
ORTOA: One Round Trip Oblivious Access
Sujaya Maiyya

1
Yuval Steinhart

2
Divyakant Agrawal

2
Prabhanjan Ananth

2
Amr El Abbadi

2

1University of Waterloo, 2University of California Santa Barbara
1
smaiyya@uwaterloo.ca,

2
{yuval, divyagrawal, prabhanjan, elabbadi}@ucsb.edu

ABSTRACT

Cloud based storage-as-a-service is quickly gaining popularity due

to its many advantages such as scalability and pay-as-you-use cost

model. However, storing data in the clear on third-party servers

creates vulnerabilities, especially pertaining to data privacy. Appli-

cations typically encrypt their data before off-loading it to cloud

storage to ensure data privacy. To serve a client’s read or write

requests, an application either reads or updates the encrypted data

on the cloud, revealing the type of client access to the untrusted

cloud. An adversary however can exploit this information leak to

compromise a user’s privacy by tracking read/write access patterns.

Existing approaches (used inOblivious RAM (ORAM) and frequency

smoothing datastores) hide the type of client access by always read-

ing the data followed by writing it, sequentially, irrespective of a
read or write request, rendering one of these rounds redundant

with respect to a client request. To mitigate this redundancy, we

propose ORTOA- a One Round Trip Oblivious Access protocol that

reads or writes data stored on remote storage in one round with-
out revealing the type of access. To our knowledge, ORTOA is the

first generalized protocol to obfuscate the type of access in a single

round, reducing the communication overhead in half. ORTOA hides

the type of individual access as well as the read/write workload

distribution of an application, and due to its generalized design,

it can be integrated with many existing obliviousness techniques

that hide access patterns such as ORAM or frequency smoothing.

Our experimental evaluations show that ORTOA’s throughput is

2.8x that of a baseline that requires two rounds to hide the type of

access; and the baseline incurs 1.9x higher latency than ORTOA.

PVLDB Reference Format:

Sujaya Maiyya
1
Yuval Steinhart

2
Divyakant Agrawal

2
Prabhanjan

Ananth
2
Amr El Abbadi

2
. ORTOA: One Round Trip Oblivious Access.

PVLDB, 14(1): XXX-XXX, 2020.

1 INTRODUCTION

Due to the high cost of owning and maintaining an on-premise

storage fleet, many, if not most, modern applications outsource

their data storage to third party cloud providers such as Amazon

AWS or Microsoft Azure. However, outsourcing an application’s

data in plaintext can reveal sensitive information to a potentially

non-trustworthy cloud provider. Many applications protect their

data with the standard technique of data encryption.

Encrypted databases such as CryptDB [37] consist of a trusted

front-end that stores the encryption key and routes all client re-

quests to the untrusted storage server. A simple encrypted key-

value store (supporting single key GET/PUT requests) design serves

client requests as follows: for read requests the front-end reads

the appropriate encrypted value from the storage, decrypts the

value, and responds to the client. Whereas for write requests, the

front-end encrypts the value updated by the client and writes the

encrypted value to the storage.

This common approach of reading and writing encrypted data

allows an adversary controlling the cloud to distinguish between

read and write requests since only write requests update the data-

base. Revealing the type of access – read vs. write – can violate an

end user’s or an application’s privacy.

At an individual level, consider a banking application example

where a client either views their balance or updates it upon a pur-

chase. Even with the balance information encrypted, an adversary

learns when a user updates their balance. This information com-

bined with location data, which manymobile applications implicitly

track, can reveal with a high probability when (and where) a user

transacted for goods or services, violating the user’s privacy. In fact,

a recent attack by John et. al. [30] utilized observing only write

accesses to perform a privacy attack.

At an application level, an application is incentivized to hide

the type of service it provides because side channel attacks such

as [29] exploit such meta-data to reveal sensitive information. How-

ever, an application cannot maintain anonymity of its service even

with encrypting its data because the read vs. write pattern of an

application often reveals the type of service provided. For example,

social network applications tend to be extremely read-heavy [13],

whereas IoT applications lean write-heavy [16].

Essentially, revealing the type of access on encrypted data poses

privacy challenges both at an individual and an application level.

A straightforward approach to address this privacy challenge is to

hide the type of operation by always reading an object followed

by writing it, irrespective of the type of client request (oblivious

datastores that use ORAM [26] or frequency smoothing [28] deploy

this two round technique to hide the type of operation).

This sequential two round solution doubles the end-to-end la-

tency for each client access compared to plaintext datastores. The

trusted front-end, from here on referred to as proxy, often commu-

nicates with the untrusted storage server over WAN, aggravating

the latency problem. For companies such as Amazon and Google,

end-to-end latency directly impacts revenue. For example, Amazon

loses 1% revenue (worth $3.8 billion!) for every 100 ms lag in loading

pages [1]; Google’s traffic drops by 20% if search results take an

additional 500 ms to load [5].

Furthermore, with increasing privacy laws such as GDPR [3] that

prohibit data movement across continents, requiring two rounds

of cross-continent communication for each request becomes too

expensive. With restricted data movement and due to the high

penalty of increased end-to-end latency, we believe that new proto-

cols should trade-off sending larger amounts of data for reduced

number of communication rounds.

In this work, we propose ORTOA, a one round trip data access

protocol that hides the type of client access to efficiently address the

privacy challenges caused by revealing the type of access. ORTOA

hides the type of individual client access as well as the read/write

distribution of an application.

1.1 Challenges with designing a one round

access oblivious protocol

To highlight the challenges of designing a one-round access oblivi-

ous protocol, we first present two naive solutions. To hide the type

of client operation from an adversary, it is necessary for both read

and write requests to be indistinguishable. Hence, both operations

need to read and write a given physical location.

More specifically, a read request shouldwrite back the same value

it read, while a write request should write the new value, potentially

distinct from the value it read. The two round protocol executes

this as follows: (i) fetch the requested data object by performing

a read, (ii) decrypt the value, (iii) either encrypt the new value

for writes or re-encrypt the fetched value for reads, and (iv) write

the freshly encrypted value back to the server. Note that standard

encryption schemes such as AES produce different ciphertexts even

if the same value is encrypted multiple times; hence, an adversary

cannot distinguish between updated value encryptions or same

value re-encryptions.

Reducing the two rounds of this protocol to a single round is

straightforward for write requests: for each write request, the proxy

encrypts the new value and propagates the encrypted value to the

server without fetching the object’s value first (steps i and ii). But

this technique does not work for read requests: the proxy cannot

re-encrypt an object’s value (which is stored only at the server)

without fetching the value first. Hence, the proxy needs to perform

a read first and then write the re-encrypted value, rendering the

one round approach moot.

Another naive solution to perform read-followed-by-write in

a single round trip is to treat all client requests as read-modify-

write transactions. Typically, for read-modify-write transactions, a

client interactively reads an object (after acquiring a write-lock),

modifies the read value, and writes back the updated value. This

can be converted to a non-interactive approach by modifying the

storage server to support this type of operation independently

without sending the read values to a client (proxy, in our case). In

this naive solution, the proxy sends an encrypted new value for

writes or encrypted dummy value for reads and the server executes

a read-modify-write operation. But the challenge here is: the read-

modify-write operation should re-write the existing value for read

requests or update the value for write requests; this differentiation

reveals the type of client query. Hence, a single round solution such

as this cannot be used without compromising privacy.

1.2 Intuitions for ORTOA

We observe that the above discussed challenges exist primarily

because of the way data values are stored at the server, i.e, us-

ing standard encryption of plaintext values, which disallows the

server from updating values independently. To mitigate these chal-

lenges, ORTOA explores alternate approaches to represent and

store data values. In particular, ORTOA, inspired by garbled cir-

cuit constructions [32, 42], represents plaintext values in a binary

format and encodes each bit with a secret label generated using

pseudo-random functions (PRFs); only these encoded labels are

stored at the server. PRFs are deterministic encoding functions that

produce the same output when invoked any number of times with

the same input list. If a plaintext value for an object with id id is

01, then the server stores labels < 𝑙0, 𝑙1 >, which are the outputs of

< 𝑃𝑅𝐹 (𝑖𝑑, 0), 𝑃𝑅𝐹 (𝑖𝑑, 1) >. Intuitively, ORTOA updates the labels

after each access – read or write – to an object because updating

the labels only for write requests will reveal the type of operation.

The core idea of ORTOA lies in how the proxy and the server com-

municate to update the labels for both read and write requests in a
single round (§4).

Paper organization: The paper is organized as follows: §2 presents
the system and security model; §3 proposes a one-round oblivious

access solution using an existing cryptographic primitive, fully

homomorphic encryption, and discusses the impracticality of this

approach. §4 then presents our novel protocol, ORTOA, to oblivi-

ously read or write in one round, followed by §5 discussing protocol

optimizations. §6 presents an experimental evaluations of ORTOA.

§7 discusses related work and §8 provides the security definition.

2 SYSTEM AND SECURITY MODEL

2.1 System Model

ORTOA is designed for key-value stores where a unique key identi-

fies a given data object and the key-value store supports single key

GET and PUT operations. The data is stored on an external server(s)

managed by a third party, analogous to renting servers from third

party cloud providers.

We assume the external server that stores the data to be un-

trusted. Furthermore, the system uses a proxy model commonly

deployed in many privacy preserving data systems [28, 37–39]. The

proxy is assumed to be trusted and the clients interact with the

external server by routing requests through the proxy. Alternately,

the system can also be viewed as a single trusted client interacting

with the externally stored data on behalf of users from within the

trusted domain. The proxy is a stateful entity and remains highly

available; ensuring high availability of the proxy is orthogonal to

the protocol presented here.

All communication channels – clients to proxy, proxy to server

– are asynchronous, unreliable, and insecure. The adversary can

view (encrypted) messages, delay message deliveries, or reorder

messages. All communication channels use encryption mechanisms

such as transport layer security [7] to mitigate message tampering.

2.2 Data and Storage Model

Each object consists of a unique key and a value, where all values

are of equal length – an assumption necessary to avoid any leaks

based on the length of the values (equal length can be achieved by

padding). Neither an object’s key nor its value is stored in the clear

at the server. For a given key-value object < 𝑘, 𝑣 >, the keys are

encoded using pseudorandom functions (PRFs)
1
. A PRF’s deter-

minism permits a proxy to encode a given key multiple times while

resulting in the same encoding; this encoding can then be used to

access the value of a given key from the server. We use a procedure

𝐸𝑛𝑐 to encode the values (this procedure differs from §3 to §4). For

a key k and its corresponding value 𝑣 , the server essentially stores

< 𝑃𝑅𝐹 (𝑘), 𝐸𝑛𝑐 (𝑣) >.

1
Alternate to PRFs, searchable encryption schemes can also be used. The main require-

ment is to have a deterministic encoding of plaintext keys.

2

2.3 Threat Model

As mentioned earlier, this work focuses on hiding the type of access

generated by clients. We assume an honest-but-curious adversary

that wants to learn the type of access performed by clients without

deviating from executing the designated protocol correctly. The

adversary can control the external server as well as all the commu-

nication channels – proxy to external server and clients to proxy.

We further assume the adversary can access (encrypted) queries

to and from a sender and can inject queries (say by compromising

clients), a commonly used adversarial model [17, 34, 38, 39].

