
A preliminary version of this paper appears in the proceedings of the 20th Theory of Cryptography Conference –
TCC 2022, © IACR 2022. This is the full version.

Beyond Uber:
Instantiating Generic Groups via PGGs

Balthazar Bauer1 Pooya Farshim2 Patrick Harasser3(�) Adam O’Neill4

1 IRIF, CNRS, France
balthazar.bauer@ens.fr

2 IOHK and Durham University, UK
pooya.farshim@gmail.com

3 Technische Universität Darmstadt, Germany
patrick.harasser@tu-darmstadt.de

4 Manning College of Information and Computer Sciences,
University of Massachusetts Amherst, USA

adamo@cs.umass.edu

November 6, 2022

Abstract. The generic-group model (GGM) has been very successful in making the analyses of
many cryptographic assumptions and protocols tractable. It is, however, well known that the GGM is
“uninstantiable,” i.e., there are protocols secure in the GGM that are insecure when using any real-world
group. This motivates the study of standard-model notions formalizing that a real-world group in some
sense “looks generic.”

We introduce a standard-model definition called pseudo-generic group (PGG), where we require ex-
ponentiations with base an (initially) unknown group generator to result in random-looking group
elements. In essence, our framework delicately lifts the influential notion of Universal Computational
Extractors of Bellare, Hoang, and Keelveedhi (BHK, CRYPTO 2013) to a setting where the underlying
ideal reference object is a generic group. The definition we obtain simultaneously generalizes the Uber
assumption family, as group exponents no longer need to be polynomially induced. At the core of our
definitional contribution is a new notion of algebraic unpredictability, which reinterprets the standard
Schwartz–Zippel lemma as a restriction on sources. We prove the soundness of our definition in the
GGM with auxiliary-input (AI-GGM).

Our remaining results focus on applications of PGGs. We first show that PGGs are indeed a generalization
of Uber. We then present a number of applications in settings where exponents are not polynomially
induced. In particular we prove that simple variants of ElGamal meet several advanced security goals
previously achieved only by complex and inefficient schemes. We also show that PGGs imply UCEs for
split sources, which in turn are sufficient in several applications. As corollaries of our AI-GGM feasibility,
we obtain the security of all these applications in the presence of preprocessing attacks.

Some of our implications utilize a novel type of hash function, which we call linear-dependence destroyers
(LDDs) and use to convert standard into algebraic unpredictability. We give an LDD for low-degree
sources, and establish their plausibility for all sources by showing, via a compression argument, that
random functions meet this definition.

Keywords. Generic-group model · Uber assumption · UCE · Deterministic PKE · KDM and RKA
security.

1

mailto:balthazar.bauer@ens.fr
mailto:pooya.farshim@gmail.com
mailto:patrick.harasser@tu-darmstadt.de
mailto:adamo@cs.umass.edu

Contents

1 Introduction 3
1.1 Background . 3
1.2 Our Approach . 4
1.3 Applications of Pseudo-Generic Groups . 6
1.4 Other Related Work and Discussions . 9
1.5 Structure of the Paper . 10

2 Preliminaries 10

3 Pseudo-Generic Groups 12
3.1 PGG Security . 12
3.2 Definitional Choices . 14
3.3 A First Example . 18

4 Generic Groups are PGGs 20
4.1 More on the Generic-Group Model . 20
4.2 PGGs in the GGM . 21
4.3 Preliminary Results . 22
4.4 Generic-Group Feasibility . 24

5 From Simple to Algebraic Unpredictability: LDDs 29
5.1 LDDs for Low-Degree Sources . 30
5.2 Random Functions are LDDs . 33

6 Applications of PGGs 44
6.1 Uber Assumption in PGGs . 44
6.2 Building UCEs . 53
6.3 KDM-CPA Security of Modified ElGamal . 59
6.4 IND Security of Deterministic ElGamal . 68
6.5 RKA Security of ElGamal . 71

Acknowledgments 73

References 73

A Proof of Lemma 2.2 79

2

1 Introduction

1.1 Background

Idealized models. A useful tool in cryptography are so-called idealized models of computation, which
include the random-oracle, random-permutation, ideal-cipher, and generic-group models. In such models,
all algorithms work relative to oracles that serve to implement some information-theoretically random
reference object. Later, when a scheme defined in an idealized setting is used in practice, the oracles are
heuristically instantiated by appropriate public, efficiently computable functions. On the one hand, idealized
models are powerful because they limit the adversary’s capabilities and make proofs tractable. On the
other, they are subject to well-known uninstantiability results, which show the existence of (contrived)
schemes that are secure in the idealized model, but provably insecure under any possible instantiation (see,
e.g., [CGH04,Den02,Bla06,GKMZ16]). This indicates that idealized models are not sound in general, yet
“natural” applications (with the oracles appropriately instantiated) have withstood years of scrutiny.

The generic-group model. In this work, we mainly focus on the generic-group model (GGM), where a
generic group is an idealization of a finite cyclic group. It was first defined by Nechaev [Nec94] and later
refined by Shoup [Sho97], who considered random encodings of group elements.1 More specifically, for a
cyclic group (G, ◦) of order p, Shoup’s model considers a random injection τ : Zp → S, where S ⊆ {0, 1}∗
with |S| ≥ p. All algorithms run on input p and encodings of application-specific group elements. To perform
group operations, algorithms can query a τ oracle and an operation oracle op defined as op(h1, h2) :=
τ(τ−1(h1) + τ−1(h2)) if h1, h2 ∈ Rng(τ), and op(h1, h2) := ⊥ otherwise.

Instantiating generic groups. In practice, a generic group is typically instantiated via an appropriate
elliptic curve group. Indeed, for such groups no algorithms for solving discrete-logarithm-like problems more
efficiently than the generic ones are known. Addressing the above-mentioned mismatch between idealized
and instantiated schemes, we investigate what assumptions are being made when carrying out such an
instantiation. Note that an indistinguishability-based approach formalizing the idea of “behaving like a
generic group” would suffer from the same shortcomings known for random oracles [CGH04].

This line of work has been carried out with considerable success for the random oracle model (ROM),
where the ideal reference object is a random function (see, e.g., [Can97, BHK13, Zha16]). For generic
groups on the other hand, the most compelling formulation so far of what assumption is being made when
instantiating them is given by the so-called Uber assumption [BBG05,Boy08]. At a high level, the Uber
assumption speaks to the hardness of distinguishing the exponentiation gT (s) of a polynomial evaluation T (s)
from random, given exponentiations gR1(s), . . . , gRn(s) of other polynomial evaluations. This condition holds
in generic groups, and must therefore be satisfied by any concrete group that aims to “faithfully” instantiate
them. However, the Uber assumption is far from the most general (standard-model) property that might
hold in generic groups and thus should also be satisfied by their real-world counterparts.

Indeed, we observe that in a wide range of advanced cryptographic protocols and primitives (such as
security under bad randomness, deterministic encryption, leakage resilience, and code obfuscation to name
a few), inputs may not be uniformly distributed and polynomially related, but follow distributions that are,
for example, only assumed to have high entropy. The Uber assumption can fall short of providing means to
prove security of practical schemes in such settings. Accordingly, the main question we ask is:

Are there standard-model properties that generalize the Uber assumption and allow instantiating generic
groups in a broad range of applications?

1An alternative formulation of the GGM is given by Maurer [Mau05]; we follow Shoup’s presentation in this paper. Relations
and comparisons between different flavors of the GGM are discussed in the recent work [Zha22].

3

We emphasize that our treatment is practice-oriented in that we aim for a notion that captures
standard-model properties of groups that can be used to establish the standard-model security of existing,
practical protocols in a variety of models. Further, the new definitions should combine, as far as possible,
standard-model analyses with the ease of use offered by the GGM.

In order to develop the core ideas one step at a time, in this work we treat the case of simple (non-bilinear)
groups2 and focus on decisional problems. There are indeed multiple directions in which our work can be
extended; we will briefly discuss some of these at the end of the Introduction.

1.2 Our Approach

Our approach is inspired by an existing framework that bridges the standard and idealized models of compu-
tation: Universal Computational Extractors (UCEs) of Bellare, Hoang, and Keelveedhi (BHK) [BHK13], a
security notion for hash functions which, at a high level, requires indistinguishability from a random oracle
under unpredictable inputs. Indeed, their motivation is in some sense conceptually analogous to ours. To
that end, we seek to extend UCEs to structured ideal primitives, and call the resulting security notion in
the case of cyclic groups pseudo-generic groups (PGGs). Before presenting PGGs, we give a brief overview
of UCEs and refer to Section 2 for formal definitions.

Universal Computational Extractors. Let H : K ×D → R be a keyed hash function. The UCE
notion is defined via a game played by a source S and a distinguisher D: Sample a challenge bit b←← {0, 1},
a hash key hk ←← K, and a RO ρ : D → R. Then, S runs with access to an oracle Hash which, when
queried on x ∈ D, returns H(hk , x) if b = 1, and ρ(x) otherwise. Eventually, S outputs leakage L which is
passed to D, who is also given the hash key hk but no access to the hashing oracle. Distinguisher D must
then guess b, and the requirement for H is that the advantage of every PPT (S,D) in this game is small.

Notice that for this definition to be meaningful, some restriction must be placed on S and D: Without
any additional requirement, (S,D) can win with overwhelming advantage by having S query Hash on
any x ∈ D with answer y, leak the pair (x, y) to D, and then have D (who knows the hash key hk) check
whether y = H(hk , x). To avoid such generic attacks, one requires S to be unpredictable, a notion formalized
by asking that any predictor P have small advantage in the following game: Source S runs with access to a
RO and produces leakage L. Then P runs on input L and wins if it can guess any of S’s queries.

Our new notion: PGG. To port the UCE definition to the context of cyclic groups, our first idea is to
let a random group generator g play the role of the hash key, and to use exponentiation with base g in place
of the hash.3 The PGG security game for a group (G, ◦) then follows the UCE framework: Sample a secret
bit b←← {0, 1}, a random generator g ←← G, and a generic-group encoding σ : Zp → G. Then, a source S
interacts with an exponentiation oracle Exp which, on input x ∈ Zp, returns the real group element gx

if b = 1, and a generic element σ(x) otherwise. The source can pass some leakage L to a distinguisher D,
who is also given the generator g but loses access to the oracle and has to guess b. As for UCEs, the
requirement for G is that every such (S,D) has a small advantage in this game. Thus, the PGG notion
captures the intuition that if an adversary does not know the random generator g of G, exponentiation with
base g looks like it returns random elements from G.

As before, for this notion not to be void we must put restrictions on the queries that S is allowed to
make. First, observe that S must be unpredictable, because without any such requirement (S,D) can mount
the attack for UCEs sketched above. We argue now that due to the presence of a group structure on G that
was missing in the UCE setting, further conditions are needed.

2Similar work on the algebraic-group model (discussed later) was first carried out in simple groups [FKL18] and later in
bilinear ones [BFL20].

3Recently, Bartusek, Ma, and Zhandry (BMZ) [BMZ19] studied the “fixed-generator” and “random-generator” settings in
group-based assumptions. We necessarily work in the latter since, as we shall see, otherwise attacks arise.

4

Algebraic unpredictability. An important question now is for what sources is PGG achievable in
principle, meaning there are no “trivial” attacks. Recall that for UCEs the answer was unpredictable sources.
In our context, unpredictability alone is not sufficient: Consider a source S that samples x1, x2 ←← Zp,
queries hi ← Exp(xi), and computes x3 ← x1 + x2 and h′3 ← h1 ◦ h2. It then queries h3 ← Exp(x3)
and passes the bit (h3 = h′3) to D, who simply returns it. The advantage of (S,D) in the PGG game
is almost 1, even though S is unpredictable since x1 and x2 are random. The issue is that S can place
unpredictable queries that satisfy a known linear relation and distinguish by checking if the corresponding
relation holds for the oracle replies. Excluding this trivial/generic attack motivates a more refined notion of
unpredictability which we call algebraic unpredictability. In the corresponding game, the source S runs with
access to the ideal exponentiation oracle while querying x1, . . . , xq, and produces leakage L. Predictor P
runs on input L and must guess a linear combination of the queries, i.e., outputs (α0, α1, . . . , αq) not all
zero and wins if

∑q
i=1 αixi = α0.

This condition excludes the attack above, since P can output (0, 1, 1,−1) to win the game. One might
try to modify the attack and let the source leak (x3, h3) to D, who, given g, can compute gx3 and compare
it to h3. But this also contradicts algebraic unpredictability, with a predictor returning (x3, 1, 1).

As we shall see in Section 3, due to the existence of obfuscation-based attacks (similar to those for
UCEs [BFM14]), algebraic unpredictability must be statistical in nature; that is, we allow the algebraic
predictors to run in unbounded time.

Parallel structure. It turns out that algebraic unpredictability by itself is not sufficient to rule out all
generic attacks. Indeed, consider a source S that samples x←← Zp, queries h1 ← Exp(x) and h2 ← Exp(x2),
then computes h′2 ← hx1 and passes the bit (h2 = h′2) as leakage to D, who decides accordingly. Again, the
advantage of (S,D) in the PGG game is almost 1, and now S is even algebraically unpredictable. The issue
here is that S’s queries satisfy a linear relation with coefficients that are themselves unpredictable but known
to S (in this case, x · x− 1 · x2 = 0), an attack vector not ruled out by algebraic unpredictability.

To address this problem, we consider parallel sources. Loosely speaking, this means that S’s Exp
queries are made in parallel by single-query sources Si(st) which, other than receiving a common initial
state, do not pass state among each other. Indeed, the attack above was possible because S could learn
more than one oracle reply. Note that, in this example, although the queries x and x2 are allowed, the
equality check h2 = h′2 requires knowledge of h2 and h′2 (related to different queries), and hence violates the
definition of a parallel source.

Restricted post-processing. Surprisingly, even considering only parallel sources does not rule out all
trivial attacks. Indeed, one can modify the source S from above and make it parallel by setting st ← x,
having S1(st) compute h1 and h′2, and letting S2(st) compute h2. Leakage (h′2, h2) is passed to D, which
returns the bit (h2 = h′2). This attack works because each Si(st) still allows arbitrary post-processing
of its oracle response (here, computing the exponentiation of h1). Accordingly, we further restrict the
class of sources and consider algebraically unpredictable masking sources, which are parallel sources where
each Si(st) is allowed only structured post-processing of its oracle replies (e.g., no post-processing or at
most one group operation).

A simplification. The nature of the Exp oracle allows us to both strengthen and simplify our notion:
We consider a definition of PGG whereby the distinguisher no longer receives the random generator g, and
accordingly modify algebraic unpredictability to hold with α0 = 0 only. At a high level, this new version
implies the old one, as g can be obtained by querying 1. Second, algebraic unpredictability holds for this
source, as the non-simplified version allows for non-zero α0. We discuss this simplification more thoroughly
in Section 3.2.

Generalizing Uber. We give a formal definition of the resulting notion in Section 3. Note that our
notion can indeed be seen as a generalization of Uber, whereby the exponents are no longer evaluations

5

of polynomials but may come from arbitrarily correlated distributions, as long as they adhere to the
requirements set above. In particular, linear independence between polynomially induced exponents is now
generalized to algebraically unpredictable sources.

GGM feasibility. Analogously to BHK who showed a RO is a UCE, we show the soundness of our
definition by proving that a generic group is PGG for algebraically unpredictable masking sources. (We
adopt Shoup’s model for generic groups here [Sho96].) This turns out to be significantly more involved
than in BHK. Typically, GGM proofs appeal to the Schwartz–Zippel lemma to carry out a lazy sampling of
group elements. In our proof, we no longer use this lemma and instead rely on the algebraic unpredictability
of sources to carry out a consistent lazy sampling. Here we use a weaker notion of computational algebraic
unpredictability. (There is no contradiction with obfuscation-based attacks, as generic groups do not have
compact representations.) A second feature of our proof is that we allow our sources to depend on the entire
function table of the group encoding. This choice more accurately models computationally unbounded
sources in the standard model, widens the applicability of PGGs, and due to the existence of arbitrary
leakage from source, also captures the effects of preprocessing attacks (aka. auxiliary information) on the
definition. We use the recent technique of decomposition of high-entropy distribution due to Coretti, Dodis,
and Guo [CDG18] to handle unbounded sources.

Our GGM feasibility result, beside showing that PGGs do not suffer from structural weaknesses exposed
by generic attacks, places PGGs below the GGM in the hierarchy of assumptions on groups (cf. the so-called
“layered approach” to security explained in [BHK13])4. Indeed, using this result, one can establish security
of an application in the GGM by first proving it secure under an appropriate PGG assumption (in the
standard model), and then lifting the result to the GGM using the result above.

Finally, equipped with GGM feasibility, it is reasonable to conjecture that appropriate elliptic curve
groups are indeed PGGs, thus allowing the framework to be applied to a variety of practical cryptosystems
built using such groups.

Avoiding uninstantiability. We note that PGGs circumvent a variety of uninstantiability techniques.
Notably, the classical CGH-type uninstantiability results [CGH98,Den02] are avoided due to the fact that
the group elements are computed wrt. high-entropy exponents. Furthermore, attacks due to the existence of
various forms of obfuscation are avoided by requiring that the algebraic unpredictability notion be statistical.
An analogous approach has been used in works on UCEs to avoid uninstantiability [BFM14].

We also note that Zhandry’s recent AGM uninstantiability result [Zha22] inherently relies on the fact
that an algebraic adversary has to return a representation of the forged tag (which then either breaks DLP
or compresses random strings). This does not carry over to PGGs because adversaries are not required to
be algebraic in our setting.

1.3 Applications of Pseudo-Generic Groups

We demonstrate the applicability of our definition in three ways. First, we show that the Uber assumption
holds in PGGs, thereby allowing us to recover all its applications within the PGG framework. For our
second set of results, recall that there are several “advanced” security models for encryption, many of which
have only been obtained via inefficient schemes. We demonstrate that PGGs enable proving simple variants
of the classical ElGamal encryption scheme secure in a number of such advanced security models. According
to the discussion above, this means that these notions can be safely assumed when ElGamal is implemented
using suitable elliptic curve groups. Third, we show how to construct UCEs in PGGs. As before, this

4The idea is to have assumptions and models organized into a hierarchy, where higher levels justify lower ones and, conversely,
proving a scheme secure at some level shows that it meets higher ones as well. This allows us to identify precisely how strong
an assumption is needed for a given application. Moreover, proving security of a scheme at a lower level typically gives more
insight into its inner workings.

6

GGM

PGG[Sduber ∩ Salg]

Uber

DDHq-DH

Uber-II

PFOLeakage

RKAUCE[Ssup ∩ Sssplt]

StoreCIHSym. RKA

PGG[Smsk ∩ Salg]

KDMDE

Figure 1 — Implications of PGGs. Here Sssplt denotes the class of simple split sources (see Section 6.2), CIH stands
for correlated input hashing, and store for storage auditing protocols (see [BHK13]). Results on DE (deterministic
encryption), RKA and KDM or for ElGamal. Results for DE, RKA and UCE use LDDs if considering general sources.

allows us to recover all their applications within the PGG framework. We refer to Figure 1 for a schematic
overview of our results.

PGGs generalize Uber. We prove that broad and even novel formulations of the Uber assumption
hold in PGGs. The Uber assumption family [BBG05,Boy08] is an umbrella assumption that generalizes
many hardness assumptions used to study the security of group-related schemes. Although it is commonly
considered in bilinear groups, as previously mentioned, here we focus on simple groups. Nevertheless, proving
that PGGs satisfy the Uber assumption allows us to recover all its applications within the PGG framework.
For instance, all constructions whose security relies on the hardness of DDH (such as Diffie–Hellman key
exchange, ElGamal encryption, and efficient PRFs [NR97]) or one of a number of closely related problems
(e.g., q-DDHI, strong DDH, square DDH, and divisible DDH), or a randomized version of the recently
introduced “Assumption 3” from [BMZ19], can be instantiated with PGGs. We further demonstrate that
the Uber-II assumption, a variation of Uber with non-uniform exponents [Can97], also holds for PGGs.
Specific instances of Uber-II have been used to build (composable) point-function obfuscation [CD08,BC10]
and leakage-resilient PKE schemes [DHZ14].

We believe that PGGs better highlight the types of problems one expects to be hard in groups, as it
places no restriction on how the exponents are sampled beyond the fact that certain trivial attacks are ruled
out. In this sense, and also taking into account leakage and post-processing of exponents, PGGs go beyond
the Uber assumption family.

Linear Dependence Destroyers. For some of our further implications below, we require a particular
type of hash function with domain and range Zp we call linear dependence destroyer (LDD). LDDs are defined
via a game played by a source S and a predictor A. Source S specifies a tuple of hash inputs (x1, . . . , xq)
and state information st without seeing the random hash key hk , whereas A gets st and hk and returns a
tuple of coefficients (α0, α1, . . . , αq). Adversary (S,A) wins if

∑q
i=1 αi · H(hk , xi) = α0, and H is an LDD if

every PPT (S,A) with S statistically unpredictable wins this game with negligible probability.
We show that the function H(hk , x) := 1/(x+hk) implicit in the work of Goyal, O’Neill, and Rao [GOR11]

is an LDD when S is a low-degree source. These are sources that compute their outputs as evaluations of
low-degree polynomials on points with sufficient entropy. This result, in turn, enables proofs of security
for applications that use LDDs for low-degree sources. The main step in our proof is that different
polynomials with random constant terms (given by the hash key) are likely to be coprime. When this is the
case, the numerator of the fraction

∑q
i=1 αi/(Pi(s1, . . . , sm) + hk) − α0 is non-zero no matter the choice

of (α0, α1, . . . , αq). Winning the LDD game is thus equivalent to (s1, . . . , sm) being a root of this numerator,
which is unlikely by the Schwartz–Zippel lemma.

7

Table 1 — Overview of applications of PGGs.

Application PGG Source Other Assumptions

Uber & Uber-II dUber –
RKA for ElGamal dUber LDD
KDM for ElGamal Mask –
Low-degree DE ElGamal Mask –
UCE for split sources dUber LDD
General DE for ElGamal Mask LDD

In fact, we conjecture that H is an LDD for all statistically unpredictable sources, not just for low-degree
ones. To further lend plausibility to this notion, we also prove that a random function is an LDD, under
mild restrictions on S. To this end, we apply the compression technique originating from Gennaro and
Trevisan [GT00] in a setting where two independent parties have full access to the code of the ideal object.
The compression technique is commonly used in cryptography, and our extension may be of wider interest.

UCEs for split sources. A natural question is how PGGs relate to the notion of UCEs. It seems
that PGGs are harder to build because they have more structure. In other words, generic groups, which
PGGs instantiate, seem stronger than random oracles, which UCEs instantiate. As our first application we
show that, indeed, UCEs can be constructed from PGGs for dUber sources and LDDs. The constructed
UCE is for statistically unpredictable split sources. A number of applications of UCEs, such as proofs of
storage, correlated-input secure hashing, and RKA security for symmetric encryption, only rely on UCE
for split sources. We note that a benefit of building UCEs from PGGs is that the construction may enjoy
useful algebraic properties that constructions from symmetric-key primitives do not. Once again, in the
generic-group model, we show security against preprocessing attacks.

Key-dependent message security for ElGamal. Second, we show that PGGs enable proof of
key-dependent message (KDM) security for a slightly tweaked version of ElGamal [BRS03,CL01]. KDM
security for ElGamal does not seem to be feasible using Uber (though less efficient constructions do exist,
e.g., [BHHO08, App11]). The KDM notion that we prove does not allow for adaptive queries, but it
permits deriving key-dependent messages in an inefficient way. Furthermore, when combined with our GGM
feasibility, we obtain KDM security against preprocessing attacks in the GGM.

Hash-then-ElGamal deterministic PKE. Moving on, we prove that ElGamal admits full instan-
tiation of its corresponding random-oracle-model Encrypt-With-Hash (EwH) deterministic encryption
scheme [BBO07], which replaces the coins in encryption with the hash of the message. Here we need that the
hash function is an LDD. Preprocessing attacks are also accounted for in our definition and analysis. Note
that a prior result of BHK [BHK13] also implies security of ElGamal-based EwH, but uses an assumption
on the hash that makes the result arguably tautological. It is also known how to instantiate EwH for
schemes meeting “lossiness” assumptions [HO13,BH15]. Our result is the first that does not require such
an assumption as it shifts the security assumption with non-uniform inputs from the hash function to the
underlying group.

Related-key security. We also show that ElGamal offers a form of related-key attack (RKA) security,
whereby secret keys (and their corresponding public keys) are generated from related random coins. RKA
security was systematically studied by Bellare, Cash, and Miller [BCM11] for PKEs. Under PGGs, and
assuming LDDs (which for polynomially induced sources we show to exist) we can handle unpredictable
related-key deriving functions that are claw-free (or more generally as long as the repetition pattern of
secret keys does not affect unpredictability).

8

We summarize the above applications in Table 1. For each application, we record what type of source
class is used in the reduction and whether the additional assumption of LDD is needed. For applications
requiring LDDs we note that our results are modular wrt. the underlying source class. This means that for
whatever source class we achieve LDDs, we also obtain an end application wrt. a corresponding source class.
For example, low-degree LDDs (which we achieve unconditionally) translate to instantiations of UCEs and
deterministic encryption wrt. low-degree sources and RKA security for low-degree related keys. The latter
includes affine functions, which are often considered in the RKA literature.

We envision that several other security goals are also feasible under PGGs, of which we consider only a
representative sample. Examples include security under bad randomness [BBN+09], joint RKA and KDM
security [BDH14], randomness-dependent message security [BCPT13], related-randomness security [PSS14],
and more generally application scenarios whereby the input distributions are not necessarily random and
only guaranteed to come from high entropy distributions.

1.4 Other Related Work and Discussions

Public-seed pseudorandom permutations. Soni and Tessaro [ST17] define a UCE-like, standard-model
notion for random (two-sided) permutations called public-seed pseudorandom permutations (psPRPs). They
provide constructions of UCEs from psPRPs (for a variety of sources) by showing, for example, that the
five-round Feistel [ST17] and the more efficient Naor–Reingold construction [ST18] yield psPRPs when the
round functions are UCEs. Our work continues these lines of research by extending the UCE approach to
defining security from random oracles and random permutations to generic groups.

Algebraic group model. An intriguing notion that has recently received considerable attention is the
algebraic group model (AGM) [FKL18,BFL20]. We observe that the AGM places restrictions on adversaries
that are qualitatively different compared to PGGs: Algebraic adversaries must output a representation
of returned group elements, which makes the AGM a powerful and useful model since this additional
information allows to carry out certain reductions.5 Restrictions on PGG adversaries on the other hand are
of standard-model type.

Nevertheless, it would be interesting to study the relation between the two notions and also to knowledge
assumptions. Following work on instantiating UCEs [BM14] and on constructing groups in which the AGM
can be realized and the Uber assumption holds [AHK20,KP19,AH18], another goal for future work is to
construct PGGs from well-known assumptions (such as iO, dual-mode NIZKs, FHE, etc.).

Extensions of PGGs. In this work, we develop the necessary techniques and set the stage for the
pseudo-generic approach to group-related assumptions. In doing so, we leave a number of directions for
future research.

A natural extension to our work would be to formulate analogous PGG-type notions for bilinear groups
(as considered by Boyen for the Uber assumption [Boy08] and extended via matrix DDH in [EHK+13]) or
multi-linear groups. We anticipate further applications of this notion, as in the bilinear setting a host of
schemes are only known to have a proof in the GGM and may be provable in PGGs.

The matrix DDH assumption (MDDH) [EHK+13] considers matrix-vector multiplication in the exponent
in multi-linear groups, where a matrix is sampled from a general distribution and the vector is uniform.
However, this assumption is only studied for polynomially induced distributions. As such, MDDH is not a
generalization of Uber in the sense of PGG to arbitrary distributions.

Certain applications require assumptions that lie beyond the reach of PGGs as currently formulated.
PGGs do not capture applications where exponents may depend on a group generator that is not random

5We note that our understanding of the role played by the AGM in assessing the hardness of group-related assumptions is
evolving in light of recent works [KZZ22,Zha22].

9

(as, for example, in recent work on non-malleable point-function obfuscation [KY18,BMZ19,FF20]). The
PGG framework also does not capture interactive [AH18] or knowledge-type [BP04] assumptions.

1.5 Structure of the Paper

In Section 2 we define the basic notation and recall the definition of UCEs. Section 3 contains our definitional
contributions, where we define pseudo-generic groups, algebraically unpredictable and masking sources, and
discuss the choices made in devising these notions. In Section 4 we prove that a generic group is a PGG,
and then introduce LDDs and a candidate construction in Section 5. Section 6 contains the applications
of PGGs. In Section 6.1 we show that an entropic variant of the decisional Uber assumption (and thus
many implications thereof) holds in PGGs. Afterwards, we show how to apply PGG directly to the analysis
of cryptosystems, by proving that PGGs and LDDs can be used to build UCEs for (simple) split sources.
Further applications of PGGs are presented in Sections 6.3 to 6.5.

2 Preliminaries

Basic notation. If n ∈ N, we write [n] for the set {1, . . . , n}. Unless otherwise stated, an integer p ∈ Z
is assumed to be prime, and we let Zp denote the field of integers modulo p. We denote the set of all bit
strings of finite length by {0, 1}∗, and the empty string by ε. We use boldface characters x := (x1, . . . , xn)
to denote vectors and write x[i], with i ∈ [n], to denote the ith entry xi of x. By x ←← S we mean
sampling x according to distribution S. Similarly, x←← S means sampling x uniformly at random from a
finite set S. The cardinality of a set S is denoted |S|. We let L← [] denote initializing an ordered list to
empty, and L : x denote appending an element x to the list L. A table T is a list of pairs (x, y), and we
write T [x]← y to mean that the pair (x, y) is appended to T . We let Dom(T) denote the set of all values x
such that (x, y) ∈ T for some y, and similarly Rng(T) denote the set of all values y such that (x, y) ∈ T for
some x. For two sets D and R we denote by Fun(D,R) and Inj(D,R) the set of all functions and the set of
all injections from D to R, respectively. When |D| = |R|, an injection is also a bijection.

Min-entropy. The min-entropy of a random variable X over a domain D is

H∞(X) := − logmax
x∈D

Pr[X = x] .

X is called a k-source if H∞(X) ≥ k.

Polynomials and rational functions. We let F[X1, . . . , Xm] be the ring of polynomials in m ∈ N
variables over a field F, and F(X1, . . . , Xm) be the field of rational functions of the form R(X1, . . . , Xm) =
R̂(X1, . . . , Xm)/Ř(X1, . . . , Xm), with R̂, Ř ∈ F[X1, . . . , Xm] and Ř ≠ 0. Here, as usual, R̂ is called the
numerator and Ř the denominator of R. If 0 ̸= R ∈ F[X1, . . . , Xm] is a polynomial, we denote its total
degree by deg(R). We extend this notation to rational functions via deg(R) := deg(R̂) − deg(Ř) for
every 0 ̸= R = R̂/Ř. Observe that the degree of a rational function is well-defined, since it does not depend
on its representation as a fraction of polynomials. Finally, if R1, . . . , Rn ∈ F(X1, . . . , Xm) such that Ri ̸= 0
for every i ∈ [n], we let deg(R1, . . . , Rn) := maxi∈[n] deg(Ri).

Linear dependence. Let R1, . . . , Rn, T ∈ F(X1, . . . , Xm). We say that T is linearly dependent on
R1, . . . , Rn (over F) if there exist a1, . . . , an ∈ F such that T (X1, . . . , Xm) =

∑n
i=1 ai ·Ri(X1, . . . , Xm).

Hash function families. A hash function family is a tuple of PPT algorithms H := (H.Setup,H.KGen,
H.Eval). Here, algorithm H.Setup(1λ) outputs a tuple π containing the descriptions of valid domain and
range points D and R, as well as a key space K and other system-wide parameters. Algorithm H.KGen(π) is
the hash key generation algorithm which returns a key hk ∈ K. The evaluation algorithm H.Eval(π, hk , x),

10

Game UCES,DH (λ):

b←← {0, 1}; π ←← H.Setup(1λ)
ρ←← Fun(D,R)
hk ←← H.KGen(π)
L←← SHash(π); b′ ←← D(π, hk , L)
return (b = b′)

Proc. Hash(x):
if (b = 0) then

return ρ(x)
return H(hk , x)

Game PredPH,S(λ):

Q← []; π ←← H.Setup(1λ)
ρ←← Fun(D,R)
L←← SHash(π)
x←← P(π, L)
return (x ∈ Q)

Proc. Hash(x):
Q← Q : x
return ρ(x)

Figure 2 — Left: The UCE game. Right: The unpredictability game.

called on a hash key hk and a domain point x ∈ D, outputs a point y ∈ R. To help readability, by slight
abuse of notation we will simply write H(hk , x) in place of H.Eval(π, hk , x).

Remark. Our definition of hash function families augments the usual syntax with a setup algorithm H.Setup.
Accordingly, we will extend the UCE definition to incorporate system parameters. Overloading notation, we
allow H.Setup to alternatively take the description of a domain D and a range R as inputs, and let it return
corresponding parameters π.

Universal computational extractors [BHK13]. Let H be a hash function family. The advantage of
a pair of PPT adversaries (S,D) (called UCE source and UCE distinguisher) in the UCE game for H is
defined as

AdvuceH,S,D(λ) := 2 · Pr
[
UCES,DH (λ)

]
− 1 ,

where the UCE game is defined in Figure 2 (left). If S is a class of UCE sources, we say that H is UCE[S]
secure, if the advantage of any PPT (S,D) with S ∈ S in the UCE game for H is negligible. This is usually
written as H ∈ UCE[S].

Without any restriction on the class of sources S, the UCE notion of security is unachievable [BHK13].
BHK exclude trivial attacks by requiring that the source be unpredictable, meaning that it is hard to predict
any of its oracle queries when observing the leakage L. Due to the obfuscation-based attack of [BFM14],
the flavor of unpredictability needs to be statistical. We recall the formal definition below.

(Statistically) unpredictable sources [BHK13,BFM14]. Let H be a hash function family and S
a UCE source. We define the advantage of a (possibly unbounded) adversary P (called predictor) in the
predictability game against (H,S) as

AdvpredH,S,P(λ) := Pr
[
PredPH,S(λ)

]
,

where the game Pred is defined in Figure 2 (right). A UCE source S is called statistically unpredictable if
the above advantage is negligible for any (possibly unbounded) predictor P. The class of all statistically
unpredictable sources is denoted Ssup. We say that H is UCE secure if it is UCE[Ssup] secure.

Schwartz–Zippel Lemma. We now recall the Schwartz–Zippel Lemma [Sch80,Zip79,DL78], a simple yet
powerful tool to bound the probability of finding a root of a non-zero polynomial when evaluating it at a
random point. We also generalize the standard Schwartz–Zippel lemma and obtain a more general and
game-based version of this result. In this variant, the points can be chosen according to distributions with
enough min-entropy, and the polynomial picked given some leakage. This version may be more suitable for
use in a cryptographic setting. A proof of the game-based Schwartz–Zippel lemma is given in Appendix A.

Lemma 2.1 (Schwartz–Zippel). Let α, p ∈ N with p prime, S ⊆ Fpα, and let 0 ̸= P ∈ Fpα [X1, . . . , Xm].
Then

Pr
x1,...,xm←←S

[P (x1, . . . , xm) = 0] ≤ deg(P)

|S|
.

11

Game SZAS :
(π := (pα,m, st))←← A0

for i ∈ [m] do (x[i], z[i])←← Si(π)
(P, y)←← A1(π, z); return (y = P (x))

Source Xi:
(π := (pα,m, st))←← A0

(x, z)←← Si(π); return x

Source Zi:
(π := (pα,m, st))←← A0

(x, z)←← Si(π); return z

Figure 3 — Left: The Schwartz–Zippel game. Right: The sources Xi and Zi.

Lemma 2.2 (Game-based Schwartz–Zippel). Let A = (A0,A1) be a two-stage algorithm, where A0 takes no
input and returns a set of public parameters π := (pα,m, st) ∈ N2×{0, 1}∗ with α, p ∈ N and p prime, and A1

takes π and values z1, . . . , zm ∈ {0, 1}∗ as input and returns a non-constant polynomial P ∈ Fpα [X1, . . . , Xm]
with deg(P) ≤ d ∈ N and a value y ∈ Fpα. Let S := {Si | i ∈ N} be a family of sources, each taking π as
input and returning values (x, z) ∈ Fpα × {0, 1}∗. Then

Pr
[
SZAS

]
≤ d · E

π←←A0,
(x1,z1)←←S1(π), . . . ,(xm,zm)←←Sm(π)

[
1

2mini∈[m]{H∞(Xi|(A0=π)∧(Zi=zi))}

]
,

where the game SZAS is defined in Figure 3 (left), and the sources Xi and Zi are given in Figure 3 (right).

