
Witness Encryption for Succinct Functional Commitments
and Applications

Matteo Campanelli1, Dario Fiore2, and Hamidreza Khoshakhlagh3

1 Protocol Labs matteo@protocol.ai
2 IMDEA Software Institute, Madrid dario.fiore@imdea.org

3 Concordium hk@concordium.com

Abstract. Witness encryption (WE), introduced by Garg, Gentry, Sahai, andWaters (STOC
2013) allows one to encrypt a message to a statement x for some NP language L, such that
any user holding a witness for x ∈ L can decrypt the ciphertext. The extreme power of
this primitive comes at the cost of its elusiveness: a practical construction from established
cryptographic assumptions is currently out of reach.
In this work we introduce and construct a new notion of encryption that has a strong
flavor of WE and that, crucially, we can build from well-studied assumptions (based on
bilinear pairings) for interesting classes of computation. Our new notion, witness encryption
for (succinct) functional commitment, takes inspiration from a prior weakening of witness
encryption introduced by Benhamouda and Lin (TCC 2020). In a nutshell, theirs is a WE
where: the encryption statement consists of a (non compressible) commitment cm, a function
G and a value y; the decryption witness consists of a (non succinct) NIZK proof about the
fact that cm opens to v such that y = G(v). Benhamouda and Lin showed how to apply this
primitive to obtain MPC with non-interactive and reusability properties—dubbed mrNISC—
replacing the requirement of WE in existing round-collapsing techniques. Our new WE-like
notion is motivated by supporting both commitments of a fixed size and fixed decryption
complexity, independent |v|—in contrast to the work by Benhamouda and Lin where this
complexity is linear. As a byproduct, our efficiency profile substantially improves the offline
stage of mrNISC protocols.
Our work solves the additional challenges that arise from relying on computationally binding
commitments and computational soundness (of functional commitments), as opposed to
statistical binding and unconditional soundness (of NIZKs), used in Benhamouda and Lin’s
work. To tackle them, we not only modify their basic blueprint, but also model and instantiate
different types of projective hash functions as building blocks.
Furthermore, as one of our main contributions, we show the first pairing-based construction
of functional commitments for NC1 circuits with linear verification. Our techniques are of
independent interest and may highlight new avenues to design practical variants of witness
encryption.
As an additional contribution, we show that our new WE-flavored primitive and its efficiency
properties are versatile: we discuss its further applications and show how to extend this
primitive to better suit these settings.

Keywords: Witness encryption; Functional commitments; Secure multiparty computation; Smooth

projective hash functions

Table of Contents

Witness Encryption for Succinct Functional Commitments and Applications 1
Matteo Campanelli, Dario Fiore, and Hamidreza Khoshakhlagh

1 Introduction . 2
1.1 Our Work: WE For Succinct Functional Commitments . 3
1.2 Our Contributions . 3
1.3 Technical Overview . 5
1.4 Related Work . 7

2 Preliminaries . 8
2.1 Functional Commitment Schemes . 9

3 WEFC: Witness Encryption for Functional Commitment . 10
4 Our WEFC Construction . 11

4.1 Smooth Projective Hash Functions . 11
4.2 Our Construction . 14

5 Our WEFC Instantiations . 15
5.1 Our FC for Monotone Span Programs . 16
5.2 Other Instantiations . 21

6 From WEFC to Reusable Non-Interactive MPC . 21
6.1 Preliminaries on mrNISC . 21
6.2 Our mrNISC construction. 23

7 Other Application Scenarios . 24
7.1 Targeted Broadcast . 24
7.2 Simple Contingent Payment for Services . 27

A Analysis of the QP -BDHE assumption in the generic bilinear group model 31
B Additional Preliminaries . 32

B.1 Output-delayed Simulatable MPC . 32
B.2 Garbled Circuit . 33
B.3 Security Definition of mrNISC . 33

C More on Application Scenarios . 34
C.1 Additional Subtleties in Contingent Payment Applications . 34
C.2 More on Attestation Approaches . 34

D Output Extractable WEFC . 36

1 Introduction

Witness Encryption (WE) [GGSW13] is an encryption paradigm that allows one to encrypt a
message under a hard problem—a statement x of an NP language L—so that anyone knowing
a solution to this problem—a witness w such that (x,w) ∈ RL—can decrypt the ciphertext in
an efficient manner. Witness encryption generalizes the classical notion of public-key encryption,
where a user can encrypt a message m to any user who knows the (secret) decryption key w = sk
associated to some (public) encryption key x = pk.

A general-purpose WE, one for all NP, is a powerful tool: it can be used to construct several
cryptographic primitives [DH76, Sha84, BF03, SW05]. Yet, currently, all its general-purpose con-
structions rely on powerful and/or inefficient primitives, e.g., multilinear maps [GGSW13, GLW14]
or indistinguishability obfuscation (iO) [GGH+13]. An interesting question is whether the full
power of WE is always needed. Perhaps some of the applications of WE can be obtained through
primitives that are both more efficient and require weaker assumptions.

Some of the recent literature has indeed confirmed this intuition. A relevant work addressing
this is that of Benhamouda and Lin [BL20] who apply the round-collapsing techniques of [GLS15]
to construct multi-party reusable non-interactive secure computation (or mrNISC), a type of MPC
that requires no interaction among subsets of users, provided that users had earlier committed to
their input on a public bulletin board (this offline stage is called “input encoding stage”). While

work prior to [BL20] required full-blown WE to obtain this result, Benhamouda and Lin show
its feasibility under a different type of WE called “WE for NIZK of commitments” (WEZK-CM for
short). In WEZK-CM, the encryption statement is (cm, G, y), and decryption requires as the witness
a non-interactive zero-knowledge (NIZK) proof π proving that the evaluation of G on the value
v committed in cm outputs y, i.e., “cm = Commit(v) and y = G(v)”. The interesting aspect of
this weakening of WE is that [BL20] constructs WEZK-CM from well established assumptions over
bilinear groups.

On the other hand, in [BL20], both the commitment and the proof size—and hence decryption
time—grow linearly in the size of v. The latter represents a piece of potentially large data and whose
commitment is publicly shared at an earlier time. We refer concisely to a construction not having
this dependency in efficiency as having “input-independent (decryptor’s) complexity”. A scheme
with input-independent complexity would be interesting to further minimize the communication
complexity of applications of this type of WE. This can be relevant, for example, in the input
encoding phase of mrNISC (as well as in other applications, see section 7): commitments are
stored on a bulletin board (e.g., a blockchain) forever and thus their size significantly affects its
growth over time.

1.1 Our Work: WE For Succinct Functional Commitments

The work from [BL20] is encouraging: we may be able to use more familiar assumptions to obtain
useful variants of witness encryption. Our work is motivated by pushing this avenue further, both
practically and theoretically. We ask:

What are other weak-but-useful variants of WE that remain “as simple as possible” in terms of
assumptions to build them and that can achieve input-independent complexity?

In this work, we address this question by generalizing WEZK-CM, the primitive in [BL20], to
support succinct commitments with succinct arguments. That is, where commitments are of fixed
size—independent of the input’s length—and so are the arguments about the correctness of com-
putations on the committed inputs. We call our notion “WE for functional commitments” (WEFC),
as we define it on top of the notion of functional commitments [LRY16].

Our main contributions are therefore to formally define the WEFC primitive, to propose a
generic methodology to construct WEFC over bilinear groups, and to show applications of WEFC

to mrNISC (with succinct offline phase) and to more scenarios. In the following section we discuss
our contributions in detail.

1.2 Our Contributions

Defining WEFC. We introduce and formally define the notion of witness encryption for functional
commitments (WEFC). A functional commitment (FC) allows a party to commit to a value v and
to later open the commitment to y = G(v) for some functions G, by generating an opening proof
π. In terms of security, an FC should be evaluation binding and hiding. The former means that
an adversary cannot open the commitment to two distinct outputs y ̸= y′ for the same function
G, while the latter is the standard hiding property of commitments. In addition, in our work we
require FC to be zero-knowledge, which informally states that the opening proof π should not reveal
any information about the committed value v. What makes FCs suitable to our scenario is that
both the commitment and the opening proofs are succinct (in particular, throughout this work we
always use the term ‘functional commitments’ to mean succinct ones). Similarly to the WEZK-CM

of [BL20], in our WEFC one encrypts with respect to a triple (cm, G, y) and decryption is unlocked
when using an opening proof of cm to y = G(v).

Construction and techniques. We present several realizations of WEFC based on bilinear pair-
ings. Our approach consists into a generic methodology that combines any functional commitment
whose verification is a “linear” pairing equation (here by linear, we mean that it is linear in the
group elements of the opening proof), together with a suitable variant of smooth projective hash
functions (SPHFs, [CS02]), that we define in our work.

3

To realize this approach, we develop three main technical contributions (and we refer to our
technical overview in section 1.3 for further details).

The first one is finding a useful variant of projective hash function for our purposes. While
our approach follows the blueprint of [BL20] (i.e., combining a proof system with an SPHF for its
verification language), we had to solve substantial challenges due to our shift from the “soundness
against any adversary” of NIZKs to the “computational binding” of functional commitments.
The WEZK-CM construction of [BL20] crucially relies on statistically binding commitments and
statistically sound NIZKs—we cannot. We solve this issue by using a different building block.
We introduce a new notion, extractable PHFs (EPHF), in which every adversary that successfully
computes the hash value for a statement must know the corresponding witness. We then propose
a construction of this primitive in the algebraic group model.

The second technical contribution is the generic construction of WEFC that combines an FC
and an EPHF for its verification language. Notably, it turns out that we cannot encrypt following
the same approach of [BL20] based on SPHF. For wrong statements, the EPHF values are only
computationally hard to compute, hence we cannot use them as a mask for the message. We solve
this issue via a different methodology for building WE from extractable projective hash functions.

Finally, our third technical contribution is the realization of a new FC scheme that supports the
evaluation of circuits in the class NC1 and that enjoys the linear verification requirement needed
by our generic construction. Among prior work on FCs, only the schemes of [LRY16, LP20] have
the linear verification property. However, the class of functions supported by these schemes is
insufficient to instantiate the mrNISC protocols, which need at least the support of circuits in
NC1. On the other hand, all the recent pairing-based constructions for NC1 in [CFT22] and general
circuits in [BCFL22] have quadratic verification.

A construction of mrNISC from WEFC. We show how our WEFC notion can be used to build
mrNISC. The latter is a class of secure multiparty computation protocols in which parties work
with minimal interaction. In a first round, each party posts an encoding of its inputs in a public
bulletin board. This is done once and for all. Next, any subset of parties can compute a function
of their private inputs by sending only one message each. This second phase can be repeated many
times for different computations and different subsets of parties. Our construction for mrNISC
confirms that our notion is not losing expressivity compared to WEZK-CM from [BL20] and, thanks
to our new FC, yields the first mrNISC protocols with a succinct input encoding phase.

Other applications of WEFC. We provide additional applications beyond mrNISC where WEFC

can be useful. As a first application, we show how WEFC can be used for a simple construction
of a variant of targeted broadcast. In targeted broadcast [GPSW06] we want a certain message to
be conveyed only to authorized parties. An authorized party is one holding attributes satisfying a
certain property (specified at encryption time). As an example, a streaming service may want to
broadcast an encryption of a movie so that only users having purchased certain packages would be
able to decrypt (and watch) it. There exist ways to build this primitive non-naively while satisfying
basic desiderata of the application domain4, for example through ciphertext-policy ABE [GPSW06].
We show how we can achieve targeted broadcast in a new (and simple) manner through WEFC. We
observe that our construction achieves some interesting properties absent in previous approaches: it
achieves flexible and secret attestation and without any master secret. This means that decryption
attributes may be granted to a user through different methods, that the latter can be kept secret
and that there is no single party holding a key that can decrypt all messages in the system. We
provide further details and motivation in section 7.

As a second application, we show how, throughWEFC, we can achieve simple and non-interactive
contingent payment for services [CGGN17] (“contingent payment” for short5). In a contingent
payment a payer wants to provide a reward/payment to another user conditional to the user having
performed a certain service. For example, a user may want to pay a cloud service conditionally to
them storing their data. Ideally this protocol should require no interaction. We describe a simple
way to instantiate the above through WEFC. Our solution can be used, for example, to incentivize,

4 For example, sometimes a desideratum in such systems is that the broadcaster should not have to refer
to a database of user authorizations each time a different item is to be encrypted for broadcast.

5 Notice that “contingent payment” can also refer to payment for goods, rather than services. In this paper
we only refer to payment for services.

4

in a fine-grained manner, portions of large committed data (for instance incentivizing storage of
specific pages of Wikipedia or the Internet Archive of particular importance on IPFS6) [dec22].
Compared to other approaches [CGGN17], our solution is simple (e.g., does not require a blockchain
with special properties or smart contracts) and is highly communication efficient. To achieve this
solution we need to solve additional technical challenges: modeling and building an extractable
variant of WEFC. We provide further details in section 7.

1.3 Technical Overview

We start with an overview of the techniques in [BL20]. Their notion of witness encryption called
“WE for NIZK of Commitments” (WEZK-CM) is defined for an NP language whose statements are
of the form x = (cm, G, y) such that cm is a commitment, G is an arbitrary polynomial-size circuit,
and y is a value (additionally, this language is parametrized by the common reference string, or
crs, of the NIZK). The type of commitment assumed in [BL20] is perfectly binding; therefore, a
statement (cm, G, y) is true if there exists a NIZK proof π (as a witness) which proves w.r.t. crs
that G evaluates to y on the value v committed in cm.

The definition of WEZK-CM states that semantic security property should hold for ciphertexts
created with respect to false claims (that is, commitments whose opening v is such that G(v) ̸= y).
To achieve this property, the idea in [BL20] relies on applying smooth projective hash functions on
the verification algorithm of the NIZK. For the sake of this high-level overview, the reader can think
of an SPHF as a form of WE itself and which we know how to realize for simple languages. The
crux of the construction in [BL20] is that, if the NIZK verification algorithm is “simple enough”,
then we can leverage it to build WEZK-CM. In more detail, let Θ = Mπ be the linear equation
corresponding to the verification of a NIZK for a statement x = (cm, G, y), such that Θ and M
depend on x and crs, and hence are known at the time of encryption. To encrypt a message, one can
use an SPHF for this relation such that only those who can compute the hash value using a valid
witness π (i.e., π such that Θ = Mπ) can retrieve the message. The work in [BL20] instantiates
the above paradigm through Groth-Sahai NIZKs, which can be reduced to a linear verification
for committed inputs (this is true for only a restricted class of computations which then [BL20]
shows how to extend to all of P through randomized encodings). The commitments they rely on
are statistically binding and thus not compressing.