Non-goals: ORTOA does not hide the actual physical locations

accessed by client requests and hence is vulnerable to attacks

based on access patterns, similar to encrypted databases such as

CryptDB [37] or Arx [36] (however, ORTOA protects encrypted

databases from attacks based on exposing the type of operation).

ORTOA does not aim to protect an application from timing based

side channel attacks or implementation based backdoor attacks.

3 FHE BASED SOLUTION

After discussing a few non-private or infeasible one round naive

solution in §1, this section presents a one round mechanism to hide

the type of accesses using an existing cryptographic primitive, Fully

Homomorphic Encryption (FHE) [12, 20, 23]. This is a theoretically

viable but practically infeasible one round access oblivious solution.

We first provide a high-level overview of FHE before presenting a

one round solution.

3.1 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is a form of encryption scheme that al-

lows computing on encrypted data without having to decrypt the

data, such that the result of the computation remains encrypted.

Homomorphic encryption schemes add a small random term, called

noise, during the encryption process to guarantee security. A homo-

morphic encryption functionHE takes a secret-key 𝑠𝑘 , a message

𝑚, and a noise value 𝑛 as input and produces the ciphertext, 𝑐𝑡 ,

as output as shown in Equation 1. The corresponding decryption

functionHD takes the secret-key and the ciphertext as input to

produce message𝑚:

𝑐𝑡 = HE(𝑠𝑘,𝑚, 𝑛); 𝑚 = HD(𝑠𝑘, 𝑐𝑡) (1)

An important property of a homomorphic encryption scheme is

that the noise must be small; in fact, the decryption function fails

if the noise becomes greater than a threshold value, a value that

depends on a given FHE scheme.

Homomorphic encryption schemes allow computing over en-

crypted data. Some homomorphic encryption schemes support

addition [10, 35] and some other schemes support multiplication

[19]. A fully homomorphic encryption (FHE) scheme supports both

addition and multiplication on encrypted data [12, 20, 23]. An FHE

scheme, FHE, applied on two messages𝑚1 and𝑚2 (and two noise

values 𝑛1 and 𝑛2) can perform the following two operations:

FHE(𝑚1;𝑛1) + FHE(𝑚2;𝑛2) = FHE(𝑚1 +𝑚2;𝑛1 + 𝑛2) (2)

FHE(𝑚1;𝑛1) ∗ FHE(𝑚2;𝑛2) = FHE(𝑚1 ∗𝑚2;𝑛1 ∗ 𝑛2) (3)

For small noise values𝑛1 and𝑛2, decryptingFHE(𝑚1+𝑚2;𝑛1+𝑛2)
results in the plaintext addition of𝑚1+𝑚2, and similarly decrypting

FHE(𝑚1 ∗ 𝑚2;𝑛1 ∗ 𝑛2) results in the plaintext multiplication

of 𝑚1 ∗ 𝑚2. As illustrated above, each homomorphic operation

increases the amount of noise included in the encrypted value.

3.2 One-round oblivious read-write using FHE

We propose a technique to use FHE to execute read and write

operations in a single round of communication to the external

key-value store. Specifically, this section uses an FHE scheme as

the encoding procedure 𝐸𝑛𝑐 specified in Section 2.2 to encrypt the

values of the key-value store. For a given key-value pair, the server

stores < 𝑃𝑅𝐹 (𝑘), FHE(𝑣) >.
Let 𝑣𝑜𝑙𝑑 be the current value of a given data object, which is

stored only at the server (after encrypting FHE(𝑣𝑜𝑙𝑑)), and let

𝑣𝑛𝑒𝑤 be the updated value of the object, for a write operation (and

an ‘empty’ value for a read). The challenge is to develop an FHE

procedure (or computation) Pr with parameters FHE(𝑣𝑜𝑙𝑑) and
FHE(𝑣𝑛𝑒𝑤) such that:

𝐹𝑜𝑟 𝑟𝑒𝑎𝑑𝑠 : Pr(FHE(𝑣𝑜𝑙𝑑) , FHE(𝑣𝑛𝑒𝑤)) = FHE(𝒗𝒐𝒍𝒅)
𝐹𝑜𝑟 𝑤𝑟𝑖𝑡𝑒𝑠 : Pr(FHE(𝑣𝑜𝑙𝑑) , FHE(𝑣𝑛𝑒𝑤)) = FHE(𝒗𝒏𝒆𝒘)

(5)

With such a procedure, the external server can execute the same

procedure Pr for both read and write requests but the result of Pr

would vary depending on the type of access. If we can design such

a procedure, since the server already stores FHE(𝑣𝑜𝑙𝑑), the proxy
only needs to send FHE(𝑣𝑛𝑒𝑤) in a single round and expect the

correct result for either type of operations.

To develop such a procedure, the proxy creates a two-dimensional

binary vector C = [𝑐𝑟 , 𝑐𝑤] where 𝑐𝑟 is 1 for read operations (other-

wise 0) and 𝑐𝑤 is a 1 for write operations (otherwise 0). To see how

the vector can be helpful, briefly disregard any data encryption and

consider the data in the plain. We construct a procedure Pr
′
:

Procedure Pr
′ (𝑣𝑜𝑙𝑑 , 𝑣𝑛𝑒𝑤 , [𝑐𝑟 , 𝑐𝑤]):

return (𝑣𝑜𝑙𝑑 ∗ 𝑐𝑟) + (𝑣𝑛𝑒𝑤 ∗ 𝑐𝑤)

For reads, when 𝑐𝑟 = 1 and 𝑐𝑤 = 0, the result of Pr
′
is 𝑣𝑜𝑙𝑑 ;

otherwise, for writes when 𝑐𝑟 = 0 and 𝑐𝑤 = 1, the result of Pr
′
is

𝑣𝑛𝑒𝑤 . The above procedure gives us the desired functionality, albeit

with no encryption. Given that FHE encrypted values can be added

and multiplied, Pr
′
can be refined to procedure Pr to include FHE

encrypted inputs:

Procedure

Pr(FHE(𝑣𝑜𝑙𝑑), FHE(𝑣𝑛𝑒𝑤), [FHE(𝑐𝑟), FHE(𝑐𝑤)]):
return FHE(𝑣𝑜𝑙𝑑) ∗ FHE(𝑐𝑟) + FHE(𝑣𝑛𝑒𝑤) ∗ FHE(𝑐𝑤)

With Procedure Pr that results in the desired outcomes as defined

in Equation 5, the next steps elaborate on the specific operations of

the proxy and the server:

(1) Upon receiving either a Read(𝑘) or a Write(𝑘, 𝑣𝑛𝑒𝑤) request
from a client, the proxy creates vector C such that for reads, C =

[1, 0] and for writes, C = [0, 1].
(2) Proxy then sends FHE(C), i.e. [FHE(𝑐𝑟), FHE(𝑐𝑤)],

along with FHE(𝑣𝑛𝑒𝑤), where 𝑣𝑛𝑒𝑤 is dummy for reads. It also

sends 𝑃𝑅𝐹 (𝑘) so that the server can identify the location to access.

3

Figure 1: Overview of the steps executed by the proxy and the server

to access an object with key 𝑘 whose value size, ℓ , is 1.

(3) The server, upon receiving the encoded key along with the 3

encrypted entities, reads the value currently stored at key 𝑃𝑅𝐹 (𝑘).
The server then executes Procedure Pr by using the stored value

FHE(𝑣𝑜𝑙𝑑) and the 3 entities sent by the proxy. The server then

updates its stored value to the output of the computation and sends

the output back to the proxy.

(4) Given that either 𝑐𝑟 or 𝑐𝑤 is 0, Procedure Pr’s output will

either be FHE(𝑣𝑜𝑙𝑑) for reads or FHE(𝑣𝑛𝑒𝑤) for writes. For
reads, the proxy decrypts FHE(𝑣𝑜𝑙𝑑) using FHE’s secret-key to

retrieve the data object’s value. For writes, the proxy ignores the

returned value.

Thus, by leveraging the properties of FHEs that allow computing

on encrypted data, specifically executing Procedure Pr, we theo-

retically showed how to read or write data in one round without

revealing the type of access.

3.3 Challenges with FHE based solution

Although we have shown the theoretical feasibility of using FHE

to read or write data obliviously in one round, this approach is

not practically feasible, mainly due to the noise 𝑛 necessary for

homomorphic encryption (as shown in Equations 2 and 3). As noted

above, the noise increases with each homomorphic computation,

with the increase being especially drastic for multiplications, which

the Procedure Pr requires for both read and write accesses.

To gauge the practicality of the above described FHE based so-

lution, we developed and evaluated a prototype of the solution.

The prototype used Microsoft SEAL [6] FHE library with BFV [20]

scheme. The evaluation used values of size 160B and 128-bit secret

keys, and BFV coefficients set to their default in the SEAL library.

Our experiments revealed that after about 10 accesses to a spe-

cific object, the noise value grew too large for the FHE decryption to

succeed, essentially rendering this solution impractical for any use

in real deployments. The inevitable multiplication in Procedure Pr

for both reads and writes is the root cause of this infeasibility. We

believe that our proposed FHE solution can be used in the future

if better performing FHE schemes are invented that control the

amount of noise amplification.

4 ORTOA

Having shown that the use of an existing cryptographic primi-

tive, Fully Homomorphic Encryption (FHE), as-is is impractical to

provide the desired one round-trip oblivious access approach, we

propose a novel protocol, ORTOA, that avoids FHE.

Since the existing encryption scheme, FHE, failed to provide the

desired result, we take a step further and define a rather unique way

of encoding the data values stored at the external server. We first

consider the plaintext value in its binary format. For each binary

bit of the plaintext, the server stores a secret label generated by

the proxy using pseudorandom functions. This idea of encoding

bits using secret labels is inspired by garbled circuit constructions

[32, 42]. More precisely, if 𝑘 is a data object’s key and 𝑣 its plaintext

value in binary, then the server stores:

< 𝑃𝑅𝐹 (𝑘), (𝑠𝑙 (1)
𝑏1
, . . . , 𝑠𝑙

(𝑗)
𝑏 𝑗
, . . . , 𝑠𝑙

(ℓ)
𝑏ℓ
) >

where ℓ = |𝑣 |, 𝑠𝑙 (𝑗)
𝑏 𝑗

is a secret label corresponding to the 𝑗𝑡ℎ index

of 𝑣 from the left (indicated as the superscript) where 𝑗 goes from 1

to ℓ , and ∀𝑗 , 𝑏 𝑗 ∈ {0, 1} represents bit value 0 or 1 (indicated as the

subscript). For example if ℓ = 3 and 𝑣 = 101 (in binary notation) ,

then the server stores (𝑠𝑙 (1)
1
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
1
). The proxy generates secret

labels using a pseudorandom function of the form 𝑃𝑅𝐹 (𝑘, 𝑗, 𝑏, 𝑐𝑡)
that takes as input the key 𝑘 , position index 𝑗 from left, the corre-

sponding bit value 𝑏, and an access counter 𝑐𝑡 . Because PRFs are

deterministic functions, invoking the chosen PRF with the same set

of inputs any number of times will result in the same output secret

label.

