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Abstract

Alon et al. (CRYPTO 2021) introduced a multiparty quantum computation pro-
tocol that is secure with identifiable abort (MPQC-SWIA). However, their protocol
allows only inside MPQC parties to know the identity of malicious players. This be-
comes problematic when two groups of people disagree and need a third party, like
a jury, to verify who the malicious party is. This issue takes on heightened signifi-
cance in the quantum setting, given that quantum states may exist in only a single
copy. Thus, we emphasize the necessity of a protocol with publicly verifiable identifiable
abort (PVIA), enabling outside observers with only classical computational power to
agree on the identity of the malicious party in case of an abort. However, achieving
MPQC with PVIA poses significant challenges due to the no-cloning theorem, and pre-
vious works proposed by Mahadev (STOC 2018) and Chung et al. (Eurocrypt 2022)
for classical verification of quantum computation fall short.

In this paper, we obtain the first MPQC-PVIA protocol assuming post-quantum
oblivious transfer and a classical broadcast channel. The core component of our con-
struction is a new authentication primitive called auditable quantum authentication
(AQA) that identifies the malicious sender with overwhelming probability. Addition-
ally, we provide the first MPQC protocol with best-of-both-worlds (BoBW) security,
which guarantees output delivery with an honest majority and remains secure with
abort even if the majority is dishonest. Our best-of-both-worlds MPQC protocol also
satisfies PVIA upon abort.
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1 Introduction

Secure multiparty computation (MPC) allows two or more parties to compute a function
on their joint private inputs securely [Yao86]. Most of the MPC literature studies classical
functionality over classical inputs with different notions of security, such as full security,
security with abort, and security with identifiable abort [RBO89, MGW87, IOZ14].

Recently, secure multiparty quantum computation (MPQC) has raised research interest.
Most of the works consider the fully quantum setting i.e., the functionality, including inputs
and outputs, is quantum. Like in the classical setting, it is known that an honest majority is
both sufficient [CGS02, BOCG+06], and necessary [ABDR04] to achieve full security, which
guarantees output delivery for everyone. In light of this, the study of MPQC protocols
in the dishonest majority setting has focused on the weaker notion of security with abort
[DNS12, DGJ+20, BCKM21], which allows all honest parties to abort when they detect an
attack. However, such a notion is vulnerable to a denial-of-service attack because an attacker
can repeatedly induce aborts. For this reason, a more recent work [ACC+21] has proposed
an MPQC protocol with identifiable abort (MPQC-SWIA) that allows all honest parties to
agree on the identity of a corrupted party in case of an abort. Regrettably, the identification
mechanism of [ACC+21] only allows the participants of the protocol to identify a malicious
party. This is unsatisfactory in many practical scenarios because during a dispute, external
observers are aware that two groups of people are in disagreement, but it is unclear which
side is acting maliciously. Consider an instance where a client accuses a tech company
of failing to provide a service and, therefore, refuses payment. Conversely, the company
asserts that they have indeed provided the service. In such cases, it becomes vital to employ
a publicly verifiable protocol to assess their integrity. This is especially important in the
quantum setting, where each party may possess only one copy of their quantum input. Once
the quantum inputs are ruined, it results in the irreversible loss of inputs for honest parties.
Therefore, we consider a notion of security called publicly verifiable identifiable abort (PVIA)
that allows everyone, including outside observers, to identify the malicious party. We ask:

Is it possible to construct MPQC with publicly verifiable identifiable abort (PVIA)?

In the classical setting, one can turn MPC-SWIA into MPC-PVIA almost for free. A
publicly verifiable protocol can be obtained by requiring each party to broadcast their mes-
sages and proofs to outside observers. Unfortunately, this simple solution does not work in
the quantum setting due to the no-cloning theorem. One may be tempted to turn to classical
verification of quantum computation (CVQC) [Mah18, CLLW22] in order to achieve public
verifiability. However, this approach is restricted to computation that is performed by a sin-
gle quantum party with classical outputs, and it is unclear how it can be adapted to fit into
the setting of MPQC. Furthermore, all existing MPQC protocols face an inherent difficulty
in achieving PVIA because their sender-receiver mechanism cannot differentiate a malicious
sender from a malicious receiver. To address this issue, we propose a new primitive called
Auditable Quantum Authentication (AQA), which subverts the traditional sender-receiver
mechanism and holds the sender accountable for his behavior.

While PVIA security can act as insurance for honest parties when a dishonest majority
is present, it is desirable to have a stronger security notion, such as full security, if it turns
out that the honest parties outnumber the malicious ones. An intriguing scenario involves

3



reducing the maximal number of malicious parties allowed for security with abort while
conditionally offering full security. Such a notion is called best-of-both-worlds (BoBW)
security1. In the classical setting, [IKK+11] constructs, for every threshold t < n

2
, an MPC

protocol that achieves security with abort against n − 1 − t malicious parties and achieves
full security tolerating t malicious parties. [Kat07] proved that these corruption thresholds
are optimal. In the quantum setting, none of the existing MPQC protocols satisfy BoBW
security. Therefore, we ask:

Is it possible to construct a single MPQC that achieves full security under an
honest majority and is secure with abort under a dishonest majority?

1.1 Our results

We answer both questions affirmatively in the preprocessing model, which features an offline
setup that prepares input-independent auxiliary quantum states. Then, during the online
protocol, parties only exchange classical bits. With this approach, the parties can create
classical proofs that are accessible to everyone, which in turn facilitates PVIA. Moreover,
combined with quantum error correction code (QECC), the setup can create quantum states
that enable distributed computation and ultimately achieve best-of-both-worlds security.
Finally, we show that our offline setup can be instantiated without requiring any trusted
third party.

Our first result is an MPQC protocol secure with publicly verifiable identifiable abort
(PVIA) under a trusted setup. Similar to existing MPQC works [DNS12, DGJ+20, ACC+21,
BCKM21], we assume that parties have access to an ideal functionality cMPC for classical
MPC (this model is known as the MPC-hybrid model). Here, the classical MPC is assumed
to be PVIA-secure, and such an MPC can be based on a post-quantum oblivious transfer
(OT) and a classical broadcast channel.

Theorem 1.1 (MPQC-PVIA with trusted setup, informal). There exists a multiparty quan-
tum computation protocol secure with publicly verifiable identifiable abort supporting poly-size
quantum circuits in the preprocessing MPC-hybrid model.

To achieve Theorem 1.1, we propose and construct a new primitive called auditable
quantum authentication (AQA) that allows a classical auditor to decide the integrity of a
quantum message sender. Then, in our MPQC-PVIA protocol, the actions of the trusted
auditor will be taken by classical MPC.

Our second result is a best-of-both-worlds (BoBW) MPQC protocol that achieves full
security against t corruptions and satisfies security with abort against n− 1− t corruptions
under a trusted setup. We call t as the BoBW threshold. Here, we assume our underlying
classical MPC to be BoBW-secure with threshold t as well, which can be based on post-
quantum OT for t < n

3
and additionally requires a classical broadcast channel for n

3
≤ t < n

2
.

1There are different flavors of best-of-both-worlds security. For example, [Kat07, BLOO11] consider
MPC protocols with full security against ⌊n−1

2 ⌋ malicious parties and (1/p)-security with abort against n−1
malicious parties. The notion of (1/p)-security only requires an inverse polynomial error in distinguishing
the real/ideal world.
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Theorem 1.2 (BoBW-MPQC with trusted setup, informal). There exists a best-of-both-
worlds multiparty quantum computation protocol of threshold t supporting poly-size quantum
circuits for any t < n

2
in the preprocessing MPC-hybrid model.

The key to arriving at best-of-both-worlds security is our protocol’s compatibility with
decentralized quantum computation using QECC. In particular, no single party in our pro-
tocol holds all the quantum information of a piece of data during the computation step, as
opposed to prior security-with-abort protocols [DGJ+20, ACC+21, BCKM21].

Combining these two results, we obtain a BoBW-MPQC-PVIA protocol that achieves
full security against t corruptions and satisfies PVIA security against n− 1− t corruptions
under a trusted setup. The underlying classical MPC should be BoBW-PVIA-secure, which
can be based on a post-quantum OT and a classical broadcast channel.

Theorem 1.3 (BoBW-MPQC-PVIA with trusted setup, informal). There exists a best-of-
both-worlds multiparty quantum computation protocol secure with publicly verifiable iden-
tifiable abort of threshold t supporting poly-size quantum circuits for every t < n

2
in the

preprocessing MPC-hybrid model.

Furthermore, we can instantiate the setups, thus obtaining the above three results without
needing a trusted setup.

Theorem 1.4 (BoBW-MPQC-PVIA without trusted setup, informal). Theorems 1.1,1.2,1.3
hold in the (standard) MPC-hybrid model.

Our main technique for instantiating the setup is to leverage MPQC secure with identifi-
able abort (SWIA) protocols. Interestingly, the properties of both BoBW and PVIA can be
preserved under our instantiation. Note that our instantiation is based on an MPQC-SWIA
protocol which, contrasting with the previous result [ACC+21], only assumes classical MPC.

Dishonest-Majority Regime Honest-Majority Regime Assumptions

[BOCG+06] No Security Full Security cMPC

[DGJ+20]
[BCKM21]

Security with Abort

(
≤ n− 1
corruptions

)
Security with Abort cMPC

[ACC+21] Identifiable Abort

(
≤ n− 1
corruptions

)
Identifiable Abort cMPC+FHE

This Work
(0≤t<n

2 )
Publicly Verifiable
Identifiable Abort

(
≤ n− 1− t
corruptions

)
Full Security

(
≤ t
corruptions

)
cMPC

Table 1: Comparison of MPQC protocols.

2 Technical Overview

In this section, we first explain why public verifiability does not follow directly from exist-
ing works. Then, we put forth a novel primitive called Auditable Quantum Authentication
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(AQA), which ensures the secure transmission of quantum outputs and the public identifica-
tion of malicious identities within a protocol. Following a high-level understanding of AQA,
we then incorporate the input encoding and computation steps together to realize MPQC-
PVIA. At the end of the section, we discuss the difficulty of achieving best-of-both-worlds
security and elucidate our approach to attaining a BoBW-MPQC protocol.

2.1 Why is MPQC-PVIA hard to achieve?

A first observation is that classical techniques for public verifiability cannot apply to their
quantum counterparts. Existing methods for classical MPC-PVIA protocols are to commit to
classical messages, provide zero-knowledge arguments over the commitments, and let outside
observers check whether any party deviates from the protocol. There are several issues when
adapting to MPQC in the fully quantum setting. If one considers classical commitments to
quantum messages [Mah18], one cannot fulfill MPQC with purely quantum outputs because
such classical commitment schemes always end with measurements. Instead, one may have to
consider quantum commitments [GJMZ23]. However, quantum commitments are unlikely
to be duplicated and broadcast to each party for verification because of the no-cloning
theorem. In addition, zero-knowledge arguments for quantum computation (e.g., [BJSW16])
only apply to problems with a classical description. Those arguments cannot prove relations
involving quantum commitments.

Another difficulty arises because we require the outside observers of MPQC to have only
classical computational power. Although there is research on classical verification of quantum
computation (CVQC), a seemingly similar task, CVQC needs to be more relaxed because
it can only resolve computations with classical outputs conducted by a single quantum
prover. The techniques of CVQC fail in the fully quantum setting. Moreover, CVQC already
produces an inverse polynomial soundness error when extended from decisional problems
[Mah18] to sampling problems [CLLW22]. Thus, there is little hope that CVQC can aid the
construction of MPQC-PVIA.

One may try to upgrade MPQC-SWIA to MPQC-PVIA directly, but there is still a
gap between them. The MPQC-SWIA protocol by [ACC+21] is based on a Sequential
Authentication primitive that outputs two suspects whenever message tampering is detected.
However, it gives no information about the exact party that deviates from the protocol. The
resulting MPQC-SWIA allows honest parties to agree on the same malicious party when
protocol aborts, but an outside observer only sees two groups of people accusing each other.
This outcome arises from the conventional utilization of quantum authentication codes2,
where the sender sends an authenticated state to the receiver, and the receiver is in charge
of measuring the authentication checksum to validate the state. However, this kind of
validation mechanism relies on the synergy of both the sender and the receiver over a single-
copy state, which makes it challenging to achieve public verifiability. To address this, we
subvert the old idea and creatively combine quantum authentication codes and quantum
teleportation in a white-box manner.

2The prevalent approach in most existing works involves employing authentication codes in this manner
[ACC+21, BCKM21, DGJ+20].
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2.2 Our Solution: Auditable Quantum Authentication (AQA)

The primary goal of AQA is to establish a mechanism where the sender of an authenticated
state is held responsible for his own sending action through a test performed by someone
trustworthy. In a normal quantum authentication scheme, the receiver of an authenticated
state runs the decoding algorithm to obtain either the original message or an authentication
failure symbol. To learn the true authentication outcome, an outside observer has to trust
the party who executes the decoding algorithm. This would require trust in the receiver,
who might be malicious. To resolve this issue, we propose an auditable quantum authen-
tication scheme that separates the authenticity check from the message decoding process.
Importantly, the AQA scheme is equipped with a classical auditing algorithm that decides
message authenticity and outputs a decoding key for the receiver to recover the message.
With AQA, an outside observer can learn the authentication outcome by trusting a classical
auditor who executes the auditing algorithm. Later on, we can replace the classical auditor
with a publicly verifiable classical MPC (cMPC) to completely remove the need of trust.

AQA is designed to be cooperated by three parties: a sender, a receiver, and a classical
auditor. We define AQA as consisting of five algorithms: Setup,Enc, Send,Audit,Recv. In the
beginning, Setup prepares initial states for all the parties, and Enc produces an authenticated
state σ for the sender. The sender runs Send(σ) to generate a classical proof pf showing
that the quantum message has been delivered. Next, the auditor runs Audit(pf) to verify the
proof and produce a decoding key dk. Afterward, the receiver can run Recv(dk) to obtain the
quantum message. The security of AQA entails that Recv(dk) produces the correct quantum
message (up to a negligible error) whenever Audit(pf) outputs a positive verification outcome.

Constructing a (Simplified) AQA We will start with a normal quantum authentication
scheme (Gen,Enc,Dec), the Clifford code [ABOEM17] in particular. We aim to keep the
encoding procedure Enc and split its decoding procedure into several parts. The decoding

procedure of Clifford code applies a secret Clifford gate F †
M,T

to an authenticated state
σM,T and measures T register in the computational basis. An authentication failure occurs
if the measurement result is not all zeros. Otherwise, the content of the M register will be
the message state. To make this authentication scheme classically auditable, we consider the
following alternative decoding procedure that involves 4 algorithms. We take |M | = 1 and
|T | = λ as an example.

Setup:

• Generate EPR pairs {(ei0, ei1)}i∈[λ+1] of length λ+1. Put {ei0}i∈[λ+1], {ei1}i∈{2,··· ,λ+1}, e
1
1

into the sending register S, the checking register C, and the receiving register R.

• Apply the secret Clifford gate F † ← Cλ+1 to R,C.

Send:

• Sending Procedure: Teleport the authenticated state σ through the sending register S.

• Proving Procedure: Measure the checking register C in the computational basis.

• Set the classical proof as the teleportation Pauli P and the measurement result c.
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Audit:

• Compute the Pauli F †PF and express it as a tensor product of two Pauli gates P̂R, P̂C

that act on 1, λ qupits respectively.

• Report an authentication failure if c ̸= x(P̂C). Set the decoding key as the Pauli P̂R.

Recv:

• Apply P̂ †R
R
and output the state on the receiving register R.

Running these 4 algorithms in a row is equivalent to running the decoding procedure of
Clifford code. This follows almost directly from quantum teleportation: If we denote F †σ =
(ρM , τT ) and if teleporting σ through S during Send yields teleportation result P , then the
state in R,C would collapse from F †({ei1}i∈[λ+1]) to

F †P (σ) = (F †PF )(F †(σ)) = (P̂R ⊗ P̂C)(ρ, τ) = (P̂R(ρ), P̂C(τ))

This shows that the measurement result of the checking register C equals x(P̂C) if and only
if the measurement result of τ equals all zeros. The current decoding procedure includes
a classical algorithm Audit that determines the authentication outcome, so we can set our
simplified AQA as these 4 algorithms plus the encoding algorithm of Clifford code.

