Obfuscation of Evasive Algebraic Set
Membership

Steven D. Galbraith and Trey Li
s.galbraith@auckland.ac.nz and treyquantum@gmail.com

Abstract. Canetti, Rothblum, and Varia showed how to obfuscate mem-
bership testing in a hyperplane over a finite field of exponentially large
prime order, assuming the membership predicate is evasive and the under
a modified DDH assumption. Barak, Bitansky, Canetti, Kalai, Paneth,
and Sahai extended their work from hyperplanes to hypersurfaces (of
bounded degree), assuming multi-linear maps.

In this paper we give much more general obfuscation tools that allow to
obfuscate evasive membership testing in arbitrary algebraic sets (includ-
ing projective sets) over finite fields of arbitrary (prime power) order.
We give two schemes and prove input-hiding security based on relatively
standard assumptions. The first scheme is based on the preimage resis-
tance property of cryptographic hash functions; and the second scheme
is based on the hardness assumptions required for small superset ob-
fuscation. We also introduce a new security notion called span-hiding,
and prove that the second scheme achieves span-hiding assuming small
superset obfuscation.

One special case of algebraic sets over finite fields is boolean polynomi-
als, which means our methods can be applied to obfuscate any evasive
function defined by a polynomial-size collection of boolean polynomials.
As a corollary, we obtain an input-hiding obfuscator for evasive functions
defined by circuits in NC°.

1 Introduction

Let ¢ be a prime and let f1,..., fn, € Fy[z1,...,2,] be polynomials that can be
efficiently evaluated. More precisely, we assume that there are at most ¢ monomi-
als in total among the polynomials, and that the monomials can be evaluated by
polynomially many (in log(g), n, m, ¢) squarings and multiplications. Consider
the set S of all points in Fy that are solutions to all m polynomials. This is an
(affine) algebraic set. For large ¢, the dimension of the (irreducible components
of the) algebraic set is typically n — m and the number of solutions is of order
q"~™. In the special case where m = 1 and the polynomials are linear, the set
of solutions is an affine space of codimension 1 and has ¢”~! points.

There are many different possible sets of polynomials that generate the same
solution set. Precisely, there is an ideal corresponding to the algebraic set, and
any set of polynomials that generates the ideal also gives rise to the same solution
set.

We are interested in obfuscating the predicate that takes such a system of
polynomial equations, and a point P € Fy, and returns 1 if and only if f;(P) =0
for all 1 <4 < m. In other words, we are obfuscating the membership predicate
about whether P € S. The goal of obfuscation is to “hide” the set S, so that it
is hard for an attacker to learn properties of S or to find elements of S.

If an attacker knows which monomials appear in the system of polynomials,
and if they can efficiently sample points P that lie in the set of solutions, then
they can use linear algebra to determine the ideal (see Proposition 1). Hence, the
obfuscation problem is only interesting when the predicate is evasive, meaning
that a random point satisfies the predicate with negligible probability. In other
words, we are forced to focus on the evasive setting.

The probability that a random point P € F} satisfies the system is #S/q"
which is typically approximately 1/¢™. Hence, to ensure the system is evasive,
a necessary condition is

qm > 2, (1)

where) is the security parameter!. A more careful analysis of evasiveness is
given in Section 3.

We also remark that when #S is small (e.g., polynomial in the parameters
of the system) and if one can efficiently compute the elements of S, then one can
obfuscate membership of S using polynomially many obfuscated point functions.
In other words, for each @ € S we obfuscate the predicate “is P = Q7. For
this reason, we focus in this paper on the cases where #S is large. Precisely, we
assume

q" " = s(N), (2)
where s(A) is some function that grows faster than polynomial (i.e. super-
polynomial).

Some particular cases of interest are m = 1,q > 228 n > 2.0 > 3; m =
2,g>2%0>n>3 m=128¢=2,n>256,¢> 300.

Special cases of this obfuscation problem have been considered in the lit-
erature. Canetti, Rothblum, and Varia [10] gave a solution to the special case
m = 1, linear homogeneous polynomials, and ¢ being prime and large. They
need q > 22* since they rely on the difficulty of the (modified) decision Diffie-
Hellman problem in a group of order ¢. Barak, Bitansky, Canetti, Kalai, Paneth,
and Sahai (see Section 3 of [1]) extended the work of [10] from hyperplanes to
hypersurfaces. So they still have l = 1 and ¢ being prime, but allow more
general polynomials than linear. Their solution uses a multi-linear map (graded
encoding scheme), which is a very strong assumption.

In this paper we consider the general case of the problem, and provide a
solution that is applicable for a much wider range of parameters than previous

! Here we use 1/2* to represent “negligible” for the convenience of parameter analysis
in Section 5.2. In theory, a negligible function is any function of the form 1/s(\)
with s a super-polynomial.

solutions. We handle algebraic sets over finite fields IF, of arbitrary prime power
order ¢ > 2. In particular, we explain how to approach the problem of projective
algebraic sets (homogeneous polynomials).

We stress that the problem of obfuscating membership of algebraic systems
is fundamental, as a wide range of statements can be expressed as solutions to
polynomial systems. Some applications for the case of large prime ¢ are men-
tioned in [10], however we believe the cases with small ¢, especially ¢ = 2, will
be more useful in practice since they include boolean formulas. For example,
any circuit in the class NCY of circuits with constant depth and fan-in 2 can be
represented as a polynomial in Fy[zy,. .., z,] of degree n for some constant C.
Hence our methods can be applied to obfuscate any evasive function defined by
a polynomial number of circuits in NC?. But also there are other useful circuits
that can be represented by boolean polynomials with relatively few monomials.

There are several security notions for obfuscation of evasive functions. The
most popular one is virtual black-box (VBB) security [2], as well as its various
variants [14,1,19]. Tt is informally defined as: an attacker given the obfuscated
program cannot compute any predicate of the un-obfuscated program (circuit),
apart from those predicates that can be learned from oracle access to the pro-
gram. Canetti, Rothblum, and Varia [10] and Barak, Bitansky, Canetti, Kalai,
Paneth, and Sahai [1] prove VBB security for their obfuscators. Another no-
tion is input-hiding security [1], and it is often the most relevant security prop-
erty in many applications, such as password checks (point function obfuscation)
and biometric authentication (fuzzy Hamming distance matching obfuscation).
Input-hiding security is informally defined as: an attacker given the obfuscated
program cannot efficiently compute an input that is accepted by the program.
Relations between VBB and input-hiding for evasive functions are discussed in
Section 2.2 of [1]. In general, input-hiding and VBB are incomparable, but they
are equivalent in some special cases. For evasive functions it is arguably more
relevant to focus on input-hiding security, and this is what we do in our paper.