The goal of ORTOA is to read and write data in one round-trip,

without revealing the type of access. Intuitively, it becomes evident

that to hide reads from writes, every access to an object must write

the data, which is what ORTOA does at a high level: it updates the

secret labels of an object whenever a client accesses the object –

be it for a read or a write. We use notation 𝑜𝑙 to represent the old
secret label currently stored at the server and 𝑛𝑙 to represent the

new label that would replace the old label. To be able to regenerate

the last array of secret labels for a given object, the proxy maintains

an access counter indicating the total access count of an object.

4.1 An Illustrative Example

For ease of exposition, we first explain how ORTOA executes reads

andwrites using a simple example and Figure 1 depicts the overview.

We formally present the protocol in the next section.

Recall that all data values are of the same length, ℓ bits, indexed 1

to ℓ . In this example, let ℓ = 1, and let 𝑘 be the specific key accessed

by a client where the corresponding plaintext key-value tuple is

< 𝑘, 0 >, i.e., the value associated with 𝑘 is 0. The server in-turn

stores the corresponding encoded tuple < 𝑃𝑅𝐹 (𝑘) , 𝑜𝑙 (1)
0

> where

𝑜𝑙
(1)
0

is a secret label for bit value 0 (indicated as the subscript) at

index 1 (indicated as the superscript).

1. Client: The client either sends a Req(Read, 𝑘) or a Req(Write,
𝑘, 𝑣 ′) request to the proxy, where 𝑣 ′ is an updated value for 𝑘 . In

this example, we assume 𝑣 ′ is 1.
2. Proxy: The proxy, in response, executes the following steps:

2.1 The proxy generates two old secret labels < 𝑜𝑙
(1)
0
, 𝑜𝑙
(1)
1

>

(where 𝑜𝑙 indicates old label) both for index 1 by calling

𝑃𝑅𝐹 (𝑘, 1, 𝑏, 𝑐𝑡) where 𝑏 ∈ {0, 1} and 𝑐𝑡 is 𝑘’s access counter.
For each index, the proxy needs to generate labels for both

bit values 0 and 1 since it does not know the actual value,
which is stored only at the server.

2.2 The proxy next generates two new labels < 𝑛𝑙
(1)
0
, 𝑛𝑙
(1)
1

>

(where 𝑛𝑙 indicates new label) both for index 1 by calling

4

𝑃𝑅𝐹 (𝑘, 1, 𝑏, 𝑐𝑡 +1) where 𝑏 ∈ {0, 1} and it updates 𝑘’s access
count to 𝑐𝑡 + 1.

2.3 The details of this step depend on the type of access: for

reads, the proxy encrypts each new secret label using the

corresponding old secret label, thus generating two encryp-

tions for index 1:

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝑛𝑙 (1)
1
) >]

Whereas for writes, assuming the updated value 𝑣 ′ = 1, the

proxy encrypts only the new label corresponding to the

updated value 𝑣 ′ = 1 using the old labels, i.e.:

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝒏𝒍 (1)1), 𝐸𝑛𝑐𝑜𝑙 (1)
1

(𝒏𝒍 (1)1) >]
2.4 The proxy next shuffles 𝐸 pairwise, i.e, randomly reorders

the two encryptions, to ensure that the first encryption

does not always refer to bit 0 and the second to bit 1, and

sends 𝐸 to the external server.

3. Server: The external server, upon receiving 𝐸 does the following:

3.1 For the pair of encryptions received, the server tries to de-

crypt both encryptions using its locally stored label. But

since it stores only one old label at index 1, it succeeds

in decrypting only one of the two encryptions. In this

example, the server decrypts 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
) for reads or

𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
1
) for writes using the stored 𝑜𝑙

(1)
0

.

3.2 The server then updates index 1’s secret label to the newly

decrypted value, in this case, 𝑛𝑙
(1)
0

for reads or 𝑛𝑙
(1)
1

for

writes. For writes, since both encryptions for an index en-

crypt only one new label𝑛𝑙
(1)
1

, either decryptionswill result

in the desired, updated label that reflects the new value of

< 𝑘, 1 >. Whereas for reads, the server ends up with 𝑛𝑙
(1)
0

,

reflecting the existing value of < 𝑘, 0 >. The server sends

the output of the decryption to the proxy and since the

proxy knows the mapping of secret labels to plaintext bit

values, the proxy learns the value of 𝑘 to be 0 for reads and

ignores the output for writes.

4.2 Protocol

This section formally presents the protocol described in the two

functions depicted in Figure 2. Table 1 defines the variables used in

explaining ORTOA.

The Init(kv) procedure describes the data initialization process

in ORTOA. Upon receiving the plaintext key-value pairs as input,

for each pair (line 3), the procedure generates PRF labels at each

of the ℓ indexes corresponding to bit 𝑏 of the value (represented in

binary form) (line 7). All the labels appended together represent

the value (line 11) and the procedure returns the encoded keys and

labels to be stored at the external server.

When a client sends Req(Read,𝑘) or a Req(Write,𝑘,𝑣 ′) to the
proxy, the proxy and the server execute the following steps.

1. Proxy:The proxy, upon receiving a Req(Read, 𝑘) or a Req(Write,
𝑘, 𝑣 ′) request from a client, where 𝑣 ′ is an updated value for 𝑘 ,

invokes the ProcessClientRequest procedure as defined in Figure 2,

which internally executes the following steps:

1.1 The proxy retrieves key 𝑘’s access counter 𝑐𝑡 (line 1).

Procedure Init(𝑘𝑣):

1 𝑘𝑣 ′ ← ∅
2 𝑐𝑡 ← 1 // indicates an access count of 1

3 for (𝑘, 𝑣) ∈ 𝑘𝑣 do
4 𝑙𝑎𝑏𝑒𝑙𝑠 ← ∅
5 𝑖 ← 1 // starting index

// 𝑣 is in binary representation

6 for each bit 𝑏 ∈ 𝑣 starting from left most position do

7 𝑙 ← 𝑃𝑅𝐹 (𝑘, 𝑖, 𝑏, 𝑐𝑡)
8 𝑙𝑎𝑏𝑒𝑙𝑠

∪←− 𝑙
9 𝑖 ← 𝑖 + 1

10 end

11 𝑘𝑣 ′
∪←− {𝑃𝑅𝐹 (𝑘), 𝑙𝑎𝑏𝑒𝑙𝑠}

12 end

13 Return 𝑘𝑣 ′

Procedure ProcessClientRequest(𝑜𝑝, 𝑘, 𝑣𝑎𝑙)

1 Retrieve key 𝑘’s 𝑐𝑡 // 𝑘’s latest access count

2 𝐸 ← ∅
3 𝑖 ← 1 // starting index

// 𝑣𝑎𝑙 is in binary representation

4 for each bit 𝑏 ∈ 𝑣𝑎𝑙 starting from left most position do

5 𝑜𝑙
(𝑖)
0
← 𝑃𝑅𝐹 (𝑘, 𝑖, 0, 𝑐𝑡), 𝑜𝑙 (𝑖)

1
← 𝑃𝑅𝐹 (𝑘, 𝑖, 1, 𝑐𝑡)

6 𝑛𝑙
(𝑖)
0
← 𝑃𝑅𝐹 (𝑘, 𝑖, 0, 𝑐𝑡 + 1), 𝑛𝑙 (𝑖)

1
← 𝑃𝑅𝐹 (𝑘, 𝑖, 1, 𝑐𝑡 + 1)

7 if 𝑜𝑝 = 𝑟𝑒𝑎𝑑 then

8 𝐸
∪←− {𝐸𝑛𝑐

𝑜𝑙
(𝑖)
0

(𝑛𝑙 (𝑖)
0
), 𝐸𝑛𝑐

𝑜𝑙
(𝑖)
1

(𝑛𝑙 (𝑖)
1
)}

9 else

10 𝐸
∪←− {𝐸𝑛𝑐

𝑜𝑙
(𝑖)
0

(𝑛𝑙 (𝑖)
𝑏𝑖
), 𝐸𝑛𝑐

𝑜𝑙
(𝑖)
1

(𝑛𝑙 (𝑖)
𝑏𝑖
)}

11 end

12 𝑖 ← 𝑖 + 1
13 end

14 𝑐𝑡 ← 𝑐𝑡 + 1
15 Return 𝐸

Figure 2: ORTOA’s algorithms to initialize a set plaintext key value

pairs 𝑘𝑣 and process an individual client request for operation type

𝑜𝑝, key 𝑘 , and updated value 𝑣𝑎𝑙 .

1.2 For each of the ℓ indexes of the value, the proxy generates

the two old labels corresponding to both bit-values 0 and 1

by passing the current access counter 𝑐𝑡 to the PRF (line 5):

{𝑜𝑙 (1)
0
← 𝑃𝑅𝐹 (𝑘, 1, 0, 𝑐𝑡), 𝑜𝑙 (1)

1
← 𝑃𝑅𝐹 (𝑘, 1, 1, 𝑐𝑡),

. . . ,

𝑜𝑙
(ℓ)
0
← 𝑃𝑅𝐹 (𝑘, ℓ, 0, 𝑐𝑡), 𝑜𝑙 (ℓ)

1
← 𝑃𝑅𝐹 (𝑘, ℓ, 1, 𝑐𝑡)}

1.3 For each of the ℓ indexes of the value, the proxy next gener-

ates two new secret labels corresponding to both bit-values

0 and 1 by passing the updated access counter 𝑐𝑡 + 1 (ac-
counting for the ongoing access) to the PRF (line 6):

5

Symbol Meaning

𝑜𝑙
(𝑗)
𝑏 𝑗

Secret label of a single bit of plaintext value

𝑗 Index from 1 to ℓ starting from the left of plaintext value

𝑏 𝑗 Bit value (0 or 1) at index 𝑗 of plaintext value

𝑐𝑡 Access counter

𝑛𝑙
(𝑗)
𝑏 𝑗

New secret label of a single bit of plaintext value

Table 1: Variables used in ORTOA.

{𝑛𝑙 (1)
0
← 𝑃𝑅𝐹 (𝑘, 1, 0, 𝑐𝑡 + 1), 𝑛𝑙 (1)

1
← 𝑃𝑅𝐹 (𝑘, 1, 1, 𝑐𝑡 + 1),

. . . ,

𝑛𝑙
(ℓ)
0
← 𝑃𝑅𝐹 (𝑘, ℓ, 0, 𝑐𝑡 + 1), 𝑛𝑙 (ℓ)

1
← 𝑃𝑅𝐹 (𝑘, ℓ, 1, 𝑐𝑡 + 1)}

1.4 The details of this step depend on the type of access: for

reads, the proxy encrypts each new secret label using the

corresponding old secret label and generates two encryp-

tions for each of the ℓ indexes (line 8):

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝑛𝑙 (1)
0
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝑛𝑙 (1)
1
) >, . . . ,

< 𝐸𝑛𝑐
𝑜𝑙
(ℓ)
0

(𝑛𝑙 (ℓ)
0
), 𝐸𝑛𝑐

𝑜𝑙
(ℓ)
1

(𝑛𝑙 (ℓ)
1
) >]

For writes, assuming 𝑏𝑖 is the updated bit value at index 𝑖 ,

the proxy encrypts only the new labels corresponding to

the updated value 𝑣 ′ using the old labels (line 10):

𝐸 = [< 𝐸𝑛𝑐
𝑜𝑙
(1)
0

(𝒏𝒍 (1)
𝒃1
), 𝐸𝑛𝑐

𝑜𝑙
(1)
1

(𝒏𝒍 (1)
𝒃1
) >, . . . ,

< 𝐸𝑛𝑐
𝑜𝑙
(ℓ)
0

(𝒏𝒍 (ℓ)
𝒃ℓ
), 𝐸𝑛𝑐

𝑜𝑙
(ℓ)
1

(𝒏𝒍 (ℓ)
𝒃ℓ
) >]

Note that for writes, at each index 𝑖 , both the old labels

encrypt only one new label 𝑛𝑙
(𝑖)
𝑏𝑖

corresponding to 𝑣 ′.
1.5 The proxy increments 𝑘’s access counter (line 14).