S1

S2

·
·

S1+λ

R

C1

·

·

Cλ

Figure 1: AQA Setup: Each edge represents an EPR pair. The nodes on the left contain
halves of EPR pairs {ei0}i∈[λ+1], and the nodes on the right contain the other halves of EPR
pairs {ei1}i∈[λ+1]. The encircled vertices (the sending register S and checking register C) are
given to the sender. The lonely vertex (receiving register R) is given to the receiver.

Proving Security of AQA For the security of AQA, it’s crucial for Recv to recover the
original message whenever Audit doesn’t indicate an authentication failure upon receiving
proof from an adversarial sender. Take, for instance, a malicious sender who alters the
authenticated message σ prior to the execution of Send. In such a specific scenario, the secu-
rity of the simplified AQA is derived from the established equivalence between the processes
(Send,Audit,Recv) and Dec mentioned in the preceding paragraph and grounded on the ef-
ficacy of (Enc,Dec) as a quantum authentication scheme. However, the simplified AQA is
presented mainly as an explanation of how we achieve the audit functionality, and is not yet
secure against arbitrary malicious senders. To further protect against adversaries employing
arbitrary attacks, our formal AQA in Section 5 additionally integrates quantum one-time
pads. To offer a high-level intuition, the use of quantum one-time pads can split the attack of
the malicious sender into a combination of Pauli attacks. Since the malicious sender knows
nothing about the random Clifford key F , the Clifford twirl will transform Pauli attacks into
random Pauli operators distributed across the states, breaking the consistency of P and c.

8



2.3 From AQA to MPQC-PVIA

From the previous section, we see that the transmission of quantum information can be
audited by a classical party. We now build an MPQC-PVIA protocol with AQA where the
auditing is performed by a publicly verifiable classical MPC.

MPQC-PVIA with Setup The MPQC-PVIA consists of two phases: an offline setup
and an online phase. The offline setup generates EPR pairs that would allow each party
to send their input to the server (who is a designated party, say P1), and runs the setup of
AQA. During the online phase, every party teleports their input to P1 and P1 only obtains a
ciphertext of the joint inputs. Next, P1 performs quantum computation on the ciphertext as
instructed by classical MPC. Finally, P1 sends the output ciphertexts to other parties using
AQA, which is audited by classical MPC. These three steps in the online phase are called
input encoding, computation, and output delivery, respectively.

We now move on to examine security. In our protocol, the parties’ inputs are gathered
towards P1, and the quantum computation is solely performed by P1. Thus, only P1 can
launch an effective attack. The attack would ruin P1’s ciphertext, and P1 would ultimately
face an authentication error when transmitting the ciphertext with AQA. In this case, the
classical MPC that runs the audit algorithm can publicly output P1 as malicious. As a result,
our protocol achieves MPQC while maintaining PVIA security.

Instantiable Setup Next, we show how to instantiate our setup with an MPQC protocol
secure with identifiable abort (SWIA). Note that we refine a slightly different version of
MPQC-SWIA, thereby circumventing the need for the post-quantum Fully Homomorphic
Encryption (FHE) assumption needed in [ACC+21].

MPQC-SWIA guarantees that whenever an abort happens, cMPC will output a partition
of parties with all honest parties staying in the same group. Our approach for instantiating
the setup is to run MPQC-SWIA hierarchically to prepare the states that the setup would
generate. The hierarchical MPQC-SWIA maintains a grouping between parties, where all
parties are initially in the same group. Each group will try to run MPQC-SWIA by them-
selves, and a group breaks into two whenever MPQC-SWIA fails. At some point, all parties
must have succeeded in running MPQC-SWIA within their group (or they will continue
running MPQC-SWIA within descent subgroups), so they can proceed to execute the online
MPQC-PVIA protocol. By employing the security of MPQC-PVIA with preprocessing, it is
guaranteed that either the honest parties obtain their outputs, or some malicious party in
the group that contains all honest parties will be publicly identified.
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G

G1 Output

G0

G01 ...

G00 ...

Figure 2: Hierarchical MPQC-SWIA parties try to run the offline setup using MPQC-
SWIA. Initially, G contains all the parties. When the first MPQC-SWIA run by G terminates
with a failure, parties in G separate into two groups G0 and G1, who run another MPQC-
SWIA within their own group. In this figure, G1 executes MPQC-SWIA successfully and
obtains the setup output. They can proceed to execute the online MPQC-PVIA protocol.

2.4 Best-of-Both-Worlds Security

One advantage of our protocol design is its flexibility to provide best-of-both-worlds security.
That is, we construct an MPQC protocol that simultaneously achieves full security when
there are at most t < n

2
corruptions and satisfies security with publicly verifiable identifiable

abort against at most n− 1− t corrupted parties.
Prior to this work, the honest-majority and the dishonest-majority worlds were once

separated because of a tension between sharing and extracting quantum information. We
elaborate on it as follows. MPQC protocols that obtain full security in an honest major-
ity setting [BOCG+06] are based on verifiable quantum secret sharing (VQSS). In these
protocols, each party individually creates VQSS of their input and distributes the shares
across parties. The problem is that the secret shares sent between malicious parties are
private information. Once the number of corrupted parties reaches one-half, the simulator
cannot extract the adversary’s input from the available secret shares. This is also why cur-
rent MPQC protocols designed for a dishonest majority need every quantum message to be
transmitted through all parties: the simulator can extract inputs when the quantum message
passes through an honest party. As a result, protocols against a dishonest majority cannot
divide a piece of quantum information across multiple parties, and a single malicious party
is sufficient to destroy the information subjected to the computation.

Our solution to this tension is to utilize the offline-online structure of our protocol and
incorporate quantum error correction codes (QECC). First, our offline setup3 prepares QECC
codewords on EPR pairs and distributes the codewords evenly across parties. Afterward, the
parties can perform distributed computation over QECC codewords in the online protocol.
In this protocol, the honestly generated QECC codewords facilitate the sharing of quantum
information. Moreover, to extract quantum information even in the presence of a malicious
majority, the setup can entangle a trapdoor with the states prepared for the parties and use
the trapdoor to extract online inputs. We see that the offline setup acts as a vital piece
of machinery that allows information extraction while preparing for the online distributed
computation.

Our BoBW-MPQC protocol is reminiscent of the classical BoBW-cMPC protocols [IKK+11,
Kat07, BLOO11]. A key difference is that the classical protocols need to broadcast secret
sharings and invoke the ideal functionality on the inputs multiple times, both of which are

3Similar to the previous subsection, this setup can be instantiated using MPQC-SWIA.
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infeasible in MPQC due to no-cloning. Our protocol does not follow the same pattern, and
we achieve the same goal in the merit of quantum teleportation.

3 Preliminary

Let [n] = {1, · · · , n}. We denote by A[n] the tuple (A1, · · · , An). Uniform sampling from
a set S is denoted by s ← S. A function f : N → [0, 1] is called negligible, if for every
polynomial poly(·) and all sufficiently large n, it holds that f(n) < |1/poly(n)|. We use
negl(·) to denote an unspecified negligible function.

Quantum states are written in lowercase Greek alphabets, e.g., ρ, σ. Quantum operations
are written in uppercase Latin alphabets, e.g., U, V . We write ρM and UM to specify that ρ
is stored in register M and U operates on register M . The notation (ρ, σ) denotes a state on
two registers that may be entangled. The letters qpt stands for quantum polynomial time.

Fix a prime p. A qupit in pure state |ϕ⟩ is a unit vector in the p-dimensional Hilbert
space Cp and can be identified with the density operator Mixed [|ϕ⟩] := |ϕ⟩⟨ϕ|. The set of
n-qupit mixed states, denoted Dn, consists of positive semi-definite operators on Cpn with
trace 1. We sometimes identify a mixed state ρ with its purification, which is a pure state
|ϕ⟩ such that Mixed [|ϕ⟩] has partial trace ρ. We also consider sub-normalized mixed states,
which are positive semi-definite operators with trace at most 1. We identify a distribution
{ρj} of sub-normalized states with the state Ej ρj. Two sequences of sub-normalized states
ρ(n), σ(n) ∈ Dpoly(n) are said to be statistically indistinguishable, denoted ρ ≈ σ, if they
have trace distance tr |ρ(n)− σ(n)| = negl(n) tr(ρ(n)).

3.1 Quantum Computation

A quantum operation is a completely positive, trace preserving (CPTP) map acting on mixed
states. Any such map can be represented as {Aj} which maps a mixed state ρ to the mixed

state
∑

j AjρA
†
j. Each Aj defines a completely positive (CP) map ρ 7→ AjρA

†
j. For example,

the measurement operator {|j⟩⟨j|}j∈Zp in the computation basis is a CPTP map, whereas
each projector |j⟩⟨j| is only a CP map. Every unitary operator defines a CPTP map.

Consider the phase ω = e2πi/p, the shift operator X : |j⟩ 7→ |j + 1⟩ and the clock operator
Z : |j⟩ 7→ ωj |j⟩. Write X(x1,··· ,xn)Z(z1,··· ,zn) =

⊗
j∈[n] X

xjZzj where each xj, zj ∈ Zp. We

define the Pauli basis P∗
n = {XxZz | x, z ∈ Zn

p}, which is a basis for the space of linear
operators on Cpn . Decomposing a linear operator according to this basis is called the Pauli
decomposition. For convenience, we identify the Pauli Pa = XxaZza ∈ P∗

n with the string
(za, xa) = (z(Pa), x(Pa)) ∈ Z2n

p . Define the Pauli group Pn as {ωkXxZz | k ∈ Zp, x, z ∈ Zn
p}

and the Clifford group Cn as the normalizer of Pn in the unitary group quotient by global
phases. That is, a unitary C ∈ Cn if and only if for all A ∈ Pn, CAC

† ∈ Pn. Intuitively,
it means that with a reasonable update of the Pauli gate, we can swap the order where a
Clifford gate and a Pauli gate are applied.

The Clifford group is generated by the Fourier transform gate H : |j⟩ 7→ 1√
p
Σk ω

jk |k⟩,
the phase gate S : |j⟩ 7→ ωj(j−1)/2 |j⟩ and the sum gate CX : |j, k⟩ 7→ |j, k + j⟩ [Cla06]. When
p = 2, the phase gate is defined as S : |j⟩ 7→ ij |j⟩ instead. One can sample uniformly random
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Clifford gates in polynomial time [VDB21, GYW23]. We will write CX(b1,··· ,bn)
R0,··· ,Rn as the

abbreviation of CXb1R0,R1 · · ·CXbnR0,Rn
.

Universal quantum computation can be carried out with Clifford gates and T gates,

where T : |j⟩ 7→ e
2πiηj

p2 |j⟩ with ηj = p
(
j
3

)
− j
(
p
3

)
+
(
p+1
4

)
[CAB12]. When p = 2, the T gate

is defined as T : |j⟩ 7→ e
πij
4 |j⟩ instead. Although T gate is not in the Clifford group, it

can be applied using classically controlled Clifford operations with the help of the T state
|T⟩ = T |+⟩, where |+⟩ = 1√

p

∑p−1
j=0 |j⟩. T states can be purified from noisy ones using

classically controlled Clifford gates [BK05, CAB12]. We note that the phase gate S can also
be applied using classically controlled X,Z,CX gates with the help of the state |S⟩ = S |+⟩.

3.2 Quantum One-Time Pad

Definition 3.1. A quantum one-time pad (QOTP) with key P ∈ Pn is a symmetric-key
encryption scheme that consists of the following two algorithms.

• Encryption: QOPT.EncP (ρ) := PρP †.

• Decryption: QOPT.DecP (ρ) := P †ρP .

It is well known that the ciphertext under QOTP is maximally mixed:

Lemma 3.2 (Pauli Twirl). For every state |ϕ⟩M,N =
∑

u |u⟩
M ⊗ |ϕu⟩N it holds that

E
P←Pn

Mixed
[
PM |ϕ⟩M,N

]
=

(
E

r←Zn
p

Mixed [|r⟩]
)M

⊗
(∑

u

Mixed [|ϕu⟩]
)N

The same result holds when P is randomly sampled from the Clifford group Cn. Moreover,
it is well known that QOTP can split a quantum attack into a probabilistic combination of
Pauli attacks. This work considers a specific scenario where an untrusted party measures a
state which is protected under QOTP. We formulate the following lemma, which shows that
any attack would be equivalent to a probabilistic combination of Pauli attacks that cause
different shifts. We prove the lemma in Appendix A.

Lemma 3.3 (Pauli Twirl with Measurement). Let |ϕ⟩M,N =
∑

u∈Zn
p
|u⟩M ⊗ |ϕu⟩N be a state

and v ∈ Zn
p be the target measurement result. For any attack AM,N =

∑
Q∈P∗n

(
QM ⊗ AQ

N
)

applied on the QOTP-protected state, it holds that

E
P←Pn

Mixed
[
|v + x(P )⟩⟨v + x(P )|MAM,NPM |ϕ⟩M,N

]
= E

r←Zn
p

∑
u

Mixed

( ∑
x(Q)=v−u

Q⊗ AQ

)(
|r⟩ ⊗ |ϕu⟩

)
3.3 Quantum Authentication Code

Quantum authentication code detects whether unauthorized alterations have been made to
the data. When alternation is detected, the algorithm will output a rejection symbol ⊥.

12



Definition 3.4 (Quantum Authentication Code, [BCG+02]). A quantum authentication
code consists of three algorithms. The key generation algorithm Gen takes in the security
parameter 1λ and the message size 1ℓ and outputs a random secret key sk. The encoding
algorithm Enc maps a secret key sk and a quantum message on M to a quantum ciphertext
on MT . The decoding algorithm Dec maps a secret key sk and a quantum ciphertext on
MT to a quantum message M . These algorithms should satisfy the following properties.

• Completeness: For every secret key sk, it holds that Decsk ◦ Encsk = 1.

• Security: For any quantum map A, there exists two CP maps AAcc and ARej such that

AAcc +ARej is trace preserving and that for any (possibly entangled) states ρ, ρaux,{
(ρ′,ρ′aux)

∣∣∣∣∣ sk←Gen(1λ,1ℓ)
σ←Enc(sk,ρ)

(σ′,ρ′aux)←A(σ,ρaux)
ρ′←Dec(sk,σ′)

}
≈

negl(λ)

((
ρ, AAcc(ρaux)

)
+
(
|⊥⟩⟨⊥|, ARej(ρaux)

))
Here, we recall the Clifford authentication code from [ABOEM17]. The key generation al-

gorithm outputs a uniformly random Clifford gate EM,T . The encoding procedure augments

the message state ρM with traps |0⟩⊗λ
T
and applies EM,T . The decoding procedure applies

E† followed by measuring the register T in the computational basis. If the measurement
results are not all zero, the content of M is replaced with |⊥⟩. The Clifford authentication
code satisfies Definition 3.4. The following lemma is crucial to its proof, and we will use the
lemma directly later on.

Lemma 3.5 (Pauli Partitioning by Clifford, [ABOEM17, Cha05]). For every Pauli operators
Q,Q′ ∈Pn that do not lie in {ωkI | k ∈ Zp}, it holds that

Pr
C←Cn

[
C†QC = Q′

]
= negl(n).

The Clifford code also supports homomorphic computation for any Clifford operation.
Consider a Clifford-code ciphertext EncE(ρ

M) with secret key sk = E. To perform a Clifford
gate G on ρ, it suffices to update the secret key as sk′ = EG†. This works because we have
Encsk(ρ) = E(ρ, |0⟩⊗λ) = EG†(Gρ, |0⟩⊗λ) = Encsk′(G(ρ)).

3.4 Quantum Error-Correction Code

Quantum error correction code can protect quantum states from errors as long as the number
of errors is limited. In this work, it suffices to consider erasure errors.