1.1 Owur contribution

We give two solutions to the problem of obfuscating membership of algebraic sets.
The first solution is based on hash functions, and is appropriate for systems of
polynomials with nonzero constant terms (hence this approach cannot be used
for projective algebraic sets). In fact, the affine case of our problem is a special
case of “compute-and-compare” obfuscation [19,16]. Our solution is much more
efficient than applying general techniques such as in [19].

Compared with the general methods, our hashed-based approach for affine
algebraic set membership obfuscation is simple and practical. In the case of
hyperplane membership, our hashed-based obfuscation works for a much wider
range of parameters than [10]. Specifically, [10] requires ¢ > 22* for A-bit security,
while we only require g > 2*.

Our second solution handles both affine and projective cases. It is based
on providing dummy polynomial equations and hiding the “real” polynomials
among the dummy ones. Beyond the hashed-based solution, this solution further

hides the span of the coefficient matrix, which stores the information of the shape
of the geometry body.

We briefly sketch the two solutions here.

Let My,...,M; € Fy[zq,...,z,] be the non-constant monomials. For each
1 <1 < m write

L
fi(l‘l,...,l'n) :ZAl’ij — bi
Jj=1

where A; ;,b; € F,. Then we can represent the system of polynomials as the
linear system AM = b over Fy, where A is the m x £ matrix of the A; ;, M is the
length ¢ column vector of the M, and b is the length m column vector of the b;.
To check if a point P = (z1,...,2,) € [y is a solution to the system, one can
evaluate the vector of monomials M (z) at the point P (this is a polynomial-time
computation by definition) and check if AM(P) = b.

To obfuscate this we simply publish A and h = H(b), where H is a cryp-
tographic hash function. To compute the membership predicate we compute
H(AM(x)) and check if this is equal to h. Since b is a vector of length m of
elements in F,, the number of possible b is ¢". By the evasive requirement we
have ¢™ > 2* and so it is not possible to try all values for b to reverse-engineer
the system. It follows that this is a plausible construction of a secure obfuscator.

In our full construction we go further and randomize the system as (RA)M =
(Rb) where R is a random invertible m xm matrix over Fy. This is necessary when
b is sampled from a non-uniform distribution. Hence the obfuscated program is
the matrix RA and the hash value h = H(Rb).

As we explain in Section 4 this construction gives an efficient obfuscator
that provides input-hiding security whenever the distribution of instances is
sufficiently varied. However it cannot handle projective sets and it looks at first
sight like it reveals too much information about the original function because
the span of the coefficient matrix A is published. This motivates our second
construction of an obfuscator.

Our second construction is based on the functionality of small superset ob-
fuscation. A small superset function takes as input a set Y and compares it
with a reference set X: If X C Y and if Y is “small” (namely |Y| < ¢ for some
threshold t), then the function accepts Y. Equivalently let x € {0,1}"V and let
0 <t < N be a threshold. The small superset function takes as input y € {0, 1}V
and outputs 1 if and only if y — 2 € {0,1}" and |y| < t, where |y| denotes the
Hamming weight of y.

Obfuscators for small superset functions are known [3,11].

The obfuscator for the system AM (z) = b is the following. Generate k ran-
dom equations (A’,b") and then mix the k¥ dummy equations with the m real
equations. Let s be a length N := m + k binary string of Hamming weight m
that indicates which rows are the “real” equations. The obfuscated program is
the (m+k) x (¢4 1) augmented matrix (A*,b*) and the obfuscation of the small
superset function fs.

To evaluate the program one takes the point P, computes the corresponding
monomial vector M (z), computes A*M (z) and determines which rows equal b}

for 1 <14 < m + k. Indicate those rows using a binary string s’. If P € S then
the point will satisfy the real rows and may also satisfy a small number of the
dummy rows. It follows that s’ is a small superset of s and so is accepted by the
obfuscated small superset function, for a suitable set of parameters (such that
t > m+ k/q). On the other hand, if the point P does not satisfy one of the
polynomials f; then the corresponding equations is not satisfied and s’ is not
accepted. One cannot break the obfuscator by simply solving A*M = b*; see
Section 5.1 for explanation.

The intuition for this obfuscator is that, since the obfuscation of fs hides s,
one cannot tell which of the m 4 k rows are the real polynomials and which are
the dummy ones. There are ("/*) possible subsets to choose from. So if m is
not too small and k is chosen large enough, then it is plausible that this is input-
hiding, since finding an accepting input would tremendously reduce the search
space and lead to an attack to the input-hiding of the small superset obfuscator.

1.2 Organization

Section 2 gives mathematical preliminaries. Section 3 defines algebraic set mem-
bership functions and evasive algebraic set membership function families. Sec-
tion 4 gives a hash-function-based obfuscator for affine algebraic set membership
functions. Section 5 gives an obfuscator for both affine and projective algebraic
set membership functions based on dummy equations and small superset obfus-
cation.

2 Preliminaries

2.1 Algebraic Geometry

Affine Algebraic Geometry Let k be an algebraic closed field. Let k[x1, . . ., 2]
be the polynomial ring in n variables over k. The n-dimensional affine space over
k is the set of n-tuples A} = k™ = {(x1,...,2y) 1 z; € k}.

Let J be an ideal of k[x1, ..., z,]. We denote V(J) to be the set of common
roots € A} of the polynomials in J. Let X be a subset of A}. We denote I(X)
to be the set of polynomials f € k[x1,...,z,] vanish everywhere in X.

A subset X C A} is an algebraic set (also called algebraic variety) if X =
V(I) for some ideal I C k[z1,...,2,]. Every ideal I C k[z1,...,z,] is finitely
generated, denoted I = (f1,..., fm), where f; € I. Every algebraic set is finitely
generated, denoted V(I) =V (f1,..., fm) =V (fi)N--- 0V (fm)-

An algebraic set X is irreducible if X = X; U X5 implies either X = X3
or X = X5, where X; and X, are algebraic sets. Every algebraic set is a finite
union of irreducible algebraic sets. There is a notion of dimension that can be
associated to an irreducible algebraic set. An irreducible algebraic set defined by
m < n equations in k[x1,...,z,] will have dimension at least n — m. In general,
the dimension is equal to m — m, but it can be larger when the system does
not form a complete intersection. When ¢ is large, an irreducible algebraic set

of dimension d will have approximately ¢¢ points; for small ¢ estimations of the
size of the solution set are more subtle and we do not go into this here.
One can also study algebraic sets over finite fields Fy, and most of the above
definitions also apply when working over a field that is not algebraically closed.
To give an intuition for why random systems of polynomial equations can
be evasive (namely the size of the zero set is negligible compared to the whole
variety), we present the following simple result.

