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Abstract. The MPC-in-the-Head paradigm is a useful tool to build practical signature schemes. Many
such schemes have been already proposed, relying on different assumptions. Some are relying on existing
symmetric primitives like AES, some are relying on MPC-friendly primitives like LowMC or Rain, and
some are relying on well-known hard problems like the syndrome decoding problem.
This work focus on the third type of MPCitH-based signatures. Following the same methodology as the
work of Feneuil, Joux and Rivain (CRYPTO’22), we apply the MPC-in-the-Head paradigm to several
problems: the multivariate quadratic problem, the MinRank problem, the rank syndrome decoding
problem and the permuted kernel problem. Our goal is to study how this paradigm behaves for each
of those problems.
For the multivariate quadratic problem, our scheme outperforms slightly the existing schemes when
considering large fields (as F256), and for the permuted kernel problem, we obtain larger sizes. Even if
both schemes do not outperform the existing ones according to the communication cost, they are highly
parallelizable and compatible with some MPC-in-the-Head techniques (like fast signature verification)
while the former proposals were not.
Moreover, we propose two efficient MPC protocols to check that the rank of a matrix over a field Fq is
upper bounded by a public constant. The first one relies on the rank decomposition while the second
one relies on q-polynomials. We then use them to build signature schemes relying on the MinRank
problem and the rank syndrome decoding problem. Those schemes outperform the former schemes,
achieving sizes below 6 KB (while using only 256 parties for the MPC protocol).
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1 Introduction

The MPC-in-the-Head paradigm [IKOS07] is a versatile framework to design zero-knowledge proofs of knowl-
edge, by relying on secure multi-party computation (MPC) techniques. After sharing the secret witness, the
prover emulates “in her head” an MPC protocol with N parties and commits each party’s view independently.
The verifier then challenges the prover to reveal the views of a random subset of parties. By the privacy of
the MPC protocol, nothing is revealed about the witness, which implies the zero-knowledge property. On
the other hand, a malicious prover needs to cheat for at least one party, which shall be discovered by the
verifier with high probability, hence ensuring the soundness property.

Combined with the Fiat-Shamir transform [FS87], the MPCitH paradigm provides a useful tool to build
practical signatures. The security of the resulting scheme only depends on the security of commitment/hash
functions and the security of a one-way function. The choice of this one-way function is left to the signature
designers. A first research track [ARS+15,DKR+21] consists to design MPC-friendly primitives and to use
them with the MPC-in-the-Head paradigm to get short signatures. This methodology has the disadvantage
to require deep cryptanalysis of the introduced primitives. Another strategy would be to use well-known
symmetric primitives like AES as security assumptions for the MPCitH-based signatures, but it tends to



produce larger signatures. As a last option, we can rely on a hard problem, ideally an NP-hard problem,
which exists for a long time and thus which are well understood. For example, [FJR22] succeeds to design an
efficient signature scheme using the syndrome decoding problem (over the Hamming weight), which is one
of the oldest problems of code-based cryptography. The case of the syndrome decoding problem has been
covered, but a natural question would be

Which performances can we have when using
the MPC-in-the-Head paradigm with other hard problems?

Some articles [Wan22,FJR21,BG22,FMRV22] already apply this paradigm to hard problems (multivariate
quadratic problem, MinRank problem, subset sum problem, ...). One of the drawbacks of almost all the
schemes is that, when there is no structure to exploit, they need to rely on protocols with helper [Beu20].
This technique introduced by [KKW18] and formalized by [Beu20] is quite powerful, but suffers from a high
computational cost. As consequence, the number of parties involved in the MPC protocol must stay low
to have a practical scheme (in practice, we often take 32 as a limit for the number of parties), preventing
achieving smaller sizes. Recently, [BG22] succeeds to leverage the structure when considering structured
hard problem (as the ideal rank syndrome decoding problem) and thus succeeds to achieve smaller sizes by
removing the helper from [FJR21].

The present work aims to complete the state of the art of the MPC-in-the-Head applied to hard problems.
Table 1 overviews schemes producing the shortest signatures for some hard problems.

Hard Problem Best scheme Achieved sizes

Multivariate Quadratic
Over F4, [Wan22] 8.4− 9.4 KB

Over F256, our work 6.9− 8.3 KB

Min Rank Our work 5.4− 7.0 KB

Permuted Kernel [BG22] 8.6− 9.7 KB

Subset Sum [FMRV22] 21.1− 33.2 KB

Syndrome Decoding (Hamming) [FJR22]
Over F2, 10.9− 15.6 KB
Over F256, 8.3− 11.5 KB

Syndrome Decoding (Rank) Our work 5.8− 7.2 KB

Table 1: State of the art of the MPCiH-based signatures, including this work.

Our contribution. In this article, we consider several hard problems for which we propose new zero-knowledge
proofs using the MPC-in-the-Head paradigm.

First, we propose a new zero-knowledge proof of knowledge for the multivariate quadratic problem. The
resulting signature scheme outperforms [Wan22] only when the base field is large enough (e.g. F256).

Secondly, we propose two efficient MPC protocols which take as input a matrix M ∈ Fn×mq and which
check that the rank of M is upper bounded by r, where r is a public positive integer:

– the first one decomposes M as a product TR where T ∈ Fn×rq and R ∈ Fr×mq , and uses an MPC protocol
that checks the correctness of a matrix multiplication;

– the second one relies on the fact that the rows of M (represented as elements of Fqm) are roots of a
q-polynomial of degree qr and on the fact that computing a q-polynomial is efficient in MPC while
exploiting the linearity of the Frobenius endomorphism v 7→ vq.

We then use those protocols to build efficient signatures relying on the MinRank problem or on the rank
syndrome decoding problem. Our schemes outperform all the previous proposals, by achieving sizes below 7
KB. They also outperform the [BG22]’s proposals which use structured problems (as the ideal rank syndrome
decoding problem) to achieve small sizes.
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Finally, we propose a new zero-knowledge proof of knowledge for the permuted kernel problem. The exist-
ing proposals are already quite efficient, achieving sizes below 10 KB [BG22]. They all rely on permutations,
which is quite natural since the problem itself uses permutations. However, securely implementing permuta-
tions is a tricky exercise. Our proposal achieves larger sizes, but uses no permutation at all. Our proposal is
also compatible with the techniques proposed by [FR22] (as fast signature verification), while the previous
proposals for PKP are not.

Paper organization. The paper is organized as follows: In Section 2, we introduce the necessary background
on the MPC-in-the-Head paradigm. We present our general methodology in Section 3. Then we apply it to
the multivariate quadratic problem in Section 4, to the MinRank problem and the rank syndrome decoding
problem in Section 5, and to the permuted kernel problem in Section 6.

2 Preliminaries

Throughout the paper, F shall denote a finite field. For any m ∈ N∗, the integer set {1, . . . ,m} is denoted
[m]. For a probability distribution D, the notation s← D means that s is sampled from D. For a finite set S,
the notation s← S means that s is uniformly sampled at random from S. For an algorithm A, out← A(in)
further means that out is obtained by a call to A on input in (using uniform random coins whenever A is
probabilistic). Along the paper, probabilistic polynomial time is abbreviated PPT.

In this paper, we shall use the standard cryptographic notions of (honest verifier) zero-knowledge proof
of knowledge and secure multiparty computation protocols (in the semi-honest model). We refer to [FR22]
for the formal definition of those notions.

2.1 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] offers a way to build zero-knowledge
proofs from secure multi-party computation (MPC) protocols. Let us assume we have an MPC protocol
in which N parties P1, . . . ,PN securely and correctly evaluate a function f on a secret input x with the
following properties:

– the secret x is encoded as a sharing JxK and each Pi takes a share JxKi as input;
– the function f outputs Accept or Reject;
– the views of t parties leak no information about the secret x.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of an x for which f(x) evaluates
to Accept. The prover proceeds as follows:

– she builds a random sharing JxK of x;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends commitments to each party’s view, i.e. party’s input share, secret random tape and sent and

received messages, to the verifier;
– she sends the output shares Jf(x)K of the parties, which should correspond to Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their views. After receiving them,
the verifier checks that they are consistent with an honest execution of the MPC protocol and with the
commitments. Since only t parties are opened, revealed views leak no information about the secret x, while
the random choice of the opened parties makes the cheating probability upper bounded by (N − t)/N , thus
ensuring the soundness of the zero-knowledge proof.

All MPC protocols described in this article fit the model described in [FR22], meaning that the parties
take as input an additive sharing JxK of the secret x (one share per party) and that they compute one or
several rounds in which they perform three types of actions:
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Receiving randomness: the parties receive a random value ε from a randomness oracle OR. When calling
this oracle, all the parties get the same random value ε.

Receiving hint: the parties can receive a sharing JβK (one share per party) from a hint oracle OH . The
hint β can depend on the witness w and the previous random values sampled from OR.

Computing & broadcasting: the parties can locally compute JαK := Jϕ(v)K from a sharing JvK where ϕ is
an F-linear function, then broadcast all the shares JαK1, . . . , JαKN to publicly reconstruct α := ϕ(v). The
function ϕ can depend on the previous random values {εi}i from OR and on the previous broadcasted
values.

We refer to [FR22] for the detailed transformation of such MPC protocol into zero-knowledge proofs of
knowledge and for the resulting performances.