1.6 The proxy pairwise shuffles each of the ℓ pairs of encryp-

tions and sends this encryption to the external server.

2. Server: The server upon receiving the encryption 𝐸 from the

proxy performs the following steps:

2.1 For each of the ℓ pairwise encryptions, the server tries

to decrypt both encryptions using the locally stored label.

However, since it stores only one old label per index, it

succeeds in decrypting only one of the two encryptions per

index. Note that ORTOA uses authenticated encryption to
ensure the server identifies successful decryptions.
At index 𝑗 , the server either stores 𝑜𝑙

(𝑗)
0

or 𝑜𝑙
(𝑗)
1

, and hence,

it can successfully decrypt only one of < 𝐸𝑛𝑐
𝑜𝑙
(𝑗)
0

(𝑛𝑙 (𝑗)
0
),

𝐸𝑛𝑐
𝑜𝑙
(𝑗)
1

(𝑛𝑙 (𝑗)
1
) > obtaining 𝑛𝑙

(𝑗)
0

or 𝑛𝑙
(𝑗)
1

for reads. For

writes, since both encryptions encrypt 𝑛𝑙
(𝑗)
𝑏 𝑗

, either decryp-

tions will result in the new label corresponding to the up-

dated bit 𝑏 𝑗 at index 𝑗 .

2.2 The server then updates each index’s secret label to the

newly decrypted value and sends the output to the proxy.

Since the proxy knows the mapping of secret labels to plain-

text bit values at each index, the proxy learns the value of

𝑘 for reads and it ignores the output for writes.

The server always updates its stored secret labels after executing

ORTOA to access an object. For reads, the updated labels reflect

A few plaintext

bit combinations

1-label-per-bit representation

0000 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
0
, 𝑠𝑙
(4)
0

0001 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
0
, 𝑠𝑙
(4)
1

0010 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
1
, 𝑠𝑙
(4)
0

0011 𝑠𝑙
(1)
0
, 𝑠𝑙
(2)
0
, 𝑠𝑙
(3)
1
, 𝑠𝑙
(4)
1

Table 2: When ℓ = 4 and each secret label represents one bit of

plaintext data, i.e, 𝑦 = 1.

the existing value of the object; for writes, the updated labels re-

flect the updated value of the object. Thus by choosing a unique

data representation model and taking advantage of that model, OR-

TOA provides a one round-trip oblivious access protocol without

restricting the number of accesses, unlike the FHE approach.

4.3 Complexity Analysis

4.3.1 Space Analysis.
Proxy: The only information the proxy needs tomaintain to support

ORTOA is the access counter for each key in the database. While

the complexity of storing access counters for all the keys is O(N),
where 𝑁 is the database size, the actual space it consumes is quite

low. For example if a single counter requires 8 bytes, for a database

of size 1 million objects, the proxy requires about 8mB space to

store the counters.

Server: While the storage cost at the proxy is insignificant to sup-

port ORTOA, the same is not true for the server. The exact space

analysis at the server is as follows: if ℓ represents the length of a

plaintext value (and all values have same length), 𝑟 the output size

(in bits) of the PRF that generates secret labels, and 𝑁 the database

size, then server’s storage space in bits can be calculated as:

(𝑟 · 𝑁)︸ ︷︷ ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑘𝑒𝑦𝑠

+ (𝑟 · ℓ · 𝑁)︸ ︷︷ ︸
𝑆𝑝𝑎𝑐𝑒 𝑓 𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠

4.3.2 Communication and Computation Analysis.
Every bit of plaintext can have 2 possible values – either a 0 or a 1.

Since the data values, or rather the data value encodings, are stored

only at the server, the proxy generates both possible secret label

encodings, and the corresponding 2 encryptions, for each bit of the

plaintext. The proxy then sends 2 encryptions per bit to the server.

If ℓ be the length of data values and 𝐸𝑙𝑒𝑛 the length of encrypted

ciphertexts, for every object accessed by a client, ORTOA incurs

the communication cost of:

2 · 𝐸𝑙𝑒𝑛︸ ︷︷ ︸
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑏𝑖𝑡

· ℓ︸︷︷︸
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑏𝑖𝑡𝑠

In terms of computation, the proxy and the server perform 2 ∗ ℓ
encryptions and decryptions, respectively.

5 OPTIMIZATIONS

5.1 Space optimized solution

In this section, we discuss a technique to optimize storage space by

trading off communication cost. Recall that for every bit of plaintext

6

A few plaintext

bit combinations

1-label-per-2-bits representation

0000 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
00

0001 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
01

0010 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
10

0011 𝑠𝑙
(1,2)
00

, 𝑠𝑙
(3,4)
11

Table 3: When ℓ = 4 and each secret label represents two bits of

plaintext data, i.e, 𝑦 = 2.

data, the server stores a secret label of 𝑟 bits; in other words, 𝑟 bits

are used to represent a single bit of plaintext data. To optimize space,

the next logical question we ask is: can we use 𝑟 bits to represent

multiple bits of plaintext data?

One label represents two bits of plaintext: We start with a

simple case where a single label represents two bits of plaintext

data (Table 3), instead of one (Table 2). In this case, the server stores

ℓ/2 labels for every data item (instead of ℓ), reducing the storage

space by half. For example, if the plaintext value is 0010, then the

server stores [𝑠𝑙 (1,2)
00

, 𝑠𝑙
(3,4)
10
] where, say label 𝑠𝑙

(3,4)
10

corresponds to

plaintext values 1 and 0 at indexes 3 and 4 respectively.

There are 2
2 = 4 unique bit combinations for every 2 indexes of

the plaintext – 00, 01, 10, and 11. Since the proxy does not know the

value, which is stored only at the server, it generates 4 secret labels

for every 2-bits, i.e., labels for all possible unique bit combinations,

and creates 4 corresponding encryptions for every two bits of plain-

text data. The proxy then sends these 4 encryptions per 2-bits to

the server, which then tries to decrypt all 4 encryptions. Since the

server stores only one label per 2-bits, it succeeds in decrypting

only one of the 4 encryptions per 2-bits, which becomes the new

label for those 2-bits.

One label represents 𝑦 bits of plaintext: The above approach
can be further generalized where a single label represents 𝑦 bits of

plaintext. For example a label 𝑠𝑙
(1,...,𝑦)
𝑏1 ...𝑏𝑦

corresponds to bits 𝑏1 . . . 𝑏𝑦

from indexes 1 to 𝑦. This approach reduces the storage space by

a factor of 𝑦, i.e., ℓ/𝑦. Note that if the length of values, ℓ , is not

divisible by 𝑦, we can pad the plaintext with a specific character to

indicate the bit value at that index is invalid.

Communication and computation complexity increase:

While the space optimized solution reduces the storage space at the

server by a factor of 𝑦, it incurs increased communication and com-

putation overhead as more labels need to be communicated from

the proxy to the server, as analysed next. Recall the communication

complexity of the non-space-optimized solution is (2 · 𝐸𝑙𝑒𝑛 · ℓ).
Generalising this to when one secret label represents 𝑦 bits, there

are 2
𝑦
possible unique combinations for every 𝑦 bits of plaintext

and the server stores ℓ/𝑦 labels. So the communication complexity

becomes (2𝑦 · 𝐸𝑙𝑒𝑛 · ℓ/𝑦) bits and the computation complexity in-

creases to 2
𝑦 ∗ ℓ/𝑦, i.e, a factor of 2𝑦/𝑦 increase compared to the

non-space-optimized solution.

Calculating optimal 𝑦 value: The above discussion implies

that there exists a trade-off between the storage space and the

amount of communication (and computation) with the increase in

𝑦. When 𝑦 increases, the storage space reduces by a factor 𝑓𝑠 = 1/𝑦
and the communication expense increases by a factor 𝑓𝑐 = 2

𝑦/𝑦,

Figure 3: Storage vs. communication overhead factor analysis to

find optimal y value - the value that indicates how many plaintext

bits are represented by a single label.

i.e., while the storage space decreases non-linearly, the amount of

communication (and computation) increases exponentially.

To calculate the optimal value of 𝑦, we compare the overhead

factors 𝑓𝑠 , 𝑓𝑐 , and the total combined overhead of the system, 𝑓𝑠 + 𝑓𝑐 ,
as depicted in Figure 3. As expected and as seen in the figure, the

storage factor reduces with increasing 𝑦, and communication factor

increases with 𝑦. The total overhead plot is interesting: the overall

overhead decreases for 𝑦 = 2 and starts increasing from 𝑦 = 3. This

is because when𝑦 = 2, the storage space reduces by half, meanwhile

the communication factor remains the same for 𝑦 = 1 and 𝑦 = 2,

i.e., 𝑓𝑐 = 2. For any 𝑦 > 2, the communication factor increases

more rapidly than the storage factor reduction, causing the total

overhead factor to increase with 𝑦. Since the total overhead is the

least at 𝑦 = 2, that becomes the optimal 𝑦 for ORTOA.

5.2 Reducing the number of decryptions

Given that ORTOA has the least overhead for 𝑦 = 2, i,e, a single

label representing 2-bits of plaintext, this implies that the proxy

sends 2
𝑦 = 2

2 = 4 encryptions for every 2-bits of plaintext. Since

the server stores a single label for every 2-bits of plaintext (Table

3), the server can successfully decrypt only one of the 4 encryp-

tions. In the protocol presented in §4, the four encryptions per

2-bits are randomly shuffled by the proxy, and hence, the server

attempts to decrypt all encryptions until it succeeds (authenticated

encryption schemes used in ORTOA allows identifying successful

decryptions). Essentially, the server wastes computation trying to

identify the right encryption. To mitigate this inefficiency and re-

duce the number of potential decryptions on the server from 4 to 1

for every 2-bits of plaintext, ORTOA adapts the point-and-permute

[9] optimization.

To reduce the number of decryptions, instead of sending the 4

encryptions per 2-bits in a randomly shuffled manner, the proxy

generates the four entries in a deterministic way. For ease of exposi-

tion, let us assume that the 4 encryptions are sent as a table where

each of the four entries are indexed in binary notation: 00,01,10,

and 11 indicating the 1
𝑠𝑡
, 2

𝑛𝑑
, 3

𝑟𝑑
, and 4

𝑡ℎ
entry of the table.