Lemma 1. Let 2 < m < n < { and let q be such that ¢~ > 2*. Fiz a set of {
monomials in Fylz1,. .., x,] of degree bounded by a polynomial. Consider the dis-
tribution on sets of m polynomials defined by uniformly sampling m polynomials
fi, s fm € Fylza, ..., zn] with monomials in the fized set. Then with over-
whelming probability there is not an irreduducible component of V(f1,..., fm) of
dimension n — 1.

Proof. Let X = V(f1,..., fm) and suppose X has an irreduducible component
Z of dimension n — 1. Since Z has codimension 1 it is of the form V' (g) for some
irreducible polynomial g € Fy[z1,...,2,]. Since Z C X we have I(X) C I(Z),
and so f; € I(Z) for all i. In other words, g | f; for all 1.

Consider choosing f1 uniformly. Then f; has polynomially many irreducible
factors g. For each such g, consider choosing the remaining polynomials f;. If
fi is chosen uniformly then the probability that ¢ | f; is at most 1/q. It follows
that g | f; for all i occurs with probability at most 1/¢™~1 < 1/2. O

Projective Algebraic Geometry The n-dimensional projective space over k
is the set of nonzero (n+1)-tuples P{ = k"T1\{0}/ ~, where ~ is the equivalence
relation given by (zo,...,zn) ~ (axo,...,ax,) for a € k\{0}.

An ideal I C k[zg,...,z,] is homogeneous if it is generated by homogeneous
polynomials. We define V' (J) and I(X) similar to the affine case, with the only
difference that the ideals here are homogeneous ideals. Projective algebraic sets
and ideals satisfy similar properties as described in the affine case.

2.2 Input-Hiding Obfuscation

To introduce obfuscation, we use circuits to represent functions so that it is
convenient to represent the time complexity of the function by the circuit size.
By a circuit we always mean a circuit of minimal size that computes a specified
function. The size complexity of a circuit of minimal size is polynomial in the
time complexity of the function it computes.

We call auxiliary information about a specific circuit local auzxiliary infor-
mation and auxiliary information about the entire circuit family global auziliary
information. Local and global informations are also known as dependent and
independent auxiliary informations, respectively.

The intuition of input-hiding is that given the obfuscated Boolean function,
it should be inefficient for any PPT algorithm to find an element of the fiber of
1. We call elements of the fiber of 1 of a Boolean function accepting inputs.

Definition 1 (Input-Hiding Obfuscator [1]). Let C = {C)}en be a Boolean
cireuit collection and D be a class of distribution ensembles D = { Dy} xen, where
Dy, is a distribution on Cy. A probabilistic polynomial time (PPT) algorithm O
is an input-hiding obfuscator for the family C and the distribution D if the fol-
lowing three conditions are met.

1. Approzimate Functionality Preserving: There is some negligible function ()
such that for all n € N and for all circuits C € C with input size n we have that
for all x such that C(x) = 1:

PriO(C)(z) = 1] = 1 — p(N),
and for all x such that C(x) = 0:

PrlO(C)(z) = 0] = 1 = pu(}),
where the probability is over the coin tosses of O.

2. Polynomial Slowdown: For every n, every circuit C € C, and every possible
sequence of coin tosses for O, there exists a polynomial p such that the circuit
O(C) runs in time at most p(|C|), i.e., |O(C)| < p(|C|), where |C| denotes the
size of the circuit C.

3. Input-hiding: There exists a negligible function p(\) such that for every PPT
adversary A, for every X € N and for every global auxiliary information o €

{0, 13PN gbout C,
Pr [C(A(O(C), @) = 1] < u(N),

C+«+Dy

where the probability is taken over the random sampling of Dy and the coin
tosses of A and O.

Note that we relaxed the functionality preserving property to the approximate-
functionality-preserving property, which requires that a good input will be cor-
rectly accepted by the obfuscated function with overwhelming probability, also a
bad input will be correctly rejected with overwhelming probability. Relaxed func-
tionality preservations have been considered in numerous literatures [15,10,7,4].

Also note that input-hiding is only defined for evasive functions families be-
cause a function sampled from a non-evasive distribution always leaks accepting
inputs.

Definition 2 (Evasive Circuit Collection [1]). A collection of circuits C =
{Cx}en, where Cy takes n(\)-bit input, is evasive if there exists a negligible
function u(\) such that for all A € N and all x € {0,1}™N),

where the probability is taken over the random sampling of C.

Previous obfuscated evasive functions include point functions [9,18], conjunc-

tions [8,6,4], fuzzy Hamming distance matching functions [12], small superset
functions [3,11], big subset functions [5,11], hyperplane membership functions
[10], finite automatas [13], compute-and-compare functions [19,16], etc.

2.3 Small Superset Function

Small superset function obfuscation will be used in our construction. Instances
of the small superset problem are parameterized by a pair of integers (N, t),
which themselves are functions of a security parameter \.

Definition 3 (Small Superset Function, SSF [3,11]). Let € {0,1}" be
a characteristic vector of a subset of {1,...,N} andt € N with 0 <t < N be
a threshold indicating “small”. A small superset function with respect to x is a
function fi ¢ 2 {0,1}N — {0,1} such that f,.(y) = 1 if and only if y—z € {0, 1}V
and |y| < t.

We will only consider evasive small superset functions. To avoid simply guess-
ing an accepting input one needs (]X) = (NZY t) to be super-polynomial in A. Ap-
proximating (]Z) > (N/t)t > 2* it follows that tlog,(N/t) > A. For simplicity
we will assume the very conservative choice A < t < N — A. Example parameters
are N =4\ and t = 2.1)\.

We assume the existence of an input-hiding secure obfuscator for small su-
perset functions that works for all parameters (IV,t) where N is polynomial in
the security parameter A and A < ¢ < N — A. The work of Bartusek, Carmer,
Jain, Jin, Lepoint, Ma, Malkin, Malozemoff and Raykova [3] provides a general
solution to obfuscation of SSF for all parameters in this range based on compu-
tational assumptions in abelian groups (their security proofs are in the generic
group model).

3 Function Definition

In this paper we consider algebraic sets over finite fields I, with ¢ a prime power.
The algebraic closure of I, is the union of the finite fields Fy» for n € N. We
define affine and projective algebraic set membership functions in the following.