3 Methodology

In each of the following sections, we focus on a specific hard problem which is supposed quantum-resilient:

– Section 4: Multivariate Quadratic Problem;
– Section 5.2: Min Rank Problem;
– Section 5.3: Syndrome Decoding in the rank metric;
– Section 6: Permuted Kernel Problem.

For each of them, we will use the MPC-in-the-Head paradigm to build a new zero-knowledge protocol.
To proceed, we will first describe the MPC protocol we use. This MPC protocol will fit the model described
in [FR22] and will satisfy the following properties:

– it takes as input an additive sharing of a candidate solution of the studied problem, and eventually an
additive sharing of auxiliary data;

– the MPC parties get (only once) a common random value from an oracle OR;
– when the tested solution is valid (i.e. a solution of the studied hard problem) and when the auxiliary

data are genuinely computed, the MPC protocol always outputs Accept; otherwise, it outputs Accept
with probability at most p (over the randomness of OR), where p is called the false positive rate;

– the views of all the parties except one leak no information about the candidate solution.

By applying the MPC-in-the-Head paradigm to this MPC protocol, we get a 5-round zero-knowledge proof
of knowledge of a solution of the studied problem (see [FR22, Theorem 2]), with soundness error

1

N
+

(
1− 1

N

)
· p

where N is the number of parties involved in the multi-party computation. We do not exhibit the obtained
proof of knowledge since the transformation is standard. We refer the reader to [FR22] for a detailed expla-
nation about how concretly apply the MPC-in-the-Head paradigm.

To obtain a signature scheme, we apply the Fiat-Shamir transform [FS87] to the previous protocol. Since
this protocol has 5 rounds, the security of the resulting scheme should take into account the attack of [KZ20].
More precisely, the forgery cost of the signature scheme is given by

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+Nτ2

}
where τ is the number of parallel executions.

Remark 1. For the permuted kernel problem, the MPC protocol we propose slightly differ from the above
description. The parties call the oracle OR twice (instead of once). The resulting scheme is a 7-round proof
(not a 5-round proof) with the same soundness error as before. However, the forgery cost is not the same
(see Section 6).
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Finally, we compare the resulting scheme with all the former schemes which are non-interative identi-
fication schemes based on the same security assumption. To proceed, we first list all these schemes with
their formulae of the forgery security and of the communication cost. Since some quantities occurs several
times, we define some notations to ease the readability. For the forgery cost, we introduce the two following
notations:

– εhelper(τ,M, ε) is the soundness error of a protocol with helper [Beu20] when the helper entity is emulated
by a cut-and-choose phase. M is the total number of repetitions in the cut-and-choose phase, ε is the
soundness of the unitary protocol relying on the helper, and τ is the number of repetitions of this unitary
protocol. We have

εhelper(τ,M, ε) := max
M−τ≤k≤M

{(
k

M−τ
)(

M
M−τ

) · εk−(M−τ)} .
– KZ(p1, p2) is the forgery cost of [KZ20] for a 5-round protocol3. We have

KZ(p1, p2) := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi1(1− p1)τ−i

+
1

pτ22

}

For the communication cost (i.e. the signature size), we introduce the following notations:

– µseed is the cost of sending a λ-bit seed;
– µdig is the cost of sending a 2λ-bit commitment/hash digest;
– µhelper is the cost (per repetition) of using the helper technique of [Beu20], this cost satisfies

µhelper ≤ (µseed + µdig) · log2

(
M

τ

)
where M is the number of repetitions involved in the cut-and-choose phase emulating the helper. It
corresponds to the cost of revealing M − τ leaves among M in a seed tree, with the cost of sending the
authentication paths of τ leaves among M in a Merkle tree.

– µMPCitH is the fixed cost (per repetition) of using the MPC-in-the-Head paradigm, we have

µMPCitH = µseed · log2N + µdig.

It corresponds to the cost of revealing all the leaves but one in a seed tree of N leaves (plus a commitment
digest).

Then, to get a numerical comparison, we select one or two instances of the studied hard problem and we
compare all these schemes for these precise instances. To proceed, we need to select the parameters of the
schemes when relevant. The signature schemes based on the MPC-in-the-Head paradigm have as parameter
the number N of parties involved in the multi-party computation. When taking a small N , we get a faster
scheme, but when taking a large N , we get shorter signature sizes. To have a fair comparison between the
different schemes, we will always take the same N :

– when the protocol relies on a helper, we take N = 8 to have a fast scheme and N = 32 to have short
sizes.

– otherwise, we take N = 32 to have a fast scheme and N = 256 to have short sizes.

3.1 Matrix Multiplication Checking Protocol

In our constructions, we need an MPC protocol that checks that three matrices X,Y, Z satisfy Z = X · Y .
We describe in Figure 1 such a protocol Πη

MM which has a positive parameter η. This protocol is a matrix
variant of the multiplication checking protocol of [BN20].

3 in the case where the verifier can not perform some checks after receiving the first response (see [KZ20] for details).
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Inputs: Each party takes a share of the following sharings as inputs: JXK where X ∈ Fm×pq , JY K where Y ∈ Fp×nq ,
JZK where Fm×nq , JAK where A has been uniformly sampled from Fp×ηq , and JCK where C ∈ Fm×ηq satisfies C = XA.

MPC Protocol:

1. The parties get a random Σ ∈ Fn×ηq .
2. The parties locally set JDK = JY KΣ + JAK.
3. The parties broadcast JDK to obtain D ∈ Fp×ηq .
4. The parties locally set JV K = JXKD − JCK− JZKΣ.
5. The parties open JV K to obtain V .
6. The parties outputs Accept if V = 0 and Reject otherwise.

Fig. 1: The MPC protocol Πη
MM which checks that Z = X · Y .

Lemma 1. If Z = X ·Y and if C are genuinely computed, then Πη
MM always outputs Accept. If Z 6= X ·Y ,

then Πη
MM outputs Accept with probability at most 1

qη .

Proof. We have

V = XD − C − ZΣ
= X(Y Σ +A)− C − ZΣ
= (XY − Z)Σ − (C −XA).

If Z = XY and C = XA, V is equal to zero and thus the parties will always output Accept. In contrast, if
Z 6= XY , then there exists (i∗, j∗) ∈ [m]× [n] such that Zi∗,j∗ − (X ·Y )i∗,j∗ 6= 0. Given k ∈ {1, . . . , η}, Σj∗,k
is uniformly sampled in Fq and then ((Z −X · Y )Σ)i∗,k is uniformly random in Fq (because one of the sum
term is uniformly random). Thus, the probability that V is zero is at most the probability that (Z−X ·Y )Σ
is equal to (C −XA) on the row i∗ whereas the row i∗ of (Z −X · Y )Σ is uniformly random in Fηq , i.e. the

probability that V is zero (at row i∗) is at most 1
qη .

�

4 Proof of Knowledge for MQ

We want to build a zero-knowledge proof of knowledge for the multivariate quadratic problem:

Definition 1 (Multivariate Quadratic Problem - Matrix Form). Let Fq be the finite field with q
elements. Let (m,n) be positive integers. The multivariate quadratic problem with parameters (q,m, n) is the
following problem:

Let (Ai)i∈[m], (bi)i∈[m], x and y be such that:

1. x is uniformly sampled from Fnq ,
2. for all i ∈ [m], Ai is uniformly sampled from Fn×nq ,
3. for all i ∈ [m], bi is uniformly sampled from Fnq ,

4. for all i ∈ [m], yi is defined as yi := xTAix+ bTi x.

From ((Ai)i∈[m], (bi)i∈[m], y), find x.

The prover wants to convince the verifier that she knows x ∈ Fnq such that
y1 = xTA1x+ bT1 x

...
ym = xTAmx+ bTmx

To proceed, she will rely on the MPC-in-the-Head paradigm: she will first share the secret vector x and then
use an MPC protocol which verifies that this vector satisfies the above relations.
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MPC Protocol. Instead of checking the m relations separately, we batch them into a linear combination
where coefficients γ1, . . . , γm are uniformly sampled in the field extension Fqη . The MPC protocol will check
that

m∑
i=1

γi(yi − xTAix− bTi x) = 0. (1)

If one of the relations was not satisfied, then Equation (1) would be satisfied only with a probability 1
qη .

We can write the equality as

m∑
i=1

γi(yi − bTi x) =

m∑
i=1

γi(x
TAix)

= xT

(
m∑
i=1

γiAi

)
x

= 〈x,w〉 where w :=

(
m∑
i=1

γiAi

)
x

By defining z :=
∑m
i=1 γi(yi − bTi x) and w := (

∑m
i=1 γiAi)x, proving Equation (1) is equivalent to proving

that
z = 〈x,w〉.

And to prove the above equality, we can rely on the subprotocol ΠMM described in Section 3.1 (assuming
that all the scalars live in Fqη ). Thus, the MPC protocol proceeds as follows:

1. The parties get random γ1, . . . , γm ∈ Fqη .
2. The parties locally set JzK =

∑m
i=1 γi(yi − bTi JxK).

3. The parties locally set JwK = (
∑m
i=1 γiAi) JxK.

4. The parties execute the protocol ΠMM to check that z = 〈w, x〉.

Since this sub-protocol ΠMM produces false positive events with a rate of 1
qη , if x does not satisfy the m

MQ relations, the complete MPC protocol outputs Accept only with a probability of at most

1

qη
+

(
1− 1

qη

)
1

qη
=

2

qη
− 1

q2η
.

The complete MPC protocol is described in Figure 2.

Public values: The matrices A1, . . . , Am ∈ Fn×nq , the vectors b1, . . . , bm ∈ Fnq , and the outputs y1, . . . , ym ∈ Fq.