Our General Construction of WEFC. We now discuss how to go from this idea to our solutions.
Recall that our goal is to have a type of witness encryption that works on succinct functional
commitments. This implies that both the commitments and opening proofs for functional evaluation
on them are compressing. This efficiency requirement is the main point of divergence between WEFC

and WEZK-CM.
Moving from [BL20] to our approach is not unproblematic. In [BL20], in order to (i) effectively

reduce the original relation (G(v) = y for a correct opening v) to the verification of the NIZK,
and (ii) to maintain semantic security at the same time—in order to simultaneously achieve these
two points—it is crucial that the NIZK proof has unconditional soundness and that the underlying
commitments are perfectly binding7. At a very high level, the switch from [BL20] to our work
consists of the switch from a NIZK proof system [GS08], with linear proof size, to a succinct
certificate, a succinct functional commitment. Simple as it may sound, however, this switch is not
immediate and requires solving several new challenges on the way.

The main challenge arises when using arguments (as opposed to proofs) as witness in the
witness encryption scheme. Recall that WEZK-CM constructs WE for the augmented relation R
corresponding to the verification algorithm of the NIZK proof and, as mentioned above, switching to
R still preserves semantic security. However, the same idea does not work when using an argument
system. This is because semantic security only guarantees security when the statement, under

6 http://wikipedia.org, http://archive.org, http://ipfs.io
7 Unconditional soundness of a proof system means: “for a false statement, no proof string will have a
substantial probability of being accepted as valid”. This is in contrast to the computational soundness of
our building blocks: “for a false statement, no PPT adversary can produce a proof string with substantial
probability of being accepted”. The latter does not state that such proof string does not exist.

5

http://wikipedia.org
http://archive.org
http://ipfs.io

which the challenge ciphertext is generated, is false. Defining R as the relation specified by the
verification of an argument system makes all statements potentially true. Hence, even though
finding a witness (i.e, an argument) is computationally hard, semantic security holds vacuously
and makes no guarantee about the encrypted message.

To solve this challenge, we observe that even though the relation is trivial here, finding the
witness for a statement yields a contradiction to security properties of the commitment in use. To
elaborate further, we note that the WE is constructed for the NP language corresponding to the
verification algorithm of a functional commitment. Now, given a “false” statement x̄ = (cm, G, y),
where G(v) ̸= y for v committed in cm and chosen by the adversary, our construction is such
that for any efficient adversary that distinguishes ciphertexts encrypted under the statement x
corresponding to the verification circuit which (incorrectly) asserts the truth of x̄, there exists an
efficient adversary that breaks the evaluation-binding property of the functional commitment by
computing a valid opening proof op that satisfies the FC verification.

To build the above reduction, we make use of the Goldreich-Levin technique [GL89] by which
we can transform a ciphertext distinguisher into an efficient algorithm that computes the hash
value H (from a hash proof system) used as a one-time pad to mask the message. While this part
of the reduction may seem straightforward, one challenge is how to compute a valid opening proof
op from H. To this end, we observe that the underlying SPHF is for the same language L that we
build our WE and thus op plays the role of the witness for x by which one can compute H. Thus,
it seems like we would need a type of SPHF with a strong notion of extractable security. Namely,
a type of projective hash function (PHF) that guarantees the existence of an extractor such that
for any adversary that is able to compute a valid hash, the extractor can compute a witness for
the corresponding problem statement 8.

Unfortunately, there exists no construction of extractable PHF in literature, even based on non-
standard assumptions. The closest work is that of Wee [Wee10] which suggests a similar notion
but only for some relations not in NP that correspond to search problems. Therefore, we propose a
new construction of extractable PHF and prove it secure under the discrete logarithm assumption
in the algebraic group model.

Our FC for NC1 with linear verification. To build an FC supporting the evaluation of circuits
in the class NC1, we build an FC for the language of (read-once) monotone span programs (MSP)
[KW93], and then use standard transformations to turn it into one for NC1. We construct our
scheme by adapting the FC for MSP recently proposed by Catalano, Fiore and Tucker [CFT22].
In particular, while the scheme of [CFT22] has a quadratic verification (i.e., it needs to pair group
elements in the opening between themselves), we give a variant of their technique with linear
verification.

We begin by recalling that a read-once MSP is defined by a matrix M and

M accepts x ∈ {0, 1}n iff ∃w : (x ◦w) ·M = e⊤1 = (1, 0, . . . , 0) (1)

In an FC for MSP, the commitment contains x and the opening to an MSP M should prove the
existence of w that satisfies equation (1). To achieve this, the basic idea of [CFT22] is to “linearize”
the quadratic part of equation 1, so as to reduce the problem to that of proving satisfiability of a
linear system and thus apply the techniques of Lai and Malavolta for linear map functional commit-
ments [LM19]. In [CFT22], this linearization is done by defining the matrix Mx = (x|| · · · ||x)◦M,
i.e., the matrix where each column of M is multiplied entry-wise with x, so that proving equation
(1) boils down to proving the satisfiability of the linear system ∃w : M⊤x ·w = e1. However, the
verifier only knows M and not x. Thus [CFT22] includes in the opening an element Φx ∈ G2 which
is a succinct encoding of Mx, and then they use a variant of [LM19]: they include a commitment
πw ∈ G1 to the witness w and a proof π̂ ∈ G1. The verifier in [CFT22] needs to check that Φx is

a valid encoding of Mx w.r.t. the committed x—this is done by testing ê(cmx, Φ)
?
= ê([1]1, Φx),

where Φ is an encoding of M and cmx :=
∑

j∈[n] xj · [ρj]2 for some [ρj]2-s part of the commitment

8 At the high-level SPHFs are also used as the main leveraging point in [BL20], but with one important
difference (we skip some details for simplicity): their construction produces a hash through a standard
SPHF, where security is only guaranteed statistically for false statements. Because of our switch from
(statistically secure) NIZKs to succinct functional commitment, we cannot rely on the latter.

6

key. Then the verifier checks the validity of the linear system by testing ê(πw, Φx)
?
= ê(π̂, [1]2) ·B,

for some element B ∈ GT in the public parameters. This last equation is the issue why this scheme
does not have a linear verification, that is one needs to compute the pairing ê(πw, Φx) where both
inputs are part of the opening proof.

To get around this problem, we use an alternative linearization technique. In a nutshell, we
include in the opening a commitment πw to w (as in [CFT22]) and a succinct commitment πu

of u = x ⊗ w. The verifier can test the validity of πu by checking the linear pairing equation

ê(πw, cmx)
?
= ê(πu, [1]2). Next, we propose a variant of the [LM19] technique to prove that, with

respect to the commitment πu, the linear system (M⊤ | e1) is satisfied, but not by the full
committed vector u, but rather by the portion corresponding to the subvector u∗ = w◦x ⊂ w⊗x.
This proof is a single group element π, which can be verified by a second linear pairing equation

ê(πu, Φ)
?
= ê(π̂, [1]2) ·B.

Other Technical Points

Reusability. By replacing NIZK of commitments with a functional commitment as described
above and then following the same approach of [GLS15, BL20], we can obtain a two-round MPC
protocol. However, building a mrNISC protocol is more challenging as the construction may
not necessarily provide reusability. To provide this property, we need functional commitment
schemes that satisfy a strong form of zero-knowledge, wherein any number of opening proofs for
a given commitment can be simulated. In other words, for a commitment cm broadcasted by a
party in the first round of the protocol, running computation on different statements (cm, Gi, yi)
with the same commitment cm does not reveal any information about the committed value.
This should be guaranteed by the existence of an efficient simulator that can generate simulated
openings for any adversarially chosen computation.

Trusted Setup and Malicious Security. We note that both existing constructions of mrNISC
from bilinear pairing groups [BL20] or from LWE [BJKL21] are in the plain model, whereas our
construction requires a trusted setup. However, for security analysis of mrNISC construction
in previous works, it is assumed that the corruption by the adversary is static. Further, the
security in these works is only against semi-malicious adversaries where corrupted parties follow
the protocol specification, except they are allowed to select their input and randomness from
arbitrary distributions. This has been justified by the fact that providing stronger notion of
malicious security for MPC in two rounds in the plain model is impossible and hence one
should use either a trusted setup assumption or overcome this impossibility by relying on
super-polynomial time simulation (See [FJK21] for the second approach). We thus see the use
of trusted setup in our construction, in a sense, at no cost as it is crucial for achieving malicious
security 9. We point out that the setup of our FC construction is also updatable (any party can
add randomness to it).

1.4 Related Work

The first candidate construction of witness encryption was proposed by the seminal work of Garg
et al. [GGSW13] based on multilinear maps. In a line of research, several other works [GGH+13,
GLW14, GKW17] proposed constructions from similar strong assumptions; i.e., multilinear maps
as in [GGSW13], or indistinguishability obfuscation (iO). Recently, Barta et al. [BIOW20] showed
a witness encryption scheme based on a coding problem called Gap Minimum Distance Problem
(GapMDP). However, they left it as an open problem whether their version of GapMDP is NP-
hard. Another recent proposal based on new unexplored algebraic structures and with conjectured
security is that in [CVW18].

A recent line of work started by [JLS21] builds iO—which implies a WE construction—from
standard assumption. Asymptotically, this approach runs in polynomial time, but it still is im-
practical for two reasons. First, the polynomial describing its running time has a relatively high

9 Achieving malicious security by using NIZK proofs in the trust model is a folklore technique and has
been used in many classical MPC works (e.g., See Lemma 7.5 in [BL20]). We thus omit details on
malicious security and similarly to previous works focus only on semi-malicious security.

7

degree. On top of that, the final WE construction would need to indirectly invoke iO—a plausibly
stronger primitive 10—which compounds the efficiency costs.

The work of [BL20] defines a restricted flavour of witness encryption called WE for NIZK of
commitments wherein parties first commit to their private inputs once and for all, and then later,
an encryptor can produce a ciphertext so that any party with a NIZK showing that the committed
input satisfies the relation can decrypt. Their construction relies on the SXDH assumption in
bilinear pairings and Groth-Sahai commitments and NIZKs. Using NIZK proofs as the decryption
key provides a “delegatability” property in [BL20], where the holder of a witness can delegate
the decryption by publishing a NIZK proof for the truth of the statement. Recently, [CDK+21]
formalize a similar notion but without delegation property, and give more efficient instantiations
based on two-party Multi-Sender Non-Interactive Secure Computation (MS-NISC) protocols. The
recent work of [Kho22] also defines a similar notion of Witness Encryption with Decryptor Privacy
that provides zero-knowledge, but not delegation property. Our approach is a follow-up to the work
of [BL20]. Finally, we note that constructions with a flavor of witness-encryption-over-commitments
[BL20, CDK+21] are also a viable solution to this problem, but with the caveat of commitments
having to be as large as the data (which is problematic if the data is large). This is not the case in
our constructions.

If we turn our attention to NIZKs and succinct commitments, one may wonder whether one can
adapt the results of [BL20] to work with (commit-and-prove) SNARKs. Although we cannot exclude
this option, we argue this may be an overkill for two reasons. First, in terms of assumptions this
approach would inherently require the use of non-falsifiable assumptions due to the impossibility
result of Gentry and Wichs [GW11]. In particular, the semantic security definition of WEZK-CM

is falsifiable and thus could in principle be realized without these strong assumptions. Second,
in terms of efficiency, if we want to rely on the SPHF construction framework we would need a
SNARK with a linear verification over bilinear groups, but such schemes are likely impossible, as
shown by Groth [Gro16].

The primitive that we propose in this work is closely tied to functional commitments, first
formalized by Libert et al. [LRY16]. The functional commitment schemes in the state of the art
support a variety of functions classes, which include linear maps [LRY16, LM19], sparse polynomials
[LP20], constant-degree polynomials [CFT22, ACL+22], and NC1 circuits [CFT22]. Also, very
recent works [BCFL22, dCP23, WW23] propose FC schemes for virtually arbitrary computations.
As we mentioned earlier, our construction of WEFC relies on FCs whose verification algorithm is
a “linear” pairing-based equation. This property is achieved by the FC schemes for linear maps
[LRY16] [LM19] and sparse polynomials [LP20], which means we can obtain instantiations of
WEFC for these classes of functions. The recent and more expressive constructions that are based
on pairings [CFT22] [BCFL22] unfortunately do not support this linear verification, as they need
to pair elements of the proof. Our new FC construction does not have this limitation and supports
large classes of circuits.

2 Preliminaries

Notation. We use DPT (resp. PPT) to mean a deterministic (resp. probabilistic) polynomial time
algorithm. We denote by [n] the set {1, . . . , n} ⊆ N. To represent matrices and vectors, we use bold
upper-case and bold lower-case letters, respectively. We denote the security parameter by λ ∈ N.
For an algorithm A, RND(A) is the random tape of A (for a fixed choice of λ), and r ←$ RND(A)
denotes the random choice of r from RND(A). By y ← A(x; r) we denote that A, given an input x
and a randomizer r, outputs y. By x ←$ D we denote that x is sampled according to distribution
D or uniformly randomly if D is a set. Let negl(λ) be an arbitrary negligible function.

Pairings. A pairing is defined by a tuple bp = (p,G1,G2,GT , ê, g1, g2) where G1,G2,GT are
groups of prime order p, g1 (resp. g2) is a generator of G1 (resp. G2), and ê : G1 ×G2 → GT is an
efficient, non-degenerate bilinear map.

10 As shown in [WZ17, GKW17], under the LWE assumption, WE is equivalent to a very weak form of iO,
called null-iO.

8

For group elements, we use the bracket notation in which, for t ∈ {1, 2, T} and a ∈ Zp, [a]t
denotes gat . We use additive notation for G1 and G2 and multiplicative one for GT . For t = 1, 2,
given an element [a]t and a scalar x, one can efficiently compute x[a]t = [xa]t = gxat ∈ Gt; and
given group elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently compute ê([a]1, [b]2) = [ab]T . For
u,v vectors we write ê([u]⊤1 , [v]2) for

∏
j ê([uj]1, [vj]2). The same notation naturally extends to

pairings between a matrix [M]1 and vector [v]2 where we return the vector of pairing products
performed between each row of the matrix and [v]2, i.e., ê([M]1, [v]2) = [M · v]T .

Algebraic (Bilinear) Group Model. Essentially, in the algebraic group model (AGM) [FKL18],
one assumes that every PPT algorithm A is algebraic in the sense that A is allowed to see and
use the structure of the group, but is required to also output a representation of output group
elements as a linear combination of the inputs. While the definition of AGM in [FKL18] only
captures regular groups, here we require an extension that captures asymmetric pairings as well.
To formalize this notion, we use the following definition that is taken from [CH20], but adjusted
for our setting where A only outputs target group elements.