Observe that if m = 1, the expectation above is the prediction probability of X given A0 and Z. In
general, the minimum cannot be taken out of the expectation, because it reflects A’s choices of which
variables appear in P .

3 Pseudo-Generic Groups

We now formally define pseudo-generic groups (PGGs), where group elements are required to be indistin-
guishable from random, as long as their exponents satisfy a specific unpredictability condition. PGGs lift
the definition of UCEs of Bellare, Hoang, and Keelveedhi [BHK13] from the setting of hash functions to that
of groups. In other words, the underlying ideal object in the PGG definition, from which a concrete group
is supposed to be indistinguishable, is a generic group rather than a random oracle. We start by giving
some background on computational group schemes and generic groups, and then proceed to defining PGGs.

3.1 PGG Security

Computational group schemes [CS98]. A computational group scheme is a randomized algorithm Γ
which, on input the security parameter 1λ, outputs group parameters π consisting of a group operation ◦,
an arbitrary group generator g, and a prime group order p ∈ [2λ−1, 2λ). Implicit in these parameters is a
set G such that (G, ◦) forms a cyclic group of order p with generator g ∈ G. We write the sampling of group
parameters as (π := (◦, g, p)) ←← Γ(1λ), with the understanding that π implicitly defines the underlying
set G. As usual, the group operation gives rise to an exponentiation algorithm exp(h, x) whose output is
denoted as hx. We will often omit explicitly writing the operation ◦.

Generic groups [Nec94,Sho97,Mau05]. Given a group (G, ◦) of prime order p, the generic group on G is
the uniform distribution over Inj(Zp, S), where S ⊆ {0, 1}∗ with |S| ≥ p. Recall that every map τ ∈ Inj(Zp, S)
allows one to define an associated group operation

op : S× S→ S ∪ {⊥} , (h1, h2) 7→

{
τ
(
τ−1(h1) + τ−1(h2)

)
if h1, h2 ∈ Rng(τ)

⊥ else .

12

Game PGGS,DΓ (λ):
b←← {0, 1}
(π := (◦, g0, p))←← Γ(1λ)
r ←← Z∗p; g ← gr0; σ ←← Inj(Zp,G)

L←← SExp(π)
b′ ←← D(π, L)
return (b = b′)

Proc. Exp(x):
if (b = 0) then return σ(x)
else return gx

Game AlgPredPΓ,S(λ):

Q← []; (π := (◦, g0, p))←← Γ(1λ)
σ ←← Inj(Zp,G)
L←← SExp(π)
(α1, . . . , αq)←← P(π, L)
[x1, . . . , xq]← Q
return

(∑q
i=1 αixi = 0

)
Proc. Exp(x):
Q← Q : x
return σ(x)

Masking source SExp(π):
(x,m, L)←← S̄(π)
for i = 1 to |m| do
y[i]←m[i] ◦ Exp(x[i])

return (y, L)

dUber source SExp(π):
(x, L)←← S̄(π)
for i = 1 to |x| do
y[i]← Exp(x[i])

return (y, L)

Figure 4 — Left: The PGG game. Center: The algebraic unpredictability game. Top right: A generic masking source.
Bottom right: A generic dUber source.

The generic-group model is a model of computation in which all parties, honest or otherwise, are run
on inputs p and encodings of application-specific elements, and have oracle access to a random encoding
τ ∈ Inj(Zp, S) and its associated operation oracle op.

Pseudo-generic groups. Let Γ be a computational group scheme. We define the advantage of a pair of
adversaries (S,D) (called PGG source and PGG distinguisher) in the PGG game for Γ as

AdvpggΓ,S,D(λ) := 2 · Pr
[
PGGS,DΓ (λ)

]
− 1 ,

where the PGG game is defined in Figure 4 (left).6 We require that there be polynomials q and q′ such that,
for every λ ∈ N and every π ∈ supp(Γ(1λ)), source S(π) makes at most q(λ) oracle queries and outputs
leakage of length at most q′(λ). If S is a class of PGG sources, we say that Γ is PGG[S] secure if the
advantage of any (S,D) as above with S ∈ S and D a PPT algorithm in the PGG game is negligible. We
denote this as Γ ∈ PGG[S].

Recall from our earlier discussion that, similarly to UCEs and psPRPs, this notion of security is not
achievable without restrictions on the class of PGG sources S. As a first step towards excluding trivial
attacks, we introduce the notion of algebraic unpredictability, the core definition which allows us to extend
UCE-type security notions beyond unstructured primitives (like hash functions and permutations). We
require that no predictor be able to guess a non-trivial linear combination between the points queried by
the source, as formalized below.

Algebraically unpredictable sources. Let Γ be a computational group scheme and S a PGG source,
and assume that the leakage L produced by S encodes the number of Exp queries made by S. We define
the advantage of a (possibly unbounded) algorithm P (called predictor) in the algebraic unpredictability
game against (Γ,S) as

Advalg-predΓ,S,P (λ) := Pr
[
AlgPredPΓ,S(λ)

]
,

where the game AlgPred is defined in Figure 4 (center). We require that the output of P be different
from the trivial all-zero tuple. A source S is called statistically algebraically unpredictable if the above
advantage is negligible for any (possibly unbounded) predictor P. We denote the class of all statistically
algebraically unpredictable sources by Salg. Observe that any such source must output distinct points (with
high probability).

6Note that σ can be lazily sampled, so that the game runs in polynomial time.

13

Masking and dUber sources. Algebraic unpredictability turns out to be insufficient to rule out all
trivial attacks, as explained in the Introduction. We thus restrict the set of sources for which we require
PGG security even further and consider the class Smsk of masking sources. These are sources S for which
there exists a (possibly unbounded) auxiliary algorithm S̄ with polynomially bounded output, such that S
takes the form in Figure 4 (top right). Here, S̄ returns vectors x ∈ Zq

p and m ∈ Gq of the same length, and
leakage L. Source S then queries Exp on all entries of x, and multiplies the replies with the corresponding
elements from m. We also define the subclass Sduber ⊆ Smsk of distributional Uber (dUber) sources, as
shown in Figure 4 (bottom right), where we require m = (1G, . . . , 1G). To simplify notation, we define
sources S in these classes via their corresponding auxiliary algorithms S̄, and call them auxiliary masking
(resp., dUber) sources. Notice that masking and dUber sources always reveal the number of Exp queries
through their leakage via the length |y| of y.

Focusing on masking sources, and dUber sources in particular, provides a new perspective to our
contribution. Indeed, dUber sources generalize the adversary in the Uber assumption insofar as oracle
queries are no longer obtained as polynomial evaluations on a product distribution, but from a general
distribution. To avoid trivial attacks, the target polynomial in the Uber assumption must be linearly
independent from the other ones, a requirement covered by algebraic unpredictability in this setting.

PGG security. We say that a computational group scheme Γ is PGG secure if it is PGG[Salg ∩ Smsk]
secure. In order to establish confidence in this notion and show that it hides no other obvious structural
weaknesses, we prove in Section 4 that PGG security is indeed achievable in the generic-group model.
However, we note that, for specific applications, PGG security with respect to subclasses of Salg ∩ Smsk

may be sufficient. On the other hand, there may exist larger, or even incomparable source classes for which
PGG security is also feasible.7

3.2 Definitional Choices

On simplifying the definition. Recall from our introductory discussion of the PGG notion that the
nature of the exponentiation oracle allows to both strengthen and simplify the definition of pseudo-generic
groups. We now take a closer look at this step. Consider the “generator” PGG and algebraic unpredictability
games gPGG and gAlgPred defined in Figures 5 (top left) and 5 (top right). These are the PGG and
AlgPred games as adapted from the UCE notion, without any further changes. In particular, notice the
following differences between the two sets of games: (1) Distinguisher D receives the randomized generator g
in the gPGG game, but not in PGG, and (2) Predictor P is allowed to return any α0 ∈ Zp in the gAlgPred
game, but is forced to set α0 = 0 in AlgPred. Advantages in the “generator” games are defined as before.
Our claim that the PGG notion can be strengthened (and simplified) by moving from the “generator” games
to those in Figure 4 amounts to proving the following result.

Proposition 3.1. Let S be a source class with the following property: If Sg ∈ S, then also S ∈ S, where S
is defined in Figure 5 (bottom left).8 Then PGG[S ∩ Salg] ⊆ gPGG[S ∩ Sgalg]. More precisely, for any
computational group scheme Γ ∈ PGG[S ∩ Salg] and any adversary (Sg,Dg) in the gPGG game for Γ
with Sg ∈ S∩Sgalg, there are an adversary (S,D) in the PGG game for Γ and a predictor Qg in the gAlgPred
game for (Γ,Sg) such that

AdvgPGG
Γ,Sg ,Dg

(λ) ≤ AdvpggΓ,S,D(λ) + q(λ) ·Advgalg-predΓ,Sg ,Qg
(λ) +

q(λ) + 1

2λ−1
. (1)

7For instance, one could allow for more expressive forms of post-processing. However, we have not yet been able to find
applications of this wider class of sources.

8In particular, sources must always be allowed to make one extra oracle query, and to leak one additional group element.
All source classes we consider in this work satisfy this property.

14

Game gPGGS,DΓ (λ):

b←← {0, 1}; (π := (◦, g0, p))←← Γ(1λ)
r ←← Z∗p; g ← gr0; σ ←← Inj(Zp,G)

L←← SExp(π); b′ ←← D(π, g, L); return (b = b′)

Game gAlgPredPΓ,S(λ):

Q← []; (π := (◦, g0, p))←← Γ(1λ); σ ←← Inj(Zp,G)
L←← SExp(π); (α0, α1, . . . , αq)←← P(π, L)
[x1, . . . , xq]← Q; return

(∑q
i=1 αixi = α0

)
Source SExp(π):

L←← SExp
g (π); h← Exp(1)

return (L, h)

Distinguisher D(π, (L, h)):
return Dg(π, h, L)

Predictor Pg(π, L):
h←← G; (α1, . . . , αq)←← P(π, (L, h))
return (0, α1, . . . , αq)

Figure 5 — Top left: The temporary PGG game. Top right: The temporary algebraic unpredictability game. In both
games, the Exp oracle is defined as in the corresponding game in Figure 4. Bottom left: Reduction from a gPGG
adversary (Sg,Dg) to a PGG adversary (S,D). Bottom right: Definition of the predictor Pg.

Furthermore, S ∈ S ∩ Salg. More precisely, for any predictor P in the AlgPred game for (Γ,S), there is a
predictor Pg in the gAlgPred game for (Γ,Sg) such that

Advalg-predΓ,S,P (λ) ≤ Advgalg-predΓ,Sg ,Pg
(λ) + q(λ) ·Advgalg-predΓ,Sg ,Qg

(λ) +
q(λ)

2λ−1
. (2)

Here, q(λ) is an upper bound on the number of queries made by Sg to the Exp oracle.

Proof. Fix a source class S as above, and let Γ ∈ PGG[S∩Salg]. To show that Γ ∈ gPGG[S∩Sgalg], consider
any adversary (Sg,Dg) in the gPGG game for Γ with Sg ∈ S ∩ Sgalg, and define the PGG adversary (S,D)
against Γ as shown in Figure 5 (bottom left). By assumption, S ∈ S.

Advantage bound. To prove Inequality (1), first recall that

AdvpggΓ,S,D(λ) = Pr
[
PGGS,DΓ (λ)

∣∣ b = 1
]
− Pr

[
¬PGGS,DΓ (λ)

∣∣ b = 0
]
.

We study the two summands separately. For the first term, it is easily verified by direct inspection that the
PGG game for Γ played by (S,D) with bit b = 1 fixed is identical to the gPGG game for Γ played by (Sg,Dg)

with bit b = 1 fixed. This in particular means that Pr
[
PGGS,DΓ (λ)

∣∣ b = 1
]
= Pr

[
gPGG

Sg ,Dg

Γ (λ)
∣∣ b = 1

]
.

We now study the second term in the sum above. To do so, consider the following sequence of games
(the formal description of which can be found in Figure 6 (top)):

Game0(λ) is the PGG game for Γ played by (S,D), with bit b = 0 fixed and inverted winning condition.
We also implement the exponentiation oracle via lazy sampling, instead of sampling the encoding σ
all at once.

Game1(λ) is the same as Game0(λ), but we sample h as a random element among those not yet returned
by Exp. If input 1 was queried before to the oracle, we return a consistent answer.

Game2(λ) is the same as Game1(λ), but we no longer check for consistency.
Game3(λ) is the same as Game2(λ), but we let h be uniformly random in G. If we happen to sample h

among the values already returned by Exp, we resample h and ensure that it is fresh.
Game4(λ) is the same as Game3(λ), but we don’t resample h. That is, h is now a random element in G.
Game5(λ) is the same as Game4(λ), but we ensure that h ̸= 1G by resampling.
Game6(λ) is the same as Game5(λ), we simply rewrite the sampling of h in a more compact way. By direct

inspection, this game is equivalent to the gPGG game for Γ played by (Sg,Dg), with bit b = 0 fixed
and inverted winning condition.

We now argue that the difference between the success probabilities of subsequent games is small.

15

Game Game0(λ):

π ←← Γ(1λ); T ← []
L←← SExp

g (π); h← Exp(1)
return Dg(π, h, L)

Game Game1(λ):

π ←← Γ(1λ); T ← []

L←← SExp
g (π); h←← G \ Rng(T)

if (1 ∈ Dom(T)) then

Bad1 ← true; h← Exp(1)
return Dg(π, h, L)

Comm. proc. Exp(x):
if (T [x] = ⊥) then

g ←← G \ Rng(T); T [x]← g
return T [x]

Game Game2(λ):

π ←← Γ(1λ); T ← []
L←← SExp

g (π); h←← G \ Rng(T)
return Dg(π, h, L)

Game Game3(λ):

π ←← Γ(1λ); T ← []

L←← SExp
g (π); h←← G

if (h ∈ Rng(T)) then

Bad2 ← true; h←← G \ Rng(T)
return Dg(π, h, L)

Game Game4(λ):

π ←← Γ(1λ); T ← []
L←← SExp

g (π); h←← G
return Dg(π, h, L)

Game Game5(λ):

π ←← Γ(1λ); T ← []
L←← SExp

g (π); h←← G

if (h = 1G) then

Bad3 ← true; h←← G \ {1G}
return Dg(π, h, L)

Game Game6(λ):

π ←← Γ(1λ); T ← []
L←← SExp

g (π); h←← G \ {1G}
return Dg(π, h, L)

Games Query1(λ)/Query1i(λ):

Q← []; π ←← Γ(1λ); σ ←← Inj(Zp,G); L←← SExp
g (π); [x1, . . . , xq]← Q

Query1(λ): return (1 ∈ Q)
Query1i(λ): if (i ∈ [q]) then return (xi = 1) else return 0

Predictor Qt,k,i(π, L):

α← 0k+1; α[0]← 1; α[i]← 1
return α

Figure 6 — Top: Code of the intermediate games in the proof of the gPGG advantage bound (1). Bottom: Definition
of the games Query1(λ) and Query1i(λ), and of the predictor Qt,k,i. Here, the vector α is indexed starting from 0 for
convenience.

Game0 ⇝ Game1. Observe that h has the same distribution in both games: If Sg has queried Exp on 1
during its execution, then we set h consistently with the prior oracle reply. Otherwise, h is a random
element from G different from all those previously returned by Exp. Therefore, Game0(λ) and Game1(λ)
are indistinguishable.

Game1 ⇝ Game2. By definition, Game1(λ) and Game2(λ) are identical until Bad1, which means that
|Pr[Game1(λ)]−Pr[Game2(λ)]| ≤ Pr[Game1(λ) sets Bad1] by the fundamental lemma of game playing [BR06].
To bound the latter probability, observe that

Pr[Game1(λ) sets Bad1] = Pr[Query1(λ)] =

q(λ)∑
k=1

Pr[Query1(λ) | q = k] Pr[q = k]

≤
q(λ)∑
k=1

k∑
i=1

Pr[Query1i(λ) | q = k] Pr[q = k] ≤
q(λ)∑
k=1

k∑
i=1

Pr
[
gAlgPred

Qt,k,i

Γ,Sg (λ)
∣∣ q = k

]
Pr[q = k]

≤
q(λ)∑
k=1

kPr
[
gAlgPred

Qt,k

Γ,Sg(λ)
∣∣ q = k

]
Pr[q = k] ≤ q(λ)

q(λ)∑
k=1

Pr
[
gAlgPred

Qg

Γ,Sg(λ)
∣∣ q = k

]
Pr[q = k]

= q(λ) ·Advgalg-predΓ,Sg ,Qg
(λ) .

Here, games Query1(λ) and Query1i(λ), and predictors Qt,k,i are defined in Figure 6 (bottom), predictor
Qt,k ∈ {Qt,k,1, . . . ,Qt,k,k} is the one with the largest advantage in the gAlgPred game for (Γ,Sg), and Qg is
the predictor that reads q off the leakage passed by Sg and then runs Qt,q.

Game2 ⇝ Game3. Similarly to the first transition, these two games are indistinguishable, because h has the
same distribution in both games: In both cases it is a random element outside of Rng(T).

16

Game Game′0(λ):

Q← []; π ←← Γ(1λ); T ← []; L←← SExp
g (π); h← Exp(1)

(α1, . . . , αq)←← P(π, L, h); [x1, . . . , xq]← Q
return

(∑q
i=1 αixi = 0

)
Game Game′1(λ):

Q← []; π ←← Γ(1λ); T ← []

L←← SExp
g (π); h←← G \ Rng(T)

if (1 ∈ Dom(T)) then Bad1 ← true; h← Exp(1)
(α1, . . . , αq)←← P(π, L, h); [x1, . . . , xq]← Q
return

(∑q
i=1 αixi = 0

)
Comm. proc. Exp(x):
Q← Q : x
if (T [x] = ⊥) then g ←← G \ Rng(T); T [x]← g
return T [x]

Game Game′2(λ):

Q← []; π ←← Γ(1λ); T ← []; L←← SExp
g (π); h←← G\Rng(T)

(α1, . . . , αq)←← P(π, L, h); [x1, . . . , xq]← Q
return

(∑q
i=1 αixi = 0

)
Game Game′3(λ):

Q← []; π ←← Γ(1λ); T ← []; L←← SExp
g (π); h←← G

if (h ∈ Rng(T)) then Bad2 ← true; h←← G \ Rng(T)
(α1, . . . , αq)←← P(π, L, h); [x1, . . . , xq]← Q
return

(∑q
i=1 αixi = 0

)
Game Game′4(λ):

Q← []; π ←← Γ(1λ); T ← []; L←← SExp
g (π); h←← G

(α1, . . . , αq)←← P(π, L, h); [x1, . . . , xq]← Q
return

(∑q
i=1 αixi = 0

)

Figure 7 — Code of the intermediate games in the proof of the algebraic unpredictability bound (2).

Game3 ⇝ Game4. By definition, Game3(λ) and Game4(λ) are identical until Bad2, which means that
|Pr[Game3(λ)]−Pr[Game4(λ)]| ≤ Pr[Game3(λ) sets Bad2] by the fundamental lemma of game playing. Now
recall that Rng(T) is a set of at most q(λ) many elements, and since h is random in G, which contains at
least 2λ−1 elements, we have

|Pr[Game3(λ)]− Pr[Game4(λ)]| ≤ Pr[Game3(λ) sets Bad2] ≤
q(λ)

2λ−1
.

Game4 ⇝ Game5. Again, Game4(λ) and Game5(λ) are identical until Bad3, and as before the fundamental
lemma of game playing gives

|Pr[Game4(λ)]− Pr[Game5(λ)]| ≤ Pr[Game5(λ) sets Bad3] ≤
1

2λ−1
.

Game5 ⇝ Game6. Clearly, these two games are indistinguisable, because we have only made syntactic
changes in the code.

Combining the above estimates we obtain Inequality (1) for the gPGG advantage.

Algebraic unpredictability. It remains to be shown that, for every gPGG adversary (Sg,Dg), the
PGG source S defined as in Figure 5 (bottom left) is algebraically unpredictable. To this end, let (Sg,Dg)
be a gPGG adversary against Γ and P be any predictor in the algebraic unpredictability game against S.
We prove Inequality (2) via a sequence of games. As before, we give here a short description of each game,
and present their formal code in Figure 7:

Game′0(λ) is the algebraic unpredictability game for (Γ,S) played by P . We also implement the exponentia-
tion oracle via lazy sampling, instead of sampling the encoding σ all at once.

Game′1(λ) is the same as Game′0(λ), but we sample h as a random element among those not yet returned
by Exp. If input 1 was queried before to the oracle, we return a consistent answer.

Game′2(λ) is the same as Game1(λ), but we no longer check for consistency.
Game′3(λ) is the same as Game′2(λ), but we let h be a random element in G. We make sure that h /∈ Rng(T)

via resampling.
Game′4(λ) is the same as Game′3(λ), but we no longer resample h. Notice that this game is equivalent to the

gAlgPred game for (Γ,Sg) played by predictor Pg defined in Figure 5 (bottom right).

17

As before, we now relate the success probabilities of subsequent games. Observe that transitions Game′0 ⇝
Game′1 to Game′3 ⇝ Game′4 are equivalent to transitions Game0 ⇝ Game1 to Game3 ⇝ Game4, respectively,
which means that the same analysis as above applies to these games. Accordingly, we obtain Inequality (2)
for the algebraic unpredictability advantage.

Other definitional choices. Observe that, in the PGG game, the randomized group generator g plays
the role of the hash key hk in the UCE game. The fact that g remains hidden from the source prevents it
from trivially winning the PGG game by sampling x←← Zp, querying h← Exp(x), and checking if gx = h.
Similarly, g (or r) cannot be given to the distinguisher D, since the source could query h← Exp(1), leak h
to D, who then checks if g = h (resp., gr0 = h).

Note also that the random injection σ that the game samples has G (the real group), and not some
larger set S, as its range. This is needed because the source can check group elements for validity (e.g., using
exponentiation to power p− 1, or directly via an element validity algorithm if such a procedure is available).

Also observe that the source does not get oracle access to the operation op defined by σ. The reason is
that, with such access, once again trivial attacks arise: The source samples two random group elements,
then multiplies them first using the op oracle and then again locally using the input group operation ◦, and
finally checks if the results match.9 Removing access to the operation oracle from S does not restrict our
ability to prove security results in the PGG model, as we shall see in Section 6.

Computational algebraic unpredictability. In [BFM14], Brzuska, Farshim and Mittelbach demon-
strate an attack against UCEs with respect to a computational notion of unpredictability. The types of
sources that we consider for PGG are analogous to the so-called split UCE sources. As BFM discuss, their
iO-based attack does not extend to such sources. However, under the existence of a plausible form of obfusca-
tion, attacks arise. In more detail, if the function mapping x to the obfuscation of the circuit C[x] : h 7→ hx

is one-way, the following attack emerges: The dUber source picks x←← Zp, defines x← (1, x), and sets L to
be an obfuscation of C[x]. The distinguisher then returns (y[2] = L(y[1])). To avoid these types of attacks
we focus on statistical algebraic unpredictability.

Despite this attack, there is a benefit in considering a computational notion of algebraic unpredictability
when it comes to the analysis in idealized models. Indeed, as we show, PGG with respect to this wider
class of sources is achievable in the GGM, and thus a wider class of applications can be proven secure in
the GGM. This does not contradict potential security in the standard model since PGG with respect to
computational algebraic unpredictability may still exist for sources that take specific forms.

Multi-base PGGs. For the UCE and psPRP notions, BHK and ST respectively considered multi-key
extensions to cover a wider range of applications. These notions are not known to be equivalent to their
simpler single-key counterparts. For pseudo-generic groups, on the other hand, a simple generator re-
randomization argument shows that the multi-base and single-base notions are equivalent. We thus focus
on the (single-base) PGG version above.

3.3 A First Example

To illustrate how reductions in PGGs work, we show here that the generator g0 returned by a computational
group scheme Γ can always assumed to be uniformly distributed. More involved (and interesting) applications
of PGGs will be discussed in Section 6.

Proposition 3.2. Let Γ be a computational group scheme, and consider the computational group scheme Γu

defined in Figure 8 (top left). If Γ is PGG[Salg ∩ Smsk] secure, then Γu is also PGG[Salg ∩ Smsk] secure.
9On the other hand, it is unclear how to rule this attack out using an extended notion of algebraic unpredictability that

takes operation queries into account.

18

Group scheme Γu(1
λ):

(π := (◦, g0, p))←← Γ(1λ)
s←← Z∗p; gu ← gs0
πu ← (◦, gu, p); return πu

Predictor Pu(πu,y, L):
(◦, gu, p)← πu; R := {r ∈ {0, 1}t(λ) | Γ(1λ; r) = (◦, ·, p)}
r ←← R; (π̃ := (◦, g̃0, p))←← Γ(1λ; r); s← DLogg̃0(gu)
(α1, . . . , αq)←← P(π̃,y, (L, s)); return (α1, . . . , αq)

Auxiliary masking source S̄(π):
(◦, g0, p)← π; s←← Z∗p; gu ← gs0; πu ← (◦, gu, p)
(x,m, L)←← S̄u(πu); return (x,m, (L, s))

PGG distinguisher D(π,y, (L, s)):
(◦, g0, p)← π; gu ← gs0; πu ← (◦, gu, p)
b′ ←← Du(πu,y, L); return b′

Figure 8 — Top left: Definition of the computational group scheme Γu. Top right: Definition of the predictor Pu. Here,
λ is the bitlength of p, t(λ) is an upper bound on the runtime of Γ(1λ), and Γ(1λ; r) denotes running Γ on input 1λ

and random coins r. Bottom: Reduction from a PGG adversary (Su,Du) against Γu to a PGG adversary (S,D)
against Γ.

More precisely, for any adversary (Su,Du) in the PGG game for Γu with Su ∈ Salg ∩ Smsk, there is an
adversary (S,D) in the PGG game for Γ such that

AdvpggΓu,Su,Du
(λ) = AdvpggΓ,S,D(λ) . (3)

Furthermore, S ∈ Salg ∩ Smsk. More precisely, for any predictor P in the AlgPred game for (Γ,S), there is
a predictor Pu in the AlgPred game for (Γu,Su) such that

Advalg-predΓ,S,P (λ) = Advalg-predΓu,Su,Pu
(λ) . (4)

Proof. Given an adversary (Su,Du) in the PGG game for Γu with Su ∈ Salg∩Smsk, define the PGG masking
source S via auxiliary algorithm S̄ and the distinguisher D as shown in Figure 8 (bottom).

Masking structure. By construction, it is clear that S̄ makes no Exp query and returns vectors x
and m of equal length. Thus, S ∈ Smsk.

Advantage bound. By direct inspection, PGGSu,Du

Γu
(λ) = PGGS,DΓ (λ), which means that the advantages

in the two games also coincide, thus proving Equality (3).

Algebraic unpredictability. It remains to be shown that, for every PGG source Su as above, source S
is algebraically unpredictable. To this end, let P be any predictor in the algebraic unpredictability game
against S, and consider the predictor Pu in the algebraic unpredictability game against Su defined in
Figure 8 (top right). Notice that Pu receives as input public parameters πu with a uniformly distributed
generator, but needs parameters π as returned by Γ to run P. To this end, Pu searches the randomness
space of Γ(1λ) (which is possible since Γ is PPT and Pu can be unbounded) and randomly samples some
randomness r which results in Γ(1λ) returning parameters π̃ with (◦, p) as specified in πu. The corresponding
group generator g̃0 is then correctly distributed, and Pu can now run P on π̃. Again by direct inspection,
we have AlgPredPΓ,S(λ) = AlgPredPu

Γu,Su(λ), which proves Equality (4).

Remark. A similar result also holds in the opposite direction, namely, if Γu is PGG[Salg ∩ Smsk] secure,
then so is Γ. The proof is very similar to the one carried out above, but the roles of the source and the
predictor are inverted: In this case, it is the auxiliary masking source (constructed in the proof) who
searches for a correctly distributed generator g̃0 (which again is possible, since masking sources can be
unbounded), while the predictor simply re-randomizes the given generator.

19

4 Generic Groups are PGGs

In this section we show the feasibility of PGGs in the generic-group model. The importance of this result is
that it rules out generic attacks against the PGG notion, thus forming a check on the soundness of the
definitional framework. Furthermore, it automatically lifts the security of each application of PGGs that we
consider to the GGM, as long as algebraically unpredictable, masking sources are used. This is similar to
the Uber assumption family, where one relies on a specific assumption within Uber, and reuses the GGM
hardness proved once for the whole family. As discussed above, we show GGM hardness of PGGs for a
computational notion of algebraic unpredictability, which widens the applicability of our result.

The present section is structured as follows. We first clarify which flavor of the generic-group model we use
to study the soundness of the PGG notion, and recall the bit-fixing lemma for generic groups [CDG18,BMZ19].
We then define what it means for a generic group to be PGG secure, and discuss our definitional choices.
After stating our main theorem and some auxiliary lemmata, we then proceed to the proof of our result.

4.1 More on the Generic-Group Model

Formalizing the GGM. Different abstractions for “generic algorithms” on groups exist in the literature.
Two prominent such models are that of Mauer [Mau05], where algorithms are given abstract “pointers”
representing group elements, and the one by Shoup [Sho97], where elements are encoded as random strings.
We follow the second approach, which has been more common in recent years. A thorough comparison
between these two models can be found in the recent work of Zhandry [Zha22].

We note that even with random group encodings, it is still possible to define technically different models.
For instance, Coretti et al. [CDG18] set the co-domain of encodings to [M] (where M ∈ N), whereas Shoup
allows for an arbitrary co-domain S ⊆ {0, 1}∗. It is, however, not hard to see that by enumerating the
elements of S via a fixed permutation, the two models are equivalent. That is, choosing the co-domain of
the encoding does not affect the model.

We also observe that in his analysis of the discrete-logarithm problem, Shoup only allows for operations
on elements that were obtained from the group encoding and operation oracles. Following recent works (see,
e.g., [CDG18]), we on the other hand allow submitting any string in the co-domain of the encoding.

Bit-fixing GGM. The generic-group model offers a simple way to study the hardness (resp., security)
of group-based assumptions and constructions against uniform adversaries without preprocessing. On the
other hand, it performs poorly when considering either non-uniform attackers or allowing preprocessing. To
address this shortcoming, Coretti, Dodis and Guo [CDG18] define the auxiliary-input GGM (AI-GGM), an
extension of the ordinary GGM which takes into account this wider class of adversaries. Unfortunately, it
turns out that this model is much harder to work in compared to the “plain” GGM.

Following prior work on the ROM, Coretti et al. [CDG18] also define an intermediate model, the bit-fixing
GGM (BF-GGM). In this model, which is parameterized by P ∈ N, the leakage of the first-stage adversary
is converted into a list L of at most P assignments without collisions of the form (x, y) ∈ Zp × S. Then a
new generic-group encoding is sampled in compatibility with the assignment L and is used in the online
phase of the attack. This model is technically simpler and closer to the GGM than the AI-GGM, because
outside of points in L the new encoding looks completely random to the online attacker.

Surprisingly, Coretti et al. manage to relate the two models by reducing security of any game in the
AI-GGM to the BF-GGM, as shown below. The lemma we present is a reformulation of the decomposition
result for injection sources [CDG18, Lemma 20], with the improvement that the function A computing
the leakage can be randomized, as in [BMZ19, Lemma 9]. In the following, for a set L ⊆ Zp × S without
collisions, we denote by Inj (Zp,S | L) the set of all injective functions from Zp to S which extend L.

20

Game AI-GGA,D
p,S :

τ ←← Inj(Zp,G); z ←← A(τ)

return Dτ,τ−1
(z)

Game BF-GGA,D
p,S,γ,P :

τ ←← Inj(Zp,G); z ←← A(τ); L ← DecompA(Rng(τ), γ, P, z)

τL ←← Inj (Zp,Rng(τ) | L); return DτL,τ
−1
L (z)

Figure 9 — Generic games AI-GG and BF-GG from Lemma 4.1.

Lemma 4.1. Let p, S ∈ N, S a set with |S| ≥ p, and let A be an algorithm taking τ ∈ Inj(Zp,S) as input
and returning an S-bit string. Then there exists an algorithm DecompA with the following property: For
all γ > 0, P ∈ N, and for any distinguisher D making at most T queries to its oracles, we have∣∣∣Pr[AI-GGA,D

p,S

]
− Pr

[
BF-GGA,D

p,S,γ,P

]∣∣∣ ≤ 2(S − log γ)T

P
+ γ ,

where the games AI-GGA,D
p,S and BF-GGA,D

p,S,γ,P are defined in Figures 9 (left) and 9 (right).

Proof. Fix p, S, S, and A as in the statement of the Lemma. Algorithm DecompA then works as follows:
For given T, γ, P , and z, it computes a convex combination of

(
P,T, 1 − S−log γ

P log(p/e)

)
-dense sources that

are γ-close to the random variable Xz, defined as the uniform distribution X on Inj(Zp,S) conditioned
on A(X) = z. This can be done as shown in [CDG18, Lemma 13]. With this definition, the statement of
the Lemma is equivalent to the one of [BMZ19, Lemma 9].

Remark. The lemma above holds for indistinguishability and unpredictability applications, and we will use
it to relate the advantages of adversaries both in the PGG and AlgPred games, with and without resampling.
We mention that Coretti et al. [CDG18] also prove another version of this result, which achieves a tighter
bound but only holds for unpredictability games. Unfortunately, we cannot use this alternative version for
the AlgPred game, because it only allows to bound the AI-advantage in terms of the BF-advantage (which
is the way the result is intended to be used, since working in the BF-GGM is usually easier), whereas for
the AlgPred game we need a bound in the opposite direction (notice that Lemma 4.1 is symmetric, so both
directions hold with the looser bound).

4.2 PGGs in the GGM

We now clarify what it means for a generic group to be PGG secure. The PGG and AlgPred games in
the GGM for a group of size p with target set S are presented in Figures 10 (top left) and 10 (top center),
masking sources are given in Figure 10 (top right). We stress that the oracles τ and op defining the generic
group and its operation are independent of the injection σ used to define PGG security—only the ranges of
the two encodings coincide, since, as in the standard model, σ must take values in the group (which is given
by Rng(τ) in the GGM). Advantage terms are defined as usual:

Advpggp,S,S,D := 2 · Pr
[
PGGS,Dp,S

]
− 1 , Advalg-predp,S,S,P := Pr

[
AlgPredPp,S,S

]
.

Recall that masking sources can be unbounded, which means that they are allowed an unlimited amount
of group operations. Following [BMZ19], we mirror this in the GGM by giving S the entire function table
of τ . Distinguisher D on the other hand is bounded, which means that it is only given oracles for τ and op
and that the leakage L must be short. This choice of modeling more accurately reflects unbounded sources
in the GGM by allowing an arbitrary number of group operations. Furthermore, it allows us to derive
security in the presence of preprocessing attackers, as our sources can leak information about τ to the
distinguisher.10

10In particular, this model allows a restricted class of sources that leak arbitrary information (without any unpredictability
requirements), as long as the sampling of the exponents is unpredictable (e.g., random, as is the case for the DLP).