Inputs: Each party takes a share of the following sharings as inputs: JxK where x ∈ Fnq , JaK where a has been
uniformly sampled from Fnqη , and JcK where c ∈ Fqη satisfies c = −〈a, x〉.

MPC Protocol:

1. The parties get random γ1, . . . , γm ∈ Fqη and a random ε ∈ Fqη .
2. The parties locally set JzK =

∑m
i=1 γi(yi − b

T
i JxK).

3. The parties locally set JwK =
(∑m

i=1 γiAi
)
JxK.

4. The parties locally set JαK = ε · JwK + JaK.
5. The parties open α ∈ Fnqη .
6. The parties locally set JvK = ε · JzK− 〈α, JxK〉 − JcK.
7. The parties open v ∈ Fqη .
8. The parties outputs Accept if v = 0 and Reject otherwise.

Fig. 2: An MPC protocol that verifies that the given input corresponds to a solution of an MQ problem.
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Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section 2.1), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince a verifier that a
prover knows the solution of a MQ problem. The soundness error of the resulting protocol is

ε :=
1

N
+

(
1− 1

N

)(
2

qη
− 1

q2η

)
.

By repeating the protocol τ times, we get a soundness error of ετ . To obtain a soundness error of λ bits, we

can take τ =
⌈
−λ

log2 ε

⌉
. We can transform the interactive protocol into a non-interactive argument / signature

thanks to the Fiat-Shamir transform [FS87]. According to [KZ20], the security of the resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+Nτ2

}

where p := 2
qη −

1
q2η .

The communication cost of the scheme (in bits) is

4λ+ τ ·

(n · log2(q)︸ ︷︷ ︸
x

+n · η · log2(q)︸ ︷︷ ︸
α

+ η · log2(q)︸ ︷︷ ︸
c

+λ · log2N + 2λ︸ ︷︷ ︸
MPCitH


where λ is the security level, η is a scheme parameter and τ is computed such that the soundness error is of
λ bits in the interactive case and such that costforge is of λ bits in the non-interactive case.

Performances and comparison. In what follows, we compare our scheme with the state of the art on two
MQ instances:

Instance 1. Multivariate Quadratic equations over a small field:

(q,m, n) = (4, 88, 88),

Instance 2. Multivariate Quadratic equations over a larger field:

(q,m, n) = (256, 40, 40).

Both of these instances are believed to correspond to a security of 128 bits [BMSV22].
We provide in Tables 2 and 3 a complete comparison of our scheme with the state of the art. Over a

small field, the Mesquite [Wan22] scheme has the smallest communication cost, even if our scheme produces
competitive signature size. Over a larger field, we can produce signature size close to 7 KB, and thus we
outperform all the former schemes.

Remark 2. In constrast with the former state of the art, the communication cost of our scheme is independent
to the number m of MQ relations.

5 Proofs of Knowledge for MinRank and Rank SD

In this section, we propose arguments of knowledge for the MinRank problem (Section 5.2) and the Rank
SD problem (Section 5.3). But before that, in Section 5.1, we propose two efficient MPC protocols which
check that a matrix M has a rank of at most r.

In what follows, we denote wtR(M) the rank of a matrix M .
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Scheme Name Security Signature Size

MudFish [Beu20] εhelper(τ,M, 1
q′ )
−1 µdig + τ [2µvar + µout + 2µseed + µdig · log2(q′) + µhelper]

Mesquite [Wan22] εhelper(τ,M, 1
N

)−1 µdig + τ [µvar + µout + µMPCitH + µhelper]

Our scheme KZ( 2
qη
− 1

q2η
, 1
N

) 2µdig + τ [(1 + η) · µvar + η · log2 q + µMPCitH]

Table 2: Sizes of the signatures relying on theMQ problem (restricting to the schemes using the FS heuris-
tics). The used notations are: µvar := n log2 q, µout := m log2 q, plus all the notations defined in Section 3.

Instance Protocol Name Variant
Parameters

Signature Size
N M τ η

q = 4
m = 88
n = 88

MudFish [Beu20] - 4 191 68 - 14 640 B

Mesquite [Wan22]
Fast 8 187 49 - 9 578 B
Short 32 389 28 - 8 609 B

Our scheme
Fast 32 - 40 6 10 764 B
Short 256 - 25 8 9 064 B

q = 256
m = 40
n = 40

MUDFISH [Beu20]
Fast 8 176 51 - 15 958 B
Short 16 250 36 - 13 910 B

Mesquite [Wan22]
Fast 8 187 49 - 11 339 B
Short 32 389 28 - 9 615 B

Our scheme
Fast 32 - 36 2 8 488 B
Short 256 - 25 2 7 114 B

Table 3: Sizes of the signatures relying on theMQ problem (restricting to the schemes using the FS heuris-
tics). Numerical comparison.

5.1 Matrix Rank Checking Protocols

We want to build MPC protocols which check that a matrix has a rank of a most r. Such MPC protocols
will be used for arguments of knowledge with the MPC-in-the-Head paradigm. We propose two protocols:

– the first one relies on the rank decomposition of matrices. It has the advantage to be quite simple, but
its false positive rate is large.

– the second one relies on linearized polynomials. It has the advantage to have a very small false positive
rate, but it sometimes requires to manipulate field extensions of large degrees.

Using Rank Decomposition. Let us design an MPC protocol which checks that a matrix M ∈ Fm×n has
a rank of at most r, i.e. wtR(M) ≤ r. To proceed, we will rely on the decomposition rank :

a matrix M ∈ Fn×mq has a rank of at most r
if and only if there exists T ∈ Fn×rq and R ∈ Fr×mq such that M = TR.

In practice, our MPC protocol that we will denote Πη
RC-RD takes as input such matrices T and R (in

addition to M) and simply executes the matrix multiplication checking protocol Πη
MM (see Section 3.1), for

some positive integer η.

Theorem 1. If wtR(M) ≤ r and if T,R are genuinely computed, then Πη
RC-RD always outputs Accept. If

wtR(M) > r, then ΠRC-RD outputs Accept with probability at most 1
qη . More precisely, if wtR(M) = w+ δ

with δ ≥ 1, then Πη
RC-RD outputs Accept with probability at most 1

qδ·η
.

Proof. The final broadcast matrix V in Πη
MM satisfies

V = (TR−M)Σ − (C − TA)
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where matrices A and C have been built before receiving the random Σ. We have

wtR(M − TR) ≥ wtR(M)− wtR(TR)

≥ (r + δ)− r = δ

It means that TR−M has at least δ non-zero coefficients (i1, j1), . . . , (iδ, jδ) which are over δ different rows
and over δ different columns, i.e.

∀k1, k2 ∈ [δ], (ik1 6= ik2) ∧ (jk1 6= jk2).

Let us consider k ∈ [δ]. The jkth row of Σ is uniformly sampled in Fηq and thus the ikth row of (M − TR)Σ
is uniformly random in Fηq (because one of the sum term is uniformly random). Thus, the probability that
the ikth row of V is zero is the probability that (M −TR)Σ is equal to (C −TA) on the row ik whereas the
row ik of (M − TR)Σ is uniformly random in Fηq , i.e. the probability that the ikth row of V is zero is 1

qη .

By taking a union bound over all k, we get that the probability that V is zero is at most 1
qδ·η

. �

Using Linearized Polynomials. In what follows, we represent a matrix of Fm×nq as an element of (Fmq )n.
We want to design an MPC protocol which checks that a matrix M = (x1, . . . , xn) ∈ (Fqm)n has a rank of
at most r. Equivalently, it means that all xi belongs to an Fq-linear subspace U of Fqm of dimension r. Let
us define the polynomial LU (X) as

LU (X) :=
∏
u∈U

(X − u) ∈ Fqm [X].

The degree of LU is qr since U has qr elements. Showing that wt(M) ≤ r can be done by showing that all
xi’s are roots of LU .

According to [LN96, Theorem 3.52], LU is a q-polynomial over Fqm , meaning that it is of the form

LU (X) = Xqr +

r−1∑
i=0

βiX
qi .

Such polynomials are convenient for multi-party computation since the Frobenius endomorphism X 7→ Xq

is a linear application in field extensions of Fq and thus it is communication-free to compute JxqK, Jxq
2

K, . . .
from JxK.

The core idea of the rank checking protocol is to check that LU (x1) = LU (x2) = . . . = LU (xn) = 0. To
proceed, the MPC protocol will batch these checkings by uniformly sampling γ1, . . . , γn ∈ Fqm and checking
that

n∑
j=1

γj · LU (xj) = 0. (2)

If one xi is not a root of the polynomial LU , then Equation (2) is satisfies only with probability 1
qm . Let us

rewrite the left term of (2):

n∑
j=1

γj · LU (xj) =

n∑
j=1

γj ·

(
xq

r

j +

r−1∑
i=0

βix
qi

j

)

=

n∑
j=1

γj · xq
r

j︸ ︷︷ ︸
:=−z

+

r−1∑
i=0

βi ·
n∑
j=1

γjx
qi

j︸ ︷︷ ︸
:=wi

By defining z := −
∑n
j=1 γj ·x

qr

j and wi :=
∑n
j=1 γjX

qi for i ∈ {0, . . . , r}, proving Equation (2) is equivalent
to proving

z = 〈β,w〉.
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Our MPC protocol that we will denote Πη
RC-LP takes as input Jx1K, . . . , JxnK and JLU K := Xqr+

∑r−1
i=0 JβiKXqi

proceeds as follows:

1. The parties get random γ1, . . . , γn ∈ Fqm·η .
2. The parties locally set JzK = −

∑n
j=1 γjJxjK

qr .