Definition 1 (Algebraic Adversaries). . Let bp = (p,G1,G2,GT , ê, g1, g2) be a pairing group
and [x]1 = ([x1]1, . . . , [xn]1) ∈ Gn

1 , [y]2 = ([y1]2, . . . , [ym]2) ∈ Gm
2 , [z]T = ([z1]T , . . . , [zl]T) ∈ Gl

T be
vectors in G1, G2 and GT , respectively. An algorithm A with input [x]1, [y]2, [z]T is called algebraic
if in addition to its output

S = ([S1]T . . . , [Sl′]T) ∈ Gl′

T ,

A also provides a vector

s =
(
(Aijk)i∈[l′],j∈[n],k∈[m] , (Bij)i∈[l′],j∈[l]

)
∈ Zζ

p with ζ = l′ · (l + n ·m)

such that

[Si]T =

n∏
j=1

m∏
k=1

ê ([xj]1, [yk]2)
Aijk ·

l∏
j=1

[zi]
Bij

T for i ∈ {1, . . . , l′}

2.1 Functional Commitment Schemes

We recall the notion of functional commitments (FC) [LRY16]. Let D be some domain and F :=
{F : Dn → Dκ} be a class of functions over D. In a functional commitment for F , the committer
first commits to an input vector x ∈ Dn, obtaining commitment cm; she can later open cm to
y = F (x) ∈ Dκ, for F ∈ F .

Definition 2 (Functional Commitments [LRY16]). For a class F of functions F : Dn → Dκ,
a functional commitment scheme FC consists of four polynomial-time algorithms (Setup,Commit,
Open,Verify) that satisfy correctness as described below.

Setup. Setup(1λ,F) is a probabilistic algorithm that given a security parameter λ ∈ N, and a
function class F , outputs a commitment key ck and a trapdoor key td. For simplicity of notation,
we assume that ck contains the description of 1λ and F .

Commitment. Commit(ck,x; r) is a probabilistic algorithm that on input a commitment key ck,
a message x ∈ Dn, and randomness r, outputs (cm, d), where cm is a commitment to x and d
is a decommitment information.

Opening. Open(ck, d, F) is a deterministic algorithm that on input ck, a decommitment d, and a
function F ∈ F , outputs an opening opy to y = F (x).

Verification. Verify(ck, cm, opy, F,y) is a deterministic algorithm that on input ck, a commitment
cm, an opening opy, a function F ∈ F , and y ∈ Dκ, outputs 1 if opy is a valid opening for cm
and outputs 0 otherwise.

Correctness. FC is correct if for any (ck, td)← Setup(1λ,F), any F ∈ F , and any vector x ∈ Dn,
if (cm, d)← Commit(ck,x; r), then

Pr[Verify(ck, cm,Open(ck, d, F), F, F (x)) = 1] = 1.

9

Succinctness. We say that FC is succinct if the length of commitments and openings are poly-
logarithmic in |x|.
Evaluation binding. FCs are required to be evaluation binding, which intuitively means that
a PPT adversary cannot create valid openings for incorrect results. In [LRY16], this concept is
formalized by requiring that no PPT adversary can generate a commitment and opens it to two
different outputs for the same function. In our work, we only need a weaker version of this property
in which the adversary reveals the committed vector and wins if it creates a valid opening for an
incorrect result. In [CFT22] this notion is called weak evaluation binding; we recall it below.

Definition 3 (Weak evaluation-binding [CFT22]). A functional commitment scheme FC = (
Setup,Commit,Open,Verify) for F satisfies weak evaluation-binding if for any PPT adversary A,
AdvbindFC,A(λ) = negl(λ), where

AdvbindFC,F,A(λ) := Pr

F ∈ F ∧ y ∈ Dκ ∧ F (x) ̸= y

∧ cm = Commit(ck,x; r)

Verify(ck, cm, opy, F,y) = 1

:
(ck, td)← Setup(1λ,F)
(x, r,β,y, opy)← A(ck)

Zero-knowledge. The zero-knowledge property can be seen as a simulation-based definition of
hiding property, considerably stronger than the definition given in [LRY16] 11. Further, compared to
the zero-knowledge definition of [LP20], our definition is stronger in the sense that the commitment
and simulated openings are not generated at the same time. In other words, to make commitments
reusable for our mrNISC application, we need two simulators S1,S2, where S1 generates a simulated
commitment, and S2—given the simulated commitment—can produce any number of simulated
openings for different adversarially chosen functions.

Definition 4 (Perfect zero-knowledge). A functional commitment scheme FC = (Setup,
Commit,Open,Verify) for a class of functions F is perfectly zero-knowledge if there exists a PPT
simulator S = (S1,S2), such that for all λ, all (ck, td)← Setup(1λ,F), the following distributions
are identical.{

AOOpen(st) = 1 : (st,x)← A(ck), r ←$ RNDλ(Commit), (cm, d)← Commit(ck,x; r)
}}

{
AOS (st) = 1 : (st,x)← A(ck), (cm, aux)← S1(td)

}
where OOpen(F) := Open(ck, d, F) and OS(F) := S2(td, aux, F, F (x)).

3 WEFC: Witness Encryption for Functional Commitment

In this section we define our notion of witness encryption for functional commitments. In standard
witness encryption, we require semantic security for false statements; in our notion we require
semantic security for false statements on committed inputs. The decryption algorithm requires an
opening proof of the functional commitment w.r.t. a function and output specified at encryption
time. Like other variants of WE [BL20, CDK+21], loses the pure “non-deterministic” flavor of
WE since it requires the existence of a commitment to the decryption witness. We refer to the
introduction for further intuitions about the notion.

Definition 5 (Witness Encryption for Functional Commitments). Let FC = (Setup,
Commit,Open,Verify) be a functional commitment scheme for a class of functions F . A wit-
ness encryption for FC, denoted by WEFC, is a tuple of polynomial-time algorithms WEFC =
(Setup,Commit,Open,Verify,Enc,Dec), where Setup,Commit,Open, and Verify are defined by FC
and

Encryption. Enc(ck, cm, F,y,m) is a probabilistic algorithm that takes as input the commitment
key ck, a statement x = (cm, F,y), and a bitstring m, and outputs an encryption ct of m under
x.

11 The definition of hiding in [LRY16] only guarantees that the commitment does not reveal any information
about x.

10

Decryption. Dec(ck, ct, cm, F,y, opy) is a deterministic algorithm that on input ck, a ciphertext
ct, a statement x = (cm, F,y), and an opening proof op, decrypts ct into a message m, or
returns ⊥.

We require two properties, correctness and semantic security.

(Perfect) Correctness. For all λ ∈ N, ck ← Setup(1λ,F), F ∈ F , message m, and vector x we
have:

Pr

Dec(ck, ct, cm, F, F (x), op) = m :

(cm, d)← Commit(ck,x; r)

ct← Enc(ck, cm, F, F (x),m)

op← Open(ck, d, F)

 = 1

Semantic Security. For any PPT adversary A = (A1,A2), AdvssWE,FC,A(λ) = negl(λ), where
AdvssWE,FC,A(λ) :=∣∣∣∣∣∣∣∣∣Pr

b′ = b :

(ck, td)← Setup(1λ,F); (x, r, F,y,m0,m1)← A1(ck)

(cm, d)← Commit(ck,x; r);

b←$ {0, 1}; ct← Enc(ck, cm, F,y,mb)

if F (x) = y then ct := ⊥; b′ ← A2(ct)

− 1/2

∣∣∣∣∣∣∣∣∣
4 Our WEFC Construction

We present our construction of WEFC. The construction consists of two building blocks: Func-
tional Commitments (see section 2.1), and a flavor of Smooth Projective Hash Functions with
extractability property.

We start by recalling the definition of SPHFs.

4.1 Smooth Projective Hash Functions

Let Llpar ⊆ Xlpar be a NP language, parametrized by a language parameter lpar, and Rlpar be
its corresponding relation. A Smooth projective hash functions (SPHFs, [CS02]) for Llpar is a
cryptographic primitive with this property that given lpar and a statement x, one can compute a
hash of x in two different ways: either by using a projection key hp and (x,w) ∈ Rlpar as pH ←
projhash(lpar, hp, x,w), or by using a hashing key hk and x ∈ Xlpar as H ← hash(lpar, hk, x). The
formal definition of SPHF follows.

Definition 6. A SPHF for {Llpar} is a tuple of PPT algorithms (PGen, hashkg, projkg, hash, projhash),
which are defined as follows:

PGen(1λ): Takes in a security parameter λ and generates the global parameters pp together with
the language parameters lpar. We assume that all algorithms have access to pp.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key hk.

projkg(lpar, hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a projection key
hp, possibly depending on x.

hash(lpar, hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a hash value H.

projhash(lpar, hp, x,w): Takes in a projection key hp, lpar, a statement x, and a witness w for
x ∈ Llpar and outputs a hash value pH.

To shorten notation, we sometimes denote “hk← hashkg(lpar); hp← projkg(lpar, hk, x)” by (hp, hk)←
kgen(lpar, x). A SPHF must satisfy the following properties:

Correctness. It is required that hash(lpar, hk, x) = projhash(lpar, hp, x,w) for all x ∈ Llpar and their
corresponding witnesses w.

11

– hashkg(lpar): sample α←$ Zn
p , and output hk← α;

– projkg(lpar, hk, x): [γ]⊤1 ← α⊤[M(x)]1 ∈ G1×k
1 ; return hp← [γ]1;

– hash(lpar, hk, x): return [H]T ← α⊤[Θ(x)]T ;
– projhash(lpar, hp, x,w): return [pH]T ← ê([γ]⊤1 , [Λ(x,w)]2)

Fig. 1: DVS-based SPHF construction HFdvs for Llpar with lpar = (M,Θ,Λ).

Smoothness. It is required that for any lpar and any x ̸∈ Llpar, the following distributions are
statistically indistinguishable:

{(hp,H) : (hp, hk)← kgen(lpar, x),H← hash(lpar, hk, x)}
{(hp,H) : (hp, hk)← kgen(lpar, x),H← Ω} .

where Ω is the set of hash values.

Remark 1. For our application, we need a type of SPHF where hp depends on the statement. This
type of SPHF with such “non-adaptivity” in the smoothness property was formally defined by
Gennaro and Lindell in [GL06] and was later named GL-SPHF in [Ham16]. Throughout this work,
we always mean GL-SPHF when talking about SPHFs.

Existing constructions of SPHFs over groups are based on a framework called diverse vector
space (DVS). Intuitively, a DVS [BBC+13, ABP15, Ham16] is a way to represent a language
L ⊆ X as a subspace L̂ of some vector space of some finite field. In the seminal work [CS02],
Cramer and Shoup showed that such languages automatically admit SPHFs. To briefly recap the
notion of DVS, let R = {(x,w)} be a relation with L = {x : ∃w, (x,w) ∈ R}12. Let pp be system
parameters, including say the description of a bilinear group. A (pairing-based) DVS V is defined
as V = (pp,X ,L,R, n, k,M,Θ,Λ), where M(x) is an n × k matrix, Θ(x) is an n-dimensional
vector, and Λ(x,w) a k-dimensional vector. In this work, we consider the case that the matrix
M(x) may depend on x (i.e., GL-DVS similarly to GL-SPHF). Moreover, as long as the equation
Θ(x) = M(x) · Λ(x,w) is consistent, it could be that different coefficients of Θ(x), M(x), and
Λ(x,w) belong to different algebraic structures. The most common case is that for a given bilinear
group pp = (p,G1,G2,GT , ê, g1, g2), these coefficients belong to either Zp, G1, G2, or GT as long
as the consistency is preserved.

For our WEFC, we are interested in SPHFs defined over bilinear groups. Namely, SPHFs for
languages Llpar with lpar = (M,Θ,Λ), such that the coefficients of [M(x)]ι (resp. [Λ(x,w)]3−ι)
belong to the group Gι (resp. G3−ι, i.e. the other group) for some ι ∈ {1, 2}, and that [Θ(x)]T ∈ GT

is the pairing of [M(x)]ι and [Λ(x,w)]3−ι. For notational simplicity, we specifically pick ι = 1 in
the rest of the paper. We define Llpar therefore as

Llpar =
{
[Θ(x)]T : ∃[Λ(x,w)]2 s.t [Θ(x)]T = ê([M(x)]1, [Λ(x,w)]2)

}
.

Given a GL-DVS for Llpar, one can construct an efficient GL-SPHF for Llpar as depicted in fig. 1.

Extractable PHF. In the definition of SPHF, smoothness is guaranteed only for false statements.
Hence, for trivial languages where all statements are true, such notion of smoothness is vacuous. To
argue security in this case, a stronger notion of knowledge-smoothness is required which guarantees
that if an adversary can compute the hash value with non-negligible probability, it must know a
witness of the statement used in the hash computation. In the following, we state the definition of
knowledge smoothness for languages of our interest, and prove that HFdvs in fig. 1 has this property
in the algebraic bilinear group model.

12 The reader who is uninterested in fully understanding the formal details of DVS can think of this
formalism as a language to describe relations in (linear) algebraic terms. We refer the reader to [Ham16]
for more details on DVS.

12

1. (pp, lpar)← PGen(1λ);
2. aux← A1(lpar); x← IG(aux);
3. if x = ⊥, return 0; else x′ ← [Θ(x)]T ;
4. (hp, hk)← kgen(lpar, x); H← A2(lpar, hp, aux);
5. w′ ← ExtA(lpar, hp); H′ = hash(lpar, hk, x);

6. return
(
(H = H′) ∧ (x′,w′) /∈ Rlpar

)
;

Fig. 2: Knowledge smoothness experiment ExpKSPHF,IG(A, λ)

Knowledge Smoothness. A projective hash function PHF = (PGen, hashkg, projkg, hash, projhash)
for {Llpar} defined by lpar = (M,Θ,Λ) is knowledge smooth if for any λ, for any PPT adver-

sary A = (A1,A2), there exists a PPT extractor ExtA such that Pr[ExpKSPHF,IG(A, λ)] ≤ negl(λ),

where ExpKSPHF,IG(A, λ) is defined in fig. 2.

We call a PHF with knowledge-smoothness an extractable PHF. Note that by the definition,
the extractor is supposed to extract only w′ = [Λ(x,w)]2 (and not w) such that ([Θ(x)]T ,w

′) ∈
Rlpar.The security guarantee is that for any PPT adversary A = (A1,A2) that can compute a
valid hash value for an adversarially chosen statement, there exists an efficient extractor that can
extract a valid witness for the statement. Furthermore, since in our application we need to make
sure that the statement chosen by A satisfies some predicate 13, we let A1 to select the statement by
revealing the random coins aux of the statement, instead. The actual statement is then generated
by a deterministic instance generator IG that takes aux as input and returns an instance x if the
predicate holds.

Theorem 1. Let Llpar be a language defined by lpar = (M,Θ,Λ). Under the discrete logarithm
assumption, HFdvs in fig. 1 is an extractable PHF against all PPT adversaries A = (A1,A2), where
A2 is algebraic.

Proof. We prove the theorem for ι = 1; the other case goes exactly in the same way. Let A =
(A1,A2) be any PPT adversary against the knowledge smoothness of HFdvs and assume that A2

is algebraic. Let x be the statement output by A1 on input lpar = (M,Θ,Λ). A2 returns a hash
value H ∈ GT , and by its algebraic nature, A2 also provides coefficients that “explain” these
elements as linear combinations of the input. Let [x]1 = [1,γ,M(x)]1

14 be A2’s input in G1. Let
[y]2 = [1]2 be A2’s input in G2, and [z]T = [Θ(x)]T its input in GT . The coefficients returned by
A2([x]1, [y]2, [z]T) are A0, (Ai)i∈[k], (Bij)i∈[n],j∈[k], (Ci)i∈[n] ∈ Zp such that

H =

k∏
i=0

ê ([xi]1, [y]2)
Ai ·

n∏
i=1

k∏
j=1

ê ([Mij(x)]1, [y]2)
Bij ·

n∏
i=1

[zi]
Ci

T .