Definition 3.6 (Quantum Error Correction Code). A [[n, k]]p quantum error correction code
consists of two algorithms. The encoding algorithm QECC.Enc : Dk → Dn encodes a k-qupit
message into a n-qupit codeword. The decoding algorithm QECC.Dec : Dn × {0, 1}n → Dk

takes a modified codeword and its location of errors and outputs a k-qupit message. A
quantum error correction code is said to correct t erasure errors, if for any ρ ∈ Dk and any
quantum channel ∆R acting on |R| < t qupits, it holds that

QECC.Dec
(
∆RQECC.Enc(ρ),1R

)
= ρ

13



where 1R specifies the locations of R among the n qupits.

To arrive at best-of-both-worlds security for any threshold t < n
2
, we can use the quantum

polynomial code of [ABO97], which also satisfies other desirable properties.

Lemma 3.7 (Polynomial Code, [ABO97]). For every t < n
2
and prime p > n, there exists

a [[n, 1]]p quantum error correction code that corrects t erasure errors with the following
additional properties:

• Syntax: The encoding algorithm applies a Clifford gate to input ρ and ancilla |0⟩⊗(n−1).
We will denote the Clifford gate for encoding as QECC.

• Transversal Measurement: The decoding algorithm commutes with qupit-wise measure-
ment in the computational basis.

• Fault-Tolerant Computation: X,Z,CX,H gates and their inverses can be applied to the
underlying message ρ by locally applying some of these gates (and measurements) to
the individual components of the codeword (using ancillas).

A state injection technique (Appendix B) shows that the S gate can be performed through
X,Z,CX−1 gates and measurements in the computational basis using ancillas. Combining
with the transversal measurement and fault-tolerant computation stated above, the entire
Clifford group Cn = ⟨S,H,CX⟩ can be applied fault-tolerantly using ancillas under the poly-
nomial code of Lemma 3.7.

3.5 Quantum Teleportation

Quantum teleportation allows parties to transmit quantum messages using only classical
communication and pre-shared quantum states. Below, an EPR pair (eS

S1,··· ,Sn , eR
R1,··· ,Rn)

of length n stands for the state
⊗

j∈[n] |Φ+⟩Sj ,Rj where |Φ+⟩ = 1√
p
Σp−1

j=0 |j, j⟩.

Definition 3.8 (Quantum Teleportation Without Measurement). Let (eS, eR) be an EPR
pair of length n pre-shared between a sender holding input ψ ∈ Dn and a receiver. Quantum
teleportation consists of two algorithms. We will also abbreviate TP.Send as TP.

• TP.Send(ψM , eS
S) applies HMCX†

M,S
to (ψM , eS

S) and outputs registers M,S.

• TP.Recv(z, x, eR
R) applies (XxZz)† to eR

R and outputs register R.

When we speak of teleporting a state ψM via register S, we mean to apply TP.SendM,S,
measure (M,S) in the computational basis and interpret the measurement result (z, x) as
the Pauli XxZz. The following lemma states that the teleportation result XxZz can help the
receiver recover the original quantum message ψ. A proof can be found in Appendix A.

Lemma 3.9. Let (ψ, τ) be a purified state independent of (eS, eR). Then(
TP.Send(ψM , eS

S), eR
R, τN

)
=

1

pn

∑
x,z∈Zn

p

|z⟩M ⊗ |x⟩S ⊗
(
(XxZz)ψR, τN

)
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4 Model and Definition

We focus on interactive protocols between n parties P1, · · · ,Pn with quantum computational
power. They can communicate using pairwise authenticated quantum channels and a broad-
cast channel for classical messages. We work in the synchronous communication model where
the protocol proceeds in rounds, and each message will certainly arrive at the end of each
round. In addition, we consider the presence of a protocol observer O who passively receives
and records classical information from the broadcast channel all the time. The adversary A
can statically corrupt a set I ⊂ {P1, · · · ,Pn} of up to n− 1 parties.

The quantum computation to be performed is modeled as a quantum circuit C, which
takes n parts of quantum inputs and produces n parts of quantum outputs. Without loss of
generality, we assume that the corresponding inputs and outputs have equal size. We always
apply [BK05, CAB12] to convert C into the following format, incurring only a polynomial
growth in description size. The ancilla ϕanc consists of |0⟩ , |S⟩ , |T⟩ states, and the circuit
operates on a total of ℓtotal =

∑
i ℓi + d qupits.

Specification of Quantum Circuit C

1. Take input registers R1, · · · , Rn where |Ri| = ℓi.

2. Initialize register N = (N1, · · · , Nd) as some ancilla (magic) state ϕanc where |Ni| = 1.

3. For k = d, · · · , 1, perform the following computation, denoted as C[k]:

(a) Measure Nk in the computational basis and obtain a pit bk.

(b) Compute a classical circuit fk(bk, · · · , bd) that outputs a Clifford gate Gk−1.

(c) Apply Gk−1 ∈ Cℓ1+···+ℓn+k−1 on registers (R1, · · · , Rn, N1, · · · , Nk−1).

4. Output registers R1, · · · , Rn.

We will also consider evaluating a quantum circuit in a fault-tolerant manner. Under
the quantum error-correction code of Lemma 3.7, the Clifford group can be applied fault-
tolerantly with ancillas. Hence, a quantum circuit can be written in the above form, with
each Gk−1 additionally admits a fault-tolerant expression (G

(1)
k−1, · · · , G

(n)
k−1) consisting of

Clifford gates such that

(G
(1)
k−1 ⊗ · · · ⊗G

(n)
k−1) ◦ QECC.Enc = QECC.Enc ◦Gk−1

4.1 The Ideal World of BoBW-MPQC-PVIA

A multi-party quantum computation protocol is defined using the real vs. ideal paradigm.
In the ideal world, the parties delegate the computation C to a trusted party T. The only
way for the corrupted parties to interrupt the delegation is to ask T to abort, in which case
T publicly announces their identities. The ideal world of best-of-both-worlds multi-party
quantum computation secure with publicly verifiable identifiable abort is formally defined
as follows. We denote its joint output distribution as IdealMPQC

AI(ρaux)
(1λ, t, C, ρ1, · · · , ρn).
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IdealMPQC: Best-of-Both-Worlds Multi-party Quantum Computation
Secure with Publicly Verifiable Identifiable Abort

Common input:
The security parameter 1λ, fault-tolerance threshold t and quantum circuit C.

Input:
Pi holds input ρi. AI holds input ρaux and controls parties in I.

T receives inputs and performs computation:
Each party Pi sends some ρ̃i as input to T. Honest parties choose ρ̃i = ρi.
T computes (ρ′1, · · · , ρ′n)← C(ρ̃1, · · · , ρ̃n).

T sends back outputs:
T sends ρ′i to all Pi ∈ I.
Pi ∈ I can send abort message to T. Let J be the set of parties who indeed do so.
If |J | > t, T publicly aborts to J .
If |J | ≤ t, T sends ρ′i to all Pi ̸∈ I.

Output:
Honest parties output whatever output received from T.
The observer O outputs whatever public information received from T.
The adversary AI outputs a function of his view.

For a protocol Π, we denote by RealΠAI(ρaux)
(1λ, ρ1, · · · , ρn) the joint output distribution of

the honest parties, the observer, and the adversary at the end of protocol Π when executed
by Pi(ρi) in the presence of an adversary AI(ρaux) corrupting parties in I. For a protocol Π
with a trusted setup Σ, we define RealΠ◦ΣAI(ρaux)

(1λ, ρ1, · · · , ρn) similarly with Σ being executed
by a trusted party prior to Π.

Definition 4.1. We say that a protocol Π is a best-of-both-worlds multi-party quantum com-
putation secure with publicly verifiable identifiable abort (BoBW-MPQC-PVIA) of threshold
t over a circuit C, if for every |I| ≤ n − 1 − t and every non-uniform (qpt) adversary AI

corrupting parties in I, there is a non-uniform (qpt) simulator SimI corrupting parties in I,
such that for any quantum inputs ρi ∈ Dℓi , i ∈ [n],

RealΠAI(ρaux)
(1λ, ρ1, · · · , ρn) ≈ IdealMPQC

SimI(ρaux)
(1λ, t, C, ρ1, · · · , ρn)

If the protocol Π has a trusted setup Σ, the indistinguishability requirement is replaced with

RealΠ◦ΣAI(ρaux)
(1λ, ρ1, · · · , ρn) ≈ IdealMPQC

SimI(ρaux)
(1λ, t, C, ρ1, · · · , ρn)

Definition 4.2. We say that Π is a multi-party quantum computation secure with publicly
verifiable identifiable abort (MPQC-PVIA) over a circuit C if Definition 4.1 holds for t = 0.
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4.2 (Preprocessing) MPC-Hybrid Model

Following [DNS12, DGJ+20, ACC+21, BCKM21], we assume an ideal functionality cMPC
for reactive4 classical multiparty computation within our MPQC protocol. The ideal world
of classical MPC is similar to that of MPQC defined in section Section 4.1, but allows
only classical messages and classical computation. In additional to producing n private
outputs, the classical computation is allowed to generate an additional output which the
ideal functionality publicly outputs if there is no abort. In our presentation, we will simply
view cMPC as a trusted classical party. We refer this setting as the MPC-hybrid model.
The preprocessing MPC-hybrid model extends the MPC-hybrid model by allowing an input-
independent trusted setup to be executed prior to the actual protocol.

One can instantiate the MPC ideal functionality using a post-quantum best-of-both-
worlds MPC protocol secure with publicly verifiable identifiable abort and publicly verifiable
output. A concrete construction of such a protocol is to plug the MPC protocol of [BOSSV20]
into the compiler of [IKK+11] to attain best-of-both-worlds security, and then apply [Unr10]’s
lifting theorem to obtain post-quantum security.

5 Auditable Quantum Authentication (AQA)

This section presents a new primitive called Auditable Quantum Authentication (AQA) that
lets a sender send quantum messages to a receiver and be accountable for his sending action.
AQA is designed to identify the malicious sender only, while the receiving behavior is au-
tomatically guaranteed by successfully passing the test. In contrast to traditional quantum
authentication codes like the Clifford or Trap codes, which necessitate the receiver to verify
the checking bits, AQA adopts a different approach. It obliges the sender to generate the
proof that should be verified by the auditor.

Definition 5.1 (Auditable Quantum Authentication). An auditable quantum authentica-
tion scheme consists of the following five algorithms:

• Setup(1λ, 1ℓ) → (sk, ϕS, ϕR) takes as input the security parameter λ and the message
length ℓ and outputs a classical secret key sk, a quantum sending state ϕS and a
quantum receiving state ϕR.

• Enc(sk, ρ)→ σ takes as input a classical secret key sk, a quantum message state ρ ∈ Dℓ

and outputs a quantum authenticated state σ.

• Send(σ, ϕS)→ pf takes as input a quantum authenticated state σ, a quantum sending
state ϕS and outputs a classical proof pf.

• Audit(sk, pf) → dk is a classical algorithm that takes as input a secret key sk, a proof
pf and outputs a decryption key dk. When the proof is invalid, dk will be set as ⊥.

• Recv(dk, ϕR) → ρ′ takes as input a classical decryption key dk, a quantum receiving
state ϕR and outputs a quantum message state ρ′. When dk = ⊥, ρ′ will be set as ⊥.

These algorithms should satisfy the following properties:

4It can be equipped with an internal state that may be taken into account when it is called next time.

17



• Sender completeness: For every quantum message state ρ ∈ Dℓ, it holds that

Pr

[
dk̸=⊥

∣∣∣∣∣ (sk,ϕS ,ϕR)←Setup(1λ,1ℓ)
σ←Enc(sk,ρ)

pf←Send(σ,ϕS)
dk←Audit(sk,pf)

]
= 1

• Receiver security: There exists algorithms S̃etup, Ẽnc, Ãudit such that Recv ◦ Ẽnc = 1

and that for every completely positive map A and every possibly entangled quantum

states ρ, ρaux, it holds that{
(dk,ϕA)

∣∣∣∣∣ (sk,ϕS ,ϕR)←Setup(1λ,1ℓ)
σ←Enc(sk,ρ)

(pf,ϕA)←A(σ,ϕS ,ϕR,ρaux)
dk←Audit(sk,pf)

}
≈

negl(λ)

(dk,ϕA)

∣∣∣∣∣∣
(sk,ϕS ,σ)←S̃etup(1λ,1ℓ)

(dk,ϕR)←Ẽnc(ρ)
(pf,ϕA)←A(σ,ϕS ,ϕR,ρaux)

dk←⊥ if ⊥←Ãudit(sk,pf)


Sender completeness guarantees that the honest sender always passes the audit. Receiver

security is defined through the indistinguishability of two kinds of executions, implying that
whatever property is satisfied by the right-hand side will also hold up to a negligible error
for the left-hand side.

In particular, receiver security captures the following properties. First, it guarantees that
the sender’s inputs (σ, ϕS) are as if they can be generated independently of ρ, and hence
contain no information about the message ρ. Similarly, the receiver’s input ϕR is as if it
already encodes ρ. Second, dk is the only information required for the receiver to recover
ρ from ϕR, and the honest receiver always obtains the true message given that the audit
accepts. Third, all the adversarial sender can do, even if the sender and the receiver collude,
is to completely destroy dk at the cost of making the audit output ⊥ at the same time.

Setup S̃etup

Ps Enc(ρ) Pr Ps Ẽnc(ρ) Pr

Audit Ãudit

⊥ ⊥

ϕRϕS ϕS ,σ

pf

σ

pf

ϕR

dk
dk

?

dk

?

Figure 3: AQA real world (left) and ideal world (right)

5.1 Construction

Construction 1 Clifford-Form AQA

• Setup(1λ, 1ℓ) :
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1. Sample random Clifford F ← Cℓ+λ and Pauli PM , PS ←Pℓ+λ, PR ←Pℓ, PC ←Pλ.

2. Prepare EPR pairs on registers (Ŝ, (R̂, Ĉ)) with |Ŝ| = ℓ+ λ, |R̂| = ℓ, |Ĉ| = λ.

3. Apply PS
ŜPR

R̂PC
ĈF †

R̂,Ĉ
. Name the resulting state as ϕS

Ŝ,Ĉ and ϕR
R̂.

4. Output (sk, ϕS, ϕR) where sk = (F, PM , PS, PC , PR).

• Enc(sk, ρ): Parse sk = (F, PM , PS, PC , PR) and output σ = PMF (ρ⊗ 0λ)F †P †M .

• Send(σM̂ , ϕS
Ŝ,Ĉ):

1. Teleport σM̂ via Ŝ and obtain the teleportation result P̂ .

2. Measure Ĉ in the computational basis and obtain the measurement result ĉ.

3. Output pf = (P̂ , ĉ).

• Audit(sk, pf):

1. Parse sk = (F, PM , PS, PC , PR) and pf = (P̂ , ĉ).

2. Compute the quantum one-time pad PM,S := TP(PM⊗PS)TP
†. Set the decoded

teleportation result P̂ ′ as the Pauli with string representation
(
z(P̂ ), x(P̂ )

)
⊕x(PM,S).

3. Split the twirled Pauli F †P̂ ′F ∈Pℓ+λ as P̂ ′R, P̂
′
C that act on ℓ, λ qupits respectively.

4. If ĉ ̸= x(P̂ ′C)⊕ x(PC), output dk = ⊥. Otherwise, output dk = PRP̂
′
R.

• Recv(dk, ϕR) : If dk ̸= ⊥, parse dk as a Pauli gate and output ρ′ = dk†(ϕR)dk.

In light of the homomorphic property of the Clifford code (Section 3.3), we additionally
define EncG which extracts the encoding Clifford gate from the secret key. It will become
useful in applications that make use of homomorphic computation.

• EncG(sk) : Parse sk = (F, PM , PS, PC , PR) and output PMF .

5.2 Security

Theorem 5.2. Construction 1 is an Auditable Quantum Authentication scheme.