3. The parties locally set JwiK =
∑n
j=1 γjJxjK

qi for all i ∈ {0, . . . , r − 1}.
4. The parties execute the protocol ΠMM to check that z = 〈β,w〉 over Fqm·η .

Theorem 2. If wtR(M) ≤ r and if LU are genuinely computed, then Πη
RC-LP always outputs Accept. If

wtR(M) > r, then Πη
RC-LP outputs Accept with probability at most 1

qm·η +
(

1− 1
qm·η

)
1

qm·η .

Proof. JLU K is a q-polynomial over Fqm of degree exactly qr. It means that its number of roots is at most qr.
According to [LN96, Theorem 3.50], the roots form a Fq-linear subspace V of the field extension Fqs of Fqm .
Since Fqm is also a linear subspace of Fqs , V ∩ Fqm is a linear subspace of Fqs (and of Fqm). Its dimension is
at most r (since it has at most qr elements). It wtR(M) > r, there exist i∗ such that

LU (xi∗) 6= 0.

We then have two options resulting in Πη
RC-LP outputing Accept:

– Either
∑n
j=1 γj · LU (xj) = 0, which occurs with probability 1

qm·η ;

– Or
∑n
j=1 γj ·LU (xj) 6= 0, i.e. z 6= 〈β,w〉 and ΠMM outputs Accept, which occurs with probability 1

qm·η

since ΠMM has a false positive rate of 1
qm·η .

�

5.2 Proof of Knowledge for MinRank

We want to build a zero-knowledge proof of knowledge for the MinRank problem:

Definition 2 (MinRank Problem). Let Fq be the finite field with q elements. Let m, n, and k be positive
integers. The MinRank problem with parameters (q,m, n, k) is the following problem:

Let M0,M1, . . . ,Mk, E and x such that:

• x is uniformly sampled from Fkq ,
• for all i ∈ [k], Mi is uniformly sampled from Fn×mq ,
• E is uniformly sampled from {E ∈ Fn×mq : wtR(E) ≤ w},
• M0 is defined as M0 = E −

∑k
i=1 xiMi.

From (M0,M1, . . . ,Mk), find x.

The prover wants to convince the verifier that she knows such an x. To proceed, the prover will first share
the secret vector x and then use an MPC protocol which verifies that this vector satisfies the above property.

MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) x and which outputs{
Accept if wtR (E) ≤ r
Reject otherwise.

where E := M0 +
∑k
i=1 xiMi.

Given JxK, the parties can locally build JEK as M0 +
∑k
i=1JxiKMi. It remains to check that JEK cor-

responds to the sharing of a matrix of rank at most r. It can be done using one of the two rank checking
protocols described in Section 5.1: Πη

RC-RD relying on the rank decomposition or Πη
RC-LP relying on linearized

polynomials, for some parameter η.
The complete MPC protocol is described in Figure 3 when relying on the rank decomposition and in

Figure 4 when relying on linearized polynomials. In the second case, the rows of the matrix E are rewritten
as elements of Fqm , but when m 6= n, it can be more convenient to work on the columns (depending of the
values of m and n).
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Public values: M0,M1, . . . ,Mk ∈ Fn×mq .

Inputs: Each party takes a share of the following sharings as inputs: JxK where x ∈ Fkq , JT K where T ∈ Fn×rq , JRK where

R ∈ Fr×mq , JaK where a has been uniformly sampled from Fr×ηq , and JcK ∈ Fn×ηq , such that M0 +
∑k
i=1 xiMi = TR

and c = Ta.

MPC Protocol:

1. The parties get a random Σ ∈ Fm×ηq .

2. The parties locally set JEK = M0 +
∑k
i=1JxiKMi.

3. The parties locally set JαK = JRKΣ + JaK.
4. The parties open α ∈ Fr×ηq .
5. The parties locally set JvK = JT Kα− JcK− JEKΣ.
6. The parties open v ∈ Fn×ηq .
7. The parties outputs Accept if v = 0 and Reject otherwise.

Fig. 3: An MPC protocol based on the rank decomposition technique (ΠRC-RD) which verifies that the given
input corresponds to a solution of a MinRank problem.

Public values: M0,M1, . . . ,Mk ∈ Fn×mq .

Inputs: Each party takes a share of the following sharings as inputs: JxK where x ∈ Fkq , JLU K := Xqr +
∑r−1
i=0 JβiKXqi

where LU (X) :=
∏
u∈U (X−u) ∈ Fqm [X], JaK where a has been uniformly sampled from Frqm·η , and JcK ∈ Fqm·η , such

that c = −〈β, a〉.

MPC Protocol:

1. The parties get random γ1, . . . , γn ∈ Fqm·η .
2. The parties get a random ε ∈ Fqm·η .
3. The parties locally set JEK = M0 +

∑k
i=1JxiKMi.

4. The parties locally write the rows of JEK as elements (e1, . . . , em) of Fqm
5. The parties locally set JzK = −

∑n
j=1 γjJejK

qr .

6. The parties locally set JwiK =
∑n
j=1 γjJejK

qi for all i ∈ {0, . . . , r − 1}.
7. The parties locally set JαK = ε · JwK + JaK.
8. The parties open α ∈ Frqm·η .
9. The parties locally set JvK = ε · JzK− 〈α, JβK〉 − JcK.

10. The parties open v ∈ Fqm·η .
11. The parties outputs Accept if v = 0 and Reject otherwise.

Fig. 4: An MPC protocol based on the technique using linearized polynomials (ΠRC-LP) which verifies that the
given input corresponds to a solution of a MinRank problem. U is a Fq-linear subspace of Fqm of dimension

r which contains the rows (e1, . . . , en) of E := M0 +
∑k
i=1 xiMi ∈ Fn×mq represented as elements of Fqm .

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section 2.1), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince a verifier that
a prover knows the solution of a rank syndrome decoding problem. The soundness error of the resulting
protocol is

ε :=
1

N
+

(
1− 1

N

)
pη

where pη := 1
qη when using Πη

RC-RD and pη := 2
qm·η −

1
q2·m·η when using Πη

RC-LP. By repeating the protocol

τ times, we get a soundness error of ετ . To obtain a soundness error of λ bits, we can take τ =
⌈
−λ

log2 ε

⌉
. We

can transform the interactive protocol into a non-interactive proof / signature thanks to the Fiat-Shamir
transform [FS87]. According to [KZ20], the security of the resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
piη(1− pη)τ−i

+Nτ2

}
.
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When using ΠRC-RD, the communication cost of the scheme (in bits) is

4λ+ τ ·

( k︸︷︷︸
x

+ r ×m︸ ︷︷ ︸
R

+ r × n︸ ︷︷ ︸
T

+ r × η︸ ︷︷ ︸
α

+n× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH


where λ is the security level, r is a scheme parameter and τ is computed such that the soundness error is of
λ bits in the interactive case and such that costforge is of λ bits in the non-interactive case.

And when using ΠRC-LP, the communication cost of the scheme (in bits) is

4λ+ τ ·

( k︸︷︷︸
x

+ r ×m︸ ︷︷ ︸
LU

+ r ×m× η︸ ︷︷ ︸
α

+m× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH

 .

Performances and comparison. In what follows, we compare our scheme with the state of the art on the
MinRank instance [BESV22]:

(q,m, n, k, r) = (16, 16, 16, 142, 4).

We provide in Tables 4 and 5 a complete comparison of our scheme with the state of the art. To provide a fair
comparison, we propose two variants for [Cou01] and [SINY22]: the first one corresponds to the scheme as
described in the original article and the second one is an optimized version. This optimized version includes
the following tricks:

– Instead of revealing all the commitments during the first round, the prover just send a hash digest of
them. Then, to enable the verifier to recompute this digest, the prover just need to send the commitment
digests that the verifier can not compute herself.

– The random combination used in the schemes (usually denoted β) is derived from a seed. Then, instead
of sending the coefficients of β, the prover can just send this seed. Moreover, this seed and the masks
involved in the schemes (usually denote T , S and X) are also derived from a common seed.

– Instead of revealing two matrices such that the difference are of rank (at most) r, the prover send one
of the matrices and directly the difference (which is cheaper to send), and thus the verifier can deduce
the non-sent matrix.

In the comparison we put how [BG22, Section 2] would perform if we apply the same technique for MinRank
problem ([BG22] does not consider the MinRank problem in their article).

First, let us remark that [SINY22] presents no advantage compared to [Cou01]. The soundness error of
each iteration is 1/2 instead of 2/3, but each iteration is more expensive. The achieved communication cost
is thus equivalent to [Cou01]. [BESV22] is a protocol with helper [Beu20]. The components in the proof
transcript are the same as for [Cou01] (and [SINY22]), but it succeeds to achieve a bit smaller signature size
just by sending a smaller number of seeds and digests. The MPC-in-the-Head paradigm enables to obtain
much smaller sizes. Using techniques from [BG22], the resulting size is around 10 KB. In an independent
work, [ARZV22] proposes very recently a new scheme using techniques which are similar to our protocol
with ΠRC-RD. They succeed to produces signature with sizes below 8 KB. Our scheme with ΠRC-RD achieves
similar sizes than [ARZV22], but our scheme with ΠRC-LP outperforms all the previous ones achieving sizes
below 6 KB.