Intuitively, the proxy generates two additional bits of information

per label indicating which of the four entries to decrypt upon the

next access; we term them decryption bits 𝑑1𝑑2. The server stores
bits 𝑑1𝑑2 along with its corresponding secret label. For example, if

7

the server stores a label (𝑠𝑙
(1,2)
00

, 10) for the plaintext indexes (1,2)

of an object, the decryption bits 10 indicate that the server should

decrypt only the 10𝑡ℎ entry, i.e., the third entry, in the encryption

table sent by the proxy for plaintext indexes (1,2). We discuss how

the proxy generates the two decryption bits, 𝑑1𝑑2, next.

To simplify the explanation of the optimization, let us consider

ℓ = 2. The server stores a single label, 𝑜𝑙𝑏1𝑏2 , corresponding to two

bits of plaintext of an object, and the decryption bits 𝑑1𝑑2. The

main constraint that the proxy needs to guarantee while generat-

ing the encryption table when a client accesses the object next is:

the encryption entry at index 𝑑1𝑑2 should use the label 𝑜𝑙𝑏1𝑏2 , i.e.,

𝑑1𝑑
𝑡ℎ
2

entry in the table is 𝐸𝑛𝑐𝑜𝑙𝑏
1
𝑏
2

(𝑛𝑙𝑏′
1
𝑏′
2

) where 𝑏′
1
𝑏′
2
is 𝑏1𝑏2 for

reads or the updated bits for writes. This constraint is necessary be-

cause with this optimization, we are stating that the server decrypts

only 𝑑1𝑑
𝑡ℎ
2

entry in the table but the server can only decrypt an

encryption that used 𝑜𝑙𝑏1𝑏2 (since that is the only label it stores). Es-

sentially, the proxy needs to deterministically ‘link’ 𝑑1𝑑2 with 𝑏1𝑏2
but also randomize this link for every access. The proxy achieves

this by leveraging two random bits, 𝑟1𝑟2, which act as one-time

padding bits to link encryption table indexes with labels. Note that

the proxy does not store these two bits 𝑟1𝑟2 explicitly; they can be

derived with any PRF (e.g., a PRF P that takes the access counter

𝑐𝑡 and key 𝑘 as input to generate the two bits).

First, let us consider a simplified case where ORTOA supports

accessing a data object only once, and hence decryption bits 𝑑1𝑑2
need not be updated. To access a given object, the proxy generates

the four encryption entries for the 2-bits of plaintext by first gen-

erating the old and new labels as described in Steps 1.2 and 1.3 of

§4.2. Next the proxy creates 𝑑1𝑑
𝑡ℎ
2

entry and links it to the labels

by xor-ing with bits 𝑟1𝑟2: For reads

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑑1𝑑2⊕𝑟1𝑟2)

For writes where 𝑛𝑙𝑏′
1
𝑏′
2

represents the label for updated value (es-

sentially all entries encrypt the same new label, refer §4.2)):

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑏′
1
𝑏′
2

)

Generalizing this to where ORTOA supports any number of ac-

cesses to an object, the two decryption bits need to be updated after

each access. Essentially, at each access, we update the decryption

bits to 𝑑′
1
𝑑′
2
indicating which entry to decrypt upon the next ac-

cess. The proxy achieves this by generating two new bits 𝑟 ′
1
and 𝑟 ′

2

using the same PRF that generated 𝑟1 and 𝑟2 (e.g., invoke PRF P
with updated access counter 𝑐𝑡 + 1 and 𝑘). The proxy generates the

encryption table with four entries as follows:

For reads:

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑑1𝑑2⊕𝑟1𝑟2︸ ︷︷ ︸
𝑁𝑒𝑤 𝑙𝑎𝑏𝑒𝑙

, 𝑑1𝑑2 ⊕ 𝑟1𝑟2 ⊕ 𝑟 ′1𝑟
′
2︸ ︷︷ ︸

𝐵𝑖𝑡𝑠 𝑑 ′
1
𝑑 ′
2

)

For writes where 𝑛𝑙𝑏′
1
𝑏′
2

represents the new label :

𝑑1𝑑
𝑡ℎ
2
𝑒𝑛𝑡𝑟𝑦 : 𝐸𝑛𝑐𝑜𝑙𝑑

1
𝑑
2
⊕𝑟

1
𝑟
2

(𝑛𝑙𝑏′
1
𝑏′
2︸︷︷︸

𝑁𝑒𝑤 𝑙𝑎𝑏𝑒𝑙

, 𝑑1𝑑2 ⊕ 𝑟1𝑟2 ⊕ 𝑟 ′1𝑟
′
2︸ ︷︷ ︸

𝐵𝑖𝑡𝑠 𝑑 ′
1
𝑑 ′
2

)

The server upon receiving the encryption table decrypts one

entry based on the decryption bits 𝑑1𝑑2. A decryption yields both

the new label as well as the updated bits 𝑑′
1
𝑑′
2
, which determines

what entry to decrypt for the next access. This approach can be

generalized to values of any arbitrary length ℓ . Thus by constructing

an optimization similar to point-and-permute technique, ORTOA

reduces the potential number of decryptions performed by the

server from 4 to 1. This reduces the server’s computation complexity

to ℓ/2, i.e., one decryption per 2-bits of plaintext.

6 PROTOCOL EVALUATION

In this section, we discuss the merits and limitations of ORTOA by

conducting experimental evaluations.

Baseline: In evaluating ORTOA, we consider a two-round-trip

(2RTT) protocol as the baseline: the baseline system also consists

of a proxy necessary to maintain the encryption key, which routes

client requests to the external server. The baseline proxy translates

each request by a client – read orwrite – into a read request followed

by a write request, ensuring read-write indistinguishability. This

technique is on par with how most existing obliviousness solutions

hide the type of operation [28, 38–40].

Experimental Setup: We evaluated ORTOA and its baseline on

AWS. The clients were deployed on a c5.large instance with 8GiB

memory and 2 cores @ 3.6GHz; the proxy a c5.2xlarge instance

with 8GiB memory and 8 cores @ 3.6GHz; and the server on an

r5.xlarge instance with 8GiB of memory and 4 cores @ 3.1GHz.

The client and proxy were located in the US-West1 (California)

datacenter and in most of our experiments, the server was hosted

in the US-West2 (Oregon) datacenter. ORTOA’s implementation

can be found at https://github.com/ySteinhart1/ORTOA.

Unless stated otherwise, in each experiment a multi-threaded

client (with a default of 64 threads) sends requests concurrently

to the proxy, while each thread sends requests sequentially, i.e., it

waits until its current request is answered before sending the next

one. Each data point plotted in all the experiments is an average

of 3 runs to account for performance variability caused by AWS.

In our experiments, the servers for both ORTOA and the baseline

store ∼ 2
17

(100,000) data objects of synthetic data. Unless stated

otherwise, all experiments use this synthetic data for evaluations.

Each client thread picks an object to access uniformly at random,

and unless stated otherwise, it decides to read or write the data

also uniformly at random. Most of the experiments choose a 160B

value size, ℓ = 1280 bits (this size is in line with other obliviousness

related works [17, 34] as well as with the real world data used in

evaluating ORTOA). Each experiment measures latency, the time in-

terval between when a client sends a request to when it receives the

corresponding response; and throughput, the number of operations

executed per one second.

Real world datasets: In addition to detailed experiments on syn-

thetic data, we measure ORTOA’s performance on two real world

datasets: (i) An Electronic Health Record (EHR) data consisting

of patients’ heart disease records [2], and (ii) SmallBank [8] data

focusing on single object read/write requests rather than transac-

tional workloads. §6.4 discusses more details on the datasets and

ORTOA’s performance on the two datasets.

6.1 ORTOA vs. two round trip baseline

In the first set of experiments, we compare ORTOA with the 2RTT

baseline where the proxy and client are located in the US-West1 (Cal-

ifornia) datacenter and the server is placed at increasingly farther

8

https://github.com/ySteinhart1/ORTOA

(a) ORTOA vs Baseline (b) Varying concurrency (c) Varying % of write requests. (d) Varying value size ℓ (bytes).

Figure 4: (a) Throughput and latency for ORTOA and the 2RTT baseline, where the proxy lies in the California datacenter and the server is

placed at increasingly farther datacenters. (b) ORTOA’s throughput measured with increasing the number of concurrent clients. ORTOA’s

throughput peaks at 64 concurrent clients with low latency. (c) ORTOA’s throughput and latency measured with increasing percent of PUTs

highlights its effectiveness in hiding the read/write ratios of an application. (d) ORTOA’s throughput and latency measured when the size of

the values, ℓ , increases from 40B to 200B (320 to 1600 bits).

Oregon N. Virginia London Mumbai

California 21.84 62.06 147.73 230.3

Table 4: RTT latencies across different datacenters in ms.

datacenters of US-West2 (Oregon), US-East1 (N. Virginia), EU-West2

(London), and AP-South1 (Mumbai). Table 4 notes the round-trip

time (RTT) latencies from California to the other datacenters. The

measured throughput and latency are plotted in Figure 4a. Note that

we do not place the server in the same datacenter as the proxy and

the client so as to mimic realistic behavior where between 79%-95%

of cloud users face more than 10 ms latency when accessing a cloud

server [15]. Further, this experiment runs a single-threaded client

since our goal is to measure the effect of proxy-to-server distance

on a given client’s throughput and latency, without accounting for

the performance effects due to concurrency.

As seen in Figure 4a, as the physical distance between the proxy

and the server increases, latency increases and throughput de-

creases for both ORTOA and the 2RTT baseline. But the latency of

the 2RTT baseline is about 1.9x higher than ORTOA; and ORTOA’s

throughput is about 2.9x that of the baseline. This experiment high-

lights the benefits of constructing a single round access oblivious

protocol, as compared to the state-of-the-art two-round approach.

6.2 Latency breakdown of ORTOA

Since ORTOA’s computation cost is high due to generating old and

new labels for every 2-bits of plaintext and performing 4 encryp-

tions for every 2-bits of data, in this experiment, we measure the

time spent by the proxy in computation vs. in communication. Sim-

ilar to the last experiment, this experiment places the proxy and the

client in California and the server at increasingly farther distances

from California. Table 4 records the round trip time (RTT) from

California to the other datacenters and Table 5 notes the average

computation time vs. communication time and the total time, in

milliseconds, spent by ORTOA in executing a request. As shown

in Table 5, ORTOA consistently spends ∼2 ms in computing the

labels and encrypting the data. In the total time spent per request,

ORTOA spends the majority of the time in communication. This

latency breakdown also indicates when is ORTOA a better choice

Oregon N. Virginia London Mumbai

Computation (ms) 2.25 2.27 2.28 2.29

Communication (ms) 24.89 66.62 154.71 241.38

Total time (ms) 27.14 68.89 156.99 243.67

Table 5: Time spent in computation (creating old and new labels and

encrypting them) vs. time spent in communication, in ms, when the

proxy and client are located in California and the server is located

at different datacenters.

compared to the 2RTT baseline: let 𝑐 be the round-trip latency be-

tween the proxy and the server. If 2 ∗ 𝑐 < 2 ms, then this indicates

that two sequential rounds of communication requires less time

than the computation time of ORTOA, and hence the 2RTT baseline

is a better choice for an application choosing between ORTOA and

the 2RTT solution. But since most cloud users face over (𝑐 =) 10

ms latency in accessing a cloud server [15], most applications will

save latency by choosing ORTOA. This underscores our belief that

having fewer rounds of communication at the cost of increased

message sizes is worthwhile.