Proof. We take the following steps. First, we analyze the state (dk, ϕA) that results from ex-
ecuting (Setup,Enc,A,Audit) in a row. Second, we prove sender completeness by plugging in
A = Send. Third, we show that the distribution of (dk, ϕA) generated above is indistinguish-

able from a simpler state. Last, we construct S̃etup, Ẽnc, Ãudit that satisfy the requirements
of receiver security.

Step 1. Without loss of generality, we assume that A has the same output length in ϕA as the

input length. We can also assume that A(σM̂ , ϕS
Ŝ,Ĉ , ϕR

R̂, ρaux
Ŵ ) produces the classical proof

pf by measuring the registers (M̂, Ŝ, Ĉ) in the computational basis. Moreover, we can assume
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that the CP map A takes the form τ 7→ AτA† because every CP map can be decomposed
into a sum of such operators and indistinguishability of subnormalized states extends under

addition. We denote the Pauli decomposition of A′ = A TP†
M̂,Ŝ

as
∑

Q∈P∗ Q
M̂,Ŝ,Ĉ ⊗A′Q

R̂,Ŵ .

Let (Ŝ, (R̂, Ĉ)) be the EPR pair prepared during Setup. By defintion, the execution of
Setup and Enc yields a random classical key sk = (F, PM , PS, PC , PR) and quantum state(

σM̂ , ϕS
Ŝ,Ĉ , ϕR

R̂
)
= Mixed

[(
PMF

(
ρ, |0⟩⊗λ

)M̂
, PSŜ

Ŝ
, (PR⊗PC)F

†
(
R̂, Ĉ

)R̂,Ĉ
)]

After the execution of A, the joint state is

E
sk

Mixed

[
A

(
PMF

(
ρ, |0⟩⊗λ

)M̂
, PSŜ

Ŝ
, (PR⊗PC)F

†
(
R̂, Ĉ

)R̂,Ĉ

, ρaux
Ŵ

)
⊗ |sk⟩

]
=E

sk
Mixed

[
A′
(
TP

(
PMF

(
ρ, |0⟩⊗λ

)M̂
, PSŜ

Ŝ
)
, (PR⊗PC)F

†
(
R̂, Ĉ

)R̂,Ĉ

, ρaux
Ŵ

)
⊗ |sk⟩

]
=E

sk
Mixed

[
A′
(
PM,STP

(
F
(
ρ, |0⟩⊗λ

)M̂
, Ŝ Ŝ

)
, (PR⊗PC)F

†
(
R̂, Ĉ

)R̂,Ĉ

, ρaux
Ŵ

)
⊗ |sk⟩

]
=E

sk
Mixed

[
A′

(∑
P

1

pℓ+λ

(
PM,S |z(P ), x(P )⟩M̂,Ŝ, (PR⊗PC)F

†PF
(
ρ, |0⟩⊗λ

)R̂,Ĉ

, ρaux
Ŵ

))
⊗ |sk⟩

]

The first and second equalities follows from the definitions of A′ and PM,S, and the last
equality is by quantum teleportation (lemma 3.9). Let us define the linear functions

LF (P ) :=
(
z(P ), x(P ), x(F †PF )[ℓ+1:ℓ+λ]

)
∈ Z2ℓ+3λ

p

KF (P ) :=
(
F †PF

)
[1:ℓ]
∈Pℓ

for every Clifford operator F . The joint state can be simplified as

E
sk

Mixed

[
A′

(∑
P

1

pℓ+λ

(
(PM,S ⊗ PC) |LF (P )⟩M̂,Ŝ,Ĉ , PRKF (P ) (ρ)

R̂, ρaux
Ŵ
))
⊗ |sk⟩

]

The next step is to apply Audit, which checks whether the value stored in (M̂, Ŝ, Ĉ) is equal

to LF (P̂ ) ⊕ x(PM,S ⊗ PC) for some P̂ ∈ Pℓ+λ. If there is such a P̂ , then Audit outputs

dk = PRKF (P̂ ); otherwise, it outputs dk = ⊥. To analyze the resulting state post-selected

on finding P̂ , we can apply Pauli twirl with target measurement result LF (P̂ ) (lemma 3.3)
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using the Pauli decomposition of A′. We obtain

E
r,F,PR

∑
P

Mixed

 ∑
x(Q)=LF (P̂ /P )

1

pℓ+λ
Q |r⟩ ⊗A′Q

(
PRKF (P ) (ρ) , ρaux

)
⊗ |PRKF (P̂ )⟩


PR←PRKF (P )

= E
r,F,PR

∑
P

Mixed

 ∑
x(Q)=LF (P̂ /P )

1

pℓ+λ
Q |r⟩ ⊗A′Q

(
PR (ρ) , ρaux

)
⊗ |PRKF (P̂ /P )⟩


P←P̂ /P
=

1

p2(ℓ+λ)
E

r,F,PR

∑
P

Mixed

 ∑
x(Q)=LF (P )

Q |r⟩ ⊗A′Q

(
PR (ρ) , ρaux

)
⊗ |PRKF (P )⟩


Summing the post-selected states corresponding to every P̂ ∈ Pℓ+λ, we obtain the state
conditioned that Audit accepts.

E
r,F,PR

∑
P

Mixed

 ∑
x(Q)=LF (P )

Q|r⟩M̂,Ŝ,Ĉ ⊗ A′Q
(
PR (ρ)R̂, ρaux

Ŵ

)
⊗ |PRKF (P )⟩

 (1)

Similarly, the state conditioned that Audit rejects is

E
r,F,PR

∑
x ̸∈Range(LF )

Mixed

 ∑
x(Q)=x

Q|r⟩M̂,Ŝ,Ĉ ⊗ A′Q
(
PR (ρ)R̂, ρaux

Ŵ

)
⊗ |⊥⟩

 (2)

Step 2. To see sender completeness, we take A = Send, which applies TPM̂,Ŝ followed

by measuring (M̂, Ŝ, Ĉ) in the computational basis. The induced A′ = A TP† is a mea-
surement in the computational basis, and the Pauli decomposition of A′ involves only terms
with x(Q) = 0 ∈ Range(LF ). For such A

′, expression (2) shows that Audit never outputs ⊥.

Step 3. We claim that (1) + (2) is statistically indistinguishable to (3) + (4).

E
r,PR

Mixed

 ∑
x(Q)=0

Q|r⟩M̂,Ŝ,Ĉ ⊗ A′Q
(
PR (ρ)R̂, ρaux

Ŵ

)
⊗ |PR⟩

 (3)

E
r,PR

∑
x ̸=0

Mixed

 ∑
x(Q)=x

Q|r⟩M̂,Ŝ,Ĉ ⊗ A′Q
(
PR (ρ)R̂, ρaux

Ŵ

)
⊗ |⊥⟩

 (4)
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The trace distance between (1) and (3) is

tr

∣∣∣∣∣∣ E
F,r,PR

∑
P ̸=I

Mixed

 ∑
x(Q)=LF (P )

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

)
⊗ |PRKF (P )⟩

∣∣∣∣∣∣
=tr

∣∣∣∣∣∣
∑
x̸=0

∑
P ̸=I

E
F,r,PR

1LF (P )=x Mixed

 ∑
x(Q)=x

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

)
⊗ |PRKF (P )⟩

∣∣∣∣∣∣
≤
∑
x ̸=0

∑
P ̸=I

E
F,r,PR

1LF (P )=x tr

∣∣∣∣∣∣ Mixed

 ∑
x(Q)=x

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

)
⊗ |PRKF (P )⟩

∣∣∣∣∣∣
=
∑
x ̸=0

E
r,PR

(∑
P ̸=I

Pr
F
[LF (P ) = x]

)
tr

Mixed

 ∑
x(Q)=x

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

)
=
∑
x ̸=0

E
r,PR

Pr [x ∈ Range(LF )] tr

Mixed

 ∑
x(Q)=x

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

) (5)

where the third line is from triangle inequality, the fourth line is because Mixed [·] is positive,
and the last line follows from the observation that each x has at most one P such that
LF (P ) = x. Similarly, the trace distance between (2) and (4) is

E
r,PR

∑
x ̸=0

(1− Pr[x ̸∈ Range(LF )]) tr

Mixed

 ∑
x(Q)=x

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

)
which is equal to (5). By triangle inequality, the trace distance between (1)+(2) and (3)+(4)
is upper bounded by two times (5), which is

∑
x ̸=0

E
r,PR

2Pr [x ∈ Range(LF )] tr

Mixed

 ∑
x(Q)=x

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

)
≤ negl(λ)

∑
x ̸=0

E
s,PR

tr

Mixed

 ∑
x(Q)=x

Q |r⟩ ⊗ A′Q
(
PR

(
ρ
)
, ρaux

)
=negl(λ) tr (4) ≤ negl(λ) tr ((3) + (4)) .

The second line follows from the Pauli partitioning by Clifford (lemma 3.5). The third line
holds by the linearity of trace and the fact that (3), (4) are orthogonal. This establishes the
statistical indistinguishability between (1) + (2) and (3) + (4).

Step 4. Finally, we construct S̃etup, Ẽnc, Ãudit and prove receiver security.
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S̃etup(1λ, 1ℓ):
1. Sample a random string sk← Z2ℓ+3λ

p .

2. Output (sk, ϕS, σ), where (σM̂ , ϕS
Ŝ,Ĉ) is the result of applying TP†

M̂,Ŝ
to |sk⟩M̂,Ŝ,Ĉ .

Ẽnc(ρ):
1. Sample a random Pauli dk←Pℓ.
2. Output (dk, σ) where σ = dk(ρ)dk†.

Ãudit(sk, pf):
1. Parse pf = (P̂ , ĉ).
2. Output ⊥ if (z(P̂ ), x(P̂ ), ĉ) ̸= sk.

It is direct to see that Recv ◦ Ẽnc = 1. We now analyze the state (dk, ϕA) that results

from executing (S̃etup, Ẽnc,A) in a row and replacing dk← ⊥ if ⊥ ← Ãudit. The execution

of S̃etup and Ẽnc yields random classical keys sk = r, dk = P and quantum state(
σM̂ , ϕS

Ŝ,Ĉ , ϕR
R̂
)
= Mixed

[(
TP†

M̂,Ŝ|r⟩M̂,Ŝ,Ĉ , PρR̂
)]

After the execution of A, the joint state is

E
r,P

Mixed

[
A

(
TP†

M̂,Ŝ|r⟩M̂,Ŝ,Ĉ , PρR̂, ρaux
Ŵ

)
⊗ |r⟩ ⊗ |P ⟩

]
= E

r,P
Mixed

[
A′
(
|r⟩M̂,Ŝ,Ĉ , PρR̂, ρaux

Ŵ
)
⊗ |r⟩ ⊗ |P ⟩

]
The next step is to apply Ãudit, which corresponds to the projection |r⟩⟨r|M̂,Ŝ,Ĉ . The state

conditioned that Ãudit accepts can be analyzed through Pauli twirl with target measure-
ment result 0 (lemma 3.3), which yields exactly (1). Similarly, the state conditioned that

Ãudit rejects is exactly (2). Hence, (dk, ϕA) generated from (Setup,Enc,A,Audit) and from

(S̃etup, Ẽnc,A, Ãudit) are indistinguishable, which establishes receiver security.

6 MPQC-PVIA with Trusted Setup

Here, we present our MPQC protocol with a trusted setup. We make use of the Clifford-form
AQA developed in the previous section together with cMPC to achieve PVIA security. For
simplicity, we work with qubits i.e., p = 2 here. The protocol is divided into two parts:

1. An offline setup: a setup ΣPVIA prepares EPR pairs (Si,Ri) of length ℓi and distributes
the sending side Si to party Pi. Next, the trusted setup encodes all of the receiving
sides R1, · · · ,Rn and the ancilla ϕanc into a single ciphertext σ, which is sent to the
server. This server can be any participant in the MPQC game; for simplicity, we can
assume it’s the first party. The above quantum states will later be utilized in the input
encoding stage. The trusted setup then executes AQA.Setup to obtain portals for the
output delivery stage. Finally, the trusted setup transmits information related to the
secret keys to cMPC.
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2. An online phase: every party acts as a client who teleports their input to the server.
Directed by cMPC, the server evaluates the circuit on the ciphertext σ. Finally, the
server returns the outputs to all clients using AQA.

Protocol 1 (ΣPVIA,ΠPVIA) for MPQC-PVIA with Trusted Setup

Common Input: A quantum circuit C in the format of Section 4.

Trusted Setup ΣPVIA:

1. Prepare EPR pairs (SiSi ,Ri
Ri) with |Si| = |Ri| = ℓi.

2. Initialize the ancilla register N = (N1, · · · , Nd) as ϕanc.

3. Initialize the trap register T = (T1, · · · , Tn+d) as |0⟩⊗(n+d)λ.

4. Sample (ski, ϕS,i, ϕR,i)← AQA.Setup(1λ, 1ℓi).

5. Sample random Clifford E ← Cℓtotal+(n+d)λ and apply ER1,··· ,Rn,N,T with result σ.

6. Send (σR1,··· ,Rn,N,T , ϕS,1, · · · , ϕS,n) to server and send (SiSi , ϕR,i) to client i.

7. Send the secrets (E, sk1, · · · , skn) to cMPC.

Online Input: Client i receives ρi ∈ Dℓi .

Protocol ΠPVIA:

Input Encoding:

1. Client i teleports ρi via SiSi and sends the teleportation result Pi to cMPC.

2. cMPC sets the key Ed = ER1,··· ,Rn,N,TP1
R1 · · ·Pn

Rn .

Computation:

3. For k = d, · · · , 1:

(a) cMPC sends the gate Vk = (E ′k−1
R[n],N[k−1],T[n+k−1] ⊗ P ′kCXck

Nk,Tn+k)E†k
R[n],N[k],T[n+k]

to the server using a random Clifford E ′k−1 ← CΣiℓi+(k−1)+(n+k−1)λ, a random Pauli
P ′k ←P∗

1+λ, and a random string ck ← {0, 1}λ.
(b) Server applies Vk to registers (R[n], N[k], T[n+k]), measures (Nk, Tn+k) in the com-

putational basis and sends the measurement outcome rk ∈ {0, 1}1+λ to cMPC.

(c) cMPC sets bk ∈ {0, 1} as the solution to rk⊕x(P ′k) = bk(1, ck) if there is a solution.
Otherwise, cMPC publicly outputs the server as malicious and aborts.

(d) cMPC computesGk−1
R[n],N[k−1] = fk(bk, · · · , bd) and sets the key Ek−1 = E ′k−1G

†
k−1.

Output Delivery:

4. cMPC sends server V ′ = AQA.EncG(sk1)
R1,T1 · · ·AQA.EncG(skn)Rn,TnE†0

R1,··· ,Rn,T1,··· ,Tn
.

5. Server applies V ′R1,··· ,Rn,T1,··· ,Tn and obtains (σ̂M̂1
1 , · · · , σ̂M̂n

n ) where M̂i := (Ri, Ti).
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6. Server computes pfi ← AQA.Send(σ̂i, ϕS,i) and sends the result to cMPC.

7. cMPC computes dki ← AQA.Audit(ski, pfi). If dki = ⊥, cMPC publicly outputs the
server as malicious and aborts. Otherwise, cMPC sends dki to client i.

8. Client i outputs ρ′i ← AQA.Recv(dki, ϕR,i).

6.1 Security

Theorem 6.1. (ΣPVIA,ΠPVIA) is a multi-party quantum computation secure with publicly
verifiable identifiable abort with trusted setup in the MPC-hybrid model as defined in Def-
inition 4.2. i.e., For every non-uniform (qpt) adversary A corrupting party set I with
|I| ≤ n − 1, there is a non-uniform (qpt) adversary SimA corrupting I, such that for any
(possibly entangled) states ρ1, · · · ρn, ρaux,

{RealΠPVIA◦ΣPVIA

A(ρaux) (1λ, C, ρ1, · · · , ρn)} ≈ {IdealMPQC
SimA(ρaux)

(1λ, 0, C, ρ1, · · · , ρn)}

Proof. Consider the following hybrid worlds modified from the real protocol gradually. We
describe each hybrid in terms of the changes made to the previous hybrid.