21

Game PGGS,Dp,S :

b←← {0, 1}; r ←← Z∗p; τ ←← Inj(Zp, S)
σ ←← Inj(Zp,Rng(τ))
L←← SExp(τ)
b′ ←← Dτ,op(L)
return (b = b′)

Proc. Exp(x):
if (b = 0) then return σ(x)
return τ(rx)

Game AlgPredPp,S,S :

Q← []; τ ←← Inj(Zp,S)
σ ←← Inj(Zp,Rng(τ))
L←← SExp(τ)
(α1, . . . , αq)←← Pτ,op(L)
[x1, . . . , xq]← Q
return

(∑q
i=1 αixi = 0

)
Proc. Exp(x):
Q← Q : x; return σ(x)

Masking source SExp(τ):
(x,m, L̄)←← S̄(τ)
for i = 1 to |m| do
y[i]← op(m[i],Exp(x[i]))

return (y, L̄)

Comm. proc. op(h1, h2):

return τ
(
τ−1(h1) + τ−1(h2)

)

Auxiliary source S̄ ′(τ):
(x,m, L̄)←← S̄(τ); q ← |x|; l← |L̄|
L̄′ ← (02(qS−q)(⌊log p⌋+1)+(ℓ−l),
L̄, q, l)

return (x,m, L̄′)

Distinguisher D′τ,op(y, L̄′):
(02(qS−q)(⌊log p⌋+1)+(ℓ−l),

L̄, q, l)← L̄′

return Dτ,op(y, L̄)

Predictor Pτ,op(y, L̄):
q ← |y|; l← |L̄|
L̄′ ← (02(qS−q)(⌊log p⌋+1)+(ℓ−l),
L̄, q, l)

return P ′τ,op(y, L̄′)

Figure 10 — Top left: The PGG game in the GGM. Top center: The AlgPred game in the GGM. Top right: A
masking source S in the GGM. In all games, |S| ≥ p, and without loss of generality, all algorithms know p. Bottom
left: Adversaries (S ′,D′) constructed from (S,D). Bottom right: Reduction from the proof of Lemma 4.2.

4.3 Preliminary Results

Before coming to the main theorem in this section, we prove two auxiliary results. In the next lemma, we
show that one can turn any algebraically unpredictable, masking source S into a source S ′ where S̄ ′ has
constant output length, while preserving the query complexity and the algebraic unpredictability of S. This
is needed since Lemma 4.1 holds for algorithms A returning an output of fixed length. Afterwards, we study
the advantage of a predictor P in an algebraic unpredictability game where the generic-group encoding is
resampled and P is allowed multiple guesses. We will use Lemma 4.1 to relate P ’s advantage to a classical
algebraic unpredictability advantage.

Lemma 4.2. Let p ∈ N, S a set with |S| ≥ p, and let (S,D) be an adversary in the PGG game with
S ∈ Salg ∩ Smsk making at most qS oracle queries and returning at most ℓ bits of leakage L̄. Then there
exists a PGG adversary (S ′,D′) with S ′ ∈ Salg ∩ Smsk making the same oracle calls as S, with S̄ ′ returning
exactly 2qS(⌊log p⌋+ 1) + ℓ+ ⌊log qS⌋+ ⌊log ℓ⌋+ 2 bits of output, such that Advpggp,S,S,D = Advpggp,S,S′,D′ and,
for every predictor P ′ in the game AlgPred, there exists a predictor P such that Advalg-predp,S,S′,P ′ = Advalg-predp,S,S,P .

Proof. For a PGG adversary (S,D) as in the statement of the Lemma, consider the pair (S ′,D′) defined
in Figure 10 (bottom left). By direct inspection S ′ ∈ Smsk, it makes the same queries as S, and satis-
fies Advpggp,S,S,D = Advpggp,S,S′,D′ . As for the (total) output length of S̄, observe that if we encode every entry
of x and m with ⌊log p⌋ + 1 bits, and the numbers q ≤ qS and l ≤ ℓ with ⌊log qS⌋ + 1 and ⌊log ℓ⌋ + 1
bits, respectively, the output (x,m, L̄′) has the desired length. Note that there is no need to encode
separator symbols or to repeat bits, since the additional information supplied in L̄′ allows to uniquely
recover (x,m, L̄′).

Finally, notice that S ′ is algebraically unpredictable. To do so, let P ′ be any predictor playing the algebraic
unpredictability game for S ′, and consider the predictor P defined in Figure 10 (bottom right) playing the
algebraic unpredictability game for S. Since |x| = |y| we obviously have Advalg-predp,S,S′,P ′ = Advalg-predp,S,S,P , which
concludes the proof.

22

Game MAlgPredPp,S,S :

Q← []; τ ←← Inj(Zp, S)
σ ←← Inj(Zp,Rng(τ)); (x,m, L̄)←← S̄(τ)
for i = 1 to |m| do y[i]← op(m[i],Exp(x[i]))
((α1,1, . . . , α1,q), . . . , (ακ,1, . . . , ακ,q))←← Pτ,op(y, L̄)
[x1, . . . , xq]← Q
return

(
(∃j ∈ [κ])(

∑q
i=1 αj,ixi = 0)

)
Comm. Proc. Exp(x):
Q← Q : x; return σ(x)

Proc. op(h1, h2):

return τ
(
τ−1(h1) + τ−1(h2)

)

Game Game′:
Q← []; τ ←← Inj(Zp, S)
σ ←← Inj(Zp,Rng(τ)); (x,m, L̄)←← S̄(τ)
L ← DecompS̄(Rng(τ), γ, P, (x,m, L̄))
τL ←← Inj (Zp,Rng(τ) | L)
for i = 1 to |m| do y[i]← opL(m[i],Exp(x[i]))
((α1,1, . . . , α1,q), . . . ,

(ακ,1, . . . , ακ,q))←← PτL,opL(y, L̄)
[x1, . . . , xq]← Q
return

(
(∃j ∈ [κ])(

∑q
i=1 αj,ixi = 0)

)
Proc. opL(h1, h2):

return τL
(
τ−1L (h1) + τ−1L (h2)

)
Algorithm A(τ):
(x,m, L̄)←← S̄(τ); return (x,m, L̄)

Algorithm Dτ,τ−1
(x,m, L̄):

Q← []; Tσ ← []
for i = 1 to |m| do y[i]← op(m[i],Exp(x[i]))
((α1,1, . . . , α1,q), . . . , (ακ,1, . . . , ακ,q))←← Pτ,op(y, L̄)
[x1, . . . , xq]← Q; return

(
(∃j ∈ [κ])(

∑q
i=1 αj,ixi = 0)

)

Proc. Exp(x):
Q← Q : x
if (x ̸∈ Dom(Tσ)) then
g ←← G \ Rng(Tσ); Tσ ← Tσ : (x, g)

return Tσ(x)

Proc. op(h1, h2):

return τ
(
τ−1(h1) + τ−1(h2)

)
Figure 11 — Top left: The MAlgPred game. This is the algebraic unpredictability game, where the predictor can
return multiple guesses. Top right: The game Game′. This is the MAlgPred game with a resampled GGM encoding.
Bottom: Reduction from the proof of Lemma 4.3.

Lemma 4.3. Let p ∈ N and S a set with |S| ≥ p, let P ∈ N, γ > 0, and let S ∈ Salg ∩ Smsk be a source
with S̄ returning exactly S := 2qS(⌊log p⌋+ 1) + ℓ+ ⌊log qS⌋+ ⌊log ℓ⌋+ 2 bits of output (as in Lemma 4.2).
Then, for every predictor P making at most qP,τ and qP,op calls to its oracles,

Pr[Game′] ≤ Pr
[
MAlgPredPp,S,S

]
+

6(S − log γ)T

P
+ γ ,

where T := qP,τ + qP,op + qS , and the games MAlgPredPp,S,S and Game′ are defined in Figures 11 (top left)
and 11 (top right). Furthermore, for every predictor P in the game MAlgPred for S returning at most k tuples
of scalars, there exists a predictor P ′ in the AlgPred game for S such that Pr

[
MAlgPredPp,S,S

]
≤ k·Advalg-predp,S,S,P ′ .

Proof. For the first statement, we use Lemma 4.1 to prove the desired inequality. To do so, we must interpret
the output of S̄(τ) as a bitstring, which can be done as discussed in the proof of Lemma 4.2. Now consider
algorithms A and D defined in Figure 11 (bottom). By direct inspection, for this choice of A and D we
have AI-GGA,D

p,S = MAlgPredPp,S,S and BF-GGA,D
p,S,γ,P = Game′. To conclude, notice that D needs two oracle

calls to implement operation op in the for-loop, and one and three oracle calls to answer queries of P to its
oracles τ and op, respectively, which means that it makes at most 3T oracle queries.

For the second statement, let P ′ be the predictor that runs P and then outputs one of the tuples
returned by P chosen at random. The bound follows by a standard argument.

23

Remark. Notice that the result above applies Lemma 4.1 to a version of the algebraic unpredictability
game where the predictor can return multiple guesses and wins if one is correct, rather than plain algebraic
unpredictability. The reason we introduce this game is that, in the proof of Theorem 4.4, a direct reduction
to the AlgPred game (with resampled encoding) comes with a multiplicative loss of around T 2, which
then also multiplies the additive constant due to Lemma 4.1. A reduction to Game′ on the other hand has
multiplicative factor 1, which means that the additive loss from Lemma 4.1 remains as is when we then
move from MAlgPred to AlgPred (with loss T 2). This is crucial in order to replicate bounds obtained in
prior works for specific instances of masking sources.

4.4 Generic-Group Feasibility

We are now ready to state and prove the main result of this section.

Theorem 4.4. Let (G, ◦) be a group of order p, and S a set with |S| ≥ p. Then the generic group on G
is PGG[Salg∩Smsk] secure. More precisely, for every adversary (S,D) in the PGG game with S ∈ Salg∩Smsk,
there exists a predictor P in the game AlgPred such that

Advpggp,S,S,D ≤ O

(
T 2 ·Advalg-predp,S,S,P +

√
ST 2

p

)
,

where S := 2qS(⌊log p⌋+ 1) + ℓ+ ⌊log qS⌋+ ⌊log ℓ⌋+ 2 and T := qS + qD,τ + qD,op. Here qS , qD,τ , and qD,op
are upper bounds on the number of queries made by S and D to their respective oracles, ℓ is an upper bound
on the length of the leakage L̄ returned by S, and we assume T ≤

√
Sp.

Proof. Fix any (S,D) as in the statement, and consider the corresponding pair (S ′,D′) defined in Lemma 4.2,
where S̄ ′ returns exactly S bits. Since Advpggp,S,S,D = Advpggp,S,S′,D′ , we estimate the latter. For the remainder
of the proof, let γ > 0 and P ∈ N be numbers that will be determined later. We use the game-playing
framework and consider the following sequence of games:

Game0 is the PGG game for (S ′,D′) with respect to b = 1, i.e., where the oracle Exp uses the generic group
injection τ .

Game1 is the same as Game0, but we additionally require that the queries S ′ makes to the Exp oracle be all
distinct.

Game2 is the same as Game1, but we use Lemma 4.1 (with γ := 1/p) to resample τ right after the execution
of S̄ ′, whose output is treated as leakage. Also, we do not sample the new injection τL all at once, but
instead implement it via lazy sampling.

Game3 is the same as Game2, but we replace the randomly chosen exponent r ←← Z∗p with a formal variable R.
We also start to lazy sample the new encoding σ with the values returned by Exp (i.e., we add
the sampled values to a newly initialized table Tσ), and modify the condition in the if-statement in
the Exp oracle into one involving Tσ.

Game4 is the same as Game3, but for every Exp query x[j], instead of saving an entry for Rx[j] to the
encoding table, we index it with a different and independent variable Zj .

Game5 is the same as Game4, but we evaluate the variables Zj at random values cj ←← Zp.
Game6 is the same as Game5, but we insist that the values cj be pairwise different.
Game7 is the same as Game6, but we no longer populate table TτL in oracle calls to Exp.
Game8 is the same as Game7, but when we lazily sample replies to Exp queries, we do so consistently with σ

rather than τ . In other words, we sample group elements g at random from Rng(τ) \ Rng(Tσ) instead
of Rng(τ) \Rng(TτL). Notice that the Exp oracle now only depends on σ and is completely decoupled
from τ .

24

Game Game1:
r ←← Z∗

p; τ ←← Inj(Zp, S); (x,m, L̄)←← S̄ ′(τ)

if
(
(∃1 ≤ i < j ≤ |x|)(x[i] = x[j])

)
then return 0

for i = 1 to |x| do y[i]← op(m[i],Exp(x[i]))
return D′τ,op(y, L̄)

Proc. Exp(x):
return τ(rx)

Proc. op(h1, h2):

return τ
(
τ−1(h1) + τ−1(h2)

)

Pred. Q′τ,op(y, L̄):
q ← |y|; v← 0q

i←← [q]; j ←← [q] \ {i}
v[i]← 1; v[j]← −1
return v

Game Game2:
r ←← Z∗

p; τ ←← Inj(Zp,S); (x,m, L̄)←← S̄ ′(τ)
if
(
(∃1 ≤ i < j ≤ |x|)(x[i] = x[j])

)
then

return 0
TτL = [(x̃1, ỹ1), . . . , (x̃k, ỹk)]
← DecompS̄′(Rng(τ), γ, P, (x,m, L̄))

for i = 1 to |x| do
y[i]← opL(m[i],Exp(x[i]))

return D′τL,opL(y, L̄)

Proc. Exp(x):
if (rx /∈ Dom(TτL)) then

g ←← Rng(τ) \ Rng(TτL); TτL [rx]← g
return TτL [rx]

Proc. opL(h1, h2):
for i ∈ [2] do

if (hi /∈ Rng(TτL)) then
xi ←← Zp\Dom(TτL); TτL [xi]← hi

xi ← T−1
τL [hi]

x← x1 + x2

if (x /∈ Dom(TτL)) then
g ←← Rng(τ) \ Rng(TτL); TτL [x]← g

return TτL [x]

Proc. τL(x):
if (x /∈ Dom(TτL)) then

g ←← Rng(τ) \ Rng(TτL); TτL [x]← g
return TτL [x]

Alg. A(τ):

(x,m, L̄)←← S̄ ′(τ)
return (x,m, L̄)

Alg. Dτ,τ−1

(x,m, L̄):
r ←← Z∗

p

for i = 1 to |x| do
y[i]← op(m[i], τ(rx[i]))

return D′τ,op(y, L̄)

Proc. op(h1, h2):

x1 ← τ−1(h1); x2 ← τ−1(h2)
return τ(x1 + x2)

Figure 12 — Top left: The game Game1 from the proof of Theorem 4.4. Top right: Reduction for the transition
from Game0 to Game1. Bottom left: The game Game2 from the proof of Theorem 4.4. Bottom right: Reduction for
the transition from Game1 to Game2.

Game9 is the same as Game8, but we undo lazy sampling of σ and instead sample it all at once. Also, we
again use Lemma 4.1 to undo resampling of τ .

Game10 is the same as Game9, but we remove the constraint that all queries S makes are pairwise different.
Doing so, we have obtained the PGG game with b = 0, i.e., where the oracle Exp uses an independent
encoding σ.

We now argue that the difference between the success probabilities of subsequent games are small.

Game0 ⇝ Game1. Denote by Bad1 the event that in Game0, there exist i < j such that x[i] = x[j], and
observe that Game0 and Game1 are identical until Bad1. To bound the probability of this event, consider
the predictor Q′ defined in Figure 12 (top right). One readily verifies that if Bad1 occurs, then Q′ wins
the algebraic unpredictability game for source S ′, provided that Q′ guesses a correct pair of indices where
entries of x collide. Therefore,

∣∣Pr[Game0]− Pr[Game1]
∣∣ ≤ Pr[Bad1] =

qS∑
q=0

Pr[Bad1 | |x| = q] Pr[|x| = q]

≤
qS∑
q=0

(
q

2

)
Advalg-predp,S,S′,Q′ · Pr[|x| = q] ≤

(
qS
2

)
Advalg-predp,S,S′,Q′ ≤ T 2 ·Advalg-predp,S,S,Q ,

where Q is the predictor constructed from Q′ as in Lemma 4.2.

Game1 ⇝ Game2. Consider algorithms A and D defined in Figure 12 (bottom right). One readily verifies
that AI-GGA,D

p,S = Game1, and Pr
[
BF-GGA,D

p,S,γ,P

]
= Pr[Game2] since the only difference between these two

games is that the former samples τL at once, while the latter implements it via lazy sampling. Using
Lemma 4.1, and noticing that D makes no more than 3T queries to its oracles, we therefore obtain∣∣Pr[Game1]− Pr[Game2]

∣∣ ≤ 6(S − log γ)T

P
+ γ .

25

Game2 ⇝ Game3. Consider the following three events: (1) Let Bad2 be the event that, in Game2, there
exists i such that rx[i] ∈ {x̃1, . . . , x̃k}; (2) Let Bad′2 be the event that, at the end of the execution of D′
in Game3, there are polynomials Q1(R), Q2(R) ∈ Dom(TτL) such that Q1(R) ̸= Q2(R), but Q1(r) = Q2(r)
for a randomly chosen value r ←← Z∗p; and (3) Let Bad′′2 be the event that, at the end of the execution
of D′ in Game3, there is a polynomial Q(R) ∈ Dom(TτL) such that Q(r) ∈ {x̃1, . . . , x̃k} for a randomly
chosen r ←← Z∗p. Then notice that Game2 and Game3 are identical if none of these events occurs, and
therefore |Pr[Game2]− Pr[Game3]| ≤ Pr[Bad2] + Pr[Bad′2] + Pr[Bad′′2]. We bound each of these probabilities
separately. For Pr[Bad2], notice that there are at most qS terms rx[i], each of which can collide with at
most P values x̃j . The probability of each collision happening is 1/(p− 1) since r is random in Z∗p, and
therefore

Pr[Bad2] ≤
qSP

p− 1
≤ 2qSP

p
≤ 2TP

p
.

Moving to Pr[Bad′2], observe that for Bad′2 to occur at least one of Q1 and Q2 must be non-constant.
After the execution of D′, Dom(TτL) contains at most 2qS + qD,op many non-constant polynomials and at
most P + 3qS + qD,τ + 3qD,op many entries that each of the polynomials can collide with when evaluated at
random r ∈ Z∗p. Each collision happens with probability 1/(p− 1) by the Schwartz–Zippel lemma, which
means

Pr[Bad′2] ≤
(2qS + qD,op)(P + 3qS + qD,τ + 3qD,op)

p− 1
≤ 2T (P + 3T)

p− 1
≤ 4T (P + 3T)

p
≤ 12T (P + T)

p
.

Finally, to bound Pr[Bad′′2] notice that after the execution of D′, Dom(TτL) contains at most 2qS + qD,op
many non-constant polynomials, each of which can collide with one of at most P elements x̃j . Again, each
collision happens with probability 1/(p− 1) by the Schwartz–Zippel lemma, which yields

Pr[Bad′′2] ≤
(2qS + qD,op)P

p− 1
≤ 2TP

p− 1
≤ 4TP

p
.

Collecting the terms above, we obtain∣∣Pr[Game2]− Pr[Game3]
∣∣ ≤ 2TP

p
+

12T (P + T)

p
+

4TP

p
≤ 18T (P + T)

p
.

Game3 ⇝ Game4. We proceed in a similar way as above: Let Bad3 be the event that, at the end of the
execution of D′ in Game4, there are polynomials Q1(Z1, . . . , Zq), Q2(Z1, . . . , Zq) ∈ Dom(TτL) such that Q1 ̸=
Q2, but Q1(Rx[1], . . . , Rx[q]) = Q2(Rx[1], . . . , Rx[q]) as polynomials in R, where q = |x|. Then Game3
and Game4 are identical if Bad3 does not occur, which means |Pr[Game3]−Pr[Game4]| ≤ Pr[Bad3]. To bound
the latter probability, observe that we can turn any collision as above into a non-trivial algebraic relation
involving x. Indeed, if Qi =

∑q
j=1 αi,jZj + δi, then having a collision means

∑q
j=1(α1,j − α2,j)x[j] = 0,

and since Q1 ̸= Q2 we must have α1,j ̸= α2,j for some j ∈ [qS]. Therefore, consider the predictor R′ in
Figure 13 (bottom). One readily verifies that if Bad3 occurs, then R′ wins the game Game′ in Figure 11 (top
right) for source S ′. Using Lemmata 4.2 and 4.3, and observing that table T ′ contains at most qS + qD′,op

many entries, we obtain

∣∣Pr[Game3]− Pr[Game4]
∣∣ ≤ Pr[Bad3] = Pr[Game′] ≤ Pr

[
MAlgPredR

′
p,S,S′

]
+

6(S − log γ)T

P
+ γ

≤
(
qS + qD,op

2

)
·Advalg-predG,S′,R′ +

6(S − log γ)T

P
+ γ ≤ T 2 ·Advalg-predp,S,S,R +

6(S − log γ)T

P
+ γ ,

where R is the predictor constructed from R′ as in Lemma 4.2.

26

Game Game3:
τ ←← Inj(Zp,S); (x,m, L̄)←← S̄ ′(τ); Tσ ← []
if
(
(∃1 ≤ i < j ≤ |x|)(x[i] = x[j])

)
then return 0

TτL = [(x̃1, ỹ1), . . . , (x̃k, ỹk)]← DecompS̄′(Rng(τ), γ, P, (x,m, L̄))
for i = 1 to |x| do y[i]← opL(m[i],Exp(x[i]))
return D′τL,opL(y, L̄)

Proc. Exp(x):
if (x /∈ Dom(Tσ)) then

g ←← Rng(τ) \ Rng(TτL)
Tσ[x]← g; TτL [Rx]← g

return Tσ[x]

Game Game4:

τ ←← Inj(Zp,S); (x,m, L̄)←← S̄ ′(τ); Tσ ← []; j ← 0

if
(
(∃1 ≤ i < j ≤ |x|)(x[i] = x[j])

)
then return 0

TτL = [(x̃1, ỹ1), . . . , (x̃k, ỹk)]← DecompS̄′(Rng(τ), γ, P, (x,m, L̄))
for i = 1 to |x| do y[i]← opL(m[i],Exp(x[i]))
return D′τL,opL(y, L̄)

Proc. Exp(x):

j ← j + 1

if (x /∈ Dom(Tσ)) then
g ←← Rng(τ) \ Rng(TτL)

Tσ[x]← g; TτL [Zj]← g

return Tσ(x)

Predictor R′τ,op(y, L̄):

q ← |y|; T ′ ← [(Z1,y[1]), . . . , (Zq,y[q])]

b←← D′τ,op′(y, L̄)
{
∑q

i=1 αj,iZi | j ∈ [κ]} ← Dom(T ′)
return (αj,1 − αk,1, . . . , αj,q − αk,q)j<k

Proc. op′(h1, h2):
h← op(h1, h2)
for i ∈ [2] do

xi ← T ′−1(hi); if (xi = ⊥) then xi ← 0
if (x1 ̸= 0) ∨ (x2 ̸= 0) then T ′[x1 + x2]← h
return h

Figure 13 — Top and Center: The games Game3 and Game4 from the proof of Theorem 4.4. The oracles opL and τL
are the same as in Game2. Bottom: Reduction for the transition from Game3 to Game4.

Game4 ⇝ Game5. Let Bad4 be the event that, at the end of the execution of D′ in Game4, there are polyno-
mials Q1(Z1, . . . , Zq), Q2(Z1, . . . , Zq) ∈ Dom(TτL) such that Q1 ≠ Q2, but Q1(c1, . . . , cq) = Q2(c1, . . . , cq)
for randomly sampled c1, . . . , cq ←← Zp, where q = |x|. Then Game4 and Game5 are equivalent until Bad4.
As before, Dom(TτL) will contain at most 2qS + qD,op polynomials at the end of the game, with each pair
resulting in a collision with probability at most 1/p by the Schwartz–Zippel lemma (since deg(Qi) ≤ 1).
Hence, ∣∣Pr[Game4]− Pr[Game5]

∣∣ ≤ Pr[Bad4] ≤
(
2qS + qD,op

2

)
· 1
p
≤ 2T 2

p
.

Game5 ⇝ Game6. Let Bad5 be the event that, for some call to Exp in Game5, the sampled value c
satisfies c ∈ Dom(TτL). Again, Game5 and Game6 are equivalent until Bad5, and a straightforward calculation
shows that

∣∣Pr[Game5]− Pr[Game6]
∣∣ ≤ Pr[Bad5] =

qS∑
q=0

Pr[Bad5 | |x| = q] Pr[|x| = q]

≤
qS∑
q=1

(
P + 1

p
+

P + 3

p
+ · · ·+ P + 2q − 1

p

)
Pr[|x| = q] ≤ qS(P + qS)

p
≤ T (P + T)

p
.

Game6 ⇝ Game7. We claim that Game6 = Game7, which in particular implies Pr[Game6] = Pr[Game7].
Indeed, the only difference in the pseudocode of the two games is that Game6 explicitly populates table TτL

in the Exp oracle, while Game7 does not. On the other hand, in Game7 this is done implicitly by the opL-
procedure, with exactly the same distribution as specified in the Exp oracle of Game6, since g is always
picked in the complement of Rng(TτL).

Game7 ⇝ Game8. Define an intermediate game Game7.5 which is the same as Game7, but where the Exp
oracle draws g at random from Rng(Tτ). Denote by Bad6 and Bad′6 the events that, for some call to Exp in
game Game7.5, the random element g satisfies g ∈ Rng(TτL) (resp., g ∈ Rng(Tσ)). Then Game7 and Game7.5

27

Game Game5:
τ ←← Inj(Zp, S); (x,m, L̄)←← S̄ ′(τ); Tσ ← []
if
(
(∃1 ≤ i < j ≤ |x|)(x[i] = x[j])

)
then return 0

TτL = [(x̃1, ỹ1), . . . , (x̃k, ỹk)]← DecompS̄′(Rng(τ), γ, P, (x,m, L̄))
for i = 1 to |x| do y[i]← opL(m[i],Exp(x[i]))
return D′τL,opL(y, L̄)

Proc. Exp(x):
if (x /∈ Dom(Tσ)) then

g ←← Rng(τ) \ Rng(TτL); Tσ[x]← g

c←← Zp; TτL [c]← g

return Tσ[x]

Proc. Exp(x):
if (x /∈ Dom(Tσ)) then

g ←← Rng(τ) \ Rng(TτL); Tσ[x]← g

c←← Zp \ Dom(TτL); TτL [c]← g

return Tσ[x]

Proc. Exp(x):
if (x /∈ Dom(Tσ)) then

g ←← Rng(τ) \ Rng(TτL)
Tσ[x]← g

return Tσ(x)

Proc. Exp(x):
if (x /∈ Dom(Tσ)) then

g ←← Rng(τ) \ Rng(Tσ)

Tσ[x]← g
return Tσ[x]

Figure 14 — Top: The game Game5 from the proof of Theorem 4.4. Bottom: Exponentiation oracles of the
games Game6, Game7, and Game8. The pseudocode of the corresponding games is the same as Game5. In all games,
the oracles opL and τL are the same as in Game2.

are equivalent until Bad6, and Game7.5 and Game8 are equivalent until Bad′6. An argument similar to the
one for Bad5 now yields

∣∣Pr[Game7]− Pr[Game8]
∣∣ ≤ Pr[Bad6] + Pr[Bad′6] ≤

qS(P + qS)

p
+

q2S
2p
≤ T (P + T)

p
+

T 2

p
.

Game8 ⇝ Game9 and Game9 ⇝ Game10. Observe that we are essentially undoing the first two transitions.
As a result, arguments similar to those given at the beginning of the proof apply here as well, and we have

∣∣Pr[Game8]− Pr[Game9]
∣∣ ≤ 6(S − log γ)T

P
+ γ ,

∣∣Pr[Game9]− Pr[Game10]
∣∣ ≤ T 2 ·Advalg-predp,S,S,Q .

Collecting all the terms above and setting γ = 1/p, we obtain the following bound:

Advpggp,S,S,D ≤ 2T 2 ·Advalg-predp,S,S,Q + T 2Advalg-predp,S,S,R +
18(S + log p)T

P
+

20T (P + T)

p
+ 3

(
T 2 + 1

p

)
≤ 3T 2 ·Advalg-predp,S,S,P +

36ST

P
+

20TP

p
+

26T 2

p
≤ 3T 2 ·Advalg-predp,S,S,P +

26T 2

p
+ 36T

(
S

P
+

P

p

)
,

where P ∈ {Q,R} is the predictor with the larger advantage. Now recall that this inequality holds for
every P ∈ N, which means that we can set P :≈

√
Sp to minimize the term on the right. Overall we obtain

Advpggp,S,S,D ≤ 3T 2 ·Advalg-predp,S,S,P +
26T 2

p
+ 72T

√
S

p

(a)
≤ 3T 2 ·Advalg-predp,S,S,P + 98T

√
S

p

≤ 100

(
T 2 ·Advalg-predp,S,S,P +

√
ST 2

p

)
,

where Inequality (a) holds by our assumption that T ≤
√
Sp.

Uber with preprocessing. Looking ahead, we observe that Uber and Uber-II sources are statistically
algebraically unpredictable (even in the GGM) and, in particular, their algebraic unpredictability bound
does not depend on the number of queries made by the predictor to the generic group oracles. This in turn

28

implies that when the above theorem is applied to the Uber and Uber-II sources (with q polynomials of
degree at most d and at most T generic group and operation queries) we obtain

Advdua-iip,A ≤ Õ

(
d(T + q)2

p
+

√
S(T + q)2

p

)

in the GGM. When setting q = 4 and d = 2, the bound matches that established for the DDH problem [CK18,
CDG18].

Discussion on DDH-II. As a second corollary, we obtain the hardness of the r-DDH-II assumption11 in
the GGM (here “r” stands for randomized generator). This result was also established by Bartusek, Ma,
and Zhandry (BMZ) [BMZ19, Theorem 12]. Our proof, besides establishing the hardness of a winder class
of assumption, is more modular and also avoids asymptotics. Furthermore, since our feasibility only relies
on computational algebraic unpredictability, it can be applied in a setting where some group elements are
directly leaked to the distinguisher.

5 From Simple to Algebraic Unpredictability: LDDs

We define a new type of hash function family called linear-dependence destroyer (LDD) that is useful for
building schemes secure in PGGs. Intuitively, LDDs are hash functions with domain and range Zp that
remove, in a statistical sense, any linear dependence among a list of distinct but potentially correlated
values.

Linear-Dependence Destroyers (LDDs). Let H be a hash function family with domain and range Zp

for some prime p. We define the advantage of a pair of adversaries (S,A) in the LDD game for H as

AdvlddH,S,A(λ) := Pr
[
LDDS,AH (λ)

]
,

where the LDD game is defined in Figure 15 (top left). We require that the outputs of S be pairwise distinct
and the output of A be different from the all-zero tuple. We say that H is LDD[S] secure if the advantage
of any (S,A) in the LDD game is negligible, with S ∈ S and A an unbounded machine. We write this
as H ∈ LDD[S].

We call an LDD source S statistically unpredictable if

AdvpredH,S,P(λ) := Pr
[
PredPH,S(λ)

]
is negligible for any (possibly unbounded) predictor P, where the game Pred is defined in Figure 15 (top
center). We denote the class of all statistically unpredictable LDD sources by Ssup. We say that H is an
LDD if it is LDD[Ssup] secure.

In Section 5.1 we show that, for a computational group scheme Γ, the hash function family H[Γ] with
domain and range Zp defined in Figure 15 (bottom) is an LDD for the class of low-degree sources Slow.
These are sources that compute their output as evaluations of low-degree polynomials on high-entropy
points, as in Figure 15 (top right) – We refer the reader to Section 5.1 for formal definitions and proofs.

We were unable to prove that the construction in Figure 15 (bottom) is an LDD for all unpredictable
sources, though we have not been able to break it either. We conjecture that LDDs exist for all statistically
unpredictable sources, and not just for low-degree ones. More strongly, we conjecture that the hash
function H[Γ] defined in Figure 15 (bottom) is LDD secure for all statistically unpredictable sources.

11Distinguish (g, gx, gy, gxy) from (g, gx, gy, gz) for a random generator g, unpredictable x, and random y and z.

29

Game LDDS,AH (λ):

π ←← H.Setup(1λ)
(x1, . . . , xq, st)←← S(π)
hk ←← H.KGen(π)
(α0, α1, . . . , αq)←← A(π, hk , st)
return

(∑q
i=1 αi · H(hk , xi) = α0

)

Game PredPH,S(λ):

π ←← H.Setup(1λ)
(x1, . . . , xq, st)←← S(π)
x′ ←← P(π, st)
return (x′ ∈ {x1, . . . , xq})

Source S(π):
(P1, . . . , Pq, st)←← S0(π)
for i = 1 to m do si ←← S1(i, π)
for i = 1 to q do
xi ← Pi(s1, . . . , sm)

return (x1, . . . , xq, st)

H[Γ].Setup(1λ):

(π := (◦, g0, p))←← Γ(1λ)
return p

H[Γ].KGen(p):
hk ←← Zp

return hk

H[Γ](hk , x):
if (x = −hk) then return 0
return 1/(x+ hk)

Figure 15 — Top left: The LDD game. Top center: The predictability game. Top right: Structure of a low-degree
LDD source. Bottom: Candidate construction of an LDD family H[Γ] from a computational group scheme Γ.

We emphasize that LDD is an information-theoretic notion and thus unconditional constructions (as for
randomness extractors) may exist. We note that positive results for smaller classes of sources are also
meaningful, as they would translate, via our constructions and proofs, into deterministic PKE, UCEs, and
RKA-secure encryption.

As evidence towards the first conjecture, we can easily prove that a RO ρ : Z2
p → Zp is an LDD, if

all algorithms only get polynomially bounded oracle access to ρ (rather than the entire function table).
Assume that A makes at most n queries, and let E denote the event that A queries ρ on one of the
points (hk , x1), . . . , (hk , xq). Then we can build a predictor P such that Pr[E] ≤ n ·Pr[PredPρ,S(p)], which is
small by unpredictability of S. If E does not occur, then the equation

∑q
i=1 αi · H(hk , xi) = α0 is satisfied

with probability at most 1/p, because at least one coefficient αj , 1 ≤ j ≤ q, is non-zero, and thus the
random-looking value H(hk , xj) is determined by the winning condition.

We provide a stronger feasibility result for LDDs by showing that random functions are LDDs for any
unpredictable source, even when both the source S and the adversary A have full access to the table of
the random function.12 This result would thus establish the existence of LDDs, similarly to that for other
information-theoretic objects such as randomness extractors. At a very high level, we prove this result in
two steps: First, we decompose arbitrary high-entropy sources into a convex combination of flat sources
(i.e., sources that are uniform on subsets of the support of the distribution). This is a standard technique
in the study of randomness extractors [Vad12]. Second, we apply a compression-style argument [GT00]
to show that any predictor that has a high LDD-advantage against unpredictable sources can be used to
compress the random function. The complete proof is rather technical, and we refer to Section 5.2 for a
more detailed overview as well as the formal details.

5.1 LDDs for Low-Degree Sources

In this section we show that for a computational group scheme Γ, the hash function family H[Γ] with domain
and range Zp defined in Figure 15 (bottom) is an LDD for low-degree sources, a class of sources which we
define below.

Low-degree sources. A (d, k)-source is a source S for which there exist PPT algorithms S0 and S1
such that S takes the form in Figure 15 (top right), where S0 outputs q non-constant polynomials
in Zp[X1, . . . , Xm] of total degree at most d and, for every i ∈ N and all public parameters π, S1(i, π) is
a k-source over Zp, with k(λ) = ω(log λ). We denote the class of all such (d, k)-sources by Slow.

12Accordingly, we also impose a statistical notion of unpredictability on sources by giving predictors access to the full table.

30

Construction. Let Γ be a computational group scheme. We now prove that the hash function family H[Γ]
defined in Figure 15 (bottom) is LDD[Slow] secure. This function was used to build a correlated-input
secure hash function by Goyal, O’Neill and Rao [GOR11]. To this end, we start with a technical lemma
about the set of roots of polynomials.

Lemma 5.1. Let m, p, δ ∈ N with p prime, and let P ∈ Zp[X1, . . . , Xm] such that d := deg(P) ≥ 1. Denote
by R the set of roots of P in Fm

pδ
. Then |R| ≤ dpδ(m−1). If in addition δ is such that all polynomials in one

indeterminate over Zp of degree at most d are split over Fpδ , then |R| ≥ pδ(m−1).

Proof. The first part of the statement follows from the Schwartz–Zippel lemma: Using Lemma 2.1 with
S := Fpδ , we obtain |R|/pmδ ≤ d/pδ, i.e., |R| ≤ dpδ(m−1).

We prove the second part by induction on m. If m = 1, the lemma states that |R| ≥ pδ(1−1) = 1. This is
indeed true since P is non-constant and, by definition of δ, split over Fpδ , which means that it has at least one
root. Now let m > 1, and suppose that the statement holds for all m′ < m. If P has less than m variables,
the lemma follows from the induction hypothesis, so assume that this is not the case. For each γ ∈ Fpδ ,
define Rγ := {(x1, . . . , xm) ∈ R | xm = γ}, and let Tγ be the set of roots of Pγ := P (X1, . . . , Xm−1, γ)
in Fm−1

pδ
. Then notice that R =

⊔
γ∈F

pδ
Rγ , and that Rγ = Tγ for every γ ∈ Fpδ , which means

|R| =
∑

γ∈F
pδ

|Rγ | =
∑

γ∈F
pδ

|Tγ | ≥
∑

γ∈F
pδ

pδ(m−2) = pδ(m−1) .