6.3 Micro Benchmarking

Having compared ORTOA with its 2RTT baseline, we now evaluate

ORTOA’s behavior across different configurations, starting with

increasing concurrent client requests. These experiments place

the server in US-West2 (Oregon) and the proxy and the client in

US-West1 (California) datacenters.

6.3.1 Increasing Concurrency. To understand how ORTOA be-

haves when clients’ request load increases, this experiment mea-

sures the protocol’s throughput and latency while the number of

concurrent clients (implemented via threads) increases starting

from 8, and the results are depicted in Figure 4b. As seen in the

figure, the peak throughput, which is at 64 clients, is 6.5x of the

throughput at 8 clients; however, the throughput saturates at ∼320
ops/sec or lowers for higher concurrency values. Since a concur-

rency of 64 clients has the lowest latency while providing peak

throughput, the following experiments choose the concurrency of

64 clients, sending requests in parallel.

9

(a) Varying the database size. (b) Increasing the scale factor (c) Real world EHR and SmallBank (SM)

datasets

Figure 5: (a) ORTOA’s throughput and latency measured while increasing the database size, i.e., number of objects, from 2
10

to 2
20

(∼1M). The

performance degrading is mostly due to a single server storing a large database in memory. (b) ORTOA’s throughput and latency measured

when the number of servers and proxies in the system are scaled up to a factor of 5. Throughput scales linearly with the scale factor, indicating

the scalability of ORTOA. (c) ORTOA’s throughput and latency measured for two real world datasets - i. Electronic Health Record (EHR) data

consisting of heart diseases and ii. SmallBank (SM) data consisting of users and their bank balance data. The performance is measured by

placing the data server at increasingly farther distances from the proxy.

6.3.2 Varying the percent of writes. This experiment measures

ORTOA’s throughput and latency while increasing the percent of

PUT (or write) operations from 0 to 100%, as shown in Figure 4c.

In this experiment, the server resides in Oregon and 64 concurrent

clients read or write the data. As seen in the figure, the through-

put and the latency values remain more or less constant at ∼320
ops/s and 190 ms latency (a maximum difference of 15 ops/s for

throughput). This experimentally demonstrates the obliviousness

of ORTOA in that its performance remains the same regardless of

the percentage of read or write operations in the client workload.

This highlights that ORTOA protects applications from vulnera-

bilities exploited by observing the overall read/write ratios of an

application.

6.3.3 Varying ℓ : the length of values. Since the storage, com-

munication, and computation complexity of ORTOA are directly

proportional to ℓ (see §4.3), in this experiment, we measure OR-

TOA’s throughput and latency while increasing the size of the

values (where all values have the same length) from 40B to 200B (or

320 to 1600 bits) and the results are depicted in Figure 4d. 64 concur-

rent client threads send read or write requests in this experiment.

As expected, ORTOA’s performance, both in terms of throughput

and latency, degrades near linearly with the increase in the value

size. The primary reason for this is the increased computation both

at the proxy and the server in encrypting and decrypting labels,

respectively, with the increase in value size. This experiment indi-

cates that ORTOA suits applications with smaller value sizes rather

than with larger value sizes. Moreover, a popular technique to cope

with increasing computation is to scale the system by adding more

compute nodes.

6.3.4 Varying 𝑁 : the database size. Having studied how OR-

TOA’s performance varies when an individual object’s length in-

creases, this experiment evaluates its performance when the overall

database size, i.e., the number of objects stored, increases from 2
10

to 2
20

(∼ 1 million objects) and the results are depicted in Figure 5a.

As shown in the figure, throughput and latency change minimally

up until 2
18

(∼262,000 objects) and the performance gracefully

degrades by 9.5% at 1M objects. The primary reason for this degra-

dation is due to a single server storing increasingly larger number

of objects in memory, which reduces the resources available to

execute data access requests and impedes performance. This is an

expected behavior of database systems and a standard approach to

overcome this performance degradation is by scaling the storage.

6.3.5 Scaling ORTOA. In this set of experiments, we address

the observed performance reduction due to increasing database

size or individual value size by sharding the data across multiple

servers and proxies, i.e., by scaling both storage and compute. This

experiment increases the number of storage servers and proxies

from 1 to 5, by pairing each storage server with a proxy and scaling

them pairwise. Since ORTOA aims to hide the type of access per-

formed by a client (and not the overall access pattern), the system

can scale the number of proxies without compromising security.

For each scaling factor 𝑠 , the client concurrency is also increased

by the scaling factor, i.e., by 64 ∗ 𝑠 . This experiment places all the

proxies and clients in the California datacenter and the servers

in the Oregon datacenter and each server stores 100,000 objects.

The resulting throughput and latency are shown in Figure 5b. As

indicated in the plot, ORTOA scales linearly with the increasing

number of servers and proxies: its peak throughput at a scale factor

of 5 is about 5x the throughput at a scale factor of 1. The latency

remains constant (a maximum difference of 4 ms) across differ-

ent scale factors. This experiment emphasizes the linear scaling of

ORTOA– a highly desired property of data management protocols.

6.4 Real world datasets

To assess ORTOA’s behavior for real world applications, this ex-

periment initializes the database with two real world datasets: (i)

An Electronic Health Record (EHR) dataset consisting of heart dis-

eas information [2] with 14 attributes. For this dataset, we chose

two attributes: a UUID to identify unique patients and their rest-

ing blood pressure data. The dataset consists of 1024 (2
10
) entries

and the size of resting blood pressure attribute is 10B (80 bits).

(ii) A SmallBank[8]-like dataset for banking applications where,

although SmallBank [8] supports transactional queries, this exper-

iment focuses on single object read/write requests from clients,

which aligns with the type of requests supported by ORTOA. This

dataset consists of 100,000 entries with a UUID attribute to identify

bank customers and a 50B (400 bits) balance attribute.

10

This experiment measures the latency and throughput of ORTOA

on real world datasets when the data is stored on a server at an

increasingly farther distance from the proxy and the client, both

of which are located in California. Table 4 notes the round-trip

time (RTT) latencies from California to the other datacenters. 64

concurrent client threads generate the read/write workload in this

experiment. As depicted in Figure 5c, ORTOA’s throughput when

the server is hosted in the Oregon datacenter is 394 ops/s and

355 ops/s for the EHR and SmallBank datasets and with latencies

between 150-170ms. This indicates that for real world datasets

ORTOA’s performance is reasonable compared to the additional

privacy it guarantees.

6.5 Dollar cost analysis

We have shown the benefits of a single round access oblivious pro-

tocol through the above discussed experimental evaluations. Since

ORTOA incurs high storage and communication overheads, in this

section, we discuss the estimated dollar cost of deploying ORTOA.

To calculate the estimates, we consider the storage, communica-

tion, and compute costs of Google Cloud [4, 27], whose costs are

comparable to other cloud providers. Google Cloud charges $0.02

per GB of storage per month, $0.12 per GB of network usage, and

$0.4 per million function invocations with a 1.4 GHz CPU costing

$0.00000165 per 100ms (ORTOA needs 2 ms to encrypt/decrypt

labels). In estimating the dollar cost, we consider the optimized pro-

tocol with 𝑦 = 2, and PRFs that produce 128-bit labels, i.e., 𝑟 = 128,

with data values of size 160B, i.e., ℓ = 1280, and with encryption

schemes that produce 128-bit ciphertexts, i.e., 𝐸𝑙𝑒𝑛 = 128. Please

refer to §4.3 to recall the storage, communication, and compute

complexity of ORTOA. With the above configuration, consider

running ORTOA with a large dataset consisting of 1 million data

objects. This costs an application $1.52 in storage per month, and

executing 1 million accesses will cost $18.3 in terms of bandwidth

and $3.7 in terms of compute (function calls). Taking into account

the cost of a single access, ORTOA incurs a cost of $0.000023 per

request – a comparable price considering the advantage over 2RTT

baseline, which incurs 1.9x higher latency overhead and serves 2.8x

less requests compared to ORTOA.

7 DISCUSSION ON RELATEDWORK

To the best of our knowledge, ORTOA is the only solution that

tackles the problem of hiding the type of operation in a generalized

manner. The literature on ORAM constructions consists of a few

specialized solutions that achieve single round communication

complexity [11, 22, 24, 25, 33]. All these solutions are based on

Garbled-RAM which requires the server to store and evaluate a

garbled circuit per request. Garbled-RAMs do not take fixed length

inputs and their execution time varies based on the input size as well

as value size. All these properties primarily differ from ORTOA’s,

which has a simple server model, fixed length inputs, and constant

execution time. These solutions primarily focus on hiding the data

access patterns, with mechanisms to hide the type of access tightly

coupled with hiding access pattern. ORTOA on the other hand

focuses on hiding the type of access in a more generalized way

that can be adapted to construct obliviousness solutions such as

ORAM or frequency smoothing [28]. On the other hand, although

a few ORAM based datastores that do not use Garbled-RAM such

as [18, 21, 41] have single online rounds, they need offline rounds
per request to write the data back. Hence, they are not truly single-

round solutions. Due to hiding access patterns, all of the above

ORAM schemes have a lower bound bandwidth cost of log(N),
where 𝑁 is the number of data objects [26, 31] or

√
𝑁 lower bound

when the data storage server performs no computations [14]. Since

ORTOA focuses on obfuscating the type of access, it has a constant

bandwidth cost independent of 𝑁 (as discussed in §4.3).

8 SECURITY OF ORTOA

This section defines the security guarantees of ORTOA and provides

intuitions of the proof; the Appendix presents the formal security

proof. ORTOA aims to hide the type of client access – read or write

– from an adversary that controls the external database server. To

capture this read or write obliviousness, we introduce a security

definition called real-vs-random read-write indistinguishability or

ROR-RW indistinguishability. We propose a new security definition

because no existing definitions capture read-write indistinguisha-

bility.

Real(𝐴)

1 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅
2 for 𝑎𝑖 ∈ 𝐴 do

3 𝑜𝑢𝑡𝑝𝑢𝑡
∪←− 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 −

𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑎𝑖)
4 end

5 Return 𝑜𝑢𝑡𝑝𝑢𝑡

Ideal(𝐾)

1 𝑜𝑢𝑡𝑝𝑢𝑡 ← ∅
2 for 𝑘𝑖 ∈ 𝐾 do

3 𝑜𝑢𝑡𝑝𝑢𝑡
∪←−

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (𝑘𝑖)
4 end

5 Return 𝑜𝑢𝑡𝑝𝑢𝑡

Figure 6: Security game where given a sequence of client generated

accesses𝐴, the Real world takes𝐴 as input and the Ideal world takes

the sequence of keys accessed in 𝐴 as input and both produce as

output a sequence of encryptions that are sent to the external server.