• H1: Introduce a trusted party Thybrid who executes both the setup ΣPVIA and cMPC.

• H2:

– ΣPVIA step 1: Thybrid prepares EPR pairs on registers (Si, R̃i), (S̃i, Ri) with |Si| =
|R̃i| = |S̃i| = |Ri| = ℓi and keeps {(R̃i, S̃i)}. Let R̃i be the content of R̃i.

– ΣPVIA step 2: Thybrid prepares EPR pairs on (D,N) of length d and keeps D.

– ΠPVIA step 2: Thybrid extracts the input ρ̃R̃i
i = P †i R̃

R̃i
i and prepares ancilla ϕanc

Ñ .

Next, it teleports ρ̃R̃i
i , ϕanc

Ñ back to the server via registers S̃i, D respectively. If the
teleportation results are P̃i, P̃anc, it sets Ed = ER1,··· ,Rn,N,T P̃R1

1 · · · P̃Rn
n P̃N

anc.

• H3+d−k, where k = d, · · · , 1:

– ΣPVIA step 5: For h = d, · · · , k, Thybrid resets (Nh, Tn+h) as random string r̃h ←
{0, 1}λ+1, samples random Clifford Vh ← Cℓtotal+(n+h)λ, Ẽk−1 ← Cℓtotal+(n+k−1)λ and

sets E = V †d
R[n],N[d],T[n+d] · · ·V †k

R[n],N[k],T[n+k]
Ẽ

R[n],N[k−1],T[n+k−1]

k−1 .

– ΠPVIA step 2: Thybrid computes C[k] · · ·C[d]
(
ρ̃R̃1
1 , · · · , ρ̃R̃n

n , ϕanc
Ñ
)
. Next, it teleports

the states in registers R̃i and Ñ
′
[k−1] back to the server. If the teleportation results

are P̃i, P̃anc, it sets Ek−1 = Ẽ
R1,··· ,Rn,,N[k−1],T[n+k−1]

k−1 P̃R1
1 · · · P̃Rn

n P̃
N[k−1]
anc .

– ΠPVIA step 3 iteration h for h = d, · · · , k: Thybrid sends Vh to the server and receives
rh in return. If rh ̸= r̃h, T

hybrid publicly outputs the server as malicious and aborts.

• H3+d:
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– ΣPVIA step 4: Thybrid samples (ski, ϕS,i, σi)← AQA.S̃etup(1λ, 1ℓi), uses the content Ri

of register Ri as ϕR,i, and reassigns register (Ri, Ti) as σi.

– ΠPVIA step 2: Thybrid computes the circuit C with input (ρ̃R̃1
1 , · · · ρ̃R̃n

n ), teleports the
output via register S̃i, and sets dki as the teleportation result P̃i.

– ΠPVIA step 5: Thybrid sets V ′ = Ẽ†0.

– ΠPVIA step 7: Thybrid resets dki = ⊥ if ⊥ ← AQA.Ãudit(ski, pfi).

The last hybrid world is equivalent to the ideal world with the following simulator.

Simulator 1 SimPVIA
A(ρaux) for MPQC-PVIA with Trusted Setup

1. Fake setup (if client i is corrupted):

(a) Prepare EPR pairs on registers (Si, R̃i) with |Si| = |R̃i| = ℓi.

(b) Prepare EPR pairs on registers (S̃i, R̂i) with |S̃i| = |R̂i| = ℓi.

(c) Send (Si, R̂i) to A.

2. Fake setup (if server is corrupted):

(a) Sample (ski, ϕS,i, σi
Ri,Ti)← AQA.S̃etup(1λ, 1ℓi) for i ∈ [n].

(b) Initialize registers (Nk, Tn+k) with random r̃k ← {0, 1}λ+1 for k ∈ [d].

(c) Sample random Clifford gates Vk ← Cℓtotal+(n+k)λ for k = 0, 1, · · · , d.

(d) Apply V †d
R[n],N[d],T[n+d] · · ·V †1

R[n],N[1],T[n+1]
V †0

R[n],T[n]
with resulting state σ.

(e) Send (σR1,··· ,Rn,N,T , ϕS,1, · · · , ϕS,n) to A.

3. Input extraction: Receive Pi from A and extract the input ρ̃i
R̃i = P †i R̃i

R̃i
.

4. Invoke the ideal functionality: Send ρ̃i to T and receive the output ρ̃′i from T.

5. Check the abort decision (if server is corrupted):

(a) For k = d, · · · , 1, send Vk to A and receive rk in return.
If rk ̸= r̃k, send abort to T in the name of the server.

(b) Send V0 to A.
(c) For i ∈ [n], receive pfi from A.

If ⊥ ← AQA.Ãudit(ski, pfi), send abort to T in the name of the server.

6. Output delivery: Teleport ρ̃′i via S̃i, obtain its result P̃i and send dki = P̃i to A if the
server did not send abort in the previous step.

7. Output A’s output.
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To prove Theorem 6.1, it suffices to show indistinguishability between consecutive hy-
brids. When comparing consecutive hybrids, we will view the execution of the adversary
and the protocol until a certain step as a quantum operation, which is a sum of CP maps of
the form τ 7→ AτA†. Then, it suffices to show indistinguishability under every such CP map
because indistinguishability of subnormalized states extend under addition.

Note that the indistinguishability holds whenever the adversary aborts the classical MPC.
The reason is that the abort prevents cMPC from producing information related to the Pauli
or Clifford keys, so the quantum states are all maximally mixed according to Pauli twirl and
Clifford twirl (lemma 3.2). Hence, we will assume that the adversary does not abort cMPC
from now on. Below, we sometimes abbreviate parts of the state that are currently irrelevant
with dots and omit writing the expectation over currently irrelevant keys.

• Real = H1: This is because ΣPVIA, cMPC and Thybrid are all trusted executions.

• H1 = H2: Consider executing the protocol until the end of step 1. Suppose the CP map
A projects (M[n], S[n]) to |P[n]⟩ in step 1. The state of H1 after protocol step 2 is

E
E←C

Mixed
[
A
(
E
(
R[n]

R[n] , ϕanc
N , |0⟩⊗(n+d)λT

)
, · · ·

)
⊗ |Ed⟩

]
= E

Ed←C
Mixed

[
A
(
Ed

(
P †[n]R[n]

R[n]
, ϕanc

N , |0⟩⊗(n+d)λT
)
, · · ·

)
⊗ |Ed⟩

]
In H2, we can change the order of A and the teleportation made by Thybrid because these
operators act on disjoint registers. By quantum teleportation, the state ofH2 after protocol
step 2 is as follows, which is the same as in H1.

E
E←C

Mixed
[
A
(
E
(
P̃[n]P

†
[n]R̃[n]

R[n]
, P̃ancϕanc

N
, |0⟩⊗(n+d)λT

)
, · · ·

)
⊗ |Ed⟩

]
= E

Ed←C
Mixed

[
A
(
Ed

(
P †[n]R̃[n]

R[n]
, ϕanc

N , |0⟩⊗(n+d)λT
)
, · · ·

)
⊗ |Ed⟩

]
• H2+d−k ≈ H3+d−k for k = d, · · · , 1: Consider executing the protocol until the end of step 3
iteration k+1. Suppose the CP map A projects (M[n], S[n]) to |P[n]⟩ in step 1 and projects
Nd, · · · , Nk+1 to bd, · · · , bk+1 in step 3 for iterations d to k + 1. Let us denote the partial

computation result C[k+1] · · ·C[d]
(
P †[n]R̃[n], ϕanc

)
as ρ̃(k)

R̃[n],Ñ[k] =
∑

b ρ̃(k,b)
R̃[n],Ñ[k−1]⊗|b⟩Ñk .

In H2+d−k, the state at protocol step 3(a) for iteration k is

E
Ek,E

′
k-1,P

′
k,ck

Mixed
[
A
(
Ek

(
ρ̃(k)

R[n],N[k] , |0⟩⊗(n+k)λT[n+k]
)
, · · ·

)
⊗ |P ′k, ck⟩

]
= E

Vk,E
′
k-1,P

′
k,ck

Mixed

[
A

(
V †k

(∑
b

E′k−1
(
ρ̃(k,b), |0⟩⊗(n+k−1)λ )⊗ P ′kCXck

(
|b⟩ , |0⟩⊗λ

))
, · · ·

)
⊗ |P ′k, ck⟩

]

The equality follows from the definition of Vk. Since the protocol gives the attacker access
to |Vk⟩ in step 3(a), we can merge V †k and A into a CP map A′ that operates also on |Vk⟩.
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Also, we can simplify CXck(b, |0⟩
⊗λ) = |b(1, ck)⟩. Thus, the state is eqaul to

E
E′k-1,P

′
k,ck

Mixed

[
A′

(∑
b

E′k−1
(
ρ̃(k,b), |0⟩⊗(n+k−1)λ )⊗ P ′k |b(1, ck)⟩

Nk,Tn+k , · · ·

)
⊗ |P ′k, ck⟩

]

Afterwards, protocol step 3(c) projects registers (Nk, Tn+k) to |x(P ′k) + bk(1, ck)⟩ for bk ∈
{0, 1}. The two cases are similar, and we demonstrate using the case bk = 0. To analyze,
we apply Pauli twirl with target measurement result (0, 0λ) (lemma 3.3) and use the Pauli
decomposition A′ =

∑
Q∈P∗λ+1

QNk,Tn+k ⊗ A′Q. The state after the projection of step 3(c)

for obtaining solution bk = 0 is

E
E′k-1,P

′
k,ck

Mixed

[
|x(P ′k)⟩⟨x(P ′k)|

Nk,Tn+kA′

(∑
b

P ′k |b(1, ck)⟩
Nk,Tn+k ⊗ E′k−1

(
ρ̃(k,b), |0⟩⊗(n+k−1)λ ), · · ·)]

= E
E′k-1,r̃k,ck

(
Mixed

 ∑
x(Q)=(0,0λ)

Q |r̃k⟩ ⊗A′Q

(
E′k−1

(
ρ̃(k,0), |0⟩⊗(n+k−1)λ ), · · ·)


+ Mixed

 ∑
x(Q)=(1,ck)

Q |r̃k⟩ ⊗A′Q

(
E′k−1

(
ρ̃(k,1), |0⟩⊗(n+k−1)λ ), · · ·)

)

≈ E
E′k−1,r̃k

Mixed

 ∑
x(Q)=(0,0λ)

Q |r̃k⟩ ⊗A′Q

(
E′k−1

(
ρ̃(k,0), |0⟩⊗(n+k−1)λ ), · · ·)


The indistinguishability follows because each ck occurs with negligible probability. After
setting the key Ek−1 = E ′k−1G

†
k−1 in protocol step 3(k), the state in H2+d−k becomes

E
Ek−1,r̃k

Mixed

 ∑
x(Q)=(0,0λ)

Q (|r̃k⟩)⊗A′Q

(
Ek−1

(
Gk−1

(
ρ̃(k,0)

)
, |0⟩⊗(n+k−1)λ

)
, · · ·

)
= E

Ek−1,r̃k
Mixed

 ∑
x(Q)=(0,0λ)

Q (|r̃k⟩)⊗A′Q

(
Ek−1

(
ρ̃(k−1), |0⟩⊗(n+k−1)λ

)
, · · ·

)
In H3+d−k, the state of acceptance after projecting to bk = 0 is

E
Ek−1,r̃k

Mixed
[
|r̃k⟩⟨r̃k|Nk,Tn+kA′

(
|r̃k⟩Nk,Tn+k , Ek−1

(
ρ̃(k−1), |0⟩⊗(n+k−1)λ

)
, · · ·

)]
= E

Ek−1,r̃k
Mixed

∑
Q

|r̃k⟩⟨r̃k|Q |r̃k⟩ ⊗A′Q

(
Ek−1

(
ρ̃(k−1), |0⟩⊗(n+k−1)λ

)
, · · ·

)
= E

Ek−1,r̃k
Mixed

 ∑
x(Q)=(0,0λ)

Q (|r̃k⟩)⊗A′Q

(
Ek−1

(
ρ̃(k−1), |0⟩⊗(n+k−1)λ

)
, · · ·

)
Thus, the states in H2+d−k and H3+d−k are indistinguishable following the projections
for both bk ∈ {0, 1}. When both projections fail, Thybrid aborts in both H2+d−k and
H3+d−k by publicly outputting the server P1 as malicious and will not use the Clifford
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keys anymore. By Clifford twirl (lemma 3.2), the states in both H2+d−k and H3+d−k will
be indistinguishable to

E
r̃k,r̃

∗
k

Mixed

 ∑
x(Q)̸=(0,0λ)

Q (|r̃k⟩)Nk,Tn+k ⊗A′Q

(
|r̃∗⟩N[k−1],T[n+k−1] , · · ·

)
⊗ |⊥P1⟩


• H2+d ≈ H3+d: Consider executing the protocol until the end of step 6. Let (ρ̃′1, · · · , ρ̃′n)
be the quantum output of C. The state of H2+d at step 6 is

E
E0,ski

Mixed
[
A
(
E0

R1,··· ,Rn,T1,··· ,Tn

(
ρ̃′i

Ri , |0⟩⊗λ
Ti
)
, |V ′⟩ , ϕS,i, ϕR,i, ρaux

)
⊗ |ski⟩

]
= E

V ′,ski
Mixed

[
A

(
V ′†

R1,··· ,Rn,T1,··· ,Tn

(
AQA.EncG(ski)

(
ρ̃′i, |0⟩

⊗λ
)Ri,Ti

)
, |V ′⟩ , ϕS,i, ϕR,i, ρaux

)
⊗ |ski⟩

]
= E

V ′,ski
Mixed

[
A
(
V ′†

R1,··· ,Rn,T1,··· ,Tn
(
AQA.Enc (ski, ρ̃

′
i)
Ri,Ti

)
, |V ′⟩ , ϕS,i, ϕR,i, ρaux

)
⊗ |ski⟩

]
where the first equality follows from the definition of V ′ in H2+d and the second follows
from the definition of AQA.Enc. After protocol step 7, the state of H2+d can be generated
under the process (AQA.Setup,AQA.Enc, A′,Audit) where A′ is a CP map that merges A
and V ′†. On the other hand, the state of H3+d at step 6 is

E
Ẽ0,ski,P̃i

Mixed
[
A
(
ẼR1,··· ,Rn,T1,··· ,Tn

0

(
σi

Ri,Ti
)
, |V ′⟩ , ϕS,i, P̃i(ρ̃

′
i), ρaux

)
⊗ |P̃i⟩ ⊗ |ski⟩

]
= E

V ′,ski,dki
Mixed

[
A
(
V ′†

R1,··· ,Rn,T1,··· ,Tn
(
σi

Ri,Ti
)
, |V ′⟩ , ϕS,i, dki(ρ̃

′
i), ρaux

)
⊗ |dki⟩ ⊗ |ski⟩

]
where the equality follows from the definition of V ′ and dki in H3+d. Here, ski, ϕS,i, σi

are generated from AQA.S̃etup, whereas dki and the encoding of ρ̃′i can be generated from

AQA.Ẽnc. After protocol step 7, the state of H3+d can be generated under the process

(AQA.S̃etup,AQA.Ẽnc, A′, Ãudit). By the receiver security of AQA (Theorem 5.2), these
two states are statistically indistinguishable.

• H3+d = Ideal: Except for the computation of C, the execution of Thybrid in H3+d consists of
n independent parts, each interacting with only one party. Thus, we can collect the parts
that interact with the corrupted parties as a simulator Sim, who also interacts with the
ideal functionality of MPQC to compute C. By quantum teleportation and Theorem 5.2,
the honest parties and their corresponding parts of Thybrid indeed send the honest inputs
to the ideal functionality, never send abort to the ideal functionality, and always output
the honest outputs. Hence, H3+d is identical to Ideal.