5.3 Proof of Knowledge for Rank SD

We want to build a zero-knowledge proof of knowledge for the rank syndrome decoding problem:

Definition 3 (Rank Syndrome Decoding Problem - Standard Form). Let Fqm be the finite field
with qm elements. Let (n, k, r) be positive integers such that k ≤ n. The rank syndrome decoding problem
with parameters (q,m, n, k, r) is the following problem:
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Scheme Name Security Signature Size

[Cou01] (3/2)τ 3τ · µdig + τ
[
2
3
µmat + 2

3
µcombi + 2

3
µseed

]
[Cou01], opt. (3/2)τ µdig + τ

[
1
3
(µmat + µrank + µcombi + 2µseed) + µdig

]
[SINY22] 2τ 6τ · µdig + τ

[
µmat + 1

2
µcombi + 10

4
µseed

]
[SINY22], opt. 2τ µdig + τ

[
1
2
(µmat + µrank + µcombi + 3µseed) + 2µdig

]
[BESV22] εhelper(τ,M, 1

2
)−1 µdig + τ

[
1
2
(µmat + µrank + µcombi + µseed) + µdig + µhelper

]
[BG22] εhelper(τ,M, 1

N
)−1 µdig + τ [µcombi + µrank + µMPCitH + µhelper]

[ARZV22] KZ( 1
qn
, 1
N

) 2µdig + τ
[
µcombi + (n2 + 2rn− r2) log2 q + µMPCitH

]
Our scheme (RD) KZ( 1

qη
, 1
N

) 2µdig + τ [µcombi + µrank + η(n+ r) log2 q + µMPCitH]

Our scheme (LP) KZ( 2
qmη
− 1

q2mη
, 1
N

) 2µdig + τ [µcombi + rm log2 q + η(r + 1)m log2 q + µMPCitH]

Table 4: Sizes of the signatures relying on the MinRank problem (restricting to the schemes using the FS
heuristics). The used notations are: µmat := mn log 2q, µrank := r(m + n) log2 q, µcombi := k log2 q, plus all
the notations defined in Section 3.

Instance Protocol Name Variant
Parameters

Signature Size
N M τ η

q = 16
m = 16
n = 16
k = 142
r = 4

[Cou01]
- - - 219 - 52 430 B

Optimized - - 219 - 28 575 B

[SINY22]
- - - 128 - 50 640 B

Optimized - - 128 - 28 128 B
[BESV22] - - 256 128 - 26 405 B

[BG22]
Fast 8 187 49 - 13 644 B
Short 32 389 28 - 10 937 B

[ARZV22]
Fast 32 - 28 - 10 116 B
Short 256 - 18 - 7 422 B

Our scheme (RD)
Fast 32 - 33 5 9 288 B
Short 256 - 19 9 7 122 B

Our scheme (LP)
Fast 32 - 28 1 7 204 B
Short 256 - 18 1 5 518 B

Table 5: Comparison of the signatures relying on the MinRank problem (restricting to the schemes using the
FS heuristics). Numerical comparison.

Let H, x and y be such that:

1. H is uniformly sampled from {(H ′|In−k), H ′ ∈ F(n−k)×n
qm },

2. x is uniformly sampled from {x ∈ Fnqm : wtR(x) ≤ r},
3. y is built as y := Hx.

From (H, y), find x.

Remark 3. The rank wtR(x) of an element x of Fnqm is the dimension of the Fq-linear subspace spanned by
x1, . . . , xn. Equivalently, it is the rank of the matrix M for which the rows are x1, . . . , xn represented as
vectors of Fmq .

The prover wants to convince the verifier that she knows such an x, i.e. a vector x ∈ Fnqm such that
y = Hx and wtR(x) ≤ r. Previous works propose proofs of knowledge where the constraint on the weight is
an equality, but it is sometimes easier to just prove an inequality (see [FJR22] for the case of the Hamming
weight). To proceed, the prover will first share the secret vector x and then use an MPC protocol which
verifies that this vector satisfies the above property.

Remark 4. In the above definition, the parity-check matrix is in standard form. It does not decrease the
hardness of the problem (since the transformation into a standard form is a polynomial transformation), but
it enables to simplify the contruction we propose.
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MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) x and which outputs{
Accept if y = Hx and wtR(x) ≤ r
Reject otherwise.

Since H is in standard form, having the equality y = Hx is equivalent to define x as(
xA

y −H ′xA

)
for some xA ∈ Fkq . Therefore, we will build an MPC protocol which takes as input (a sharing of) xA and
which outputs Accept if wtR(x) ≤ r where x :=

(
xA

y −H ′xA

)
Reject otherwise.

Given JxAK, the parties can locally build JxBK as JxBK := y −H ′JxAK, and so they can deduce a sharing
JxK of x (simply by concatenating the shares of JxAK with the shares of JxBK). It remains to check that JxK
corresponds to the sharing of a vector of Fnqm of rank at most r. The latter can be done using one of the
two rank checking protocols described in Section 5.1: Πη

RC-RD relying on the rank decomposition or Πη
RC-LP

relying on linearized polynomials, for some parameter η.
The complete MPC protocol is described in Figure 5 when relying on the rank decomposition and in

Figure 6 when relying on linearized polynomials.

Public values: H = (H ′|In−k) ∈ F(n−k)×n
qm and y ∈ Fn−kqm .

Inputs: Each party takes a share of the following sharings as inputs: JxAK where xA ∈ Fkqm , JT K where T ∈ Fn×wq ,
JRK where R ∈ Fw×mq , JaK where a has been uniformly sampled from Fw×ηq , and JcK where c ∈ Fn×ηq , such that c = Ta
and X = TR where X is the matrix form of x.

MPC Protocol:

1. The parties get a random Σ ∈ Fm×ηq .
2. The parties locally set JxBK = y −H ′JxAK.
3. The parties locally write JxK := (JxAK, JxBK) as a matrix JXK.
4. The parties locally set JαK = JRKΣ + JaK.
5. The parties open α ∈ Fw×ηq .
6. The parties locally set JvK = JT Kα− JcK− xΣ.
7. The parties open v ∈ Fm×ηq .
8. The parties outputs Accept if v = 0 and Reject otherwise.

Fig. 5: An MPC protocol based on the rank decomposition technique (ΠRC-RD) which verifies that the given
input corresponds to a solution of a rank syndrome decoding problem.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section 2.1), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince a verifier that
a prover knows the solution of a rank syndrome decoding problem. The soundness error of the resulting
protocol is

ε :=
1

N
+

(
1− 1

N

)
pη

where pη := 1
qη when using Πη

RC-RD and pη := 2
qm·η −

1
q2·m·η when using Πη

RC-LP. By repeating the protocol

τ times, we get a soundness error of ετ . To obtain a soundness error of λ bits, we can take τ =
⌈
−λ

log2 ε

⌉
. We
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Public values: H = (H ′|In−k) ∈ F(n−k)×n
qm and y ∈ Fn−kqm .

Inputs: Each party takes a share of the following sharings as inputs: JxAK where x ∈ Fkqm , JLU K := Xqr+
∑r−1
i=0 JβiKXqi

where LU (X) :=
∏
u∈U (X−u) ∈ Fqm [X], JaK where a has been uniformly sampled from Frqm·η , and JcK ∈ Fqm·η , such

that c = −〈β, a〉.

MPC Protocol:

1. The parties get random γ1, . . . , γn ∈ Fqm·η .
2. The parties get a random ε ∈ Fqm·η .
3. The parties locally set JxBK = y −H ′JxAK.
4. The parties locally set JzK = −

∑n
j=1 γjJxjK

qr .

5. The parties locally set JwiK =
∑n
j=1 γjJxjK

qi for all i ∈ {0, . . . , r − 1}.
6. The parties locally set JαK = ε · JwK + JaK.
7. The parties open α ∈ Frqm·η .
8. The parties locally set JvK = ε · JzK− 〈α, JβK〉 − JcK.
9. The parties open v ∈ Fqm·η .

10. The parties outputs Accept if v = 0 and Reject otherwise.

Fig. 6: An MPC protocol based on the technique using linearized polynomials (ΠRC-LP) which verifies that
the given input corresponds to a solution of a rank syndrome decoding problem. U is a Fq-linear subspace
U of Fqm of dimension r which contains x1, . . . , xn.

can transform the interactive protocol into a non-interactive proof / signature thanks to the Fiat-Shamir
transform [FS87]. According to [KZ20], the security of the resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
piη(1− pη)τ−i

+Nτ2

}
.

When using ΠRC-RD, the communication cost of the scheme (in bits) is

4λ+ τ ·

(k ·m︸ ︷︷ ︸
xA

+w ×m︸ ︷︷ ︸
R

+w × n︸ ︷︷ ︸
T

+w × η︸ ︷︷ ︸
α

+n× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH


where λ is the security level, η is a scheme parameter and τ is computed such that the soundness error is of
λ bits in the interactive case and such that costforge is of λ bits in the non-interactive case.

And when using ΠRC-LP, the communication cost of the scheme (in bits) is

4λ+ τ ·

(k ·m︸ ︷︷ ︸
xA

+ r ×m︸ ︷︷ ︸
LU

+ r ×m× η︸ ︷︷ ︸
α

+m× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH

 .

Performances and comparison. In what follows, we compare our scheme with the state of the art on the
Rank Syndrome Decoding instance [BG22]:

(q,m, n, k, r) = (2, 32, 30, 14, 9).