Let Ext be the extractor that runs the algebraic adversaryA2 and returns [Λ(x,w)]2 = ([A1]2, . . . , [Ak]2).
We can show that this is a valid witness for [Θ(x)]T as long as the hash value H returned
by A2 is a correct hash. In other words, if A2 can output H such that H = α⊤[Θ(x)]T , and
Θ(x) ̸= M(x)Λ(x,w), we can construct an algorithm B that exploits A2 and breaks the discrete
logarithm problem. To do this, B on challenge input Z = [z]1 proceeds as follows. First, it uses
Dlpar to sample lpar = (M,Θ,Λ). Second, it samples r, s ←$ Zn

p and implicitly sets α := z · r+ s.

Third, it computes hp = [γ]1 = [M(x)⊤α]1 and runs A2(lpar, hp, x). Once received A2’s output H,

13 For example, for x = (cm, G, y), the predicate checks if G(v) ̸= y, where v is committed in cm.
14 x0 = 1 and xi = γi for 1 ≤ i ≤ k.

13

B returns z computed from the following equation.

α⊤Θ(x)− γ⊤A = A0 +

n∑
i=1

k∑
j=1

Mij(x)Bij +Θ(x)⊤C

⇒ α⊤(Θ(x)−M(x)A) = A0 +

n∑
i=1

k∑
j=1

Mij(x)Bij +Θ(x)⊤C

where A = (A1, . . . , Ak) and C = (C1, . . . , Cn). Note that z is the only unknown in the equation
and can be computed by the assumption that Θ(x) ̸= M(x)A. ⊓⊔

Corollary 1. HFdvs in fig. 1 is an extractable PHF in the generic group model.

Proof. The proof follows straightforwardly from theorem 1 and lemma 2.2 in [FKL18].

4.2 Our Construction

Let FC = (Setup,Commit,Open,Verify) be a succinct functional commitment scheme for F , where
the verification circuit is linear (i.e., of degree one) in the opening proof. Let EPHF = (PGen, hashkg,
projkg, hash, projhash) be an extractable projective hash function. The key idea of the construction
is to use EPHF for the language defined by the verification circuit of FC. Since this circuit is affine
in the opening proof op, and we know how to construct PHF for affine languages, the witness
encryption just uses EPHF in a straightforward way. Note that because the language is trivial, we
need knowledge smoothness rather than standard smoothness.

Construction. Let lpar = (ck,M,Θ) be the language parameter that defines Llpar corresponding
to the verification circuit of FC as follows:

Llpar = {x = (cm,β,y)|∃op : Verify(ck, cm, op,β,y) = 1}

Note that due to the linearity of verification circuit in the opening op, there should exist a matrix
[M(x)]⋆

15 and a vector [Θ(x)]T such that

[Θ(x)]T = [M(x) · õp]T

where õp is derived from op by replacing its group elements with their discrete logarithms. Let
σ : GT → {0, 1}ℓ be a generic deterministic injective encoding that maps group elements in GT into
ℓ-bit strings, and that has an efficient inversion algorithm σ−1. Our WE for functional commitments
WEFC = (Setup,Commit,Open,Verify,Enc,Dec) for Llpar can be described as follows:

Setup,Commit,Open,Verify are defined by FC, and specify lpar = (ck,M,Θ).
Enc(ck, cm,β,y,m). Let x = (cm,β,y). To encrypt a bit message m ∈ {0, 1}, select a uniformly

random vector hk ∈ Z1×ν
p , where ν is the number of rows ofM(x), sample a random r ←$ {0, 1}ℓ,

and compute the ciphertext ct = (hp, r, ĉt), where

hp = [hk ·M(x)]⋆, H = [hk ·Θ(x)]T , ĉt = ⟨σ(H), r⟩ ⊕m

Dec(ck, ct, cm,β,y, op). On input a ciphertext ct = (hp, r, ĉt), first compute pH = [hp · õp]T using
op, and then output the message m ∈ {0, 1} computed as m = ⟨σ(pH), r⟩ ⊕ ĉt.

Theorem 2. Let FC be a functional commitment scheme for circuit class F with computational
evaluation-binding property. Let EPHF be an extractable PHF. Then WEFC described above is a
WEFC for F . Furthermore, if EPHF is extractable in the generic group model (GGM), then WEFC

is semantically secure in the GGM.

15 The star ⋆ means that the elements are not necessarily in the same group.

14

Proof. Perfect correctness follows directly from correctness of FC and EPHF. To prove semantic
security, we show a reduction from evaluation-binding of FC to semantic security of WEFC. To do so,
let us assume that WEFC is not semantically secure. By definition, there exists an efficient adversary
A that, for a maliciously chosen (false) statement x = (cm,β,y) 16, where cm = Commit(ck,α; r)
(all known to A), it can distinguish, with non-negligible advantage, encryptions of 0 and 1 under
x. We first show how to construct an efficient algorithm B that uses A to compute a hash value
H = hash(lpar, hk, x).

Before giving the description of B, let us first recall the classic Goldreich-Levin theorem [GL89]
based on which we construct B.

Theorem 3 (Goldreich-Levin). Let ϵ > 0. Fix some x ∈ {0, 1}n and let Ax be a PPT algorithm
such that Pr[Ax(r) = ⟨r, x⟩|r ←$ {0, 1}n] ≥ 1/2 + ϵ. There exists a decoding algorithm DAx(·)

with oracle access to Ax that runs in poly(n, 1/ϵ)-time and outputs a list L ⊆ {0, 1}n such that
|L| = poly(n, 1/ϵ) and x ∈ L with probability at least 1/2.

The fact thatA can distinguishes ct0 and ct1 under x = (cm,β,y) with non-negligible advantage
implies that

Pr

b′ = b :

b←$ {0, 1}; hk←$ Z1×ν
p ; r ←$ {0, 1}ℓ;

hp = [hk ·M(x)]⋆;H = [hk ·Θ(x)]T ; ĉt = ⟨σ(H), r⟩ ⊕ b;

b′ ← A(hp, r, ĉt)

 ≥ 1/2 + ϵ

for some ϵ = 1/p(λ), where p is a polynomial. We first construct an algorithm B̄ that on input
(hp, r) for r ←$ {0, 1}ℓ, it uses A to predict the value of ⟨r, σ(H)⟩. B̄ proceeds as follows: on input
(hp, r), it samples b←$ {0, 1} and runs A on input (hp, r, b). If A correctly guesses b, B̄ outputs 0,
and otherwise 1. By construction, it is easy to see that B̄ outputs ⟨r, σ(H)⟩ with probability at least
1/2+ ϵ. Using B̄ and Goldreich-Levin decoding algorithm DB̄(hp,·) in theorem 3, we now construct
B that on input lpar, hp and x, computes σ(H) as follows:

– Runs DB̄(hp,·) so that to answer an oracle query r ∈ {0, 1}ℓ, B outputs B̄(hp, r).
– Let L ⊆ {0, 1}ℓ be the list that DB̄(hp,·) outputs. B returns σ(H)←$ L.

To analyze the success probability of B, let K be the set of hashing keys hk ∈ Z1×ν
p such that for

hp← projkg(lpar, hk, x), and H← hash(lpar, hk, x),

Pr[B̄(hp, r) = ⟨r, σ(H)⟩|r ←$ {0, 1}ℓ] ≥ 1/2 + ϵ/2.

By an averaging argument, the probability that a random hk ←$ Z1×ν
p is in K is at least ϵ. This

indicates that with probability at least ϵ, the hashing key hk chosen in the knowledge smoothness
experiment of EPHF lies in K and hence the oracle B̄(hp, ·) satisfies the requirement in theorem 3.
This subsequently indicates that the list L returned by DB̄(hp,·) contains σ(H) with probability at
least 1/2. Therefore, B computes σ(H), and thus H with probability at least ϵ · 12 ·

1
|L| which is 1

q(λ)

for some polynomial q. Due to extractability of the EPHF, there should exist an efficient extractor
ExtB for B such that for cm = Commit(ck,α; r) and x = (cm,β,y), ExtB can extract a valid witness
w′ = op such that ([Θ(x)]T ,w

′) ∈ Rlpar with probability at least 1
q(λ) . The above reduction can

subsequently be invoked by a computational evaluation-binding adversary to break this property
with non-negligible probability by outputting (α, r,β,y, op). Note that the reduction is generic
and thus a GGM adversary against semantic security of WEFC yields a GGM adversary against
EPHF. ⊓⊔

5 Our WEFC Instantiations

In this section, we present succinct FC schemes that are compatible with the requirements of our
WEFC construction of Section 4.2, namely they are pairing-based schemes whose verification algo-
rithm can be expressed as a system of equations linear in opening elements. Our main contribution

16 Note that x is false in the sense that for cm = Commit(ck,α; r), we have F (α,β) ̸= y. With respect
to the language Llpar corresponding to the verification of functional commitments, such statements are
always true however.

15

is a new FC scheme for the language of monotone span programs (MSP) which, using known trans-
formations can be turned into an FC for circuits in the class NC1.17 Next, in Section 5.2 we show
that also the functional commitments of Libert, Ramanna and Yung [LRY16] for linear functions,
and that of Lipmaa and Pavlyk for semi-sparse polynomials [LP20] satisfy the required properties.

5.1 Our FC for Monotone Span Programs

We construct our scheme by adapting the FC proposed by Catalano, Fiore and Tucker [CFT22].
In particular, while the scheme of [CFT22] has a quadratic verification (i.e., it needs to pair group
elements in the opening between themselves), we show a variant of their technique with linear
verification.

We start by recalling the notion of (monotone) span programs (MSP) [KW93].

Definition 7 (Monotone Span Programs [KW93]). A monotone span program for attribute
universe [n] is a pair (M, ρ) where M ∈ Zℓ×m

p and ρ : [ℓ]→ [n]. Let Mi denote the i-th row of M.
For an input x ∈ {0, 1}n, we say that

(M, ρ) accepts x iff ∃w ∈ Zℓ
p :

∑
i:xρ(i)=1

wi ·Mi = (1, 0, . . . , 0)

MSPs are in the class P as one can use Gaussian elimination to find w in polynomial time. As in
other works [LOS+10, CGW15, CGKW18], we use a restricted version of MSPs where every input
xi is read only once, and thus ℓ = n and ρ is a permutation (which up to reordering the rows of M
can be assumed the identity function). The one-use restriction can be removed by working with
larger inputs of length n′ = k · n in which each entry xi is repeated k times, where k is an upper
bound on the input’s fan out. Therefore, without loss of generality in our FC we work with MSPs
defined by M ∈ Zn×m

p such that

M accepts x iff ∃w ∈ Zn
p : (w ◦ x)⊤ ·M = (1, 0 . . . , 0) (2)

Our FC for MSP. For simplicity, we present our FC with deterministic commitments and open-
ings. At the end of this section, we discuss how to easily change it to achieve zero-knowledge.

In the scheme, for a vector v we denote by pv(Z) the polynomial
∑

j∈[n] vjX
j . Our scheme

assumes a bilinear group description bp := (p,G1,G2,GT , ê, g1, g2) associated to the security pa-
rameter λ and works as follows.

Setup(1λ, n,m) takes as input two integers m,n ≥ 1 that bound the size of the MSPs supported by

the scheme (i.e., matrices in Zm×n
p) and the length of the inputs. It samples random α, γ, η ←$

Zp,β ←$ Zm
p and outputs

ck :=

{[αj]1, [ηγ
j]2}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],

{[
αjβiγ

ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

[(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]

Commit(ck,x) returns cm :=

∑
j∈[n] xj · [ηγj]2 = [ηpx(γ)]2 and d := x.

Open(ck, d,M) LetM ∈ Zn×m
p be an MSP which accepts the input x in d. The algorithm computes

a witness w ∈ Zn
p such that M⊤ · (w ◦ x) = e1, where e⊤1 = (1, 0, . . . , 0), and then returns the

opening op := (πw, πu, π̂) ∈ G3
1 computed as follows:

17 One can convert a circuit in NC1 into a polynomial-size boolean formula, and then turn this one into a
MSP of equivalent size [LW11b, Appendix G].

16

πw :=
∑
j∈[n]

wj · [αj]1 = [pw(α)]1

πu :=
∑

j,ℓ∈[n]

wj · xℓ · [ηαjγℓ]1 = [η · pw(α) · px(γ)]1

π̂ :=
∑
i∈[m]

j,k∈[n]:j ̸=k

Mj,i · xj · wk · [αn+1−j+kβiγ
n+1]1

+
∑
i∈[m]

j,k,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ · wk ·
[
αn+1−j+kβiγ

n+1−j+ℓ
]
1

Above, πw represents a commitment to the witness w = [pw(α)]1, πu = [ηpw(α)px(γ)]1 is an
encoding of u = w ◦ x. Finally, π̂ can be seen as an evaluation proof for the linear map FC
of [LM19] which shows that the vector w committed in πw is a solution to the linear system
((x|| · · · ||x) ◦M)⊤ ·w = M⊤ · (w ◦ x) = e1.

Verify(ck, cm, op,M, true) Compute Φ ←
∑

i∈[m],j∈[m] Mj,i ·
[
(αγ)n+1−jβi

η

]
2
, and output 1 iff the

following checks are both satisfied:

ê(πw, cm)
?
= ê(πu, [1]2) (3)

ê(πu, Φ)
?
= ê(π̂, [1]2) · ê([αβ1γ]1, [(αγ)

n]2) (4)

Remark 2. In the FC scheme above one can only create an opening if the MSP M accepts the
committed input x, but not if it rejects. This functionality is enough to build an FC for NC1

circuits with a single output. If one wants to open for a circuit C such that C(x) outputs 1 then
uses the MSPMC associated to C. If on the other hand, one wants to open to C such that C(x) = 0
then one can instead prove that C̄(x) = 1, where C̄ is the same as C with a negated output, and
then use the MSP MC̄ and show that it accepts.

Correctness. Equation (3) holds by way cm is constructed in Commit, and πw, πu are constructed
in Open and the bilinear property of ê: ê(πw, cm) = [pw(α) · ηpx(γ)]T = ê(πu, [1]2).