Definition 4 (Affine Algebraic Set Membership Function, a-ASMF).
Let Fylz1,...,z,] be a polynomial ring over a finite field F, of order q. Let
M,...,M; € Fylzq,...,x,) be monomials that can be evaluated in polynomial

time (i.e., with bounded degree) and assume € > n. Let (A,b) € F;nx(eﬂ) be the
augmented matriz of the following system of equations over F,:

ay 1My + -+ a1 oMy = by,

am,lMl + -+ am,ZMZ = bm

An affine algebraic set membership function is a Boolean function fap : Fy —
{0,1} such that fau(xz) =1 if and only if = is a solution of the equations.

Definition 5 (Projective Algebraic Set Membership Function, p-ASMF).
Let Fylxo,...,z,] be a polynomial ring over a finite field F, of order q. Let
Mi,....,M; € Fylxo,...,z,] be fized monomials of the same total degree that
can be evaluated in polynomial time, and assume £ > n. Let A € IF;”X[be the
coefficient matriz of the following system of homogeneous equations over F:

ay My +---+ay My =0,

am71M1 —+ e+ am’gM[=0.

A projective algebraic set membership function is a Boolean function fa : Fy —
{0,1} such that fa(x) =1 if and only if x is a nonzero root of the equations.

Note that p-ASMF only accepts nonzero roots because 0 is not a point in
projective space.

Evasive ASMF Family We show in the following that an algebraic set mem-
bership function can be learned if the proportion of accepting inputs is high.

Proposition 1. Let fa, be an algebraic set membership function and V' be its
algebraic set. If the proportion of accepting inputs of fap is 1/p(N\) for some
polynomial p, then there exists a PPT adversary A which finds a basis of the
ideal I(V) given oracle access to fap.

Proof. Let m’ be the row rank of (A, b), which can be guessed. We define A as fol-
lows. A samples random points x from Fy and queries the oracle for fa; until it
has collected £ —m/ linearly independent vectors of the form (M (x), ..., M(x))
corresponding to accepting inputs x. This requires polynomially-many queries.
A then solves for the orthogonal complement (A’,b") of the £ —m/’ vectors, which
can be done in polynomial-time. We have that span(A,b) = span(A’,b’). Hence
(A’,b') is the coefficient matrix of a set of generators of I(V). O

By Proposition 1, non-evasive ASMF are learnable. Hence it is only interest-
ing to obfuscate evasive ASMF. We define evasive a-ASMF and p-ASMF families
in the following. They follow from Definition 2 immediately.

Definition 6 (Evasive a-ASMF Family). Let A be the security parameter.

Let m, ¢ € N with m < £ be polynomial in X. Let C = {Cpy ¢} een with Cpp =

{fA,b}A pepmx e+ be a collection of a-ASMF functions. We say C is evasive if
’ q

there exists a negligible function pu(X\) such that for every x € Ty and for every
AeEN,

Pr [fap(z) =1] < p(N). (3)

AT X D

In general, evasiveness is related to the dimensions of the irreducible factors
of the algebraic set.

Example 1. Fix a prime ¢ and ring Fg[xq,. .., z,]. Consider the class C of alge-
braic sets parameterized by (ci,...,c,) € F} defining the polynomials
f1 = xl(l‘l — Cl),fg = 3;‘1(@‘2 — CQ), .o 7fn = xl(xn — Cn).

This is a system of n polynomials in n variables. The algebraic set is the union
of the two irreducible algebraic sets V(z1) and V(21 — 1,20 —ca, ..., Zp—Cp) =
{(c1,...,¢n)}. The set V(z1) has dimension n— 1 and membership is not evasive
unless ¢ is exponentially large, while the other component has dimension 0 and
corresponds to a point function (which is evasive as long as ¢" > 2*).

Hence, to be evasive we will need all irreducible components to have relatively
small dimension. This also applies in the projective case.

Definition 7 (Evasive p-ASMF Family). Let A be the security parameter.
Let m,¢ € N with m < £ be polynomial in X. Let C = {Cpy ¢} een with Cp,p =
{fA}Ae]F’”” be a collection of p-ASMF functions. We say C is evasive if there

exists a negligible function j1(\) such that for every x € Fy and for every X € N,

Pr [fa(e) =1] < u(). (4)

m X £
A+TFq

Parameters For Evasive Function Family In the affine case, for an z € Fy,
let M = (My(x),...,M(z)) € F; be the vector with 2 plugged in. We assume
M is nonzero (this condition is violated in Example 1 above). The left kernel of
the vector (M, —1) has dimension £ hence it is of order ¢*. Any m vectors in the
kernel form a matrix (A,b) such that AM = b. So the number of m x (¢ + 1)
matrices (A,b) such that AM = b is ¢"™*. Also the number of all m x (£ + 1)
matrices is g™+,

Suppose we are generating matrices A uniformly for our family. For evasive-
ness, we want the probability that a uniformly sampled matrix (A, b) +]FZ”X (+1)
satisfies AM = b to be

P [fam)=1=—Lo =L o1 5)
(apycEmx @A gnE+D T gm = 9%
Similarly, the requirement for the projective case is
L st =11 = qn:;l) - =<5 (6)
Both Inequality (5) and (6) give
q" > 2N (7)

10

Suppose A = 128, three typical choices of m are as follows: if ¢ = 2 then
we require m > 128; if ¢ = 2% then we require m > 2; if ¢ = 2'?® then
m can be as small as 1. In the last case the problem reduces to hypersurface
membership [1], of which a special case is hyperplane membership [10]. For
hyperplane membership, an advantage of our hashed-based obfuscation over the
DLP-based obfuscation in [10] is that our scheme works for a much wider range
of parameters than [10] which requires a prime modulus ¢ > 225 for 128-bit
security due to the O(,/q) complexity of generic DLP solving algorithms such as
the Baby-Step Giant-Step algorithm and Pollard’s rho algorithm [17], while our
scheme works for arbitrary prime power modulus ¢ > 2!2® for 128-bit security.

Inequality (7) (i.e. m > A/log,q) gives the full generality of the ASMF

obfuscation problem one can solve. In this paper we solve it in approximately
full generality, i.e., m > A/ log, q.

4 Hashed-Based Obfuscation for Affine Algebraic Sets

Let {fap} be a family of a-ASMF such that no column of (4,b) is a zero vec-
tor with overwhelming probability (in particular, b # 0). We obfuscate fa
by hashing b. Let H be a cryptographic hash function (collision and preimage
resistent) with A-bit output. Given a basis matrix (A4,b) € FTX(€+1), the ob-
fuscator publishes (A, H(b)) = (RA, H(Rb)) as the obfuscated function, where
R is a uniformly random m x m matrix which transforms the matrix (A,b) to
(RA, Rb). To evaluate with an input z € Fy, it computes AM and returns the
truth value of H(AM) = H(b), where M is the monomial vector with = plugged
in.