We provide in Tables 6 and 7 a complete comparison of our scheme with the state of the art. To get a more
complete comparison, we include the schemes [Ste94], [Vér96] and [FJR21] which can be easily adapted for
the rank metric (by replacing the permutations by rank isometries). Moreover, we put in Table 8 the achieved
performances of [BG22] when relying on structured rank syndrome decoding problem (the parameters of the
structured problem come from the original article).

The first schemes [Ste94] and [Vér96] can achieve signature sizes of around 30 KB (let us remark that
some optimization tricks have been used to achieve these sizes). Then, using the MPC-in-the-Head technique
of the “shared permutation”, [FJR21] and [BG22] divide this size by half, achieving communication cost
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around 15 KB (13 − 19 KB). Finally, our new schemes outperform all these schemes by achieving sizes
around 6 − 11 KB. The scheme using a q-polynomial even outperforms the [BG22]’s proposals4 which rely
on structured rank syndrome decoding problems.

Scheme Name Security Signature Size

[Ste94] (3/2)τ µdig + τ
[
1
3
(2µmat + µrank + 2µseed) + µdig

]
[Vér96] (3/2)τ µdig + τ

[
1
3
(µmat + µptx + µrank + 2µseed) + µdig

]
[FJR21] εhelper(τ,M, 1

N
)−1 µdig + τ [µmat + µptx + µrank + µMPCitH + µhelper]

[BG22] εhelper(τ,M, 1
N

)−1 µdig + τ [µmat + µrank + µMPCitH + µhelper]

Our scheme (RD) KZ( 1
qη
, 1
N

) 2µdig + τ [µptx + µrank + η(n+ r) log2 q + µMPCitH]

Our scheme (LP) KZ( 2
qm·η −

1
q2·m·η ,

1
N

) 2µdig + τ [µptx + rm log2 q + η(r + 1)m log2 q + µMPCitH]

Table 6: Sizes of the signatures relying on the rank syndrome decoding problem (restricting to the schemes
using the FS heuristics). The used notations are: µmat := mn log 2q, µrank := r(m + n) log2 q, µptx :=
mk log2 q, plus all the notations defined in Section 3.

Instance Protocol Name Variant
Parameters

Signature Size
N M τ η

q = 2
m = 31
n = 30
k = 15
r = 9

Stern [Ste94] - - - 219 - 31 358 B
Véron [Vér96] - - - 219 - 27 115 B

[FJR21]
Fast 8 187 49 - 19 328 B
Short 32 389 28 - 14 181 B

[BG22]
Fast 8 187 49 - 15 982 B
Short 32 389 28 - 12 274 B

Our scheme (RD)
Fast 32 - 33 19 11 000 B
Short 256 - 21 24 8 543 B

Our scheme (LP)
Fast 32 - 30 1 7 376 B
Short 256 - 20 1 5 899 B

Table 7: Sizes of the signatures relying on the rank syndrome decoding problem (restricting to the schemes
using the FS heuristics). Numerical comparison.

Protocol Name Structure Variant
Parameters

Signature Size
N τ

[BG22] Ideal RSD
Fast 32 37 12 607 B
Short 256 26 10 126 B

[BG22] Ideal RSL
Fast 32 27 9 392 B
Short 256 17 6 754 B

Table 8: Sizes of the signatures relying on the structured rank syndrome decoding problem (restricting to
the schemes using the FS heuristics).

4 Theses sizes are larger than the ones in [BG22] because they take N = 1024, but here to have a fair comparison
with the other schemes, we take N = 256.
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Remark 5. Let us focus on the zero-knowledge proof relying on linearized polynomials. Thanks to the struc-
ture of the MPC protocol, it is possible to use Shamir’s secret sharings over Fqm instead of additive sharings
(even if the base field is Fq due to the Fq-linearity of the Frobenius endomorphism). We describe in Ap-
pendix A how the MPC protocol behaves when using Shamir’s secret sharing. That implies that we can use
techniques from [FR22], with a very large number N of parties (N is upper bounded by qm). This is not true
for the zero-knowledge proof relying on the rank decomposition, or for both zero-knowledge proofs about
the MinRank problem. For those proofs, the number N of parties would be upper bounded by q, which is
small when considering concrete instances.

Remark 6. It is possible to transform a proof of knowledge for rank syndrome decoding (RSD) problem in a
proof of knowledge for sum-rank syndrome decoding (SRSD) problem. The latter consists, given (H, y), in
finding x ∈ Fn such that y = Hx and

wtSR(x) ≤ r

where wtSR((x1, . . . , xn/`)) :=
∑n/`
i=0 wtR(xi) with ` a SRSD parameter and with xi ∈ F`. Let us denote

X,X1, . . . , Xn
`

the matrix form of x, x1, . . . , xn` . Proving that x (or equivalently X) satisfies wtSR(x) ≤ r
can be done by proving that the matrix 

X1

X2

. . .

Xn
`


has a rank of at most r. Thus all proofs for RSD can be used for SRSD, but they must handle a large matrix.
We propose in Appendix B another MPC protocol to check that wtSR(x) ≤ r, which does not rely on the
above transformation. The core idea of this protocol is to transform x into a vector d (using ΠMM) such that

wtSR(x) = wtH(d).

Then using the MPC protocol of [FJR22], we can check that wtH(d) ≤ r and thus we get the desired
inequality.

6 Proof of Knowledge for Permuted Kernel Problem

We want to build a zero-knowledge proof of knowledge for the permuted kernel problem:

Definition 4 (Inhomogenous Permuted Kernel Problem). Let Fq be the finite field with q elements.
Let m and n be positive integers. The permuted kernel problem with parameters (q,m, n) is the following
problem:

Let H, y, v and σ be such that:

1. H is uniformly sampled from Fm×nq ,
2. v is uniformly sampled from Fnq ,
3. σ is a random permutation of [n],
4. y is built as y := Hσ(v).

From (H, y, v), find σ.

The prover wants to convince the verifier that she knows a permutation σ such that y = Hσ(v). Sharing the
permutation seems the natural strategy, all the previous works adopt it. However, implementing permutations
in a secure way (secure against timing and cache attacks) is a tricky exercise. We propose here a new
proof of knowledge which has a larger communication cost, but which has the advantage of not relying on
permutations. To proceed, the prover will first share the secret vector x := σ(v) and then use an MPC
protocol which verifies that this vector satisfies the desired property.
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MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) x := σ(v) and which
outputs {

Accept if y = Hx and ∃σ : x = σ(v)
Reject otherwise.

Proving that y = Hx is easy since it is linear. The hard part is to prove that there exists a permutation
between x and v, without using any permutation. To proceed, we will check that the two following polynomials
are equal:

P (X) = (X − x1) . . . (X − xn) and Q(X) = (X − v1) . . . (X − vn).

If they are equal, it means that they have the same roots, and thus we can deduce that x := (x1, . . . , xn)
and v := (v1, . . . , vn) are equal up to the order of their coordinates. In practice, to check that that P (X)
and Q(X) are equal, we will rely on the Schwartz-Zippel Lemma: we sample a random evaluation point ξ
in the field extension Fqη1 (for some positive integer η1) and we check that P (ξ) is equal to Q(ξ). If the two
polynomials are not equal, the probability to get P (ξ) = Q(ξ) is upper bounded by

n

|Fqη1 |
.

since n is the degree of P (X) − Q(X). Thus, the MPC protocol will compute P (ξ) = (ξ − x1) . . . (ξ − xn)
from a sharing JxK of x and will compare the result with Q(ξ).

Given an evaluation point ξ, let us denote

s1 := (ξ − x1)

s2 := (ξ − x1)(ξ − x2)

...

sn := (ξ − x1)(ξ − x2) . . . (ξ − xn)

The MPC protocol could proceed as follows:

1. The parties get a random evaluation point ξ ∈ Fqη1 .
2. The parties get as hints Js1K, ..., Jsn−1K (which dependent on ξ).
3. The parties execute a multiplication checking protocol to check that

∀i ∈ {1, . . . , n− 1}, si · xi+1 = si+1

where sn := Q(ξ).

However, all existing multiplication checking protocols induce a communication cost which depends on
the bitsize of the multiplication triples. In what follows, we assume that n is even. Let us define

t1 := x1 · x2
t2 := x3 · x4

...

tn/2 := xn−1 · xn

To save communication, the MPC protocol we consider will proceed as follows:

1. The parties get a random evaluation point ξ ∈ Fqη1 .
2. The parties get as hints Jt1K, ..., Jtn/2K which live in Fq.
3. The parties get as hints Js4K,Js6K, ..., Jsn−2K which live in Fqη1 .
4. The parties execute a multiplication checking protocol to check that

∀i ∈ {1, . . . , n/2}, x2i−1 · x2i = ti.
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5. The parties execute a multiplication checking protocol to check that

∀i ∈ {2, . . . , n/2}, s2i−2 ·
(
ξ2 − (x2i−1 + x2i)ξ + ti

)
= s2i

where s2 := (ξ2 − (x1 + x2)ξ + t1) and sn := Q(ξ).

Since ti’s bitsize is η1 times smaller than si’s, the communication cost of this MPC protocol is smaller
than the previous one.

The MPC protocol is completely described in Figure 7. As batch multiplication checking protocol, we
use the MPC protocol ΠBMC described in Figure 8 (inspired from [BdK+21]).

Public values: H ∈ Fm×nq , y ∈ Fmq and v ∈ Fnq .