Security definition: Consider a sequence of𝑚 client accesses

𝐴 = {(𝑜𝑝1, 𝑘1, 𝑣𝑎𝑙1), · · · , (𝑜𝑝𝑖 , 𝑘𝑖 , 𝑣𝑎𝑙𝑖), · · · , (𝑜𝑝𝑚, 𝑘𝑚, 𝑣𝑎𝑙𝑚)}

where for 𝑖𝑡ℎ request, 𝑜𝑝𝑖 indicates the type of operation (read or

write), 𝑘𝑖 denotes the key, and 𝑣𝑎𝑙𝑖 is either an updated value for

writes or ⊥ for reads. We use a security game-based definition that

provides the sequence of accesses𝐴 as input to both the real system

and an ideal system (simulator based), where both are stateful

entities, and both produce outputs𝑂𝑢𝑡𝑅𝑒𝑎𝑙 and𝑂𝑢𝑡𝑆𝑖𝑚 respectively

consisting of a sequence of accesses to the external server. A system

is said to be ROR-RW secure if, given the two outputs, an adversary

can distinguish between the two with negligible probability, i.e.,

For all probabilistic polynomial adversaries A,

| 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑅𝑒𝑎𝑙) → 1] − 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑆𝑖𝑚) → 1] |≤ 𝑛𝑒𝑔𝑙
To argue for ORTOA’s correctness, we consider a game G, as

shown in Figure 6. We assume the length ℓ of data values to be 1 for

simplicity but the argument can be generalized to data values of any

arbitrary length. The game either executes Real or Ideal algorithm

with uniformly random probability and provides the output to an

adversary. ORTOA is ROR-RW secure if the adversary, based on the

11

Procedure Simulator(𝑘)

1 𝐸 ← ∅
// Iterate over each of the ℓ indexes

2 for (𝑖 = 0; 𝑖 < ℓ ; 𝑖 + +) do
3 Retrieve the old label 𝑜𝑙 (𝑖) for 𝑘

4 𝑛𝑙 (𝑖)
$←− {0, 1}_

5 𝑜𝑙 ′(𝑖)
$←− {0, 1}_

6 𝐸
∪←− {𝐸𝑛𝑐𝑜𝑙 (𝑖) (𝑛𝑙 (𝑖)), 𝐸𝑛𝑐𝑜𝑙 ′(𝑖) (0)}

7 𝑜𝑙 (𝑖) ← 𝑛𝑙 (𝑖)

8 end

9 Return 𝐸

Figure 7: Simulator pseudocode accessed in the Ideal algorithm.

received output, can identify the algorithm selected by the security

game with negligible probability.

The Real algorithm invokes ORTOA’s ProcessClientRequest pro-
cedure (defined in Figure 2) for each of the 𝑚 accesses in 𝐴 and

appends the output of each access to produce 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 . The Ideal

algorithm, on the other hand, invokes a simulated function, Simula-
tor, defined in Figure 7. The Ideal algorithm and the Simulator have

no access to actual data values and generate𝑚 pairs of encryptions

of dummy values. The collation of these dummy encryptions forms

𝑂𝑢𝑡𝑆𝑖𝑚 . If we can prove that the output generated by the Real algo-

rithm appears indistinguishable to 𝑂𝑢𝑡𝑆𝑖𝑚 , it proves that ORTOA

is ROR-RW secure.

Proof intuition: Intuitively, we first show that a read and a write

access to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 procedure are indistinguishable,

and then show that 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ’s output is indistinguish-

able from that of the Simulator. Figure 8 captures the argument

for this indistinguishability. The basis of our argument lies in the

PRF deployed in ORTOA: ORTOA’s PRF, 𝑃𝑅𝐹 , produces labels that

are indistinguishable from a uniformly sampled random variable

𝑟
$←− {0, 1}_ . The argument invokes 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 proce-

dure once to read a key 𝑘 and once to write a key 𝑘 with the updated

bit value 𝑏′ (assuming the length of the value ℓ = 1). As shown in

the figure, given that the server stores only one old label, say 𝑜𝑙𝑏 ,

and given 𝑃𝑅𝐹 ’s security, the output produced by both invocations

of 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 are identical.

When the Real algorithm invokes 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑚 times

(for𝑚 accesses in 𝐴), the output of the Real algorithm based on the

argument shown in Figure 8 becomes indistinguishable from that

of 𝑂𝑢𝑡𝑆𝑖𝑚 , which is essentially𝑚 pairs of encryptions of _ length

random values. We utilize this intuition in developing the formal

security proof using hybrids (refer Appendix).

9 CONCLUSION AND FUTUREWORK

Encrypted databases leak information on when a client performs a

read vs. a write operation to an adversary; by observing individual

read/write accesses, the adversary can learn the overall read/write

workload of an application. An adversary can exploit this infor-

mation leak to violate privacy at an individual user level or at an

application level. Existing solutions to hide the type of operation

Read

1 {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 (𝑛𝑙1−𝑏′)} ←
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑟𝑒𝑎𝑑, 𝑘,⊥)

// Because the server has only 𝑜𝑙𝑏, it cannot decrypt

𝐸𝑛𝑐𝑜𝑙
1−𝑏 (𝑛𝑙1−𝑏′). So it can be replaced with a random

string.

2 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}
_)}

// From 𝑃𝑅𝐹’s security, the new label can be replaced

with a random string of length _.

3 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 ({0, 1}
_), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}

_)} // From 𝑃𝑅𝐹’s

security, the old labels can be replaced with

random strings of length _.

4 ≡ {𝐸𝑛𝑐 {0,1}_ ({0, 1}_), 𝐸𝑛𝑐 {0,1}_ ({0, 1}_)}

Write

1 {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 (𝑛𝑙𝑏′)} ←
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑤𝑟𝑖𝑡𝑒, 𝑘, 𝑏′)

// Because the server has only 𝑜𝑙𝑏, it cannot decrypt

𝐸𝑛𝑐𝑜𝑙
1−𝑏 (𝑛𝑙𝑏′). So it can be replaced with a random

string.

2 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}
_)}

// From 𝑃𝑅𝐹’s security, the label can be replaced with

a random string of length _.

3 ≡ {𝐸𝑛𝑐𝑜𝑙𝑏 ({0, 1}
_), 𝐸𝑛𝑐𝑜𝑙1−𝑏 ({0, 1}

_)}
// From 𝑃𝑅𝐹’s security, the old labels can be replaced

with random strings of length _.

4 ≡ {𝐸𝑛𝑐 {0,1}_ ({0, 1}_), 𝐸𝑛𝑐 {0,1}_ ({0, 1}_)}

Figure 8: Intuition for read-write indistinguishability when a key

𝑘 is accessed where the server stores label 𝑜𝑙𝑏 corresponding to 𝑘 ’s

plaintext value 𝑏 ∈ {1, 0}. The write request updates 𝑘 ’s value to bit

𝑏′. The PRF deployed in ORTOA generates labels of length _.

(deployed in ORAM or frequency smoothing techniques) consists

of always reading an object followed by writing it, irrespective of

the client request. This incurs one round of redundant communi-

cation per request and doubles the end-to-end latency compared

to plaintext datastores. In this work, we propose ORTOA, a One

Round Trip Oblivious Access protocol that accesses data on re-

mote storage and hides the type of access in a single round. This

is the first protocol to focus on hiding access type on encrypted

databases. Experimentally evaluating ORTOA and comparing it

with a baseline that requires two rounds to hide the type of access

confirms the benefits of designing a single round solution: the base-

line incurred 1.9x higher latency and serves 2.8x less requests per

second than ORTOA. This work also presents a theoretically sound

one round trip oblivious access solution using Fully Homomorphic

Encryption and discusses its improbability of practical use due to

the expensive multiplication operation. As future work, we aim

to integrate ORTOA into an end-to-end system that hides access

pattern by integrating it with existing techniques such as frequency

smoothing or by designing novel ORAM schemes that leverage

ORTOA to access data in a single round.

12

REFERENCES

[1] Amazon loses 1% revenue for every 100ms page load delay. https:

//www.contentkingapp.com/academy/page-speed-resources/faq/amazon-

page-speed-study/. Accessed May 9, 2022).

[2] Ehr dataset of heart diseases. https://www.kaggle.com/datasets/johnsmith88/

heart-disease-dataset. Accessed October 14, 2022).

[3] Gdpr. https://gdpr-info.eu/. Accessed May 9, 2022).

[4] Google function pricing. https://cloud.google.com/functions/pricing. Accessed

August 15, 2021).

[5] Google loses 20% traffic for 0.5s page load delay. https://medium.com/

@vikigreen/impact-of-slow-page-load-time-on-website-performance-

40d5c9ce568a. Accessed May 9, 2022).

[6] Microsoft seal. https://docs.microsoft.com/en-us/azure/architecture/solution-

ideas/articles/homomorphic-encryption-seal. Accessed June 15, 2021.

[7] Tsl. https://datatracker.ietf.org/doc/html/rfc5246. Accessed April 14, 2022).

[8] M. Alomari, M. Cahill, A. Fekete, and U. Rohm. The cost of serializability on

platforms that use snapshot isolation. In 2008 IEEE 24th International Conference
on Data Engineering, pages 576–585. IEEE, 2008.

[9] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In

Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 503–513, 1990.

[10] J. Benaloh. Dense probabilistic encryption. In Proceedings of the workshop on
selected areas of cryptography, pages 120–128, 1994.

[11] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage: Making obliv-

ious ram practical. http://dspace.mit.edu/handle/1721.1/62006.TechnicalReport,
2011.

[12] Z. Brakerski. Fully homomorphic encryption without modulus switching from

classical gapsvp. In Annual Cryptology Conference, pages 868–886. Springer, 2012.
[13] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, S. Kulkarni, H. Li, et al. Tao:facebook’s distributed data store for

the social graph. In 2013 USENIX Annual Technical Conference (USENIX ATC 13),
pages 49–60, 2013.

[14] D. Cash, A. Drucker, and A. Hoover. A lower bound for one-round oblivious

ram. In Theory of Cryptography Conference, pages 457–485. Springer, 2020.
[15] B. Charyyev, E. Arslan, and M. H. Gunes. Latency comparison of cloud datacen-

ters and edge servers. In GLOBECOM 2020-2020 IEEE Global Communications
Conference, pages 1–6. IEEE, 2020.

[16] A. Copie, T.-F. Fortiş, and V. I. Munteanu. Benchmarking cloud databases for

the requirements of the internet of things. In Proceedings of the ITI 2013 35th
International Conference on Information Technology Interfaces, pages 77–82. IEEE,
2013.

[17] E. Dauterman, V. Fang, I. Demertzis, N. Crooks, and R. A. Popa. Snoopy: Sur-

passing the scalability bottleneck of oblivious storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, pages 655–671, 2021.

[18] J. Dautrich, E. Stefanov, and E. Shi. Burst {ORAM}: Minimizing {ORAM}
response times for bursty access patterns. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 749–764, 2014.

[19] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.
[20] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.

IACR Cryptol. ePrint Arch., 2012:144, 2012.
[21] C. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov. Bucket oram: single online

roundtrip, constant bandwidth oblivious ram. Cryptology ePrint Archive, 2015.
[22] S. Garg, S. Lu, R. Ostrovsky, and A. Scafuro. Garbled ram from one-way functions.

In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 449–458, 2015.

[23] C. Gentry et al. A fully homomorphic encryption scheme, volume 20. Stanford

university Stanford, 2009.

[24] C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs. Garbled

ram revisited. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 405–422. Springer, 2014.