Let GL,,(F,) be the set of invertible m x m matrices with entries in F,. The
obfuscator and the evaluation are given in Algorithms 1 and 2.

Algorithm 1 a-ASMF Obfuscator

Input: X\, q,/,meN, Ajbe IF;”X(HI)

Output: (A € F"™** h € Z)
1: sample R + GL.(F,) and compute (A, l_)) = R(A,b)
2: hash b as h = H(b)
3: return (4, h)

The evaluation is as follows, where M denotes a monomial vector and M (x)
denotes M with a concrete point z € Fy plugged in.

11

Algorithm 2 a-ASMF Evaluation (with embedded data M, A, h)
Input: =z € Fy

Output: 0 or 1

1: compute M (x)

2: compute AM () and hash it as b’ = H(AM(z))

3: return truth value of b’ = h

4.1 Security Proofs
We start by remarking that b = Rb is uniform as long as b is nonzero.

Lemma 2. Let C be any distribution on vectors b € Fy* — {0}. Let D be a
distribution that works as the following: it samples R < G Ly, (Fy) and b < C
and outputs b = Rb. Then D is the uniform distribution on Fy* — {(0,0,...,0)}.

Proof. We want to prove that (1) for every pair of nonzero vectors b, ¢ € Fy* —{0}
there exists an invertible matrix R € GL,,(F,) such that Rb = ¢; and (2) for
every b € F" — {0}, the numbers of invertible matrices R € G L, (IF,) such that
Rb = c are the same for all ¢ € GL,,(F,).

To prove (1), extend b to a basis {b,ba,...,bn} for Fy'; extend c to a basis
{e,e2,..; e} for . Define the linear map L by L(b) = ¢ and L(b;) = ¢;. Then
L is a linear map which maps a basis to a basis, so it is invertible.

To prove (2) define the stabiliser Stab(b) = {S € GL,,(F,) : Sb = b}. Let
k = #Stab(b) be the size of the stabilizer. If Rb = ¢ and S € Stab(b) then
(RS)b = c. So we always have at least k matrices mapping b to ¢. Conversely,
let R, Ry be invertible matrices mapping b to ¢. Then R;lRl maps b to b, so
Ry 'Ry € Stab(b). But this means Ry = RyS for some S € Stab(b). O

Theorem 1. The obfuscator O given by Algorithm 1 is input-hiding on uni-
form evasive affine algebraic set membership functions assuming preimage resis-
tance of the hash function H.

Proof. (1)Approximate-Functionality-Preserving. First notice that RAM =
Rb and AM = b have the same set of solutions since R is invertible.

Again, if RAM (z) = Rb then H(RAM (x)) = H(Rb). Conversely, if H(RA
M (z)) = H(Rb) then up to negligible probability of hash collisions we have that
RAM (z) = Rb.

Therefore with overwhelming probability accepting inputs and rejecting in-
puts are correctly accepted and correctly rejected respectively by Algorithm 2.

(2) Polynomial Slowdown. Algorithm 2 evaluates m polynomials of bounded
degree and computes a hash of the resulting vector AM, which is efficient by
the definition of ASMF and the efficiency of the hash function. Hence the entire
algorithm takes polynomial time thus has polynomial slowdown compared to the
original function.

12

(3) Input-Hiding. Let A be any PPT algorithm that breaks input-hiding of
the a-ASMF obfuscator O4 given by Algorithm 1 with probability u(\). We con-
struct an algorithm B against preimage resistance of H with success probability
v(A) and show that v(\) = p(X).

Algorithm B takes as input a uniformly sampled instance h € {0,1}*. Asso-
ciated with A are parameters (n,m,q,{) for the ASMF. The hash function has
A-bit output, and by equation (7) ¢"™ > 2*. Hence, by Lemma 2, with over-
whelming probability there exists a b = Rb € Fy such that h = H (b), for some
uniform invertible matrix R.

Algorithm B samples a sequence M (z) of £ monomials in F,[z1,...,2,] and a
random m x £ matrix A without zero columns and calls A with (A, h). Note that
A is of the form RA, where R is the same matrix in b = Rb and A is sampled
from the ASMF distribution. Such a pair (A4,b) defines an algebraic set which
is non-empty with high (at least noticeable) probability £(A) since m < n, and
so solutions = € Fy exist. Then A will return, with probability u(A), a solution
x € F such that H(AM(z)) = h. It follows that AM(z) is a preimage of h
under H.

We can see that the probability that B breaks preimage resistance of H is £
times the probability that A breaks input-hiding of O4. Le., v(A) = £(N) - u(N).
By the preimage resistance property of H, v(A) is negligible. Hence u()) is
negligible. Also note that A4 is an arbitrary PPT algorithm against the input-
hiding of O4. Hence Oy4 is input-hiding. a

The advantage of this obfuscator is its simplicity and efficiency. This obfusca-
tor does not handle p-ASMF, because that case has b = 0. Also, the obfuscated
program reveals the (row) span of the matrix A and so is not VBB secure.

5 Obfuscation Based on Dummy Equations

In this section we give an obfuscator for both a-ASMF and p-ASMF for certain
ranges of parameters (essentially, when m is large enough; which is the case of
interest for evasive boolean formulas). This obfuscator hides the span of A. We
explain our techniques via the affine case. The projective case is similar.

We obfuscate an a-ASMF f4; as follows. As before, we first perform a basis
randomization on (4,b) to get (A,b) = (RA, Rb). We then sample k& random
rows (A',0')]F],;X(Hl) for a suitably chosen & (see Section 5.2). We shuffle the
m + k rows of (A,b) and (A’,b’) and denote the resulting matrix as (A*,b*) €
RlmAR) X (¢+1)

g .

Let s = (81,...,Zm+k) € {0,1}F* be the characteristic vector indicating
the positions of the real rows, i.e., s; = 1 if and only if the i-th row of (A*,b*)
is a row of (A4,b), for alli € {1,...,m+k}. Let f; be an SSF on {0, 1}™** with
the “small” threshold m + k/q < t < m + k, where m + k/q is the expected
number of rows in (A*, b*) satisfied by an arbitrary point in the algebraic set.

Let Oggp be an input-hiding SSF obfuscator (e.g., the obfuscator in [3] or in
[11]). We publish (A*,b*, Ossr(fs)) as the obfuscated function. The details are
given in Algorithm 3.

13

Algorithm 3 ASMF Obfuscator

Input: A, ¢, ¢,m € N with ¢ > 2>™ A b e Fy* D

Output: (A" € B P b € By™) Ogse (£.)