7 BoBW-MPQC-PVIA with Trusted Setup

In this section, we construct a best-of-both-worlds multi-party quantum computation pro-
tocol secure with publicly verifiable identifiable abort (BoBW-MPQC-PVIA). The protocol
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is similar to the MPQC-PVIA protocol but with n servers instead. Pj will be assigned as
server j. The protocol is divided into two parts:

1. An offline setup: a setup ΣBoBW prepares EPR pairs (Si,Ri) of length ℓi and distributes
the sending side Si to party Pi. Next, the setup uses a QECC scheme to encode every
Ri into {R(j)

i }j∈[n] and the ancilla ϕanc into {ϕ(j)
anc}j∈[n]. Afterwards, the setup encrypts

the j-th part of the QECC codewords into a Clifford ciphertext and send it to server j.
The setup then executes AQA.Setup to prepare for the output delivery stage. Finally,
the setup sends the secret keys to cMPC.

2. An online phase: every party acts as a client who teleports their input to the servers.
Directed by cMPC, the servers evaluate the circuit in a fault-tolerant manner. Each
server j operates only on the ciphertext that encrypts the j-th part of the QECC
codewords. Finally, the servers returns the outputs to the clients using AQA.

Let t < n
2
and let QECC be a [[n, 1]]p polynomial code that corrects t erasure errors as in

Lemma 3.7. Recall that QECC stands for the Clifford gate for QECC encoding. We present
the protocol formally as follows:

Protocol 2 (ΣBoBW,ΠBoBW) for BoBW-MPQC-PVIA with Trusted Setup

Common Input: A threshold t and a quantum circuit C in the format of Section 4.

Trusted Setup ΣBoBW:

1. Prepare EPR pairs (SiSi ,Ri) of length ℓi. Compute (R(1)
i

R1,i

, · · · ,R(n)
i

Rn,i

)← QECC.Enc(Ri).

2. Initialize the ancilla (ϕ
(1)
anc

N1

, · · · , ϕ(n)
anc

Nn

)← QECC.Enc(ϕanc) whereNj = (Nj,1, · · · , Nj,d).

3. Initialize the trap registers Tj = (Tj,1, · · · , Tj,n+d) as |0⟩⊗(n+d)λ.

4. Sample (skj→i, ϕS,j→i, ϕR,j→i)← AQA.Setup(1λ, 1ℓi).

5. Sample random Clifford Ej ← Cℓtotal+(n+d)λ and apply Ej
Rj,1,··· ,Rj,n,Nj ,Tj with result σj.

6. Send (SiSi , σi
Ri,1,··· ,Ri,n,Ni,Ti , ϕS,i→1, · · · , ϕS,i→n, ϕR,1→i

R̂1,i , · · · , ϕR,n→i
R̂n,i) to party Pi.

7. Send the secrets {Ej, skj→i}i,j∈[n] and the corruption list J = ∅ to cMPC.

Online Input: Party Pi receives ρi
Mi ∈ Dℓi .

Protocol ΠBoBW:

Input Encoding:

1. Client i teleports ρi via SiSi and sends the teleportation result Pi to cMPC.

2. cMPC computes the effective teleportation Pauli Pj,i ∈ Pℓi for each server j where
(P1,i ⊗ · · · ⊗ Pn,i) = QECC Pi QECC

†. Accordingly to the Pauli gates (Pj,1, · · · , Pj,n),
cMPC sets the key Ej,d = Ej

Rj,1,··· ,Rj,n,Nj ,TjPj,i
Rj,1 · · ·Pj,n

Rj,n .

Computation:

30



3. For k = d, · · · , 1 and for each server j:

(a) cMPC sends Vj,k = (E ′j,k−1
Rj,[n],Nj,[k−1],Tj,[n+k−1]⊗P ′j,kCXcj,k

Nj,k,Tj,n+k)E†j,k
Rj,[n],Nj,[k],Tj,[n+k]

to server j using a random Clifford E ′j,k−1 ← CΣiℓi+(k−1)+(n+k−1)λ, a random Pauli

P ′j,k ←P∗
1+λ, and random cj,k ← Zλ

p .

(b) Server j applies Vj,k to registers (Rj,[n], Nj,[k], Tj,[n+k]), measures (Nj,k, Tj,n+k) in
the computational basis and sends the measurement outcome rj,k ∈ Z1+λ

p to cMPC.

(c) cMPC sets bj,k ∈ Zp as the solution to rj,k ⊕ x(P ′j,k) = bj,k(1, cj,k) if there is a
solution. Otherwise, cMPC adds server j into the corruption list J and will not
interact with this server anymore.

(d) If |J | > t, cMPC publicly outputs J as malicious and aborts.

(e) cMPC computes the decoded measurement result bk ← QECC.Dec((b1,k, · · · , bn,k), J),
the next gateGk−1 = fk(b1, · · · , bk), and its fault-tolerant version (G

(1)
k−1, · · · , G

(n)
k−1).

Accordingly, cMPC sets the key Ej,k−1 = E ′j,k−1G
(j)†
k−1.

Output Delivery:

4. cMPC sends the gate V ′j = AQA.EncG(skj→1)
Rj,1,Tj,1 · · ·AQA.EncG(skj→n)

Rj,n,Tj,nE†j,0
Rj,[n],Tj,[n]

to server j.

5. Server j applies V ′j
Rj,1,··· ,Rj,n,Tj,1,··· ,Tj,n and obtains (σ̂

M̂j,1

j,1 , · · · , σ̂M̂j,n

j,n ) where M̂j,i :=
(Rj,i, Tj,i).

6. Server j computes pfj,i ← AQA.Send(σ̂j,i, ϕS,j→i) and sends the result to cMPC.

7. cMPC computes dkj,i ← AQA.Audit(skj→i, pfj,i). If dkj,i = ⊥, cMPC adds server j into
the corruption list J . If |J | > t, cMPC publicly outputs J as malicious and aborts.

8. cMPC sends dkj,i to client i.

9. Client i computes ρ′j,i ← AQA.Recv(dkj,i, ϕR,j→i) and outputs ρ′i ← QECC.Dec((ρ′1,i, · · · ρ′n,i), J).

7.1 Security

Theorem 7.1. When parameterized by t < n
2
, (ΣBoBW,ΠBoBW) is a best-of-both-worlds multi-

party quantum computation secure with publicly verifiable identifiable abort of threshold t
with trusted setup in the MPC-hybrid model as defined in Definition 4.1. i.e., For every
non-uniform (qpt) adversary A corrupting party set I with |I| ≤ n− t− 1, there is a non-
uniform (qpt) adversary SimA corrupting I, such that for any (possibly entangled) states
ρ1, · · · ρn, ρaux,

{RealΠBoBW◦ΣBoBW

A(ρaux) (1λ, t, C, ρ1, · · · , ρn)} ≈ {IdealMPQC
SimA(ρaux)

(1λ, t, C, ρ1, · · · , ρn)}

The proof of Theorem 7.1 bears resemblance to that of Theorem 6.1, with some additional
analysis owing to the use of quantum error correction codes.
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Proof. Consider the following hybrid worlds modified from the real protocol gradually. We
describe each hybrid in terms of the changes made to the previous hybrid.

• H1: Introduce a trusted party Thybrid who executes both the setup ΣBoBW and cMPC.

• H2:

– ΣBoBW step 1: Thybrid prepares EPR pairs on (Si, R̃i), (S̃j,i, Rj,i) with |Si| = |R̃i| =
|S̃j,i| = |Rj,i| = ℓi and keeps {(R̃i, S̃j,i)}. Let R̃i be the content of R̃i.

– ΣBoBW step 2: Thybrid prepares EPR pairs on (Dj, Nj) of length d and keeps Dj.

– ΠBoBW step 2: Thybrid extracts the input ρ̃R̃i
i = P †i R̃

R̃i
i , performs (ρ̃

(1)
i , · · · ρ̃(n)i ) ←

QECC.Enc(ρ̃i), and performs (ϕ
(1)
anc, · · ·ϕ(n)

anc) ← QECC.Enc(ϕanc). Next, it teleports

ρ̃
(j)
i , ϕ

(j)
anc back to the server j via registers S̃j,i, Dj respectively. If the teleportation

results are P̃j,i, P̃j,anc, it sets Ej,d = Ej
Rj,1,··· ,Rj,n,Nj ,Tj P̃

Rj,1

j,1 · · · P̃
Rj,n

j,n P̃
Nj

j,anc.

• H3+d−k, where k = d, · · · , 1:

– ΣBoBW step 5: For h = d, · · · , k and for every j, Thybrid resets (Nj,h, Tj,n+h) as a random
string r̃j,h ← Zλ+1

p , samples Clifford Vj,h ← Cℓtotal+(n+h)λ, Ẽj,k−1 ← Cℓtotal+(n+k−1)λ and

sets Ej = V †j,d
R′

j,[n]
,N ′

j,[d]
,T ′

j,[n+d] · · ·V †j,k
R′

j,[n]
,N ′

j,[k]
,T ′

j,[n+k]Ẽ
R′

j,[n]
,N ′

j,[k−1]
,T ′

j,[n+k−1]

j,k−1 .

– ΠBoBW step 2: Thybrid computes ρ̃(k)
R̃[n],Ñ[k−1] ← C[k] · · ·C[d]

(
ρ̃R̃1
1 , · · · , ρ̃R̃n

n , ϕanc
Ñ
)
,

performs (ρ̃
(1)
(k), · · · , ρ̃

(n)
(k)) ← QECC.Enc(ρ̃(k)), and teleports ρ̃

(j)
(k) back to server j. If

the teleportation result is P̃j, it sets Ej,k = Ej
Rj,[n],Nj,[k−1],Tj,[n+k−1]P̃

Rj,[n],Nj,[k−1]

j .

– ΠBoBW step 3 iteration h for h = d, · · · , k: Thybrid sends Vj,h to server j and receives
rj,h in return. If rj,h ̸= r̃j,h, T

hybrid adds server j to the corruption list J and will not
interact with this server anymore. If |J | > t, Thybrid publicly outputs J as malicious
and aborts.

• H3+d:

– ΣBoBW step 4: Thybrid samples (skj→i, ϕS,j→i, σj,i)← AQA.S̃etup(1λ, 1ℓi), uses the con-
tent Rj,i of register Rj,i as ϕR,j→i, and reassigns register (Rj,i, Tj,i) as σj,i.

– ΠBoBW step 2: Thybrid computes the circuit C with input (ρ̃R̃1
1 , · · · ρ̃R̃n

n ), obtains the

quantum output (ρ̃′1, · · · ρ̃′n) of C, performs (ρ̃
′(1)
i , · · · , ρ̃′(n)i ) ← QECC.Enc(ρ̃′i), tele-

ports ρ̃
′(j)
i via register S̃j,i, and sets dkj,i as the teleportation result P̃j,i.

– ΠBoBW step 5: Thybrid sets V ′j = Ẽ†j,0.

– ΠBoBW step 7: Thybrid resets dkj,i = ⊥ if ⊥ ← AQA.Ãudit(skj→i, pfj,i).

The last hybrid is equivalent to the ideal world with the following simulator.

Simulator 2 SimBoBW
A(ρaux) for BoBW-MPQC-PVIA with Trusted Setup
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1. Fake setup (if client i is corrupted):

(a) Prepare EPR pairs on registers (Si, R̃i) with |Si| = |R̃i| = ℓi.

(b) Prepare EPR pairs on registers (S̃j,i, R̂j,i) with |S̃j,i| = |R̂j,i| = ℓi.

(c) Send (Si, R̂j,i) to A.

2. Fake setup (if server j is corrupted):

(a) Sample (skj→i, ϕS,j→i, σj,i
Rj,i,Tj,i)← AQA.S̃etup(1λ, 1ℓi) for i ∈ [n].

(b) Initialize registers (Nj,k, Tj,n+k) with random r̃j,k ← Zλ+1
p for k ∈ [d].

(c) Sample random Clifford gates Vj,k ← Cℓtotal+(n+k)λ for k = 0, 1, · · · , d.

(d) Apply V †j,d
Rj,[n],Nj,[d],Tj,[n+d] · · ·V †j,1

Rj,[n],Nj,[1],Tj,[n+1]
V †j,0

Rj,[n],Tj,[n]
with resulting state σj.

(e) Send (σj
Rj,1,··· ,Rj,n,Nj ,Tj , ϕS,j→1, · · · , ϕS,j→n) to A.

3. Input extraction: Receive Pi from A and extract the input ρ̃i
R̃i = P †iRi

R̃i
.

4. Invoke the ideal functionality: Send ρ̃i to T and receive the output ρ̃′i from T.

5. Check the abort decision (if server j is corrupted):

(a) For k = d, · · · , 1, send Vj,k to A and receive rj,k in return.
If rj,k ̸= r̃j,k, send abort to T in the name of server j.

(b) Send Vj,0 to A.
(c) For i ∈ [n], receive pfj,i from A.

If ⊥ ← AQA.Ãudit(skj,i, pfj,i), send abort to T in the name of server j.

6. Output delivery: Perform (ρ̃
′(1)
i , · · · , ρ̃′(n)i )← QECC.Enc(ρ̃′i), teleport ρ̃

′(j)
i via S̃j,i, and

obtain its teleportation result P̃j,i. Set dkj,i = P̃j,i if server j did not send abort in the
previous step; otherwise, set dkj,i = ⊥. Send dkj,i to A.

7. Output A’s output.

To prove our theorem, it suffices to show indistinguishability between consecutive hybrids.
In the following, QECC.Encj will represent the j-th part of the output of QECC.Enc.

• Real = H1: This is because ΣBoBW, cMPC and Thybrid are all trusted executions.

• H1 = H2: Consider executing the protocol until the end of step 1. Suppose the CP map
A projects (M[n], S[n]) to |P[n]⟩ in step 1. The state of H1 after protocol step 2 is

E
Ej←C

Mixed
[
A
(
Ej

(
QECC.Enc

(
R[n], ϕanc

)Rj,[n],Nj , |0⟩⊗(n+d)λTj
)
, · · ·

)
⊗ |Ej,d⟩

]
= E

Ej,d←C
Mixed

[
A
(
Ej,d

(
P †j,[n]

Rj,[n]
QECC.Encj

(
R[n], ϕanc

)Rj,[n],Nj , |0⟩⊗(n+d)λTj
)
, · · ·

)
⊗ |Ej,d⟩

]
= E

Ej,d←C
Mixed

[
A

(
Ej,d

(
QECC.Encj

(
P †[n]R[n], ϕanc

)Rj,[n],Nj

, |0⟩⊗(n+d)λTj

)
, · · ·

)
⊗ |Ej,d⟩

]
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where the first equality is by the definition of Ej,d and the second equality follows from

(P1,[n] ⊗ · · · ⊗ Pn,[n])
† QECC = QECC P †[n]. In H2, we can change the order of A and

the teleportation made by Thybrid because these operators act on disjoint registers. By
quantum teleportation, the state of H2 after protocol step 2 is as follows, which is the
same as in H1.