[25] O. Goldreich. Towards a theory of software protection and simulation by oblivi-

ous rams. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 182–194, 1987.

[26] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

rams. Journal of the ACM (JACM), 43(3):431–473, 1996.
[27] Google. Google cloud pricing. https://cloud.google.com/storage/pricing. Ac-

cessed August 15, 2021).

[28] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown, L. Li, R. Agarwal, and

T. Ristenpart. Pancake: Frequency smoothing for encrypted data stores. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), pages 2451–2468, 2020.

[29] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on search-

able encryption: ramification, attack and mitigation. In Ndss, volume 20, page 12,

2012.

[30] T. M. John, S. K. Haider, H. Omar, and M. Van Dijk. Connecting the dots: Privacy

leakage via write-access patterns to the main memory. IEEE Transactions on
Dependable and Secure Computing, 17(2):436–442, 2017.

[31] K. G. Larsen and J. B. Nielsen. Yes, there is an oblivious ram lower bound! In

Annual International Cryptology Conference, pages 523–542. Springer, 2018.
[32] Y. Lindell and B. Pinkas. A proof of security of yao’s protocol for two-party

computation. Journal of cryptology, 22(2):161–188, 2009.
[33] S. Lu and R. Ostrovsky. How to garble ram programs? In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages
719–734. Springer, 2013.

[34] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An efficient

oblivious search index. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 279–296. IEEE, 2018.

[35] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In International conference on the theory and applications of cryptographic
techniques, pages 223–238. Springer, 1999.

[36] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly encrypted database system.

IACR Cryptol. ePrint Arch., 2016:591, 2016.
[37] R. A. Popa, C. M. Redfield, N. Zeldovich, andH. Balakrishnan. Cryptdb: Protecting

confidentiality with encrypted query processing. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pages 85–100, 2011.

[38] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro. Taostore: Overcoming

asynchronicity in oblivious data storage. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 198–217. IEEE, 2016.

[39] E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud storage.

In 2013 IEEE Symposium on Security and Privacy, pages 253–267. IEEE, 2013.
[40] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path

oram: an extremely simple oblivious ram protocol. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 299–310,
2013.

[41] P. Williams and R. Sion. Single round access privacy on outsourced storage. In

Proceedings of the 2012 ACM conference on Computer and communications security,
pages 293–304, 2012.

[42] A. C.-C. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science, pages 162–167. IEEE, 1986.

APPENDIX

We propose a new security definition called real-vs-random read-

write indistinguishability or ROR-RW to capture the goal of this work
of hiding the type of access performed by a client.

Security definition: Consider a sequence of𝑚 client accesses

𝐴 = {(𝑜𝑝1, 𝑘1, 𝑣𝑎𝑙1), · · · , (𝑜𝑝𝑖 , 𝑘𝑖 , 𝑣𝑎𝑙𝑖), · · · , (𝑜𝑝𝑚, 𝑘𝑚, 𝑣𝑎𝑙𝑚)}

where for 𝑖𝑡ℎ request, 𝑜𝑝𝑖 indicates the type of operation (read

or write), 𝑘𝑖 denotes the key, and 𝑣𝑎𝑙𝑖 is either an updated value

for writes or ⊥ for reads. This is a security definition based on

a game G defined in Figure 6. The game takes the sequence of

accesses 𝐴 and provides it as input to both the real system and an

ideal system (simulator based), where both are stateful entities, and

both produce outputs 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 and 𝑂𝑢𝑡𝑆𝑖𝑚 respectively consisting

of a sequence of accesses to the external server. A system is said

to be ROR-RW secure if, given the two outputs, an adversary can

distinguish between the two with negligible probability, i.e.,

For all probabilistic polynomial adversaries A,

| 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑅𝑒𝑎𝑙) → 1] − 𝑃𝑟 [𝐴(𝑂𝑢𝑡𝑆𝑖𝑚) → 1] |≤ 𝑛𝑒𝑔𝑙

For simplicity in arguing for ORTOA’s security, the proof as-

sumes ℓ = 1; however, the same proof argument extends to values

of arbitrary length. Further, our proof considers the non-optimized

protocol as presented in §4.2 but the proof easily extends to the

optimized versions as well.

For Real algorithm in Figure 6, the game sends a sequence of𝑚

accesses in 𝐴 produced by clients where the algorithm in-turn calls

ORTOA’s ProcessClientRequest procedure (defined in Figure 2) for

each access in 𝐴. Note that the ProcessClientRequest procedure is a
stateful algorithm. Let _ be the length of old and new labels gener-

ated by a PRF and let 𝐸𝑛𝑐 be the encryption scheme deployed in

the ProcessClientRequest procedure to encrypt new labels of length

13

https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.contentkingapp.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
https://gdpr-info.eu/
 https://cloud.google.com/functions/pricing
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
https://medium.com/@vikigreen/impact-of-slow-page-load-time-on-website-performance-40d5c9ce568a
 https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/homomorphic-encryption-seal
 https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/homomorphic-encryption-seal
https://datatracker.ietf.org/doc/html/rfc5246
http://dspace. mit. edu/handle/1721.1/62006. Technical Report
 https://cloud.google.com/storage/pricing

_ using old labels of length _. Since we assume ℓ = 1, ProcessClien-
tRequest produces two encryptions for each access to send to the

server. The Real algorithm collates the output of ProcessClientRe-
quest method, consisting of a pair of encryptions for each of the

𝑚 accesses; this collation of encryptions is the Real algorithm’s

output, represented as:

𝑂𝑢𝑡𝑅𝑒𝑎𝑙 ← {𝐸𝑛𝑐𝑜𝑙𝑏 (𝑛𝑙𝑏′), 𝐸𝑛𝑐𝑜𝑙1−𝑏 (𝑛𝑙𝑏′′)}
𝑚

where for each read access (𝑏′ = 𝑏) and (𝑏′′ = 1 − 𝑏), and for write

accesses (𝑏′ = 𝑏′′ = ˆ𝑏), the updated bit.

For the Ideal algorithm in Figure 6, the game provides the se-

quence of keys accessed in 𝐴 as input where the algorithm in-turn

calls a Simulator defined in Figure 7. The Simulator’s goal is to pro-

duce encryptions similar to the ProcessClientRequest procedure but
with arbitrary values; one can notice the analogies between the two

procedures. To achieve this, we assume the Simulator to be stateful

and it stores one old label 𝑜𝑙 per index 𝑖 of a key 𝑘’s value – these

are the labels stored at the external server. The procedure takes key

𝑘 as input and iterates over each of the ℓ indexes (where ℓ is the

value’s plaintext length). At each index, the Simulator retrieves the

corresponding old label; it then generates two randomly sampled

labels 𝑛𝑙 (𝑖) and 𝑜𝑙 ′(𝑖) of length _ (same as the PRF used in Process-
ClientRequest). It uses 𝑜𝑙 (𝑖) to encrypt 𝑛𝑙 (𝑖) and 𝑜𝑙 ′(𝑖) to encrypt

an invalid value, 0. This does not reveal any information to the

adversary that controls the external server because the server only

stores label 𝑜𝑙 (𝑖) and can decrypt only one of the two encryptions

sent by the Simulator. The Simulator shuffles the two encryptions

at each index and appends it a list 𝐸 to send to the server. It also

updates the old labels 𝑜𝑙 (𝑖) with the newly and randomly generated

label 𝑛𝑙 (𝑖) . Because the Simulator encrypts random values of length

_, the Ideal algorithm’s output is, assuming ℓ = 1:

𝑂𝑢𝑡𝑆𝑖𝑚 ← {𝐸𝑛𝑐 {0,1}_ {0, 1}
, 𝐸𝑛𝑐 {0,1} {0, 1}

_}𝑚

Formal proof: We now formally prove that the real and the

ideal worlds are computationally indistinguishable using a standard

hybrid argument.

Hybrid
1
: This corresponds to the real experiment and the output

of this hybrid is 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 .

Hybrid
2
: We modify the real experiment where the labels generated

using PRF in the ProcessClientRequest procedure are now sampled

from the uniform distribution.

The computational indistinguishability of Hybrid
1
and Hybrid

2

follows from the security of PRF.

Hybrid
3.𝑖 for 𝑖 ∈ [𝑚]: In the sequence of 𝑚 accesses in 𝐴, con-

sider the 𝑖𝑡ℎ access, in which the ProcessClientRequest procedure
generates 2 ∗ ℓ = 2 ∗ 1 = 2 encryptions (ℓ = 1). Since the server
stores only one label per index and can only decrypt one of the

two encryptions, the other encryption sent has no significance: let

the two ciphertexts be 𝐶𝑇0 and 𝐶𝑇1 where both the ciphertexts are

encrypted with respect to two different old labels 𝑜𝑙0 and 𝑜𝑙1. Note

that the server has exactly one label 𝑜𝑙𝑏 for some bit 𝑏. Replace the

message in 𝐶𝑇
1−𝑏 with 0s - this encryption becomes insignificant

since the server cannot decrypt it. This hybrid replaces encryptions

of all such insignificant entries with the encryptions of an invalid

value, say 0.

The computational indistinguishability ofHybrid
3.𝑖 andHybrid3.𝑖−1

follows from the security of encryption.

Hybrid
4
: This corresponds to the ideal experiment, i.e., 𝑂𝑢𝑡𝑅𝑒𝑎𝑙 is

equivalent to 𝑂𝑢𝑡𝑆𝑖𝑚 .

The hybrids Hybrid
4
and Hybrid

3.𝑚 are identically distributed.

The transition fromHybrid
3.𝑚 toHybrid

4
is as follows: inHybrid

3.𝑚 ,

the labels are still associated with bits and only one of the two en-

cryptions per index generated using the labels is valid. This implies

that only one label per index has significance. But note that in

Hybrid
3.𝑚 , the labels are independent of the bits associated with

them (due to Hybrid
2
). This essentially leads to the conclusion that

irrespective of the type of operation, only one of the two encryp-

tion is valid and the valid encryption encrypts a label generated

uniformly at random (new label) using another label generated uni-

formly at random (old label). This is equivalent to the encryptions

generated by the Simulator in the ideal world. Hence, the output of

this hybrid corresponds to the output of the simulator, 𝑂𝑢𝑡𝑆𝑖𝑚 .

14

	Abstract
	1 Introduction
	1.1 Challenges with designing a one round access oblivious protocol
	1.2 Intuitions for ORTOA

	2 System and Security Model
	2.1 System Model
	2.2 Data and Storage Model
	2.3 Threat Model

	3 FHE based solution
	3.1 Fully Homomorphic Encryption (FHE)
	3.2 One-round oblivious read-write using FHE
	3.3 Challenges with FHE based solution

	4 ORTOA
	4.1 An Illustrative Example
	4.2 Protocol
	4.3 Complexity Analysis

	5 Optimizations
	5.1 Space optimized solution
	5.2 Reducing the number of decryptions

	6 Protocol evaluation
	6.1 ORTOA vs. two round trip baseline
	6.2 Latency breakdown of ORTOA
	6.3 Micro Benchmarking
	6.4 Real world datasets
	6.5 Dollar cost analysis

	7 Discussion on related work
	8 Security of ORTOA
	9 Conclusion and Future Work
	References

