,𝐶, `∗
𝑏
, 𝑖 + 1] instead of Embed[mpk,𝐶, `∗

𝑏
, 𝑖]. We argue that with overwhelming

probability over the choice of hk, these two programs have identical input/output behavior. Then the claim follows

by 𝑖O security. Take any input (𝑥, pk𝑥 , 𝑆𝑥 , 𝜋𝑥 , sk𝑥 ) and consider the behavior of the two programs on this input:

• Suppose 𝑥 ≠ 𝑖 + 1. Then the logic in the two programs is identical (i.e., 𝑥 > 𝑖 if and only if 𝑥 > 𝑖 + 1 when
𝑥 ≠ 𝑖 + 1 and 𝑥 is an integer).

• Suppose 𝑥 = 𝑖 + 1 but (pk𝑥 , 𝑆𝑥 ) ≠ (pk𝑖+1, 𝑆𝑖+1). In cHyb(𝑏 )
𝑖,1

and cHyb(𝑏 )
𝑖,2

, the hash key hk is sampled to be

binding on index 𝑖 + 1. Moreover, in both experiments, the challenger computes the hash value ℎ as

ℎ ← SSB.Hash(hk, ((pk
1
, 𝑆1), . . . , (pk𝐿, 𝑆𝐿))) .

Since ΠSSB is somewhere statistically binding, with overwhelming probability over the choice of hk, there does
not exist any (pk∗, 𝑆∗) ≠ (pk𝑖+1, 𝑆𝑖+1) and 𝜋∗ where SSB.Verify(hk, ℎ, 𝑖 + 1, (pk∗, 𝑆∗), 𝜋∗) = 1. In particular, this

means that SSB.Verify(hk, ℎ, 𝑥, (pk𝑥 , 𝑆𝑥 ), 𝜋𝑥 ) = 0, and both programs output ⊥.
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• Suppose 𝑥 = 𝑖 + 1 and (pk𝑥 , 𝑆𝑥 ) = (pk𝑖+1, 𝑆𝑖+1). Assuming cHyb(𝑏 )
𝑖,1

and cHyb(𝑏 )
𝑖,2

does not abort (so NonCorrupt
occurs) andA is admissible, this means that 𝑆𝑥 does not satisfy the challenge policy𝐶 . In other words,𝐶 (𝑆𝑥 ) = 0.

Once more, both programs output ⊥.

Thus, with overwhelming probability over the choice of hk and pk𝑘 , the input/output behavior of Embed[mpk,𝐶, `∗
𝑏
, 𝑖]

or Embed[mpk,𝐶, `∗
𝑏
, 𝑖 + 1] is identical. The claim now follows by 𝑖O security. □

Combining Claims 7.10 and 7.16 both Eqs. (7.2) and (7.3) hold. Then, Eq. (7.1) follows by the triangle inequality, and

Claim 7.9 holds. □

Combining Claims 7.8 and 7.9, Lemma 7.7 follows. □

Lemma 7.17. Assuming 𝑖O is secure, then for all efficient and admissible adversariesA, there exists a negligible function
negl(·) such that for all _ ∈ N, 𝑏 ∈ {0, 1},��

Pr

[
Hyb(𝑏 )

𝐿
(A) = 1

]
− Pr

[
Hyb(𝑏 )

𝐿+1 (A) = 1

] �� = negl(_)

Proof. The only difference between these two experiments is the obfuscated program used to construct the challenge

ciphertext. In Hyb(𝑏 )
𝐿

, the challenge ciphertext is an obfuscation of the program Embed[mpk,𝐶, `∗
𝑏
, 𝐿] whereas in

Hyb𝐿+1, the challenge ciphertext consists of an obfuscation of the program 𝐶reject. It suffices to argue that these two

programs have identical behavior. The claim then follows by 𝑖O security. Take any input (𝑥, pk𝑥 , 𝑆𝑥 , 𝜋𝑥 , sk𝑥 ) and
consider the behavior of the programs on this input:

• The program 𝐶reject always outputs ⊥ by construction.

• Since 𝑥 ∈ [𝐿], it will never be the case that 𝑥 > 𝐿. Thus, Embed[mpk,𝐶, `∗
𝑏
, 𝐿] also outputs ⊥ by construction.

We conclude that the programs Embed[mpk,𝐶, `∗
𝑏
, 𝐿] and𝐶reject have identical input/output behavior. The claim now

follows by 𝑖O security. □

Lemma 7.18. For all adversaries A, Pr
[
Hyb(0)

𝐿+1 (A) = 1

]
= Pr

[
Hyb(1)

𝐿+1 (A) = 1

]
.

Proof. In Hyb𝐿+1, the challenger’s behavior and correspondingly, the adversary’s view, is independent of the bit 𝑏. □

Since the adversary is efficient (and thus, can only output a collection of polynomial number of public keys and

attribute sets), we have that 𝐿 = poly(_). Security now follows by combining Lemmas 7.7, 7.17 and 7.18. □
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