E
Ej←C

Mixed
[
A
(
Ej

(
P̃j,[n]ρ̃

(j)
[n]

Rj,[n]
, P̃j,ancϕ

(j)
anc

Nj
, |0⟩⊗(n+d)λTj

)
, · · ·

)
⊗ |Ej,d⟩

]
= E

Ej,d←C
Mixed

[
A
(
Ej,d

(
ρ̃
(j)
[n]

Rj,[n]
, ϕ(j)

anc

Nj
, |0⟩⊗(n+d)λTj

)
, · · ·

)
⊗ |Ej,d⟩

]
= E

Ej,d←C
Mixed

[
A

(
Ej,d

(
QECC.Encj

(
P †[n]R̃[n], ϕanc

)Rj,[n],Nj

, |0⟩⊗(n+d)λTj

)
, · · ·

)
⊗ |Ej,d⟩

]
• H2+d−k = H3+d−k: This is similar to 6.1 except here, we allow multiple servers j ∈ [n].
Consider executing the protocol until the end of step 3 iteration k+1. Suppose the CP
map A projects (Mj,[n], Sj,[n]) to |Pj,[n]⟩ in step 1 and obtains bd, · · · , bk+1 in step 3 for

iterations d to k+1. The partial computation result C[k + 1] · · ·C[d]
(
P †[n]R̃[n], ϕanc

)
is

denoted as ρ̃(k)
R̃[n],Ñ[k] =

∑
u∈Zp

ρ̃(k,u)
R̃[n],Ñ[k−1] ⊗ |u⟩Ñk . Let us write QECC.Encj(ρ̃(k)) as

ρ̃
(j)
(k)

R̃j,[n],Ñj,[k]
=
∑

uj∈Zp
ρ̃(k,j,uj)

R̃j,[n],Ñj,[k−1] ⊗ |uj⟩Ñj,k . In H2+d−k, the state at protocol step

3(a) for iteration k is

E Mixed

[
A

(
Ej,k

(
ρ̃
(j)
(k)

Rj,[n],Nj,[k]
, |0⟩⊗(n+j)λTj,[n+k]

)
, · · ·

)
⊗ |P ′j,k, cj,k⟩

]

=E Mixed

A
V †j,k

 ∑
uj∈Zp

E′j,k−1
(
ρ̃(k,j,uj), |0⟩

⊗(n+j−1)λ )⊗ P ′j,kCXcj,k

(
|uj⟩ , |0⟩⊗λ

) , · · ·

⊗ |P ′j,k, cj,k⟩


The equality holds by the definition of Vj,k. Since the protocol gives the attacker access to

|Vj,k⟩ in step 3(a), we can merge V †j,k and A into a CP map A′ that operates also on |Vj,k⟩.
Also, we can simplify CXcj,k(|uj⟩ , |0⟩

⊗λ) = |uj(1, cj,k)⟩. Thus, the state is equal to

E Mixed

A′
 ∑

uj∈Zp

E′j,k−1
(
ρ̃(k,j,uj), |0⟩

⊗(n+k−1)λ )⊗ P ′j,k |uj(1, cj,k)⟩
Nj,k,Tj,n+k , · · ·

⊗ |P ′j,k, cj,k⟩


Afterwards, protocol step 3(c) projects registers (Nj,k, Tj,n+k) to |x(P ′j,k) + bj,k(1, cj,k)⟩ for
all possible values of bj,k. To analyze, we apply Pauli twirl with target measurement result
bj,k(1, cj,k) (lemma 3.3) and use the Pauli decomposition A′ =

∑
Qj∈P∗λ+1

Qj
Nj,k,Tj,n+k⊗A′Qj

.
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The state after the projection (denoted Πbj,k) of step 3(c) for obtaining solution bj,k is

E Mixed

Πbj,k
Nj,k,Tj,n+kA′

 ∑
uj∈Zp

P ′j,k |uj(1, cj,k)⟩
Nj,k,Tj,n+k ⊗ E′j,k−1

(
ρ̃(k,j,uj), |0⟩

⊗(n+k−1)λ ), · · ·


=E
∑
uj

Mixed

 ∑
x(Qj)=(bj,k−uj)(1,cj,k)

Qj |r̃j,k⟩ ⊗A′Qj

(
E′j,k−1

(
ρ̃(k,j,uj), |0⟩

⊗(n+k−1)λ ), · · ·)


The state at step 3(c) conditioned that there is a solution for bj,k is

E
cj,k,r̃j,k,E

′
j,k-1

∑
bj,k

∑
uj

Mixed

 ∑
x(Qj)=(bj,k−uj)(1,cj,k)

Qj |r̃j,k⟩ ⊗A′Qj

(
E′j,k−1

(
ρ̃(k,j,uj), |0⟩

⊗(n+k−1)λ ), · · ·)⊗ |bj,k⟩


where the last register is the solution stored by Thybrid. Observe that each cj,k occurs with
negligible probability, so the sum of summands for uj ̸= bj,k have negligible trace norm
when averaged over cj,k. Hence, the above state is indistinguishable to the following state

where only uj = bj,k is left. Note that this state is as if the last qupit of ρ̃
(j)
(k) is being

measured in the computational basis and only Thybrid knows the measurement result:

E
r̃j,k,E

′
j,k-1

∑
bj,k

Mixed

 ∑
x(Qj)=0

Qj |r̃j,k⟩ ⊗A′Qj

(
E′j,k−1

(
ρ̃(k,j,bj,k), |0⟩

⊗(n+k−1)λ ), · · ·)⊗ |bj,k⟩
 (6)

The state at step 3(c) conditioned that there is no solution for bj,k is indistinguishable,
using a similar argument and the Clifford twirl (Lemma 3.2), to the following state:

E
r̃∗j,k

Mixed

 ∑
x(Qj )̸=0

(Qj ⊗A′Qj
)
(
|r̃∗j,k⟩

Rj,[n],Nj,[k],Tj,[n+k] , · · ·
)
⊗ |1j∈J⟩

 (7)

where 1j∈J is a flag that indicates server j is in the corruption list J . Next, we analyze the
state at step 3(d). If the corruption list has size |J | > t, then J will be publicly announced
and E ′j,k−1 will be discarded. By the Clifford twirl (Lemma 3.2), the residual joint state
consists of a maximally mixed state and the information of J .

If |J | ≤ t, Thybrid decodes bk ← QECC.Dec((b1,k, · · · , bn,k), J). Since QECC tolerates t
erasure errors, the values of {bj,k}j∈J does not affect the QECC decoding result. The
transversal measurement property of QECC shows that decoding the measurement results
bj,k of Ñj,k is the same as obtaining the measurement result of Ñk. The state obtained
from these two procedures on registers (Rj,[n], Nj,[k−1]) are equal, which gives ρ̃(k,j,bj,k) =
QECC.Encj(ρ̃k,bk). By plugging the equality to Equation (6), we see that the state held by
server j ̸∈ J at step 3(d) is∑

x(Qj)=0

Qj |r̃j,k⟩ ⊗ A′Qj

(
E ′j,k−1

(
QECC.Encj

(
ρ̃(k,bk)

)
, |0⟩⊗(n+k−1)λ ), · · ·)
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Finally, protocol step 3(e) sets Ej,k−1 = E ′j,k−1G
(j)†
k−1. The state for j ̸∈ J now becomes∑

x(Qj)=0

Qj |r̃j,k⟩ ⊗A′Qj

(
Ej,k−1

(
G

(j)
k−1QECC.Encj

(
ρ̃(k,bk)

)
, |0⟩⊗(n+k−1)λ ), · · ·) (8)

=
∑

x(Qj)=0

Qj |r̃j,k⟩ ⊗A′Qj

(
Ej,k−1

(
QECC.Encj

(
Gk−1(ρ̃(k,bk))

)
, |0⟩⊗(n+k−1)λ ), · · ·) (9)

=
∑

x(Qj)=0

Qj |r̃j,k⟩ ⊗A′Qj

(
Ej,k−1

(
QECC.Encj

(
ρ̃(k−1)

)
, |0⟩⊗(n+k−1)λ ), · · ·) (10)

where the first equality follows from (G
(1)
k−1, · · · , G

(n)
k−1) being the fault-tolerant version of

Gk−1 and the second equality arises because Gk−1(ρ̃(k,bk)) is the result of performing the
k-th iteration of computation on ρ̃(k). We have now described all the cases in H2+d−k.

In H3+d−k, the state after projecting to the acceptance condition rj,k = r̃j,k is

E
r̃j,k,Ej

Mixed
[
|r̃j,k⟩⟨r̃j,k|Nj ,Tj,n+kA′

(
|r̃j,k⟩Nj,k,Tj,n+k , Ej

(
ϵ(k), |0⟩⊗(n+k−1)λ

)
, · · ·

)]
= E

r̃j,k,Ej

Mixed

 ∑
x(Qj)=0

Q (|r̃j,k⟩)⊗A′Qj

(
Ej

(
ϵ(k), |0⟩⊗(n+k−1)λ

)
, · · ·

)
where ϵ(k) is the half EPR pairs prepared on Rj,[n], Nj,[k−1] and the equality follows from
Lemma 3.3. Next, Thybrid teleports QECC.Encj(ρ̃(k−1)) and fixes its teleportation Pauli to
Ej which yields Ej,k. This gives the state

E
r̃j,k,Ej,k−1

∑
uj

Mixed

 ∑
x(Qj)=0

Q (|r̃j,k⟩)⊗A′Qj

(
Ej,k−1

(
QECC.Encj(ρ̃(k−1)), |0⟩⊗(n+k−1)λ

)
, · · ·

)
(11)

The state after projecting to the rejection condition rj,k ̸= r̃j,k would be exactly the same
as Equation (7), using a similar argument and the Clifford twirl (Lemma 3.2). Next, if
|J | > t, then Ej,k−1 will be discarded. By Clifford twirl, the residual joint state is same
as in H2+d−k. If |J | ≤ t, the state described in Equation (11) is the same as the state
described in Equation (10). Thus, H2+d−k and H3+d−k are indistinguishable.

• H2+d = H3+d: Consider executing the protocol until the end of step 6. Let (ρ̃′1, · · · , ρ̃′n)
be the quantum output of C and ρ̃

′(j)
i = QECC.Encj(ρ̃

′
i). The state of H2+d at step 6 is

E
Ej,0,skj→i

Mixed

[
A

(
Ej,0

Rj,[n],Tj,[n]

(
ρ̃
′(j)
i

Rj,i
, |0⟩⊗λTj,i

)
, |V ′j ⟩ , ϕS,j→i, ϕR,j→i, · · ·

)
⊗ |skj→i⟩

]
= E

V ′j ,skj→i

Mixed

[
A

(
V ′†j

Rj,[n],Tj,[n]

(
AQA.EncG(skj→i)

(
ρ̃
′(j)
i , |0⟩⊗λ

)Ri,Ti
)
, |V ′⟩ , ϕS,i, ϕR,i, · · ·

)
⊗ |skj→i⟩

]
= E

V ′j ,skj→i

Mixed

[
A

(
V ′†j

Rj,[n],Tj,[n]

(
AQA.Enc

(
skj→i, ρ̃

′(j)
i

)Ri,Ti
)
, |V ′⟩ , ϕS,i, ϕR,i, · · ·

)
⊗ |skj→i⟩

]
where the first equality follows from the definition of V ′ in H2+d and the second follows
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from the definition of AQA.Enc. After protocol step 7, the state of H2+d can be generated
under the process (AQA.Setup,AQA.Enc, A′,Audit) where A′ is a CP map that merges A
and V ′†. On the other hand, the state of H3+d at step 6 is

E
Ẽ0,skj→i,P̃j,i

Mixed
[
A
(
Ẽ

Rj,[n],Tj,[n]

0

(
σj,i

Rj,i,Tj,i
)
, |V ′j ⟩ , ϕS,j→i, P̃j,i(ρ̃

′(j)
i ), · · ·

)
⊗ |P̃j,i⟩ ⊗ |skj→i⟩

]
= E

V ′j ,skj→i,dkj,i
Mixed

[
A
(
V ′†j

Rj,[n],Tj,[n] (
σj,i

Rj,i,Tj,i
)
, |V ′j ⟩ , ϕS,j→i, dkj,i(ρ̃

′(j)
i ), · · ·

)
⊗ |dkj,i⟩ ⊗ |skj→i⟩

]
where the equality follows from the definition of V ′j and dkj,i inH3+d. Here, skj→i, ϕS,j toi, σj,i

are generated from AQA.S̃etup, whereas dkj,i and the encoding of ρ̃
′(j)
i can be generated

from AQA.Ẽnc. After protocol step 7, the state of H3+d can be generated under the

process (AQA.S̃etup,AQA.Ẽnc, A′, Ãudit). By the receiver security of AQA (Theorem 5.2),
these two states are statistically indistinguishable.

• H3+d = Ideal: Except for the computation of C, the execution of Thybrid in H3+d consists of
n independent parts, each interacting with only one party. Thus, we can collect the parts
that interact with the corrupted parties as a simulator Sim, who also interacts with the
ideal functionality of MPQC to compute C. By quantum teleportation, the completeness
and security of our AQA, and the recoverability of QECC, the honest parties and their
corresponding parts of Thybrid indeed send the honest inputs to the ideal functionality,
never send abort to the ideal functionality, and always output the honest outputs. Hence,
H3+d is identical to Ideal.

8 BoBW-MPQC-PVIA without Trusted Setup

So far, we have demonstrated an BoBW-MPQC-PVIA protocol in the preprocessing model
with a trusted setup. Now, we will illustrate how to instantiate the preprocessing phase
without a trusted setup. Our approach involves using MPQC-SWIA e.g., [ACC+21] to
implement the preprocessing phase. Note that [ACC+21] requires a post-quantum fully
homomorphic encryption assumption to achieve the security; however, we do not need this
assumption when we want to compute circuits that have no inputs and apply only Clifford
gates to |0⟩’s and |T⟩’s. We defer the explicit MPQC-SWIA construction to Appendix C.
We reformulate MPQC-SWIA as the following lemma.

Lemma 8.1 (MPQC-SWIA). There is a multi-party quantum computation ΠSWIA secure
with identifiable abort in the MPC-hybrid model that computes quantum circuit C, given that
C takes no inputs and only applies Clifford to ancillary |0⟩ and |T⟩ states. That is, for
every non-uniform (qpt) adversary A corrupting party set I, there is a non-uniform (qpt)
adversary SimSWIA

A corrupting I, such that

{RealΠSWIA

A(ρaux)(1
λ, C)} ≈ {IdealSWIA

SimSWIA
A(ρaux)

(1λ, C)}
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IdealSWIA: Multi-party Quantum Computation Secure with Identifiable Abort

Common input:
The security parameter 1λ and a quantum circuit C with no inputs.

Input:
AI holds input ρaux and controls parties in I.

Execution of TSWIA:
TSWIA computes (ρ′1, ρ

′
2, · · · , ρ′n, r′cMPC)← C, where r′cMPC is classical.

TSWIA sends ρ′i to all Pi ∈ I. Every Pi ∈ I can send abort message to TSWIA.
Let Iabort be the set of parties who indeed send the abort message.
If Iabort is non-empty, TSWIA sends the partition {Iabort,P[n]\Iabort} to all parties.
Otherwise, TSWIA sends ρ′i to all Pi ̸∈ I and sends r′cMPC to cMPC.

Output:
Honest parties output whatever output received from TSWIA.
The adversary AI outputs a function of his view.

We say an execution succeeds if every party receives their part of the circuit output.
Whenever the execution fails, all parties get to know how they have been partitioned into
two groups. An honest party can infer that the group he does not belong to (i.e., Iabort) is
the set of malicious parties who interfered the computation.

In contrast to [ACC+21] where the partition information serves the purpose of SWIA, we
utilize the partition information to design a preprocessing procedure that always succeeds.
Such a preprocessing procedure will be suitable for replacing the setup of MPQC-PVIA.

8.1 Protocol

First, we let the parties run MPQC-SWIA over the setup circuit ΣBoBW that the trusted setup
is supposed to run. If the MPQC-SWIA fails, the parties will be divided into two groups.
Each group will then ignore other groups and run MPQC-SWIA independently. By iterating
this process, each party will eventually find a group in which the MPQC-SWIA succeeds and
receive an output of the setup circuit. This constitutes our preprocessing procedure. Note
that we do not publicly identify anyone during this stage.

After obtaining the output of the setup circuit, every party can run the protocol ΠBoBW

within their group to obtain their MPQC output. It is reasonable for each group to operate
independently, as they view other groups as untrustworthy. Parties within a group can set
the inputs of the parties outside the group as some default inputs such as |0⟩. Moreover,
MPQC-SWIA guarantees that the honest parties are always in the same group, so they
will jointly compute their outputs. Our approach circumvents the false accusation problem
encountered in [ACC+21] because the parties in our protocol no longer accuse between
groups. Instead, each group runs its own ΠBoBW, which only aborts dishonest members.
Below is the formulation of our protocol.