Let us now prove that correctness holds w.r.t. equation (4). Denoting ϕ the element such
that Φ = [ϕ]2 and using the correctness of equation (3), the left-hand side of equation (4) is
ê(πu, Φ) = [pw(α) · ηpx(γ) · ϕ]T . By construction of ϕ, one can see that

pw(α)px(γ)ηϕ =

=

 ∑
k∈[n]

wkα
k

 ∑
i∈[m],j,ℓ∈[n]

Mj,i · xℓ · αn+1−jβiγ
n+1−j+ℓ

=

∑
i∈[m]
j,k∈[n]

Mj,i · xj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,ℓ∈[n]:ℓ̸=j

Mj,i · xℓ · wkα
n+1−j+kβiγ

n+1−j+ℓ

=
∑
i∈[m]
j∈[n]

Mj,i · xj · wj · αn+1βiγ
n+1 +

∑
i∈[m]

j,k∈[n]:j ̸=k

Mj,i · xj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ · wkα
n+1−j+kβiγ

n+1−j+ℓ

= (αγ)n+1β1 +
∑
i∈[m]

j,k∈[n]:j ̸=k

Mj,i · xj · wk · αn+1−j+kβiγ
n+1 +

∑
i∈[m]

j,k,ℓ∈[n]:ℓ̸=j

Mj,i · xℓ · wkα
n+1−j+kβiγ

n+1−j+ℓ

17

where the last equality is due to the MSP satisfiability,i.e,
∑

j∈[n] Mj,1xjwj = 1 and ∀i = 2, . . . ,m,∑
j∈[n] Mj,ixjwj = 0.

Finally, using the construction of π̂ in the Open algorithm we can conclude that [pw(α)px(γ)ηϕ]T =
ê(π̂, [1]2) · ê([αγβ1]1, [(αγ)

n]2).

Proof of Security. We prove the weak evaluation binding of our FC based on the following
(falsifiable) assumption. This is a variant of the assumption used in [CFT22], which we justify in
the generic group model in Appendix A.

Definition 8 ((n,m)-QP-BDHE assumption). Let bp = (p,G1,G2,GT , ê, g1, g2) be a bilin-
ear group setting. The (n,m)-QP-BDHE holds if for every n,m = poly(λ) and any PPT A, the
following advantage is negligible

Adv
(n,m)-QP -BDHE
A (λ) = Pr[A(bp, Ω) = [αn+1γn+1δ]T] where

Ω :=

{[αj]1, [ηγ

j]2}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],
{[
αjβiγ

ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

[(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]{[

δ
βk

]
2

}
k∈[m]

,
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i̸=k

,
{[

αjβiγ
ℓδ

βk

]
2

}
i,k∈[m],j∈[n]
ℓ∈[2n]\{n+1}

and the probability is over the random choices of α, γ, δ, η ←$ Zq, β ←$ Zm

q and A’s random coins.

Theorem 4. If the (n,m)-QP-BDHE assumption holds then the FC scheme of Section 5.1 satisfies
weak evaluation binding.

Proof. We show that any PPT A against the weak evaluation binding of the FC scheme can be
turned into a PPT adversary B against the (n,m)-QP-BDHE assumption.
B receives the bilinear group description and the list of group elements Ω, uses a subset of Ω

to set the commitment key ck as below, and then runs A(ck).

ck :=

{[αj]1, [ηγ
j]2}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],

{[
αjβiγ

ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

[(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]

Assume that A returns a tuple (M,x, π) such that, by parsing π := (πw, πu, π̂), it holds:

– (i) π is accepted by Verify(ck, [ηpx(γ)]2, π,M, true), i.e.,

πu = (ηpx(γ)) · πw and ê(πw, ηpx(γ)Φ) = ê(π̂, [1]2) · ê([αγβ1]1, [(αγ)
n]2) (5)

– (ii) the MSP M does not accept x. This means that for F′ = (Mj,i · xj)i,j , the linear system
(F′ | e1) is not satisfiable and it is possible to efficiently compute a vector c ∈ Zm

p such that

c⊤ · F′ = 0 and c⊤ · e1 = 0. These two conditions for c can also be expressed as

c1 = 1, ∀j :
∑
k

ckMj,kxj = 0

B starts by computing, for every k ∈ [m]:

π′k := ê

(
π̂,

[
δ

βk

]
2

)
.

By the construction of Φ in Verify, we have:

ηpx(γ)Φ =

∑
ℓ∈[n]

xℓ · γℓ

 ·
 ∑

i∈[m],j∈[n]

Mj,i · (αγ)n+1−jβi

2

=
∑
i∈[m]
j∈[n]

Mj,i · xj · [αn+1−jβiγ
n+1]2 +

∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓ
]
2

18

We can use equation (5) to see that, for every k ∈ [m],

π′k = ê

πw,
∑

i∈[m],j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·
ê

πw,
∑
i∈[m]

j,ℓ∈[n]:ℓ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

βk

]
2

 · [− (αγ)n+1β1δ

βk

]
T

Thus, for k = 1 we have

π′1 = ê

πw,
∑
j∈[n]

Mj,1 · xj ·
[
αn+1−jγn+1δ

]
2

 · [−(αγ)n+1δ
]
T
·

ê

πw,
∑

i∈[2,m]
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

β1

]
2

 ·

ê

πw,
∑
i∈[m]

j,ℓ∈[n]:ℓ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

β1

]
2

and for k ≥ 2:

π′k = ê

πw,
∑
j∈[n]

Mj,k · xj ·
[
αn+1−jγn+1δ

]
2

 ·
ê

πw,
∑

i∈[m]\{k}
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

ê

πw,
∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

βk

]
2

 · [− (αγ)n+1β1δ

βk

]
T

Next, B computes:

π∗1 := π′k · ê

πw, −
∑

i∈[2,m]
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

β1

]
2

 ·

ê

πw,−
∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

β1

]
2

 ·

= ê

πw,
∑
j∈[n]

Mj,1 · xj ·
[
(αγ)n+1−jδ

]
2

 · [−(αγ)n+1δ
]
T

19

and, for k = 2, . . . ,m:

π∗k := π′k · ê

πw, −
∑

i∈[m]\{k}
j∈[n]

Mj,i · xj ·
[
αn+1−jβiγ

n+1δ

βk

]
2

 ·

ê

πw,−
∑
i∈[m]

j,ℓ∈[n]:ℓ ̸=j

Mj,i · xℓ ·
[
αn+1−jβiγ

n+1−j+ℓδ

βk

]
2

 ·
ê

(
[α]1 ,

[
αnγn+1δβ1

βk

]
2

)

= ê

πw,
∑
j∈[n]

Mj,k · xj ·
[
(αγ)n+1−jδ

]
2

B can compute the three pairings above using the group elements included in the third row of

Ω.
Finally, B computes and returns

∆∗ =
∏

k∈[m]

(π∗k)
−ck

We show that whenever A succeeds, the above value is ∆∗ = [(αγ)n+1δ]T , that is B succeeds
in breaking the (n,m)-QP-BDHE assumption.

By construction of π∗k and using that c1 = 1, it holds:

∆∗ = [(αγ)n+1δ]T · ê

πw, −
∑
j∈[n]

[
(αγ)n+1−jδ

]
2

∑
k∈[m]

Mj,k · xj · ck

Therefore,∆∗ = [(αγ)n+1δ]T holds since by definition of c it holds ∀j ∈ [n],

∑
k∈[m] ck ·Mj,k ·xj = 0.

⊓⊔

Zero-knowledge. We discuss how to tweak the FC scheme in such a way that the commitment
is hiding and the openings are zero-knowledge.

To do this, we consider an instantiation of the FC for vectors of length n+1. Then, a commitment
to x is a commitment to x̃ = (r,x) where r ←$ Zp. This way the group element cm is distributed
like a uniformly random group element. The second change in the scheme is that in both Open and
Verify, given an MSP matrix M, one runs the same algorithms with a matrix M̃ = (0 | M⊤)⊤,
i.e., M with a zero row on top. This way the linear system remains functionally equivalent as r is
ignored; this preserves both correctness and binding.

The third change is that Open computes πw as a commitment to the vector w̃ = (s,w) for
a random s ←$ Zp. This way, πw is uniformly distributed. Thanks to the row of zeros in M̃,
correctness is preserved.

Finally, to formally argue that this modified FC satisfies zero-knowledge, we show the simulators
(that are assumed to know as trapdoors the values α, γ, η,β). S1 outputs cm as a commitment to
(r,0) using a random r ←$ Zp, and stores r in aux. S2 samples πw ←$ G1, computes πu ← (ηγr) ·πw

and computes the simulated proof π̂ as

π̂ :=

 ∑
i∈[m],j∈[m]

Mj,i ·
(αγ)n+1−jβi

η

 · πu − [(αγ)n+1β1]1

which is the unique value satisfying equation (4).

20

5.2 Other Instantiations

Libert et al.’s FC. The seminal work of Libert et al. [LRY16] constructs FC for linear functions
F := {F : Zn

p → Zκ
p}, such that each F is defined by a vector β and Fβ(x) =

∑n
i=1 xiβi. Consider

a bilinear group setting bp := (p,G1,G2,GT , e, g1, g2). The construction is as follows.

Setup(1λ, n) samples u←$ Zp and returns ck as

ck :=
(
{[uj]1}j∈[2n]\{n+1}, {[uj]2}j∈[n]

)
.

The trapdoor key is defined as td := [un+1]1.
Commit(ck,x; r) returns cm = [r]1 +

∑
j∈[n] xj · [uj]1 and d = (x, r).

Open(ck, d,β) parses d as d = (x, r) and for y = ⟨x,β⟩, returns opy =
∑

i∈[n] βi ·Wi, where

Wi = r · [un−i+1]1 +
∑

j∈[n],j ̸=i xj · [un+1−i+j]1.

Verify(ck, cm, opy,β, y) returns 1 if

ê(cm,
∑
i∈[n]

βi · [un+1−i]2)
?
= ê(opy, [1]2) · ê([u]1, [un]2)

y

It is clear that the verification is linear in the opening proof. To show the construction provides
perfect ZK, an efficient simulator S = (S1,S2) can be constructed as follows: S1(td) first generates
cm := Commit(ck,0; r) and defines aux := r. Now, for any adversarially chosen vector x, and any
query β, S2(td, aux,β, y = ⟨x,β⟩) returns op = r · (

∑
i∈[n] βi · [un+1−i]1)− y · [un+1]1 ∈ G1.

Lipmaa and Pavlyk’s FC. Limpaa and Pavlyk [LP20] proposed an FC for a class of circuits
F := {F : Dn → Dκ} where each F is defined by a vector β ∈ Dµβ . Their scheme is based on the
SNARK construction of Groth16 [Gro16] for F ∗—a compiled version of F . In Groth’s SNARK, the
argument consists of three group elements π = ([A]1, [B]2, [C]1). The key idea in SFC of [LP20]
is as follows: first, express the first two elements [A]1, [B]2 as sums of two elements where the
first depends only on the secret data and the second depends only on the public data (i.e., β and
the output F (x,β)). That is, [A]1 = [As]1 + [Ap]1 and [B]2 = [Bs]2 + [Bp]2. Next, write [C]1 as
[Csp]1+ [Cp]1, where [Cp]1 depends only on the public data and [Csp]1 depends on both the public
and the secret data. Now, a functional commitment to x is cm = ([As]1, [Bs]2) and the opening
to F (·,β) is op = [Csp]1. To verify an opening op, the verifier computes [Ap]1, [Bp]2, and [Cp]1,
and then runs the SNARK verifier on the argument ([As]1 + [Ap]1, [Bs]2 + [Bp]2, [Csp]1 + [Cp]1).
The construction is shown to be perfectly zero-knowledge as defined in [LP20], but it is not hard
to show that it satisfies our stronger definition (i.e., definition 4) as well. In fact, given td = (u, v)
as the trapdoor of the commitment key, S1(td) generates the commitment as the first step of the
SNARK simulation in [LP20] and defines aux as the discrete logarithm of the commitment. Now,
S2 can utilises aux and answer oracle queries for different circuits F (·,β) by performing the rest
of the SNARK simulation. Given that the verification in the SNARK of [Gro16] is linear in the
opening [Csp]1 makes this functional commitment an appropriate instantiation for our construction
of WEFC.

6 From WEFC to Reusable Non-Interactive MPC

6.1 Preliminaries on mrNISC

Here we first recall the definition of mrNISC schemes in [BL20] and their construction based on
WEZK-CM. We then show how our notion of WEFC can be used as a replacement of WEZK-CM in
their construction.

There are two rounds in mrNISC-style variant of secure multiparty computation protocols,
input encoding phase and evaluation phase. In the first round, parties publish encodings of their
secret inputs on a public bulletin board, without any coordination with other parties. This happens
once and for all. Next, in the second round, any subset of parties can compute a function on their
inputs by publishing only one message each. More formally, a mrNISC scheme is defined by the
following three algorithms:

21

Input Encoding (x̂i, si)← Commit(1λ, xi) by which a party Pi encodes its private input xi and
publishes the encoding x̂i.

Computation Encoding ηi ← Encode(z, {x̂j}j∈J , si) by which each party Pi among a subset of
parties {Pj}j∈J generates and publishes a computation encoding ηi. This allows parties in J
to compute a functionality f described by z (i.e., f(z, ⋆)) on their private inputs.

Output y = Eval(z, {x̂j}j∈J , {ηj}j∈J) which deterministically computes the output y (required to
be f(z, {x̂j}j∈J) by the correctness property).

The construction of mrNISC in [BL20] is based upon the work of [GLS15], where they follow
the round collapsing approach for constructing 2-round MPC protocols used in [GGHR14]. Let

∏
be an L-round MPC protocol. The round collapsing approach collapses

∏
into a 2-round protocol∏

as follows. For ℓ ∈ [L], let mℓ
i denote the message published by party Pi in round ℓ of

∏
. Let xi

and ri be respectively the secret input and random tape of Pi used to execute
∏
. In the first round

of
∏
, each party Pi commits to its private input (xi, ri) and broadcasts the resulting commitment

cmi. In the second round, each party Pi garbles its next-step message function F ℓ
i in

∏
for each

round ℓ ∈ [L]. Note that the resulting garbled circuit, denoted by F̂ ℓ
i , should take as input all the

messages m<ℓ = {mℓ
j}l<ℓ,j∈[n] of all parties up to round ℓ − 1, and outputs the next message mℓ

i

of Pi in
∏
. To do so, each Pi should provide a way for other parties to compute the labels of F̂ ℓ

i

that correspond to the correct messages in
∏
, where a message ml

j is correct if it is computed from
Pi’s committed messages (xi, ri) in the first round. To this end, [GLS15] suggests the following
mechanism: let k0 and k1 be two labels for an input wire in Pi’s garbled circuit F̂ ℓ

i . Suppose that

F̂ ℓ
i takes as input the t’th bit y = ml

j,t of a message from Pj (where ml
j is output by Pj ’s garbled

circuit F̂ l
j), and provides a way for all parties to obtain the valid label ky. The key idea in [GLS15]

is to use a general-purpose WE to produce a ciphertext cty ←WE.Enc(xy, ky) for y ∈ {0, 1} under
the statement xy that “there exists a NIZK proof πy that proves y = ml

j,t is computed correctly”.
Again, correct computation here means that y is computed from Pj ’s committed messages (xi, ri)
in the first round, and in accordance to the partial transcript of messages m<l. The two ciphertexts
(ct0, ct1) are part of what Pi in the garbled circuit F̂ l−1

i outputs. Furthermore, to allow all parties

to (publicly) obtain the correct label ky, Pj ’s garbled circuit F̂ l
j additionally outputs a NIZK proof

πy that y = ml
j,t is correctly computed. Correctness of

∏
follows from correctness of WE. Security

also follows from the fact that k1−y remains hidden by the soundness of NIZK and semantic security
of WE. Furthermore, the ZK property of NIZK guarantees the privacy of parties.