: compute a such that 2™ < (14 a)/(1 +a/q+ o(1)) < g
choose k = am, t = [(1 +a/q+ o(1))m]

sample R < GL,(F,) and compute (A,b) = R(A,b)

sample A’ « FF**

if b # 0 then sample b’ « F} else set b’ =0

randomly permute the rows of ((4,b), (A’,b'))7 to get (A*,b")
create s = (s1,...,8mk) < {0,1}™ "% such that s; = 1 if and only if (4%,b%); =
(A,b); for some j € {1...,m}, forallic {1,...,m + k}
obfuscate the SSF fs (with the “small” threshold t) as Ossr(fs)
9: return (A*,b*, Ossr(fs))

®

Note that for p-ASMF where b = 0, the dummy constant vector b’ is set 0.
This is simply because if otherwise we sample " uniformly then only the dummy
rows (Af,bF) can have b} = 1 and the attacker can immediately spot them.

1771
To evaluate the obfuscated paper on an input z: compute the monomial
vector M (x), then evaluate all m + k equations on M and define a characteristic
vector s' = (s},...,8,,,) € {0,1}* such that s} = 1 if and only if M
is a solution of the i-th equation, for all i € {1,...,m + k}. The obfuscated
program eventually outputs what Oggp(fs) outputs on s’. This is described in
Algorithm 4.

One might think a trivial attack is to solve for M, but we explain in Sec-
tion 5.1 why this does not work in general.

This approach does not apply for all choices of (q,n,m,£). In particular m
cannot be too small. For small ¢ we need m > \/log,(¢) and for larger ¢ we
essentially need m > A\/constant. This is why line 1 of the algorithm can only
be formed if m satisfies certain conditions, such as m > A\/log,(q), which will
be discussed in Section 5.2.

A possible approach to improve this approach to cover all choices of (¢, n, m, £)
is to perform what we called “basis extension” before running the algorithm. The
idea of basis extension is as follows. Suppose m = 2 and the ideal I(X) = (f1, f2)
is generated by two polynomials f; and fa. We extend the basis by sampling a
lot of random polynomial pairs (h; 1, h; 2) and compute g; = h;1- f1+hi2- f2. For
enough pairs (h; 1, h; 2) the g;’s is expected to give the same ideal as I(X). Then
we can obfuscate the algebraic set defined by the set of g;’s instead. However
the security of basis extension is unclear and needs further study.

To help the reader have some intuition about the algorithm, let us look at
two examples of parameters. Note that 2V/™ < (1 +a)/(1 + a/q + o(1)) < q.
Suppose ¢ = 2, A = 128 and m = 129, we can take a = 259. Suppose ¢ = 3,
A =128 and m = 81, we can take a = 794.

14

Algorithm 4 ASMF Evaluation (with embedded data (M, A*,b*, Ossr(fs))
Input: =z € Fy
Output: 0 or 1
1: compute y = A" - M(x) — b*
2: set 8 = (81,...,5m4k) € {0,1}™"F such that s} = 1 if and only if y; = 0, for all
ie{l,...,m+k}
3: return Ossr(fs)(s')

Correctness First notice that RAM = Rb and AM = b have the same set of
solutions since R is invertible.

Now if z is a solution then s’ is a superset of s because x satisfies all rows
of (A,b) indicated by s. Also s’ is “small” with high probability, namely its
Hamming weight |s’| < ¢ because an x is expected to satisfy m + k/q rows but
m+k/q<t:=[(l+a/q+0(1))m]. By choosing suitable number for the “o(1)”
term we can ensure that the probability that x satisfies more than ¢ rows is
negligible in \.? Hence s’ is a small superset of s with overwhelming probability
hence Ogsr(fs)(s’) = 1 and the obfuscated a-ASMF will correctly output 1 with
overwhelming probability.

On the other hand, if z is not a solution, then at least one of the rows of (A4, b)
will not be satisfied and s’ will not be a superset of s. Then Ogsgr(fs)(s’) =0
and the obfuscated a-ASMF will correctly output 0.

5.1 Failure of attack using linear algebra

One might think it is trivial to break the obfuscator: Just solve the system
A*M = b* using linear algebra. One might think that such a solution will in
particular satisfy the “real” equations and hence give a point on the algebraic
set. But there are two issues with this.

First, there may be no such solution. There is no guarantee that the dummy
equations are consistent with the “real” equations, and so (especially when m+k&
is substantially larger than ¢) we would not expect there to be any such solution.
Second, and more important, a solution to A*M = b* does not necessarily
correspond to a point x = (x1,...,2,) € [y that satisfies the algebraic set.
The issue is that most vectors M € IE‘f; are not of the form M (z) where M (x) is
a vector of fixed monomials in @, ..., 2z, and (21,...,2,) € Fy. Precisely, there
are ¢" possible choices for = (z1,...,z,), giving at most ¢" possible values for
M (z). But M(x) € F, and we generally have £ much bigger than n. This crucial
remark is why we do not always insist that m +k > ¢. Though in practice it will
often be the case that m + k > ¢.

2 For example, suppose ¢ = 2, A\ = 128, m = 129, a = 259, k = am = 33411,

t=[(14+a/q+9)m] = 17996, then the probability that a point in the algebraic set
satisfies t — m = 17867 dummy rows is ~ 2.008 x 107%6 < 1/2'%® x 2.939 x 10737,

15

5.2 Parameters For Obfuscation

Now we explain the parameters in Algorithm 3 and determine the generality of
our solution to the ASMF obfuscation problem. In particular, we would like to
investigate how big k£ and ¢ should be and how they affect the parameters ¢, ¢
and m of the ASMF that can be securely obfuscated by our obfuscator.

Restrictions on the parameters come from three conditions: (1) Hardness of
finding m generators from the m + k polynomials; (2) Hardness of finding an
accepting point z by finding d < m generators from the m + k polynomials; and
(3) Evasiveness of SSF.

For condition (1), we require that the probability that finding the m gen-
erators by randomly choosing m polynomials from the m + k polynomials is
1/ (m;;k) < 1/2*. For condition (2), we require that the probability that finding
an accepting input by randomly choosing d < m polynomials and solving for

a random root of the d polynomials is ((7;’)/(7";’“)) - (1/g™ %) < 1/2*. For

condition (3), we require (i)/(m:;k) < 1/2* by Inequality (5) in [11].