Here, the inequality follows from the induction hypothesis, by observing that Pγ is a non-constant polynomial
in m− 1 < m variables of degree at most d.

The main step of our proof is contained in the following result, saying that two different low-degree
polynomials with random constant term are likely to be coprime. This allows us to prove in the next lemma
that the numerator of any non-trivial linear combination

∑n
i=1 αi/(Pi + hk)− α0 is non-zero. LDD security

of H[Γ] for low-degree sources then follows from Lemma 2.2.

Lemma 5.2. Let d,m, p ∈ N with p prime, and let P1, P2 ∈ Zp[X1, . . . , Xm] be such that P1 ̸= P2

and deg(P1, P2) ≤ d. Then we have:

Pr
α←←Zp

[gcd(P1 + α, P2 + α) ̸= 1] ≤ d

p
.

Proof. Let δ ∈ N be such that all polynomials in one indeterminate over Zp of degree at most d are split
over Fpδ . Define Q := P1 − P2, and denote by R the set of its roots in Fm

pδ
. By assumption, Q is non-zero

and of degree at most d, which means that |R| ≤ dpδ(m−1) by Lemma 5.1. Similarly, for every α ∈ Zp

define Qα := gcd(P1 + α, P2 + α), and denote by Rα the set of its roots in Fm
pδ

. Again by Lemma 5.1, we
know that Qα ≠ 1 if and only if |Rα| ≥ pδ(m−1). We can now bound the probability in the statement of the
lemma as follows:

Pr
α←←Zp

[gcd(P1 + α, P2 + α) ̸= 1] = Pr
α←←Zp

[
|Rα| ≥ pδ(m−1)

]
= Pr

α←←Zp

[∑
r∈F

pδ

1Rα(r) ≥ pδ(m−1)
]

(a)
= Pr

α←←Zp

[∑
r∈R

1Rα(r) ≥ pδ(m−1)
]

(b)
≤ 1

pδ(m−1)
E

α←←Zp

[∑
r∈R

1Rα(r)

]
=

1

pδ(m−1)

∑
r∈R

E
α←←Zp

[1Rα(r)]

=
1

pδ(m−1)

∑
r∈R

Pr
α←←Zp

[r ∈ Rα] =
1

pδ(m−1)

∑
r∈R

Pr
α←←Zp

[P1(r) = P2(r) = α]

31

Game Game:
for i = 1 to m do si ←← S1(i, π)
s← (s1, . . . , sm); hk ←← Zp

(α0, α1, . . . , αq)←← A(π, hk , st)
return

(∑q
i=1

αi
Pi(s)+hk

= α0

)
Game Game′:
for i = 1 to m do si ←← S1(i, π)
s← (s1, . . . , sm); hk ←← Zp

(α0, α1, . . . , αq)←← A(π, hk , st); Nhk
Dhk

:=
∑q

i=1
αi

Pi+hk

return (Nhk (s)− α0 ·Dhk (s) = 0)

Figure 16 — The games Game and Game′ from the proof of Theorem 5.4.

≤ 1

pδ(m−1)

∑
r∈R

Pr
α←←Zp

[P1(r) = α] =
1

pδ(m−1)

∑
r∈R

1

p
=

|R|
pδ(m−1)+1

(c)
≤ dpδ(m−1)

pδ(m−1)+1
=

d

p
.

Here, 1Rα(r) is the function which returns 1 if r ∈ Rα, and 0 otherwise. Equality (a) holds because
Rα ⊆ R for every α ∈ Zp. Indeed, if x ∈ Rα we have (P1 + α)(x) = (P2 + α)(x) = 0, which means
that (P1−P2)(x) = 0, and thus x ∈ R. Step (b) uses Markov’s inequality, and Inequality (c) is the estimate
on |R| given above.

Lemma 5.3. Let m, p, q ∈ N with p prime, and 0 ̸= P1, . . . , Pq ∈ Zp[X1, . . . , Xm] be such that at most
one of them is constant and, for all 1 ≤ i < j ≤ q, gcd(Pi, Pj) = 1. For each i ∈ [q] let di := deg(Pi),
and define d :=

∑q
i=1 di. Then, for every α1, . . . , αq ∈ Zp not all zero, there exist two non-zero polyno-

mials N,D ∈ Zp[X1, . . . , Xn] such that
∑q

i=1
αi
Pi

= N
D , deg(N) ≤ d−mini di, and deg(D) ≤ d.

Proof. For every i ∈ [q] define the polynomial Li :=
∏

1≤j≤q, j ̸=i Pi. If we now set N :=
∑q

i=1 αi · Li

and D :=
∏q

i=1 Pi, we obtain
q∑

i=1

αi

Pi(X1, . . . , Xm)
=

∑q
i=1 αi · Li(X1, . . . , Xm)∏q

i=1 Pi(X1, . . . , Xm)
=

N(X1, . . . , Xm)

D(X1, . . . , Xm)
.

We now prove that N ̸= 0. Suppose by contradiction that N = 0; we show that this implies αi = 0 for
every i ∈ [q]. Fix any i ∈ [q]. If Pi is constant, then notice that αiLi is the summand of highest degree
in N (because none of the other Pj is constant by assumption), which forces αi = 0. Suppose on the other
hand that Pi is not constant. Notice that for every j ̸= i, we have Pi | Lj and thus N ≡ αiLi (mod Pi), so
that N = 0 would mean Pi | αiLi. Given that Li is the product of polynomials coprime with Pi, we must
have gcd(Li, Pi) = 1, and thus Pi | αi. Since αi is a scalar, it must be αi = 0.

We now estimate the degrees of N and D. The bound on deg(D) is clear. For the numerator, notice that
each Li has degree d− di. Thus, the degree of N is at most maxi deg(Li) = maxi(d− di) = d−mini di.

Theorem 5.4 (LDD for low-degree sources). Let Γ be a computational group scheme and H[Γ] the
hash function family defined in Figure 15 (bottom). Then H[Γ] ∈ LDD[Slow]. More precisely, for any
adversary (S,A) in the LDD game with S a (d, k)-source we have

AdvlddH[Γ],S,A(λ) ≤
q(λ)d(λ)

2k(λ)
+

d(λ)q(λ)(q(λ) + 1)

2λ
. (5)

Here, d(λ) and q(λ) are upper bounds on the degree and number of polynomials returned by S0, respectively,
and k(λ) is a lower bound on H∞(S1(i, π)) for every i ∈ N and all public parameters π ←← H.Setup(1λ).

Proof. For every π and (P1, . . . , Pq, st) returned by Γ and S0(π), respectively, denote by Game := Game(λ, π,
P1, . . . , Pq, st) the LDD game for H[Γ] played by (S,A) with these parameters fixed, as shown in Fig-
ure 16 (left). This means

AdvlddH[Γ],S,A(λ) =
∑
π

∑
(P1,...,Pq ,st)

Pr[Game] Pr[(Γ(1λ) = π) ∧ (S0(π) = (P1, . . . , Pq, st))] .

32

Game LDDS,ARF (p):

π ←← Fun(Z2
p,Zp); (x1, . . . , xq, st)←← S(π); hk ←← Zp

(α0, α1, . . . , αq)←← A(π, hk , st)
return

(∑
αi · π(hk , xi) = α0

)
Game PredPRF,S(p):

π ←← Fun(Z2
p,Zp); (x1, . . . , xq, st)←← S(π)

x′ ←← P(π, st)
return (x′ ∈ {x1, . . . , xq})

Figure 17 — Left: The LDD game with respect to a random function. Right: The predictability game with respect
to a random function.

Fix any such π and (P1, . . . , Pq, st), consider the corresponding game Game, and define M :=
∑

i<j deg(Pi, Pj).
For every hk ∈ Zp and i, j ∈ [q] with i ̸= j, define the events Ei,j,hk := (gcd(Pi + hk , Pj + hk) = 1), and
set Ehk :=

⋂
1≤i<j≤q Ei,j,hk . Then we have:

Pr[Game] ≤ Pr[Game | Ehk] + Pr[¬Ehk] = Pr[Game | Ehk] + Pr

[⋃
i<j

¬Ei,j,hk

]

≤ Pr[Game | Ehk] +
∑

1≤i<j≤q
Pr[¬Ei,j,hk]

(a)
≤ Pr[Game | Ehk] +

M

p

(b)
= Pr[Game′ | Ehk] +

M

p

(c)
≤ q(λ)d(λ)

2mini∈[m]{H∞(S1(i,π))}
+

M

p

(d)
≤ q(λ)d(λ)

2k(λ)
+

d(λ)q(λ)(q(λ) + 1)

2λ
.

Here, Inequality (a) follows from Lemma 5.2. For Equality (b), notice that Game′ as defined in Fig-
ure 16 (right) is the same as Game, but with a reformulated winning condition. In this game, Nhk and Dhk

are defined as in Lemma 5.3, and Nhk − α0Dhk is a polynomial of degree at most qd. Finally, Inequality (c)
follows from the game-based Schwartz–Zippel lemma (Lemma 2.2), and Step (d) uses the lower bound on
the entropy of S1(i, π), that M ≤ dq(q + 1)/2, and that p ≥ 2λ−1.

5.2 Random Functions are LDDs

In this section we show further evidence towards the above conjecture by showing that a random function
is LDD for all (possibly unbounded) sources. We first prove, via a compression argument, that a random
function is LDD with respect to flat high-entropy sources.13

Unpredictable sources. Let S be a source. For U ≥ 1 we say that S is U -unpredictable if, for every
algorithm P, Pr

[
PredPRF,S(p)

]
≤ 1/U , where the game Pred is defined in Figure 17 (right).

Lemma 5.5. For every x ∈ R>0, denote by χ(x) := max(R≤x ∩ log(N)). Then 2x − 1 ≤ 2χ(x) ≤ 2x.

Proof. Fix any x > 0. The second inequality follows from χ(x) ≤ x, which holds by definition. For the
first inequality assume, for sake of contradiction, that 2χ(x) < 2x − 1, and let y := log(2χ(x) + 1). We claim
that y ∈ R≤x ∩ log(N) and χ(x) < y, thereby contradicting the maximality of χ(x). Indeed, 2χ(x) < 2x − 1
implies

χ(x) = log(2χ(x)) < log(2χ(x) + 1) < log(2x) = x ,

which shows that χ(x) < y < x. To conclude, notice that 2χ(x) ∈ N since χ(x) ∈ log(N), and therefore also
y = log(2χ(x) + 1) ∈ log(N).

13We were not able to prove this using the simpler bit-fixing method [CDGS18].

33

Theorem 5.6 (Random functions are LDDs). Let p > 2 be prime and let ϵ, U ∈ R. Let S be a U -
unpredictable source, such that the number q of points it returns depends only on p, and let A be an algorithm
with Pr

[
LDDS,ARF (p)

]
≥ ϵ, where the game LDDS,ARF (p) is defined in Figure 17 (left). Assume that:

max

(
2q+3

p
,

8

log(p)
+

2q−1

p
+

2(q + 1)
√
p

)
< ϵ ≤ 1 , U ≥ 32

ϵ2
, Q := 2q < p .

Then:

U ≤ 32

ϵ2
·
log(ϵ)− 3 + ϵp

2q−3 − log(p)
(
(q + 2) ϵp

2q−3 + ϵ
8 −

ϵ2p
8·2q−3

)
log(p)

(
(q + 1) + ϵ

8 −
ϵ2p
2q

)
+ 8ϵp

2q − 1
.

Proof Overview. To show that S cannot be too unpredictable, we will use it to give a compact description
of many functions in Fun(Z2

p,Zp). Indeed, observe that any hk and any pair of vectors x := (x1, . . . , xq) and
(α0, . . . , αq) returned by S and A define an affine equation with unknowns the function values f(hk , xi). As
a result, we can encode these values f(hk , xi) as solutions of an affine system of equations, and they can
be recovered correctly if there are enough equations so that the system has full rank. The key argument
now is that each x can be used many times over, because the equation is true for many different vectors
(hk , α0, . . . , αq). We can thus describe many equations compactly by first giving explicitly a large set F of
(hk , α0, . . . , αq) with distinct hk . Then, each x generated by S gives an affine equation

∑
αif(hk , xi) = α0.

By giving explicitly many different x, we can reconstruct many different equations. And we can retrieve a
large number of images. Now, if S were too unpredictable, the above would be true for many different x,
which would allow us to compress a random function in Fun(Z2

p,Zp) beyond information-theoretic lower
bounds.

In the first step of the proof (see Function Selection below), we select the “good” functions, i.e.,
those for which the LDD game is successful with high probability, and the source is still unpredictable. The
first condition implies that most of the equations remain meaningful, while the latter means that we have a
large number of vectors x, and thus a large number of equations.

Afterwards, in the State Selection step, we want to make the adversary deterministic and independent
of the source, so that we can encode the function on a cross product set. To do so, for any good function f ,
we fix a “good” state sf . At this step the source and the adversary are independent. Notice that since the
adversary is deterministic, (α0, . . . , αq) depends only of hk ; we denote it as (α

(hk)
0 , . . . , α

(hk)
q).

Now consider the linear system we obtain for a fixed hk . Our unknowns are yi := f(hk , i) with i ∈ [p],
and the system is of the form m1,1 · · · m1,p

...
. . .

...
mN,1 · · · mN,p


y1

...
yp

 =

α
(hk)
0
...

α
(hk)
0

 ,

where N is the number of equations.
To understand how we determine the values mi,j above, let’s look a small example with q = 4 and

the first vector x equal to (1, 7, 1000, 25). Then, we will have m1,1 = α
(hk)
1 , m1,7 = α

(hk)
2 , m1,1000 = α

(hk)
3 ,

m1,25 = α
(hk)
4 . All the other m1,i are zero.

Once we have the system, we need to make sure that the equations are linearly independent. Indeed, if
this were not the case, it would not be possible to recover the function from its encoding. In other words,
we need the matrix above to be invertible. As a first step, we need first to be sure which values are non-zero
among (α

(hk)
1 , . . . , α

(hk)
q). This aspect changes the independence of the equations a lot, and it makes it more

complex to compute the rank. We notice that the entries of the matrix being zero depends only on the
vector α, and then of the key hk .

34

In the Keys Selection we simplify the matrix invertibility analysis by restricting ourselves to a subset
Kf of keys, such that the support C (i.e., the set of indices of non-zero coordinates) is constant. We also
need to have this set big enough (to make the compression argument at the end work), and, of course, it
should also be “good” in the sense that the chances of winning the LDD game on this restricted set of keys
are good.

We are now in a position where all coefficients α for the subset C of size q′ are non-zero. Our next step
is to make a part of the equations independent, by assuring that it forms a triangular matrix if we put the
equations in the right order.

Then, in Input Selection, we first create an order on the values yi, and a function MP which associates
to any equation the maximal unknown y for the order defined which appears in the equation. Function
MP takes a vector (x1, . . . , xq) (which represents an equation), and returns the maximum xi (representing
f(hk , xi)) among all the xj with j ∈ C for the chosen order ≺.

We have selected the unknowns we want to compute, then we have to select one equation for each of
these unknowns. MP-Pred will select such an equation (encoded as a vector x). The details about why the
computed matrix is full rank can be found in Matrix Invertibility.

Finally, we compute the size of our compression encoding (described in Encoding Procedure and
Decoding Procedure) in the Coding Efficiency Analysis section, and conclude deriving the bound
claimed in the theorem. ■

Proof. We now carry out more formally the steps outlined in the overview above.

Function Selection. In the first part of our proof we define the set F ⊆ Fun(Z2
p,Zp) of “good” functions

f which we will encode later. A function f is deemed “good” if it has two properties: (1) Adversary (S,A)
has reasonably large advantage in the LDD game when the game picks π = f , and (2) Source S(f) is not
too predictable, i.e., choosing f does not make S predictable. In order to show that there is a sizable
proportion of functions with both attributes, we define two subsets G,H ⊆ Fun(Z2

p,Zp), each capturing one
of the properties that we are interested in. We then show that both sets are “large,” which means that their
intersection F := G ∩H must be “large” as well. More formally, define sets

G :=
{
f ∈ Fun(Z2

p,Zp)
∣∣∣ Pr[LDDS,Af (p)

]
≥ ϵ

2

}
,

and, for any 0 < N ≤ U ,

HN :=

{
f ∈ Fun(Z2

p,Zp)

∣∣∣∣ ∀P : Pr
[
PredPf,S(p)

]
<

N

U

}
,

where the games LDDS,Af (p) and PredPf,S(p) are the LDD and Pred games with π = f fixed, as in
Figures 18 (top left) and 18 (top right). To show that G is “large,” consider the proportion ϵ′ := |G|/p(p2) of
functions f ∈ Fun(Z2

p,Zp) contained in G. Then:

ϵ ≤ Pr
[
LDDS,ARF (p)

]
=

∑
f∈Fun(Z2

p,Zp)

Pr
[
LDDS,ARF (p)

∣∣ π = f
]
Pr[π = f]

=
∑

f∈Fun(Z2
p,Zp)

Pr
[
LDDS,Af (p)

]
Pr[π = f]

=
∑
f∈G

Pr
[
LDDS,Af (p)

]
Pr[π = f] +

∑
f /∈G

Pr
[
LDDS,Af (p)

]
Pr[π = f]

≤ Pr[π ∈ G] +
ϵ

2
Pr[π /∈ G] = Pr[π ∈ G] +

ϵ

2
(1− Pr[π ∈ G]) = ϵ′ +

ϵ

2
(1− ϵ′) .

35

Game LDDS,Af (p):

(x1, . . . , xq, st)←← S(f); hk ←← Zp

(α0, α1, . . . , αq)←← A(f, hk , st)
return

(∑
αi · f(hk , xi) = α0

)
Game PredPf,S(p):

(x1, . . . , xq, st)←← S(f); x′ ←← P(f, st)
return (x′ ∈ {x1, . . . , xq})

Predictor P(f):
if (f /∈ HN) then return Pf (f)
return ε

Predictor P(f, s):
if (s /∈Wf,N) then return Ps(f, s)
return 0

Figure 18 — Top left: The LDD game with fixed function π = f . Top right: The predictability game with fixed
function π = f . Bottom left: Predictor against the predictability of S to bound |HN |. Bottom right: Predictor for
the game Predf,S(p) to show that Wf,N is “large.”

From here we get ϵ′ ≥ ϵ/(2− ϵ) > ϵ/2, which means |G| ≥ ϵp(p
2)/2.

Moving on to estimating |HN | note that, by definition, for every f /∈ HN there exists a predictor Pf
such that Pr

[
Pred

Pf

f,S(p)
]
≥ N/U . We can therefore define a predictor P against the predictability of S as

shown in Figure 18 (bottom left). Given that S is U -unpredictable, we have

1

U
≥ Pr

[
PredPRF,S(p)

]
≥ Pr

[
PredPRF,S(p) ∧ (π /∈ HN)

]
=
∑

f /∈HN

Pr
[
PredPRF,S(p) ∧ (π = f)

]
=
∑

f /∈HN

Pr
[
PredPRF,S(p)

∣∣ π = f
]
Pr[π = f] =

∑
f /∈HN

Pr
[
Pred

Pf

f,S(p)
]
Pr[π = f] ≥

∑
f /∈HN

N

U
Pr[π = f]

=
N

U
Pr[π /∈ HN] =

N

U
(1− Pr[π ∈ HN]) =

N

U

(
1− |HN |

p(p2)

)
,

from which we get |HN | ≥ p(p
2)(1− 1/N).

Now fix H := H2/ϵ′ (notice that this requires U ≥ 2/ϵ′, which is implied by U ≥ 4/ϵ, which holds by
assumption), and consider F := G ∩H. We can show that F is “large” as well by bounding its complement:

|F̄ | = |Ḡ ∪ H̄| ≤ |Ḡ|+ |H̄| ≤ p(p
2)(1− ϵ′) + p(p

2) ϵ
′

2
= p(p

2)

(
1− ϵ′

2

)
,

which means that |F | ≥ ϵ′p(p
2)/2 > ϵp(p

2)/4. In other words, we deduce that F (i.e., the set of functions we
will compress later) contains at least a proportion ϵ/4 of all functions.

State Selection. Now that we have selected the “good” functions, we show how to associate to each
f ∈ F a “good” state for the source S(f). For f ∈ F , a source state sf is deemed “good” if it has two
properties: (1) Source S(f) still has large advantage in the LDD game with π = f and st = sf fixed, and
(2) Source S(f) does not become too predictable conditioned on its state being st = sf . Looking ahead, we
will fix st = sf later in the proof; this allows us to decouple S and A (there is no communication between
them), while retaining lower bounds on the unpredictability of S and the LDD advantage of (S,A).

To prove existence of a state as above for every f ∈ F , we again define sets Tf ,Wf ⊆ {0, 1}∗, each
capturing one of the properties we are interested in, and prove that both are “large.” As a result, their
intersection Sf := Tf ∩Wf cannot be empty, because we can show Pr[st ∈ Sf] > 0. We will then set sf to
be any element of the non-empty set Sf . More formally, fix any f ∈ F and define sets

Tf :=
{
s ∈ {0, 1}∗

∣∣∣ Pr[LDDS,Af (p)
∣∣ st = s

]
≥ ϵ

4

}
,

36

and, for any 0 < N ≤ ϵ′U/2,

Wf,N :=

{
s ∈ {0, 1}∗

∣∣∣∣ ∀P : Pr
[
PredPf,S(p)

∣∣ st = s
]
≤ N

2

ϵ′U

}
.

Since f ∈ F ⊆ G, we can show as above that Tf is “large”:
ϵ

2
≤ Pr

[
LDDS,Af (p)

]
=

∑
s∈{0,1}∗

Pr
[
LDDS,Af (p)

∣∣ st = s
]
Pr[st = s]

=
∑
s∈Tf

Pr
[
LDDS,Af (p)

∣∣ st = s
]
Pr[st = s] +

∑
s/∈Tf

Pr
[
LDDS,Af (p)

∣∣ st = s
]
Pr[st = s]

≤ Pr[st ∈ Tf] +
ϵ

4
Pr[st /∈ Tf] = Pr[st ∈ Tf] +

ϵ

4
(1− Pr[st ∈ Tf]) ,

from which we deduce that ϵ′′ := Pr[st ∈ Tf] > ϵ/(4− ϵ) > ϵ/4.
Furthermore, to obtain a bound for Wf,N notice that, for every s /∈Wf,N , there exists a predictor Ps

such that Pr
[
PredPs

f,S(p)
∣∣ st = s

]
> 2N/(ϵ′U). Define a predictor P as shown in Figure 18 (bottom right).

Since f ∈ F ⊆ H, we have:
2

ϵ′U
≥ Pr

[
PredPf,S(p)

]
≥ Pr

[(
PredPf,S(p)

)
∧ (st /∈Wf,N)

]
=

∑
s/∈Wf,N

Pr
[(
PredPf,S(p)

)
∧ (st = s)

]
=

∑
s/∈Wf,N

Pr
[
PredPf,S(p)

∣∣ st = s
]
Pr[st = s] =

∑
s/∈Wf,N

Pr
[
PredPs

f,S(p)
∣∣ st = s

]
Pr[st = s]

≥ N
2

ϵ′U
Pr[st /∈Wf,N] = N

2

ϵ′U
(1− Pr[st ∈Wf,N]) ,

which means that Pr[st ∈Wf,N] > 1− 1/N .
Now define Wf := Wf,2/ϵ′′ (notice that this requires U ≥ 4/(ϵ′ϵ′′), which is implied by U ≥ 32/ϵ2, which

again holds by assumption), and set Sf := Tf ∩Wf . Then

Pr[st /∈ Sf] = Pr[(st /∈ Tf) ∨ (st /∈Wf)] ≤ Pr[st /∈ Tf] + Pr[st /∈Wf] ≤ 1− ϵ′′ +
ϵ′′

2
= 1− ϵ′′

2
< 1− ϵ

8
,

where st is the random variable defined in the game LDDS,Af (p). From here we get Pr[st ∈ Sf] > ϵ/8 > 0,
thus in particular Sf ̸= ∅. We associate to any function f ∈ F a “good” state sf ∈ Sf .

Adversary Simplification. Now that we have chosen, for every “good” function f ∈ F , a “good” state
sf , we can use it to decouple S and A. Indeed, conditioned on st = sf , S and A become independent,
since there is no communication between the two algorithms. More formally, define a source S ′ that is
independent of A such that, for every f ∈ F , distribution of S ′(f) is the distribution of S(f) conditioned
on st = sf . That is, for every x ∈ Z∗p we set

Pr[S ′(f) = x] := Pr[S(f) = (x, sf) | st = sf] .

Then, for every f ∈ F , since sf ∈ Sf ⊆ Tf we have

Pr
[
FS-LDDS,Af (p)

]
= Pr

[
LDDS,Af (p)

∣∣ st = sf
]
≥ ϵ

4
,

where the game FS-LDDS,Af,K (p) for a set K ⊆ Zp is defined in Figure 19 (top left).

Moving on to A, without loss of generality we can assume A to be deterministic. Indeed, since A is
unbounded, it can always compute the tuple (α0, α1, . . . , αq) which maximizes the probability of winning
the LDD game for given f and hk . We denote by

(
α
(f,hk)
0 , α

(f,hk)
1 , . . . , α

(f,hk)
q

)
the deterministic output of

A(f, hk , sf). Notice that, by definition of an LDD adversary, these coefficients cannot be all zero.

37

Game FS-LDDS,Af,K (p):

(x1, . . . , xq)←← S ′(f); hk ←← K; (α0, α1, . . . , αq)←← A(f, hk , sf)
return

(∑
αi · f(hk , xi) = α0

)
Game FS-PredPf,S(p):

(x1, . . . , xq)←← S ′(f); x′ ←← P(f)
return (x′ ∈ {x1, . . . , xq})

Game MP-LDDS,Af (p):

(x1, . . . , xq)←← MP−1f (MPf (S ′(f))); hk ←← Zp

(α0, α1, . . . , αq)←← A(f, hk , sf)
return

(∑
αi · f(hk , xi) = α0

)
Game MP-PredPf,S(p):

(x1, . . . , xq)←← S ′(f); x∗ ← MPf (x1, . . . , xq)
x′ ←← P(f); return (x∗ = x′)

Figure 19 — Top left: The LDD game with fixed function π = f and state sf given to A. The hash key is drawn
from the set K ⊆ Zp. For brevity, we let FS-LDDS,A

f (p) := FS-LDDS,A
f,Zp

(p). Top right: The predictability game with
fixed function π = f . Bottom left: The LDD game with fixed function π = f and selection of the most probable
vectors. Bottom right: The predictability game with fixed function π = f and selection of the most probable x.

Keys Selection. We now come back to working towards encoding functions f ∈ F . Our encoding will
actually compress f only on a subset of its domain Z2

p and give the remaining function values in full. Thanks
to the independence of S ′ and A, we can let this subset be a rectangle Kf ×Xf ⊆ Z2

p. We discuss in the
following how to choose the “good” keys Kf , and leave the definition of the “good” inputs Xf to the next
part. Broadly speaking, the set Kf must have three properties: (1) It should be relatively large, so that a
random key likely belongs to it; (2) We must know exactly which coefficients αi are non-zero when A is run
on hk ∈ Kf ; and (3) Adversaries (S ′,A) win the FS-LDD game with relatively high probability when the
hash key is drawn from Kf .

More formally, fix a function f ∈ F , its corresponding state sf , and a parameter N ≤ p/2q that will be
set later. Notice that since A is deterministic, we can classify hash keys according to which coefficients
α
(f,hk)
i are non-zero. More precisely, for any I ⊆ [q], define Kf,I ⊆ Zp as the set of all hash keys such that

α
(f,hk)
i ̸= 0 exactly for indices i ∈ I, i.e.,

hk ∈ Kf,I ⇐⇒ ∀i ∈ [q] :
(
α
(f,hk)
i ̸= 0 ⇐⇒ i ∈ I

)
.

Since α
(f,hk)
i ̸= 0 for at least one i ∈ [q], we deduce that Kf,∅ = ∅. We also notice that {Kf,I}, with

I ⊆ [q] and I ̸= ∅, is a partition of Zp. Denote by JN the collection of all I ⊆ [q] such that |Kf,I | ≥ p/(N ·2q),
and let U :=

⋃
I∈JN Kf,I . Then we have:

ε

4
≤ Pr

[
FS-LDDS,Af (p)

]
=
|Ū |
p

Pr
[
FS-LDDS,A

f,Ū
(p)
]
+
|U |
p

Pr
[
FS-LDDS,Af,U (p)

]
=
|Ū |
p

Pr
[
FS-LDDS,A

f,Ū
(p)
]
+

p− |Ū |
p

Pr
[
FS-LDDS,Af,U (p)

]
≤ |Ū |

p
+

p− |Ū |
p

Pr
[
FS-LDDS,Af,U (p)

]
≤
∑

I /∈JN |Kf,I |
p

(
1− Pr

[
FS-LDDS,Af,U (p)

])
+ Pr

[
FS-LDDS,Af,U (p)

]
<

∑
I /∈JN 1

N · 2q
(
1− Pr

[
FS-LDDS,Af,U (p)

])
+ Pr

[
FS-LDDS,Af,U (p)

]
=

2q − |JN |
N · 2q

(
1− Pr

[
FS-LDDS,Af,U (p)

])
+ Pr

[
FS-LDDS,Af,U (p)

]
≤ 1

N

(
1− Pr

[
FS-LDDS,Af,U (p)

])
+ Pr

[
FS-LDDS,Af,U (p)

]
,

38

from which we deduce that
Pr
[
FS-LDDS,Af,U (p)

]
≥ Nϵ− 4

4(N − 1)
.

Since U =
⋃

I∈JN Kf,I is a union of disjoint sets, the above is equivalent to

∑
I∈JN

|Kf,I |∑
L∈JN |Kf,L|

Pr
[
FS-LDDS,Af,Kf,I

(p)
]
≥ Nϵ− 4

4(N − 1)
,

which in turn implies

max
I∈JN

Pr
[
FS-LDDS,Af,Kf,I

(p)
]
≥ Nϵ− 4

4(N − 1)
,

since the sum above is a convex combination. Now consider any set CN ∈ JN which maximizes the
probability on the left. From the definition of JN and the inequality above we deduce:

|Kf,CN
| ≥ p

N · 2q
, Pr

[
FS-LDDS,Af,Kf,CN

(p)
]
≥ Nϵ− 4

4(N − 1)
.

Define C := C8/ϵ (note that this is allowed because ϵ ≥ 2q+3/p by assumption). From above we then get:

|Kf,C | ≥
ϵp

2q−3
, Pr

[
FS-LDDS,Af,Kf,C

(p)
]
≥ ϵ

8− ϵ
.

Finally, let Kf ⊆ Kf,C be any subset of cardinality exactly N1 := ⌊ϵp/2q−3⌋, which maximizes the quantity
Pr
[
FS-LDDS,Af,K (p)

]
. Then we have:

|Kf | =
⌊ ϵp

2q−3

⌋
, Pr

[
FS-LDDS,Af,Kf

(p)
]
≥ ϵ

8− ϵ
>

ϵ

8
.

Input Selection. Having chosen the set of “good” keys, we now pick the set of “good” inputs Xf . These
two sets together define the region Kf ×Xf , which is the set of inputs to f on which we encode the function.
To define Xf , we first introduce a strict total order ≺f on Zp by demanding that a ≺f b if and only if

Pr
x←←S′(f)

[a ∈ {xi | i ∈ C}] < Pr
x←←S′(f)

[b ∈ {xi | i ∈ C}] ,

or if the two probabilities above coincide and a < b w.r.t. the natural order on Zp. We also define a function
MPf : Rng(S ′(f)) → Rng(MPf) ⊆ Zp mapping (x1, . . . , xq) to the maximal value of the set {xi | i ∈ C}
w.r.t. ≺f . Finally, we also consider a right inverse MP−1f : Rng(MPf)→ Rng(S ′(f)) of MPf , which on input
x ∈ Rng(MPf) returns the lexicographically first vector among the preimages (x1, . . . , xq) of x under MPf

which maximize the probability

Pr
hk←←Kf

[∑
α
(f,hk)
i f(hk , xi) = α

(f,hk)
0

]
.

Then, by construction,
Pr
[
MP-LDDS,Af,Kf

(p)
]
≥ Pr

[
FS-LDDS,Af,Kf

(p)
]
≥ ϵ/8 . (6)

We can also notice that, for any predictor P,

Pr
[
MP-PredPf,S(p)

]
≤ Pr

[
FS-PredPf,S(p)

]
≤ 32

ϵ2U
,

where the last inequality follows from sf ∈ Sf ⊆Wf .

39

Applying [Vad12, Lemma 6.10], we can write MPf (S ′(f)) as a convex combination of uniform distribu-
tions: There exist an integer c and (λ1, . . . , λc) ∈ [0, 1]c with

∑
λi = 1, and sets Xf,1, . . . , Xf,c ⊆ Zp with

N2 := |Xf,i| = 2χ(log(ϵ
2U/32)), such that

MPf (S ′(f)) =
c∑

i=1

λiUXf,i
.

Choose an index 1 ≤ r ≤ c such that

Pr
x←←MP−1

f (UXf,r
),hk←←Kf

[∑
α
(f,hk)
i f(hk , xi) = α

(f,hk)
0

]
is maximal, and set Xf := Xf,r. This implies

Pr
x←←MP−1

f (UXf
)

hk←←Kf

[∑
α
(f,hk)
i f(hk , xi) = α

(f,hk)
0

]
≥ Pr

x←←MP−1
f (MPf (S′(f)))
hk←←Kf

[∑
α
(f,hk)
i f(hk , xi) = α

(f,hk)
0

]

= Pr
[
MP-LDDS,Af,Kf

(p)
]
>

ϵ

8
.

(7)

Encoding Procedure. We can now finally use the function Encoding to efficiently describe all functions
in F . We can encode each function f ∈ F by giving the set Xf as a vector xf of size N2 ordered according
to ≺f , the vectors of

{
MP−1f (x)

∣∣ x ∈ Xf

}
as a vector of size qN2 by ordering them according to ≺f for

their preimages by MP−1f , the set Kf of size N1, the lists of the vectors
((
α
(f,hk)
i

)
i

)
hk∈Kf

(in the natural
order for the index hk) as a vector of size (q + 1)N1.

Then we describe the rectangle {f(hk , x) | (hk , x) ∈ Kf ×Xf} by giving a subset U ⊆ Kf ×Xf which
corresponds to wrong equations, and we give a vector to give the concrete values for solutions of these
equations (vhk ,x := f(hk , x))(hk ,x)∈U .

Finally with the vector (f(hk , x))(hk ,x)/∈Kf×Xf
we give directly all the values of the function outside the

rectangle Kf ×Xf .

Decoding Description. The function Decoding takes as input a vector of the form(
xf , (x1, . . . ,xN2),Kf , (αhk)hk∈Kf

, U, (va)a∈U , (fhk ,x)(hk ,x)/∈Kf×Xf

)
as a function f such that:

• f(hk , x) = fhk ,x if hk /∈ Kf or if x ̸∈ Xf := {xf [i] | i ∈ [N2]};

• f(hk , x) = v(hk ,x) if (hk , x) ∈ U ;

• Else for all (hk , x) ∈ (Kf ×Xf) \ U , we deduce the values by using all the equations
∑q

i=1αhk [i] ·
f(hk ,xj [i]) = α

(f,hk)
0 for all hk ∈ Kf , and j ∈ [N2] (see the next part for the details).

Matrix Invertibility. We now need to show that our encoding above describes the full function. To do so,
notice that for any hk , the only values of f(hk , x) not explicitly given are the images for (hk , x) ∈ Kf ×Xf

for which
∑

α
(f,hk)
i f(hk ,x[i]) = α

(f,hk)
0 , with x = MP−1(x).

Let’s fix the key to be hk .
Let X ′hk be the set of all the x’s such that (hk , x) is not explicitly given.
Because αhk =

(
α
(f,hk)
0 , . . . , α

(f,hk)
q

)
and all the MP−1(x)’s are known by the decoder (they are the

xi’s), he has access to all these equations. We must now prove that the corresponding linear system has a
unique solution.