The main problem in the above construction of [GLS15] is the lack of general-purpose WE from
standard assumptions. Benhamouda and Lin [BL20] overcome this problem by observing that not
a WE for general NP language, but a WE scheme for a particular language corresponding to the
verification circuit of a NIZK proof that proves the correctness of computation over committed
information suffices to realize the above construction. This variant of WE, denoted by WEZK-CM

in this work, consists of a triple WEZK-CM = (COM,NIZK,WE) and is defined for a NP language
L such that a statement x = (cm, G, y) is in L iff there exists an accepting NIZK proof π (as
the witness for x) w.r.t. crs that proves cm is a commitment of some value v and that G(v) =
y. As provided in the construction of [GLS15] (but based on stronger assumption of general-
purpose WE), WEZK-CM should support all polynomial computations; i.e., it should be that G
in the statements x = (cm, G, y) can be any arbitrary polynomial-sized circuit. Moreover, the
commitments in WEZK-CM should be reusable in the sense that generating unbounded number of
NIZK proofs and WE ciphertexts w.r.t. commitments should not reveal any information about the
committed (secret) values, except what is revealed by the statements. Equipped with this property
then allows to make the construction of [GLS15] reusable by replacing ri with a PRF seed si
that generates pseudo-random tapes for an unbounded number of computations. The key idea in
the construction of WEZK-CM in [BL20] is to use a NIZK proof system that has a linear-decision
verification. Given such NIZK is then sufficient to realize WEZK-CM using a WE for linear languages
which can be constructed efficiently based on SPHFs. In more details, let Θ = Mπ be the linear
equation corresponding to the verification of NIZK for a statement x = (cm, G, y), such that Θ
and M depend on x and thus are known at the time of encryption. One can now encrypt a message
straightforwardly by using an SPHF for this relation such that only one who can compute the hash
value using a valid witness π can retrieve the message.

22

Hardwired Values:(
1λ, ℓ, i, z, {x̂j = cmj}j∈J , si = (xi, fki, di), stE

ℓ+1
i , {msgEℓ+1

i,j }j∈J

)
.

Circuit Inputs. (m<ℓ−1,mℓ−1), where m<ℓ−1 are the protocol messages of the first ℓ− 2 rounds with
corresponding garble labels stEℓ

i , and mℓ−1 are the messages of the ℓ − 1 round with corresponding
garble labels {msgEℓ

i,j}j∈J .

Procedure. 1. For j ∈ J and k ∈ [νm], define the circuits Gℓ
j and Gℓ

j,k as follows:

Gℓ
j(xj , fkj) = Nextj(z, xj ,PRF(fkj , z||[νr]),m<ℓ−1,mℓ−1) ; Gℓ

j,k := k-th bit of Gℓ
j

2. Compute the ℓ-th round message mℓ
i = mℓ

i,1|| . . . ||mℓ
i,νm of Pi, and proofs of correct openings opℓi,k for

each bit k ∈ [νm]:

mℓ
i := Gℓ

i(xi, fki) ; op
ℓ
i,k ← Open(ck, si, G

ℓ
i,k) for k ∈ [νm].

3. For j ∈ J and k ∈ [νm], encrypt labels msgEℓ+1
i,j [k, b] so that the valid message mℓ

j can be used to

obtain msgEℓ+1
i,j [mℓ

j] = {msgEℓ+1
i,j [k,mℓ

j,k]}k∈[νm]:

ctℓ+1
i,j,k,b ← Enc(ck, cmj , G

ℓ
j,k, b,msgEℓ+1

i,j [k, b])a for b ∈ {0, 1}.

Circuit Output. (stEℓ+1
i [m<ℓ−1||mℓ−1], {ctℓ+1

i,j,k,b}j,k,b,m
ℓ
i , {opℓi,k}k).

a The ciphertexts are set to be empty strings for ℓ = L.

Fig. 3: Circuit Fℓ
i for the construction of mrNISC based on WEFC

6.2 Our mrNISC construction.

We now show how one can replace WEZK-CM with WEFC in the aforementioned construction. Let
FC be a succinct functional commitment for circuit class F , and WEFC = (Setup,Commit,Open,
Verify,Enc,Dec) be a WEFC for F constructed as in section 4.2. Besides WEFC, the construction
uses the following building blocks:

– A semi-malicious output-delayed simulatable L-round MPC protocol
∏

= (Next,Output) for f
(see definition 9).

– A garbled circuit GC = (Gen,Garble,Eval,Sim) for F (see definition 12).

The construction is as follows:

Input Encoding. For a binary input xi and PRF key fki ←$ {0, 1}λ, party Pi commits to xi||fki
as (cmi, di)← Commit(ck, (xi||fki); ri). It then sets x̂i := cmi and si := (xi, fki, di).

Computation Encoding. To encode a computation f(z, ⋆), each party Pi for ℓ ∈ [L] generates
input labels (stEℓ

i , {msgEℓ
i,j}j∈J)← Gen(1λ) and garbles the evaluation function Fℓ

i (defined

in fig. 3) as F̂ℓ
i ← Garble((stEℓ

i , {msgEℓ
i,j}j∈J),Fℓ

i). Finally, it sets ηi := {F̂ℓ
i}ℓ∈[L].

Output. The output is computed by recovering the input labels and then evaluating the garbled
circuits on them in L iteration. That is, for ℓ = 1, . . . , L:
1. For i ∈ J ,(

stE′ℓ+1
i , {ctℓi,j,k,b}j,k,b,mℓ

i , {opℓi,k}k
)
:= Eval(F̂i, (stE

′ℓ
i , {msgEℓ

i,j [m
ℓ−1
j]}j∈J)).

2. If ℓ ̸= L, then for i, j ∈ J and k ∈ [νm],

msgEℓ+1
i,j [mℓ

j] :=
{
Dec(ck, ctℓ+1

i,j,k,mℓ
j,k

, cmj , G
ℓ
j,k,m

ℓ
j,k, op

ℓ
i,j,k)

}
After all the messages m = {mℓ

j}j∈J,ℓ∈[L] of the inner MPC are recovered, the final output is
computed as y := Output(z,m).

The correctness of the construction follows straightforwardly from the correctness of the un-
derlying building blocks. For security, we refer to [BL20] as the proof is similar to the security of
the mrNISC construction in [BL20]. Here, we only state the theorem.

23

Theorem 5. Let PRF be a pseudorandom function, GC be a garbled circuit with simulatability
property (see definition 12),

∏
be a semi-malicious output-delayed simulatable MPC protocol

(see definition 9), and WEFC be a WEFC with semantic security (see section 3). The mrNISC
scheme described above is semi-maliciously private as defined in B.3.

On the Efficiency of our mrNISC Construction. The main advantage of our mrNISC construction
compared to the one in [BL20] is that our approach admits an input encoding phase with much
shorter communication since we use succinct commitments. This is especially important since
commitments are supposed to be stored in a public bulletin board to be re-used in several future
computations.

Remark 3. While our FC construction can be used to instantiate our WEFC for NC1, we need one
to support arbitrary circuits to instantiate our mrNISC (roughly, this corresponds to the round
function of the “lifted” MPC, plus PRFs). To achieve this, we notice we can use the same generic
bootstrapping technique used in [BL20] to obtain WEFC for all polynomial-size circuits. For a
polynomial-size computation G(v) = y, the bootstrapping technique encodes the computation into
a randomized encoding o = RE(G, v,PRF(k)) (for some PRF seed k) that reveals y. Given that both
RE and PRF are computable in NC1, our WEFC for NC1 can be used to verify if the computation
of o from (v, k)—committed in a commitment cm—is correct. There is still one issue left that
verifying that o decodes to y is still in P. To get around this, a garbled circuit is instead used to
verify if a given input o′ decodes to y.

We observe that this technique preserves the succinctness of the encoding (commitments) in
the context of mrNISC protocols.

7 Other Application Scenarios

In this section we show that our notion of WEFCcan be versatile; we describe how it can be used
in other scenarios besides mrNISC.

7.1 Targeted Broadcast

As a first application scenario, we discuss how to apply WEFC to a targeted broadcast with “special
properties”. See last item in section 1.2 for a description of the problem, but a quick summary
is: we aim at encrypting a message with respect to some attributes (not necessarily known before
encryption time); only users holding those attributes can decrypt (we discuss later how they are
granted).

This subsection proceeds in three parts. We first give a flavor of our approach template, which
we call “commit-and-receive” since it involves a commitment to user attributes which allows them
to decrypt to compatible messages. We then argue what properties make this approach interesting
compared to the more standard targeted broadcast setting. Finally we compare to alternative
approaches in more detail.

Our Approach: Commit-and-Receive. We now describe our general approach. To better pro-
vide an intuition for it, we start with a flavor of which settings it is suitable for; this is best
introduced through a specific toy example. Consider a sophisticated programming contest where
participants are asked to write a program solving a specific algorithmic problem. To evaluate each
submission, it is common for the organizers to execute the program against several test cases (not
public before submission deadline). If submission passes enough test-cases, the sender can receive
instructions to move on to the next stage (or receive a digital prize, e.g. a full copy of TAOCP18).
If the participants want to keep their code secret, can their program still be tested and receive the
instructions/prize? There are arguably other natural settings besides this one 19.

18 The Art Of Computer Programming (TAOCP) by Donald E. Knuth https://www-cs-faculty.

stanford.edu/~knuth/taocp.html.
19 Another straightforward example for our setting is that of lotteries. Each party commits to a lottery

number (or through an identifier sampled in some manner), then a draw occurs and only the winner(s)

24

https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://www-cs-faculty.stanford.edu/~knuth/taocp.html

We aim at providing a solution for a generalized version of the setting above with particular
attention at minimizing round interaction. We call our approach “Commit-and-Receive”20 and we
show how it can be naturally built through our primitive WEFC.

Our approach, described through the lens of the application example above: consider a party
R interested in receiving some message (e.g. a digital good) from a sender S. The latter would like
the message to be received by R only if some data DR held by R satisfy a certain policy (e.g. the
tests determined which programs will pass the contest or the drawn lottery number). The data DR

are committed beforehand and the policy is not chosen adaptively and thus possibly not known
at commitment time. After each participant has published a commitment cmi to their program,
the organizers can broadcast ct := (ct1, . . . , ctℓ) with cti ← WEFC.Enc(ck, cmi, Ftests,m), where m
contains further instructions or a digital prize and Ftests is a function checking if tests are passed.
The participants whose solutions do not pass the tests will not be able to decrypt their respective
ciphertext.

Motivating our approach: more flexibility, more privacy, less trust. We argue that the
approach to targeted broadcasting we just described is of interest because of three properties:

1) Flexible attestation. What is left undiscussed above is how, in general, the list of commit-
ments (cm1, cm2, . . .) available to the sender is updated or comes to be. Will a party with a
special authority have to issue each of them or could commitments be registered through some
form of consensus? A commit-and-receive approach is flexible in that respect because it enables
different solutions in that spectrum. We call the process of updating this list attestation since,
once in the list, commitments are close to handles for some user’s identity, which becomes
attested once part of the list.
In fig. 4 we give some intuitive examples of how this process may work, from the more cen-
tralizing/requiring trust in specific parties, to the more decentralized. We assume an abstract
informal interface AddUserComm/VfyUpdUsers for adding a user commitment to the list and
verify&update such list.
The first approach (fig. 4a) shows the case where users may receive explicit attestation by one
in a network of authorities. This is close to the approach common in ABE—standard ABE
corresponds to the special case where there is only one authority. In some settings, we may do
without an authority by allowing users to perform attestation by showing their data satisfy a
minimal general property (fig. 4b), e.g. the format of an identification document (this is not
the property required for decryption but one common to all committed values). Pushing this
to extreme, users can also be allowed to register themselves (fig. 4c). We expand on application
scenarios and other caveats in appendix C.2.

2) No key escrow. Our approach does not require a party holding a global secret that allows
decryption of all ciphertexts. In this respect, some of our examples in fig. 4 resemble the
approach used in registration-based encryption which achieve the special case of IBE (rather
than general attributes) without a master secret key [GHMR18].

3) Attribute-hiding. Since the users’ communication handles—their commitments—have hiding
properties, they may be able to keep their content completely secret. This is true in self-
attestation approaches (fig. 4b and fig. 4c) where no authority has access to their attributes
through an attestation procedure where they explicitly show attributes or through a master
secret that acts as a trapdoor.

Comparing Commit-and-Receive to Alternative Approaches

A naive solution based on zero-knowledge. As a starting point of comparison, we observe
that another simple solution to the problem could have the receiving parties publish a (possi-
bly zero-knowledge) proof that their data satisfy the policy. The sender could then send the

can obtain a certain message, e.g., a digital prize or some other message. The lottery setting while
simple is actually quite concretely practical, for instance in proofs of stake [DPS19]. The problem of
commit-and-receive can be seen as a a more general version of the primitive “Encryption to the Current
Winner” (ECW) defined in [CDK+21] in the context of proofs of stake. In fact the solution described
in this section can be leveraged as a construction for ECW with short commitments.

20 The name is a variant of “commit-and-prove” as used in [CFQ19, Lip16].

25

AddUserComm(D)→ (cm′, σ)

One of the valid authorities

first produces and then signs

a commitment cm′
to the data

VfyUpdUsers(cm, σ)→ pp′users

Signature of authority is checked;

if valid, the commitment list

is updated appropriately

(a) Attestation through authority. It assumes there is a pre-established agreement on which
entities are authorized to approve attestation after seeing a commitment.

AddUserComm(D)→ (cm′, auxadd)

cm′ ← FC.Commit(ck, D)

// ZK proof of valid structure of data

πfmt ← ZK.Prove(Rfmt, D, . . .)

return
(
cm′

, πfmt

)

VfyUpdUsers(cm, πfmt)→ pp′users

if ZK proof verifies then

return ppusers ∪ {cm
′}

else

return ppusers

(b) Self-attestation with minimal validation

AddUserComm(D)→ cm′

return cm′ ← FC.Commit(ck, D)

VfyUpdUsers(ppusers, cm
′)→ pp′users

// no checks

return ppusers ∪ {cm
′}

(c) Self-attestation

Fig. 4: Examples of flexibility in attestation (informally described). We assume all protocols in
the interface take as input static public parameters such as commitment keys, etc. We denote
by D the committed data. The set ppusers denotes the list of already registered commitments
= (cm1, cm2, . . .).

information only to the parties with a valid proof. However, this solution clearly requires ad-
ditional rounds of interaction if the policy is not known at commitment time or is adaptively
chosen. This is, for example, the case in a programming contest (test cases cannot be known
in advance), lotteries or whenever we want to reuse that same commitment stage for multiple
rounds. Notice that this solution is different than the one we propose in fig. 4b since there we
are not proving the property required for decryption but a once-and-for-all simple property of
the data D (e.g., the format of structure of the data).