Let k = am and t = ¢m for some constants a and c. For condition (1), since
1/(’"7:]“) < (m/(m+k))™ =1/(1+a)™, it is sufficient to require (1+a)™ > 2*.
For condition (2), since ((g)/(m;k)) (1/g™) < (m/(m+ k)% (1/gm %) =

(1/(1+a)?)-(1/q™=9), it is sufficient to require (1+a)?-g™~¢ > 2*. For condition
(3), since ()/(™F*) < (t/(m + k)™ = (¢/(1 + a))™, it is sufficient to require
(1 +a)/c)™ > 27,

We first consider the case when 2 < ¢ < poly(A). If we take a > ¢ — 1, then
(1+a)? g™ % < (1+a)™, hence condition (1) is implied by condition (2). Also
g™ < (1+a)?- g™ %, hence condition (2) is already implied by Inequality (7).
We therefore only need to consider condition (3). It gives a restriction on m as

m = A/ (logy(1 +a)/c). (8)

Note that a basic constraint is m+ k/g <t <m—+k.lLe,l+a/g<c<1+a.
We therefore take ¢ = 1+ a/q + € for some small constant € = o(1). Then we
can see that

. 1+4a
lim
a—oo ¢

1+24e4 e g

= lim =
a—00 1+ q + €
(g=Da _
=lim {1+ —1—
a—00 1+ 7 + e
:q.

Le., when a — oo, condition (3) approaches to the evasive requirement of ASMF":
g™ > 2* (i.e., Inequality (7)). This means that if we take a to be larger and larger,
our solution will get closer and closer to a full solution to the ASMF obfuscation

16

problem. However we can only take a to be a polynomial otherwise the size of
the obfuscated function will have super-polynomial blow up. But it is almost full
generality of ASMF. To see this, take our previous example after Algorithm 3,
when ¢ = 2 (this is actually the worst case to get a full range of m), ideally a
full solution to the problem should work on ASMF with m > 128. However we
have already covered m > 129, which is just one equation more. In other words,
the full generality is m > A/log, ¢ and we have achieved m > A/ log, q.

We therefore choose large enough a such that 2*/™ < (14-a)/(14-a/q+0(1)) <
q to reach to the greatest generality of our solution. At the same time ¢ is
implicitly about (1 + a/q + o(1))m.

Now we consider the case when ¢ > spoly(\) for any super-polynomial
spoly()). In this case, we have a < ¢— 1 since a must grow at most polynomially
in \ (for polynomial blow up of the function size). Then (14a)?-¢™~¢ > (1+a)™,
hence condition (2) is implied by condition (1). Also, since ¢ > 1, we have
(1+a)™ > ((14+a)/c)™, hence condition (1) is implied by condition (3). There-
fore the restriction on m is still from condition (3). It is the same as given by
Inequality (8).

In sum, we choose k = am for a sufficient large a such that (1+a)/(14+a/q+
0(1)) > 2*™ and choose t = [(1 + a/q + o(1))m]. Then the ASMF family that
our obfuscator can obfuscate approaches to its full generality given by Inequality
(7).

We stress that we do not require any relation between m + k and n or £. If
one wanted VBB security one might need to consider m + k > ¢, but we do not
consider this question in our paper.

5.3 Security Proofs

We reduce security of the obfuscator O given by Algorithm 3 to the input-hiding
security of the small superset obfuscator Ogsp.

To give a general result we would need to explain how, given parameters (N, t)
for a small superset instance, to associate parameters (g, ¢,m) to an algebraic
set membership instance. As a working example, consider the case N = 4\ and
t = 2.1\ from Section 2.3. To such parameters we can choose ¢ = 2, m = A,
a=2sothat t > (14+a/q+o(1))m = (24 o(1))A, and N > (1 + a)m = 3\
When ¢ > N/2 we can use the same parameters (¢,m,a) = (2, A, 2), since ¢ >
(1+a/q+o(1))m and Ogsp will still accept the string. For N/3 < ¢t < N/2 we can
take (¢,m,a) = (2, A, 2) and require t > (14a/g+0(1))m and N > 6. Note that
m = A satisfies the lower bound m > A/log()) required in Section 5.2. When
t < N/3 the general strategy is to choose ¢ = |N/t] and m and a accordingly.
Note that ¢ = | N/t] < N is always polynomial in the security parameter.

In other words, to be convinced of the security of the obfuscator for algebraic
set membership instances over IF, when ¢ > 3, one needs a secure small superset
obfuscator for (N,t) =~ ((q + 1)m,2m) by taking a = q.

Theorem 2. The obfuscator O given by Algorithm 3 is input-hiding on uniform
evasive algebraic set membership functions assuming input-hiding of the small
superset obfuscator Ogsp on the associated evasive parameters (N, t).

17

Proof. (1) Approximate-Functionality-Preserving. It is shown after Algo-
rithm 4.

(2) Polynomial Slowdown. Algorithm 4 evaluates N = m + k = (1 4+ a)m
polynomials of bounded degree, generates a vector s’ of polynomial length N,
and evaluates Oggr(fs) on s', which is efficient by the polynomial slowdown of
Ossr- Since a is polynomial, Algorithm 4 takes polynomial time thus has poly-
nomial slowdown compared to the original function.

(3) Input-Hiding. Let A be any PPT algorithm that breaks input-hiding of the
ASMF obfuscator O given by Algorithm 3 with probability u(A). We construct
an algorithm B against input-hiding of the SSF obfuscator Oggr with success
probability v(\) and show that v(A\) = u(X).

Given an obfuscated SSF Oggr(fs) with parameters satisfying the require-
ments that the function is evasive, together with some global auxiliary infor-
mation a € {0,1}P°W(N) of the SSF family, B finds a small superset s’ of s as
follows.

To create an obfuscated ASMF instance, B first selects the parameters m,
k and ¢. Then B samples a random (m + k) x (¢ + 1) matrix (R*,r*) and calls
A with (R*,7*, Ossr(fs), a, B), where g € {0,1}7°N) is the global auxiliary
information of the ASMF family.

If A wins then it outputs a vector z € Fy whose corresponding monomial
vector M satisfies RM = r, where (R, r) are the rows indicated by s. Since the
distribution of (R*,7*) and (A*,b*) (as in Algorithm 3) are the same, A will
return a point z € Fy which tells a small superset s’ € {0, 1} of s with
probability p()). Then B outputs s’. We see that the probability that B breaks
input-hiding of Oggr is equal to the probability that A breaks input-hiding of
O. Hence v(\) = (). By the input-hiding property of Oggsr, v()\) is negligible.
Hence () is negligible. Also note that A is an arbitrary PPT algorithm against
the input-hiding of O. Hence O is input-hiding,. ad

Now we introduce a new security notion. Note that the asset that we are
trying to protect is the ideal associated with the algebraic set. Generators for
this ideal are not uniquely defined, since an ideal can have many different sets
of generators. The set of all monomials required to express generators of the
ideal (this set may contain some unnecessary monomials) is not protected by
our obfuscation, but what we can hope to protect is the (row) span as a vector
space of the set of generators.