40

We have the same number of equations and unknowns (call this number N ′hk := |X ′hk |). We have to
show that these equations are independent. Let o

(hk)
f be the function from X ′hk to [N ′hk] which gives the

rank of each element of X ′hk for the order ≺f (i.e., a ≺f b ⇐⇒ o
(hk)
f (a) < o

(hk)
f (b)).

For all x ∈ X ′hk and for all i such that (MP−1(x))i ∈ X ′hk , we let y
o
(hk)
f (x)

be an indeterminate which is

supposed to represent f(hk , x), and we set m
(f,hk)

o
(hk)
f (x),o

(hk)
f ((MP−1(x))i)

:= α
(f,hk)
i , and m

(f,hk)
i,j := 0 for all other

indices.
For all x ∈ X ′hk , by calling MP−1(x) = (x1, . . . , xq), we can rewrite the equations

∑
α
(f,hk)
i · f(hk , xi) =

α
(f,hk)
0 as: ∑

xi∈X′
hk∩{x1,...,xq}

α
(f,hk)
i · yof (xi) = α

(f,hk)
0 −

∑
xi∈{x1,...,xq}\X′

hk

α
(f,hk)
i · f(hk , xi) .

Notice that the constant in the right side of the equality can be directly computed by the decoder.
We can rewrite all these equations with unknowns the yof (xi)’s as a matrix M = (mi,j)1≤i,j≤N .

Remark that mi,j = m
(f,hk)
i,j .

• For all i ∈ [N], mi,i ̸= 0. Indeed,

mi,i = m
(f,hk)
i,i = m

(f,hk)

o
(hk)
f (o

(hk)−1
f (i)),o

(hk)
f (o

(hk)−1
f (i))

= α
(f,hk)

n(o
(hk)−1
f (i))

,

with n(x) the index of x in MP−1(x).

• If j > i, then mi,j = 0. Proof: We deduce o−1(i) ≺f o(hk)−1(j), then o(hk)−1(j) can’t appear in the
coordinates of MP−1(x) (because x is the maximum for this order by definition).

We deduce finally the invertibility of the matrix. With this information, we can deduce that all equations
are independent, and the decoder can retrieve all of the function f .

Coding Efficiency Analysis. Let’s count the functions generated by the codewords for a fixed N1, N2.
Notice that because the equations can determine fully the rectangle, we choose for each function in this set
an encoding where the number of true equations is minimal without any loss of generality (it doesn’t disturb
the encoding/decoding to consider a good equation as a wrong one), then |U | is fixed to N1N2−⌊N1N2ϵ/8⌋.
This cardinality is at most S(N2, N1), where:

S(x, y) ≤ px(q+1) ·
(
p

y

)
· py(q+1) ·

(
xy

⌊xyϵ/8⌋

)
pxy−⌊ϵxy/8⌋ · p(p2−xy)

≤ px(q+1) · py(q+2) · 2xypxy−⌊ϵxy/8⌋ · p(p2−xy)

The px(q+1) is the number of possible (x, (x1, . . . ,xN2),
(
p
y

)
the number of possible Kf , py(q+1) the set

of possible (α1, . . . ,αN1),
(xy
⌊xyϵ/8⌋

)
the set of possible sets U , pxy−⌊ϵxy/8⌋ the set of possible (va)a∈U , pp2−xy

the number of possible (fi,j , . . . , fi,j)(i,j)/∈Kf×Xf
.

We now want to upper-bound S(N2, N1) in terms of ϵ only. It is equivalent to upper-bound T (N2, N1),
where:

T (x̄, ȳ) := log(S(x̄, ȳ)) ≤ log(p) ((q + 1)(x̄+ ȳ) + ȳ) + x̄ȳ −
⌊ x̄ȳϵ

8

⌋
log(p) + log(p)p2

≤ log(p) ((q + 1)(x̄+ ȳ) + ȳ) + x̄ȳ +
(
1− x̄ȳϵ

8

)
log(p) + log(p)p2 .

41

Then:

T (N2, N1) ≤ log(p)
(
(q + 1)

(⌊ ϵp

2q−3

⌋
+ 2χ(log(ϵ

2U/32))
)
+
⌊ ϵp

2q−3

⌋
+ 1
)

+
(⌊ ϵp

2q−3

⌋
· 2χ(log(ϵ2U/32))

)(
1− ϵ

8
log(p)

)
+ log(p)p2 .

Because ϵ
8 log(p)− 1 > 0, (because by assumption ϵ > 8

log(p) +
2q

2p + 2(q+1)√
p), we now use the inequalities

from Lemma 5.5 and the definition of ⌊·⌋:

T (N2, N1) ≤ log(p)

(
(q + 2)

ϵp

2q−3
+ (q + 1)

ϵ2U

32

)
+

((ϵp

2q−3
− 1
)(ϵ2U

32
− 1

))(
1− ϵ

8
log(p)

)
+ log(p)p2 .

(8)

Notice that T (N2, N1) ≥ log(|F |) ≥ log
(
ϵp(p

2)/4
)
= log(ϵ) + p2 log(p)− 2.

By applying Inequality (8), and deleting the additive term log(p)p2 the previous inequality becomes:

log(ϵ)− 2 ≤ log(p)

(
(q + 2)

ϵp

2q−3
+ (q + 1)

ϵ2U

32

)
+ 1 +

ϵ3pU

4 · 2q
− ϵp

2q−3
− ϵ2U

32

−
((ϵp

2q−3
− 1
)(ϵ2U

32
− 1

))
ϵ

8
log(p)

≤ log(p)

(
(q + 2)

ϵp

2q−3
+ (q + 1)

ϵ2U

32
− ϵ

8
+

ϵ2p

8 · 2q−3
+

ϵ3U

8 · 32
− ϵ4Up

32 · 2q

)
+ 1 +

ϵ3pU

4 · 2q
− ϵp

2q−3
− ϵ2U

32
.

Developing further, we obtain:

0 ≤ − log(ϵ) + 3 + log(p)

(
(q + 2)

ϵp

2q−3
+ (q + 1)

ϵ2U

32
− ϵ

8
+

ϵ2p

8 · 2q−3
+

ϵ3U

8 · 32
− ϵ4Up

32 · 2q

)
+

ϵ3pU

4 · 2q
− ϵp

2q−3
− ϵ2U

32
.

Then we put all the terms without any U ’s in the left part.

log(ϵ)− 3 +
ϵp

2q−3
− log(p)

(
(q + 2)

ϵp

2q−3
+

ϵ

8
− ϵ2p

8 · 2q−3

)
≤ log(p)

(
(q + 1)

ϵ2U

32
+

ϵ3U

8 · 32
− ϵ4Up

32 · 2q

)
+

ϵ3pU

4 · 2q
− ϵ2U

32
.

We divide by ϵ2/32.

32

ϵ2

(
log(ϵ)− 3 +

ϵp

2q−3
− log(p)

(
(q + 2)

ϵp

2q−3
+

ϵ

8
− ϵ2p

8 · 2q−3

))
≤ U

(
log(p)

(
(q + 1) +

ϵ

8
− ϵ2p

2q

)
+

8ϵp

2q
− 1

)
. (9)

42

Define Q := 2q, and f(x) := log(p)
(
(q + 1)x+ x

8 −
x2p
2q

)
+ 8xp

2q − 1.
Because we do not know if f(ϵ) is positive, we have to study it before using Equation (9).
By solving the quadratic system in ϵ we deduce that:

∀ϵ ∈
[
2q−1((p(23−q) + log(p)/8)−

√
(p23−q + log(p)/8)2 + p22−q log(p)(q log(p) + log(p)− 1))

p log(p)
;

2q−1((p(23−q) + log(p)/8) +
√

(p23−q + log(p)/8)2 + p22−q log(p)(q log(p) + log(p)− 1))

p log(p)

]
implies f(ϵ) > 0. By assumption, we have ϵ > 8

log(p) +
2q

2p + 2(q+1)√
p , then we deduce the following upper

bound:

ϵ >
8

log(p)
+

2q

2p
+

2(q + 1)
√
p

We put all on the same denominator.

=
8p+ 2q log(p)/2 + log(p)

√
p2(q + 1)

p log(p)

=
2(p(22) + 2q log(p)/4) + log(p)

√
p2(q + 1)

p log(p)

=
2q−1

(
2(p(23−q) + log(p)/8) + log(p)

√
p22−q(q + 1)

)
p log(p)

We use the fact
√
n < n for any n > 1, and 22−q(q + 1) > 1.

>
2q−1

(
2(p(23−q) + log(p)/8) + log(p)

√
p22−q(q + 1)

)
p log(p)

=
2q−1

(
(p(23−q) + log(p)/8) + p23−q + log(p)/8 + log(p)

√
p22−q(q + 1)

)
p log(p)

=

2q−1
(
(p(23−q) + log(p)/8) + p23−q + log(p)/8 +

√
p22−q log2(p)(q + 1)

)
p log(p)

=
2q−1

(
(p(23−q) + log(p)/8) + p23−q + log(p)/8 +

√
p22−q log(p)(q log(p) + log(p))

)
p log(p)

>
2q−1

(
(p(23−q) + log(p)/8) + p23−q + log(p)/8 +

√
p22−q log(p)(q log(p) + log(p)− 1)

)
p log(p)

=
2q−1

(
(p(23−q) + log(p)/8) +

√
(p23−q + log(p)/8)2 +

√
p22−q log(p)(q log(p) + log(p)− 1)

)
p log(p)

We use the fact
√
a+
√
b >
√
a+ b.

>
2q−1

(
(p(23−q) + log(p)/8) +

√
(p23−q + log(p)/8)2 + p22−q log(p)(q log(p) + log(p)− 1)

)
p log(p)

43

It implies f(ϵ) < 0, then:

32

ϵ2
·
log(ϵ)− 3 + ϵp

2q−3 − log(p)
(
(q + 2) ϵp

2q−3 + ϵ
8 −

ϵ2p
8·2q−3

)
log(p)

(
(q + 1) + ϵ

8 −
ϵ2p
2q

)
+ 8ϵp

2q − 1
≥ U .

This concludes the proof.

6 Applications of PGGs

We now present some examples of how PGGs can be used to prove the hardness of group-based assumptions
and the security of practical cryptosystems under a variety of notions. As our first application, we prove
that the decisional Uber assumption (DUA) family holds in PGGs. In doing so we also capture all of its
implications. We then turn our attention to applications which do not seem to fall under the umbrella
of the DUA. In Section 6.2 we show how to construct UCEs for split sources from PGGs and LDDs,
thereby recovering several applications discussed in [BHK13]. Further applications, namely KDM-CPA and
RKA-CPA security of (modified versions of) ElGamal, and security of the ElGamal-with-Hash deterministic
encryption scheme, are discussed in Sections 6.3 to 6.5. Interestingly, all these applications enjoy reductions
under PGGs which furthermore retain to a large extent the simplicity of proofs in the GGM. Standard-
model constructions of such schemes under Uber (for example, the KDM-secure PKE scheme of Boneh et
al. [BHHO08]) are often substantially more complex and less efficient.

6.1 Uber Assumption in PGGs

The Uber assumption family [BBG05,Boy08] is an umbrella assumption that generalizes many hardness
assumptions used to analyze the security of concrete cryptosystems. It has been formalized for both simple
and bilinear groups, and has been shown to hold in (bilinear) generic groups [BBG05]. Here we focus on
simple (i.e., non-bilinear) groups and show that Uber assumptions for them fall within the PGG framework.
More precisely, we show that non-interactive, generator-independent Uber assumptions hold for PGGs.

We study an entropic generalization of the decisional version of the Uber assumption, which we call
DUA-II, and show that it holds for PGGs. Loosely speaking, DUA-II extends DUA by sampling the
inputs to the polynomials from independent, high-entropy distributions, rather than uniformly at random.
Restricted versions of DUA-II and applications thereof have previously appeared in the literature (see, for
example, Canetti’s DDH-II assumption in Figure 20 (bottom left)).

Decisional Uber Assumption II (DUA-II). Let Γ be a computational group scheme. We define the
advantage of an adversary A = (A0,A1,A2) in the DUA-II game for Γ as

Advdua-iiΓ,A (λ) := 2 · Pr
[
DUA-IIAΓ (λ)

]
− 1 ,

where the DUA-II game is defined in Figure 20 (top left). Here, A0 and A1 can be unbounded with
polynomially bounded output, and A2 is PPT. We require that T be linearly independent from R1, . . . , Rn,
and that H∞(A1(i, π)) = ω(log λ) for every i ∈ N and every π ←← Γ(1λ). We say that Γ is DUA-II secure if,
for any A as above, the advantage of A in the DUA-II game for Γ is negligible.

Throughout this section, we will assume that the rational functions R1, . . . , Rn returned by A0 are
linearly independent. This is without loss of generality: Indeed, linear (in)dependence can be checked
by computing D := lcm(Ř1, . . . , Řn), then writing a generic linear combination

∑n
i=1 ai · RiD = 0, and

solving the resulting linear system for (a1, . . . , an). This yields a nonzero solution if and only if R1, . . . , Rn

are linearly dependent. Now observe that if Rk is linearly dependent on R1, . . . , Rk−1, then gRk(x) can be

44

Game DUA-IIAΓ (λ):

d←← {0, 1}; (π := (◦, g0, p))←← Γ(1λ); r ←← Z∗p; g ← gr0
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
then return true

for i = 1 to n do hi ← gRi(s)

if (d = 0) then r′ ←← Zp else r′ ← T (s)
h← gr

′ ; d′ ←← A2(π, h1, . . . , hn, h, st); return (d = d′)

Game DDH-IIAΓ (λ):

d←← {0, 1}; (π := (◦, g0, p))←← Γ(1λ)
r ←← Z∗p; g ← gr0; x←← X (π); y ←← Zp

if (d = 0) then z ←← Zp else z ← xy
d′ ←← A(π, g, gx, gy, gz); return (d = d′)

Auxiliary dUber source S̄(π):
d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
then

return (ε, ε)
if (d = 0) then r′ ←← Zp else r′ ← T (s)
x← (R1(s), . . . , Rn(s), r

′); L← (d, st)
return (x, L)

PGG distinguisher D(π, (y, L)):
if (L = ε) then return true
(h1, . . . , hn, h)← y; (d, st)← L
d′ ←← A2(π, h1, . . . , hn, h, st); return (d = d′)

Figure 20 — Top left: The decisional Uber assumption II (DUA-II) game. Here, m is an upper bound on the number
of variables of the Ri, i ∈ [n+ 1]. The (ordinary) decisional Uber assumption (DUA) is a special case of DUA-II
where A1(i, π) is the uniform distribution over Zp for all i ∈ [m] and all π. Bottom left: The decisional Diffie–Hellman
assumption II (DDH-II) game of Canetti [Can97], where X (π) is assumed to be a well-spread distribution for all π.
Right: Reduction from a DUA-II adversary A to a PGG adversary (S,D).

computed directly by A2 (who knows gR1(x), . . . , gRk−1(x)) before guessing d′, without having to separately
query the challenger on Rk(x).

We now show that the DUA-II assumption holds in pseudo-generic groups. This allows us to recover all
cryptographic applications that fall under the reach of DUA and DUA-II.

Theorem 6.1 (PGG =⇒ DUA-II). Let Γ be a computational group scheme. If Γ is PGG[Salg ∩ Sduber]
secure, then it is DUA-II secure. More precisely, for any adversary A = (A0,A1,A2) in the DUA-II game
there is an adversary (S,D) in the PGG game for Γ such that

Advdua-iiΓ,A (λ) ≤ 2 ·AdvpggΓ,S,D(λ) +
3n(λ)

2λ−1
+

3(n(λ) + 1)
(
d̂(λ) + 3ď(λ)

)
2k(λ)

. (10)

Furthermore, S ∈ Salg ∩Sduber. More precisely, for any predictor P in the AlgPred game for (Γ,S), we have

Advalg-predΓ,S,P (λ) ≤ n(λ)

2λ
+

n(λ)2
(
d̂(λ) + ď(λ) + 1

)
2k(λ)−2

. (11)

Here, d̂(λ) and ď(λ) are upper bounds on the degrees of the numerator and denominator polynomials,
respectively, n(λ) is an upper bound on the number of rational functions R1, . . . , Rn returned by A0, and k(λ)
is a lower bound on H∞(A1(i, π)) for every i ∈ N and every π ←← Γ(1λ).

Proof Overview. Given an adversaryA = (A0,A1,A2) in the DUA-II game, consider a PGG adversary (S,D)
defined as follows: Source S runs A0 and A1, and queries Exp on R1(s), . . . , Rn(s), r

′, where r′ is either T (s)
or a random value, the choice being made at random. Distinguisher D then runs A2 and checks if it did
predict the choice made by S. By construction, S is a dUber source.

By direct inspection, the game PGGS,DΓ (λ) with challenge bit b = 1 coincides with the game DUA-IIAΓ (λ).
On the other hand, when b = 0, the probability of (S,D) winning the PGG game is negligible. This follows

45

from a bad event analysis: We transition to a game where r′ ̸= Ri(s) for all i ∈ [n]. Given that σ is a random
injection, we can then move to a game where the corresponding reply is picked at random, independently of
the random choice of S, so that A has no advantage in this game.

For algebraic unpredictability, let P be any predictor that returns a linear combination of the queries with
coefficients α1, . . . , αn, αn+1 given the leakage computed using the ideal Exp oracle. We again transition to
a game where the Exp queries are pairwise distinct, and then replace the answers with pairwise different
random elements that are independent of s. Winning the algebraic unpredictability game then means that s
(which P now knows nothing about) is a root of α1R1 + · · · + αnRn + αn+1r

′, which is unlikely by the
Schwartz–Zippel lemma. ■

Proof. Given an adversary A = (A0,A1,A2) in the DUA-II game, define the PGG dUber source S via
auxiliary algorithm S̄ and the distinguisher D as shown in Figure 20 (right). Observe that our reduction
does not directly convert the DUA-II game into the PGG experiment, since the learning phase in the former
case is always wrt. the real group operation, whereas it can involve the generic encoding in the latter.
Therefore, the PGG source must simulate the DUA-II game in such a way that both cases d ∈ {0, 1} are
covered when it plays in the real world, while gaining almost no advantage in the ideal world.

DUber structure. By construction, it is clear that S̄ makes no Exp query and returns a vector x and
leakage L. Thus, S ∈ Sduber.

Advantage bound. To prove Inequality (10), first recall that

AdvpggΓ,S,D(λ) = Pr
[
PGGS,DΓ (λ)

∣∣ b = 1
]
− Pr

[
¬PGGS,DΓ (λ)

∣∣ b = 0
]
.

We study the two summands separately. For the first term, it is easily verified by direct inspection that the
PGG game for Γ played by (S,D) with bit b = 1 fixed is the same as the DUA-II game for Γ played by A.
This in particular means that Pr

[
PGGS,DΓ (λ)

∣∣ b = 1
]
= Pr

[
DUA-IIAΓ (λ)

]
, and thus

Advdua-iiΓ,A (λ) = 2 · Pr
[
DUA-IIAΓ (λ)

]
− 1 = 2 · Pr

[
PGGS,DΓ (λ)

∣∣ b = 1
]
− 1

= 2 ·AdvpggΓ,S,D(λ) + 2 · Pr
[
¬PGGS,DΓ (λ)

∣∣ b = 0
]
− 1 .

We now study the second term in the sum above. To do so, consider the following sequence of games
(the formal description of which can be found in Figure 21):

Game0(λ) is the PGG game for Γ played by (S,D), with bit b = 0 fixed and inverted winning condition.
We also set a flag Bad0 ← true if the randomly chosen value r′ ←← Zp happens to coincide with Ri(s)
for some i ∈ [n].

Game1(λ) is the same as Game0(λ), but we resample r′ if Bad0 occurs. This ensures that r′ ̸= Ri(s) for
all i ∈ [n].

Game2(λ) is the same as Game1(λ), but we no longer compute h using the random injection σ, but instead
sample it at random from G. In case h is one of the elements hi = σ(Ri(s)) computed before, we set
the flag Bad1 ← true and resample h so that h ̸= hi for all i ∈ [n].

Game3(λ) is the same as Game2(λ), but we omit resampling h. In other words, in this game h is a uniformly
random element from G.

We now argue that the difference between the success probabilities of subsequent games is small.

46

Game Game0(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
then return true

if (d = 0) then r′ ←← Zp else r′ ← T (s)

if (r′ ∈ {Ri(s) | i ∈ [n]}) then Bad0 ← true

for i = 1 to n do hi ← σ(Ri(s))
h← σ(r′)
d′ ←← A2(π, h1, . . . , hn, h, st); return (d = d′)

Game Game1(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
then return true

if (d = 0) then r′ ←← Zp else r′ ← T (s)
if (r′ ∈ {Ri(s) | i ∈ [n]}) then

Bad0 ← true; r′ ←← Zp \ {Ri(s) | i ∈ [n]}
for i = 1 to n do hi ← σ(Ri(s))
h← σ(r′)
d′ ←← A2(π, h1, . . . , hn, h, st); return (d = d′)

Game Game2(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
then return true

if (d = 0) then r′ ←← Zp else r′ ← T (s)
if (r′ ∈ {Ri(s) | i ∈ [n]}) then r′ ←← Zp \ {Ri(s) | i ∈ [n]}
for i = 1 to n do hi ← σ(Ri(s))

h←← G

if (h ∈ {hi | i ∈ [n]}) then Bad1 ← true; h←← G \ {hi | i ∈ [n]}
d′ ←← A2(π, h1, . . . , hn, h, st); return (d = d′)

Game Game3(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
then return true

if (d = 0) then r′ ←← Zp else r′ ← T (s)
if (r′ ∈ {Ri(s) | i ∈ [n]}) then r′ ←← Zp \ {Ri(s) | i ∈ [n]}
for i = 1 to n do hi ← σ(Ri(s))

h←← G; if (h ∈ {hi | i ∈ [n]}) then Bad1 ← true

d′ ←← A2(π, h1, . . . , hn, h, st); return (d = d′)

Figure 21 — Code of the intermediate games in the proof of the DUA advantage bound (10) in Theorem 6.1.

Game0 ⇝ Game1. By definition, Game0(λ) and Game1(λ) are identical until Bad0, which means that
|Pr[Game0(λ)]− Pr[Game1(λ)]| ≤ Pr[Game0(λ) sets Bad0] by the fundamental lemma of game playing. To
bound the latter probability, observe that

Pr[Game0(λ) sets Bad0] =
1

2

n(λ)∑
k=0

Pr[Game0(λ) sets Bad0 | (d = 0) ∧ (n = k)] Pr[n = k]

+
1

2

n(λ)∑
k=0

Pr[Game0(λ) sets Bad0 | (d = 1) ∧ (n = k)] Pr[n = k] ,

where the sum over k extends only over those indices such that Pr[n = k] > 0 in Game0(λ). We now study
the two conditional probabilities separately. For the case d = 0, notice that

Pr

[
Game0(λ) sets Bad0

∣∣∣∣∣ (d = 0) ∧
∧ (n = k)

]
= Pr

k+1∧
j=1

(Řj(s) ̸= 0)

 ∧(k∨
i=1

(r′ = Ri(s))

) ∣∣∣∣∣∣ (d = 0) ∧
∧ (n = k)


≤

k∑
i=1

Pr

k+1∧
j=1

(Řj(s) ̸= 0)

 ∧ (r′ = Ri(s)
) ∣∣∣∣∣∣ (d = 0) ∧ (n = k)


≤

k∑
i=1

Pr

r′ = Ri(s)

∣∣∣∣∣∣
k+1∧

j=1

(Řj(s) ̸= 0)

 ∧ (d = 0) ∧ (n = k)

 (a)
≤

k∑
i=1

1

2λ−1
=

k

2λ−1
≤ n(λ)

2λ−1
,

where the Rj , r′, and s are distributed as in Game0(λ) with d = 0 and n = k, and Inequality (a) holds
because r′ is distributed uniformly over Zp (with p ≥ 2λ−1) and independently of all other random variables.

47

On the other hand, when d = 1 we have

Pr

[
Game0(λ) sets Bad0

∣∣∣∣∣ (d = 1) ∧
∧ (n = k)

]
= Pr

k+1∧
j=1

(Řj(s) ̸= 0)

 ∧(k∨
i=1

(T (s) = Ri(s))

) ∣∣∣∣∣∣ (d = 1) ∧
∧ (n = k)


≤

k∑
i=1

Pr

(T (s) = Ri(s)) ∧

k+1∧
j=1

(Řj(s) ̸= 0)

 ∣∣∣∣∣∣ (d = 1) ∧ (n = k)


=

k∑
i=1

Pr

(T̂ (s)Ři(s) = R̂i(s)Ť (s)
)
∧

k+1∧
j=1

(Řj(s) ̸= 0)

 ∣∣∣∣∣∣ (d = 1) ∧ (n = k)


≤

k∑
i=1

Pr
[
T̂ (s)Ři(s)− R̂i(s)Ť (s) = 0

∣∣ (d = 1) ∧ (n = k)
] (a)
≤

k∑
i=1

d̂(λ) + ď(λ)

2k(λ)
≤ n(λ) · d̂(λ) + ď(λ)

2k(λ)
.

Here, the Rj , T , and s are distributed as in Game0(λ) with d = 1 and n = k, and Inequality (a) follows
from the game-based Schwartz–Zippel lemma, since the degree of the (non-zero) polynomial T̂ Ři − R̂iŤ is
at most d̂(λ) + ď(λ). Combining our two estimates above we obtain

Pr[Game0(λ) sets Bad0] ≤
1

2
· n(λ)
2λ−1

+
1

2
·
n(λ)

(
d̂(λ) + ď(λ)

)
2k(λ)

.

Game1 ⇝ Game2. We argue that Game1(λ) and Game2(λ) are indistinguishable. Indeed, notice that the
only difference between these two games is in the definition of h, but that the distribution of h is identical in
both games: In Game1(λ), h is a random group element satisfying h ̸= hi for every i ∈ [n], since r′ ̸= Ri(s)
for every i ∈ [n] (by the previous game hop) and σ is a random injection. On the other hand, in Game2(λ)
the same holds by definition. Thus, Pr[Game1(λ)] = Pr[Game2(λ)].

Game2 ⇝ Game3. Again, Game2(λ) and Game3(λ) are identical until Bad1, which by the fundamental
lemma of game playing means |Pr[Game2(λ)]− Pr[Game3(λ)]| ≤ Pr[Game2(λ) sets Bad1], and

Pr[Game2(λ) sets Bad1] =

n(λ)∑
k=0

Pr[Game2(λ) sets Bad1 | n = k] Pr[n = k]

=

n(λ)∑
k=0

Pr

k+1∧
j=1

(Řj(s) ̸= 0)

 ∧(k∨
i=1

(h = hi)

) ∣∣∣∣∣∣ n = k

Pr[n = k]

≤
n(λ)∑
k=0

k∑
i=1

Pr

k+1∧
j=1

(Řj(s) ̸= 0)

 ∧ (h = hi)

∣∣∣∣∣∣ n = k

Pr[n = k]

≤
n(λ)∑
k=0

k∑
i=1

Pr

h = hi

∣∣∣∣∣∣
n+1∧

j=1

(Řj(s) ̸= 0)

 ∧ (n = k)

Pr[n = k]
(a)
≤

n(λ)∑
k=0

k∑
i=1

1

2λ−1
· Pr[n = k] ≤ n(λ)

2λ−1
,

where the Rj , h, hi and n are distributed as in Game2(λ), and the sum over k extends only over those values
such that Pr[n = k] > 0. Here, Inequality (a) holds because h is sampled uniformly at random from G, a
group of size p ≥ 2λ−1.

48

Game3. We conclude by bounding the probability of winning Game3. Observe that

Pr[Game3(λ)] ≤ Pr

Game3(λ)

∣∣∣∣∣∣
n+1∧
j=1

(Řj(s) ̸= 0)

+ Pr

n+1∨
j=1

(Řj(s) = 0)


(a)
=

1

2
+

n(λ)∑
k=0

Pr

k+1∨
j=1

(Řj(s) = 0)

∣∣∣∣∣∣ n = k

Pr[n = k] ≤ 1

2
+

n(λ)∑
k=0

k+1∑
j=1

Pr
[
Řj(s) = 0

∣∣ n = k
]
Pr[n = k]

(b)
≤ 1

2
+

n(λ)∑
k=0

k+1∑
j=1

ď(λ)

2k(λ)
Pr[n = k] ≤ 1

2
+

(n(λ) + 1)ď(λ)

2k(λ)
,

where the Rj , s and n are distributed as in Game3. For Equality (a), observe that if we disregard the cases
where the experiment returns true because the vector s is a root of one of the denominators, the challenge h
is completely independent of the bit d, which means that A2 can do nothing but guess. Finally, Inequality (b)
follows from the game-based Schwartz–Zippel lemma, recalling that Řj is a (non-zero) polynomial of degree
at most ď(λ) and the coordinates of s have min-entropy at least k(λ).

Combining the above estimates we obtain Inequality (10) for the DUA advantage:

Advdua-iiΓ,A (λ) = 2 ·AdvpggΓ,S,D(λ) + 2 · Pr
[
¬PGGS,DΓ (λ)

∣∣ b = 0
]
− 1

≤ 2 ·AdvpggΓ,S,D(λ) +
n(λ)

2λ−1
+

n(λ)
(
d̂(λ) + ď(λ)

)
2k(λ)

+
2n(λ)

2λ−1
+

2(n(λ) + 1)ď(λ)

2k(λ)

≤ 2 ·AdvpggΓ,S,D(λ) +
3n(λ)

2λ−1
+

3(n(λ) + 1)
(
d̂(λ) + 3ď(λ)

)
2k(λ)

.

Algebraic unpredictability. It remains to be shown that, for every DUA-II adversary A, the PGG
source S defined via algorithm S̄ in Figure 20 (right) is algebraically unpredictable. To this end, let A be
a DUA-II adversary and P be any predictor in the algebraic unpredictability game against S. We prove
Inequality (11) via a sequence of games. As before, we give here a short description of each game, and
present their formal code in Figure 22:

Game′0(λ) is the algebraic unpredictability game for S played by P.
Game′1(λ) is the same as Game′0(λ), but we immediately return true if one of the denominators Ři vanishes

on the vector s returned by A1. We also expand this condition to include the events (Ri(s) = Rj(s))
for all i, j ∈ [n] with i < j. Furthermore, we return true if the value r′ coincides with Ri(s) for
some i ∈ [n]. Notice that this implies that the Ri(s) and r′ are pairwise different from here on.

Game′2(λ) is the same as Game′1(λ), but we rewrite the winning condition. Indeed, since we now know that
no denominator Ři(s) vanishes, in this game the Exp oracle is queried on the n+ 1 points R1(s), . . . ,
Rn(s), r

′, of which the predictor must produce a valid linear combination.
Game′3(λ) is the same as Game′2(λ), but we implement σ via lazy sampling. In other words, we no longer

compute hi and h as evaluations of σ, but instead return random, pairwise different elements from G.
Game′4(λ) is the same as Game′3(λ), but we rewrite the winning condition: We clear the denominators, which

is equivalent to multiplying each fraction Ri with the least common multiple D of all denominator
polynomials, and evaluate the result at s. We also set flags Bad′ ← true if one of the conditions
making the experiment return true by default occurs.

Game′5(λ) is the same as Game′4(λ), but we remove the two conditional statements flagged with Bad′. Notice
that this can be done safely, because we have cleared all denominators from the winning condition in
the previous game (so that there is no danger of dividing by zero).

As before, we now relate the success probabilities of subsequent games.

49

Game Game′0(λ):

Q← []; π ←← Γ(1λ); σ ←← Inj(Zp,G); d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
then L← (ε, ε)

else
if (d = 0) then r′ ←← Zp else r′ ← T (s)
for i = 1 to n do hi ← σ(Ri(s))
h← σ(r′); L← (h1, . . . , hn, h, d, st)

[x1, . . . , xq]← Q; (α1, . . . , αq)←← P(π, L)
return

(∑q
i=1 αixi = 0

)
Game Game′1(λ):

Q← []; π ←← Γ(1λ); σ ←← Inj(Zp,G); d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
∨(

(∃i, j ∈ [n])(i < j ∧Ri(s) = Rj(s)
)

then return true
if (d = 0) then r′ ←← Zp else r′ ← T (s)

if (r′ ∈ {Ri(s) | i ∈ [n]}) then return true

for i = 1 to n do hi ← σ(Ri(s))
h← σ(r′); L← (h1, . . . , hn, h, d, st)
[x1, . . . , xq]← Q; (α1, . . . , αq)←← P(π, L)
return

(∑q
i=1 αixi = 0

)
Game Game′2(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); d←← {0, 1}
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
∨(

(∃i, j ∈ [n])(i < j ∧Ri(s) = Rj(s)
)

then return true
if (d = 0) then r′ ←← Zp else r′ ← T (s)
if (r′ ∈ {Ri(s) | i ∈ [n]}) then return true
for i = 1 to n do hi ← σ(Ri(s))
h← σ(r′); L← (h1, . . . , hn, h, d, st)

(α1, . . . , αn+1)←← P(π, L)

return
(∑n

i=1 αiRi(s) + αn+1r
′ = 0

)

Game Game′3(λ):

π ←← Γ(1λ); d←← {0, 1}; S ← ∅
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
∨(

(∃i, j ∈ [n])(i < j ∧Ri(s) = Rj(s)
)

then return true
if (d = 0) then r′ ←← Zp else r′ ← T (s)
if (r′ ∈ {Ri(s) | i ∈ [n]}) then return true

for i = 1 to n do hi ←← G \ S; S ← S ∪ {hi}

h←← G \ S; L← (h1, . . . , hn, h, d, st)

(α1, . . . , αn+1)←← P(π, L)
return

(∑n
i=1 αiRi(s) + αn+1r

′ = 0
)

Game Game′4(λ):

π ←← Γ(1λ); d←← {0, 1}; S ← ∅
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if
(
(∃i ∈ [n+ 1])(Ři(s) = 0)

)
∨(

(∃i, j ∈ [n])(i < j ∧Ri(s) = Rj(s)
)

then Bad′ ← true; return true

if (d = 0) then r′ ←← Zp else r′ ← T (s)

if (r′ ∈ {Ri(s) | i ∈ [n]}) then Bad′ ← true; return true

for i = 1 to n do hi ←← G \ S; S ← S ∪ {hi}
h←← G \ S; L← (h1, . . . , hn, h, d, st)

(α1, . . . , αn+1)←← P(π, L); D ← lcm(Ř1, . . . , Řn+1)

return
(∑n

i=1 αi(RiD)(s) + αn+1(r
′D)(s) = 0

)
Game Game′5(λ):

π ←← Γ(1λ); d←← {0, 1}; S ← ∅
(R1, . . . , Rn, T, st)←← A0(π); Rn+1 ← T
for i = 1 to m do s[i]←← A1(i, π)
if (d = 0) then r′ ←← Zp else r′ ← T (s)
for i = 1 to n do hi ←← G \ S; S ← S ∪ {hi}
h←← G \ S; L← (h1, . . . , hn, h, d, st)
(α1, . . . , αn+1)←← P(π, L); D ← lcm(Ř1, . . . , Řn+1)
return

(∑n
i=1 αi(RiD)(s) + αn+1(r

′D)(s) = 0
)

Figure 22 — Code of the intermediate games in the proof of the algebraic unpredictability bound (11) in Theorem 6.1.

50

Game′0 ⇝ Game′1. Observe that, by definition, Game′1(λ) returns true whenever Game′0(λ) does. Thus,
clearly, Pr[Game′0(λ)] ≤ Pr[Game′1(λ)].

Game′1 ⇝ Game′2. Observe that Pr[Game′1(λ)] = Pr[Game′2(λ)], because they are fundamentally identical.
Indeed, we have only used the fact that in Game′2(λ) the source makes n+ 1 queries, i.e., we know exactly
which elements are in Q, how many scalars the predictor must return, and what the linear combination
must look like.

Game′2 ⇝ Game′3. We now argue that Pr[Game′2(λ)] = Pr[Game′3(λ)]. To do so, observe that the distributions
of hi and h are identical in both games. Indeed, collisions between the Ri(s) and r′ are ruled out in both
games. This means that, in both cases, hi and h are pairwise different random elements of G: In Game′2(λ)
this holds because σ is a random injection, and in Game′3(λ) this is true by definition.

Game′3 ⇝ Game′4. Notice that clearing the denominators in the equality in the return statement does
not alter the winning condition, because points s ∈ Zm

p with D(s) = 0 are already excluded by the first
if-statement. Thus, Pr[Game′3(λ)] = Pr[Game′4(λ)].