Protocol 3 ΠMPQC for BoBW-MPQC-PVIA
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Input:

1. Everyone holds the threshold t and the circuit description C.

2. Party Pi holds private input ρi ∈ Dℓi .

Protocol:

1. Set G = {{P1, · · · ,Pn}} as the initial partition of parties (i.e., no partition) and mark
the set {P1, · · · ,Pn} ∈ G as unfinished.

2. Repeat the following as long as G contains a set S that is marked as unfinished:

(a) The parties in S run ΠSWIA over the setup circuit ΣBoBW(t, CS), where CS is the
circuit that prepares default inputs (e.g., |0⟩) for parties not in S and runs C.

(b) If ΠSWIA succeeds or if |S| = 1, parties in S has obtained the output of the setup
circuit. In this case, mark S as finished.

(c) Otherwise, ΠSWIA instructs to partition S into {S0, S1} of S. In this case, replace
S with S0 and S1 in G, and mark both S0, S1 as unfinished.

3. Run ΠBoBW(t, CS) within every set S ∈ G.
4. Let J be the union of all corruption lists output by all executions of ΠBoBW. We note

that every corruption list is public and only contains the parties that participate.

Output:

1. If |J | > t, every party outputs J as malicious and aborts.

2. Otherwise, Pi outputs the result obtained from his execution of ΠBoBW.

8.2 Security

Theorem 8.2. ΠMPQC is a best-of-both-worlds multi-party quantum computation secure with
publicly verifiable identifiable abort of threshold t in the MPC-hybrid model.

Proof. We would like to show that the real world and the ideal world are indistinguishable
using the following simulator. We regard A as a stateful adversary throughout.

Simulator 3 SimMPQC
A(ρaux) for BoBW-MPQC-PVIA

1. Set S = {P1, · · · ,Pn} as the initial group that contains all the honest parties.

2. Repeat the following as long as the inner IdealSWIA fails:

(a) Run a simulated IdealSWIA that computes the first part of SimBoBW
A (CS), which is

a circuit that resembles the setup circuit ΣBoBW(CS) but prepares different states.
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(b) Run SimSWIA
A who interacts with the simulated IdealSWIA.

(c) Upon failure, let Iabort be the set of parties instructed by SimSWIA
A to send abort.

(d) Run A to complete the steps in the protocol that involve only the malicious group
Iabort.

(e) Set S as the updated group S\Iabort that contains all the honest parties.

3. For every corrupted party not in S, send their default input to the ideal functionality.

4. Run the remaining part of SimBoBW
A (CS), which interacts with the ideal functionality.

5. Let J be the union of all corrupted lists output by all executions of ΠBoBW. Make all
parties in J send abort to the ideal functionality.

6. Output the output of A.

To prove indistinguishability, we introduce the following hybrids. We describe each hybrid
in terms of the changes made to the previous hybrid, starting with H0 = Real.

• Hi for i = 1, · · · , n: Replace the i-th real execution of ΠSWIA with an ideal execution of
IdealSWIA that computes the corresponding setup circuit ΣBoBW(CS).

• Hn+i for i = 1, · · · , n: If the i-th execution of IdealSWIA will involve all the honest parties,
let the ideal execution compute the first part of the simulator SimBoBW

A (CS) instead. When
this execution succeeds, replace the corresponding real execution of ΠBoBW in protocol step
3 with an ideal execution of IdealMPQC that involves only parties in S and interacts with
the remaining part of the simulator SimBoBW

A (CS). Parties in S still follows the output
procedure of the protocol instead of directly outputting what they get from IdealMPQC.

• H2n+1: Replace the ideal execution of IdealMPQC(CS) that involves only a subset S of
parties with an ideal execution of IdealMPQC(C) that involves all parties, where the parties
not in S always send default inputs. For every corruption list output by ΠBoBW, let the
malicious parties in the corruption list send abort to IdealMPQC. Parties in S directly
outputs what they get from IdealMPQC.

Since the sub-protocols ΠSWIA are executed sequentially among the protocol, lemma 8.1
implies that Hi−1 and Hi are indistinguishable for i = 1, · · · , n. By theorem 7.1, the hybrids
Hn+i−1 and Hn+i are indistinguishable for i = 1, · · · , n. We have H2n = H2n+1 by the
definition of CS and the observation that both hybrids make the same abort decisions.
Moreover, if we merge all the simulators and all the ideal functionalities except for IdealMPQC

in the last hybrid, we would get simulator 3. Thus, the last hybrid has the same output
as running the ideal world with simulator 3. We therefore conclude that the real and ideal
worlds are indistinguishable.
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9 Discussion and Open Questions

Alternative Forms of AQA In our paper, we construct a Clifford-form AQA. It is in-
teresting to consider Trap-code or other forms of AQA. This opens up the feasibility of
constructing MPQC or other protocols using different forms, whereas existing MPQC works
in the dishonest majority setting follow only a rule of thumb along the line of the Clifford
authentication code [DNS12, DGJ+20, ACC+21, BCKM21].

Applications of AQA Our AQA primitive paves the way for developing cryptographic
protocols or primitives that offer public verifiability. For example, AQA may help construct
publicly verifiable quantum fully homomorphic encryption (pvQFHE). However, one may
need to seek a public-key version of AQA to reduce the extra round induced by the audit.

Constant-Round MPQC-PVIA. Upon close examination of MPQC-PVIA, it becomes
apparent that by incorporating a quantum garbled circuit from [BCKM21] and a trusted
setup, a constant-round MPQC-PVIA protocol can be achieved without difficulty. In fact,
upon careful analysis, it is possible to condense the protocol to just three rounds. However,
this requires a trusted setup, which is unfavorable in most cryptographic scenarios. Thus,
constructing an instantiable constant-round setup that removes the trusted setup assumption
would be a good direction.

Acknowledgement

The authors would like to thank Andrea Coladangelo for useful discussions. This research
is supported by NSF CAREER award 2141536 and supported by NSTC QC project under
Grant no. NSTC 111-2119-M-001-004.

References

[ABDR04] Andris Ambainis, Harry Buhrman, Yevgeniy Dodis, and Hein Rohrig. Multi-
party quantum coin flipping. In Proceedings. 19th IEEE Annual Conference on
Computational Complexity, 2004., pages 250–259. IEEE, 2004.

[ABO97] Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation
with constant error. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 176–188, 1997.

[ABOEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive
proofs for quantum computations. arXiv preprint arXiv:1704.04487, 2017.

[ACC+21] Bar Alon, Hao Chung, Kai-Min Chung, Mi-Ying Huang, Yi Lee, and Yu-Ching
Shen. Round efficient secure multiparty quantum computation with identifi-
able abort. In Annual International Cryptology Conference, pages 436–466.
Springer, 2021.

41
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A Proof of Lemmas

Lemma A.1. Let u ̸= u′ ∈ Zn
p and Q,Q′ ∈Pn such that x(Q) + u = x(Q′) + u′. Then

E
P←Pn

[
QP |u⟩ ⟨u′|P †Q′†

]
= 0

Proof. Let v = x(Q) + u = x(Q′) + u′. Then EP←Pn

[
QP |u⟩ ⟨u′|P †Q′†

]
is equal to

E
x(P ),z(P )←Zn

p

[
Xx(Q)Zz(Q)Xx(P )Zz(P )Xu |0⟩⟨0|X−u′Z−z(P )X−x(P )Z−z(Q

′)X−x(Q
′)
]

= E
x(P ),z(P )←Zn

p

[
ω(u−u′)z(P )+uz(Q)−u′z(Q′)+x(P )(z(Q)−z(Q′)) |x(Q) + x(P ) + u⟩ ⟨x(Q′) + x(P ) + u′|

]
= E

z(P )←Zn
p

[
ω(u−u′)z(P ) E

x(P )←Zn
p

[
ωuz(Q)−u′z(Q′)+x(P )(z(Q)−z(Q′)) |x(P ) + v⟩ ⟨x(P ) + v|

]]
= 0

where the last equation follows from u ̸= u′ and averaging over z(P ).

Lemma A.2 (Lemma 3.3). Let |ϕ⟩M,N =
∑

u∈Zn
p
|u⟩M ⊗ |ϕu⟩N be a state and v ∈ Zn

p be

the target measurement result. For any attack AM,N =
∑

Q∈P∗n

(
QM ⊗ AQ

N
)
applied on the

QOTP-protected state, it holds that

E
P←Pn

Mixed
[
|v + x(P )⟩⟨v + x(P )|MAM,NPM |ϕ⟩M,N

]
= E

r←Zn
p

∑
u

Mixed

( ∑
x(Q)=v−u

Q⊗ AQ

)(
|r⟩ ⊗ |ϕu⟩

)
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Proof.

E
P←Pn

Mixed
[
|v + x(P )⟩⟨v + x(P )|MAM,NPM |ϕ⟩M,N

]
= E

P←Pn

Mixed

|v + x(P )⟩⟨v + x(P )|M
∑

Q∈P∗n

∑
u∈Zn

p

(
QM ⊗ AQ

N
)
PM

(
|u⟩M ⊗ |ϕu⟩N

)
= E

P←Pn

Mixed

|v + x(P )⟩⟨v + x(P )|M
∑

Q∈P∗n

∑
u∈Zn

p

(
QP |u⟩M ⊗ AQ |ϕu⟩N

)
= E

P←Pn

Mixed

∑
u∈Zn

p

∑
x(Q)=v−u

QP |u⟩M ⊗ AQ |ϕu⟩N


= E
P←Pn

∑
u∈Zn

p

Mixed

 ∑
x(Q)=v−u

QP |u⟩M ⊗ AQ |ϕu⟩N


= E
r←Zn

p

∑
u∈Zn

p

Mixed

 ∑
x(Q)=v−u

Q |r⟩M ⊗ AQ |ϕu⟩N


The fourth line holds because v + x(P ) = x(Q) + x(P ) + u if and only if x(Q) = v − u.
The fifth line follows from expanding Mixed [·] and eliminating the cross terms for u, u′ ∈ Zn

p

using Lemma A.1. The last line follows from the Pauli twirl (Lemma 3.2).

Lemma A.3 (Lemma 3.9). Let (ψ, τ) be a purified state independent of (eS, eR). Then(
TP.Send(ψM , eS

S), eR
R, τN

)
=

1

pn

∑
x,z∈Zn

p

|z⟩M ⊗ |x⟩S ⊗
(
(XxZz)ψR, τN

)
Proof. Let (ϕ, τ) =

∑
u |u⟩ ⊗ |τu⟩. Then

TPM,S(ψM , eS
S, eR

R, τN)

=HMCX†
M,S

(ψM , eS
S, eR

R, τN)

=HMCX†
M,S

(
1√
pn

∑
u,v

|uM , vS, vR⟩ ⊗ τuN
)

=HM

(
1√
pn

∑
u,v

|uM , v − uS, vR⟩ ⊗ τuN
)

=
1

pn

∑
u,v,z

ω⟨z,u⟩ |zM , v − uS, vR⟩ ⊗ τuN

=
1

pn

∑
u,x,z

ω⟨z,u⟩ |zM , xS, x+ uR⟩ ⊗ τuN

=
1

pn

∑
u,x,z

XxZzR |zM , xS, uR⟩ ⊗ τuN

=
1

pn

∑
x,z

|z⟩M ⊗ |x⟩S ⊗
(
(XxZz)ψR, τN

)
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B State Injection

Phase state |S⟩ = S |+⟩
We can apply the phase gate S on a state |ψ⟩ using CX−1, X, Z gates and |S⟩ state as follows:

S |+⟩ • XZ S |ψ⟩

|ψ⟩ X−1 •

Proof. Write S |+⟩ = 1√
p

∑p−1
j=0 ω

j(j−1)
2 |j⟩ and |ψ⟩ =

∑p−1
i=0 αi |i⟩. After applying CX−1, we get

CX−1(S |+⟩ , |ψ⟩) = CX−1

(
p−1∑
j=0

ω
j(j−1)

2 |j⟩ ,
p−1∑
i=0

αi |i⟩

)

=

p−1∑
j=0

p−1∑
i=0

ω
j(j−1)

2 αi |j⟩ ⊗ |i− j⟩

k=i−j
=

p−1∑
j=0

p−1∑
k=0

ω
j(j−1)

2 αj+k |j⟩ ⊗ |k⟩

where the subscript of α is taken modulo p. Then we measure the second register and obtain
a measurement result k′. We now show by induction that applying (XZ)k

′
to the first register

produces S |ψ⟩.

• If k′ = 0, the state in the first register is
∑p−1

j=0 ω
j(j−1)

2 αj |j⟩ = S |ψ⟩.

• If k′ > 0, the state in the first register is
∑p−1

j=0 ω
j(j−1)

2 αj+k′ |j⟩. Applying XZ to the
state gives

p−1∑
j=0

ωjω
j(j−1)

2 αj+k′ |j + 1⟩ =
p−1∑
j=0

ω
(j+1)j

2 αj+k′ |j + 1⟩ =
p∑

j=1

ω
j(j−1)

2 αj+k′−1 |j⟩

Since ωd = 1, the term with j = p in the last expression is equal to the term corre-

sponding to j = 0. Thus, the state is equivalent to
∑p−1

j=0 ω
j(j−1)

2 αj+k′−1 |j⟩ , which is
what we would obtain if the measurement result were k′ − 1. Hence, applying XZ and
the above argument k′ times would result in S |ψ⟩.

C MPQC-SWIA

This section explains how we obtain the MPQC-SWIA protocol we need by utilizing two
primitives proposed in [ACC+21] to perform quantum computation that involves no in-
puts under fewer assumptions. In particular, our MPQC-SWIA protocol only assumes
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cMPC whereas [ACC+21] assumes cMPC and a post-quantum fully homomorphic encryp-
tion (cFHE). First, we recall some primitives of [ACC+21].

• Authentication Routing (AR): The protocol takes as input the identity of two parties,
one called the sender and the other called the receiver. The sender takes k > n2

quantum packets (σ1, · · · , σk) as input. At the end of the protocol, either the receiver
obtains at least k−n2 of the packets with known indices, or the protocol aborts and a
partition of parties is known to everyone.The protocol directly generalizes to the qupit
version using Clifford group for qupits and replacing GL(2, n) with GL(p, n).

• T-Magic State Preparation (MSP): The protocol takes parameters 1λ, 1n, 1m as input.

At the end of the protocol, either P1 receives E(|T⟩⊗n , |0⟩⊗(m+nλ)) and cMPC receives
E for a random Clifford E, or the protocol aborts and a partition of parties is known
to everyone. The protocol directly generalizes to the qupit version using Clifford group
for qupits and the magic state distillation of [CAB12].

Protocol 4 Our protocol ΠSWIA for MPQC-SWIA

Common input: The parties hold the security parameter 1λ and the circuit description, which
samples a Clifford G from a distribution G and applies it to the state |T⟩⊗n ⊗ |0⟩⊗(m+nλ).

1. Compute the following n3 times. In the k-th iteration:

• Call MSP so that P1 receives a state Ek(|T⟩⊗n , |0⟩⊗(m+nλ)) and cMPC receives Ek.

• If MSP aborts, everyone receives a partition of parties and aborts.

• cMPC samples Gk ← G and sends the Clifford gate Vk = GkE
†
k to P1.

• P1 applies Vk to Ek(|T⟩⊗n , |0⟩⊗(m+nλ)) and obtains (σ1,k, · · · , σn,k).

2. P1 sends the states {σi,k}k∈[n3] to Pi in the order of i = 2, · · · , n:

• P1 runs AR to send {σi,k}k∈Ki−1
to Pi where we set K1 = [n3].

• If AR aborts, everyone receives a partition of parties and aborts.

• cMPC sets Ki as the indices of the packets that are successfully sent through AR.

3. cMPC sends the smallest index k∗ in Kn to everyone.

4. Party Pi outputs σi,k∗ and cMPC outputs Gk∗ .

Initially, there are n3 states prepared. Each execution of AR will either abort or drop up
to n2 packets. If P1 sends states to P2, · · · ,Pn with no abort, there will be no more than
n2(n−1) < n3 packet drops. Hence, the set Kn will retain at least one element, which points
to an iteration where all parties receive the circuit output successfully.
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