FHE. Compact FHE [Gen09] could be used as a non-interactive solution, but at the price of
significantly worse efficiency in some settings. For example, in the programming contest case,
each participant can generate an FHE key-pair and encrypt their submission with respect to

it. The organizers can then run cti ← FHE.Eval(pk, ct
(i)
subm, G

∗
m) where G∗m(P) is a function

that returns m if P passes the tests and ⊥ otherwise. This solution satisfies the same security
goal as the one based on WEFC—as a circuit private FHE ensures that cti does not reveal
information on m—but requires communication at least linear in the length of the committed
data. In particular, in our example each participant must send an FHE encryption of P , which
is at least |P |-bits long, whereas by using WEFC they only need to send a succinct commitment
to their solution P .

ABE. Our application is closely related to the “targeted broadcast” in [GPSW06] (based on
ciphertext-policy ABE) and in general to “Decentralized” ABE [LW11a]. Differences in ap-
proach and scope are the following. First, we want to account for a wider class of settings
where it is acceptable for users to self-attest or the attesting could work through other mech-
anisms: by design, our approach keeps abstract the attribute registration stage (i.e., how user
commitments are registered). This allows more flexibility than ABE and its variants where
there is a clear structure of authority/authorities providing access keys. Second, differently
from ABE, our solutions do not have secrets (e.g., the master secret key) that allow to decrypt

26

all ciphertexts. Tradeoffs in Communication Complexity: The ciphertext size in our approach
grows in the number of commitments that are of interest for a certain plaintext. This may not
be practical in large networks and where there is no way to discriminate users (and respec-
tive commitments) of interest for a given plaintext. This, however, does not necessarily make
this approach worse than other systems. In particular, (non-threshold) ABE systems have a
ciphertext size that depends on the policy/attribute size. Our ciphertexts do not. They may
then offer better bandwidth for the setting of large computations/data with a modest amount
of users.

7.2 Simple Contingent Payment for Services

The next application setting we describe has to do with a form of conditional payments. Imagine we
want to incentivize the availability of some large data (Internet Archive, Wikipedia, etc.). One ap-
proach to (publicly) check data availability uses some variant of this approach: for the data D there
exists a public, succinct commitment (e.g., a Merkle Tree or a functional commitment compatible
with WEFC in our case); once every epoch, a verifier samples random indices r1, . . . , rm ←$ [|D|];
a storage provider shows an opening (e.g., Merkle tree paths) to the values D[r1], . . . , D[rm]. If
carried out enough times and appropriately choosing m, this procedure can guarantee data avail-
ability with low communication [JK07]. Notice that the use of succinct commitments is essential
in such an application: if verification requires the same amount of storage as the data D, one may
be better off storing D.

There are several approaches to incentivizing availability without the need of interaction from
the party interested in keeping the data available (which we call stakeholder in the remainder).
Several of these approaches involve embedding incentives in the mining process in a blockchain
(e.g., Filecoin) or letting a smart contract (e.g., on Ethereum) unlock a reward21 if the verification
process above succeeds. Other solutions apply threshold cryptography requiring a set of parties
to be available and act as decryptor oracles [KAS+18]. Through WEFC, we can achieve a simpler
solution that does not rely on threshold networks, a specific blockchain architecture or smart
contracts (convenient both in terms of gas costs, simplicity and communication complexity on
chain) . The solution is as follows. The stakeholder produces a vector of random indices r as above
and produces the ciphertext ct ← WEFC.Enc(ck, cmD, Fr, kca$h)

22 where cmD is a commitment to
the data, Fr is a selector function—Fr(D) := (D[r1], . . . , D[rm])—and kca$h is the message we are
encrypting, that is a secret that allows access to the reward (e.g., a Bitcoin private key). Further
subtleties of this approach are discussed in appendix C.1. We believe the solution above can be
applied generically to other natural settings.

An important note is that for the approach above to work we need a stronger variant of WEFC

in which (a) the encryptor does not need to know the output of the function used in the statement,
and (2) security has an extractability flavor which ensures that a successful decryptor will actually
know the output of Fr(D) for committed data D. In appendix D, we define this variant of WEFC

and prove that our same construction of Section 4 satisfies this stronger property.

References

ABP15. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash proof
systems: New constructions and applications. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 69–100. Springer, Heidelberg, April
2015.

ACL+22. Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Kr-
ishnan Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recur-
sively composable - (extended abstract). In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 102–132. Springer, Heidelberg, August
2022.

21 See respectively https://docs.filecoin.io/about-filecoin/what-is-filecoin/ and https://

thegraph.com/docs/en/about/
22 We use a slightly different syntax than the usual one, which we explain later (see also appendix D).

27

https://docs.filecoin.io/about-filecoin/what-is-filecoin/
https://thegraph.com/docs/en/about/
https://thegraph.com/docs/en/about/

BBC+13. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475.
Springer, Heidelberg, August 2013.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with con-
stant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 440–456. Springer, Heidelberg, May 2005.

BCFL22. David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Functional commitments
for circuits from falsifiable assumptions. Cryptology ePrint Archive, Report 2022/1365, 2022.
https://eprint.iacr.org/2022/1365.

BF03. Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

BIOW20. Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments and
witness encryption from groups. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 776–806. Springer, Heidelberg, August
2020.

BJKL21. Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multiparty reusable
non-interactive secure computation from LWE. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 724–753. Springer,
Heidelberg, October 2021.

BL20. Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive secure
computation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 349–378. Springer, Heidelberg, November 2020.

Boy08. Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Ken-
neth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer, Hei-
delberg, September 2008.

CDK+21. Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders K. Kristensen, and
Jesper Buus Nielsen. Encryption to the future: A paradigm for sending secret messages to
future (anonymous) committees. IACR Cryptol. ePrint Arch., page 1423, 2021.

CFQ19. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and com-
position of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November
2019.

CFT22. Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional commitments
and applications to homomorphic signatures. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 159–188. Springer, Heidelberg,
December 2022.

CGGN17. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 229–243.
ACM Press, October / November 2017.

CGKW18. Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via bilinear
entropy expansion, revisited. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 503–534. Springer, Heidelberg, April / May
2018.

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups
via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, April 2015.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-knowledge arguments
and ZAPs for algebraic languages. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 768–798. Springer, Heidelberg, August
2020.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002.

CVW18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching
programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607. Springer, Heidelberg,
August 2018.

dCP23. Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent
setup and from SIS. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III,
volume 14006 of LNCS, pages 287–320. Springer, Heidelberg, April 2023.

28

https://eprint.iacr.org/2022/1365

dec22. Decentralized storage. https://ethereum.org/en/developers/docs/storage/, 2022.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

DPS19. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore, editors, FC
2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg, February 2019.

FJK21. Rex Fernando, Aayush Jain, and Ilan Komargodski. Maliciously-secure mrnisc in the plain
model. IACR Cryptol. ePrint Arch., page 1319, 2021.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

GGHR14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from
indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 74–94. Springer, Heidelberg, February 2014.

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its appli-
cations. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 467–476. ACM Press, June 2013.

GHMR18. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.
Registration-based encryption: Removing private-key generator from IBE. In Amos Beimel
and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 689–718.
Springer, Heidelberg, November 2018.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans,
editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October 2017.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st
ACM STOC, pages 25–32. ACM Press, May 1989.

GL06. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. ACM Transactions on Information and System Security, 9(2):181–234, 2006.

GLS15. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg, August
2015.

GLW14. Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance indepen-
dent assumptions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 426–443. Springer, Heidelberg, August 2014.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, October / November
2006. Available as Cryptology ePrint Archive Report 2006/309.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011.

Ham16. Fabrice Ben Hamouda-Guichoux. Diverse modules and zero-knowledge. PhD thesis, École
Normale Supérieure, Paris, France, 2016.

JK07. Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages
584–597. ACM Press, October 2007.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 60–73, 2021.

29

https://ethereum.org/en/developers/docs/storage/

KAS+18. Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Linus
Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. CALYPSO: Auditable sharing of
private data over blockchains. Cryptology ePrint Archive, Report 2018/209, 2018. https:

//eprint.iacr.org/2018/209.
Kho22. Hamidreza Khoshakhlagh. (Commit-and-prove) predictable arguments with privacy. In

Giuseppe Ateniese and Daniele Venturi, editors, ACNS 22, volume 13269 of LNCS, pages
542–561. Springer, Heidelberg, June 2022.

KW93. M. Karchmer and A. Wigderson. On span programs. In [1993] Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, pages 102–111, 1993.

Lip16. Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge SNARKs. In David
Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, vol-
ume 9646 of LNCS, pages 185–206. Springer, Heidelberg, April 2016.

LM19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct
arguments. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 530–560. Springer, Heidelberg, August 2019.

LOS+10. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 62–91.
Springer, Heidelberg, May / June 2010.

LP20. Helger Lipmaa and Kateryna Pavlyk. Succinct functional commitment for a large class of
arithmetic circuits. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 686–716. Springer, Heidelberg, December 2020.

LRY16. Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP
2016, volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LW11a. Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 568–588. Springer, Heidel-
berg, May 2011.

LW11b. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In Ken-
neth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 547–567. Springer,
Heidelberg, May 2011.

RSW96. Ron Rivest, Adi Shamir, and David Wagner. Time lock puzzles and timed release cryptography.
Technical report, Technical report, MIT/LCS/TR-684, 1996.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara,
California, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer
Science, pages 47–53. Springer, 1984.

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

Wee10. Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 314–332. Springer, Heidelberg, August
2010.

WW23. Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments from
lattices. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume
14006 of LNCS, pages 385–416. Springer, Heidelberg, April 2023.

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE.
In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society Press, October
2017.

30

https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209

Appendix

A Analysis of the QP -BDHE assumption in the generic bilinear
group model

Lemma 1. For n,m = poly(λ) the (n,m)-QP-BDHE assumption holds in the generic bilinear
group model.

Proof. Note that the (n,m)-QP-BDHE assumption is an instance of the (computational) “Uber
assumption” with Laurent polynomials of [BBG05, Boy08] (actually, a special case in which all
the input polynomials are monomials). To justify the hardness of the assumption, we need to show
that the monomial to be computed by the adversary in the target group, that is [(αγ)n+1δ]T , is
not symbolically equivalent to any of the monomials that one can obtain by taking the product of
all the terms of Ω given in G1 with those in G2.

We recall the adversary’s input Ω.

Ω :=

{[αj]1}j∈[n], {[ηαjγℓ]1}j,ℓ∈[n],

{[
αjβiγ

ℓ
]
1

}
i∈[m],j,ℓ∈[2n]:ℓ ̸=n+1

{[ηγj]2}j∈[n], [(αγ)n]2,
{[

(αγ)jβi

η

]
2

}
i∈[m],j∈[n]{[

δ
βk

]
2

}
k∈[m]

,
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i̸=k

,
{[

αjβiγ
ℓδ

βk

]
2

}
i,k∈[m],j∈[n]
ℓ∈[2n]\{n+1}

We can restrict our analysis by considering only the products of the terms in the third row of Ω

with the terms in in the first row. We can do this restriction because the target monomial contains
the variable δ (which appears only in the third row) and because elements in the third row are all
in G2.

First, we analyze the products of
{[

δ
βk

]
2

}
k∈[m]

and the first row of Ω:

S1,1 :=

{[
αjδ

βk

]
T

}
j∈[n],k∈[m]

, S1,2 :=

{[
ηαjγℓδ

βk

]
T

}
j,ℓ∈[n],k∈[m]

S1,3 :=

{[
αjβiγ

ℓδ

βk

]
T

}
i,k∈[m],j,ℓ∈[2n]

ℓ̸=n+1

Second, we analyze the products of terms in
{[

αjβiγ
n+1δ

βk

]
2

}
j∈[n],i,k∈[m]

i̸=k

and the first row of Ω:

S2,1 :=

{[
αj+j′βiγ

n+1δ

βk

]
T

}
j,j′∈[n],i,k∈[m]

i ̸=k

S2,2 :=

{[
ηαj+j′βiγ

n+1+ℓδ

βk

]
T

}
j,j′,ℓ∈[n],i,k∈[m]

i ̸=k

S2,3 :=

{[
αj+j′βiβi′γ

ℓ+n+1δ

βk

]
T

}
j∈[n],j′,ℓ∈[2n],i,i′,k∈[m]

i ̸=k,ℓ ̸=n+1

Third, we analyze the products between
{[

αjβiγ
ℓδ

βk

]
2

}
i,k∈[m],j∈[n]
ℓ∈[2n]\{n+1}

and the first row of Ω:

S3,1 :=

{[
αj+j′βiγ

ℓδ

βk

]
T

}
i,k∈[m],j,j′∈[n]
ℓ∈[2n]\{n+1}

, S3,2 :=

{[
ηαj+j′βiγ

ℓ+ℓ′δ

βk

]
T

}
i,k∈[m],j,j′,ℓ′∈[n]

ℓ∈[2n]\{n+1}

,

S3,3 :=

{[
αj+j′βiβi′γ

ℓ+ℓ′δ

βk

]
T

,

}
i,i′,k∈[m],j,j′∈[n]
ℓ,ℓ′∈[2n]\{n+1}

Below we show why [(αγ)n+1δ]T is not in the sets above:

– S1,1 ∪ S2,1: since all its elements contain a variable β−1k .

– S1,2 ∪ S2,2 ∪ S3,2: since all its elements contain the variable η.

– The subset of S1,3 ∪ S3,1 where i ̸= k: since all its elements contain the variables βi/βk and
i ̸= k.

– The subset of S1,3 ∪ S3,1 where i = k: since none of its elements contain the term γn+1.

– S2,3 since all its elements have γℓ+n+1, with ℓ ≥ 1.

– S3,3 since every term has at least a variable βi.

B Additional Preliminaries

B.1 Output-delayed Simulatable MPC

Here we give the formal definition of a special MPC protocol with output-delayed simulatability
property which guarantees that all the messages except the last one can be simulated for all-but-one
honest parties before knowing the output. This is required as the adversary in a mrNISC protocol
learns the output only when all the honest parties agreed to provide a computation encoding.

Definition 9 (MPC Protocol). Let F be a class of functions. An L-rounds MPC scheme∏
= (Next,Output) for F between n parties consists of two PPT algorithms:

Next message. mℓ
i := Nexti(1

λ, 1n, z, xi, ri,m
<ℓ) is the message broadcasted by party Pi in round

ℓ ∈ L, on public input z, private input xi, randomness ri ∈ {0, 1}νr , and received messages

m<ℓ = {mℓ̃
j}j∈[n],ℓ̃<ℓ, where mℓ̃

j is the message broadcasted by Pj on round ℓ̃.

Output. y := Output(1λ, 1n, z,m) is the output of the MPC protocol based on public input z and
the full transcript m := m<L+1.

We require an L-round MPC protocol to be perfectly correct and semi-malicious output-delayed
Simulatable as defined below.