Game′4 ⇝ Game′5. Observe that Game′4(λ) and Game′5(λ) are identical until Bad′. To bound the probability
of Game′4(λ) setting Bad′, observe that this event happens either if one of the denominators Ři(s) vanishes,
or if two rational functions Ri(s) and Rj(s) take the same value, or if r′ happens to coincide with one of
the Ri(s). Call these events E1, E2 and E3, respectively. Then observe that

Pr[Game′4(λ) sets Bad′] ≤ Pr[E1] + Pr[E2 ∧ ¬E1] + Pr[E3 ∧ ¬E1] .

We separately bound the three probabilities above. For the first term, observe that

Pr[E1] =

n(λ)∑
k=0

Pr[E1 | n = k] Pr[n = k] ≤
n(λ)∑
k=0

k+1∑
i=1

Pr
[
Ři(s) = 0

∣∣ n = k
]
Pr[n = k] ≤ (n(λ) + 1)ď(λ)

2k(λ)
,

where the last inequality follows from the game-based Schwartz–Zippel lemma and, as usual, the sum over k
extends over all indices such that Pr[n = k] > 0. For the second term, we proceed as follows:

Pr[E2 ∧ ¬E1] =

n(λ)∑
k=0

Pr[E2 ∧ ¬E1 | n = k] Pr[n = k]

≤
n(λ)∑
k=0

k∑
j=1

j−1∑
i=1

Pr
[(
Ri(s) = Rj(s)

)
∧ ¬E1

∣∣ n = k
]
Pr[n = k]

≤
n(λ)∑
k=0

k∑
j=1

j−1∑
i=1

Pr
[(
R̂i(s)Řj(s) = R̂j(s)Ři(s)

)
∧ ¬E1

∣∣∣ n = k
]
Pr[n = k]

≤
n(λ)∑
k=0

k∑
j=1

j−1∑
i=1

Pr
[
R̂i(s)Řj(s) = R̂j(s)Ři(s)

∣∣ n = k
]
Pr[n = k]

(a)
≤

n(λ)∑
k=0

k∑
j=1

j−1∑
i=1

d̂(λ) + ď(λ)

2k(λ)
Pr[n = k] ≤

n(λ)2
(
d̂(λ) + ď(λ)

)
2k(λ)+1

.

(12)

Here, Inequality (a) holds again because of the game-based Schwartz–Zippel lemma, keeping in mind
that R̂iŘj − R̂jŘi is a non-zero polynomial of degree at most d̂(λ) + ď(λ) for all indices 1 ≤ i, j ≤ k ≤ n(λ).
Finally, for the third term we have

51

Pr[E3 ∧ ¬E1] =
1

2

n(λ)∑
k=0

Pr[E3 ∧ ¬E1 | (d = 0) ∧ (n = k)] Pr[n = k]

+
1

2

n(λ)∑
k=0

Pr[E3 ∧ ¬E1 | (d = 1) ∧ (n = k)] Pr[n = k] .

We estimate the two coefficients separately. To do so, we again use the game-based Schwartz–Zippel lemma:

Pr[E3 ∧ ¬E1 | (d = 0) ∧ (n = k)] ≤
k∑

i=1

Pr
[(
r′ = Ri(s)

)
∧ ¬E1

∣∣ (d = 0) ∧ (n = k)
]

≤
k∑

i=1

Pr[r′ = Ri(s) | ¬E1 ∧ (d = 0) ∧ (n = k)] ≤ k

2λ−1
≤ n(λ)

2λ−1
,

and

Pr[E3 ∧ ¬E1 | (d = 1) ∧ (n = k)] ≤
k∑

i=1

Pr
[(
T (s) = Ri(s)

)
∧ ¬E1

∣∣ (d = 1) ∧ (n = k)
]

=
k∑

i=1

Pr
[(
T̂ (s)Ři(s) = Ť (s)R̂i(s)

)
∧ ¬E1

∣∣ (d = 1) ∧ (n = k)
]

≤
k∑

i=1

Pr
[
T̂ (s)Ři(s) = Ť (s)R̂i(s)

∣∣ (d = 1) ∧ (n = k)
]

≤
k∑

i=1

d̂(λ) + ď(λ)

2k(λ)
=

k
(
d̂(λ) + ď(λ)

)
2k(λ)

≤
n(λ)

(
d̂(λ) + ď(λ)

)
2k(λ)

.

The overall bound on the probability of Game′4(λ) setting Bad′ can be obtained by collecting the terms
above:

Pr[Game′4(λ) sets Bad′] ≤ (n(λ) + 1)ď(λ)

2k(λ)
+

n(λ)2
(
d̂(λ) + ď(λ)

)
2k(λ)+1

+
n(λ)

2λ
+

n(λ)
(
d̂(λ) + ď(λ)

)
2k(λ)+1

≤ n(λ)

2λ
+

3n(λ)2
(
d̂(λ) + ď(λ)

)
2k(λ)

.

Game′5. To conclude, we are left with bounding the winning probability in Game′5(λ). To do so, observe
that, for every tuple (α1, . . . , αn+1) returned by P, and with U := Xm+1 or U := T depending on d,
the polynomial α1(R1D) + · · · + αn(RnD) + αn+1(UD) is non-zero (because T is linearly independent
from R1, . . . , Rn, and these are linearly independent) and of degree at most deg(D) + d̂(λ) + 1 ≤ n(λ)ď(λ) +
d̂(λ) + 1. Thus, by the game-based Schwartz–Zippel lemma,

Pr[Game′5(λ)] ≤
n(λ)ď(λ) + d̂(λ) + 1

2k(λ)
≤

n(λ)2
(
d̂(λ) + ď(λ) + 1

)
2k(λ)

.

Collecting all our estimates above, we obtain the claimed bound (11).

Remark. We observe that Inequality (11) is not tight in general. Consider for instance the Decisional q-
Diffie–Hellman Inversion problem (q-DDHI, with q a polynomial), which is a special case of the DUA-II
where A0 sets n = q(λ) and chooses Ri(X) := Xi for i ∈ [n] and T (X) := 1/X. Then Inequality (12) can

52

be tightened, leading to an overall algebraic unpredictability loss that is quadratic in q. More precisely,
recall that (12) bounds the probability that any of the events (Ri(s) = Rj(s)), with i, j ∈ [n] and i < j,
occur. These events could very well be all different, thus resulting in at most

(
n(λ)
2

)
≤ n(λ)2/2 conditions;

on the other hand, for q-DDHI many of these events overlap. Indeed, for this particular instance the
event (Ri(s) = Rj(s)) only depends on the difference j − i between the degrees of the monomials, which
means that there are only q(λ)− 1 collision events to consider. Therefore, for the q-DDHI assumption the
algebraic unpredictability bound becomes

Advalg-predΓ,S,P (λ) ≤ q(λ)

2λ
+

(q(λ) + 1)(q(λ) + 2)

2k(λ)
.

6.2 Building UCEs

In this section we show how to construct UCEs based on PGGs and LDDs. We consider UCEs for statistically
unpredictable and split sources [BHK13], whose definition we recall below. Split sources are required to
make distinct queries to prevent iO-based attacks. BHK use split sources to prove security of a number of
applications, including RKA security, point-function obfuscation, and storage-auditing protocols, as well as
several other applications that rely on computationally unpredictable split sources.

Note that split UCE sources allow for limited post-processing of the outputs of the hashing oracle.
However, this feature of split sources is not used in any of the applications discussed by BHK: The very
simple S1 that merely returns its input is sufficient for proving the security of all applications of split sources
considered in [BHK13].14 We call split sources of this type simple. Our result in this section allows to
recover applications of UCEs with respect to simple split sources under PGGs and LDDs.15

(Simple) Split sources. A UCE source S is called split if there exist PPT algorithms S0 and S1 such
that S takes the form in Figure 23 (top left). Here, S0 returns a vector x whose entries are required to be
pairwise distinct, and some leakage L0. We write S = Splt[S0,S1] if S is a split source constructed from
algorithms S0 and S1 as above, and we denote by Ssplt the class of all such split sources. We further define
the class Sssplt ⊆ Ssplt of simple split sources, which are split sources where S1 merely returns L1 = y.
Similarly to PGG masking sources, we write S̄ := S0 for the source defining the simple split source S.

Construction. We construct a UCE GOR[Γ,H] in a modular way in terms of a PGG Γ and an underlying
LDD H as shown in Figure 23 (top right). Our construction is inspired by the correlated-input (CI) secure
hash of Goyal, O’Neill, and Rao (GOR) [GOR11], where outputs of a hash function are required to look
random on high-entropy, but possibly correlated, inputs. GOR show that the hash function x 7→ g1/(x+hk)

(associated to the conjectural LDD (hk , x) 7→ 1/(x+ hk)), where hk ←← Zp is the hash key, is non-adaptively
CI secure for polynomially induced correlations under the q-DDH assumption. This assumption falls under
DUA-II, and thus Theorem 6.1 allows us to recover this result. However, this falls short of achieving split
UCE security, since the hash inputs are polynomially induced.

Based on the conjectured existence of LDDs for all unpredictable sources, we show that GOR[Γ,H] is a
fully secure UCE (beyond polynomial sources) for all statistically unpredictable and split sources. In the
GGM, we can account for preprocessing too. Looking ahead into the proof, there is a close correspondence
between the class of sources for which one achieves LDD security and split UCE security. That is, if H is
an LDD for a certain class of sources (e.g., Ssup or Slow), then GOR[Γ,H] is UCE secure for an analogous
source class. Thus, we obtain an unconditional result for low-degree split UCE sources, since Theorem 5.4
shows that 1/(x+ hk) is LDD[Slow] secure.

14Interestingly, this simplification provides another avenue to circumvent iO-based attacks that exploit repetitions in x.
15We note, however, that in iterative constructions of block-ciphers from hash functions [BHK14], or indeed in domain

extenders for hash functions [ST17], adaptive calls to the hash function seem to be necessary.

53

Split source SHash(π):
(x, L0)←← S0(π)
for i = 1 to |x| do y[i]← Hash(x[i])
L1 ←← S1(π,y); L← (L0, L1)
return L

GOR[Γ,H].Setup(1λ):

π ←← Γ(1λ); return π

GOR[Γ,H]((h, hk), x):
y ← H(hk , x); return hy

GOR[Γ,H].KGen(π):
(◦, g0, p)← π
r ←← Z∗p; h← gr0
hk ←← H.KGen(π)
return (h, hk)

Auxiliary dUber source S̄ ′(π):
(◦, g0, p)← π; r′ ←← Z∗p; hk ←← H.KGen(π)
(x, L)←← S̄(π); n← |x|; L′ ← (L, hk)
for i = 1 to n do x′[i]← r′ · H(hk ,x[i])
x′[n+ 1]← r′; return (x′, L′)

PGG distinguisher D′(π, (y′, L′)):
n+ 1← |y′|; h← y′[n+ 1]
(L, hk)← L′; y← y′[1..n]
b′ ←← D(π, (h, hk), (y, L))
return b′

Figure 23 — Top left: Structure of the split source S = Splt[S0,S1] associated to S0 and S1. In simple split sources,
algorithm S1 returns L1 = y. Top right: The UCE GOR[Γ,H] built from a PGG Γ and an LDD H with H.Setup = Γ.
Bottom: Reduction from a UCE adversary (S,D) to a PGG adversary (S ′,D′).

Theorem 6.2 (PGG ∧ LDD =⇒ UCE[Ssup ∩Sssplt]). Let Γ be a computational group scheme and H a hash
function family with H.Setup = Γ.16 Consider the hash function family GOR[Γ,H] based on Γ and H as
defined in Figure 23 (top right). If Γ is PGG[Salg∩Sduber] secure and H is LDD[Ssup] secure, then GOR[Γ,H]
is UCE[Ssup ∩Sssplt] secure. More precisely, for any adversary (S,D) in the UCE game for GOR[Γ,H], there
are an adversary (S ′,D′) in the PGG game for Γ and an adversary (T ,A) in the LDD game for H such that

AdvuceGOR[Γ,H],S,D(λ) ≤ AdvpggΓ,S′,D′(λ) + q(λ)2 ·AdvlddH,T ,A(λ) +
q(λ)2 + 1

2λ−1
. (13)

Furthermore, S ′ ∈ Salg ∩ Sduber. More precisely, for any predictor P in the AlgPred game for (Γ,S ′), there
are adversaries (T ,A) and (T ,B) in the LDD game for H such that

Advalg-predΓ,S′,P (λ) ≤ q(λ)2 ·AdvlddH,T ,A(λ) + AdvlddH,T ,B(λ) . (14)

Moreover, T ∈ Ssup. More precisely, for any predictor P in the Pred game for (H, T), there is a predictor P ′
in the Pred game for (GOR[Γ,H],S) such that

AdvpredH,T ,P(λ) ≤ AdvpredGOR[Γ,H],S,P ′(λ) . (15)

In the above, q(λ) is an upper bound on the number of queries made by S to its Hash oracle.

Proof Overview. Let (S,D) be an adversary against UCE security of GOR[Γ,H]. We build (S ′,D′) against
the PGG security of the underlying group as shown in Figure 23 (bottom).

Advantage bound. Let b denote the challenge bit in the PGG game. Then it is easy to see that

Pr
[
PGGS

′,D′

Γ (λ)
∣∣ b = 1

]
= Pr

[
UCES,DGOR[Γ,H](λ)

∣∣ b = 1
]
.

Indeed, when b = 1 the exponentiation oracle is implemented via the real group operation. Hash values are
multiplied by rr′, which is random in Z∗p and can thus be replaced by a random r ∈ Z∗p. Thus the UCE
source and distinguisher are run as they would be in the UCE game with respect to the real hash function.

We next claim that

Pr
[
UCES,DGOR[Γ,H](λ)

∣∣ b = 0
]
≤ Pr

[
PGGS

′,D′

Γ (λ)
∣∣ b = 0

]
+ q(λ)2 ·AdvlddH,T ,A(λ) +

q(λ)2 + 1

2λ−1
.

16Notice that our candidate construction from Figure 15 (bottom) can be easily modified to be of this form.

54

This follows from the fact that when b = 0, the Exp oracle returns random values subject to injectivity.
We first transition to a game where Exp implements a random function. Using the PRP/PRF Switching
Lemma, we incur an additive loss of q(λ)2/2λ−1 (since S ′ makes at most q(λ)+ 1 many queries). We modify
this game further and replace the random function with a forgetful random function. The two games are
identical unless there is a collision in the inputs to the random function. We may bound the probability of
this event via the collision probability of the LDD H, which itself can be bounded in terms of the LDD
advantage: Consider an adversary A that sets the coefficients of two indices to +1 and −1, the remaining
coefficients to 0, and α0 = 0. The LDD source here is (virtually) identical to the UCE source. Thus any
LDD predictor can be converted into a UCE predictor: Simply ignore the hash values and run the LDD
predictor. This justifies the final inequality in the theorem. The final game that we arrive at is equivalent
to the UCE game with respect to a random oracle (recall that the split source outputs distinct inputs),
except that we must ensure that the group element in the hash key is a generator of G.

Algebraic unpredictability. We now show that the PGG source constructed above is algebraically
unpredictable. Consider a modified algebraic prediction game where Exp returns random group elements,
still subject to injectivity but not respecting equality across inputs. These two games are identical unless
there is a collision among the inputs. We may bound the probability of collision via the LDD adversary A
from above. This incurs a loss of q(λ)2 times the LDD advantage of A.

We now rely on the LDD security of the hash function to bound the probability of winning this modified
algebraic unpredictability game. Suppose there exists an algebraic predictor P against (Γ,S ′). We construct
an LDD source T and an LDD adversary B as follows. Source T again is virtually identical to S, and
is therefore unpredictable as shown above. Adversary B receives a hash key and leakage, and simulates
the group elements that the algebraic predictor P in the modified game expects randomly but subject to
injectivity. Together with the collision bound above, this establishes the second inequality stated in the
theorem. ■

Proof. Given an adversary (S,D) in the UCE game for GOR[Γ,H], define the PGG dUber source S ′ via
auxiliary algorithm S̄ ′ and the distinguisher D′ as shown in Figure 23 (bottom).

DUber structure. By construction, it is clear that S̄ ′ makes no Exp query and returns a vector x and
leakage L. Thus, S ′ ∈ Sduber.

Advantage bound. To prove Inequality (13), first recall that

AdvpggΓ,S′,D′(λ) = Pr
[
PGGS

′,D′

Γ (λ)
∣∣ b = 1

]
− Pr

[
¬PGGS

′,D′

Γ (λ)
∣∣ b = 0

]
.

We study the two summands separately. For the first term, consider the following sequence of games (the
formal description of which can be found in Figure 24 (top)):

Game1,0(λ) is the PGG game for Γ played by (S ′,D′) with bit b = 1 fixed.
Game1,1(λ) is the same as Game1,0(λ), but we sample the exponent rr′ of g0, with r, r′ ∈ Z∗p, as a single

exponent r ∈ Z∗p. By direct inspection, this game coincides with the UCE game for GOR[Γ,H] played
by (S,D), with bit b = 1 fixed.

We now argue that these two games are indistinguishable. Indeed, notice that the exponents of g0 in
the first game are rr′H(hk ,x[i]) and rr′, respectively. Since r and r′ are uniformly random in Z∗p, so is their
product rr′, which means that we can replace rr′ with a uniformly random r ∈ Z∗p. For the first term we
therefore conclude Pr

[
UCES,DGOR[Γ,H](λ)

∣∣ b = 1
]
= Pr

[
PGGS

′,D′

Γ (λ)
∣∣ b = 1

]
.

We now study the second term in the sum above. To do so, consider the following sequence of games
(the formal description of which can be found in Figure 24 (bottom)):

55

Game Game1,0(λ):

π ←← Γ(1λ); r ←← Z∗
p; g ← gr0 ; r′ ←← Z∗

p; hk ←← H.KGen(π)
(x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]← gr

′·H(hk,x[i])

h← gr
′
; return D(π, (h, hk),y, L)

Game Game1,1(λ):

π ←← Γ(1λ); r ←← Z∗
p; h← gr0 ; hk ←← H.KGen(π)

(x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]← hH(hk,x[i])

return D(π, (h, hk),y, L)

Game Game0,0(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); r′ ←← Z∗
p

hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]← σ(r′ · H(hk ,x[i]))
h← σ(r′); return D(π, (h, hk),y, L)

Game Game0,1(λ):

π ←← Γ(1λ); ρ←← Fun(Zp,G); r′ ←← Z∗
p

hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]← ρ(r′ · H(hk ,x[i]))

h← ρ(r′); return D(π, (h, hk),y, L)

Game Game0,2(λ):

π ←← Γ(1λ); ρ←← Fun(Zp,G)
hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]← ρ(H(hk ,x[i]))

h← ρ(1); return D(π, (h, hk),y, L)

Game Game0,3(λ):

π ←← Γ(1λ); ρ←← Fun(Zp,G)
hk ←← H.KGen(π)

(x, L)←← S̄(π); n← |x|; h←← G

for i = 1 to n do y[i]←← G

if ((∃i, j ∈ [n])

(H(hk ,x[i]) = H(hk,x[j])))∨

((∃i ∈ [n])(H(hk ,x[i]) = 1)) then

Bad← true; h← ρ(1)

for i = 1 to n do

y[i]← ρ(H(hk ,x[i]))

return D(π, (h, hk),y, L)

Game Game0,4(λ):

π ←← Γ(1λ); ρ←← Fun(Zp,G)
hk ←← H.KGen(π)
(x, L)←← S̄(π); n← |x|; h←← G
for i = 1 to n do y[i]←← G
return D(π, (h, hk),y, L)

Game Game0,5(λ):

π ←← Γ(1λ); ρ←← Fun(Zp,G)

r ←← Zp; hk ←← H.KGen(π)

(x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]← ρ(x[i])

h← gr0

return D(π, (h, hk),y, L)

Game Game0,6(λ):

π ←← Γ(1λ); ρ←← Fun(Zp,G)

r ←← Z∗
p; hk ←← H.KGen(π)

(x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]← ρ(x[i])
h← gr0
return D(π, (h, hk),y, L)

Figure 24 — Code of the intermediate games in the proof of the UCE advantage bound (13) in Theorem 6.2.

Game0,0(λ) is the PGG game for Γ played by (S ′,D′) with bit b = 0 fixed and inverted winning condition.
Game0,1(λ) is the same as Game0,0(λ), but we substitute the random injection σ ∈ Fun(Zp,G) with a random

function ρ ∈ Fun(Zp,G).
Game0,2(λ) is the same as Game0,1(λ), but we do not multiply the inputs to ρ by r′. Accordingly, we no

longer sample r′ ∈ Z∗p, because it isn’t used anywhere in the game.
Game0,3(λ) is the same as Game0,2(λ), but sample h and y[i] at random from G, instead of evaluating ρ.

Only if there is some collision among the inputs of ρ we restore the original values of h and y[i].
Game0,4(λ) is the same as Game0,3(λ), but we no longer check for collisions among the inputs of ρ.
Game0,5(λ) is the same as Game0,4(λ), but we compute h as h = gr0 for a random r ∈ Zp, and we let y[i]

be y[i] = ρ(x[i]).
Game0,6(λ) is the same as Game0,5(λ), but we sample r at random from Z∗p instead of Zp. This game now

coincides with the UCE game for GOR[Γ,H] played by (S,D), with bit b = 0 fixed and inverted
winning condition.

As before, we now relate the success probabilities of subsequent games.

Game0,0 ⇝ Game0,1. The difference between the success probabilites of these two games is given by the
PRP/PRF Switching Lemma. Given that the random permutation/function is evaluated on at most q(λ)+1
many inputs, we have |Pr[Game0,0(λ)]− Pr[Game0,1(λ)]| ≤ (q(λ) + 1)q(λ)/2λ ≤ q(λ)2/2λ−1.

56

Game0,1 ⇝ Game0,2. Notice that since r′ ∈ Z∗p, multiplication by r′ acts as a permutation on Zp. Therefore,
inputs to ρ are equal in Game0,1(λ) if and only if they are equal in Game0,2(λ), which means that y[i] and h
have the same distribution in both games: In both cases they are uniformly random, but repeat if hashes
collide or return 1. We thus conclude that Game0,1(λ) and Game0,2(λ) are indistinguishable.

Game0,2 ⇝ Game0,3. Observe that h and y′[i] have the same distribution in both games: If ρ is evaluated
twice on the same input, then we change nothing. Otherwise, ρ is always evaluated on fresh inputs,
which means that its outputs are uniformly random in G. Therefore, Game0,1(λ) and Game0,2(λ) are again
indistinguishable.

Game0,3 ⇝ Game0,4. By definition, Game0,3(λ) and Game0,4(λ) are identical until Bad, which means that
|Pr[Game0,3(λ)]− Pr[Game0,4(λ)]| ≤ Pr[Game0,3(λ) sets Bad] by the fundamental lemma of game playing.
To bound the latter probability, observe that

Pr[Game0,3(λ) sets Bad] ≤ Pr[Coll(λ)] =

q(λ)∑
k=1

Pr[Coll(λ) | n = k] Pr[n = k]

≤
q(λ)∑
k=1

∑
1≤i<j≤k+1

Pr[Colli,j(λ) | n = k] Pr[n = k] ≤
q(λ)∑
k=1

∑
1≤i<j≤k+1

Pr
[
LDD

T ,Ai,j,k

H (λ)
∣∣ n = k

]
Pr[n = k]

≤
q(λ)∑
k=1

(
k + 1

2

)
Pr
[
LDDT ,Ak

H (λ)
∣∣ n = k

]
Pr[n = k] ≤ q(λ)2

q(λ)∑
k=1

Pr
[
LDDT ,AH (λ)

∣∣ n = k
]
Pr[n = k]

= q(λ)2 ·AdvlddH,T ,A(λ) .

Here, games Coll(λ) and Colli,j(λ) are defined in Figure 25 (top), LDD source T (specified by T̄) in
Figure 25 (center left), and adversary Ai,j,k is given in Figure 25 (center right). We let Ak ∈ {Ai,j,k}i<j be
the adversary with the largest advantage in the LDD game for H with source T , and A the LDD adversary
that reads n off the state passed by T and then runs An.

Game0,4 ⇝ Game0,5. We observe that both h and y[i] have the same distribution in both games, because
the split UCE source S makes pairwise different oracle queries. Thus, Game0,4(λ) and Game0,5(λ) are
indistinguishable.

Game0,5 ⇝ Game0,6. Sampling r from Z∗p instead of Zp amounts in a loss of at most 1/2λ−1 in the winning
probability, which means |Pr[Game0,4(λ)]− Pr[Game0,5(λ)]| ≤ 1/2λ−1.

For the second term above we therefore have

Pr
[
¬UCES,DGOR[Γ,H](λ)

∣∣ b = 0
]
≥ Pr

[
¬PGGS

′,D′

Γ (λ)
∣∣ b = 0

]
− q(λ)2 ·AdvlddH,T ,A(λ)−

q(λ)2 + 1

2λ−1
.

Combining the above estimates we obtain Inequality (13) for the UCE advantage.

Algebraic unpredictability. We now show that, for every UCE adversary (S,D), the PGG source S ′
defined via algorithm S̄ ′ in Figure 23 (bottom) is algebraically unpredictable. To this end, let (S,D) be a
UCE adversary against GOR[Γ,H] and P be any predictor in the algebraic unpredictability game against S ′.
We prove Inequality (14) via a sequence of games. As before, we give here a short description of each game,
and present their formal code in Figure 26:

Game′0(λ) is the algebraic unpredictability game for S ′ played by P.

57

Games Coll(λ)/Colli,j(λ):

π ←← Γ(1λ); hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|; x′[n+ 1]← 1; for i = 1 to n do x′[i]← H(hk ,x[i])
Coll(λ): return

(
(∃i, j ∈ [n+ 1])(x′[i] = x′[j])

)
Colli,j(λ): if (i, j ∈ [n+ 1]) then return (x′[i] = x′[j])

return 0

Source T̄ (π):
(x, L)←← S̄(π); return (x, (L, |x|))

Adversary Ai,j,k(π, hk , (L, k)):

α← 0k+1; α[i]← 1; α[j]← 1; return α

Adversary B(π, hk , (L, n)):
S ← ∅; for i = 1 to n+ 1 do y[i]←← G \ S; S ← S ∪ {y[i]}
(α1, . . . , αn+1)←← P(π,y, L, hk); α0 ← −αn+1; return (α0, . . . , αn)

Predictor P ′(π,y, L):
n← |y|
return P(π, (L, n))

Figure 25 — Top: Definition of the games Coll and Colli,j . Center left: Definition of the LDD source T . Center
right: Definition of the LDD adversary Ai,j,k. Here, the vector α is indexed starting from 0 for convenience. Bottom
left: Definition of the LDD adversary B. Bottom right: Reduction from an LDD predictor P to a UCE predictor P ′.

Game′1(λ) is the same as Game′0(λ), but we immediately return true if two hashes of distinct points queried
by S̄ coincide, or if any of these hashes is equal to 1. This implies that, later in the game, the
encoding σ is queried on pairwise different inputs.

Game′2(λ) is the same as Game′1(λ), but we implement σ via lazy sampling. In other words, we no longer
compute y[i] as evaluations of σ, but instead return random, pairwise different elements from G. Note
that there is no need to check for consistency, because of the additional check introduced in Game′1(λ).

Game′3(λ) is the same as Game′2(λ), but we remove the if-statement added in Game′1(λ). We also cancel r′

from the winning condition (this can be done safely, because r′ ̸= 0 by assumption). Finally, we don’t
sample r′ anymore, since it no longer appears anywhere in the game.

As before, we now relate the success probabilities of subsequent games.

Game′0 ⇝ Game′1. Observe that, by definition, Game′1(λ) returns true whenever Game′0(λ) does. Thus,
clearly, Pr[Game′0(λ)] ≤ Pr[Game′1(λ)].

Game′1 ⇝ Game′2. We now argue that Pr[Game′1(λ)] = Pr[Game′2(λ)]. To do so, observe that the distributions
of y[i] are identical in both games. Indeed, collisions between the entries x′[i] are ruled out in both games.
This means that, in both cases, the y[i] are pairwise different random elements of G: In Game′1(λ) this holds
because σ is a random injection, and in Game′2(λ) this is true by definition.

Game′2 ⇝ Game′3. As in the first part of the proof, Game′2(λ) and Game′3(λ) are identical until Bad, which
by the fundamental lemma of game playing means |Pr[Game′2(λ)]−Pr[Game′3(λ)]| ≤ Pr[Game′2(λ) sets Bad],
and by the same reasoning as in the game hop Game0,3 ⇝ Game0,4 above, we have

Pr[Game2(λ) sets Bad] ≤ Pr[Coll(λ)] ≤ q(λ)2 ·AdvlddH,T ,A(λ) .

Game′3. By direct inspection, we have Game′3(λ) = LDDT ,BH (λ), where B is the LDD adversary defined in
Figure 25 (bottom left). Therefore, Pr[Game′3(λ)] = AdvlddH,T ,B(λ).

Collecting all our estimates above, we obtain the claimed bound (14).

Unpredictability of T . Observe that our estimates above are only meaningful if T is a statisti-
cally unpredictable LDD source. To prove that this indeed is the case, let P be any predictor in the
LDD unpredictability game for (H, T), and consider the predictor P ′ in the UCE unpredictability game
for (GOR[Γ,H],S) defined in Figure 25 (bottom right). By direct inspection, P ′ perfectly simulates the
game played by P, which means that AdvpredH,T ,P(λ) ≤ AdvpredGOR[Γ,H],S,P ′(λ).

58

Game Game′0(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); r′ ←← Z∗
p

hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|
for i = 1 to n do x′[i]← r′ · H(hk ,x[i]); y[i]← σ(x′[i])
x′[n+ 1]← r′; y[n+ 1]← σ(x′[n+ 1])
(α1, . . . , αn+1)←← P(π,y, L, hk)
return

(∑n
i=1 αir

′H(hk ,x[i]) + αn+1r
′ = 0

)
Game Game′1(λ):

π ←← Γ(1λ); σ ←← Inj(Zp,G); r′ ←← Z∗
p

hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|
for i = 1 to n do x′[i]← r′ · H(hk ,x[i])
x′[n+ 1]← r′

if
(
(∃i, j ∈ [n+ 1])((i < j) ∧ (x′[i] = x′[j]))

)
then

Bad← true; return true

for i = 1 to n do y[i]← σ(x′[i])
y[n+ 1]← σ(x′[n+ 1])
(α1, . . . , αn+1)←← P(π,y, L, hk)
return

(∑n
i=1 αir

′H(hk ,x[i]) + αn+1r
′ = 0

)

Game Game′2(λ):

π ←← Γ(1λ); S ← ∅; r′ ←← Z∗
p

hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|
for i = 1 to n do x′[i]← r′ · H(hk ,x[i])
x′[n+ 1]← r′

if
(
(∃i, j ∈ [n+ 1])((i < j) ∧ (x′[i] = x′[j]))

)
then

Bad← true; return true

for i = 1 to n+ 1 do y[i]←← G \ S; S ← S ∪ {y[i]}
(α1, . . . , αn+1)←← P(π,y, L, hk)
return

(∑n
i=1 αir

′H(hk ,x[i]) + αn+1r
′ = 0

)
Game Game′3(λ):

π ←← Γ(1λ); S ← ∅
hk ←← H.KGen(π); (x, L)←← S̄(π); n← |x|
for i = 1 to n do y[i]←← G \ S; S ← S ∪ {y[i]}
(α1, . . . , αn+1)←← P(π,y, L, hk)
return

(∑n
i=1 αiH(hk ,x[i]) + αn+1 = 0

)

Figure 26 — Code of the intermediate games in the proof of the algebraic unpredictability bound (14) in Theorem 6.2.

Remark. We note that the above proof can be easily extended to multi-key UCEs [BHK13, Figure 8] for
split sources by generating multiple hash keys and hash public keys via re-randomization. BHK conjectured
that UCE and multi-key UCE are in general equivalent, which remains open.

An alternative construction of UCEs from PGGs would first compute grx and then chop half of the
output bits so that group operations on hash outputs are no longer possible. (This was previously suggested,
for example, as a way to build a RO in the GGM by Zhandry and Zhang [ZZ21].) An analysis of this
construction may be made possible in the PGG framework by defining new sources that permit different
forms of post-processing.

6.3 KDM-CPA Security of Modified ElGamal

Security against key-dependent plaintext attacks (KDM-CPA) is a notion of security for encryption schemes
where an adversary can obtain encryptions of messages which are computed as a function of the secret key.17

It was introduced by Black, Rogaway, and Shrimpton [BRS03] in the symmetric setting and by Camenisch
and Lysyanskaya [CL01] in the public-key setting. In a breakthrough work, Boneh et al. [BHHO08]
constructed KDM-secure public-key encryption for affine functions in the standard model. KDM security
is also important in other contexts; for example, KDM security for IBEs from LWE, and completeness of
circular security for it, have been studied in recent works [App11,GGH20,LNPT20,KM20]. Here, we focus
on a non-adaptive version of this notion, where the key-dependent plaintexts can depend on the secret key
and public parameters, but not on the public key or on other ciphertexts.18

KDM-CPA security. A PKE scheme is a tuple of PPT algorithms E := (E.Setup,E.KGen,E.Enc,E.Dec),
where E.Setup(1λ) outputs system-wide parameters π available to all algorithms, and E.KGen, E.Enc,
and E.Dec are the usual key-generation, encryption, and decryption algorithms.

17In the case the messages are the secret keys, the notion is also called circular security.
18Note that public kesy may be derived from secret keys in a randomized way. The scheme that we study here has this

property.

59

Game KDM-CPAAE (λ):
d←← {0, 1}
π ←← E.Setup(1λ); 1n ←← A0(π)
for i = 1 to n do

(sk[i],pk[i])←← E.KGen(π)
(p,m0,m1)←← A1(π, sk)
for i = 1 to |md| do
c[i]←← E.Enc(π,pk[p[i]],md[i])

d′ ←← A2(π,pk, c); return (d = d′)

MEl[Γ].Setup(1λ):

(π := (◦, g0, p))←← Γ(1λ)
return π

MEl[Γ].KGen(π):
(◦, g, p)← π; s, sk ←← Zp

pk1 ← gs; pk2 ← gs·sk

return (sk , (pk1, pk2))

MEl[Γ].Enc(π, pk ,m):
(◦, g, p)← π; (pk1, pk2)← pk
t←← Zp; c1 ← pk t1
c′2 ← pk t2; c2 ← m ◦ c′2
return (c1, c2)

MEl[Γ].Dec(π, sk , c):

(c1, c2)← c; return c2 ◦ c−sk1

Auxiliary masking source S̄(π):
d←← {0, 1}; 1n ←← A0(π); for i = 1 to n do s[i]←← Zp; sk[i]←← Zp

(p,m0,m1)←← A1(π, sk); q ← |md|; for i = 1 to q do t[i]←← Zp

x← (s[1], . . . , s[n], s[1]sk[1], . . . , s[n]sk[n], s[p[1]]t[1], . . . ,
s[p[q]]t[q], s[p[1]]sk[p[1]]t[1], . . . , s[p[q]]sk[p[q]]t[q])

m← (1G, . . . , 1G,md[1], . . . ,md[q]); L← (d); return (x,m, L)

PGG distinguisher D(π, (y, L)):
(pk1,pk2, c1, c2)← y; (d)← L
d′ ←← A2(π,pk1,pk2, c1, c2)
return (d = d′)

Figure 27 — Top left: Our KDM-CPA model for a public-key encryption scheme E. Top right: The modified ElGamal
encryption scheme MEl[Γ], instantiated with a computational group scheme Γ. Bottom: Reduction from a KDM-CPA
adversary A to a PGG adversary (S,D).

Let E be a PKE scheme. The advantage of an adversary A = (A0,A1,A2) in the KDM-CPA game for E
is defined as

Advkdm-cpa
E,A (λ) := 2 · Pr

[
KDM-CPAAE (λ)

]
− 1 ,

where the KDM-CPA game is defined in Figure 27 (top left). Here, A0 and A1 can be unbounded with
polynomially bounded output, and A2 is PPT. We require that A1 outputs two message vectors of equal
length, which component-wise contain messages of equal lengths. We say that E is KDM-CPA secure, if the
advantage of any A as above in the KDM-CPA game for E is negligible.