MPC Protocol:

1. The parties get a random ξ ∈ Fqη1 .
2. The parties get as hints Jt1K, . . . , Jtn/2K where

∀i ∈ {1, . . . , n
2
}, ti = x2i−1 · x2i.

3. The parties get as hints Js4K, Js6K, ..., Jsn−2K where

∀i ∈ {2, . . . , n
2
− 1}, s2i = s2i−2 · (ξ − x2i−1) · (ξ − x2i)

with s2 := (ξ − x1)(ξ − x2).
4. The parties execute in parallel the MPC protocols

Jv1K← Πη1·η2
BMC


Jx1K, Jx2K, Jt1K
Jx2K, Jx4K, Jt2K

...
Jxn−1K, JxnK, Jtn

2
K


and

Jv2K← Πη2
BMC


Js2K, ξ2 − (Jx3K + Jx4K) · ξ + Jt2K, Js4K
Js4K, ξ2 − (Jx5K + Jx6K) · ξ + Jt3K, Js6K

...
Jsn−4K, ξ2 − (Jxn−3K + Jxn−2K) · ξ + Jtn

2
−1K, Jsn−2K

Jsn−2K, ξ2 − (Jxn−1K + JxnK) · ξ + Jtn
2
K, Q(ξ)


where Js2K = ξ2 − (Jx1K + Jx2K) · ξ + Jt1K.

5. The parties open v1 and v2.
6. The parties outputs Accept if v1 = 0 and v2 = 0, and Reject otherwise.

Fig. 7: An MPC protocol which verifies that the given input corresponds to a solution of a permuted kernel
problem.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see [FR22, Theorem 2]), we transform the above
MPC protocol into an interactive 7-round zero-knowledge proof of knowledge which enables to convince a
verifier that a prover knows the solution of a permuted kernel problem. The soundness error of the resulting
protocol is

ε :=
1

N
+

(
1− 1

N

)
pη1,η2

where

pη1,η2 := 1−
(

1− n

qη1

)(
1− n− 1

qη1·η2

)(
1− 1

qη1·η2

)
.
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Inputs: Each party takes a share of the following sharings as inputs: Jr1K, Js1K, Jt1K
...

JrnK, JsnK, JtnK



MPC Protocol:

1. The parties get as hints JaK, JbK and JcK where a and b are uniformly random in K and c = a · b.
2. The parties locally build the polynomials JRK and JSK such that

∀i ∈ [n],

{
JRK(γi) = JriK
JSK(γi) = JsiK

.

3. The parties get as hints Jtn+1K, . . . , Jt2n−1K where

∀i ∈ [n− 1], tn+i = (R · S)(γn+i).

4. The parties locally build the polynomial JT K such that

∀i ∈ [2n− 1], JT K(γi) = JtiK.

5. The parties get random r, ε ∈ K.
6. The parties locally set JαK = ε · JRK(r) + JaK and JβK = JSK(r) + JbK.
7. The parties open α, β ∈ K.
8. The parties locally set JvK = ε · JT K(r)− JcK + α · JbK + β · JaK− α · β.

Fig. 8: An MPC protocol Πη
BMC which verifies that, for all i ∈ [n], ri · si = ti, where all (ri, si, ti)’s belong to

a field F. Let us denote K the field extension of degree η. γ1, . . . , γ2n−1 are distinct elements of F (we assume
that |F| ≥ 2n− 1).

By repeating the protocol τ times, we get a soundness error of ετ . To obtain a soundness error of λ bits,

we can take τ =
⌈
−λ

log2 ε

⌉
. We can transform the interactive protocol into a non-interactive proof / signature

thanks to the Fiat-Shamir transform [FS87]. According to [KZ20] (adapted for 7-round proof), the security
of the resulting scheme is

costforge := min
τ1+τ2+τ3=τ

{
1

SPMF(τ, τ1, p1)
+

1

SPMF(τ − τ1, τ2, p2)
+Nτ2

}
where SPMF(τ, τ ′, p) :=

∑τ
i=τ ′

(
τ
i

)
pi(1− p)τ−i and

p1 :=
n

qη1
,

p2 := 1−
(

1− n− 1

qη1·η2

)(
1− 1

qη1·η2

)
.

The communication cost5 of the scheme (in bits) is

4λ+ τ ·

(n−m︸ ︷︷ ︸
xA

) · log2 q + µmisc + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH


with

µmisc := (
n

2
+ η1

(n
2
− 2
)

︸ ︷︷ ︸
t1,...,tn

2
,s4,...,sn−2

+
(n

2
− 1
)

+ η1

(n
2
− 2
)

︸ ︷︷ ︸
T

+ 5η1η2︸ ︷︷ ︸
a,b,c

) · log2 q

5 The formula of this cost assumes that the matrix is in standard form (as in Section 5.3). We omit this detail in
Figure 7 for the sake of simplicity.
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where λ is the security level, (η1, η2) are scheme parameters and τ is computed such that the soundness error
is of λ bits in the interactive case and such that costforge is of λ bits in the non-interactive case.

Performances and comparison. In what follows, we compare our scheme with the state of the art on the
permuted kernel instance [Beu20]:

(q, n,m) = (997, 61, 28).

We provide in Tables 9 and 10 a complete comparison of our scheme with the state of the art. To get a more
complete comparison, we include the schemes [Ste94], [Vér96] and [FJR21] which can be easily adapted for
the permuted kernel problem.

The first schemes [Ste94] and [Vér96] can achieve signature sizes of around 20 − 25 KB (let us remark
that some optimization tricks have been used to achieve these sizes). Then, using a protocol with helper,
Beullens [Beu20] reduces the sizes to around 15 KB (12−18 KB). Thanks to their MPC-in-the-Head technique
of the “shared permutation”, [FJR21] achieves similar performances. [BG22] then succeeds to remove the
helper from [FJR21] by leveraging the linearity of the permuted kernel problem and thus currently has the
best sizes from the state of the art (9 − 10 KB). Our scheme has similar signature sizes than [Beu20] and
[FJR21], and is outperformed by [BG22]. However, our scheme presents several advantages:

– instead of using permutations, our scheme works on polynomials, which is easier to securely implement;
– our scheme is more parallelizable since all the parties run computation in parallel, whilst the parties in

[FJR21] and [BG22] run computation in series;
– our scheme is more compatible with existing MPC-in-the-Head techniques. As example, our scheme is

compatible with techniques from [FR22], like fast signature verification, while the previous schemes based
on PKP were not.

Scheme Name Security Signature Size

[Ste94] (3/2)τ µdig + τ
[
1
3
(2µmask + µsmall + 2µseed) + µdig

]
[Vér96] (3/2)τ µdig + τ

[
1
3
(µmask + µptx + µsmall + 2µseed) + µdig

]
SushyFish [Beu20] εhelper(τ,M, 1

q′ )
−1 µdig + τ [µmask + µsmall + 2µseed + µdig · log2(q′) + µhelper]

[FJR21] εhelper(τ,M, 1
N

)−1 µdig + τ [µmask + µptx + µsmall + µMPCitH + µhelper]

[BG22] KZ( 1
q−1

, 1
N

) µdig + τ [µmask + µsmall + µMPCitH + µhelper]

Our scheme KZ3(p1, p2,
1
N

)
2µdig + τ [µptx + µmisc + µMPCitH]

where µmisc := ((n− 1)(η1 + 1) + η1(5η2 − 3)) log2 q

Table 9: Sizes of the signatures relying on the permuted kernel problem (restricting to the schemes using the
FS heuristics). The used notations are: µmask := n log 2q, µsmall := n log2 n, µptx := (n −m) log2 q, plus all
the notations defined in Section 3.

7 Conclusion

In this work, we studied how the MPC-in-the-Head paradigm behaves for the multivariate quadratic problem,
the MinRank problem, the rank syndrome decoding problem and the permuted kernel problem.

While a straight application of this paradigm to the permuted kernel problem seems to produce schemes
with limited performances, it enables to reduce communication cost when considering the multivariate
quadratic problem larger field as F256.

The main contribution of this work is to reduce the task of proving the low rank of a matrix to proving
that some field elements are roots of a q-polynomial. Such polynomials are MPC-friendly thanks to the
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Instance Protocol Name Variant
Parameters

Signature Size
N M τ η1 η2

q = 997
n = 61
m = 38

Stern [Ste94] - - - 219 - - 23 848 B
Véron [Vér96] - - - 219 - - 21 272 B

SushyFish [Beu20]
Fast 4 191 68 - - 18 448 B
Short 128 916 20 - - 12 145 B

[FJR21]
Fast 8 187 49 - - 15 420 B
Short 32 389 28 - - 11 947 B

[BG22]
Fast 32 - 42 - - 9 896 B
Short 256 - 31 - - 8 813 B

Our scheme
Fast 32 - 41 2 2 16 373 B
Short 256 - 24 3 2 12 816 B

Table 10: Sizes of the signatures relying on the permuted kernel problem (restricting to the schemes using
the FS heuristics). Numerical comparison.

linearity of the Frobenius endomorphism. Using this reduction, we can produce signatures relying on the
MinRank problem and on the rank syndrome decoding problem with sizes below 6 KB.

As future work, it would be interesting to build optimized implementations of those schemes to compare
their computational performances with other schemes like [FJR22].
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– Supplementary Material –

A Using Shamir’s Secret Sharings in the Proof of Knowledge for Rank SD

Let us focus on the MPC protocol described in Figure 6. This protocol checks that a vector corresponds to
a solution of a rank syndrome decoding problem, by using a q-poynomial. In what follows, we describe how
the MPC protocol behaves when replacing additive sharings by Shamir’s secret sharings over Fqm .