Definition 8 (Span-Hiding Obfuscator). Let C = {C)}xen with respect to ¢
fized monomials M, ..., My € Fylzq,...,x,] be an ASMF family, where m,n, ¢
are polynomial in A. Let D = {D)}xen be the corresponding distributions of C,
which are distributions over the augmented matrices (A,b) € FZM(HD of the
ASMFs. A PPT algorithm O is a span-hiding obfuscator for the family C if it
satisfies the first two conditions in Definition 1 and the following span-hiding
property: there exists a negligible function u(X) such that for every A € N and

18

for every auziliary input o € {0,131 to A:

P O(A,b =5 A)] < p(X
P AO(A,B),0) = Span(4)] < u(h.
where the probability is taken over the random sampling of Dy and the coin
tosses of A and O.

We stress that our hash-based obfuscator is trivially not span-hiding. We
prove that our obfuscator based on dummy equations is span-hiding if the SSF
obfuscator is input-hiding.

We also stress that we make no claim about span-hiding security if an attacker
knows an accepting input. However since we are restricting to evasive functions
it is natural to consider span-hiding security against attackers who do not know
an accepting input.

One further remark, knowing the span of A — even knowing the span of
(A,b) is not immediately equivalent to finding an accepting input. Given (A, b)
one can solve the system of equations AM = b to get a vector M € Fg, but an
accepting input is an z € Fj whose corresponding monomial vector M satisfies
AM = b. Going from M to x may be nontrivial depending on the monomials
that appear.

Theorem 3. The obfuscator given by Algorithm 3 is span-hiding on uniform
evasive algebraic set membership functions assuming input-hiding of the small
superset obfuscator Oggp it uses and that £ > n.

Proof. We show that if there exists a PPT adversary A which, with noticeable
probability, computes the span of A from the program obfuscated using Algo-
rithm 3, then there exists a PPT algorithm B which breaks input-hiding of the
obfuscator Ogsp. The structure of the proof is similar to the proof of Theorem
2.

The algorithm B takes as input an obfuscated SSF Oggr(fs) for some param-
eters (N, t), and some global auxiliary information a € {0,1}*°%(N) | Algorithm
B wants to compute an accepting input s'.

Algorithm B samples a random (m + k) x (£+ 1) matrix (R*,r*) and calls A
with (R*,r*, Ossr(fs), o, B), where 8 € {0, 11PN is additional global auxiliary
information.

By assumption, A outputs a basis for a vector space V of dimension m.
Algorithm A wins if V' is the span of A, where A is by definition the matrix
given by the rows of R* such that s; = 1. Suppose this is the case.

Algorithm B then considers each of the N rows of R*. For each 1 <7 < N,
if the i-th row lies in V' then it sets s, = 1, and otherwise sets s} = 0. It outputs
s

We now argue that s’ is a “small superset” of s.

We first argue that s’ is a “superset” of s. Since we are assuming A wins, all
the rows in A have s, = 1. Hence s is a “superset” of s.

Now we argue that s’ is “small”. The dummy rows of R* are sampled uni-
formly from Fg. The probability that a row lies in the m-dimensional space V is

19

q™/q¢" =1/¢""™. Now £ > n so Equation (2) implies ¢‘~

™ is super-polynomial.

Hence we expect s; = 1 with negligible probability for each dummy row. We
therefore expect that s’ has exactly m entries set to 1, which means that s’ is

expected to be a “small” set that is of the same size m as s. a
References
1. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfusca-

10.

11.

12.

13.

tion for evasive functions. In: Lindell, Y. (ed.) Theory of Cryptography. pp. 26-51.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im) possibility of obfuscating programs. In: Annual International Cryp-
tology Conference (CRYPTO). pp. 1-18. Springer (2001)

Bartusek, J., Carmer, B., Jain, A., Jin, Z., Lepoint, T., Ma, F., Malkin, T., Mal-
ozemoff, A.J., Raykova, M.: Public-key function-private hidden vector encryption
(and more). In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology — ASI-
ACRYPT 2019. pp. 489-519. Springer International Publishing, Cham (2019)
Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating
conjunctions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology — EURO-
CRYPT 2019. pp. 636-666. Springer International Publishing, Cham (2019)
Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge assump-
tions. In: Lin, D., Sako, K. (eds.) Public-Key Cryptography — PKC 2019. pp. 254—
283. Springer International Publishing, Cham (2019)

. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A simple

obfuscation scheme for pattern-matching with wildcards. In: Annual International
Cryptology Conference (CRYPTO). pp. 731-752. Springer (2018)

Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A sim-
ple obfuscation scheme for pattern-matching with wildcards. In: Shacham, H.,
Boldyreva, A. (eds.) Advances in Cryptology — CRYPTO 2018. pp. 731-752.
Springer International Publishing, Cham (2018)

Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring lwe. In: Proceedings of the 2016 ACM Conference on Innova-
tions in Theoretical Computer Science. pp. 147-156. ITCS ’16, ACM, New York,
NY, USA (2016). https://doi.org/10.1145/2840728.2840764,

Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) Advances in Cryptology — CRYPTO ’97. pp.
455-469. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership.
In: Theory of Cryptography Conference (TCC). pp. 72-89. Springer (2010)
Galbraith, S.D., Li, T.: Small superset and big subset obfuscation. In Baek, J. and
Ruj, S. (eds.) Information Security and Privacy - 26th Australasian Conference,
ACISP 2021, Springer LNCS 13083, pp. 68-87 (2021)

Galbraith, S.D., Zobernig, L.: Obfuscated fuzzy Hamming distance and conjunc-
tions from subset product problems. In: Hofheinz, D., Rosen, A. (eds.) Theory of
Cryptography, LNCS 11891, pp. 81-110. Springer International Publishing, Cham
(2019)

Galbraith, S.D., Zobernig, L.: Obfuscating finite automata. in Dunkelman, O.,
Jacobson, M. J., and O’Flynn, C. (eds.), Selected Areas in Cryptography (SAC)
2020, Springer LNCS 12804 (2020) pp. 90-114.

20

https://doi.org/10.1145/2840728.2840764

14.

15.

16.

17.

18.

19.

Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05). pp. 553-562. IEEE (2005)

Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Theory of Cryp-
tography Conference (TCC). pp. 194-213. Springer (2007)

Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). pp. 612-621
(2017)

Pollard, J.M.: Monte carlo methods for index computation (mod p). Mathematics
of computation 32(143), 918-924 (1978)

Wee, H.: On obfuscating point functions. In: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing. pp. 523-532. ACM (2005)
Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under lwe. In:
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
pp. 600-611. IEEE (2017)

21

	Obfuscation of Evasive Algebraic Set Membership