Construction. Our construction of a PKE scheme MEl[Γ] secure in the KDM model discussed above is
presented in Figure 27 (top right). The scheme is a minor modification of the classical ElGamal encryption
scheme: The only difference to the traditional scheme is that the generator returned by the computational
group scheme is re-randomized during key generation.

We now prove that MEl[Γ] is KDM-CPA secure under PGG.

Theorem 6.3 (PGG =⇒ Modified ElGamal is KDM-CPA). Let Γ be a computational group scheme,
and let MEl[Γ] be the modified ElGamal encryption scheme defined in Figure 27 (top right). If Γ is
PGG[Salg ∩ Smsk] secure, then MEl[Γ] is KDM-CPA secure. More precisely, for any adversary A =
(A0,A1,A2) in the KDM-CPA game for MEl[Γ] there is an adversary (S,D) in the PGG game for Γ such
that

Advkdm-cpa
MEl[Γ],A(λ) ≤ 2 ·AdvpggΓ,S,D(λ) +

(4n(λ)− 1)(n(λ) + q(λ)) + n(λ) + 3q(λ)2

2λ−2
. (16)

Furthermore, S ∈ Salg ∩ Smsk. More precisely, for any predictor P in the AlgPred game for (Γ,S), we have

Advalg-predΓ,S,P (λ) ≤ 6n(λ)2 + 2n(λ)q(λ) + 4q(λ)2 + n(λ)

2λ−1
. (17)

Here, n(λ) and q(λ) are upper bounds on the number of key pairs requested by A0 and on the length of the
message vectors returned by A1, respectively.

60

Proof Overview. For an adversary A = (A0,A1,A2) in the KDM-CPA game for MEl[Γ], consider the PGG
adversary (S,D) defined in Figure 27 (bottom). Notice that, by construction, S is a masking source.

By direct inspection, Pr
[
PGGS,DΓ (λ)

∣∣ b = 1
]
= Pr

[
KDM-CPAAMEl[Γ](λ)

]
, where b denotes the challenge

bit in the PGG game. Indeed, the only difference between the two games is that randomness s[i] ∈ Zp in
the KDM-CPA game corresponds to rs[i] in the PGG game, where r is the random exponent from the PGG
game contained in the real Exp oracle. Since r ̸= 0, these quantities are pairwise identically distributed,
which implies that the winning probabilities coincide. On the other hand, Pr

[
PGGS,DΓ (λ)

∣∣b = 0
]

is negligible.
This follows from a bad-event analysis: We transition to a game where we replace the Exp oracle with
a forgetful random oracle, so that A2 has no advantage because its input is independent of d. The two
games are identical unless there is a repeat query to the oracle, or there is a repetition in the outputs of the
forgetful random oracle, with both events being unlikely.

Finally, to establish algebraic unpredictability of S, consider any predictor P that returns a linear
combination of the queries with coefficients α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq, δ1, . . . , δq given leakage (y, d)
computed using the ideal Exp oracle. We again transition to a game where Exp is replaced with a forgetful
random oracle. Unfortunately, the leakage is not yet independent of sk, because q = |c1| = |c2| depends
on sk. So we transition to a game where sk is picked after running P, from the unifrom distribution
on Zn

p given leakage q. Notice that this distribution loses at most logarithmically many bits of min-entropy
compared to the original one, so has still high min-entropy. Winning this game then means that s, sk and t
(which the predictor now knows nothing about, other than that sk has a slightly skewed distribution) must
be a root of the non-zero polynomial

n∑
i=1

Xi(αi + βiYi) +

q∑
j=1

Xp[j]Zj(γj + δjYp[j]) .

By the Schwartz–Zippel lemma, the probability that this happens (for uniform s and t and high entropy sk)
is negligible. ■

Proof. Given an adversary A = (A0,A1,A2) in the KDM-CPA game for MEl[Γ], define the masking source S
via auxiliary algorithm S̄ and distinguisher D as shown in Figure 27 (bottom). Observe that our reduction
does not directly convert the KDM-CPA game into the PGG experiment, since public keys and encryptions
are always computed using the real group operation in the former game, whereas they can involve the
generic operation in the latter. Therefore, the source must simulate the KDM-CPA game in such a way
that both cases d ∈ {0, 1} are covered when it plays in the real world, while gaining almost no advantage in
the ideal world.

Masking structure. By construction, it is clear that S̄ makes no Exp query and returns vectors x
and m of equal length. Thus, S ∈ Smsk.

Advantage bound. To prove Inequality (16), first recall that

Advkdm-cpa
MEl[Γ],A(λ) = 2 · Pr

[
KDM-CPAAMEl[Γ](λ)

]
− 1 .

We study the term on the right. Let Game(λ) denote the PGG game for Γ played by (S,D) with b = 1
fixed, as shown in Figure 28 (left). This game is virtually identical to the KDM-CPA game for MEl[Γ]
played by A, depicted in Figure 28 (right): The only major difference between the two experiments is the
generator used to compute the public keys and the ciphertexts. Indeed, Game(λ) computes pk1, pk2, c1
and c2 as

pk1[i] := gs[i] = g
rs[i]
0 , c1[i] := gs[p[i]]t[i] = g

(rs[p[i]])t[i]
0 ,

pk2[i] := gs[i]sk[i] = g
(rs[i])sk[i]
0 , c2[i] := md[i] ◦ gs[p[i]]sk[p[i]]t[i] = md[i] ◦ g

(rs[p[i]])sk[p[i]]t[i]
0 ,

61

Game Game(λ):

π ←← Γ(1λ); r ←← Z∗
p; g ← gr0 ; d←← {0, 1}; 1n ←← A0(π)

for i = 1 to n do s[i]←← Zp; sk[i]←← Zp

(p,m0,m1)←← A1(π, sk); q ← |md|
for i = 1 to q do t[i]←← Zp

for i = 1 to n do pk1[i]← gs[i]; pk2[i]← gs[i]sk[i]

for i = 1 to q do
c1[i]← gs[p[i]]t[i]; c2[i]←md[i] ◦ gs[p[i]]sk[p[i]]t[i]

d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

Game KDM-CPAA
MEl[Γ](λ):

d←← {0, 1}; π ←← Γ(1λ); 1n ←← A0(π)
for i = 1 to n do

s[i]←← Zp; sk[i]←← Zp; pk1[i]← g
s[i]
0 ; pk2[i]← g

s[i]sk[i]
0

(p,m0,m1)←← A1(π, sk); q ← |md|
for i = 1 to q do

t[i]←← Zp; c1[i]← g
s[p[i]]t[i]
0 ; c2[i]←md[i]◦gs[p[i]]sk[p[i]]t[i]

0

d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

Figure 28 — Left: The PGG game for Γ played by (S,D) with b = 1 fixed. Right: The KDM-CPA game for MEl[Γ]
played by A.

whereas in KDM-CPAAMEl[Γ](λ) we have

pk1[i] := g
s[i]
0 , pk2[i] := g

s[i]sk[i]
0 , c1[i] := g

s[p[i]]t[i]
0 , c2[i] := md[i] ◦ g

s[p[i]]sk[p[i]]t[i]
0 .

But observe that, in both cases, the values s[i] and rs[i] in the exponents are uniformly random in Z∗p, since
multiplying by an invertible element gives a permutation. Thus, the public keys and the ciphertexts have
the same distribution in the two experiments, which means the two games are equivalent. Therefore,

Advkdm-cpa
MEl[Γ],A(λ) = 2 · Pr

[
KDM-CPAAMEl[Γ](λ)

]
− 1 = 2 · Pr

[
PGGS,DΓ (λ)

∣∣ b = 1
]
− 1

= 2 ·AdvpggΓ,S,D(λ) + 2 · Pr
[
¬PGGS,DΓ (λ)

∣∣ b = 0
]
− 1 .

We now study the second term in the sum above. To do so, we consider a sequence of games. We give
here a short description of each game, and present their formal code in Figure 29.

Game0(λ) is the PGG game for Γ played by (S,D), with bit b = 0 fixed and inverted winning condition.
We also set a flag Bad0 ← true in case any of the sampled s[i], sk[i], or t[j] turns out to be 0.

Game1(λ) is the same as Game0(λ), but we use resampling to make sure that s[i], sk[i], t[j] ̸= 0 for all i
and j. We also record all inputs to σ in a list M , and set a flag Bad1 ← true if σ is evaluated on
repeated inputs.

Game2(λ) is the same as Game1(λ), but we ensure that all inputs to σ are pairwise different. We implement
this by resampling s[i], sk[i], or t[j] if necessary.

Game3(λ) is the same as Game2(λ), but we lazily sample the encoding σ. In other words, the masking
terms in the ciphertext are no longer obtained via evaluations of σ, but are random, pairwise distinct
elements of G. This can be achieved by recording all sampled elements in a new list M ′. If a collision
occurs, we set Bad2 ← true and resample the corresponding element.

Game4(λ) is the same as Game3(λ), but we sample pk1[i], pk2[i], c1[j], and c′2[j] (the latter being the term
masking the message md[j]) at random without any further checks.

Game5(λ) is the same as Game4(λ), but we directly sample c2[j] at random, instead of c′2[j] and multiplying
it with md[j].

We now study the difference between the success probabilities of subsequent games.

Game0 ⇝ Game1. By definition, these two games are identical until Bad0, and by the fundamental lemma
of game playing we have |Pr[Game0(λ)]− Pr[Game1(λ)]| ≤ Pr[Game0 sets Bad0] ≤ (2n(λ) + q(λ))/p. The
last inequality follows from the observation that Bad0 is set to true in Game0 if at least one of the randomly
chosen s[i], sk[i], or t[j] (of which there are at most n(λ) and q(λ), respectively) turns out to be zero, which
happens with probability at most (2n(λ) + q(λ))/p ≤ (2n(λ) + q(λ))/2λ−1.

62

Game Game0(λ):

(π := (◦, g0, p))←← Γ(1λ); σ ←← Inj(Zp,G)
d←← {0, 1}; 1n ←← A0(π)
for i = 1 to n do

s[i]←← Zp; if (s[i] = 0) then Bad0 ← true
sk[i]←← Zp; if (sk[i] = 0) then Bad0 ← true

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do

t[j]←← Zp; if (t[j] = 0) then Bad0 ← true
for i = 1 to n do

pk1[i]← σ(s[i]); pk2[i]← σ(s[i]sk[i])
for j = 1 to q do

c1[j]← σ(s[p[j]]t[j])
c2[j]←md[j] ◦ σ(s[p[j]]sk[p[j]]t[j])

d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

Game Game1(λ):

(π := (◦, g0, p))←← Γ(1λ); σ ←← Inj(Zp,G)

d←← {0, 1}; 1n ←← A0(π); M ← []

for i = 1 to n do
s[i]←← Zp

if (s[i] = 0) then Bad0 ← true; s[i]←← Z∗
p

if (s[i] ∈M) then Bad1 ← true

M ←M : s[i]

sk[i]←← Zp

if (sk[i] = 0) then Bad0 ← true; sk[i]←← Z∗
p

if (s[i]sk[i] ∈M) then Bad1 ← true

M ←M : s[i]sk[i]

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do

t[j]←← Zp

if (t[j] = 0) then Bad0 ← true; t[j]←← Z∗
p

if (s[p[j]]t[j] ∈M) ∨ (s[p[j]]sk[p[j]]t[j] ∈M) then

Bad1 ← true

M ←M : s[p[j]]t[j]; M ←M : s[p[j]]sk[p[j]]t[j]

for i = 1 to n do pk1[i]← σ(s[i]); pk2[i]← σ(s[i]sk[i])
for j = 1 to q do

c1[j]← σ(s[p[j]]t[j])
c2[j]←md[j] ◦ σ(s[p[j]]sk[p[j]]t[j])

d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

Game Game2(λ):

(π := (◦, g0, p))←← Γ(1λ); σ ←← Inj(Zp,G)
d←← {0, 1}; 1n ←← A0(π); M ← []
for i = 1 to n do

s[i]←← Z∗
p; if (s[i] ∈M) then Bad1 ← true; s[i]←← Z∗

p \M
M ←M : s[i]
sk[i]←← Z∗

p

if (s[i]sk[i] ∈M) then

Bad1 ← true; sk[i]←← Z∗
p \ s[i]−1 ·M

M ←M : s[i]sk[i]
(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do

t[j]←← Z∗
p

if (s[p[j]]t[j] ∈M) ∨ (s[p[j]]sk[p[j]]t[j] ∈M) then
Bad1 ← true

t[j]←← Z∗
p \ (s[p[j]]−1 ·M ∪ (s[p[j]]sk[p[j]])−1 ·M)

M ←M : s[p[j]]t[j], s[p[j]]sk[p[j]]t[j]
for i = 1 to n do pk1[i]← σ(s[i]); pk2[i]← σ(s[i]sk[i])
for j = 1 to q do

c1[j]← σ(s[p[j]]t[j]); c2[j]←md[j] ◦ σ(s[p[j]]sk[p[j]]t[j])
d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

Game Game3(λ):

(π := (◦, g0, p))←← Γ(1λ)

d←← {0, 1}; 1n ←← A0(π); M ← []; M ′ ← []

for i = 1 to n do
s[i]←← Z∗

p \M ; M ←M : s[i]
sk[i]←← Z∗

p \ s[i]−1 ·M ; M ←M : s[i]sk[i]
(p,m0,m1)←← A1(π, sk); q ← |md|
for i = 1 to n do

pk1[i]←← G; pk2[i]←← G

if (pk1[i] ∈M ′) then Bad2 ← true; pk1[i]←← G \M ′

M ′ ←M ′ : pk1[i]

if (pk2[i] ∈M ′) then Bad2 ← true; pk2[i]←← G \M ′

M ′ ←M ′ : pk2[i]

for j = 1 to q do
c1[j]←← G; c′2[j]←← G

if (c1[j] ∈M ′) then Bad2 ← true; c1[j]←← G \M ′

M ′ ←M ′ : c1[j]

if (c′2[j] ∈M ′) then Bad2 ← true; c′2[j]←← G \M ′

M ′ ←M ′ : c′2[j]

c2[j]←md[j] ◦ c′2[j]
d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

63

Game Game4(λ):

(π := (◦, g0, p))←← Γ(1λ)
d←← {0, 1}; 1n ←← A0(π); M ← []; M ′ ← []
for i = 1 to n do

s[i]←← Z∗
p \M ; M ←M : s[i]

sk[i]←← Z∗
p \ s[i]−1 ·M ; M ←M : s[i]sk[i]

(p,m0,m1)←← A1(π, sk); q ← |md|
for i = 1 to n do

pk1[i]←← G; if (pk1[i] ∈M ′) then Bad2 ← true
M ′ ←M ′ : pk1[i]
pk2[i]←← G; if (pk2[i] ∈M ′) then Bad2 ← true
M ′ ←M ′ : pk2[i]

for j = 1 to q do
c1[j]←← G; if (c1[j] ∈M ′) then Bad2 ← true
M ′ ←M ′ : c1[j]
c′2[j]←← G; if (c′2[j] ∈M ′) then Bad2 ← true
M ′ ←M ′ : c′2[j]
c2[j]←md[j] ◦ c′2[j]

d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

Game Game5(λ):

(π := (◦, g0, p))←← Γ(1λ)
d←← {0, 1}; 1n ←← A0(π); M ← []
for i = 1 to n do

s[i]←← Z∗
p \M ; M ←M : s[i]

sk[i]←← Z∗
p \ s[i]−1 ·M ; M ←M : s[i]sk[i]

(p,m0,m1)←← A1(π, sk); q ← |md|
for i = 1 to n do

pk1[i]←← G; pk2[i]←← G
for j = 1 to q do

c1[j]←← G; c2[j]←← G

d′ ←← A2(π,pk1,pk2, c1, c2); return (d = d′)

Figure 29 — Code of the intermediate games in the proof of the KDM-CPA advantage bound (16) in Theorem 6.3.

Game1 ⇝ Game2. Notice that, by definition, the two games are identical until Bad1. Furthermore, this flag
is only triggered if s[i] (resp., s[i]sk[i] or any of s[p[j]]t[i] and s[p[j]]sk[p[j]]t[i], all of which are uniformly
random in Z∗p because non-zero by the first game hop) is already contained in M . Therefore,

∣∣Pr[Game1(λ)]− Pr[Game2(λ)]
∣∣ ≤ Pr[Game1 sets Bad1] ≤

n(λ)−1∑
i=0

i

p
+

n(λ)−1∑
i=0

n(λ) + i

p
+

q(λ)−1∑
i=0

2n(λ) + 2i

p

≤ (2n(λ)− 1)(n(λ) + q(λ)) + q(λ)2

2λ−1
.

Game2 ⇝ Game3. We now argue that the next two games are indistinguishable. To do so, notice that
the distributions of σ(s[i]) and pk1[i], those of σ(s[i]sk[i]) and pk2[i], those of σ(s[p[j]]t[j]) and c1[j],
as well as those of σ(s[p[j]]sk[p[j]]t[j]) and c′2[i], are identical in both games. Indeed, in Game2 the
inputs to σ are pairwise distinct, which means that the outputs are pairwise different random elements
from G. This is exactly the distribution of the corresponding elements in Game3(λ). Therefore, we
have Pr[Game2(λ)] = Pr[Game3(λ)].

Game3 ⇝ Game4. Again notice that, by definition, the two games are identical until Bad2. This flag is only
triggered if pk1[i], pk2[i], c1[i], or c′2[i] are already contained in M ′. Thus,

∣∣Pr[Game3(λ)]− Pr[Game4(λ)]
∣∣ ≤ Pr[Game3 sets Bad2] ≤

n(λ)−1∑
i=0

2i+ 2i+ 1

p
+

q(λ)−1∑
i=0

2n(λ) + 2i+ 2i+ 1

p

≤ 2n(λ)2 − n(λ)

p
+

q(λ)(2n(λ) + 2q(λ)− 1)

p
≤ (2n(λ)− 1)(n(λ) + q(λ)) + 2q(λ)2

2λ−1
.

Game4 ⇝ Game5. Notice that Pr[Game4(λ)] = Pr[Game5(λ)] because c′2[j] is uniformly random in Game4(λ),
and therefore so is c2[j]. This means that c2[j] has the same distribution in Game4(λ) and Game5(λ).

Game5. Finally, observe that the advantage of A in Game5(λ) is 1/2. Indeed, the challenge bit d is
completely independent of A’s input (all input strings are random in Game5(λ)), which means that A gains
no information about d.

64

Combining the above estimates we obtain Inequality (16) for the KDM-CPA advantage:

Advkdm-cpa
MEl[Γ],A(λ) = 2 ·AdvpggΓ,S,D(λ) + 2 · Pr

[
¬PGGS,DΓ (λ)

∣∣ b = 0
]
− 1

≤ 2 ·AdvpggΓ,S,D(λ) + 2

(
1

2
+

(4n(λ)− 1)(n(λ) + q(λ)) + n(λ) + 3q(λ)2

2λ−1

)
− 1

= 2 ·AdvpggΓ,S,D(λ) +
(4n(λ)− 1)(n(λ) + q(λ)) + n(λ) + 3q(λ)2

2λ−2
.

Algebraic unpredictability. It remains to be shown that, for every KDM-CPA adversary A, the
masking source S defined via algorithm S̄ from Figure 27 (bottom) is algebraically unpredictable. So let A
be a KDM-CPA adversary and P be any predictor in the algebraic unpredictability game against S. We
prove Inequality (17) via a sequence of games. As before, we give here a short description of each game,
and present their formal code in Figure 30 (top).

Game′0(λ) is the algebraic unpredictability game for S played by P.
Game′1(λ) is the same as Game′0(λ), except that s[i], sk[i], t[j] ̸= 0 for all i, j.
Game′2(λ) is the same as Game′1(λ), but we ensure that all inputs to σ are pairwise different. We implement

this by resampling s[i], sk[i], and t[j] if necessary.
Game′3(λ) is the same as Game′2(λ), but we replace evaluations of the encoding σ with random, pairwise

different group elements.
Game′4(λ) is the same as Game′3(λ), but now we sample pk1, pk2, c1, and c2 at random, without any further

checks.
Game′5(λ) is the same as Game′4(λ), but we revert our previous changes from Game′2(λ) and again sample s[i],

sk[i], and t[j] at random from Z∗p.
Game′6(λ) is the same as Game′5(λ), but we undo our first game hop and sample s[i], sk[i], and t[j] uniformly

at random from Zp.
Game′7(λ) is the same as Game′6(λ), but with the order of a few instructions changed. More precisely, we

interpret the sampling of sk and the computation of q as done jointly by the source T defined in
Figure 30 (bottom). We can then decouple the two coordinates of T by defining a new source T ′1 such
that, for every π ←← Γ(1λ), 1n ←← A0(π), and q ∈ [q(λ)], T ′1 (π, n, q) is independent of T2(π, n), and its
distribution is the conditional distribution of T1 given T2 (both defined in Figure 30 (bottom)), i.e.,

Pr[T ′1 (π, n, q) = sk] := Pr[T1(π, n) = sk | T2(π, n) = q] .

As before, we now relate the success probabilities of subsequent games.

Game′0 ⇝ Game′4. Notice that transitions from Game′0(λ) to Game′4(λ) are identical to those from Game0(λ)
to Game5(λ) in the proof of Inequality (16) above, which means that we also incur in the same advantage
loss. In other words,∣∣Pr[Game′0(λ)]− Pr[Game′4(λ)]

∣∣ ≤ (4n(λ)− 1)(n(λ) + q(λ)) + n(λ) + 3q(λ)2

2λ−1
.

Game′4 ⇝ Game′5 and Game′5 ⇝ Game′6. Observe that the changes made reverse those introduced in the first
two game hops, which means that we incur in the same advantage loss. From our earlier discussion we thus
conclude that∣∣Pr[Game′4(λ)]− Pr[Game′5(λ)]

∣∣ = ∣∣Pr[Game′1(λ)]− Pr[Game′2(λ)]
∣∣ ≤ 2n(λ) + q(λ)

2λ−1
,∣∣Pr[Game′5(λ)]− Pr[Game′6(λ)]

∣∣ = ∣∣Pr[Game′0(λ)]− Pr[Game′1(λ)]
∣∣ ≤ (2n(λ)− 1)(n(λ) + q(λ)) + q(λ)2

2λ−1
.

65

Game Game′0(λ):

(π := (◦, g0, p))←← Γ(1λ); σ ←← Inj(Zp,G)
d←← {0, 1}; 1n ←← A0(π)
for i = 1 to n do s[i]←← Zp; sk[i]←← Zp

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do t[j]←← Zp

for i = 1 to n do
pk1[i]← σ(s[i]); pk2[i]← σ(s[i]sk[i])

for j = 1 to q do
c1[j]← σ(s[p[j]]t[j])
c2[j]←md[j] ◦ σ(s[p[j]]sk[p[j]]t[j])

(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,
δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)

return
(∑n

i=1 s[i](αi + βisk[i]) +∑q
j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0

)
Game Game′1(λ):

(π := (◦, g0, p))←← Γ(1λ); σ ←← Inj(Zp,G)
d←← {0, 1}; 1n ←← A0(π)

for i = 1 to n do s[i]←← Z∗
p; sk[i]←← Z∗

p

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do t[j]←← Z∗

p

for i = 1 to n do
pk1[i]← σ(s[i]); pk2[i]← σ(s[i]sk[i])

for j = 1 to q do
c1[j]← σ(s[p[j]]t[j])
c2[j]←md[j] ◦ σ(s[p[j]]sk[p[j]]t[j])

(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,
δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)

return
(∑n

i=1 s[i](αi + βisk[i]) +∑q
j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0

)
Game Game′2(λ):

(π := (◦, g0, p))←← Γ(1λ); σ ←← Inj(Zp,G)

d←← {0, 1}; 1n ←← A0(π); M ← []

for i = 1 to n do
s[i]←← Z∗

p \M ; M ←M : s[i]

sk[i]←← Z∗
p \ s[i]−1 ·M ; M ←M : s[i]sk[i]

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do

t[j]←← Z∗
p \ (s[p[j]]−1 ·M ∪ (s[p[j]]sk[p[j]])−1 ·M)

M ←M : s[p[j]]t[j], s[p[j]]sk[p[j]]t[j]

for i = 1 to n do
pk1[i]← σ(s[i]); pk2[i]← σ(s[i]sk[i])

for j = 1 to q do
c1[j]← σ(s[p[j]]t[j])
c2[j]←md[j] ◦ σ(s[p[j]]sk[p[j]]t[j])

(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,
δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)

return
(∑n

i=1 s[i](αi + βisk[i]) +∑q
j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0

)

Game Game′3(λ):

(π := (◦, g0, p))←← Γ(1λ)

d←← {0, 1}; 1n ←← A0(π); M ← []; M ′ ← []

for i = 1 to n do
s[i]←← Z∗

p \M ; M ←M : s[i]
sk[i]←← Z∗

p \ s[i]−1 ·M ; M ←M : s[i]sk[i]
(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do

t[j]←← Z∗
p \ (s[p[j]]−1 ·M ∪

∪ (s[p[j]]sk[p[j]])−1 ·M)
M ←M : s[p[j]]t[j], s[p[j]]sk[p[j]]t[j]

for i = 1 to n do
pk1[i]← G \M ′; M ′ ←M : pk1[i]

pk2[i]← G \M ′; M ′ ←M : pk2[i]

for j = 1 to q do
c1[j]← G \M ′; M ′ ←M : c1[j]

c′2[j]← G \M ′; M ′ ←M : c′2[j]

c2[j]←md[j] ◦ c′2[j]
(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,

δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)
return

(∑n
i=1 s[i](αi + βisk[i]) +∑q

j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0
)

Game Game′4(λ):

(π := (◦, g0, p))←← Γ(1λ)
d←← {0, 1}; 1n ←← A0(π); M ← []
for i = 1 to n do

s[i]←← Z∗
p \M ; M ←M : s[i]

sk[i]←← Z∗
p \ s[i]−1 ·M ; M ←M : s[i]sk[i]

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do

t[j]←← Z∗
p \ (s[p[j]]−1 ·M ∪

∪ (s[p[j]]sk[p[j]])−1 ·M)
M ←M : s[p[j]]t[j], s[p[j]]sk[p[j]]t[j]

for i = 1 to n do pk1[i]← G; pk2[i]← G

for j = 1 to q do c1[j]← G; c2[j]← G

(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,
δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)

return
(∑n

i=1 s[i](αi + βisk[i]) +∑q
j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0

)
Game Game′5(λ):

(π := (◦, g0, p))←← Γ(1λ)
d←← {0, 1}; 1n ←← A0(π)

for i = 1 to n do s[i]←← Z∗
p; sk[i]←← Z∗

p

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do t[j]←← Z∗

p

for i = 1 to n do pk1[i]← G; pk2[i]← G
for j = 1 to q do c1[j]← G; c2[j]← G
(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,

δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)
return

(∑n
i=1 s[i](αi + βisk[i]) +∑q

j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0
)

66

Game Game′6(λ):

(π := (◦, g0, p))←← Γ(1λ)
d←← {0, 1}; 1n ←← A0(π)

for i = 1 to n do s[i]←← Zp; sk[i]←← Zp

(p,m0,m1)←← A1(π, sk); q ← |md|
for j = 1 to q do t[j]←← Zp

for i = 1 to n do pk1[i]← G; pk2[i]← G
for j = 1 to q do c1[j]← G; c2[j]← G
(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,

δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)
return

(∑n
i=1 s[i](αi + βisk[i]) +∑q

j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0
)

Game Game′7(λ):

(π := (◦, g0, p))←← Γ(1λ)

d←← {0, 1}; 1n ←← A0(π); q ←← T2(π, n)
for i = 1 to n do pk1[i]← G; pk2[i]← G
for j = 1 to q do c1[j]← G; c2[j]← G
(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γq,

δ1, . . . , δq)←← P(π,pk1,pk2, c1, c2, d)
for i = 1 to n do s[i]←← Zp

sk←← T ′
1 (π, n, q)

for j = 1 to q do t[j]←← Zp

return
(∑n

i=1 s[i](αi + βisk[i]) +∑q
j=1 s[p[j]]t[j](γj + δjsk[p[j]]) = 0

)
Source T (π, n):
for i = 1 to n do sk[i]←← Zp

(p,m0,m1)←← A1(π, sk); q ← |m0|
return (sk, q)

Source T1(π, n):
(sk, q)←← T (π, n)
return sk

Source T2(π, n):
(sk, q)←← T (π, n)
return q

Figure 30 — Top: Code of the intermediate games in the proof of the algebraic unpredictability bound (17) in
Theorem 6.3. Bottom: Definition of the source T and its projections T1 and T2 from the proof of Theorem 6.3.
Source T ′

1 in Game′7 is independent of T2 and has the distribution of T1 conditioned to T2.

Game′6 ⇝ Game′7. Notice that Pr[Game′6(λ)] = Pr[Game′7(λ)] by construction of the source T ′1 . Indeed, for
every π ←← Γ(1λ), 1n ←← A0(π), q ∈ [q(λ)], and sk ∈ Zn

p , we have

Pr[(T2(π, n) = q) ∧ (T ′1 (π, n, q) = sk)] = Pr[T2(π, n) = q] · Pr[T ′1 (π, n, q) = sk]

= Pr[T2(π, n) = q] · Pr[T1(π, n) = sk | T2(π, n) = q]

= Pr[(T1(π, n) = sk) ∧ (T2(π, n) = q)] = Pr[T (π, n) = (sk, q)] ,

which shows that sk and q have the same distribution in both games.

Game′7. To conclude, we are left with bounding the winning probability of P in Game′7(λ). Our strategy to
do so is to apply the Schwartz–Zippel lemma, but observe that Game′7(λ) does not quite fit the framework
of Lemma 2.2, since T ′1 is not a simple product distribution. Fortunately, the same ideas from the proof of
Lemma 2.2 can be applied in this setting, to obtain a similar conclusion. Indeed, fix any π, d, n, q, pk1,
pk2, c1, c2, and (α,β,γ, δ) as in Game′7(λ), and let Pα,β,γ,δ be the polynomial defined by the coefficients
returned by the predictor. Then notice that this polynomial has at most p2n+q−1 roots over Zp, since the
degree of Pα,β,γ,δ in any given variable is one. This means

Pr
s←←Zn

p ,sk←←T ′
1 (π,n,q),t←←Zq

p

[Pα,β,γ,δ(s, sk, t) = 0] ≤ p2n+q−1 · 2−H∞(UZnp ,T
′
1 (π,n,q),UZqp)

= p2n+q−1 · 2−H∞(UZnp) · 2−H∞(T ′
1 (π,n,q)) · 2−H∞(UZqp) = pn−1 · 2−H∞(T ′

1 (π,n,q)) ,

where UZn
p

and UZq
p

denote the uniform distributions over the corresponding sets. From here we then get

Pr[Game′7(λ)] ≤ E
π←←Γ(1λ),d←←{0,1},1n←←A0(π), q←←T2(π,n),pk1,pk2←←Gn,

c1,c2←←Gq ,(α,β,γ,δ)←←P(π,pk1,pk2,c1,c2,d)

[
pn−1 · 2−H∞(T ′

1 (π,n,q))
]

= E
π←←Γ(1λ),1n←←A0(π), q←←T2(π,n)

[
pn−1 · max

sk∈Zn
p

Pr[T ′1 (π, n, q) = sk]
]

67

= E
π←←Γ(1λ),1n←←A0(π)

[
pn−1 · E

q←←T2(π,n)

[
max
sk∈Zn

p

Pr[T1(π, n) = sk | T2(π, n) = q]
]]

= E
π←←Γ(1λ),1n←←A0(π)

pn−1 · q(λ)∑
q=1

max
sk∈Zn

p

Pr[(T1(π, n) = sk) ∧ (T2(π, n) = q)]


≤ E

π←←Γ(1λ),
1n←←A0(π)

pn−1 · q(λ)∑
q=1

max
sk∈Zn

p

Pr[T1(π, n) = sk]

 ≤ E
π←←Γ(1λ),
1n←←A0(π)

[
pn−1 · q(λ) · 1

pn

]
≤ q(λ)

2λ−1
.

Adding all our estimates above we obtain Inequality (17) for the algebraic unpredictability advantage.
This concludes the proof.

Remark. It is tempting to consider an alternative reduction (S,D) that uses the challenge oracle only to
compute c2, and instead calculates c1 by itself using the real group operation. This appears to be a natural
choice since only c2 depends on the challenge bit d, and would yield tighter bounds on the advantages
because of a reduced number of oracle calls. Unfortunately, such a source is not guaranteed to be statistically
algebraically unpredictable. Indeed, recall that P receives c1 and g′ and, being unbounded, can compute r
as the discrete logarithm of c1 to base g′. Now, if A is a KDM-CPA adversary returning a low-entropy p,
e.g., in the single-key setting, P can easily find a non-trivial linear combination.

Remark. We observe that, since our GGM feasibility result allows sources full access to the group injection,
as a corollary we obtain KDM security in the presence of preprocessing attacks in the generic-group model.

6.4 IND Security of Deterministic ElGamal

Deterministic PKE and its security. We call a PKE scheme E deterministic if E.Enc is a deterministic
algorithm. Deterministic PKE was introduced by Bellare, Boldyreva, and O’Neill (BBO) [BBO07]. Our
security notion is based on the work of Bellare, Dowsley, and Keelveedhi [BDK15], which incorporates an
additional adversary that can pass state to the second-phase adversary.19 In keeping with our syntax, we
allow the message samplers to depend on system parameters.

IND security. Let E be a deterministic PKE scheme. The advantage of an adversary A = (A0,A1,A2)
in the IND game of E is defined as

AdvindE,A(λ) := 2 · Pr
[
INDAE (λ)

]
− 1 ,

where the IND game is defined in Figure 31 (top left). Here, A0 and A1 can be unbounded with polynomially
bounded output, and A2 is PPT. We require that the vectors returned by A1 be of the same length, and that
each vector contain pairwise distinct messages. Also, we require that (A0,A1) be unpredictable, meaning
that for any (possibly unbounded) predictor P,

AdvpredE,A0,A1,P(λ) := Pr
[
PredPE,A0,A1

(λ)
]

is negligible, where the Pred game is given in Figure 31 (top right). We say that E is IND secure, if the
advantage of any A as above in the IND game for E is negligible.

We note that the notions of statistical and non-uniform computational unpredictability in the Pred
game coincide. Indeed, via a coin-fixing argument we may assume, without loss of generality, that P is

19This ensures a closer correspondence between idealized models of computation and the standard model as the state can be
used for consistency and lazily sample ideal objects.

68

Game INDAE (λ):

d←← {0, 1}; π ←← E.Setup(1λ)
st←← A0(π); (m0,m1)←← A1(st)
(sk , pk)←← E.KGen(π); c← E.Enc(π, pk ,md)
b′ ←← A2(π, pk , c, st); return (d = d′)

Game PredPE,A0,A1
(λ):

π ←← E.Setup(1λ); st←← A0(π)
(m0,m1)←← A1(st); m′ ←← P(π, st)
return (m′ ∈m0 ∪m1)

ElwH[Γ,H].Setup(1λ):

(π := (◦, g0, p))←← Γ(1λ)
r′ ←← Z∗p; g′ ← gr

′
0

ϖ ←← H.Setup(G,Zp)
return (π′ := (ϖ, ◦, g′, p))

ElwH[Γ,H].KGen(π′):
(ϖ, ◦, g′, p)← π′

s←← Z∗p; pk1 ← g′s

sk ←← Z∗p; pk2 ← g′ssk

hk ←← H.KGen(πH)
pk ← (pk1, pk2, hk)
return (sk , pk)

ElwH[Γ,H].Enc(π′, pk ,m):
(pk1, pk2, hk)← pk ; r ← H(hk ,m)
c1 ← pkr1; c2 ← m ◦ pk r2; return (c1, c2)

ElwH[Γ,H].Dec(π′, sk , c):

(c1, c2)← c; return c2 ◦ c−sk1

Auxiliary masking source S̄(π):
d←← {0, 1}; (◦, g0, p)← π; r′ ←← Z∗p; g′ ← gr

′
0

ϖ ←← H.Setup(G,Zp); hk ←← H.KGen(ϖ); π′ ← (ϖ, ◦, g′, p)
st←← A0(π

′); (m0,m1)←← A1(st); t←← Z∗p; sk ←← Z∗p; q ← |m0|
for i = 1 to q do
x[i]← t · H(hk ,md[i]); x[i+ q]← sk · x[i]
m[i]← 1; m[i+ q]←md[i]

x[2q + 1]← t; x[2q + 2]← t · sk ; m[2q + 1]← 1; m[2q + 2]← 1
L← (d, st0, π

′, hk); return (x,m, L)

PGG distinguisher D(π, (y, L)):
(d, st0, π

′, hk)← L
(c, pk1, pk2)← y
d′ ←← A2(π

′, (pk1, pk2, hk), c, st)
return (d = d′)

Figure 31 — Top left: The IND security game for a (deterministic) public-key encryption scheme. Top right: The secu-
rity game defining unpredictability of the messages output by A. Center: The ElGamal-with-Hash scheme ElwH[Γ,H]
with user-specific randomized generator included in the public key as pk1. bottom: Parallel PGG source and
distinguisher associated with an IND adversary A against ElGamal-with-Hash.

deterministic. Next we may hard-wire the value returned by P (whose computation may be non-polynomial
time) as non-uniform advice. As such, our results in this section also hold when Pred is defined (only) with
respect to non-uniform predictors.20

Construction. We formalize the ElGamal-with-Hash deterministic encryption scheme, which is a special
case of the general encrypt-with-hash (EwH) construct of BBO. Let Γ be a computational group scheme,
and let H be a hash function family. The associated ElGamal-with-Hash scheme ElwH[Γ,H] is defined in
Figure 31 (center).