Definition 10 (Perfect Correctness). An L-round MPC protocol
∏

= (Next,Output) for F is
perfectly correct if for any λ ∈ N, for any public input z, any inputs (x1, . . . , xn), and any f ∈ F ,

Pr
[
Output(1λ, 1n, z,m) = f(z, x1, . . . , xn) : r ←$ {0, 1}νr·n

]
= 1,

where r := (r1, . . . , rn), and m := m<L+1 such that mℓ
j = Nextj(1

λ, 1n, z, xj , rj ,m
<ℓ) for j ∈ [n]

and ℓ ∈ [L].

Definition 11 (Semi-Malicious Output-Delayed Simulatability). An L-round MPC proto-
col

∏
= (Next,Output) for F is semi-malicious output-delayed simulatable, if there exists a PPT

simulator S, such that for any PPT adversary A and any f ∈ F , the view of A in the Ideal-Real
experiments in fig. 5 are indistinguishable.

32

ExpRealA,S(λ, f)

1. A chooses the number of parties n, the set of honest parties H ⊆ [n], the public input z, the
private inputs {xi}i∈[n] of all the parties and the randomnesses {ri}i∈H̄ of all the corrupt parties.

2. The challenger picks fresh randomness {ri}i∈H of honest parties, runs the MPC protocol with the
specified inputs and randomnesses, and sends the resulting transcript (m<L, {mL

i }i∈H̄) except
the last message of the honest parties to A.

3. A can send queries (Compute, Pi) to the challenger for i ∈ H and receive the last message mL
i of

Pi.

ExpIdealA,S(λ, f)

1. A chooses the number of parties n, the set of honest parties H ⊆ [n], the public input z, the
private inputs {xi}i∈[n] of all the parties and the random tapes {ri}i∈H̄ of all the corrupt parties.

2. Given the inputs and randomnesses of the corrupt parties, S outputs a transcript (m<L, {mL
i }i∈H̄)

of all but the last message of the honest parties to A.
3. A can send queries (Compute, Pi) to S for i ∈ H and receive the last message mL

i of Pi. If all
the honest parties have been queried, S is additionally given f(x1, . . . , xn) before answering the
query.

Fig. 5: Real and Ideal experiments for semi-malicious output-delayed simulatability

B.2 Garbled Circuit

Definition 12 (Garbled Circuit). Let F = {Cλ}λ∈N be a polynomial-size class of circuits with
input and output lengths n and l. A garbled circuit scheme GC for F consists of four polynomial-
time algorithms GC = (Gen,Garble,Eval,Sim):

E← Gen(1λ): It generates input labels E = {E[i, b]}i∈[n],b∈{0,1} , where the input label E[i, b]
corresponds to the value b of the i-th input wire.

Ĉ ← Garble(E, C): Given input labels and a circuit C ∈ Cλ as input, it outputs a garbled circuit

Ĉ.
y ← Eval(Ĉ,E′): On input a garbled circuit Ĉ and input labels E′, it outputs y ∈ {0, 1}l.
(C̃,E′)← Sim(1λ, y): Given the security parameter λ and a value y ∈ {0, 1}l, it outputs a garbled

circuit C̃ and input labels E′.

We require a garbled circuit to be perfectly correct and simulatable as defined below.

Definition 13 (Perfect Correctness). For any security parameter λ ∈ N, for any circuit C ∈
Cλ, any input x ∈ {0, 1}n, any E← Gen(1λ), and any Ĉ ← Garble(E, C),

Pr[Eval(Ĉ, {E[i, xi]}i∈[n]) = C(x)] = 1,

Definition 14 (Simulatability). The following two distributions are computationally indistin-
guishable: {

(E, Ĉ) : E← Gen(1λ); Ĉ ← Garble(E, C)
}
λ,C∈Cλ,x∈{0,1}n

,{
(E′, Ĉ) : (E′, Ĉ)← Sim(1λ, C(x))

}
λ,C∈Cλ,x∈{0,1}n

B.3 Security Definition of mrNISC

Definition 15 (Semi-malicious Privacy). A mrNISC scheme for a function f is called semi-
malicious private if there exists a PPT simulator S such that no PPT adversary A can distinguish
the two experiments defined in fig. 6.

33

ExpRealA,S(λ, f)

A chooses the number of parties n, and the set of honest parties H ⊆ [n]. It then interacts with a
challenger C for an arbitrary number of iterations until it terminates. A can submit one query of the
following three types in every iteration.

1. CORRUPT INPUT ENCODING. Upon A sending a query (input, Pi, xi, ρi) for a corrupt party i ∈ H̄, C
records the input encoding x̂i generated as (x̂i, si) = Commit(xi; ρi) using input xi and randomness
ρi.

2. HONEST INPUT ENCODING. Upon A choosing the input (input, Pi, xi) for an honest party i ∈ H, C
generates (x̂i, si) = Commit(xi), and sends x̂i to A.

3. HONEST COMPUTATION ENCODING. Upon A querying (compute, Pi, z, I) for an honest party i ∈
H ∩ I, C checks if the input encodings {x̂j}j∈I for all participants have been generated, then it
sends the computation encoding αi ← Encode(z, {x̂j}j∈I , si) to A.

ExpIdealA,S(λ, f)

The ideal experiment is the same as above, except for the following differences.

1. CORRUPT INPUT ENCODING. Additionally send query (input, Pi, xi, ρi) to S.
2. HONEST INPUT ENCODING. Upon A choosing the input (input, Pi, xi) for an honest party i ∈ H, C

sends query (input, Pi) to S and forwards the simulated input encoding x̃i to A.
3. HONEST COMPUTATION ENCODING. Upon A querying (compute, Pi, z, I) for an honest party i ∈

H ∩I, if this is the last honest computation encoding, C sends the query (compute, Pi, z, I, y) with
the output y = f(z, {xt}t∈I) to S; otherwise, C sends the query (compute, Pi, z, I) without y. The
challenger forwards the simulated computation encoding α̃i to A.

Fig. 6: Real and Ideal experiments for semi-malicious output-delayed simulatability

C More on Application Scenarios

C.1 Additional Subtleties in Contingent Payment Applications

Here we discuss some subtleties worth mentioning for the application in section 7.2. We stress that
our goal is to show that our primitive has the potential to be versatile, not to provide a full-fledged
solution to a specific application setting.

– It is important that the indices are not revealed to the storage provider, otherwise they could
just store the part of the file revealed by those indices. The indices themselves can be encrypted
through a time-released encryption so that they are only revealed after a certain amount
of time [RSW96]. The WEFC ciphertext itself should be time-release encrypted: there is no
guarantee on hiding the function used for encryption and the indices could be leaked as a
consequence.

– This payment can be performed many times by simply releasing a large number of timed-
released encryptions as described above, each requiring more and more time to decrypt.

– We assume the payer is either trusted or there is a way to guarantee that a ciphertext contains
a payment, e.g. through a zero-knowledge proof.

– If there are several providers, we ignore the issue of how to guarantee fairness (“who gets the
reward first”). If the reward is a digital good naturally this problem does not occur as every
honest party will be able to decrypt it.

C.2 More on Attestation Approaches

This section expands on the discussion in section 7.1 and fig. 4. We are motivated by providing
a solution depending as little as possible on trusted parties. As already mentioned, one solution
to the problem of targeted broadcast is CP-ABE (ciphertext-policy attribute-based encryption).
The latter requires an authority providing a key for a certain set of attributes. In the main text,
we mention various approaches where users can register/attest themselves the attributes that will
allow them to decrypt for certain policies. Here we elaborate more on them.

34

AddUserComm(D, tokenadd)→ cm

cm′ ← FC.Commit(ck, D)

return
(
cm′

, tokenadd

)
VfyUpdUsers(Stokens)→ pp′users

if tokenadd ̸∈ Stokens

Stokens ← Stokens ∪ {tokenadd}

return ppusers ∪ {cm
′}

else

return ppusers

Fig. 7: Token-based attestation. Assumes an external mechanism for providing registration tokens
and maintaining a set Stokens of used ones.

Self-Attestation: Where and Why

It may seem counterintuitive that there exist cases where we do not need to involve in this attesta-
tion process. We observe, however, that there exist settings actually amenable to self-attestation.

Some level of self-attestation may be meaningful in settings where the opening allowing decryp-
tion:

– shows knowledge of a not easily available piece of information. For example, the information
could be a proof of the Riemann hypothesis and the encryptor would like to send information
readable only to those users holding such valid proof. The programming contest example also
falls into this category.

– has to do with something not necessarily referring to a ground truth. An illustrative example
are the features one can choose for their own character at the beginning of a role-playing game
(RPG)23. The application could then for instance issue periodic messages, readable only by
users with certain features, but not others.

Full self-attestation. We can then ask where it would make sense to apply full self attestation
(fig. 4c). We notice that the first class of attributes described above can be completely self-attested:
a key for that attributes would just consist of a commitment to the solution to a difficult puzzle
(e.g., the proof of the Riemann Hypothesis, the solutions to all New York Times Sudokus of the
last year, etc.). An adversary would need to be able to come up with the right attributes to decrypt
but this would deny the assumption on their hardness.

A mitigation against Sybil attacks: one-time tokens. Not all self-attested settings have attributes
that are hard to find (e.g. our RPG example or the lottery one from earlier). Here an adversary
could run a Sybil attack and “spam” the system with commitments to different combinations
of attributes. Potentially this strategy can allow them to decrypt all ciphertexts (because there
would probably exist at least some of the adversarial commitments that open to data satisfying
the ciphertext policy). To prevent such an attack we can consider one (or multiple) entity/entities
that can issue tokens for attestation (fig. 7). The adversary can thus issue no more commitments
than the tokens it received. Notice that such entity would be trusted only to properly issue tokens
to users but would not be trusted in other ways—it would not be learned the opening of the
commitment nor would be able to decrypt ciphertexts (as it is the case for ABE authorities). Such
entities could also be distributed and their authority could be revoked in case of malfeasance.

Partially validating opening through zero-knowledge once. Another problem to be solved for at-
tributes that are self-attesting is that they could have the wrong format. In the RPG example, we
expect attributes to contain only one value per field (see Footnote 23). This requirement can be
enforced by letting the user provide a zero-knowledge proof at the time of attestation that guaran-
tees that the opening satisfies certain format requirements fig. 4b. We stress this would not be the
same as providing a proof for the fact that the opening satisfies a decryption policy: we assume
this offline validation to be simpler (e.g. just format based) and known in advance (in contrast to
decryption policies which are learned dynamically).

23 Such features would involve for example gender, species (elf, human, etc...), background, weapon held,
etc.. These features are chosen once and for all and it is not important what they are. This is a toy
example, but we believe natural higher-impact examples could be found.

35

D Output Extractable WEFC

Here we discuss the output extractable variant of WEFCmentioned in our application in section 7.2.

Model. The basic intuition of this primitive is that a party able to decrypt should know the
output value y = F (α,β). We model this through extraction and dub it “output” extractability.

The syntax of this primitive is almost the same as that in definition 5 except for a few changes.
The syntax of encryption is Enc(ck, cm,β,m) instead of Enc(ck, cm,β,y,m). The decryption algo-
rithm additionally takes as input y. Correctness stays the same mutatis mutandis.

We replace the security definition with the following one:

Output Extractability. For any λ, any F ∈ F , any stateless PPT adversary A = (A1,A2), and
any polynomial q(·), there exists a PPT extractor E and a polynomial p(·), such that

Pr

b← A2(ck, ct) :

(ck, td)← Setup(1λ, F); (α, r,β,m0,m1)← A1(ck)

(cm, d)← Commit(ck,α; r); b←$ {0, 1}
ct← Enc(ck, cm,β,mb)

 ≥ 1

2
+

1

q(λ)

⇒ Pr

y← E(ck, ct)∧ F (α,β) = y
:

(ck, td)← Setup(1λ, F); (α, r,β,m0,m1)← A1(ck)

(cm, d)← Commit(ck,α; r); b←$ {0, 1}
ct← Enc(ck, cm,β,mb)

 ≥ 1

p(λ)

Above we assume the extractor has also access to the random coins of the adversary A2.

Construction. For the construction of output extractable WEFC, we modify the language Llpar

and [Θlpar,x]T as follows:

Llpar = {x = (cm,β)|∃op,y : Verify(ck, cm, op,β,y) = 1}

[Θlpar,x]T = [Mlpar,x · (õp||y)]T
where õp is derived from op by replacing its group elements with their discrete logarithms. The
new construction xWEFC = (Setup,Commit,Open,Verify, xEnc, xDec) can be described as follows:

xEnc(ck, cm,β,m). Let x = (cm,β). To encrypt a bit messagem ∈ {0, 1}, select a uniformly random
vector hk ∈ Z1×ν

p , where ν is the number of rows of Mlpar,x, sample a random r ←$ {0, 1}ℓ, and
compute the ciphertext ct = (hp, r, ĉt), where

hp = [hk ·Mlpar,x]⋆, H = [hk ·Θlpar,x]T , ĉt = ⟨σ(H), r⟩ ⊕m

xDec(ck, ct, cm,β,y, op). On input a ciphertext ct = (hp, r, ĉt), first compute pH = [hp · (õp||y)]T ,
and then output the message m ∈ {0, 1} computed as m = ⟨σ(pH), r⟩ ⊕ ĉt.

The proof of security is similar to the proof of theorem 2 with the observation that we can still
rely on the extractability of the underlying PHF to extract the witness (õp||y) even though part
of the witness (i.e., y) consists of field elements. This comes from the fact that the extractor in the
proof of theorem 1 can always extract the representation of the witness as field elements efficiently.
Below, we state the theorem.

Theorem 6. Let FC be a functional commitment scheme for circuit class F with computational
evaluation-binding property. Let EPHF be an extractable projective hash function. The construction
of xWEFC described above is an output extractable WEFC for F .

Instantiations. All instantiations of functional commitments proposed in section 5 have the
property that their verification procedure is linear even if the function output is part of the opening
proof. In other words, the function output is not paired together with the actual opening proof in
the verification. Hence, they can be used to instantiate our output extractable variant of WEFC.

36

	Witness Encryption for Succinct Functional Commitments and Applications
	Introduction
	Our Work: WE For Succinct Functional Commitments
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Functional Commitment Schemes

	WEFC: Witness Encryption for Functional Commitment
	Our WEFC Construction
	Smooth Projective Hash Functions
	Our Construction

	Our WEFC Instantiations
	Our FC for Monotone Span Programs
	Other Instantiations

	From WEFC to Reusable Non-Interactive MPC
	Preliminaries on mrNISC
	Our mrNISC construction.

	Other Application Scenarios
	Targeted Broadcast
	Simple Contingent Payment for Services

	Analysis of the QP-BDHE assumption in the generic bilinear group model
	Additional Preliminaries
	Output-delayed Simulatable MPC
	Garbled Circuit
	Security Definition of mrNISC

	More on Application Scenarios
	Additional Subtleties in Contingent Payment Applications
	More on Attestation Approaches

	Output Extractable WEFC