To share a secret value v ∈ Fqm , the (`+ 1, N)-Shamir’s secret sharing scheme proceeds as follows:

– sample r1, . . . , r` uniformly in Fqm ,

– build the polynomial P as P (X) = v +
∑`
i=1 riX

i,

– build the shares JvKi as evaluations P (ei) of P for each i ∈ {1, . . . , N}, where e1, . . . , eN are public
non-zero distinct points of Fqm .

From a sharing JvK of v, the parties can easily build a sharing of vq: they just need to compute

JvqKi ← JvKqi

for all i. However, the parties’ evaluation points of JvqK are not e1, . . . , eN , but they are eq1, . . . , e
q
N . Indeed,

we have

P (X)q =

(
v +

∑̀
i=1

riX
i

)q

= vq +
∑̀
i=1

rqiX
q·i

= vq +
∑̀
i=1

rqi (X
q)i

= P ′(Xq), where P ′ := vq +
∑̀
i=1

rqiX
i.

Thus for all i, we get

JvKqi = P (ei)
q = P ′(eqi ) = JvqKi

if P ′ is the polynomial which encodes JvqK.
Adding two sharings is possible if and only if those two sharings have the same parties’ evaluation points.

The MPC protocol described in Figure 6 satisfies this property, enabling us to replace the additive sharings
by Shamir’s secret sharings over Fqm . If we denote e1, . . . , eN the parties’ evaluation points of JxAK, then

– for all i ∈ {0, . . . , r − 1}, the parties’ evaluation points for JwiK, JaiK and JαiK are eq
i

1 , . . . , e
qi

N ,

– the parties’ evaluation points for JβK, JzK and JcK are eq
r

1 , . . . , e
qr

N .

B Proof of Knowledge for Sum-Rank SD

We want to build a zero-knowledge proof of knowledge for the sum-rank syndrome decoding problem:
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Definition 5 (Sum-Rank Syndrome Decoding Problem). Let Fqm be the finite field with qm elements.
Let (n, k, `, r) be positive integers such that k ≤ n and ` | n. We define the sum-rank weight wtSR(x) of an
element of Fnqm as

wtSR(x) :=

n/`∑
i=1

wtR(xi),

with x := (x1, . . . , xn` ). The sum-rank syndrome decoding problem with parameters (q,m, n, k, `, r) is the
following problem:

Let H, x and y be such that:

1. H is uniformly sampled from {(H ′|In−k), H ′ ∈ F(n−k)×n
qm },

2. x is uniformly sampled from {x ∈ Fnqm : wtSR(x) ≤ r},
3. y is built as y := Hx.

From (H, y), find x.

The prover wants to convince the verifier that she knows such an x, i.e. a vector x ∈ Fnqm such that
y = Hx and wtSR(x) ≤ r. To proceed, the prover will first share the secret vector x and then use an MPC
protocol which verifies that this vector satisfies the above property.

MPC Protocol. As in Section 5.3, H is in standard form and we split the secret

x :=

(
xA

y −H ′xA

)
.

We want to build an MPC protocol which takes as input (a sharing of) xA and which outputs
Accept if

∑n/`
i=1 wtR(xi) ≤ r where

 x1
...
xn
`

 :=

(
xA

y −H ′xA

)
Reject otherwise.

For each chunk xi ∈ F`qm with i ∈ [n` ], let us define the binary vector di ∈ {0, 1}` as

∀j ∈ [`], (di)j :=

{
0 if (xi)j ∈ VectFq ((xi)1, . . . , (xi)j−1)
1 otherwise

and let us remark that there exists a lower triangular matrix Ti ∈ F`×`q with the form


1 (0)
∗ 1

∗ ∗
. . .

∗ ∗ ∗ 1

 such

that

di ◦ xi = Tixi

where ◦ is the component-wise multiplication. The matrix Ti corresponds to the process of removing depen-
dencies in xi. We have

wtH(di) ≥ wtH(di ◦ xi) = wtR(di ◦ xi)

since each non-zero coordinates of di ◦ xi are independent by definition of di. Moreover, we have

wtR(di ◦ xi) = wtR(Tixi) = wtR(xi)
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since Ti is invertible. By defining d := (d1, . . . , dn` ), the MPC protocol will check that wtH(d) ≤ r, and since

n∑̀
i=1

wtR(xi) =

n∑̀
i=1

wtR(di ◦ xi) ≤
n∑̀
i=1

wtH(di) = wtH(d)

the desired inequality would be checked. In order to check wtH(d) ≤ w, we will use the protocol of [FJR22].
To sum up, to check the weight inequality, the MPC protocol takes as input the vectors d1 . . . , dn` and

the matrices T1, . . . , Tn` (in addition to xA) and proceeds as follows:

1. The parties locally build JxK as (
JxAK

y −H ′JxAK

)
.

2. The parties execute the [FJR22]’s protocol to check that wtH(d) ≤ r.
3. For i ∈ {1, . . . , n` }, the parties check that di ◦ xi = Tixi as follows:

– The parties locally set JDiK ∈ F`×`q as a diagonal matrix for which the diagonal is the vector JdiK.
– The parties executes the protocol Πη

MM to check that (Di − Ti)xi = 0.

The MPC protocol is completely described in Figure 9.

Proof of Knowledge. Using the MPC-in-the-Head paradigm (see Section 2.1), we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince a verifier that a
prover knows the solution of a sum-rank syndrome decoding problem. The soundness error of the resulting
protocol is

ε :=
1

N
+

(
1− 1

N

)
max

(
1

qη
, δη1,η2

)
where δη1,η2 is the false positive rate of [FJR22]. By repeating the protocol τ times, we get a soundness error

of ετ . To obtain a soundness error of λ bits, we can take τ =
⌈
−λ

log2 ε

⌉
. We can transform the interactive

protocol into a non-interactive proof / signature thanks to the Fiat-Shamir transform [FS87]. According
to [KZ20], the security of the resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+Nτ2

}

where p := max
(

1
qη , δη1,η2

)
.

The communication cost of the scheme (in bits) is

4λ+ τ · ((k ·m︸ ︷︷ ︸
xA

+
n

`

(`− 1)`

2︸ ︷︷ ︸
T1,...

+
n

`
(`− 1)︸ ︷︷ ︸
d1,...

+
n

`
(η · `) + η ·min{m, `− 1}︸ ︷︷ ︸

c,α1,...

+

2rη1 + 3η1η2︸ ︷︷ ︸
SDitH

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH

)

where λ is the security level, r is a scheme parameter and τ is computed such that the soundness error is of
λ bits in the interactive case and such that costforge is of λ bits in the non-interactive case.
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Public values: H = (H ′|In−k) ∈ F(n−k)×n
qm and y ∈ Fn−kqm .

Inputs: Each party takes a share of the following sharings as inputs:

– JxAK where x ∈ Fkqm ,
– JdK, JT1K, . . . , JTn

`
K where d ∈ {0, 1}n and T1 . . . , Tn

`
∈ F`×`q such that

∀i ∈ {1, . . . , n
`
}, di ◦ xi = Tixi

– Ja1K, . . . , Jan
`
K where a1, . . . , an

`
∈ Fη×`q .

– JcK where c ∈ Fηqm such that c =
∑n
i=1 aixi

– JQK where Q =
∏
di 6=0(X − γi) ∈ Fqη1 [X]

– JP K where P ∈ Fqη1 [X] satisfies SQ = FP with F (X) :=
∏
i∈[n](X − γi) and S the unique polynomial of degree

n− 1 such that S(γi) = di for all i ∈ [n].
– Ja′K, Jb′K, Jc′K where a′, b′, c′ ∈ Fqη1η2 such that c′ = a′ · b′.

JT K where T ∈ Fn×wq and JRK where R ∈ Fw×wmq , such that X = TR where X is the matrix form of x.

MPC Protocol:

1. The parties get random Σ1, . . . , Σn
`
∈ Fη×`q .

2. The parties get random r, ε′ ∈ Fqη1η2 .

3. The parties locally compute JSK by interpolation such that ∀j, JS(γi)K = JdjK ∈ Fq.
4. The parties locally compute JS(r)K, JQ(r)K and JP (r)K.
5. The parties locally set Jα′K = ε′ · JQ(r)K + Ja′K and Jβ′K = JS(r)K + Jb′K.
6. The parties open α′ and β′.
7. The parties locally set Jv′K = ε′ · J(F · P )(r)K− Jc′K + α′ · Jb′K + β′ · Ja′K− α′ · β′.

8. The parties locally set JxBK = y −H ′JxAK.
9. The parties locally set JxK = (JxAK, JxBK).

10. For i ∈ {1, . . . , n
`
},

– The parties locally write JdiK as a diagonal matrix JDiK ∈ F`×`q .
– The parties locally set JαiK = Σi(JDiK− JTiK) + JaiK.
– The parties open αi ∈ Fη×`q .

11. The parties locally set JvK =
∑n

`
i=1 αiJxiK− JcK.

12. The parties outputs Accept if v = 0 and v′ = 0, and Reject otherwise.

Fig. 9: An MPC Protocol that verifies that the given input corresponds to a solution of a sum-rank syndrome
decoding problem. γ1, . . . , γn are distinct points of Fqη1
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