We now prove that the encryption scheme ElwH[Γ,H] associated to a computational group scheme Γ
and a hash family H is IND secure under PGG and LDD.

Theorem 6.4 (PGG ∧ LDD =⇒ ElGamal-with-Hash is IND). Let Γ be a computational group scheme, and H
be a hash function family. If Γ is PGG[Salg ∩ Smsk] secure and H is LDD[Ssup] secure, then E := ElwH[Γ,H]
is IND secure. More precisely, for any adversary A = (A0,A1,A2) in the IND game for E, there are an
adversary (S,D) in the PGG game for Γ, and an adversary (S ′,Acr) in the LDD game for H such that

AdvindE,A(λ) ≤ 2 ·AdvpggΓ,S,D(λ) + q(λ)2 ·AdvlddH,S′,Acr
(λ) +

4(q(λ) + 1)

2λ−1
+

(2q(λ) + 2)2

2λ−1
.

20This observation does not hold in the presence of parameters. Despite this, our results extend to a setting where A0

and A1 receive π but Pred is statistical.

69

Here, q(λ) is an upper bound on the length of the vectors returned by A1. Furthermore, S ∈ Salg ∩ Smsk

and, for any predictor P there exists an adversary A′ such that

Advalg-predΓ,S,P (λ) ≤ 2 ·AdvlddH,S′,A′(λ) +
q(λ)2

2
·AdvlddH,S′,Acr

(λ) +
8(q(λ) + 1)2

2λ
.

Moreover, S ′ ∈ Ssup and, for any predictor P ′ there exists a predictor P ′′ such that

AdvpredH,S′,P ′(λ) ≤ AdvpredE,A0,A1,P ′′(λ) .

Proof. For the proof of this theorem we consider the source and distinguisher in Figure 31 (bottom). Here,
the source computes a random generator gr

′
0 so as to be able to compute the public parameters for the

scheme. The source then computes the public key and ciphertexts as in the scheme using the Exp oracle.
Note, however, that these group elements will have an extra randomness component r due to the randomized
generator in the PGG game, whereas they need to be computed with respect to gr

′
0 as public parameters

are set up. However, since we choose a random t for the exponent of the first component of the public key,
the effective randomness in the reduction is r′t/r, which is randomly distributed. From here the proof boils
down to arguing for the algebraic unpredictability of the source. For this we first invoke the Schwartz–Zippel
lemma, so that any algebraic relation between the exponents queried by the source reduces to one among
the exponents for the second ciphertext elements only. This, however, leads to a break of LDD security
since the message sampler for is unpredictable.

More formally, given an adversary A in the IND game, define the masking source S via auxiliary
algorithm S̄ and distinguisher D as shown in Figure 31 (bottom). It is easy to see by inspecting the code
in Figure 31 (bottom) that S̄ places no Exp queries and returns vectors x and m of equal length. Thus,
S ∈ Smsk.

Advantage bound. Let b denote the challenge bit in the PGG game. We claim that

Pr
[
PGGS,DΓ (λ)

∣∣ b = 1
]
= Pr

[
INDAE (λ)

]
.

When b = 1, the exponentiation oracle is implemented via the real group operation. The source computes
the system parameters by picking a random group generator g′ and a hash key hk . It then generates the
two message vectors via A0 and A1. The initial phase of the source also picks random t and sk . Here, sk
will act as the secret key. On the other hand, t is not the random exponent of the first element of the public
key; rather, the exponent is s = rt/r′, where r is the exponent sampled in the PGG game.

The source computes each ciphertext via two oracle calls. These take the form g
rtr[i]
0 and g

rtskr[i]
0 ,

where r[i] = H(hk ,md[i]) is the hash of the message. It then computes the public key as (grt0 , grtsk0). Note
that these are correctly distributed as in the scheme where rt/r′ is the exponent of the first element of the
public key, which is uniform as t is uniform. The addition of the extra group element in the public key
essentially re-randomizes the generator allowing the first stage of the attack to fully depend on the public
parameters.

We now claim that

Pr
[
PGGS,DΓ (λ)

∣∣ b = 0
]
≤ 1

2
+

q(λ)2

2
AdvlddH,S′,Acr

(λ) +
2(q(λ) + 1)

2λ−1
+

(2q(λ) + 2)2

2λ
.

The public key is distributed randomly and is independent of d. We show that the rest of the group elements
are also independent of d. To this end we transition to a game where we replace Exp with a random oracle.
The two games are identical up to RF/RP switching advantage (2q(λ) + 2)2/2λ.

Next we replace the random oracle by a forgetful function. Unless there is a point that is queried twice
to Exp the two games are identical. We show this event leads to breaking the LDD property. Consider

70

the LDD source S ′ that runs the PGG source S, which itself runs (A0,A1). Suppose collisions in the
inputs to Exp happen. Consider now an LDD adversary Acr against the source that picks two distinct
indices i, j ∈ [q] and sets αi = −αj = 1 and the rest of the α’s to zero. Whenever there is a collision in the
outputs of H, and if i and j are guessed correctly (which happens with probability

(
q(λ)
2

)
), the adversary wins

the LDD game, unless the collisions were due to t and t ·sk , which happens with probability 2(q(λ)+1)/2λ−1.
Note that here we rely on the fact that A1 outputs distinct messages. It remains to be shown that this LDD
source is unpredictable. This follows from the fact that any predictor against this source can be converted
to a DE predictor against (A0,A1), as we will show momentarily below.

Algebraic unpredictability. We now show that the PGG source defined above is algebraically
unpredictable. To this end we show that if there is an algebraic predictor against this source, then there is
an LDD adversary against an unpredictable LDD source.

We first modify the algebraic unpredictability game and transition to a new game where Exp is a
forgetful oracle. As argued above this change is negligible and we pick up similar terms as those given up.
In this modified game, any algebraic predictor P against the PGG source can be converted to an LDD
adversary A′ as follows. Algorithm A′ runs the PGG algebraic predictor P on π′ and st0 and simulates the
leakage for it by sampling the ciphertexts and the public key randomly from the group. It also picking a
random d←← {0, 1}, which is correct with probability 1/2. Hence

Advmodified-alg-pred
Γ,S,P (λ) ≤ 2 ·AdvlddH,S′,A′(λ) .

LDD source unpredictability. It remains to show S ′ is unpredictable. To this end, we show that any
LDD predictor P ′ against S ′ can be converted to a predictor P against the message-sampler A1. This is
immediate as the LDD source runs the message sampler and picks one of the message vectors randomly.
Any predictor for this LDD source can be converted a predictor P ′′ for the message sampler by simply
running the LDD predictor and outputting the result:

AdvpredH,S′,P ′(λ) ≤ AdvpredE,A0,A1,P ′′(λ) .

This concludes proof of the theorem.

6.5 RKA Security of ElGamal

In a related-key attack against a public-key encryption scheme, an adversary is able to obtain encryptions
of messages under public keys that may be correlated.21 This notion was introduced by Biham and
Knudsen [BK98] in the context of symmetric encryption, and was later considered in the public-key setting
by Goyal, O’Neill, and Rao [GOR11] and Bellare, Cash, and Miller [BCM11]. Here, we focus on a non-
adaptive version of RKA security under chosen-plaintext attacks (RK-CPA) as in [GOR11], and prove that
a modified version of ElGamal scheme where one hashes randomness via an LDD to derive secret keys is
RKA secure. We call this scheme “shielded” ElGamal.

RK-CPA security. Let E be a PKE scheme. The advantage of a PPT adversary A = (A0,A1) in
the RK-CPA game for E is defined as

Advrk-cpaE,A (λ) := 2 · Pr
[
RK-CPAAE (λ)

]
− 1 ,

where the RK-CPA game is defined in Figure 32 (top left). We require that, for all 1 ≤ i ≤ |r|, each r[i] be
unpredictable given st and the equality pattern of r. Formally this means that, for any (possibly unbounded)
predictor P,

AdvpredE.Setup,A0,P(λ) := Pr
[
PredPE.Setup,A0

(λ)
]

21A stronger, chosen-ciphertext notion, which we omit here, allows the adversary to make decryption queries under correlated
secret keys.

71

Game RK-CPAAE (λ):

b←← {0, 1}; π ←← E.Setup(1λ); (r, st)←← A0(1
λ)

for i = 1 to |r| do
(sk[i],pk[i])← E.KGen(π; r[i])

b′ ←← ARKEnc
1 (π,pk, st); return (b = b′)

Proc. RKEnc(i,m0,m1)

return E.Enc(pk[i],mb)

Game PredPE,A0
(λ):

π ←← E.Setup(1λ); (r, st)←← A0(1
λ)

for i = 1 to |r| do
(pk[i], sk[i])← E.KGen(π; r[i])

zcoll ← Colls(sk); (i, sk)←← P(π, st, zcoll)
return (sk[i] = sk)

Auxiliary dUber source S̄(π):
(◦, g0, p)← π; π′ ←← E.Setup(1λ)
πH ←← H.Setup(G,Zp); hk ←← H.KGen(πH)
(sk, st)←← A0(1

λ)
for i = 1 to n do

s[i]←← Zp; sk′[i]← H(hk, sk[i]); t[i]← sk′[i]·s[i]
return ((1, sk′, s, t), hk, st)

PGG distinguisher D(π, (y,y1,y2,y3, st)):
d←← {0, 1}; π′ ← (◦, y, p, hk)
d′ ←← ARKEnc

1 (π′,y1, st)
return (d = d′)

Proc. RKEnc(i,m0,m1):
return (y2[i],md ◦ y3[i])

Figure 32 — Top left: The RK-CPA game for a public-key encryption scheme E. Bottom left: The unpredictability
game for A0. Right: Reduction from an RK-CPA adversary A to a PGG adversary (S,D).

is negligible, where the Pred game is given in Figure 32 (bottom left). Here, Colls(sk) returns the repetition
pattern of sk.22 We say that E is RK-CPA secure, if the advantage of any A as above in the RK-CPA game
for E is negligible.

Theorem 6.5 (PGG =⇒ Shielded ElGamal is RK-CPA). Let Γ be a computational group scheme, and H
be a hash function family. If Γ is PGG[Salg ∩ Sduber] secure and H is LDD[Ssup] secure, then E := El[Γ,H]
is IND secure. More precisely, for any adversary A = (A0,A1,A2) in the RK-CPA game for E, there are
an adversary (S,D) in the PGG game for Γ, and an adversary (S ′,Acr) in the LDD game for H such that

Advrk-cpaE,A (λ) ≤ 2 ·AdvpggΓ,S,D(λ) + q(λ)2 ·AdvlddH,S′,Acr
(λ) +

3(q(λ) + 1)

2λ−1
+

(2q(λ) + 2)2

2λ−1
.

Furthermore, S ∈ Salg ∩ Sduber and, for any predictor P there exists an adversary A′ such that

Advalg-predΓ,S,P (λ) ≤ 2 ·AdvlddH,S′,A′(λ) +
q(λ)2

2
·AdvlddH,S′,Acr

(λ) +
8(q(λ) + 1)2

2λ
.

Moreover, S ′ ∈ Ssup and, for any predictor P ′ there exists a predictor P ′′ such that

AdvpredH,S′,P ′(λ) ≤ AdvpredE,A0,P ′′(λ) +
3(q(λ) + 1)

2λ
.

Proof Overview. Let A = (A0,A1) in the RK-CPA game for El[Γ]. For simplicity, we assume A1 makes one
encryption query per index i. The proof extends to the general case but requires a bit more bookkeeping. If
there are at most qenc(λ) encryption queries, we need to prepare qenc(λ) ciphertext components for each
public key in case all encryption queries are requested for the same public key.

Let |sk| = n. Define the dUber source S via auxiliary algorithm S̄ and distinguisher D as shown in
Figure 32 (right). (It’s easy to see by code inspection that this source is indeed dUber.)

22Typically RK-CPA secure is considered with respect to claw-free function. This is a special case of our definition where
the collision pattern is trivial.

72

Note that if b = 1, A is playing the real RK-CPA game. Indeed, the ciphertexts and public keys are
computed with respect to the same generator as that for the PGG group.

Pr
[
PGGS,DΓ (λ)

∣∣ b = 1
]
= Advrk-cpaEl[Γ],A(λ) .

Moreover, when b = 0, we can argue that A gets no information about d since the group element masking
the message is uniformly distributed. In other words

Pr
[
PGGS,DΓ (λ)

∣∣ b = 0
]
≈ 1

2
.

The precise upper bound proceeds similarly to the reduction for deterministic encryption by first running
out collisions in Exp inputs via LDD security, and then replacing Exp by a forgetful random oracle via
RF/RP switching lemma.

Algebraic unpredictability. The algebraic unpredictability of the PGG source is reduced to the
unpredictability of the RKA adversary A0 and the security of LDD. Consider an algebraic predictor against S.
This predictor outputs values (α0, α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) such that

α0 · 1 +
n∑

i=1

αi · sk′[i] +
n∑

i=1

βi · s[i] +
n∑

i=1

γi · s[i]sk′[i] = 0 .

Applying Schwartz–Zippel over s[i] for each i we obtain that except with negligible probability

∀i : βi + γi · sk′[i] = 0 .

If for some i, γi ̸= 0, we can use the corresponding equation to compute sk[i] = −βi/γi, and win the
unpredictability game for A0. On the other hand, if γi = 0 for all i, then necessarily we also have that βi = 0.
Hence,

α0 +
n∑

i=1

αi · sk′[i] = α0 +
n∑

i=1

αi · H(hk, sk[i]) = 0 .

This, however, translates to a break of LDD security since by the security of A0 the keys sk[i] are
unpredictable. ■

Acknowledgments

We thank Sogol Mazaheri for collaborating in the early stages of this work. We also thank the anonymous
reviewers who helped improve the presentation of our results. Pooya Farshim was supported in part by
EPSRC grant EP/V034065/1. Patrick Harasser was funded by the Deutsche Forschungsgemeinschaft (DFG)
– SFB 1119 – 236615297. Adam O’Neill was supported in part by a gift from Cisco.

References

[AH18] Thomas Agrikola and Dennis Hofheinz. Interactively secure groups from obfuscation. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 341–370.
Springer, Heidelberg, March 2018. (Cited on pages 9 and 10.)

[AHK20] Thomas Agrikola, Dennis Hofheinz, and Julia Kastner. On instantiating the algebraic group
model from falsifiable assumptions. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 96–126. Springer, Heidelberg, May
2020. (Cited on page 9.)

73

[App11] Benny Applebaum. Key-dependent message security: Generic amplification and completeness.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 527–546.
Springer, Heidelberg, May 2011. (Cited on pages 8 and 59.)

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
440–456. Springer, Heidelberg, May 2005. (Cited on pages 3, 7, and 44.)

[BBN+09] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham,
and Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In
Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 232–249. Springer,
Heidelberg, December 2009. (Cited on page 9.)

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently searchable
encryption. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552.
Springer, Heidelberg, August 2007. (Cited on pages 8 and 68.)

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 520–537. Springer, Heidelberg,
August 2010. (Cited on page 7.)

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks
and tampering. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 486–503. Springer, Heidelberg, December 2011. (Cited on pages 8 and 71.)

[BCPT13] Eleanor Birrell, Kai-Min Chung, Rafael Pass, and Sidharth Telang. Randomness-dependent
message security. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 700–720.
Springer, Heidelberg, March 2013. (Cited on page 9.)

[BDH14] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz. Encryption schemes secure under related-
key and key-dependent message attacks. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 483–500. Springer, Heidelberg, March 2014. (Cited on page 9.)

[BDK15] Mihir Bellare, Rafael Dowsley, and Sriram Keelveedhi. How secure is deterministic encryption?
In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 52–73. Springer, Heidelberg,
March / April 2015. (Cited on page 68.)

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational assump-
tions in the algebraic group model. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part II, volume 12171 of LNCS, pages 121–151. Springer, Heidelberg, August
2020. (Cited on pages 4 and 9.)

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfuscation and
UCEs: The case of computationally unpredictable sources. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 188–205. Springer,
Heidelberg, August 2014. (Cited on pages 5, 6, 11, and 18.)

[BH15] Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 627–656. Springer, Heidelberg,
April 2015. (Cited on page 8.)

74

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption
from decision Diffie-Hellman. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 108–125. Springer, Heidelberg, August 2008. (Cited on pages 8, 44, and 59.)

[BHK13] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via UCEs.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 398–415. Springer, Heidelberg, August 2013. (Cited on pages 3, 4, 6, 7, 8, 11, 12, 44, 53, and 59.)

[BHK14] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Cryptography from compression
functions: The UCE bridge to the ROM. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 169–187. Springer, Heidelberg, August
2014. (Cited on page 53.)

[BK98] Eli Biham and Lars R. Knudsen. Cryptanalysis of the ANSI X9.52 CBCM mode. In Kaisa
Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 100–111. Springer, Heidelberg,
May / June 1998. (Cited on page 71.)

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash
function. In Matthew J. B. Robshaw, editor, FSE 2006, volume 4047 of LNCS, pages 328–340.
Springer, Heidelberg, March 2006. (Cited on page 3.)

[BM14] Christina Brzuska and Arno Mittelbach. Using indistinguishability obfuscation via UCEs. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 122–141. Springer, Heidelberg, December 2014. (Cited on page 9.)

[BMZ19] James Bartusek, Fermi Ma, and Mark Zhandry. The distinction between fixed and random
generators in group-based assumptions. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 801–830. Springer, Heidelberg, August
2019. (Cited on pages 4, 7, 10, 20, 21, and 29.)

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Kenneth G.
Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer, Heidelberg,
September 2008. (Cited on pages 3, 7, 9, and 44.)

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 273–289. Springer, Heidelberg, August 2004. (Cited on page 10.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006. (Cited on page 16.)

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the
presence of key-dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002,
volume 2595 of LNCS, pages 62–75. Springer, Heidelberg, August 2003. (Cited on pages 8 and 59.)

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial information.
In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 455–469. Springer,
Heidelberg, August 1997. (Cited on pages 3, 7, and 45.)

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 489–508. Springer,
Heidelberg, April 2008. (Cited on page 7.)

75

[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 693–721. Springer, Heidelberg, August
2018. (Cited on pages 6, 20, 21, and 29.)

[CDGS18] Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. Random oracles and
non-uniformity. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 227–258. Springer, Heidelberg, April / May 2018. (Cited
on page 33.)

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998. (Cited on
page 6.)

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J.
ACM, 51(4):557–594, 2004. (Cited on page 3.)

[CK18] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with preprocessing.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821
of LNCS, pages 415–447. Springer, Heidelberg, April / May 2018. (Cited on page 29.)

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001. (Cited on pages 8 and 59.)

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 13–25. Springer, Heidelberg, August 1998. (Cited on page 12.)

[Den02] Alexander W. Dent. Adapting the weaknesses of the random oracle model to the generic group
model. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 100–109.
Springer, Heidelberg, December 2002. (Cited on pages 3 and 6.)

[DHZ14] Ivan Damgård, Carmit Hazay, and Angela Zottarel. Short paper on the generic hardness of
DDH-II, 2014. (Cited on page 7.)

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978. (Cited on page 11.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework
for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013. (Cited on
page 9.)

[FF20] Peter Fenteany and Benjamin Fuller. Same point composable and nonmalleable obfuscated point
functions. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors,
ACNS 20, Part II, volume 12147 of LNCS, pages 124–144. Springer, Heidelberg, October 2020.
(Cited on page 10.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on pages 4 and 9.)

76

[GGH20] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. Master-key KDM-secure IBE from
pairings. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part I, volume 12110 of LNCS, pages 123–152. Springer, Heidelberg, May 2020.
(Cited on page 59.)

[GKMZ16] Matthew D. Green, Jonathan Katz, Alex J. Malozemoff, and Hong-Sheng Zhou. A unified
approach to idealized model separations via indistinguishability obfuscation. In Vassilis Zikas
and Roberto De Prisco, editors, SCN 16, volume 9841 of LNCS, pages 587–603. Springer,
Heidelberg, August / September 2016. (Cited on page 3.)

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In
Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 182–200. Springer, Heidelberg,
March 2011. (Cited on pages 7, 31, 53, and 71.)

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In 41st FOCS, pages 305–313. IEEE Computer Society Press, November 2000.
(Cited on pages 8 and 30.)

[HO13] Brett Hemenway and Rafail Ostrovsky. Building lossy trapdoor functions from lossy encryption.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 241–260. Springer, Heidelberg, December 2013. (Cited on page 8.)

[KM20] Fuyuki Kitagawa and Takahiro Matsuda. Circular security is complete for KDM security. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS,
pages 253–285. Springer, Heidelberg, December 2020. (Cited on page 59.)

[KP19] Julia Kastner and Jiaxin Pan. Towards instantiating the algebraic group model. Cryptology
ePrint Archive, Report 2019/1018, 2019. https://eprint.iacr.org/2019/1018. (Cited on
page 9.)

[KY18] Ilan Komargodski and Eylon Yogev. Another step towards realizing random oracles: Non-
malleable point obfuscation. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 259–279. Springer, Heidelberg, April / May
2018. (Cited on page 10.)

[KZZ22] Jonathan Katz, Cong Zhang, and Hong-Sheng Zhou. An analysis of the algebraic group model.
Cryptology ePrint Archive, Report 2022/210, 2022. https://eprint.iacr.org/2022/210.
(Cited on page 9.)

[LNPT20] Benoît Libert, Khoa Nguyen, Alain Passelègue, and Radu Titiu. Simulation-sound arguments
for LWE and applications to KDM-CCA2 security. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 128–158. Springer, Heidelberg,
December 2020. (Cited on page 59.)

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of
LNCS, pages 1–12. Springer, Heidelberg, December 2005. (Cited on pages 3, 12, and 20.)

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994. (Cited on pages 3 and 12.)

77

https://eprint.iacr.org/2019/1018
https://eprint.iacr.org/2022/210

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997. (Cited
on page 7.)

[PSS14] Kenneth G. Paterson, Jacob C. N. Schuldt, and Dale L. Sibborn. Related randomness attacks
for public key encryption. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
465–482. Springer, Heidelberg, March 2014. (Cited on page 9.)

[Sch80] Jack T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
Assoc. Comput. Mach., 27(4):701–717, 1980. (Cited on page 11.)

[Sho96] Victor Shoup. On fast and provably secure message authentication based on universal hashing. In
Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 313–328. Springer, Heidelberg,
August 1996. (Cited on page 6.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May
1997. (Cited on pages 3, 12, and 20.)

[ST17] Pratik Soni and Stefano Tessaro. Public-seed pseudorandom permutations. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 412–441. Springer, Heidelberg, April / May 2017. (Cited on pages 9 and 53.)

[ST18] Pratik Soni and Stefano Tessaro. Naor-Reingold goes public: The complexity of known-key
security. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 653–684. Springer, Heidelberg, April / May 2018. (Cited on page 9.)

[Vad12] Salil P. Vadhan. Pseudorandomness, volume 7 of Foundations and Trends in Theoretical
Computer Science. Now Publishers, Boston-Delft, 2012. (Cited on pages 30 and 40.)

[Zha16] Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 479–508. Springer, Heidelberg, August
2016. (Cited on page 3.)

[Zha22] Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages 66–96. Springer,
Heidelberg, August 2022. (Cited on pages 3, 6, 9, and 20.)

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic
computation EUROSAM. Springer, Berlin-New York, 1979. (Cited on page 11.)

[ZZ21] Mark Zhandry and Cong Zhang. The relationship between idealized models under compu-
tationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240, 2021. https:
//eprint.iacr.org/2021/240. (Cited on page 59.)

78

https://eprint.iacr.org/2021/240
https://eprint.iacr.org/2021/240

A Proof of Lemma 2.2

In this section we prove the game-based version of the Schwartz–Zippel lemma. We start with a preparatory
lemma, which essentially is Lemma 2.2 but for fixed parameters π, polynomial P , and y = 0. The general
proof then follows by averaging this intermediate result. We observe that the proof of Lemma A.1 strongly
resembles the proof of the classical Schwartz–Zippel lemma.

The results in this section are first presented using the (game-based) language of unpredictability, better
suited to applications in cryptography, and only later reformulated in the setting of min-entropy.

Lemma A.1. Let α,m, p ∈ N with p prime, and let S1, . . . ,Sm be distributions over Fpα such that, for
every i ∈ [m] and every (possibly unbounded) predictor P,

AdvpredSi,P := Pr
[
PredPSi

]
≤ ki ∈ R ,

where the game PredPS is defined in Figure 33 (left). Then, for every non-constant polynomial P ∈
Fpα [X1, . . . , Xm], we have

Pr
x1←←S1, . . . ,xm←←Sm

[P (x1, . . . , xm) = 0] ≤ deg(P) · kP ,

where kP := maxi∈TP
ki and TP := {i ∈ [m] | degXi

(P) > 0}.
Proof. We prove the statement via induction on m. For m = 1, let r1, . . . , rℓ be the roots of P in Fpα . Then
observe that, since P is non-constant, it has at most deg(P) roots in Fpα (i.e., ℓ ≤ deg(P)), which means
that

Pr
x1←←S1

[P (x1) = 0] ≤
ℓ∑

i=1

Pr[S1 = ri] =

ℓ∑
i=1

AdvpredS1,P[ri] ≤ deg(P) · k1 = deg(P) · kP ,

where P [ri] is the predictor that simply returns ri. Now assume that the statement holds for all non-constant
polynomials in m ≥ 1 variables, and consider a non-constant polynomial P ∈ Fpα [X1, . . . , Xm+1]. We
distinguish two cases: If m + 1 ̸∈ TP , then P ∈ Fpα [X1, . . . , Xm] ⊆ Fpα [X1, . . . , Xm+1], and the result
follows from the inductive hypothesis because

Pr
x1←←S1, . . . ,xm+1←←Sm+1

[P (x1, . . . , xm+1) = 0] = Pr
x1←←S1, . . . ,xm←←Sm

[P (x1, . . . , xm) = 0] ≤ deg(P) · kP .

Now assume that m+ 1 ∈ TP . Consider the decomposition

P (X1, . . . , Xm+1) =

deg(P)∑
i=0

Xi
m+1 · Pi(X1, . . . , Xm) ,

and let 0 ≤ j ≤ deg(P) be the maximal index i such that Pi(X1, . . . , Xm) ̸= 0. Observe that Pj has total
degree deg(P)− j. By mutual independence of the distributions S1, . . . ,Sm+1 we have

Pr
x1←←S1, . . . ,xm+1←←Sm+1

[P (x1, . . . , xm+1) = 0]

=
∑

(x1,...,xm)

Pr
xm+1←←Sm+1

[P (x1, . . . , xm, xm+1) = 0] · Pr

[
(S1 = x1) ∧ · · ·
· · · ∧ (Sm = xm)

]

=
∑

(x1,...,xm),
Pj(x1,...,xm)=0

Pr
xm+1←←Sm+1

[P (x1, . . . , xm, xm+1) = 0] · Pr

[
(S1 = x1) ∧ · · ·
· · · ∧ (Sm = xm)

]

+
∑

(x1,...,xm),
Pj(x1,...,xm)̸=0

Pr
xm+1←←Sm+1

[P (x1, . . . , xm, xm+1) = 0] · Pr

[
(S1 = x1) ∧ · · ·
· · · ∧ (Sm = xm)

]
,

79

Game PredPS :
x←← S; x′ ←← P
return (x = x′)

Source Zi(π):
(x, z)←← Si(π)
return z

Game PredA,PS :
(π := (pα,m, st))← A0; (x, z)←← S(π)
x′ ←← P(π, z); return (x = x′)

Figure 33 — Left: The prediction game from Lemma A.1. Center: Definition of the source Zi(π). Right: The
prediction game from Theorem A.2.

where the sum extends over all tuples (x1, . . . , xm) ∈ Fm
pα such that the probabilities Pr[S1 = x1], . . . ,

Pr[Sm = xm] are non-zero. We now bound the first term in the first sum with 1. Furthermore, observe that
if Pj(x1, . . . , xm) ̸= 0, then P (x1, . . . , xm, Xm+1) is a polynomial in one variable of degree j, so that the
first term in the second sum can be bounded with jkm+1 by the base case. Continuing the above chain of
inequalities, this yields

≤
∑

(x1,...,xm),
Pj(x1,...,xm)=0

Pr

[
(S1 = x1) ∧ · · ·
· · · ∧ (Sm = xm)

]
+

∑
(x1,...,xm),

Pj(x1,...,xm)̸=0

jkm+1 · Pr

[
(S1 = x1) ∧ · · ·
· · · ∧ (Sm = xm)

]

≤ Pr
xi←←Si

[Pj(x1, . . . , xm) = 0] + j · km+1 ≤ deg(Pj) · kPj + j · km+1

= (deg(P)− j)kPj + j · km+1 ≤ (deg(P)− j)kP + j · kP = deg(P) · kP .

Here, the third inequality holds by the inductive hypothesis.

Theorem A.2 (General game-based Schwartz–Zippel). Let A = (A0,A1) be a two-stage algorithm, where
A0 takes no input and returns a set of public parameters π := (pα,m, st) ∈ N2 × {0, 1}∗ with α, p ∈ N and
p prime, and A1 takes π and values z1, . . . , zm ∈ {0, 1}∗ as input and returns a non-constant polynomial
P ∈ Fpα [X1, . . . , Xm] and a value y ∈ Fpα. Consider a family of sources S := {Si | i ∈ N}, each taking
π as input and returning values (x, z) ∈ Fpα × {0, 1}∗, and let Zi(π) be the projection of Si(π) onto the
second coordinate, as shown in Figure 33 (center). Assume that, for every i ∈ N, every π and z such that
Pr[A0 = π] > 0 and Pr[Zi(π) = z] > 0, and every (possibly unbounded) predictor P,

Pr
[
PredA,PSi

∣∣ (A0 = π) ∧ (Zi(π) = z)
]
≤ ki(π, z) ∈ R ,

where the game PredA,PS is defined in Figure 33 (right). Then

Pr
[
SZAS

]
≤ E

π←←A0,
(x1,z1)←←S1(π), . . . ,(xm,zm)←←Sm(π),

(P,y)←←A1(π,z1,...,zm)

[deg(P) · kP (π, z1, . . . , zm)] ,

where the game SZAS is defined in Figure 3 (left), kP (π, z1, . . . , zm) := maxi∈TP
ki(π, zi), and TP denotes the

set TP := {i ∈ [m] | degXi
(P) > 0}.

Proof. For every i ∈ N, every π ∈ N2 × {0, 1}∗ with Pr[A0 = π] > 0, and every z ∈ {0, 1}∗ with
Pr[Zi(π) = z] > 0, consider a source Xi(π, z) which follows the conditional distribution of Si(π) given
Zi(π) = z, i.e. verifies

Pr[Xi(π, z) = x] = Pr[Si(π) = (x, z) | Zi(π) = z]

80

Game SZ2AZ,X :

(π := (pα,m, st))←← A0

for i ∈ [m] do
z[i]←← Zi(π); x[i]←← Xi(π, zi)

(P, y)←← A1(π, z)
return (y = P (x))

Game SZ3AZ,X :

(π := (pα,m, st))←← A0

for i ∈ [m] do z[i]←← Zi(π)
(P, y)←← A1(π, z)
for i ∈ [m] do x[i]←← Xi(π, zi)
return (y = P (x))

Figure 34 — The modified versions of the Schwartz–Zippel game.

for every x ∈ Fpα . Then observe that, with these definitions, we can rewrite the game SZAS as shown in
Figure 34, ignoring outcomes with probability zero. By the law of total probability,

Pr
[
SZAS

]
= Pr

[
SZ2AZ,X

]
= Pr

[
SZ3AZ,X

]
=
∑
π

∑
z

∑
(P,y)

Pr

[
SZ3AZ,X

∣∣∣∣∣ (A0 = π) ∧
∧

(Zi(π) = zi)

∧ (A1(π, z) = (P, y))

]
Pr

[
(A0 = π) ∧

∧
(Zi(π) = zi)

∧ (A1(π, z) = (P, y))

]

≤
∑
π

∑
z

∑
(P,y)

deg(P) · kP (π, z1, . . . , zm) · Pr

[
(A0 = π) ∧

∧
(Zi(π) = zi)

∧ (A1(π, z) = (P, y))

]
= E

π←←A0,
(x1,z1)←←S1(π), . . . ,(xm,zm)←←Sm(π),

(P,y)←←A1(π,z1,...,zm)

[deg(P) · kP (π, z1, . . . , zm)] .

Here, the sums range over all π with Pr[A0 = π] > 0, for every such π over all z with Pr[Zi(π) = zi] > 0 for
every i ∈ [m], and for every such π and z over all (P, y) with Pr[A1(π, z) = (P, y)] > 0. Furthermore, the
inequality follows from Lemma A.1.

The game-based Schwartz–Zippel lemma is now an immediate consequence of Theorem A.2.

Proof (of Lemma 2.2). We start by observing that, for every i ∈ N and every predictor P,

Pr
[
PredA,PSi

∣∣ (A0 = π) ∧ (Zi(π) = z)
]
≤ max

x
Pr[Xi = x | (A0 = π) ∧ (Zi(π) = z)]

=
1

2H∞(Xi|(A0=π)∧(Zi(π)=z))
=

1

2H∞(Xi|(A0=π)∧(Zi=z))
.

Using Theorem A.2 and monotonicity of the expected value we then obtain

Pr
[
SZAS

]
≤ E

π←←A0,
(x1,z1)←←S1(π), . . . ,(xm,zm)←←Sm(π),

(P,y)←←A1(π,z1,...,zm)

[
deg(P) ·max

i∈TP

1

2H∞(Xi|(A0=π)∧(Zi=z))

]

≤ d · E
π←←A0,

(x1,z1)←←S1(π), . . . ,(xm,zm)←←Sm(π)

[
1

2mini∈[m] H∞(Xi|(A0=π)∧(Zi=z))

]
.

This concludes the proof.

We can also use Lemma A.1 to give a direct proof of the classical Schwartz–Zippel lemma.

81

Proof (of Lemma 2.1). If the polynomial P is a non-zero constant, the result is obviously true, so assume
that P is non-constant. Consider, for every i ∈ [m], a source Si which returns a uniformly random element
from S. Then we can choose ki = 1/|S| for every i ∈ [m], which means that also kP = 1/|S|. Thus

Pr
x1,...,xm←←S

[P (x1, . . . , xm) = 0] = Pr
x1←←S1, . . . ,xm←←Sm

[P (x1, . . . , xm) = 0] ≤ deg(P) · kP =
deg(P)

|S|

by Lemma A.1, and the result follows.

82

	Introduction
	Background
	Our Approach
	Applications of Pseudo-Generic Groups
	Other Related Work and Discussions
	Structure of the Paper

	Preliminaries
	Pseudo-Generic Groups
	PGG Security
	Definitional Choices
	A First Example

	Generic Groups are PGGs
	More on the Generic-Group Model
	PGGs in the GGM
	Preliminary Results
	Generic-Group Feasibility

	From Simple to Algebraic Unpredictability: LDDs
	LDDs for Low-Degree Sources
	Random Functions are LDDs

	Applications of PGGs
	Uber Assumption in PGGs
	Building UCEs
	KDM-CPA Security of Modified ElGamal
	IND Security of Deterministic ElGamal
	RKA Security of ElGamal

	Acknowledgments
	References
	Proof of Lemma 2.2

